1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc_implementation/shared/collectorCounters.hpp"
  31 #include "gc_implementation/shared/gcTraceTime.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "gc_interface/collectedHeap.inline.hpp"
  34 #include "memory/compactPermGen.hpp"
  35 #include "memory/filemap.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/genCollectedHeap.hpp"
  38 #include "memory/genOopClosures.inline.hpp"
  39 #include "memory/generation.inline.hpp"
  40 #include "memory/generationSpec.hpp"
  41 #include "memory/permGen.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/sharedHeap.hpp"
  44 #include "memory/space.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/oop.inline2.hpp"
  47 #include "runtime/aprofiler.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/fprofiler.hpp"
  50 #include "runtime/handles.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/vmThread.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "services/memTracker.hpp"
  56 #include "utilities/vmError.hpp"
  57 #include "utilities/workgroup.hpp"
  58 #ifndef SERIALGC
  59 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  60 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  61 #endif
  62 
  63 GenCollectedHeap* GenCollectedHeap::_gch;
  64 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  65 
  66 // The set of potentially parallel tasks in strong root scanning.
  67 enum GCH_process_strong_roots_tasks {
  68   // We probably want to parallelize both of these internally, but for now...
  69   GCH_PS_younger_gens,
  70   // Leave this one last.
  71   GCH_PS_NumElements
  72 };
  73 
  74 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  75   SharedHeap(policy),
  76   _gen_policy(policy),
  77   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  78   _full_collections_completed(0)
  79 {
  80   if (_gen_process_strong_tasks == NULL ||
  81       !_gen_process_strong_tasks->valid()) {
  82     vm_exit_during_initialization("Failed necessary allocation.");
  83   }
  84   assert(policy != NULL, "Sanity check");
  85   _preloading_shared_classes = false;
  86 }
  87 
  88 jint GenCollectedHeap::initialize() {
  89   CollectedHeap::pre_initialize();
  90 
  91   int i;
  92   _n_gens = gen_policy()->number_of_generations();
  93 
  94   // While there are no constraints in the GC code that HeapWordSize
  95   // be any particular value, there are multiple other areas in the
  96   // system which believe this to be true (e.g. oop->object_size in some
  97   // cases incorrectly returns the size in wordSize units rather than
  98   // HeapWordSize).
  99   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 100 
 101   // The heap must be at least as aligned as generations.
 102   size_t alignment = Generation::GenGrain;
 103 
 104   _gen_specs = gen_policy()->generations();
 105   PermanentGenerationSpec *perm_gen_spec =
 106                                 collector_policy()->permanent_generation();
 107 
 108   // Make sure the sizes are all aligned.
 109   for (i = 0; i < _n_gens; i++) {
 110     _gen_specs[i]->align(alignment);
 111   }
 112   perm_gen_spec->align(alignment);
 113 
 114   // If we are dumping the heap, then allocate a wasted block of address
 115   // space in order to push the heap to a lower address.  This extra
 116   // address range allows for other (or larger) libraries to be loaded
 117   // without them occupying the space required for the shared spaces.
 118 
 119   if (DumpSharedSpaces) {
 120     uintx reserved = 0;
 121     uintx block_size = 64*1024*1024;
 122     while (reserved < SharedDummyBlockSize) {
 123       char* dummy = os::reserve_memory(block_size);
 124       reserved += block_size;
 125     }
 126   }
 127 
 128   // Allocate space for the heap.
 129 
 130   char* heap_address;
 131   size_t total_reserved = 0;
 132   int n_covered_regions = 0;
 133   ReservedSpace heap_rs(0);
 134 
 135   heap_address = allocate(alignment, perm_gen_spec, &total_reserved,
 136                           &n_covered_regions, &heap_rs);
 137 
 138   if (UseSharedSpaces) {
 139     if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
 140       if (heap_rs.is_reserved()) {
 141         heap_rs.release();
 142       }
 143       FileMapInfo* mapinfo = FileMapInfo::current_info();
 144       mapinfo->fail_continue("Unable to reserve shared region.");
 145       allocate(alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
 146                &heap_rs);
 147     }
 148   }
 149 
 150   if (!heap_rs.is_reserved()) {
 151     vm_shutdown_during_initialization(
 152       "Could not reserve enough space for object heap");
 153     return JNI_ENOMEM;
 154   }
 155 
 156   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 157                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 158 
 159   // It is important to do this in a way such that concurrent readers can't
 160   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
 161   _reserved.set_word_size(0);
 162   _reserved.set_start((HeapWord*)heap_rs.base());
 163   size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
 164                                            - perm_gen_spec->misc_code_size();
 165   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
 166 
 167   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
 168   set_barrier_set(rem_set()->bs());
 169 
 170   _gch = this;
 171 
 172   for (i = 0; i < _n_gens; i++) {
 173     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
 174                                               UseSharedSpaces, UseSharedSpaces);
 175     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
 176     // tag generations in JavaHeap
 177     MemTracker::record_virtual_memory_type((address)this_rs.base(), mtJavaHeap);
 178     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
 179   }
 180   _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());
 181   // tag PermGen
 182   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
 183 
 184   clear_incremental_collection_failed();
 185 
 186 #ifndef SERIALGC
 187   // If we are running CMS, create the collector responsible
 188   // for collecting the CMS generations.
 189   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 190     bool success = create_cms_collector();
 191     if (!success) return JNI_ENOMEM;
 192   }
 193 #endif // SERIALGC
 194 
 195   return JNI_OK;
 196 }
 197 
 198 
 199 char* GenCollectedHeap::allocate(size_t alignment,
 200                                  PermanentGenerationSpec* perm_gen_spec,
 201                                  size_t* _total_reserved,
 202                                  int* _n_covered_regions,
 203                                  ReservedSpace* heap_rs){
 204   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
 205     "the maximum representable size";
 206 
 207   // Now figure out the total size.
 208   size_t total_reserved = 0;
 209   int n_covered_regions = 0;
 210   const size_t pageSize = UseLargePages ?
 211       os::large_page_size() : os::vm_page_size();
 212 
 213   for (int i = 0; i < _n_gens; i++) {
 214     total_reserved += _gen_specs[i]->max_size();
 215     if (total_reserved < _gen_specs[i]->max_size()) {
 216       vm_exit_during_initialization(overflow_msg);
 217     }
 218     n_covered_regions += _gen_specs[i]->n_covered_regions();
 219   }
 220   assert(total_reserved % pageSize == 0,
 221          err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize="
 222                  SIZE_FORMAT, total_reserved, pageSize));
 223   total_reserved += perm_gen_spec->max_size();
 224   assert(total_reserved % pageSize == 0,
 225          err_msg("Perm size; total_reserved=" SIZE_FORMAT ", pageSize="
 226                  SIZE_FORMAT ", perm gen max=" SIZE_FORMAT, total_reserved,
 227                  pageSize, perm_gen_spec->max_size()));
 228 
 229   if (total_reserved < perm_gen_spec->max_size()) {
 230     vm_exit_during_initialization(overflow_msg);
 231   }
 232   n_covered_regions += perm_gen_spec->n_covered_regions();
 233 
 234   // Add the size of the data area which shares the same reserved area
 235   // as the heap, but which is not actually part of the heap.
 236   size_t s = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();
 237 
 238   total_reserved += s;
 239   if (total_reserved < s) {
 240     vm_exit_during_initialization(overflow_msg);
 241   }
 242 
 243   if (UseLargePages) {
 244     assert(total_reserved != 0, "total_reserved cannot be 0");
 245     total_reserved = round_to(total_reserved, os::large_page_size());
 246     if (total_reserved < os::large_page_size()) {
 247       vm_exit_during_initialization(overflow_msg);
 248     }
 249   }
 250 
 251   // Calculate the address at which the heap must reside in order for
 252   // the shared data to be at the required address.
 253 
 254   char* heap_address;
 255   if (UseSharedSpaces) {
 256 
 257     // Calculate the address of the first word beyond the heap.
 258     FileMapInfo* mapinfo = FileMapInfo::current_info();
 259     int lr = CompactingPermGenGen::n_regions - 1;
 260     size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
 261     heap_address = mapinfo->region_base(lr) + capacity;
 262 
 263     // Calculate the address of the first word of the heap.
 264     heap_address -= total_reserved;
 265   } else {
 266     heap_address = NULL;  // any address will do.
 267     if (UseCompressedOops) {
 268       heap_address = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
 269       *_total_reserved = total_reserved;
 270       *_n_covered_regions = n_covered_regions;
 271       *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 272                                    UseLargePages, heap_address);
 273 
 274       if (heap_address != NULL && !heap_rs->is_reserved()) {
 275         // Failed to reserve at specified address - the requested memory
 276         // region is taken already, for example, by 'java' launcher.
 277         // Try again to reserver heap higher.
 278         heap_address = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
 279         *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 280                                      UseLargePages, heap_address);
 281 
 282         if (heap_address != NULL && !heap_rs->is_reserved()) {
 283           // Failed to reserve at specified address again - give up.
 284           heap_address = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
 285           assert(heap_address == NULL, "");
 286           *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 287                                        UseLargePages, heap_address);
 288         }
 289       }
 290       return heap_address;
 291     }
 292   }
 293 
 294   *_total_reserved = total_reserved;
 295   *_n_covered_regions = n_covered_regions;
 296   *heap_rs = ReservedHeapSpace(total_reserved, alignment,
 297                                UseLargePages, heap_address);
 298 
 299   return heap_address;
 300 }
 301 
 302 
 303 void GenCollectedHeap::post_initialize() {
 304   SharedHeap::post_initialize();
 305   TwoGenerationCollectorPolicy *policy =
 306     (TwoGenerationCollectorPolicy *)collector_policy();
 307   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
 308   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
 309   assert(def_new_gen->kind() == Generation::DefNew ||
 310          def_new_gen->kind() == Generation::ParNew ||
 311          def_new_gen->kind() == Generation::ASParNew,
 312          "Wrong generation kind");
 313 
 314   Generation* old_gen = get_gen(1);
 315   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
 316          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
 317          old_gen->kind() == Generation::MarkSweepCompact,
 318     "Wrong generation kind");
 319 
 320   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 321                                  old_gen->capacity(),
 322                                  def_new_gen->from()->capacity());
 323   policy->initialize_gc_policy_counters();
 324 }
 325 
 326 void GenCollectedHeap::ref_processing_init() {
 327   SharedHeap::ref_processing_init();
 328   for (int i = 0; i < _n_gens; i++) {
 329     _gens[i]->ref_processor_init();
 330   }
 331 }
 332 
 333 size_t GenCollectedHeap::capacity() const {
 334   size_t res = 0;
 335   for (int i = 0; i < _n_gens; i++) {
 336     res += _gens[i]->capacity();
 337   }
 338   return res;
 339 }
 340 
 341 size_t GenCollectedHeap::used() const {
 342   size_t res = 0;
 343   for (int i = 0; i < _n_gens; i++) {
 344     res += _gens[i]->used();
 345   }
 346   return res;
 347 }
 348 
 349 // Save the "used_region" for generations level and lower,
 350 // and, if perm is true, for perm gen.
 351 void GenCollectedHeap::save_used_regions(int level, bool perm) {
 352   assert(level < _n_gens, "Illegal level parameter");
 353   for (int i = level; i >= 0; i--) {
 354     _gens[i]->save_used_region();
 355   }
 356   if (perm) {
 357     perm_gen()->save_used_region();
 358   }
 359 }
 360 
 361 size_t GenCollectedHeap::max_capacity() const {
 362   size_t res = 0;
 363   for (int i = 0; i < _n_gens; i++) {
 364     res += _gens[i]->max_capacity();
 365   }
 366   return res;
 367 }
 368 
 369 // Update the _full_collections_completed counter
 370 // at the end of a stop-world full GC.
 371 unsigned int GenCollectedHeap::update_full_collections_completed() {
 372   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 373   assert(_full_collections_completed <= _total_full_collections,
 374          "Can't complete more collections than were started");
 375   _full_collections_completed = _total_full_collections;
 376   ml.notify_all();
 377   return _full_collections_completed;
 378 }
 379 
 380 // Update the _full_collections_completed counter, as appropriate,
 381 // at the end of a concurrent GC cycle. Note the conditional update
 382 // below to allow this method to be called by a concurrent collector
 383 // without synchronizing in any manner with the VM thread (which
 384 // may already have initiated a STW full collection "concurrently").
 385 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 386   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 387   assert((_full_collections_completed <= _total_full_collections) &&
 388          (count <= _total_full_collections),
 389          "Can't complete more collections than were started");
 390   if (count > _full_collections_completed) {
 391     _full_collections_completed = count;
 392     ml.notify_all();
 393   }
 394   return _full_collections_completed;
 395 }
 396 
 397 
 398 #ifndef PRODUCT
 399 // Override of memory state checking method in CollectedHeap:
 400 // Some collectors (CMS for example) can't have badHeapWordVal written
 401 // in the first two words of an object. (For instance , in the case of
 402 // CMS these words hold state used to synchronize between certain
 403 // (concurrent) GC steps and direct allocating mutators.)
 404 // The skip_header_HeapWords() method below, allows us to skip
 405 // over the requisite number of HeapWord's. Note that (for
 406 // generational collectors) this means that those many words are
 407 // skipped in each object, irrespective of the generation in which
 408 // that object lives. The resultant loss of precision seems to be
 409 // harmless and the pain of avoiding that imprecision appears somewhat
 410 // higher than we are prepared to pay for such rudimentary debugging
 411 // support.
 412 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 413                                                          size_t size) {
 414   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 415     // We are asked to check a size in HeapWords,
 416     // but the memory is mangled in juint words.
 417     juint* start = (juint*) (addr + skip_header_HeapWords());
 418     juint* end   = (juint*) (addr + size);
 419     for (juint* slot = start; slot < end; slot += 1) {
 420       assert(*slot == badHeapWordVal,
 421              "Found non badHeapWordValue in pre-allocation check");
 422     }
 423   }
 424 }
 425 #endif
 426 
 427 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 428                                                bool is_tlab,
 429                                                bool first_only) {
 430   HeapWord* res;
 431   for (int i = 0; i < _n_gens; i++) {
 432     if (_gens[i]->should_allocate(size, is_tlab)) {
 433       res = _gens[i]->allocate(size, is_tlab);
 434       if (res != NULL) return res;
 435       else if (first_only) break;
 436     }
 437   }
 438   // Otherwise...
 439   return NULL;
 440 }
 441 
 442 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 443                                          bool* gc_overhead_limit_was_exceeded) {
 444   return collector_policy()->mem_allocate_work(size,
 445                                                false /* is_tlab */,
 446                                                gc_overhead_limit_was_exceeded);
 447 }
 448 
 449 bool GenCollectedHeap::must_clear_all_soft_refs() {
 450   return _gc_cause == GCCause::_last_ditch_collection;
 451 }
 452 
 453 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 454   return UseConcMarkSweepGC &&
 455          ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
 456           (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
 457 }
 458 
 459 void GenCollectedHeap::do_collection(bool  full,
 460                                      bool   clear_all_soft_refs,
 461                                      size_t size,
 462                                      bool   is_tlab,
 463                                      int    max_level) {
 464   bool prepared_for_verification = false;
 465   ResourceMark rm;
 466   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 467 
 468   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 469   assert(my_thread->is_VM_thread() ||
 470          my_thread->is_ConcurrentGC_thread(),
 471          "incorrect thread type capability");
 472   assert(Heap_lock->is_locked(),
 473          "the requesting thread should have the Heap_lock");
 474   guarantee(!is_gc_active(), "collection is not reentrant");
 475   assert(max_level < n_gens(), "sanity check");
 476 
 477   if (GC_locker::check_active_before_gc()) {
 478     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 479   }
 480 
 481   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 482                           collector_policy()->should_clear_all_soft_refs();
 483 
 484   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 485 
 486   const size_t perm_prev_used = perm_gen()->used();
 487 
 488   print_heap_before_gc();
 489 
 490   {
 491     FlagSetting fl(_is_gc_active, true);
 492 
 493     bool complete = full && (max_level == (n_gens()-1));
 494     const char* gc_cause_prefix = complete ? "Full GC" : "GC";
 495     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 496     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 497     GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL);
 498 
 499     gc_prologue(complete);
 500     increment_total_collections(complete);
 501 
 502     size_t gch_prev_used = used();
 503 
 504     int starting_level = 0;
 505     if (full) {
 506       // Search for the oldest generation which will collect all younger
 507       // generations, and start collection loop there.
 508       for (int i = max_level; i >= 0; i--) {
 509         if (_gens[i]->full_collects_younger_generations()) {
 510           starting_level = i;
 511           break;
 512         }
 513       }
 514     }
 515 
 516     bool must_restore_marks_for_biased_locking = false;
 517 
 518     int max_level_collected = starting_level;
 519     for (int i = starting_level; i <= max_level; i++) {
 520       if (_gens[i]->should_collect(full, size, is_tlab)) {
 521         if (i == n_gens() - 1) {  // a major collection is to happen
 522           if (!complete) {
 523             // The full_collections increment was missed above.
 524             increment_total_full_collections();
 525           }
 526           pre_full_gc_dump(NULL);    // do any pre full gc dumps
 527         }
 528         // Timer for individual generations. Last argument is false: no CR
 529         // FIXME: We should try to start the timing earlier to cover more of the GC pause
 530         GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL);
 531         TraceCollectorStats tcs(_gens[i]->counters());
 532         TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());
 533 
 534         size_t prev_used = _gens[i]->used();
 535         _gens[i]->stat_record()->invocations++;
 536         _gens[i]->stat_record()->accumulated_time.start();
 537 
 538         // Must be done anew before each collection because
 539         // a previous collection will do mangling and will
 540         // change top of some spaces.
 541         record_gen_tops_before_GC();
 542 
 543         if (PrintGC && Verbose) {
 544           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
 545                      i,
 546                      _gens[i]->stat_record()->invocations,
 547                      size*HeapWordSize);
 548         }
 549 
 550         if (VerifyBeforeGC && i >= VerifyGCLevel &&
 551             total_collections() >= VerifyGCStartAt) {
 552           HandleMark hm;  // Discard invalid handles created during verification
 553           if (!prepared_for_verification) {
 554             prepare_for_verify();
 555             prepared_for_verification = true;
 556           }
 557           gclog_or_tty->print(" VerifyBeforeGC:");
 558           Universe::verify();
 559         }
 560         COMPILER2_PRESENT(DerivedPointerTable::clear());
 561 
 562         if (!must_restore_marks_for_biased_locking &&
 563             _gens[i]->performs_in_place_marking()) {
 564           // We perform this mark word preservation work lazily
 565           // because it's only at this point that we know whether we
 566           // absolutely have to do it; we want to avoid doing it for
 567           // scavenge-only collections where it's unnecessary
 568           must_restore_marks_for_biased_locking = true;
 569           BiasedLocking::preserve_marks();
 570         }
 571 
 572         // Do collection work
 573         {
 574           // Note on ref discovery: For what appear to be historical reasons,
 575           // GCH enables and disabled (by enqueing) refs discovery.
 576           // In the future this should be moved into the generation's
 577           // collect method so that ref discovery and enqueueing concerns
 578           // are local to a generation. The collect method could return
 579           // an appropriate indication in the case that notification on
 580           // the ref lock was needed. This will make the treatment of
 581           // weak refs more uniform (and indeed remove such concerns
 582           // from GCH). XXX
 583 
 584           HandleMark hm;  // Discard invalid handles created during gc
 585           save_marks();   // save marks for all gens
 586           // We want to discover references, but not process them yet.
 587           // This mode is disabled in process_discovered_references if the
 588           // generation does some collection work, or in
 589           // enqueue_discovered_references if the generation returns
 590           // without doing any work.
 591           ReferenceProcessor* rp = _gens[i]->ref_processor();
 592           // If the discovery of ("weak") refs in this generation is
 593           // atomic wrt other collectors in this configuration, we
 594           // are guaranteed to have empty discovered ref lists.
 595           if (rp->discovery_is_atomic()) {
 596             rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 597             rp->setup_policy(do_clear_all_soft_refs);
 598           } else {
 599             // collect() below will enable discovery as appropriate
 600           }
 601           _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
 602           if (!rp->enqueuing_is_done()) {
 603             rp->enqueue_discovered_references();
 604           } else {
 605             rp->set_enqueuing_is_done(false);
 606           }
 607           rp->verify_no_references_recorded();
 608         }
 609         max_level_collected = i;
 610 
 611         // Determine if allocation request was met.
 612         if (size > 0) {
 613           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
 614             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
 615               size = 0;
 616             }
 617           }
 618         }
 619 
 620         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 621 
 622         _gens[i]->stat_record()->accumulated_time.stop();
 623 
 624         update_gc_stats(i, full);
 625 
 626         if (VerifyAfterGC && i >= VerifyGCLevel &&
 627             total_collections() >= VerifyGCStartAt) {
 628           HandleMark hm;  // Discard invalid handles created during verification
 629           gclog_or_tty->print(" VerifyAfterGC:");
 630           Universe::verify();
 631         }
 632 
 633         if (PrintGCDetails) {
 634           gclog_or_tty->print(":");
 635           _gens[i]->print_heap_change(prev_used);
 636         }
 637       }
 638     }
 639 
 640     // Update "complete" boolean wrt what actually transpired --
 641     // for instance, a promotion failure could have led to
 642     // a whole heap collection.
 643     complete = complete || (max_level_collected == n_gens() - 1);
 644 
 645     if (complete) { // We did a "major" collection
 646       // FIXME: See comment at pre_full_gc_dump call
 647       post_full_gc_dump(NULL);   // do any post full gc dumps
 648     }
 649 
 650     if (PrintGCDetails) {
 651       print_heap_change(gch_prev_used);
 652 
 653       // Print perm gen info for full GC with PrintGCDetails flag.
 654       if (complete) {
 655         print_perm_heap_change(perm_prev_used);
 656       }
 657     }
 658 
 659     for (int j = max_level_collected; j >= 0; j -= 1) {
 660       // Adjust generation sizes.
 661       _gens[j]->compute_new_size();
 662     }
 663 
 664     if (complete) {
 665       // Ask the permanent generation to adjust size for full collections
 666       perm()->compute_new_size();
 667       update_full_collections_completed();
 668     }
 669 
 670     // Track memory usage and detect low memory after GC finishes
 671     MemoryService::track_memory_usage();
 672 
 673     gc_epilogue(complete);
 674 
 675     if (must_restore_marks_for_biased_locking) {
 676       BiasedLocking::restore_marks();
 677     }
 678   }
 679 
 680   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
 681   AdaptiveSizePolicyOutput(sp, total_collections());
 682 
 683   print_heap_after_gc();
 684 
 685 #ifdef TRACESPINNING
 686   ParallelTaskTerminator::print_termination_counts();
 687 #endif
 688 }
 689 
 690 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 691   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
 692 }
 693 
 694 void GenCollectedHeap::set_par_threads(uint t) {
 695   SharedHeap::set_par_threads(t);
 696   _gen_process_strong_tasks->set_n_threads(t);
 697 }
 698 
 699 void GenCollectedHeap::
 700 gen_process_strong_roots(int level,
 701                          bool younger_gens_as_roots,
 702                          bool activate_scope,
 703                          bool collecting_perm_gen,
 704                          SharedHeap::ScanningOption so,
 705                          OopsInGenClosure* not_older_gens,
 706                          bool do_code_roots,
 707                          OopsInGenClosure* older_gens) {
 708   // General strong roots.
 709 
 710   if (!do_code_roots) {
 711     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
 712                                      not_older_gens, NULL, older_gens);
 713   } else {
 714     bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
 715     CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
 716     SharedHeap::process_strong_roots(activate_scope, collecting_perm_gen, so,
 717                                      not_older_gens, &code_roots, older_gens);
 718   }
 719 
 720   if (younger_gens_as_roots) {
 721     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 722       for (int i = 0; i < level; i++) {
 723         not_older_gens->set_generation(_gens[i]);
 724         _gens[i]->oop_iterate(not_older_gens);
 725       }
 726       not_older_gens->reset_generation();
 727     }
 728   }
 729   // When collection is parallel, all threads get to cooperate to do
 730   // older-gen scanning.
 731   for (int i = level+1; i < _n_gens; i++) {
 732     older_gens->set_generation(_gens[i]);
 733     rem_set()->younger_refs_iterate(_gens[i], older_gens);
 734     older_gens->reset_generation();
 735   }
 736 
 737   _gen_process_strong_tasks->all_tasks_completed();
 738 }
 739 
 740 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
 741                                               CodeBlobClosure* code_roots,
 742                                               OopClosure* non_root_closure) {
 743   SharedHeap::process_weak_roots(root_closure, code_roots, non_root_closure);
 744   // "Local" "weak" refs
 745   for (int i = 0; i < _n_gens; i++) {
 746     _gens[i]->ref_processor()->weak_oops_do(root_closure);
 747   }
 748 }
 749 
 750 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 751 void GenCollectedHeap::                                                 \
 752 oop_since_save_marks_iterate(int level,                                 \
 753                              OopClosureType* cur,                       \
 754                              OopClosureType* older) {                   \
 755   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
 756   for (int i = level+1; i < n_gens(); i++) {                            \
 757     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
 758   }                                                                     \
 759   perm_gen()->oop_since_save_marks_iterate##nv_suffix(older);           \
 760 }
 761 
 762 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 763 
 764 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 765 
 766 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
 767   for (int i = level; i < _n_gens; i++) {
 768     if (!_gens[i]->no_allocs_since_save_marks()) return false;
 769   }
 770   return perm_gen()->no_allocs_since_save_marks();
 771 }
 772 
 773 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 774   return _gens[0]->supports_inline_contig_alloc();
 775 }
 776 
 777 HeapWord** GenCollectedHeap::top_addr() const {
 778   return _gens[0]->top_addr();
 779 }
 780 
 781 HeapWord** GenCollectedHeap::end_addr() const {
 782   return _gens[0]->end_addr();
 783 }
 784 
 785 size_t GenCollectedHeap::unsafe_max_alloc() {
 786   return _gens[0]->unsafe_max_alloc_nogc();
 787 }
 788 
 789 // public collection interfaces
 790 
 791 void GenCollectedHeap::collect(GCCause::Cause cause) {
 792   if (should_do_concurrent_full_gc(cause)) {
 793 #ifndef SERIALGC
 794     // mostly concurrent full collection
 795     collect_mostly_concurrent(cause);
 796 #else  // SERIALGC
 797     ShouldNotReachHere();
 798 #endif // SERIALGC
 799   } else {
 800 #ifdef ASSERT
 801     if (cause == GCCause::_scavenge_alot) {
 802       // minor collection only
 803       collect(cause, 0);
 804     } else {
 805       // Stop-the-world full collection
 806       collect(cause, n_gens() - 1);
 807     }
 808 #else
 809     // Stop-the-world full collection
 810     collect(cause, n_gens() - 1);
 811 #endif
 812   }
 813 }
 814 
 815 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
 816   // The caller doesn't have the Heap_lock
 817   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 818   MutexLocker ml(Heap_lock);
 819   collect_locked(cause, max_level);
 820 }
 821 
 822 // This interface assumes that it's being called by the
 823 // vm thread. It collects the heap assuming that the
 824 // heap lock is already held and that we are executing in
 825 // the context of the vm thread.
 826 void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 827   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 828   assert(Heap_lock->is_locked(), "Precondition#2");
 829   GCCauseSetter gcs(this, cause);
 830   switch (cause) {
 831     case GCCause::_heap_inspection:
 832     case GCCause::_heap_dump: {
 833       HandleMark hm;
 834       do_full_collection(false,         // don't clear all soft refs
 835                          n_gens() - 1);
 836       break;
 837     }
 838     default: // XXX FIX ME
 839       ShouldNotReachHere(); // Unexpected use of this function
 840   }
 841 }
 842 
 843 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 844   // The caller has the Heap_lock
 845   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 846   collect_locked(cause, n_gens() - 1);
 847 }
 848 
 849 // this is the private collection interface
 850 // The Heap_lock is expected to be held on entry.
 851 
 852 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
 853   if (_preloading_shared_classes) {
 854     report_out_of_shared_space(SharedPermGen);
 855   }
 856   // Read the GC count while holding the Heap_lock
 857   unsigned int gc_count_before      = total_collections();
 858   unsigned int full_gc_count_before = total_full_collections();
 859   {
 860     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 861     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 862                          cause, max_level);
 863     VMThread::execute(&op);
 864   }
 865 }
 866 
 867 #ifndef SERIALGC
 868 bool GenCollectedHeap::create_cms_collector() {
 869 
 870   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
 871          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
 872          _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
 873          "Unexpected generation kinds");
 874   // Skip two header words in the block content verification
 875   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 876   CMSCollector* collector = new CMSCollector(
 877     (ConcurrentMarkSweepGeneration*)_gens[1],
 878     (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
 879     _rem_set->as_CardTableRS(),
 880     (ConcurrentMarkSweepPolicy*) collector_policy());
 881 
 882   if (collector == NULL || !collector->completed_initialization()) {
 883     if (collector) {
 884       delete collector;  // Be nice in embedded situation
 885     }
 886     vm_shutdown_during_initialization("Could not create CMS collector");
 887     return false;
 888   }
 889   return true;  // success
 890 }
 891 
 892 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 893   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 894 
 895   MutexLocker ml(Heap_lock);
 896   // Read the GC counts while holding the Heap_lock
 897   unsigned int full_gc_count_before = total_full_collections();
 898   unsigned int gc_count_before      = total_collections();
 899   {
 900     MutexUnlocker mu(Heap_lock);
 901     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 902     VMThread::execute(&op);
 903   }
 904 }
 905 #endif // SERIALGC
 906 
 907 
 908 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 909                                           int max_level) {
 910   int local_max_level;
 911   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 912       gc_cause() == GCCause::_gc_locker) {
 913     local_max_level = 0;
 914   } else {
 915     local_max_level = max_level;
 916   }
 917 
 918   do_collection(true                 /* full */,
 919                 clear_all_soft_refs  /* clear_all_soft_refs */,
 920                 0                    /* size */,
 921                 false                /* is_tlab */,
 922                 local_max_level      /* max_level */);
 923   // Hack XXX FIX ME !!!
 924   // A scavenge may not have been attempted, or may have
 925   // been attempted and failed, because the old gen was too full
 926   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
 927       incremental_collection_will_fail(false /* don't consult_young */)) {
 928     if (PrintGCDetails) {
 929       gclog_or_tty->print_cr("GC locker: Trying a full collection "
 930                              "because scavenge failed");
 931     }
 932     // This time allow the old gen to be collected as well
 933     do_collection(true                 /* full */,
 934                   clear_all_soft_refs  /* clear_all_soft_refs */,
 935                   0                    /* size */,
 936                   false                /* is_tlab */,
 937                   n_gens() - 1         /* max_level */);
 938   }
 939 }
 940 
 941 bool GenCollectedHeap::is_in_young(oop p) {
 942   bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
 943   assert(result == _gens[0]->is_in_reserved(p),
 944          err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
 945   return result;
 946 }
 947 
 948 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 949 bool GenCollectedHeap::is_in(const void* p) const {
 950   #ifndef ASSERT
 951   guarantee(VerifyBeforeGC   ||
 952             VerifyDuringGC   ||
 953             VerifyBeforeExit ||
 954             PrintAssembly    ||
 955             tty->count() != 0 ||   // already printing
 956             VerifyAfterGC    ||
 957     VMError::fatal_error_in_progress(), "too expensive");
 958 
 959   #endif
 960   // This might be sped up with a cache of the last generation that
 961   // answered yes.
 962   for (int i = 0; i < _n_gens; i++) {
 963     if (_gens[i]->is_in(p)) return true;
 964   }
 965   if (_perm_gen->as_gen()->is_in(p)) return true;
 966   // Otherwise...
 967   return false;
 968 }
 969 
 970 #ifdef ASSERT
 971 // Don't implement this by using is_in_young().  This method is used
 972 // in some cases to check that is_in_young() is correct.
 973 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 974   assert(is_in_reserved(p) || p == NULL,
 975     "Does not work if address is non-null and outside of the heap");
 976   // The order of the generations is young (low addr), old, perm (high addr)
 977   return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
 978 }
 979 #endif
 980 
 981 void GenCollectedHeap::oop_iterate(OopClosure* cl) {
 982   for (int i = 0; i < _n_gens; i++) {
 983     _gens[i]->oop_iterate(cl);
 984   }
 985 }
 986 
 987 void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
 988   for (int i = 0; i < _n_gens; i++) {
 989     _gens[i]->oop_iterate(mr, cl);
 990   }
 991 }
 992 
 993 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 994   for (int i = 0; i < _n_gens; i++) {
 995     _gens[i]->object_iterate(cl);
 996   }
 997   perm_gen()->object_iterate(cl);
 998 }
 999 
1000 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
1001   for (int i = 0; i < _n_gens; i++) {
1002     _gens[i]->safe_object_iterate(cl);
1003   }
1004   perm_gen()->safe_object_iterate(cl);
1005 }
1006 
1007 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
1008   for (int i = 0; i < _n_gens; i++) {
1009     _gens[i]->object_iterate_since_last_GC(cl);
1010   }
1011 }
1012 
1013 Space* GenCollectedHeap::space_containing(const void* addr) const {
1014   for (int i = 0; i < _n_gens; i++) {
1015     Space* res = _gens[i]->space_containing(addr);
1016     if (res != NULL) return res;
1017   }
1018   Space* res = perm_gen()->space_containing(addr);
1019   if (res != NULL) return res;
1020   // Otherwise...
1021   assert(false, "Could not find containing space");
1022   return NULL;
1023 }
1024 
1025 
1026 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1027   assert(is_in_reserved(addr), "block_start of address outside of heap");
1028   for (int i = 0; i < _n_gens; i++) {
1029     if (_gens[i]->is_in_reserved(addr)) {
1030       assert(_gens[i]->is_in(addr),
1031              "addr should be in allocated part of generation");
1032       return _gens[i]->block_start(addr);
1033     }
1034   }
1035   if (perm_gen()->is_in_reserved(addr)) {
1036     assert(perm_gen()->is_in(addr),
1037            "addr should be in allocated part of perm gen");
1038     return perm_gen()->block_start(addr);
1039   }
1040   assert(false, "Some generation should contain the address");
1041   return NULL;
1042 }
1043 
1044 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1045   assert(is_in_reserved(addr), "block_size of address outside of heap");
1046   for (int i = 0; i < _n_gens; i++) {
1047     if (_gens[i]->is_in_reserved(addr)) {
1048       assert(_gens[i]->is_in(addr),
1049              "addr should be in allocated part of generation");
1050       return _gens[i]->block_size(addr);
1051     }
1052   }
1053   if (perm_gen()->is_in_reserved(addr)) {
1054     assert(perm_gen()->is_in(addr),
1055            "addr should be in allocated part of perm gen");
1056     return perm_gen()->block_size(addr);
1057   }
1058   assert(false, "Some generation should contain the address");
1059   return 0;
1060 }
1061 
1062 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1063   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1064   assert(block_start(addr) == addr, "addr must be a block start");
1065   for (int i = 0; i < _n_gens; i++) {
1066     if (_gens[i]->is_in_reserved(addr)) {
1067       return _gens[i]->block_is_obj(addr);
1068     }
1069   }
1070   if (perm_gen()->is_in_reserved(addr)) {
1071     return perm_gen()->block_is_obj(addr);
1072   }
1073   assert(false, "Some generation should contain the address");
1074   return false;
1075 }
1076 
1077 bool GenCollectedHeap::supports_tlab_allocation() const {
1078   for (int i = 0; i < _n_gens; i += 1) {
1079     if (_gens[i]->supports_tlab_allocation()) {
1080       return true;
1081     }
1082   }
1083   return false;
1084 }
1085 
1086 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1087   size_t result = 0;
1088   for (int i = 0; i < _n_gens; i += 1) {
1089     if (_gens[i]->supports_tlab_allocation()) {
1090       result += _gens[i]->tlab_capacity();
1091     }
1092   }
1093   return result;
1094 }
1095 
1096 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1097   size_t result = 0;
1098   for (int i = 0; i < _n_gens; i += 1) {
1099     if (_gens[i]->supports_tlab_allocation()) {
1100       result += _gens[i]->unsafe_max_tlab_alloc();
1101     }
1102   }
1103   return result;
1104 }
1105 
1106 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1107   bool gc_overhead_limit_was_exceeded;
1108   return collector_policy()->mem_allocate_work(size /* size */,
1109                                                true /* is_tlab */,
1110                                                &gc_overhead_limit_was_exceeded);
1111 }
1112 
1113 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1114 // from the list headed by "*prev_ptr".
1115 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1116   bool first = true;
1117   size_t min_size = 0;   // "first" makes this conceptually infinite.
1118   ScratchBlock **smallest_ptr, *smallest;
1119   ScratchBlock  *cur = *prev_ptr;
1120   while (cur) {
1121     assert(*prev_ptr == cur, "just checking");
1122     if (first || cur->num_words < min_size) {
1123       smallest_ptr = prev_ptr;
1124       smallest     = cur;
1125       min_size     = smallest->num_words;
1126       first        = false;
1127     }
1128     prev_ptr = &cur->next;
1129     cur     =  cur->next;
1130   }
1131   smallest      = *smallest_ptr;
1132   *smallest_ptr = smallest->next;
1133   return smallest;
1134 }
1135 
1136 // Sort the scratch block list headed by res into decreasing size order,
1137 // and set "res" to the result.
1138 static void sort_scratch_list(ScratchBlock*& list) {
1139   ScratchBlock* sorted = NULL;
1140   ScratchBlock* unsorted = list;
1141   while (unsorted) {
1142     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1143     smallest->next  = sorted;
1144     sorted          = smallest;
1145   }
1146   list = sorted;
1147 }
1148 
1149 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1150                                                size_t max_alloc_words) {
1151   ScratchBlock* res = NULL;
1152   for (int i = 0; i < _n_gens; i++) {
1153     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
1154   }
1155   sort_scratch_list(res);
1156   return res;
1157 }
1158 
1159 void GenCollectedHeap::release_scratch() {
1160   for (int i = 0; i < _n_gens; i++) {
1161     _gens[i]->reset_scratch();
1162   }
1163 }
1164 
1165 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1166   void do_generation(Generation* gen) {
1167     gen->prepare_for_verify();
1168   }
1169 };
1170 
1171 void GenCollectedHeap::prepare_for_verify() {
1172   ensure_parsability(false);        // no need to retire TLABs
1173   GenPrepareForVerifyClosure blk;
1174   generation_iterate(&blk, false);
1175   perm_gen()->prepare_for_verify();
1176 }
1177 
1178 
1179 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1180                                           bool old_to_young) {
1181   if (old_to_young) {
1182     for (int i = _n_gens-1; i >= 0; i--) {
1183       cl->do_generation(_gens[i]);
1184     }
1185   } else {
1186     for (int i = 0; i < _n_gens; i++) {
1187       cl->do_generation(_gens[i]);
1188     }
1189   }
1190 }
1191 
1192 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
1193   for (int i = 0; i < _n_gens; i++) {
1194     _gens[i]->space_iterate(cl, true);
1195   }
1196   perm_gen()->space_iterate(cl, true);
1197 }
1198 
1199 bool GenCollectedHeap::is_maximal_no_gc() const {
1200   for (int i = 0; i < _n_gens; i++) {  // skip perm gen
1201     if (!_gens[i]->is_maximal_no_gc()) {
1202       return false;
1203     }
1204   }
1205   return true;
1206 }
1207 
1208 void GenCollectedHeap::save_marks() {
1209   for (int i = 0; i < _n_gens; i++) {
1210     _gens[i]->save_marks();
1211   }
1212   perm_gen()->save_marks();
1213 }
1214 
1215 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
1216   for (int i = 0; i <= collectedGen; i++) {
1217     _gens[i]->compute_new_size();
1218   }
1219 }
1220 
1221 GenCollectedHeap* GenCollectedHeap::heap() {
1222   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1223   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
1224   return _gch;
1225 }
1226 
1227 
1228 void GenCollectedHeap::prepare_for_compaction() {
1229   Generation* scanning_gen = _gens[_n_gens-1];
1230   // Start by compacting into same gen.
1231   CompactPoint cp(scanning_gen, NULL, NULL);
1232   while (scanning_gen != NULL) {
1233     scanning_gen->prepare_for_compaction(&cp);
1234     scanning_gen = prev_gen(scanning_gen);
1235   }
1236 }
1237 
1238 GCStats* GenCollectedHeap::gc_stats(int level) const {
1239   return _gens[level]->gc_stats();
1240 }
1241 
1242 void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
1243   if (!silent) {
1244     gclog_or_tty->print("permgen ");
1245   }
1246   perm_gen()->verify();
1247   for (int i = _n_gens-1; i >= 0; i--) {
1248     Generation* g = _gens[i];
1249     if (!silent) {
1250       gclog_or_tty->print(g->name());
1251       gclog_or_tty->print(" ");
1252     }
1253     g->verify();
1254   }
1255   if (!silent) {
1256     gclog_or_tty->print("remset ");
1257   }
1258   rem_set()->verify();
1259 }
1260 
1261 void GenCollectedHeap::print_on(outputStream* st) const {
1262   for (int i = 0; i < _n_gens; i++) {
1263     _gens[i]->print_on(st);
1264   }
1265   perm_gen()->print_on(st);
1266 }
1267 
1268 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1269   if (workers() != NULL) {
1270     workers()->threads_do(tc);
1271   }
1272 #ifndef SERIALGC
1273   if (UseConcMarkSweepGC) {
1274     ConcurrentMarkSweepThread::threads_do(tc);
1275   }
1276 #endif // SERIALGC
1277 }
1278 
1279 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1280 #ifndef SERIALGC
1281   if (UseParNewGC) {
1282     workers()->print_worker_threads_on(st);
1283   }
1284   if (UseConcMarkSweepGC) {
1285     ConcurrentMarkSweepThread::print_all_on(st);
1286   }
1287 #endif // SERIALGC
1288 }
1289 
1290 void GenCollectedHeap::print_tracing_info() const {
1291   if (TraceGen0Time) {
1292     get_gen(0)->print_summary_info();
1293   }
1294   if (TraceGen1Time) {
1295     get_gen(1)->print_summary_info();
1296   }
1297 }
1298 
1299 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
1300   if (PrintGCDetails && Verbose) {
1301     gclog_or_tty->print(" "  SIZE_FORMAT
1302                         "->" SIZE_FORMAT
1303                         "("  SIZE_FORMAT ")",
1304                         prev_used, used(), capacity());
1305   } else {
1306     gclog_or_tty->print(" "  SIZE_FORMAT "K"
1307                         "->" SIZE_FORMAT "K"
1308                         "("  SIZE_FORMAT "K)",
1309                         prev_used / K, used() / K, capacity() / K);
1310   }
1311 }
1312 
1313 //New method to print perm gen info with PrintGCDetails flag
1314 void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
1315   gclog_or_tty->print(", [%s :", perm_gen()->short_name());
1316   perm_gen()->print_heap_change(perm_prev_used);
1317   gclog_or_tty->print("]");
1318 }
1319 
1320 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1321  private:
1322   bool _full;
1323  public:
1324   void do_generation(Generation* gen) {
1325     gen->gc_prologue(_full);
1326   }
1327   GenGCPrologueClosure(bool full) : _full(full) {};
1328 };
1329 
1330 void GenCollectedHeap::gc_prologue(bool full) {
1331   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1332 
1333   always_do_update_barrier = false;
1334   // Fill TLAB's and such
1335   CollectedHeap::accumulate_statistics_all_tlabs();
1336   ensure_parsability(true);   // retire TLABs
1337 
1338   // Call allocation profiler
1339   AllocationProfiler::iterate_since_last_gc();
1340   // Walk generations
1341   GenGCPrologueClosure blk(full);
1342   generation_iterate(&blk, false);  // not old-to-young.
1343   perm_gen()->gc_prologue(full);
1344 };
1345 
1346 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1347  private:
1348   bool _full;
1349  public:
1350   void do_generation(Generation* gen) {
1351     gen->gc_epilogue(_full);
1352   }
1353   GenGCEpilogueClosure(bool full) : _full(full) {};
1354 };
1355 
1356 void GenCollectedHeap::gc_epilogue(bool full) {
1357 #ifdef COMPILER2
1358   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1359   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1360   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1361 #endif /* COMPILER2 */
1362 
1363   resize_all_tlabs();
1364 
1365   GenGCEpilogueClosure blk(full);
1366   generation_iterate(&blk, false);  // not old-to-young.
1367   perm_gen()->gc_epilogue(full);
1368 
1369   if (!CleanChunkPoolAsync) {
1370     Chunk::clean_chunk_pool();
1371   }
1372 
1373   always_do_update_barrier = UseConcMarkSweepGC;
1374 };
1375 
1376 #ifndef PRODUCT
1377 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1378  private:
1379  public:
1380   void do_generation(Generation* gen) {
1381     gen->record_spaces_top();
1382   }
1383 };
1384 
1385 void GenCollectedHeap::record_gen_tops_before_GC() {
1386   if (ZapUnusedHeapArea) {
1387     GenGCSaveTopsBeforeGCClosure blk;
1388     generation_iterate(&blk, false);  // not old-to-young.
1389     perm_gen()->record_spaces_top();
1390   }
1391 }
1392 #endif  // not PRODUCT
1393 
1394 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1395  public:
1396   void do_generation(Generation* gen) {
1397     gen->ensure_parsability();
1398   }
1399 };
1400 
1401 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1402   CollectedHeap::ensure_parsability(retire_tlabs);
1403   GenEnsureParsabilityClosure ep_cl;
1404   generation_iterate(&ep_cl, false);
1405   perm_gen()->ensure_parsability();
1406 }
1407 
1408 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
1409                                               oop obj,
1410                                               size_t obj_size) {
1411   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1412   HeapWord* result = NULL;
1413 
1414   // First give each higher generation a chance to allocate the promoted object.
1415   Generation* allocator = next_gen(gen);
1416   if (allocator != NULL) {
1417     do {
1418       result = allocator->allocate(obj_size, false);
1419     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
1420   }
1421 
1422   if (result == NULL) {
1423     // Then give gen and higher generations a chance to expand and allocate the
1424     // object.
1425     do {
1426       result = gen->expand_and_allocate(obj_size, false);
1427     } while (result == NULL && (gen = next_gen(gen)) != NULL);
1428   }
1429 
1430   if (result != NULL) {
1431     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1432   }
1433   return oop(result);
1434 }
1435 
1436 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1437   jlong _time;   // in ms
1438   jlong _now;    // in ms
1439 
1440  public:
1441   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1442 
1443   jlong time() { return _time; }
1444 
1445   void do_generation(Generation* gen) {
1446     _time = MIN2(_time, gen->time_of_last_gc(_now));
1447   }
1448 };
1449 
1450 jlong GenCollectedHeap::millis_since_last_gc() {
1451   // We need a monotonically non-deccreasing time in ms but
1452   // os::javaTimeMillis() does not guarantee monotonicity.
1453   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1454   GenTimeOfLastGCClosure tolgc_cl(now);
1455   // iterate over generations getting the oldest
1456   // time that a generation was collected
1457   generation_iterate(&tolgc_cl, false);
1458   tolgc_cl.do_generation(perm_gen());
1459 
1460   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1461   // provided the underlying platform provides such a time source
1462   // (and it is bug free). So we still have to guard against getting
1463   // back a time later than 'now'.
1464   jlong retVal = now - tolgc_cl.time();
1465   if (retVal < 0) {
1466     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
1467     return 0;
1468   }
1469   return retVal;
1470 }