1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/rootnode.hpp"
  37 
  38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  40   _collecting(true),
  41   _verify(false),
  42   _compile(C),
  43   _igvn(igvn),
  44   _node_map(C->comp_arena()) {
  45   // Add unknown java object.
  46   add_java_object(C->top(), PointsToNode::GlobalEscape);
  47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  48   // Add ConP(#NULL) and ConN(#NULL) nodes.
  49   Node* oop_null = igvn->zerocon(T_OBJECT);
  50   assert(oop_null->_idx < nodes_size(), "should be created already");
  51   add_java_object(oop_null, PointsToNode::NoEscape);
  52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  53   if (UseCompressedOops) {
  54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  55     assert(noop_null->_idx < nodes_size(), "should be created already");
  56     map_ideal_node(noop_null, null_obj);
  57   }
  58   _pcmp_neq = NULL; // Should be initialized
  59   _pcmp_eq  = NULL;
  60 }
  61 
  62 bool ConnectionGraph::has_candidates(Compile *C) {
  63   // EA brings benefits only when the code has allocations and/or locks which
  64   // are represented by ideal Macro nodes.
  65   int cnt = C->macro_count();
  66   for( int i=0; i < cnt; i++ ) {
  67     Node *n = C->macro_node(i);
  68     if ( n->is_Allocate() )
  69       return true;
  70     if( n->is_Lock() ) {
  71       Node* obj = n->as_Lock()->obj_node()->uncast();
  72       if( !(obj->is_Parm() || obj->is_Con()) )
  73         return true;
  74     }
  75   }
  76   return false;
  77 }
  78 
  79 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  80   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  81   ResourceMark rm;
  82 
  83   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  84   // to create space for them in ConnectionGraph::_nodes[].
  85   Node* oop_null = igvn->zerocon(T_OBJECT);
  86   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  87   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  88   // Perform escape analysis
  89   if (congraph->compute_escape()) {
  90     // There are non escaping objects.
  91     C->set_congraph(congraph);
  92   }
  93   // Cleanup.
  94   if (oop_null->outcnt() == 0)
  95     igvn->hash_delete(oop_null);
  96   if (noop_null->outcnt() == 0)
  97     igvn->hash_delete(noop_null);
  98 }
  99 
 100 bool ConnectionGraph::compute_escape() {
 101   Compile* C = _compile;
 102   PhaseGVN* igvn = _igvn;
 103 
 104   // Worklists used by EA.
 105   Unique_Node_List delayed_worklist;
 106   GrowableArray<Node*> alloc_worklist;
 107   GrowableArray<Node*> ptr_cmp_worklist;
 108   GrowableArray<Node*> storestore_worklist;
 109   GrowableArray<PointsToNode*>   ptnodes_worklist;
 110   GrowableArray<JavaObjectNode*> java_objects_worklist;
 111   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 112   GrowableArray<FieldNode*>      oop_fields_worklist;
 113   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 114 
 115   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
 116 
 117   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 118   ideal_nodes.map(C->unique(), NULL);  // preallocate space
 119   // Initialize worklist
 120   if (C->root() != NULL) {
 121     ideal_nodes.push(C->root());
 122   }
 123   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 124     Node* n = ideal_nodes.at(next);
 125     // Create PointsTo nodes and add them to Connection Graph. Called
 126     // only once per ideal node since ideal_nodes is Unique_Node list.
 127     add_node_to_connection_graph(n, &delayed_worklist);
 128     PointsToNode* ptn = ptnode_adr(n->_idx);
 129     if (ptn != NULL) {
 130       ptnodes_worklist.append(ptn);
 131       if (ptn->is_JavaObject()) {
 132         java_objects_worklist.append(ptn->as_JavaObject());
 133         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 134             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 135           // Only allocations and java static calls results are interesting.
 136           non_escaped_worklist.append(ptn->as_JavaObject());
 137         }
 138       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 139         oop_fields_worklist.append(ptn->as_Field());
 140       }
 141     }
 142     if (n->is_MergeMem()) {
 143       // Collect all MergeMem nodes to add memory slices for
 144       // scalar replaceable objects in split_unique_types().
 145       _mergemem_worklist.append(n->as_MergeMem());
 146     } else if (OptimizePtrCompare && n->is_Cmp() &&
 147                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 148       // Collect compare pointers nodes.
 149       ptr_cmp_worklist.append(n);
 150     } else if (n->is_MemBarStoreStore()) {
 151       // Collect all MemBarStoreStore nodes so that depending on the
 152       // escape status of the associated Allocate node some of them
 153       // may be eliminated.
 154       storestore_worklist.append(n);
 155 #ifdef ASSERT
 156     } else if(n->is_AddP()) {
 157       // Collect address nodes for graph verification.
 158       addp_worklist.append(n);
 159 #endif
 160     }
 161     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 162       Node* m = n->fast_out(i);   // Get user
 163       ideal_nodes.push(m);
 164     }
 165   }
 166   if (non_escaped_worklist.length() == 0) {
 167     _collecting = false;
 168     return false; // Nothing to do.
 169   }
 170   // Add final simple edges to graph.
 171   while(delayed_worklist.size() > 0) {
 172     Node* n = delayed_worklist.pop();
 173     add_final_edges(n);
 174   }
 175   int ptnodes_length = ptnodes_worklist.length();
 176 
 177 #ifdef ASSERT
 178   if (VerifyConnectionGraph) {
 179     // Verify that no new simple edges could be created and all
 180     // local vars has edges.
 181     _verify = true;
 182     for (int next = 0; next < ptnodes_length; ++next) {
 183       PointsToNode* ptn = ptnodes_worklist.at(next);
 184       add_final_edges(ptn->ideal_node());
 185       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 186         ptn->dump();
 187         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 188       }
 189     }
 190     _verify = false;
 191   }
 192 #endif
 193 
 194   // 2. Finish Graph construction by propagating references to all
 195   //    java objects through graph.
 196   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 197                                  java_objects_worklist, oop_fields_worklist)) {
 198     // All objects escaped or hit time or iterations limits.
 199     _collecting = false;
 200     return false;
 201   }
 202 
 203   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 204   //    scalar replaceable allocations on alloc_worklist for processing
 205   //    in split_unique_types().
 206   int non_escaped_length = non_escaped_worklist.length();
 207   for (int next = 0; next < non_escaped_length; next++) {
 208     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 209     if (ptn->escape_state() == PointsToNode::NoEscape &&
 210         ptn->scalar_replaceable()) {
 211       adjust_scalar_replaceable_state(ptn);
 212       if (ptn->scalar_replaceable()) {
 213         alloc_worklist.append(ptn->ideal_node());
 214       }
 215     }
 216   }
 217 
 218 #ifdef ASSERT
 219   if (VerifyConnectionGraph) {
 220     // Verify that graph is complete - no new edges could be added or needed.
 221     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 222                             java_objects_worklist, addp_worklist);
 223   }
 224   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 225   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 226          null_obj->edge_count() == 0 &&
 227          !null_obj->arraycopy_src() &&
 228          !null_obj->arraycopy_dst(), "sanity");
 229 #endif
 230 
 231   _collecting = false;
 232 
 233   } // TracePhase t3("connectionGraph")
 234 
 235   // 4. Optimize ideal graph based on EA information.
 236   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 237   if (has_non_escaping_obj) {
 238     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 239   }
 240 
 241 #ifndef PRODUCT
 242   if (PrintEscapeAnalysis) {
 243     dump(ptnodes_worklist); // Dump ConnectionGraph
 244   }
 245 #endif
 246 
 247   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 248 #ifdef ASSERT
 249   if (VerifyConnectionGraph) {
 250     int alloc_length = alloc_worklist.length();
 251     for (int next = 0; next < alloc_length; ++next) {
 252       Node* n = alloc_worklist.at(next);
 253       PointsToNode* ptn = ptnode_adr(n->_idx);
 254       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 255     }
 256   }
 257 #endif
 258 
 259   // 5. Separate memory graph for scalar replaceable allcations.
 260   if (has_scalar_replaceable_candidates &&
 261       C->AliasLevel() >= 3 && EliminateAllocations) {
 262     // Now use the escape information to create unique types for
 263     // scalar replaceable objects.
 264     split_unique_types(alloc_worklist);
 265     if (C->failing())  return false;
 266     C->print_method(PHASE_AFTER_EA, 2);
 267 
 268 #ifdef ASSERT
 269   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 270     tty->print("=== No allocations eliminated for ");
 271     C->method()->print_short_name();
 272     if(!EliminateAllocations) {
 273       tty->print(" since EliminateAllocations is off ===");
 274     } else if(!has_scalar_replaceable_candidates) {
 275       tty->print(" since there are no scalar replaceable candidates ===");
 276     } else if(C->AliasLevel() < 3) {
 277       tty->print(" since AliasLevel < 3 ===");
 278     }
 279     tty->cr();
 280 #endif
 281   }
 282   return has_non_escaping_obj;
 283 }
 284 
 285 // Utility function for nodes that load an object
 286 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 287   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 288   // ThreadLocal has RawPtr type.
 289   const Type* t = _igvn->type(n);
 290   if (t->make_ptr() != NULL) {
 291     Node* adr = n->in(MemNode::Address);
 292 #ifdef ASSERT
 293     if (!adr->is_AddP()) {
 294       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 295     } else {
 296       assert((ptnode_adr(adr->_idx) == NULL ||
 297               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 298     }
 299 #endif
 300     add_local_var_and_edge(n, PointsToNode::NoEscape,
 301                            adr, delayed_worklist);
 302   }
 303 }
 304 
 305 // Populate Connection Graph with PointsTo nodes and create simple
 306 // connection graph edges.
 307 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 308   assert(!_verify, "this method sould not be called for verification");
 309   PhaseGVN* igvn = _igvn;
 310   uint n_idx = n->_idx;
 311   PointsToNode* n_ptn = ptnode_adr(n_idx);
 312   if (n_ptn != NULL)
 313     return; // No need to redefine PointsTo node during first iteration.
 314 
 315   if (n->is_Call()) {
 316     // Arguments to allocation and locking don't escape.
 317     if (n->is_AbstractLock()) {
 318       // Put Lock and Unlock nodes on IGVN worklist to process them during
 319       // first IGVN optimization when escape information is still available.
 320       record_for_optimizer(n);
 321     } else if (n->is_Allocate()) {
 322       add_call_node(n->as_Call());
 323       record_for_optimizer(n);
 324     } else {
 325       if (n->is_CallStaticJava()) {
 326         const char* name = n->as_CallStaticJava()->_name;
 327         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 328           return; // Skip uncommon traps
 329       }
 330       // Don't mark as processed since call's arguments have to be processed.
 331       delayed_worklist->push(n);
 332       // Check if a call returns an object.
 333       if (n->as_Call()->returns_pointer() &&
 334           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
 335         add_call_node(n->as_Call());
 336       }
 337     }
 338     return;
 339   }
 340   // Put this check here to process call arguments since some call nodes
 341   // point to phantom_obj.
 342   if (n_ptn == phantom_obj || n_ptn == null_obj)
 343     return; // Skip predefined nodes.
 344 
 345   int opcode = n->Opcode();
 346   switch (opcode) {
 347     case Op_AddP: {
 348       Node* base = get_addp_base(n);
 349       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 350       // Field nodes are created for all field types. They are used in
 351       // adjust_scalar_replaceable_state() and split_unique_types().
 352       // Note, non-oop fields will have only base edges in Connection
 353       // Graph because such fields are not used for oop loads and stores.
 354       int offset = address_offset(n, igvn);
 355       add_field(n, PointsToNode::NoEscape, offset);
 356       if (ptn_base == NULL) {
 357         delayed_worklist->push(n); // Process it later.
 358       } else {
 359         n_ptn = ptnode_adr(n_idx);
 360         add_base(n_ptn->as_Field(), ptn_base);
 361       }
 362       break;
 363     }
 364     case Op_CastX2P: {
 365       map_ideal_node(n, phantom_obj);
 366       break;
 367     }
 368     case Op_CastPP:
 369     case Op_CheckCastPP:
 370     case Op_EncodeP:
 371     case Op_DecodeN: {
 372       add_local_var_and_edge(n, PointsToNode::NoEscape,
 373                              n->in(1), delayed_worklist);
 374       break;
 375     }
 376     case Op_CMoveP: {
 377       add_local_var(n, PointsToNode::NoEscape);
 378       // Do not add edges during first iteration because some could be
 379       // not defined yet.
 380       delayed_worklist->push(n);
 381       break;
 382     }
 383     case Op_ConP:
 384     case Op_ConN: {
 385       // assume all oop constants globally escape except for null
 386       PointsToNode::EscapeState es;
 387       if (igvn->type(n) == TypePtr::NULL_PTR ||
 388           igvn->type(n) == TypeNarrowOop::NULL_PTR) {
 389         es = PointsToNode::NoEscape;
 390       } else {
 391         es = PointsToNode::GlobalEscape;
 392       }
 393       add_java_object(n, es);
 394       break;
 395     }
 396     case Op_CreateEx: {
 397       // assume that all exception objects globally escape
 398       add_java_object(n, PointsToNode::GlobalEscape);
 399       break;
 400     }
 401     case Op_LoadKlass:
 402     case Op_LoadNKlass: {
 403       // Unknown class is loaded
 404       map_ideal_node(n, phantom_obj);
 405       break;
 406     }
 407     case Op_LoadP:
 408     case Op_LoadN:
 409     case Op_LoadPLocked: {
 410       add_objload_to_connection_graph(n, delayed_worklist);
 411       break;
 412     }
 413     case Op_Parm: {
 414       map_ideal_node(n, phantom_obj);
 415       break;
 416     }
 417     case Op_PartialSubtypeCheck: {
 418       // Produces Null or notNull and is used in only in CmpP so
 419       // phantom_obj could be used.
 420       map_ideal_node(n, phantom_obj); // Result is unknown
 421       break;
 422     }
 423     case Op_Phi: {
 424       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 425       // ThreadLocal has RawPtr type.
 426       const Type* t = n->as_Phi()->type();
 427       if (t->make_ptr() != NULL) {
 428         add_local_var(n, PointsToNode::NoEscape);
 429         // Do not add edges during first iteration because some could be
 430         // not defined yet.
 431         delayed_worklist->push(n);
 432       }
 433       break;
 434     }
 435     case Op_Proj: {
 436       // we are only interested in the oop result projection from a call
 437       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 438           n->in(0)->as_Call()->returns_pointer()) {
 439         add_local_var_and_edge(n, PointsToNode::NoEscape,
 440                                n->in(0), delayed_worklist);
 441       }
 442       break;
 443     }
 444     case Op_Rethrow: // Exception object escapes
 445     case Op_Return: {
 446       if (n->req() > TypeFunc::Parms &&
 447           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 448         // Treat Return value as LocalVar with GlobalEscape escape state.
 449         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 450                                n->in(TypeFunc::Parms), delayed_worklist);
 451       }
 452       break;
 453     }
 454     case Op_GetAndSetP:
 455     case Op_GetAndSetN: {
 456       add_objload_to_connection_graph(n, delayed_worklist);
 457       // fallthrough
 458     }
 459     case Op_StoreP:
 460     case Op_StoreN:
 461     case Op_StorePConditional:
 462     case Op_CompareAndSwapP:
 463     case Op_CompareAndSwapN: {
 464       Node* adr = n->in(MemNode::Address);
 465       const Type *adr_type = igvn->type(adr);
 466       adr_type = adr_type->make_ptr();
 467       if (adr_type->isa_oopptr() ||
 468           (opcode == Op_StoreP || opcode == Op_StoreN) &&
 469                         (adr_type == TypeRawPtr::NOTNULL &&
 470                          adr->in(AddPNode::Address)->is_Proj() &&
 471                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 472         delayed_worklist->push(n); // Process it later.
 473 #ifdef ASSERT
 474         assert(adr->is_AddP(), "expecting an AddP");
 475         if (adr_type == TypeRawPtr::NOTNULL) {
 476           // Verify a raw address for a store captured by Initialize node.
 477           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 478           assert(offs != Type::OffsetBot, "offset must be a constant");
 479         }
 480 #endif
 481       } else {
 482         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 483         if (adr->is_BoxLock())
 484           break;
 485         // Stored value escapes in unsafe access.
 486         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 487           // Pointer stores in G1 barriers looks like unsafe access.
 488           // Ignore such stores to be able scalar replace non-escaping
 489           // allocations.
 490           if (UseG1GC && adr->is_AddP()) {
 491             Node* base = get_addp_base(adr);
 492             if (base->Opcode() == Op_LoadP &&
 493                 base->in(MemNode::Address)->is_AddP()) {
 494               adr = base->in(MemNode::Address);
 495               Node* tls = get_addp_base(adr);
 496               if (tls->Opcode() == Op_ThreadLocal) {
 497                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 498                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 499                                      PtrQueue::byte_offset_of_buf())) {
 500                   break; // G1 pre barier previous oop value store.
 501                 }
 502                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 503                                      PtrQueue::byte_offset_of_buf())) {
 504                   break; // G1 post barier card address store.
 505                 }
 506               }
 507             }
 508           }
 509           delayed_worklist->push(n); // Process unsafe access later.
 510           break;
 511         }
 512 #ifdef ASSERT
 513         n->dump(1);
 514         assert(false, "not unsafe or G1 barrier raw StoreP");
 515 #endif
 516       }
 517       break;
 518     }
 519     case Op_AryEq:
 520     case Op_StrComp:
 521     case Op_StrEquals:
 522     case Op_StrIndexOf: {
 523       add_local_var(n, PointsToNode::ArgEscape);
 524       delayed_worklist->push(n); // Process it later.
 525       break;
 526     }
 527     case Op_ThreadLocal: {
 528       add_java_object(n, PointsToNode::ArgEscape);
 529       break;
 530     }
 531     default:
 532       ; // Do nothing for nodes not related to EA.
 533   }
 534   return;
 535 }
 536 
 537 #ifdef ASSERT
 538 #define ELSE_FAIL(name)                               \
 539       /* Should not be called for not pointer type. */  \
 540       n->dump(1);                                       \
 541       assert(false, name);                              \
 542       break;
 543 #else
 544 #define ELSE_FAIL(name) \
 545       break;
 546 #endif
 547 
 548 // Add final simple edges to graph.
 549 void ConnectionGraph::add_final_edges(Node *n) {
 550   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 551 #ifdef ASSERT
 552   if (_verify && n_ptn->is_JavaObject())
 553     return; // This method does not change graph for JavaObject.
 554 #endif
 555 
 556   if (n->is_Call()) {
 557     process_call_arguments(n->as_Call());
 558     return;
 559   }
 560   assert(n->is_Store() || n->is_LoadStore() ||
 561          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 562          "node should be registered already");
 563   int opcode = n->Opcode();
 564   switch (opcode) {
 565     case Op_AddP: {
 566       Node* base = get_addp_base(n);
 567       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 568       assert(ptn_base != NULL, "field's base should be registered");
 569       add_base(n_ptn->as_Field(), ptn_base);
 570       break;
 571     }
 572     case Op_CastPP:
 573     case Op_CheckCastPP:
 574     case Op_EncodeP:
 575     case Op_DecodeN: {
 576       add_local_var_and_edge(n, PointsToNode::NoEscape,
 577                              n->in(1), NULL);
 578       break;
 579     }
 580     case Op_CMoveP: {
 581       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 582         Node* in = n->in(i);
 583         if (in == NULL)
 584           continue;  // ignore NULL
 585         Node* uncast_in = in->uncast();
 586         if (uncast_in->is_top() || uncast_in == n)
 587           continue;  // ignore top or inputs which go back this node
 588         PointsToNode* ptn = ptnode_adr(in->_idx);
 589         assert(ptn != NULL, "node should be registered");
 590         add_edge(n_ptn, ptn);
 591       }
 592       break;
 593     }
 594     case Op_LoadP:
 595     case Op_LoadN:
 596     case Op_LoadPLocked: {
 597       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 598       // ThreadLocal has RawPtr type.
 599       const Type* t = _igvn->type(n);
 600       if (t->make_ptr() != NULL) {
 601         Node* adr = n->in(MemNode::Address);
 602         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 603         break;
 604       }
 605       ELSE_FAIL("Op_LoadP");
 606     }
 607     case Op_Phi: {
 608       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 609       // ThreadLocal has RawPtr type.
 610       const Type* t = n->as_Phi()->type();
 611       if (t->make_ptr() != NULL) {
 612         for (uint i = 1; i < n->req(); i++) {
 613           Node* in = n->in(i);
 614           if (in == NULL)
 615             continue;  // ignore NULL
 616           Node* uncast_in = in->uncast();
 617           if (uncast_in->is_top() || uncast_in == n)
 618             continue;  // ignore top or inputs which go back this node
 619           PointsToNode* ptn = ptnode_adr(in->_idx);
 620           assert(ptn != NULL, "node should be registered");
 621           add_edge(n_ptn, ptn);
 622         }
 623         break;
 624       }
 625       ELSE_FAIL("Op_Phi");
 626     }
 627     case Op_Proj: {
 628       // we are only interested in the oop result projection from a call
 629       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 630           n->in(0)->as_Call()->returns_pointer()) {
 631         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 632         break;
 633       }
 634       ELSE_FAIL("Op_Proj");
 635     }
 636     case Op_Rethrow: // Exception object escapes
 637     case Op_Return: {
 638       if (n->req() > TypeFunc::Parms &&
 639           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 640         // Treat Return value as LocalVar with GlobalEscape escape state.
 641         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 642                                n->in(TypeFunc::Parms), NULL);
 643         break;
 644       }
 645       ELSE_FAIL("Op_Return");
 646     }
 647     case Op_StoreP:
 648     case Op_StoreN:
 649     case Op_StorePConditional:
 650     case Op_CompareAndSwapP:
 651     case Op_CompareAndSwapN:
 652     case Op_GetAndSetP:
 653     case Op_GetAndSetN: {
 654       Node* adr = n->in(MemNode::Address);
 655       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 656         const Type* t = _igvn->type(n);
 657         if (t->make_ptr() != NULL) {
 658           add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 659         }
 660       }
 661       const Type *adr_type = _igvn->type(adr);
 662       adr_type = adr_type->make_ptr();
 663       if (adr_type->isa_oopptr() ||
 664           (opcode == Op_StoreP || opcode == Op_StoreN) &&
 665                         (adr_type == TypeRawPtr::NOTNULL &&
 666                          adr->in(AddPNode::Address)->is_Proj() &&
 667                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 668         // Point Address to Value
 669         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 670         assert(adr_ptn != NULL &&
 671                adr_ptn->as_Field()->is_oop(), "node should be registered");
 672         Node *val = n->in(MemNode::ValueIn);
 673         PointsToNode* ptn = ptnode_adr(val->_idx);
 674         assert(ptn != NULL, "node should be registered");
 675         add_edge(adr_ptn, ptn);
 676         break;
 677       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 678         // Stored value escapes in unsafe access.
 679         Node *val = n->in(MemNode::ValueIn);
 680         PointsToNode* ptn = ptnode_adr(val->_idx);
 681         assert(ptn != NULL, "node should be registered");
 682         ptn->set_escape_state(PointsToNode::GlobalEscape);
 683         // Add edge to object for unsafe access with offset.
 684         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 685         assert(adr_ptn != NULL, "node should be registered");
 686         if (adr_ptn->is_Field()) {
 687           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 688           add_edge(adr_ptn, ptn);
 689         }
 690         break;
 691       }
 692       ELSE_FAIL("Op_StoreP");
 693     }
 694     case Op_AryEq:
 695     case Op_StrComp:
 696     case Op_StrEquals:
 697     case Op_StrIndexOf: {
 698       // char[] arrays passed to string intrinsic do not escape but
 699       // they are not scalar replaceable. Adjust escape state for them.
 700       // Start from in(2) edge since in(1) is memory edge.
 701       for (uint i = 2; i < n->req(); i++) {
 702         Node* adr = n->in(i);
 703         const Type* at = _igvn->type(adr);
 704         if (!adr->is_top() && at->isa_ptr()) {
 705           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 706                  at->isa_ptr() != NULL, "expecting a pointer");
 707           if (adr->is_AddP()) {
 708             adr = get_addp_base(adr);
 709           }
 710           PointsToNode* ptn = ptnode_adr(adr->_idx);
 711           assert(ptn != NULL, "node should be registered");
 712           add_edge(n_ptn, ptn);
 713         }
 714       }
 715       break;
 716     }
 717     default: {
 718       // This method should be called only for EA specific nodes which may
 719       // miss some edges when they were created.
 720 #ifdef ASSERT
 721       n->dump(1);
 722 #endif
 723       guarantee(false, "unknown node");
 724     }
 725   }
 726   return;
 727 }
 728 
 729 void ConnectionGraph::add_call_node(CallNode* call) {
 730   assert(call->returns_pointer(), "only for call which returns pointer");
 731   uint call_idx = call->_idx;
 732   if (call->is_Allocate()) {
 733     Node* k = call->in(AllocateNode::KlassNode);
 734     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 735     assert(kt != NULL, "TypeKlassPtr  required.");
 736     ciKlass* cik = kt->klass();
 737     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 738     bool scalar_replaceable = true;
 739     if (call->is_AllocateArray()) {
 740       if (!cik->is_array_klass()) { // StressReflectiveCode
 741         es = PointsToNode::GlobalEscape;
 742       } else {
 743         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 744         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 745           // Not scalar replaceable if the length is not constant or too big.
 746           scalar_replaceable = false;
 747         }
 748       }
 749     } else {  // Allocate instance
 750       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 751          !cik->is_instance_klass() || // StressReflectiveCode
 752           cik->as_instance_klass()->has_finalizer()) {
 753         es = PointsToNode::GlobalEscape;
 754       }
 755     }
 756     add_java_object(call, es);
 757     PointsToNode* ptn = ptnode_adr(call_idx);
 758     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 759       ptn->set_scalar_replaceable(false);
 760     }
 761   } else if (call->is_CallStaticJava()) {
 762     // Call nodes could be different types:
 763     //
 764     // 1. CallDynamicJavaNode (what happened during call is unknown):
 765     //
 766     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 767     //
 768     //    - all oop arguments are escaping globally;
 769     //
 770     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 771     //
 772     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 773     //
 774     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 775     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 776     //      during call is returned;
 777     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 778     //      which are returned and does not escape during call;
 779     //
 780     //    - oop arguments escaping status is defined by bytecode analysis;
 781     //
 782     // For a static call, we know exactly what method is being called.
 783     // Use bytecode estimator to record whether the call's return value escapes.
 784     ciMethod* meth = call->as_CallJava()->method();
 785     if (meth == NULL) {
 786       const char* name = call->as_CallStaticJava()->_name;
 787       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 788       // Returns a newly allocated unescaped object.
 789       add_java_object(call, PointsToNode::NoEscape);
 790       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 791     } else {
 792       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 793       call_analyzer->copy_dependencies(_compile->dependencies());
 794       if (call_analyzer->is_return_allocated()) {
 795         // Returns a newly allocated unescaped object, simply
 796         // update dependency information.
 797         // Mark it as NoEscape so that objects referenced by
 798         // it's fields will be marked as NoEscape at least.
 799         add_java_object(call, PointsToNode::NoEscape);
 800         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 801       } else {
 802         // Determine whether any arguments are returned.
 803         const TypeTuple* d = call->tf()->domain();
 804         bool ret_arg = false;
 805         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 806           if (d->field_at(i)->isa_ptr() != NULL &&
 807               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 808             ret_arg = true;
 809             break;
 810           }
 811         }
 812         if (ret_arg) {
 813           add_local_var(call, PointsToNode::ArgEscape);
 814         } else {
 815           // Returns unknown object.
 816           map_ideal_node(call, phantom_obj);
 817         }
 818       }
 819     }
 820   } else {
 821     // An other type of call, assume the worst case:
 822     // returned value is unknown and globally escapes.
 823     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 824     map_ideal_node(call, phantom_obj);
 825   }
 826 }
 827 
 828 void ConnectionGraph::process_call_arguments(CallNode *call) {
 829     bool is_arraycopy = false;
 830     switch (call->Opcode()) {
 831 #ifdef ASSERT
 832     case Op_Allocate:
 833     case Op_AllocateArray:
 834     case Op_Lock:
 835     case Op_Unlock:
 836       assert(false, "should be done already");
 837       break;
 838 #endif
 839     case Op_CallLeafNoFP:
 840       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
 841                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 842       // fall through
 843     case Op_CallLeaf: {
 844       // Stub calls, objects do not escape but they are not scale replaceable.
 845       // Adjust escape state for outgoing arguments.
 846       const TypeTuple * d = call->tf()->domain();
 847       bool src_has_oops = false;
 848       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 849         const Type* at = d->field_at(i);
 850         Node *arg = call->in(i);
 851         const Type *aat = _igvn->type(arg);
 852         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 853           continue;
 854         if (arg->is_AddP()) {
 855           //
 856           // The inline_native_clone() case when the arraycopy stub is called
 857           // after the allocation before Initialize and CheckCastPP nodes.
 858           // Or normal arraycopy for object arrays case.
 859           //
 860           // Set AddP's base (Allocate) as not scalar replaceable since
 861           // pointer to the base (with offset) is passed as argument.
 862           //
 863           arg = get_addp_base(arg);
 864         }
 865         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 866         assert(arg_ptn != NULL, "should be registered");
 867         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 868         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 869           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 870                  aat->isa_ptr() != NULL, "expecting an Ptr");
 871           bool arg_has_oops = aat->isa_oopptr() &&
 872                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 873                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 874           if (i == TypeFunc::Parms) {
 875             src_has_oops = arg_has_oops;
 876           }
 877           //
 878           // src or dst could be j.l.Object when other is basic type array:
 879           //
 880           //   arraycopy(char[],0,Object*,0,size);
 881           //   arraycopy(Object*,0,char[],0,size);
 882           //
 883           // Don't add edges in such cases.
 884           //
 885           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 886                                        arg_has_oops && (i > TypeFunc::Parms);
 887 #ifdef ASSERT
 888           if (!(is_arraycopy ||
 889                 (call->as_CallLeaf()->_name != NULL &&
 890                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 891                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 892                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 893                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 894                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 895                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0)
 896                   ))) {
 897             call->dump();
 898             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 899           }
 900 #endif
 901           // Always process arraycopy's destination object since
 902           // we need to add all possible edges to references in
 903           // source object.
 904           if (arg_esc >= PointsToNode::ArgEscape &&
 905               !arg_is_arraycopy_dest) {
 906             continue;
 907           }
 908           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 909           if (arg_is_arraycopy_dest) {
 910             Node* src = call->in(TypeFunc::Parms);
 911             if (src->is_AddP()) {
 912               src = get_addp_base(src);
 913             }
 914             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 915             assert(src_ptn != NULL, "should be registered");
 916             if (arg_ptn != src_ptn) {
 917               // Special arraycopy edge:
 918               // A destination object's field can't have the source object
 919               // as base since objects escape states are not related.
 920               // Only escape state of destination object's fields affects
 921               // escape state of fields in source object.
 922               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
 923             }
 924           }
 925         }
 926       }
 927       break;
 928     }
 929     case Op_CallStaticJava: {
 930       // For a static call, we know exactly what method is being called.
 931       // Use bytecode estimator to record the call's escape affects
 932 #ifdef ASSERT
 933       const char* name = call->as_CallStaticJava()->_name;
 934       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
 935 #endif
 936       ciMethod* meth = call->as_CallJava()->method();
 937       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
 938       // fall-through if not a Java method or no analyzer information
 939       if (call_analyzer != NULL) {
 940         PointsToNode* call_ptn = ptnode_adr(call->_idx);
 941         const TypeTuple* d = call->tf()->domain();
 942         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 943           const Type* at = d->field_at(i);
 944           int k = i - TypeFunc::Parms;
 945           Node* arg = call->in(i);
 946           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 947           if (at->isa_ptr() != NULL &&
 948               call_analyzer->is_arg_returned(k)) {
 949             // The call returns arguments.
 950             if (call_ptn != NULL) { // Is call's result used?
 951               assert(call_ptn->is_LocalVar(), "node should be registered");
 952               assert(arg_ptn != NULL, "node should be registered");
 953               add_edge(call_ptn, arg_ptn);
 954             }
 955           }
 956           if (at->isa_oopptr() != NULL &&
 957               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
 958             if (!call_analyzer->is_arg_stack(k)) {
 959               // The argument global escapes
 960               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
 961             } else {
 962               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 963               if (!call_analyzer->is_arg_local(k)) {
 964                 // The argument itself doesn't escape, but any fields might
 965                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
 966               }
 967             }
 968           }
 969         }
 970         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
 971           // The call returns arguments.
 972           assert(call_ptn->edge_count() > 0, "sanity");
 973           if (!call_analyzer->is_return_local()) {
 974             // Returns also unknown object.
 975             add_edge(call_ptn, phantom_obj);
 976           }
 977         }
 978         break;
 979       }
 980     }
 981     default: {
 982       // Fall-through here if not a Java method or no analyzer information
 983       // or some other type of call, assume the worst case: all arguments
 984       // globally escape.
 985       const TypeTuple* d = call->tf()->domain();
 986       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 987         const Type* at = d->field_at(i);
 988         if (at->isa_oopptr() != NULL) {
 989           Node* arg = call->in(i);
 990           if (arg->is_AddP()) {
 991             arg = get_addp_base(arg);
 992           }
 993           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
 994           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
 995         }
 996       }
 997     }
 998   }
 999 }
1000 
1001 
1002 // Finish Graph construction.
1003 bool ConnectionGraph::complete_connection_graph(
1004                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1005                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1006                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1007                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1008   // Normally only 1-3 passes needed to build Connection Graph depending
1009   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1010   // Set limit to 20 to catch situation when something did go wrong and
1011   // bailout Escape Analysis.
1012   // Also limit build time to 30 sec (60 in debug VM).
1013 #define CG_BUILD_ITER_LIMIT 20
1014 #ifdef ASSERT
1015 #define CG_BUILD_TIME_LIMIT 60.0
1016 #else
1017 #define CG_BUILD_TIME_LIMIT 30.0
1018 #endif
1019 
1020   // Propagate GlobalEscape and ArgEscape escape states and check that
1021   // we still have non-escaping objects. The method pushs on _worklist
1022   // Field nodes which reference phantom_object.
1023   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1024     return false; // Nothing to do.
1025   }
1026   // Now propagate references to all JavaObject nodes.
1027   int java_objects_length = java_objects_worklist.length();
1028   elapsedTimer time;
1029   int new_edges = 1;
1030   int iterations = 0;
1031   do {
1032     while ((new_edges > 0) &&
1033           (iterations++   < CG_BUILD_ITER_LIMIT) &&
1034           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1035       time.start();
1036       new_edges = 0;
1037       // Propagate references to phantom_object for nodes pushed on _worklist
1038       // by find_non_escaped_objects() and find_field_value().
1039       new_edges += add_java_object_edges(phantom_obj, false);
1040       for (int next = 0; next < java_objects_length; ++next) {
1041         JavaObjectNode* ptn = java_objects_worklist.at(next);
1042         new_edges += add_java_object_edges(ptn, true);
1043       }
1044       if (new_edges > 0) {
1045         // Update escape states on each iteration if graph was updated.
1046         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1047           return false; // Nothing to do.
1048         }
1049       }
1050       time.stop();
1051     }
1052     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
1053         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1054       time.start();
1055       // Find fields which have unknown value.
1056       int fields_length = oop_fields_worklist.length();
1057       for (int next = 0; next < fields_length; next++) {
1058         FieldNode* field = oop_fields_worklist.at(next);
1059         if (field->edge_count() == 0) {
1060           new_edges += find_field_value(field);
1061           // This code may added new edges to phantom_object.
1062           // Need an other cycle to propagate references to phantom_object.
1063         }
1064       }
1065       time.stop();
1066     } else {
1067       new_edges = 0; // Bailout
1068     }
1069   } while (new_edges > 0);
1070 
1071   // Bailout if passed limits.
1072   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
1073       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
1074     Compile* C = _compile;
1075     if (C->log() != NULL) {
1076       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1077       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
1078       C->log()->end_elem(" limit'");
1079     }
1080     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1081            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1082     // Possible infinite build_connection_graph loop,
1083     // bailout (no changes to ideal graph were made).
1084     return false;
1085   }
1086 #ifdef ASSERT
1087   if (Verbose && PrintEscapeAnalysis) {
1088     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1089                   iterations, nodes_size(), ptnodes_worklist.length());
1090   }
1091 #endif
1092 
1093 #undef CG_BUILD_ITER_LIMIT
1094 #undef CG_BUILD_TIME_LIMIT
1095 
1096   // Find fields initialized by NULL for non-escaping Allocations.
1097   int non_escaped_length = non_escaped_worklist.length();
1098   for (int next = 0; next < non_escaped_length; next++) {
1099     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1100     PointsToNode::EscapeState es = ptn->escape_state();
1101     assert(es <= PointsToNode::ArgEscape, "sanity");
1102     if (es == PointsToNode::NoEscape) {
1103       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1104         // Adding references to NULL object does not change escape states
1105         // since it does not escape. Also no fields are added to NULL object.
1106         add_java_object_edges(null_obj, false);
1107       }
1108     }
1109     Node* n = ptn->ideal_node();
1110     if (n->is_Allocate()) {
1111       // The object allocated by this Allocate node will never be
1112       // seen by an other thread. Mark it so that when it is
1113       // expanded no MemBarStoreStore is added.
1114       InitializeNode* ini = n->as_Allocate()->initialization();
1115       if (ini != NULL)
1116         ini->set_does_not_escape();
1117     }
1118   }
1119   return true; // Finished graph construction.
1120 }
1121 
1122 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1123 // and check that we still have non-escaping java objects.
1124 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1125                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1126   GrowableArray<PointsToNode*> escape_worklist;
1127   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1128   int ptnodes_length = ptnodes_worklist.length();
1129   for (int next = 0; next < ptnodes_length; ++next) {
1130     PointsToNode* ptn = ptnodes_worklist.at(next);
1131     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1132         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1133       escape_worklist.push(ptn);
1134     }
1135   }
1136   // Set escape states to referenced nodes (edges list).
1137   while (escape_worklist.length() > 0) {
1138     PointsToNode* ptn = escape_worklist.pop();
1139     PointsToNode::EscapeState es  = ptn->escape_state();
1140     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1141     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1142         es >= PointsToNode::ArgEscape) {
1143       // GlobalEscape or ArgEscape state of field means it has unknown value.
1144       if (add_edge(ptn, phantom_obj)) {
1145         // New edge was added
1146         add_field_uses_to_worklist(ptn->as_Field());
1147       }
1148     }
1149     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1150       PointsToNode* e = i.get();
1151       if (e->is_Arraycopy()) {
1152         assert(ptn->arraycopy_dst(), "sanity");
1153         // Propagate only fields escape state through arraycopy edge.
1154         if (e->fields_escape_state() < field_es) {
1155           set_fields_escape_state(e, field_es);
1156           escape_worklist.push(e);
1157         }
1158       } else if (es >= field_es) {
1159         // fields_escape_state is also set to 'es' if it is less than 'es'.
1160         if (e->escape_state() < es) {
1161           set_escape_state(e, es);
1162           escape_worklist.push(e);
1163         }
1164       } else {
1165         // Propagate field escape state.
1166         bool es_changed = false;
1167         if (e->fields_escape_state() < field_es) {
1168           set_fields_escape_state(e, field_es);
1169           es_changed = true;
1170         }
1171         if ((e->escape_state() < field_es) &&
1172             e->is_Field() && ptn->is_JavaObject() &&
1173             e->as_Field()->is_oop()) {
1174           // Change escape state of referenced fileds.
1175           set_escape_state(e, field_es);
1176           es_changed = true;;
1177         } else if (e->escape_state() < es) {
1178           set_escape_state(e, es);
1179           es_changed = true;;
1180         }
1181         if (es_changed) {
1182           escape_worklist.push(e);
1183         }
1184       }
1185     }
1186   }
1187   // Remove escaped objects from non_escaped list.
1188   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1189     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1190     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1191       non_escaped_worklist.delete_at(next);
1192     }
1193     if (ptn->escape_state() == PointsToNode::NoEscape) {
1194       // Find fields in non-escaped allocations which have unknown value.
1195       find_init_values(ptn, phantom_obj, NULL);
1196     }
1197   }
1198   return (non_escaped_worklist.length() > 0);
1199 }
1200 
1201 // Add all references to JavaObject node by walking over all uses.
1202 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1203   int new_edges = 0;
1204   if (populate_worklist) {
1205     // Populate _worklist by uses of jobj's uses.
1206     for (UseIterator i(jobj); i.has_next(); i.next()) {
1207       PointsToNode* use = i.get();
1208       if (use->is_Arraycopy())
1209         continue;
1210       add_uses_to_worklist(use);
1211       if (use->is_Field() && use->as_Field()->is_oop()) {
1212         // Put on worklist all field's uses (loads) and
1213         // related field nodes (same base and offset).
1214         add_field_uses_to_worklist(use->as_Field());
1215       }
1216     }
1217   }
1218   while(_worklist.length() > 0) {
1219     PointsToNode* use = _worklist.pop();
1220     if (PointsToNode::is_base_use(use)) {
1221       // Add reference from jobj to field and from field to jobj (field's base).
1222       use = PointsToNode::get_use_node(use)->as_Field();
1223       if (add_base(use->as_Field(), jobj)) {
1224         new_edges++;
1225       }
1226       continue;
1227     }
1228     assert(!use->is_JavaObject(), "sanity");
1229     if (use->is_Arraycopy()) {
1230       if (jobj == null_obj) // NULL object does not have field edges
1231         continue;
1232       // Added edge from Arraycopy node to arraycopy's source java object
1233       if (add_edge(use, jobj)) {
1234         jobj->set_arraycopy_src();
1235         new_edges++;
1236       }
1237       // and stop here.
1238       continue;
1239     }
1240     if (!add_edge(use, jobj))
1241       continue; // No new edge added, there was such edge already.
1242     new_edges++;
1243     if (use->is_LocalVar()) {
1244       add_uses_to_worklist(use);
1245       if (use->arraycopy_dst()) {
1246         for (EdgeIterator i(use); i.has_next(); i.next()) {
1247           PointsToNode* e = i.get();
1248           if (e->is_Arraycopy()) {
1249             if (jobj == null_obj) // NULL object does not have field edges
1250               continue;
1251             // Add edge from arraycopy's destination java object to Arraycopy node.
1252             if (add_edge(jobj, e)) {
1253               new_edges++;
1254               jobj->set_arraycopy_dst();
1255             }
1256           }
1257         }
1258       }
1259     } else {
1260       // Added new edge to stored in field values.
1261       // Put on worklist all field's uses (loads) and
1262       // related field nodes (same base and offset).
1263       add_field_uses_to_worklist(use->as_Field());
1264     }
1265   }
1266   return new_edges;
1267 }
1268 
1269 // Put on worklist all related field nodes.
1270 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1271   assert(field->is_oop(), "sanity");
1272   int offset = field->offset();
1273   add_uses_to_worklist(field);
1274   // Loop over all bases of this field and push on worklist Field nodes
1275   // with the same offset and base (since they may reference the same field).
1276   for (BaseIterator i(field); i.has_next(); i.next()) {
1277     PointsToNode* base = i.get();
1278     add_fields_to_worklist(field, base);
1279     // Check if the base was source object of arraycopy and go over arraycopy's
1280     // destination objects since values stored to a field of source object are
1281     // accessable by uses (loads) of fields of destination objects.
1282     if (base->arraycopy_src()) {
1283       for (UseIterator j(base); j.has_next(); j.next()) {
1284         PointsToNode* arycp = j.get();
1285         if (arycp->is_Arraycopy()) {
1286           for (UseIterator k(arycp); k.has_next(); k.next()) {
1287             PointsToNode* abase = k.get();
1288             if (abase->arraycopy_dst() && abase != base) {
1289               // Look for the same arracopy reference.
1290               add_fields_to_worklist(field, abase);
1291             }
1292           }
1293         }
1294       }
1295     }
1296   }
1297 }
1298 
1299 // Put on worklist all related field nodes.
1300 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1301   int offset = field->offset();
1302   if (base->is_LocalVar()) {
1303     for (UseIterator j(base); j.has_next(); j.next()) {
1304       PointsToNode* f = j.get();
1305       if (PointsToNode::is_base_use(f)) { // Field
1306         f = PointsToNode::get_use_node(f);
1307         if (f == field || !f->as_Field()->is_oop())
1308           continue;
1309         int offs = f->as_Field()->offset();
1310         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1311           add_to_worklist(f);
1312         }
1313       }
1314     }
1315   } else {
1316     assert(base->is_JavaObject(), "sanity");
1317     if (// Skip phantom_object since it is only used to indicate that
1318         // this field's content globally escapes.
1319         (base != phantom_obj) &&
1320         // NULL object node does not have fields.
1321         (base != null_obj)) {
1322       for (EdgeIterator i(base); i.has_next(); i.next()) {
1323         PointsToNode* f = i.get();
1324         // Skip arraycopy edge since store to destination object field
1325         // does not update value in source object field.
1326         if (f->is_Arraycopy()) {
1327           assert(base->arraycopy_dst(), "sanity");
1328           continue;
1329         }
1330         if (f == field || !f->as_Field()->is_oop())
1331           continue;
1332         int offs = f->as_Field()->offset();
1333         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1334           add_to_worklist(f);
1335         }
1336       }
1337     }
1338   }
1339 }
1340 
1341 // Find fields which have unknown value.
1342 int ConnectionGraph::find_field_value(FieldNode* field) {
1343   // Escaped fields should have init value already.
1344   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1345   int new_edges = 0;
1346   for (BaseIterator i(field); i.has_next(); i.next()) {
1347     PointsToNode* base = i.get();
1348     if (base->is_JavaObject()) {
1349       // Skip Allocate's fields which will be processed later.
1350       if (base->ideal_node()->is_Allocate())
1351         return 0;
1352       assert(base == null_obj, "only NULL ptr base expected here");
1353     }
1354   }
1355   if (add_edge(field, phantom_obj)) {
1356     // New edge was added
1357     new_edges++;
1358     add_field_uses_to_worklist(field);
1359   }
1360   return new_edges;
1361 }
1362 
1363 // Find fields initializing values for allocations.
1364 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1365   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1366   int new_edges = 0;
1367   Node* alloc = pta->ideal_node();
1368   if (init_val == phantom_obj) {
1369     // Do nothing for Allocate nodes since its fields values are "known".
1370     if (alloc->is_Allocate())
1371       return 0;
1372     assert(alloc->as_CallStaticJava(), "sanity");
1373 #ifdef ASSERT
1374     if (alloc->as_CallStaticJava()->method() == NULL) {
1375       const char* name = alloc->as_CallStaticJava()->_name;
1376       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1377     }
1378 #endif
1379     // Non-escaped allocation returned from Java or runtime call have
1380     // unknown values in fields.
1381     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1382       PointsToNode* field = i.get();
1383       if (field->is_Field() && field->as_Field()->is_oop()) {
1384         if (add_edge(field, phantom_obj)) {
1385           // New edge was added
1386           new_edges++;
1387           add_field_uses_to_worklist(field->as_Field());
1388         }
1389       }
1390     }
1391     return new_edges;
1392   }
1393   assert(init_val == null_obj, "sanity");
1394   // Do nothing for Call nodes since its fields values are unknown.
1395   if (!alloc->is_Allocate())
1396     return 0;
1397 
1398   InitializeNode* ini = alloc->as_Allocate()->initialization();
1399   Compile* C = _compile;
1400   bool visited_bottom_offset = false;
1401   GrowableArray<int> offsets_worklist;
1402 
1403   // Check if an oop field's initializing value is recorded and add
1404   // a corresponding NULL if field's value if it is not recorded.
1405   // Connection Graph does not record a default initialization by NULL
1406   // captured by Initialize node.
1407   //
1408   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1409     PointsToNode* field = i.get(); // Field (AddP)
1410     if (!field->is_Field() || !field->as_Field()->is_oop())
1411       continue; // Not oop field
1412     int offset = field->as_Field()->offset();
1413     if (offset == Type::OffsetBot) {
1414       if (!visited_bottom_offset) {
1415         // OffsetBot is used to reference array's element,
1416         // always add reference to NULL to all Field nodes since we don't
1417         // known which element is referenced.
1418         if (add_edge(field, null_obj)) {
1419           // New edge was added
1420           new_edges++;
1421           add_field_uses_to_worklist(field->as_Field());
1422           visited_bottom_offset = true;
1423         }
1424       }
1425     } else {
1426       // Check only oop fields.
1427       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1428       if (adr_type->isa_rawptr()) {
1429 #ifdef ASSERT
1430         // Raw pointers are used for initializing stores so skip it
1431         // since it should be recorded already
1432         Node* base = get_addp_base(field->ideal_node());
1433         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1434                (base->in(0) == alloc),"unexpected pointer type");
1435 #endif
1436         continue;
1437       }
1438       if (!offsets_worklist.contains(offset)) {
1439         offsets_worklist.append(offset);
1440         Node* value = NULL;
1441         if (ini != NULL) {
1442           // StoreP::memory_type() == T_ADDRESS
1443           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1444           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1445           // Make sure initializing store has the same type as this AddP.
1446           // This AddP may reference non existing field because it is on a
1447           // dead branch of bimorphic call which is not eliminated yet.
1448           if (store != NULL && store->is_Store() &&
1449               store->as_Store()->memory_type() == ft) {
1450             value = store->in(MemNode::ValueIn);
1451 #ifdef ASSERT
1452             if (VerifyConnectionGraph) {
1453               // Verify that AddP already points to all objects the value points to.
1454               PointsToNode* val = ptnode_adr(value->_idx);
1455               assert((val != NULL), "should be processed already");
1456               PointsToNode* missed_obj = NULL;
1457               if (val->is_JavaObject()) {
1458                 if (!field->points_to(val->as_JavaObject())) {
1459                   missed_obj = val;
1460                 }
1461               } else {
1462                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1463                   tty->print_cr("----------init store has invalid value -----");
1464                   store->dump();
1465                   val->dump();
1466                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1467                 }
1468                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1469                   PointsToNode* obj = j.get();
1470                   if (obj->is_JavaObject()) {
1471                     if (!field->points_to(obj->as_JavaObject())) {
1472                       missed_obj = obj;
1473                       break;
1474                     }
1475                   }
1476                 }
1477               }
1478               if (missed_obj != NULL) {
1479                 tty->print_cr("----------field---------------------------------");
1480                 field->dump();
1481                 tty->print_cr("----------missed referernce to object-----------");
1482                 missed_obj->dump();
1483                 tty->print_cr("----------object referernced by init store -----");
1484                 store->dump();
1485                 val->dump();
1486                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1487               }
1488             }
1489 #endif
1490           } else {
1491             // There could be initializing stores which follow allocation.
1492             // For example, a volatile field store is not collected
1493             // by Initialize node.
1494             //
1495             // Need to check for dependent loads to separate such stores from
1496             // stores which follow loads. For now, add initial value NULL so
1497             // that compare pointers optimization works correctly.
1498           }
1499         }
1500         if (value == NULL) {
1501           // A field's initializing value was not recorded. Add NULL.
1502           if (add_edge(field, null_obj)) {
1503             // New edge was added
1504             new_edges++;
1505             add_field_uses_to_worklist(field->as_Field());
1506           }
1507         }
1508       }
1509     }
1510   }
1511   return new_edges;
1512 }
1513 
1514 // Adjust scalar_replaceable state after Connection Graph is built.
1515 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1516   // Search for non-escaping objects which are not scalar replaceable
1517   // and mark them to propagate the state to referenced objects.
1518 
1519   // 1. An object is not scalar replaceable if the field into which it is
1520   // stored has unknown offset (stored into unknown element of an array).
1521   //
1522   for (UseIterator i(jobj); i.has_next(); i.next()) {
1523     PointsToNode* use = i.get();
1524     assert(!use->is_Arraycopy(), "sanity");
1525     if (use->is_Field()) {
1526       FieldNode* field = use->as_Field();
1527       assert(field->is_oop() && field->scalar_replaceable() &&
1528              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1529       if (field->offset() == Type::OffsetBot) {
1530         jobj->set_scalar_replaceable(false);
1531         return;
1532       }
1533     }
1534     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1535     // 2. An object is not scalar replaceable if it is merged with other objects.
1536     for (EdgeIterator j(use); j.has_next(); j.next()) {
1537       PointsToNode* ptn = j.get();
1538       if (ptn->is_JavaObject() && ptn != jobj) {
1539         // Mark all objects.
1540         jobj->set_scalar_replaceable(false);
1541          ptn->set_scalar_replaceable(false);
1542       }
1543     }
1544     if (!jobj->scalar_replaceable()) {
1545       return;
1546     }
1547   }
1548 
1549   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1550     // Non-escaping object node should point only to field nodes.
1551     FieldNode* field = j.get()->as_Field();
1552     int offset = field->as_Field()->offset();
1553 
1554     // 3. An object is not scalar replaceable if it has a field with unknown
1555     // offset (array's element is accessed in loop).
1556     if (offset == Type::OffsetBot) {
1557       jobj->set_scalar_replaceable(false);
1558       return;
1559     }
1560     // 4. Currently an object is not scalar replaceable if a LoadStore node
1561     // access its field since the field value is unknown after it.
1562     //
1563     Node* n = field->ideal_node();
1564     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1565       if (n->fast_out(i)->is_LoadStore()) {
1566         jobj->set_scalar_replaceable(false);
1567         return;
1568       }
1569     }
1570 
1571     // 5. Or the address may point to more then one object. This may produce
1572     // the false positive result (set not scalar replaceable)
1573     // since the flow-insensitive escape analysis can't separate
1574     // the case when stores overwrite the field's value from the case
1575     // when stores happened on different control branches.
1576     //
1577     // Note: it will disable scalar replacement in some cases:
1578     //
1579     //    Point p[] = new Point[1];
1580     //    p[0] = new Point(); // Will be not scalar replaced
1581     //
1582     // but it will save us from incorrect optimizations in next cases:
1583     //
1584     //    Point p[] = new Point[1];
1585     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1586     //
1587     if (field->base_count() > 1) {
1588       for (BaseIterator i(field); i.has_next(); i.next()) {
1589         PointsToNode* base = i.get();
1590         // Don't take into account LocalVar nodes which
1591         // may point to only one object which should be also
1592         // this field's base by now.
1593         if (base->is_JavaObject() && base != jobj) {
1594           // Mark all bases.
1595           jobj->set_scalar_replaceable(false);
1596           base->set_scalar_replaceable(false);
1597         }
1598       }
1599     }
1600   }
1601 }
1602 
1603 #ifdef ASSERT
1604 void ConnectionGraph::verify_connection_graph(
1605                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1606                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1607                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1608                          GrowableArray<Node*>& addp_worklist) {
1609   // Verify that graph is complete - no new edges could be added.
1610   int java_objects_length = java_objects_worklist.length();
1611   int non_escaped_length  = non_escaped_worklist.length();
1612   int new_edges = 0;
1613   for (int next = 0; next < java_objects_length; ++next) {
1614     JavaObjectNode* ptn = java_objects_worklist.at(next);
1615     new_edges += add_java_object_edges(ptn, true);
1616   }
1617   assert(new_edges == 0, "graph was not complete");
1618   // Verify that escape state is final.
1619   int length = non_escaped_worklist.length();
1620   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1621   assert((non_escaped_length == non_escaped_worklist.length()) &&
1622          (non_escaped_length == length) &&
1623          (_worklist.length() == 0), "escape state was not final");
1624 
1625   // Verify fields information.
1626   int addp_length = addp_worklist.length();
1627   for (int next = 0; next < addp_length; ++next ) {
1628     Node* n = addp_worklist.at(next);
1629     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1630     if (field->is_oop()) {
1631       // Verify that field has all bases
1632       Node* base = get_addp_base(n);
1633       PointsToNode* ptn = ptnode_adr(base->_idx);
1634       if (ptn->is_JavaObject()) {
1635         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1636       } else {
1637         assert(ptn->is_LocalVar(), "sanity");
1638         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1639           PointsToNode* e = i.get();
1640           if (e->is_JavaObject()) {
1641             assert(field->has_base(e->as_JavaObject()), "sanity");
1642           }
1643         }
1644       }
1645       // Verify that all fields have initializing values.
1646       if (field->edge_count() == 0) {
1647         tty->print_cr("----------field does not have references----------");
1648         field->dump();
1649         for (BaseIterator i(field); i.has_next(); i.next()) {
1650           PointsToNode* base = i.get();
1651           tty->print_cr("----------field has next base---------------------");
1652           base->dump();
1653           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1654             tty->print_cr("----------base has fields-------------------------");
1655             for (EdgeIterator j(base); j.has_next(); j.next()) {
1656               j.get()->dump();
1657             }
1658             tty->print_cr("----------base has references---------------------");
1659             for (UseIterator j(base); j.has_next(); j.next()) {
1660               j.get()->dump();
1661             }
1662           }
1663         }
1664         for (UseIterator i(field); i.has_next(); i.next()) {
1665           i.get()->dump();
1666         }
1667         assert(field->edge_count() > 0, "sanity");
1668       }
1669     }
1670   }
1671 }
1672 #endif
1673 
1674 // Optimize ideal graph.
1675 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1676                                            GrowableArray<Node*>& storestore_worklist) {
1677   Compile* C = _compile;
1678   PhaseIterGVN* igvn = _igvn;
1679   if (EliminateLocks) {
1680     // Mark locks before changing ideal graph.
1681     int cnt = C->macro_count();
1682     for( int i=0; i < cnt; i++ ) {
1683       Node *n = C->macro_node(i);
1684       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1685         AbstractLockNode* alock = n->as_AbstractLock();
1686         if (!alock->is_non_esc_obj()) {
1687           if (not_global_escape(alock->obj_node())) {
1688             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1689             // The lock could be marked eliminated by lock coarsening
1690             // code during first IGVN before EA. Replace coarsened flag
1691             // to eliminate all associated locks/unlocks.
1692             alock->set_non_esc_obj();
1693           }
1694         }
1695       }
1696     }
1697   }
1698 
1699   if (OptimizePtrCompare) {
1700     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1701     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1702     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1703     // Optimize objects compare.
1704     while (ptr_cmp_worklist.length() != 0) {
1705       Node *n = ptr_cmp_worklist.pop();
1706       Node *res = optimize_ptr_compare(n);
1707       if (res != NULL) {
1708 #ifndef PRODUCT
1709         if (PrintOptimizePtrCompare) {
1710           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1711           if (Verbose) {
1712             n->dump(1);
1713           }
1714         }
1715 #endif
1716         igvn->replace_node(n, res);
1717       }
1718     }
1719     // cleanup
1720     if (_pcmp_neq->outcnt() == 0)
1721       igvn->hash_delete(_pcmp_neq);
1722     if (_pcmp_eq->outcnt()  == 0)
1723       igvn->hash_delete(_pcmp_eq);
1724   }
1725 
1726   // For MemBarStoreStore nodes added in library_call.cpp, check
1727   // escape status of associated AllocateNode and optimize out
1728   // MemBarStoreStore node if the allocated object never escapes.
1729   while (storestore_worklist.length() != 0) {
1730     Node *n = storestore_worklist.pop();
1731     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1732     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1733     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1734     if (not_global_escape(alloc)) {
1735       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1736       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1737       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1738       igvn->register_new_node_with_optimizer(mb);
1739       igvn->replace_node(storestore, mb);
1740     }
1741   }
1742 }
1743 
1744 // Optimize objects compare.
1745 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1746   assert(OptimizePtrCompare, "sanity");
1747   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1748   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1749   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1750   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1751   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1752   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1753 
1754   // Check simple cases first.
1755   if (jobj1 != NULL) {
1756     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1757       if (jobj1 == jobj2) {
1758         // Comparing the same not escaping object.
1759         return _pcmp_eq;
1760       }
1761       Node* obj = jobj1->ideal_node();
1762       // Comparing not escaping allocation.
1763       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1764           !ptn2->points_to(jobj1)) {
1765         return _pcmp_neq; // This includes nullness check.
1766       }
1767     }
1768   }
1769   if (jobj2 != NULL) {
1770     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1771       Node* obj = jobj2->ideal_node();
1772       // Comparing not escaping allocation.
1773       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1774           !ptn1->points_to(jobj2)) {
1775         return _pcmp_neq; // This includes nullness check.
1776       }
1777     }
1778   }
1779   if (jobj1 != NULL && jobj1 != phantom_obj &&
1780       jobj2 != NULL && jobj2 != phantom_obj &&
1781       jobj1->ideal_node()->is_Con() &&
1782       jobj2->ideal_node()->is_Con()) {
1783     // Klass or String constants compare. Need to be careful with
1784     // compressed pointers - compare types of ConN and ConP instead of nodes.
1785     const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
1786     const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
1787     assert(t1 != NULL && t2 != NULL, "sanity");
1788     if (t1->make_ptr() == t2->make_ptr()) {
1789       return _pcmp_eq;
1790     } else {
1791       return _pcmp_neq;
1792     }
1793   }
1794   if (ptn1->meet(ptn2)) {
1795     return NULL; // Sets are not disjoint
1796   }
1797 
1798   // Sets are disjoint.
1799   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1800   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1801   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1802   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1803   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1804       set2_has_unknown_ptr && set1_has_null_ptr) {
1805     // Check nullness of unknown object.
1806     return NULL;
1807   }
1808 
1809   // Disjointness by itself is not sufficient since
1810   // alias analysis is not complete for escaped objects.
1811   // Disjoint sets are definitely unrelated only when
1812   // at least one set has only not escaping allocations.
1813   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1814     if (ptn1->non_escaping_allocation()) {
1815       return _pcmp_neq;
1816     }
1817   }
1818   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1819     if (ptn2->non_escaping_allocation()) {
1820       return _pcmp_neq;
1821     }
1822   }
1823   return NULL;
1824 }
1825 
1826 // Connection Graph constuction functions.
1827 
1828 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1829   PointsToNode* ptadr = _nodes.at(n->_idx);
1830   if (ptadr != NULL) {
1831     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1832     return;
1833   }
1834   Compile* C = _compile;
1835   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
1836   _nodes.at_put(n->_idx, ptadr);
1837 }
1838 
1839 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1840   PointsToNode* ptadr = _nodes.at(n->_idx);
1841   if (ptadr != NULL) {
1842     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1843     return;
1844   }
1845   Compile* C = _compile;
1846   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
1847   _nodes.at_put(n->_idx, ptadr);
1848 }
1849 
1850 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1851   PointsToNode* ptadr = _nodes.at(n->_idx);
1852   if (ptadr != NULL) {
1853     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1854     return;
1855   }
1856   bool unsafe = false;
1857   bool is_oop = is_oop_field(n, offset, &unsafe);
1858   if (unsafe) {
1859     es = PointsToNode::GlobalEscape;
1860   }
1861   Compile* C = _compile;
1862   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
1863   _nodes.at_put(n->_idx, field);
1864 }
1865 
1866 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1867                                     PointsToNode* src, PointsToNode* dst) {
1868   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1869   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1870   PointsToNode* ptadr = _nodes.at(n->_idx);
1871   if (ptadr != NULL) {
1872     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1873     return;
1874   }
1875   Compile* C = _compile;
1876   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
1877   _nodes.at_put(n->_idx, ptadr);
1878   // Add edge from arraycopy node to source object.
1879   (void)add_edge(ptadr, src);
1880   src->set_arraycopy_src();
1881   // Add edge from destination object to arraycopy node.
1882   (void)add_edge(dst, ptadr);
1883   dst->set_arraycopy_dst();
1884 }
1885 
1886 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
1887   const Type* adr_type = n->as_AddP()->bottom_type();
1888   BasicType bt = T_INT;
1889   if (offset == Type::OffsetBot) {
1890     // Check only oop fields.
1891     if (!adr_type->isa_aryptr() ||
1892         (adr_type->isa_aryptr()->klass() == NULL) ||
1893          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
1894       // OffsetBot is used to reference array's element. Ignore first AddP.
1895       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
1896         bt = T_OBJECT;
1897       }
1898     }
1899   } else if (offset != oopDesc::klass_offset_in_bytes()) {
1900     if (adr_type->isa_instptr()) {
1901       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
1902       if (field != NULL) {
1903         bt = field->layout_type();
1904       } else {
1905         // Check for unsafe oop field access
1906         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1907           int opcode = n->fast_out(i)->Opcode();
1908           if (opcode == Op_StoreP || opcode == Op_LoadP ||
1909               opcode == Op_StoreN || opcode == Op_LoadN) {
1910             bt = T_OBJECT;
1911             (*unsafe) = true;
1912             break;
1913           }
1914         }
1915       }
1916     } else if (adr_type->isa_aryptr()) {
1917       if (offset == arrayOopDesc::length_offset_in_bytes()) {
1918         // Ignore array length load.
1919       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
1920         // Ignore first AddP.
1921       } else {
1922         const Type* elemtype = adr_type->isa_aryptr()->elem();
1923         bt = elemtype->array_element_basic_type();
1924       }
1925     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
1926       // Allocation initialization, ThreadLocal field access, unsafe access
1927       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1928         int opcode = n->fast_out(i)->Opcode();
1929         if (opcode == Op_StoreP || opcode == Op_LoadP ||
1930             opcode == Op_StoreN || opcode == Op_LoadN) {
1931           bt = T_OBJECT;
1932           break;
1933         }
1934       }
1935     }
1936   }
1937   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
1938 }
1939 
1940 // Returns unique pointed java object or NULL.
1941 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
1942   assert(!_collecting, "should not call when contructed graph");
1943   // If the node was created after the escape computation we can't answer.
1944   uint idx = n->_idx;
1945   if (idx >= nodes_size()) {
1946     return NULL;
1947   }
1948   PointsToNode* ptn = ptnode_adr(idx);
1949   if (ptn->is_JavaObject()) {
1950     return ptn->as_JavaObject();
1951   }
1952   assert(ptn->is_LocalVar(), "sanity");
1953   // Check all java objects it points to.
1954   JavaObjectNode* jobj = NULL;
1955   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1956     PointsToNode* e = i.get();
1957     if (e->is_JavaObject()) {
1958       if (jobj == NULL) {
1959         jobj = e->as_JavaObject();
1960       } else if (jobj != e) {
1961         return NULL;
1962       }
1963     }
1964   }
1965   return jobj;
1966 }
1967 
1968 // Return true if this node points only to non-escaping allocations.
1969 bool PointsToNode::non_escaping_allocation() {
1970   if (is_JavaObject()) {
1971     Node* n = ideal_node();
1972     if (n->is_Allocate() || n->is_CallStaticJava()) {
1973       return (escape_state() == PointsToNode::NoEscape);
1974     } else {
1975       return false;
1976     }
1977   }
1978   assert(is_LocalVar(), "sanity");
1979   // Check all java objects it points to.
1980   for (EdgeIterator i(this); i.has_next(); i.next()) {
1981     PointsToNode* e = i.get();
1982     if (e->is_JavaObject()) {
1983       Node* n = e->ideal_node();
1984       if ((e->escape_state() != PointsToNode::NoEscape) ||
1985           !(n->is_Allocate() || n->is_CallStaticJava())) {
1986         return false;
1987       }
1988     }
1989   }
1990   return true;
1991 }
1992 
1993 // Return true if we know the node does not escape globally.
1994 bool ConnectionGraph::not_global_escape(Node *n) {
1995   assert(!_collecting, "should not call during graph construction");
1996   // If the node was created after the escape computation we can't answer.
1997   uint idx = n->_idx;
1998   if (idx >= nodes_size()) {
1999     return false;
2000   }
2001   PointsToNode* ptn = ptnode_adr(idx);
2002   PointsToNode::EscapeState es = ptn->escape_state();
2003   // If we have already computed a value, return it.
2004   if (es >= PointsToNode::GlobalEscape)
2005     return false;
2006   if (ptn->is_JavaObject()) {
2007     return true; // (es < PointsToNode::GlobalEscape);
2008   }
2009   assert(ptn->is_LocalVar(), "sanity");
2010   // Check all java objects it points to.
2011   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2012     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2013       return false;
2014   }
2015   return true;
2016 }
2017 
2018 
2019 // Helper functions
2020 
2021 // Return true if this node points to specified node or nodes it points to.
2022 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2023   if (is_JavaObject()) {
2024     return (this == ptn);
2025   }
2026   assert(is_LocalVar() || is_Field(), "sanity");
2027   for (EdgeIterator i(this); i.has_next(); i.next()) {
2028     if (i.get() == ptn)
2029       return true;
2030   }
2031   return false;
2032 }
2033 
2034 // Return true if one node points to an other.
2035 bool PointsToNode::meet(PointsToNode* ptn) {
2036   if (this == ptn) {
2037     return true;
2038   } else if (ptn->is_JavaObject()) {
2039     return this->points_to(ptn->as_JavaObject());
2040   } else if (this->is_JavaObject()) {
2041     return ptn->points_to(this->as_JavaObject());
2042   }
2043   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2044   int ptn_count =  ptn->edge_count();
2045   for (EdgeIterator i(this); i.has_next(); i.next()) {
2046     PointsToNode* this_e = i.get();
2047     for (int j = 0; j < ptn_count; j++) {
2048       if (this_e == ptn->edge(j))
2049         return true;
2050     }
2051   }
2052   return false;
2053 }
2054 
2055 #ifdef ASSERT
2056 // Return true if bases point to this java object.
2057 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2058   for (BaseIterator i(this); i.has_next(); i.next()) {
2059     if (i.get() == jobj)
2060       return true;
2061   }
2062   return false;
2063 }
2064 #endif
2065 
2066 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2067   const Type *adr_type = phase->type(adr);
2068   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2069       adr->in(AddPNode::Address)->is_Proj() &&
2070       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2071     // We are computing a raw address for a store captured by an Initialize
2072     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2073     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2074     assert(offs != Type::OffsetBot ||
2075            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2076            "offset must be a constant or it is initialization of array");
2077     return offs;
2078   }
2079   const TypePtr *t_ptr = adr_type->isa_ptr();
2080   assert(t_ptr != NULL, "must be a pointer type");
2081   return t_ptr->offset();
2082 }
2083 
2084 Node* ConnectionGraph::get_addp_base(Node *addp) {
2085   assert(addp->is_AddP(), "must be AddP");
2086   //
2087   // AddP cases for Base and Address inputs:
2088   // case #1. Direct object's field reference:
2089   //     Allocate
2090   //       |
2091   //     Proj #5 ( oop result )
2092   //       |
2093   //     CheckCastPP (cast to instance type)
2094   //      | |
2095   //     AddP  ( base == address )
2096   //
2097   // case #2. Indirect object's field reference:
2098   //      Phi
2099   //       |
2100   //     CastPP (cast to instance type)
2101   //      | |
2102   //     AddP  ( base == address )
2103   //
2104   // case #3. Raw object's field reference for Initialize node:
2105   //      Allocate
2106   //        |
2107   //      Proj #5 ( oop result )
2108   //  top   |
2109   //     \  |
2110   //     AddP  ( base == top )
2111   //
2112   // case #4. Array's element reference:
2113   //   {CheckCastPP | CastPP}
2114   //     |  | |
2115   //     |  AddP ( array's element offset )
2116   //     |  |
2117   //     AddP ( array's offset )
2118   //
2119   // case #5. Raw object's field reference for arraycopy stub call:
2120   //          The inline_native_clone() case when the arraycopy stub is called
2121   //          after the allocation before Initialize and CheckCastPP nodes.
2122   //      Allocate
2123   //        |
2124   //      Proj #5 ( oop result )
2125   //       | |
2126   //       AddP  ( base == address )
2127   //
2128   // case #6. Constant Pool, ThreadLocal, CastX2P or
2129   //          Raw object's field reference:
2130   //      {ConP, ThreadLocal, CastX2P, raw Load}
2131   //  top   |
2132   //     \  |
2133   //     AddP  ( base == top )
2134   //
2135   // case #7. Klass's field reference.
2136   //      LoadKlass
2137   //       | |
2138   //       AddP  ( base == address )
2139   //
2140   // case #8. narrow Klass's field reference.
2141   //      LoadNKlass
2142   //       |
2143   //      DecodeN
2144   //       | |
2145   //       AddP  ( base == address )
2146   //
2147   Node *base = addp->in(AddPNode::Base);
2148   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2149     base = addp->in(AddPNode::Address);
2150     while (base->is_AddP()) {
2151       // Case #6 (unsafe access) may have several chained AddP nodes.
2152       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2153       base = base->in(AddPNode::Address);
2154     }
2155     Node* uncast_base = base->uncast();
2156     int opcode = uncast_base->Opcode();
2157     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2158            opcode == Op_CastX2P || uncast_base->is_DecodeN() ||
2159            (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
2160            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2161   }
2162   return base;
2163 }
2164 
2165 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2166   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2167   Node* addp2 = addp->raw_out(0);
2168   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2169       addp2->in(AddPNode::Base) == n &&
2170       addp2->in(AddPNode::Address) == addp) {
2171     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2172     //
2173     // Find array's offset to push it on worklist first and
2174     // as result process an array's element offset first (pushed second)
2175     // to avoid CastPP for the array's offset.
2176     // Otherwise the inserted CastPP (LocalVar) will point to what
2177     // the AddP (Field) points to. Which would be wrong since
2178     // the algorithm expects the CastPP has the same point as
2179     // as AddP's base CheckCastPP (LocalVar).
2180     //
2181     //    ArrayAllocation
2182     //     |
2183     //    CheckCastPP
2184     //     |
2185     //    memProj (from ArrayAllocation CheckCastPP)
2186     //     |  ||
2187     //     |  ||   Int (element index)
2188     //     |  ||    |   ConI (log(element size))
2189     //     |  ||    |   /
2190     //     |  ||   LShift
2191     //     |  ||  /
2192     //     |  AddP (array's element offset)
2193     //     |  |
2194     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2195     //     | / /
2196     //     AddP (array's offset)
2197     //      |
2198     //     Load/Store (memory operation on array's element)
2199     //
2200     return addp2;
2201   }
2202   return NULL;
2203 }
2204 
2205 //
2206 // Adjust the type and inputs of an AddP which computes the
2207 // address of a field of an instance
2208 //
2209 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2210   PhaseGVN* igvn = _igvn;
2211   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2212   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2213   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2214   if (t == NULL) {
2215     // We are computing a raw address for a store captured by an Initialize
2216     // compute an appropriate address type (cases #3 and #5).
2217     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2218     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2219     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2220     assert(offs != Type::OffsetBot, "offset must be a constant");
2221     t = base_t->add_offset(offs)->is_oopptr();
2222   }
2223   int inst_id =  base_t->instance_id();
2224   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2225                              "old type must be non-instance or match new type");
2226 
2227   // The type 't' could be subclass of 'base_t'.
2228   // As result t->offset() could be large then base_t's size and it will
2229   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2230   // constructor verifies correctness of the offset.
2231   //
2232   // It could happened on subclass's branch (from the type profiling
2233   // inlining) which was not eliminated during parsing since the exactness
2234   // of the allocation type was not propagated to the subclass type check.
2235   //
2236   // Or the type 't' could be not related to 'base_t' at all.
2237   // It could happened when CHA type is different from MDO type on a dead path
2238   // (for example, from instanceof check) which is not collapsed during parsing.
2239   //
2240   // Do nothing for such AddP node and don't process its users since
2241   // this code branch will go away.
2242   //
2243   if (!t->is_known_instance() &&
2244       !base_t->klass()->is_subtype_of(t->klass())) {
2245      return false; // bail out
2246   }
2247   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2248   // Do NOT remove the next line: ensure a new alias index is allocated
2249   // for the instance type. Note: C++ will not remove it since the call
2250   // has side effect.
2251   int alias_idx = _compile->get_alias_index(tinst);
2252   igvn->set_type(addp, tinst);
2253   // record the allocation in the node map
2254   set_map(addp, get_map(base->_idx));
2255   // Set addp's Base and Address to 'base'.
2256   Node *abase = addp->in(AddPNode::Base);
2257   Node *adr   = addp->in(AddPNode::Address);
2258   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2259       adr->in(0)->_idx == (uint)inst_id) {
2260     // Skip AddP cases #3 and #5.
2261   } else {
2262     assert(!abase->is_top(), "sanity"); // AddP case #3
2263     if (abase != base) {
2264       igvn->hash_delete(addp);
2265       addp->set_req(AddPNode::Base, base);
2266       if (abase == adr) {
2267         addp->set_req(AddPNode::Address, base);
2268       } else {
2269         // AddP case #4 (adr is array's element offset AddP node)
2270 #ifdef ASSERT
2271         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2272         assert(adr->is_AddP() && atype != NULL &&
2273                atype->instance_id() == inst_id, "array's element offset should be processed first");
2274 #endif
2275       }
2276       igvn->hash_insert(addp);
2277     }
2278   }
2279   // Put on IGVN worklist since at least addp's type was changed above.
2280   record_for_optimizer(addp);
2281   return true;
2282 }
2283 
2284 //
2285 // Create a new version of orig_phi if necessary. Returns either the newly
2286 // created phi or an existing phi.  Sets create_new to indicate whether a new
2287 // phi was created.  Cache the last newly created phi in the node map.
2288 //
2289 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2290   Compile *C = _compile;
2291   PhaseGVN* igvn = _igvn;
2292   new_created = false;
2293   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2294   // nothing to do if orig_phi is bottom memory or matches alias_idx
2295   if (phi_alias_idx == alias_idx) {
2296     return orig_phi;
2297   }
2298   // Have we recently created a Phi for this alias index?
2299   PhiNode *result = get_map_phi(orig_phi->_idx);
2300   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2301     return result;
2302   }
2303   // Previous check may fail when the same wide memory Phi was split into Phis
2304   // for different memory slices. Search all Phis for this region.
2305   if (result != NULL) {
2306     Node* region = orig_phi->in(0);
2307     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2308       Node* phi = region->fast_out(i);
2309       if (phi->is_Phi() &&
2310           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2311         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2312         return phi->as_Phi();
2313       }
2314     }
2315   }
2316   if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
2317     if (C->do_escape_analysis() == true && !C->failing()) {
2318       // Retry compilation without escape analysis.
2319       // If this is the first failure, the sentinel string will "stick"
2320       // to the Compile object, and the C2Compiler will see it and retry.
2321       C->record_failure(C2Compiler::retry_no_escape_analysis());
2322     }
2323     return NULL;
2324   }
2325   orig_phi_worklist.append_if_missing(orig_phi);
2326   const TypePtr *atype = C->get_adr_type(alias_idx);
2327   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2328   C->copy_node_notes_to(result, orig_phi);
2329   igvn->set_type(result, result->bottom_type());
2330   record_for_optimizer(result);
2331   set_map(orig_phi, result);
2332   new_created = true;
2333   return result;
2334 }
2335 
2336 //
2337 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2338 // specified alias index.
2339 //
2340 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2341   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2342   Compile *C = _compile;
2343   PhaseGVN* igvn = _igvn;
2344   bool new_phi_created;
2345   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2346   if (!new_phi_created) {
2347     return result;
2348   }
2349   GrowableArray<PhiNode *>  phi_list;
2350   GrowableArray<uint>  cur_input;
2351   PhiNode *phi = orig_phi;
2352   uint idx = 1;
2353   bool finished = false;
2354   while(!finished) {
2355     while (idx < phi->req()) {
2356       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2357       if (mem != NULL && mem->is_Phi()) {
2358         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2359         if (new_phi_created) {
2360           // found an phi for which we created a new split, push current one on worklist and begin
2361           // processing new one
2362           phi_list.push(phi);
2363           cur_input.push(idx);
2364           phi = mem->as_Phi();
2365           result = newphi;
2366           idx = 1;
2367           continue;
2368         } else {
2369           mem = newphi;
2370         }
2371       }
2372       if (C->failing()) {
2373         return NULL;
2374       }
2375       result->set_req(idx++, mem);
2376     }
2377 #ifdef ASSERT
2378     // verify that the new Phi has an input for each input of the original
2379     assert( phi->req() == result->req(), "must have same number of inputs.");
2380     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2381 #endif
2382     // Check if all new phi's inputs have specified alias index.
2383     // Otherwise use old phi.
2384     for (uint i = 1; i < phi->req(); i++) {
2385       Node* in = result->in(i);
2386       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2387     }
2388     // we have finished processing a Phi, see if there are any more to do
2389     finished = (phi_list.length() == 0 );
2390     if (!finished) {
2391       phi = phi_list.pop();
2392       idx = cur_input.pop();
2393       PhiNode *prev_result = get_map_phi(phi->_idx);
2394       prev_result->set_req(idx++, result);
2395       result = prev_result;
2396     }
2397   }
2398   return result;
2399 }
2400 
2401 //
2402 // The next methods are derived from methods in MemNode.
2403 //
2404 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2405   Node *mem = mmem;
2406   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2407   // means an array I have not precisely typed yet.  Do not do any
2408   // alias stuff with it any time soon.
2409   if (toop->base() != Type::AnyPtr &&
2410       !(toop->klass() != NULL &&
2411         toop->klass()->is_java_lang_Object() &&
2412         toop->offset() == Type::OffsetBot)) {
2413     mem = mmem->memory_at(alias_idx);
2414     // Update input if it is progress over what we have now
2415   }
2416   return mem;
2417 }
2418 
2419 //
2420 // Move memory users to their memory slices.
2421 //
2422 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2423   Compile* C = _compile;
2424   PhaseGVN* igvn = _igvn;
2425   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2426   assert(tp != NULL, "ptr type");
2427   int alias_idx = C->get_alias_index(tp);
2428   int general_idx = C->get_general_index(alias_idx);
2429 
2430   // Move users first
2431   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2432     Node* use = n->fast_out(i);
2433     if (use->is_MergeMem()) {
2434       MergeMemNode* mmem = use->as_MergeMem();
2435       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2436       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2437         continue; // Nothing to do
2438       }
2439       // Replace previous general reference to mem node.
2440       uint orig_uniq = C->unique();
2441       Node* m = find_inst_mem(n, general_idx, orig_phis);
2442       assert(orig_uniq == C->unique(), "no new nodes");
2443       mmem->set_memory_at(general_idx, m);
2444       --imax;
2445       --i;
2446     } else if (use->is_MemBar()) {
2447       assert(!use->is_Initialize(), "initializing stores should not be moved");
2448       if (use->req() > MemBarNode::Precedent &&
2449           use->in(MemBarNode::Precedent) == n) {
2450         // Don't move related membars.
2451         record_for_optimizer(use);
2452         continue;
2453       }
2454       tp = use->as_MemBar()->adr_type()->isa_ptr();
2455       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2456           alias_idx == general_idx) {
2457         continue; // Nothing to do
2458       }
2459       // Move to general memory slice.
2460       uint orig_uniq = C->unique();
2461       Node* m = find_inst_mem(n, general_idx, orig_phis);
2462       assert(orig_uniq == C->unique(), "no new nodes");
2463       igvn->hash_delete(use);
2464       imax -= use->replace_edge(n, m);
2465       igvn->hash_insert(use);
2466       record_for_optimizer(use);
2467       --i;
2468 #ifdef ASSERT
2469     } else if (use->is_Mem()) {
2470       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2471         // Don't move related cardmark.
2472         continue;
2473       }
2474       // Memory nodes should have new memory input.
2475       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2476       assert(tp != NULL, "ptr type");
2477       int idx = C->get_alias_index(tp);
2478       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2479              "Following memory nodes should have new memory input or be on the same memory slice");
2480     } else if (use->is_Phi()) {
2481       // Phi nodes should be split and moved already.
2482       tp = use->as_Phi()->adr_type()->isa_ptr();
2483       assert(tp != NULL, "ptr type");
2484       int idx = C->get_alias_index(tp);
2485       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2486     } else {
2487       use->dump();
2488       assert(false, "should not be here");
2489 #endif
2490     }
2491   }
2492 }
2493 
2494 //
2495 // Search memory chain of "mem" to find a MemNode whose address
2496 // is the specified alias index.
2497 //
2498 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2499   if (orig_mem == NULL)
2500     return orig_mem;
2501   Compile* C = _compile;
2502   PhaseGVN* igvn = _igvn;
2503   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2504   bool is_instance = (toop != NULL) && toop->is_known_instance();
2505   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2506   Node *prev = NULL;
2507   Node *result = orig_mem;
2508   while (prev != result) {
2509     prev = result;
2510     if (result == start_mem)
2511       break;  // hit one of our sentinels
2512     if (result->is_Mem()) {
2513       const Type *at = igvn->type(result->in(MemNode::Address));
2514       if (at == Type::TOP)
2515         break; // Dead
2516       assert (at->isa_ptr() != NULL, "pointer type required.");
2517       int idx = C->get_alias_index(at->is_ptr());
2518       if (idx == alias_idx)
2519         break; // Found
2520       if (!is_instance && (at->isa_oopptr() == NULL ||
2521                            !at->is_oopptr()->is_known_instance())) {
2522         break; // Do not skip store to general memory slice.
2523       }
2524       result = result->in(MemNode::Memory);
2525     }
2526     if (!is_instance)
2527       continue;  // don't search further for non-instance types
2528     // skip over a call which does not affect this memory slice
2529     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2530       Node *proj_in = result->in(0);
2531       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2532         break;  // hit one of our sentinels
2533       } else if (proj_in->is_Call()) {
2534         CallNode *call = proj_in->as_Call();
2535         if (!call->may_modify(toop, igvn)) {
2536           result = call->in(TypeFunc::Memory);
2537         }
2538       } else if (proj_in->is_Initialize()) {
2539         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2540         // Stop if this is the initialization for the object instance which
2541         // which contains this memory slice, otherwise skip over it.
2542         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2543           result = proj_in->in(TypeFunc::Memory);
2544         }
2545       } else if (proj_in->is_MemBar()) {
2546         result = proj_in->in(TypeFunc::Memory);
2547       }
2548     } else if (result->is_MergeMem()) {
2549       MergeMemNode *mmem = result->as_MergeMem();
2550       result = step_through_mergemem(mmem, alias_idx, toop);
2551       if (result == mmem->base_memory()) {
2552         // Didn't find instance memory, search through general slice recursively.
2553         result = mmem->memory_at(C->get_general_index(alias_idx));
2554         result = find_inst_mem(result, alias_idx, orig_phis);
2555         if (C->failing()) {
2556           return NULL;
2557         }
2558         mmem->set_memory_at(alias_idx, result);
2559       }
2560     } else if (result->is_Phi() &&
2561                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2562       Node *un = result->as_Phi()->unique_input(igvn);
2563       if (un != NULL) {
2564         orig_phis.append_if_missing(result->as_Phi());
2565         result = un;
2566       } else {
2567         break;
2568       }
2569     } else if (result->is_ClearArray()) {
2570       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2571         // Can not bypass initialization of the instance
2572         // we are looking for.
2573         break;
2574       }
2575       // Otherwise skip it (the call updated 'result' value).
2576     } else if (result->Opcode() == Op_SCMemProj) {
2577       assert(result->in(0)->is_LoadStore(), "sanity");
2578       const Type *at = igvn->type(result->in(0)->in(MemNode::Address));
2579       if (at != Type::TOP) {
2580         assert (at->isa_ptr() != NULL, "pointer type required.");
2581         int idx = C->get_alias_index(at->is_ptr());
2582         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2583         break;
2584       }
2585       result = result->in(0)->in(MemNode::Memory);
2586     }
2587   }
2588   if (result->is_Phi()) {
2589     PhiNode *mphi = result->as_Phi();
2590     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2591     const TypePtr *t = mphi->adr_type();
2592     if (!is_instance) {
2593       // Push all non-instance Phis on the orig_phis worklist to update inputs
2594       // during Phase 4 if needed.
2595       orig_phis.append_if_missing(mphi);
2596     } else if (C->get_alias_index(t) != alias_idx) {
2597       // Create a new Phi with the specified alias index type.
2598       result = split_memory_phi(mphi, alias_idx, orig_phis);
2599     }
2600   }
2601   // the result is either MemNode, PhiNode, InitializeNode.
2602   return result;
2603 }
2604 
2605 //
2606 //  Convert the types of unescaped object to instance types where possible,
2607 //  propagate the new type information through the graph, and update memory
2608 //  edges and MergeMem inputs to reflect the new type.
2609 //
2610 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2611 //  The processing is done in 4 phases:
2612 //
2613 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2614 //            types for the CheckCastPP for allocations where possible.
2615 //            Propagate the the new types through users as follows:
2616 //               casts and Phi:  push users on alloc_worklist
2617 //               AddP:  cast Base and Address inputs to the instance type
2618 //                      push any AddP users on alloc_worklist and push any memnode
2619 //                      users onto memnode_worklist.
2620 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2621 //            search the Memory chain for a store with the appropriate type
2622 //            address type.  If a Phi is found, create a new version with
2623 //            the appropriate memory slices from each of the Phi inputs.
2624 //            For stores, process the users as follows:
2625 //               MemNode:  push on memnode_worklist
2626 //               MergeMem: push on mergemem_worklist
2627 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2628 //            moving the first node encountered of each  instance type to the
2629 //            the input corresponding to its alias index.
2630 //            appropriate memory slice.
2631 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2632 //
2633 // In the following example, the CheckCastPP nodes are the cast of allocation
2634 // results and the allocation of node 29 is unescaped and eligible to be an
2635 // instance type.
2636 //
2637 // We start with:
2638 //
2639 //     7 Parm #memory
2640 //    10  ConI  "12"
2641 //    19  CheckCastPP   "Foo"
2642 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2643 //    29  CheckCastPP   "Foo"
2644 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2645 //
2646 //    40  StoreP  25   7  20   ... alias_index=4
2647 //    50  StoreP  35  40  30   ... alias_index=4
2648 //    60  StoreP  45  50  20   ... alias_index=4
2649 //    70  LoadP    _  60  30   ... alias_index=4
2650 //    80  Phi     75  50  60   Memory alias_index=4
2651 //    90  LoadP    _  80  30   ... alias_index=4
2652 //   100  LoadP    _  80  20   ... alias_index=4
2653 //
2654 //
2655 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2656 // and creating a new alias index for node 30.  This gives:
2657 //
2658 //     7 Parm #memory
2659 //    10  ConI  "12"
2660 //    19  CheckCastPP   "Foo"
2661 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2662 //    29  CheckCastPP   "Foo"  iid=24
2663 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2664 //
2665 //    40  StoreP  25   7  20   ... alias_index=4
2666 //    50  StoreP  35  40  30   ... alias_index=6
2667 //    60  StoreP  45  50  20   ... alias_index=4
2668 //    70  LoadP    _  60  30   ... alias_index=6
2669 //    80  Phi     75  50  60   Memory alias_index=4
2670 //    90  LoadP    _  80  30   ... alias_index=6
2671 //   100  LoadP    _  80  20   ... alias_index=4
2672 //
2673 // In phase 2, new memory inputs are computed for the loads and stores,
2674 // And a new version of the phi is created.  In phase 4, the inputs to
2675 // node 80 are updated and then the memory nodes are updated with the
2676 // values computed in phase 2.  This results in:
2677 //
2678 //     7 Parm #memory
2679 //    10  ConI  "12"
2680 //    19  CheckCastPP   "Foo"
2681 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2682 //    29  CheckCastPP   "Foo"  iid=24
2683 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2684 //
2685 //    40  StoreP  25  7   20   ... alias_index=4
2686 //    50  StoreP  35  7   30   ... alias_index=6
2687 //    60  StoreP  45  40  20   ... alias_index=4
2688 //    70  LoadP    _  50  30   ... alias_index=6
2689 //    80  Phi     75  40  60   Memory alias_index=4
2690 //   120  Phi     75  50  50   Memory alias_index=6
2691 //    90  LoadP    _ 120  30   ... alias_index=6
2692 //   100  LoadP    _  80  20   ... alias_index=4
2693 //
2694 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2695   GrowableArray<Node *>  memnode_worklist;
2696   GrowableArray<PhiNode *>  orig_phis;
2697   PhaseIterGVN  *igvn = _igvn;
2698   uint new_index_start = (uint) _compile->num_alias_types();
2699   Arena* arena = Thread::current()->resource_area();
2700   VectorSet visited(arena);
2701   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2702   uint unique_old = _compile->unique();
2703 
2704   //  Phase 1:  Process possible allocations from alloc_worklist.
2705   //  Create instance types for the CheckCastPP for allocations where possible.
2706   //
2707   // (Note: don't forget to change the order of the second AddP node on
2708   //  the alloc_worklist if the order of the worklist processing is changed,
2709   //  see the comment in find_second_addp().)
2710   //
2711   while (alloc_worklist.length() != 0) {
2712     Node *n = alloc_worklist.pop();
2713     uint ni = n->_idx;
2714     if (n->is_Call()) {
2715       CallNode *alloc = n->as_Call();
2716       // copy escape information to call node
2717       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2718       PointsToNode::EscapeState es = ptn->escape_state();
2719       // We have an allocation or call which returns a Java object,
2720       // see if it is unescaped.
2721       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2722         continue;
2723       // Find CheckCastPP for the allocate or for the return value of a call
2724       n = alloc->result_cast();
2725       if (n == NULL) {            // No uses except Initialize node
2726         if (alloc->is_Allocate()) {
2727           // Set the scalar_replaceable flag for allocation
2728           // so it could be eliminated if it has no uses.
2729           alloc->as_Allocate()->_is_scalar_replaceable = true;
2730         }
2731         continue;
2732       }
2733       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2734         assert(!alloc->is_Allocate(), "allocation should have unique type");
2735         continue;
2736       }
2737 
2738       // The inline code for Object.clone() casts the allocation result to
2739       // java.lang.Object and then to the actual type of the allocated
2740       // object. Detect this case and use the second cast.
2741       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2742       // the allocation result is cast to java.lang.Object and then
2743       // to the actual Array type.
2744       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2745           && (alloc->is_AllocateArray() ||
2746               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2747         Node *cast2 = NULL;
2748         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2749           Node *use = n->fast_out(i);
2750           if (use->is_CheckCastPP()) {
2751             cast2 = use;
2752             break;
2753           }
2754         }
2755         if (cast2 != NULL) {
2756           n = cast2;
2757         } else {
2758           // Non-scalar replaceable if the allocation type is unknown statically
2759           // (reflection allocation), the object can't be restored during
2760           // deoptimization without precise type.
2761           continue;
2762         }
2763       }
2764       if (alloc->is_Allocate()) {
2765         // Set the scalar_replaceable flag for allocation
2766         // so it could be eliminated.
2767         alloc->as_Allocate()->_is_scalar_replaceable = true;
2768       }
2769       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2770       // in order for an object to be scalar-replaceable, it must be:
2771       //   - a direct allocation (not a call returning an object)
2772       //   - non-escaping
2773       //   - eligible to be a unique type
2774       //   - not determined to be ineligible by escape analysis
2775       set_map(alloc, n);
2776       set_map(n, alloc);
2777       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2778       if (t == NULL)
2779         continue;  // not a TypeOopPtr
2780       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
2781       igvn->hash_delete(n);
2782       igvn->set_type(n,  tinst);
2783       n->raise_bottom_type(tinst);
2784       igvn->hash_insert(n);
2785       record_for_optimizer(n);
2786       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2787 
2788         // First, put on the worklist all Field edges from Connection Graph
2789         // which is more accurate then putting immediate users from Ideal Graph.
2790         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2791           PointsToNode* tgt = e.get();
2792           Node* use = tgt->ideal_node();
2793           assert(tgt->is_Field() && use->is_AddP(),
2794                  "only AddP nodes are Field edges in CG");
2795           if (use->outcnt() > 0) { // Don't process dead nodes
2796             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2797             if (addp2 != NULL) {
2798               assert(alloc->is_AllocateArray(),"array allocation was expected");
2799               alloc_worklist.append_if_missing(addp2);
2800             }
2801             alloc_worklist.append_if_missing(use);
2802           }
2803         }
2804 
2805         // An allocation may have an Initialize which has raw stores. Scan
2806         // the users of the raw allocation result and push AddP users
2807         // on alloc_worklist.
2808         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2809         assert (raw_result != NULL, "must have an allocation result");
2810         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2811           Node *use = raw_result->fast_out(i);
2812           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2813             Node* addp2 = find_second_addp(use, raw_result);
2814             if (addp2 != NULL) {
2815               assert(alloc->is_AllocateArray(),"array allocation was expected");
2816               alloc_worklist.append_if_missing(addp2);
2817             }
2818             alloc_worklist.append_if_missing(use);
2819           } else if (use->is_MemBar()) {
2820             memnode_worklist.append_if_missing(use);
2821           }
2822         }
2823       }
2824     } else if (n->is_AddP()) {
2825       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2826       if (jobj == NULL || jobj == phantom_obj) {
2827 #ifdef ASSERT
2828         ptnode_adr(get_addp_base(n)->_idx)->dump();
2829         ptnode_adr(n->_idx)->dump();
2830         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2831 #endif
2832         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2833         return;
2834       }
2835       Node *base = get_map(jobj->idx());  // CheckCastPP node
2836       if (!split_AddP(n, base)) continue; // wrong type from dead path
2837     } else if (n->is_Phi() ||
2838                n->is_CheckCastPP() ||
2839                n->is_EncodeP() ||
2840                n->is_DecodeN() ||
2841                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2842       if (visited.test_set(n->_idx)) {
2843         assert(n->is_Phi(), "loops only through Phi's");
2844         continue;  // already processed
2845       }
2846       JavaObjectNode* jobj = unique_java_object(n);
2847       if (jobj == NULL || jobj == phantom_obj) {
2848 #ifdef ASSERT
2849         ptnode_adr(n->_idx)->dump();
2850         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2851 #endif
2852         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2853         return;
2854       } else {
2855         Node *val = get_map(jobj->idx());   // CheckCastPP node
2856         TypeNode *tn = n->as_Type();
2857         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2858         assert(tinst != NULL && tinst->is_known_instance() &&
2859                tinst->instance_id() == jobj->idx() , "instance type expected.");
2860 
2861         const Type *tn_type = igvn->type(tn);
2862         const TypeOopPtr *tn_t;
2863         if (tn_type->isa_narrowoop()) {
2864           tn_t = tn_type->make_ptr()->isa_oopptr();
2865         } else {
2866           tn_t = tn_type->isa_oopptr();
2867         }
2868         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2869           if (tn_type->isa_narrowoop()) {
2870             tn_type = tinst->make_narrowoop();
2871           } else {
2872             tn_type = tinst;
2873           }
2874           igvn->hash_delete(tn);
2875           igvn->set_type(tn, tn_type);
2876           tn->set_type(tn_type);
2877           igvn->hash_insert(tn);
2878           record_for_optimizer(n);
2879         } else {
2880           assert(tn_type == TypePtr::NULL_PTR ||
2881                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
2882                  "unexpected type");
2883           continue; // Skip dead path with different type
2884         }
2885       }
2886     } else {
2887       debug_only(n->dump();)
2888       assert(false, "EA: unexpected node");
2889       continue;
2890     }
2891     // push allocation's users on appropriate worklist
2892     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2893       Node *use = n->fast_out(i);
2894       if(use->is_Mem() && use->in(MemNode::Address) == n) {
2895         // Load/store to instance's field
2896         memnode_worklist.append_if_missing(use);
2897       } else if (use->is_MemBar()) {
2898         memnode_worklist.append_if_missing(use);
2899       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
2900         Node* addp2 = find_second_addp(use, n);
2901         if (addp2 != NULL) {
2902           alloc_worklist.append_if_missing(addp2);
2903         }
2904         alloc_worklist.append_if_missing(use);
2905       } else if (use->is_Phi() ||
2906                  use->is_CheckCastPP() ||
2907                  use->is_EncodeP() ||
2908                  use->is_DecodeN() ||
2909                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
2910         alloc_worklist.append_if_missing(use);
2911 #ifdef ASSERT
2912       } else if (use->is_Mem()) {
2913         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
2914       } else if (use->is_MergeMem()) {
2915         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2916       } else if (use->is_SafePoint()) {
2917         // Look for MergeMem nodes for calls which reference unique allocation
2918         // (through CheckCastPP nodes) even for debug info.
2919         Node* m = use->in(TypeFunc::Memory);
2920         if (m->is_MergeMem()) {
2921           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2922         }
2923       } else {
2924         uint op = use->Opcode();
2925         if (!(op == Op_CmpP || op == Op_Conv2B ||
2926               op == Op_CastP2X || op == Op_StoreCM ||
2927               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
2928               op == Op_StrEquals || op == Op_StrIndexOf)) {
2929           n->dump();
2930           use->dump();
2931           assert(false, "EA: missing allocation reference path");
2932         }
2933 #endif
2934       }
2935     }
2936 
2937   }
2938   // New alias types were created in split_AddP().
2939   uint new_index_end = (uint) _compile->num_alias_types();
2940   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
2941 
2942   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2943   //            compute new values for Memory inputs  (the Memory inputs are not
2944   //            actually updated until phase 4.)
2945   if (memnode_worklist.length() == 0)
2946     return;  // nothing to do
2947   while (memnode_worklist.length() != 0) {
2948     Node *n = memnode_worklist.pop();
2949     if (visited.test_set(n->_idx))
2950       continue;
2951     if (n->is_Phi() || n->is_ClearArray()) {
2952       // we don't need to do anything, but the users must be pushed
2953     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
2954       // we don't need to do anything, but the users must be pushed
2955       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
2956       if (n == NULL)
2957         continue;
2958     } else {
2959       assert(n->is_Mem(), "memory node required.");
2960       Node *addr = n->in(MemNode::Address);
2961       const Type *addr_t = igvn->type(addr);
2962       if (addr_t == Type::TOP)
2963         continue;
2964       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
2965       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
2966       assert ((uint)alias_idx < new_index_end, "wrong alias index");
2967       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
2968       if (_compile->failing()) {
2969         return;
2970       }
2971       if (mem != n->in(MemNode::Memory)) {
2972         // We delay the memory edge update since we need old one in
2973         // MergeMem code below when instances memory slices are separated.
2974         set_map(n, mem);
2975       }
2976       if (n->is_Load()) {
2977         continue;  // don't push users
2978       } else if (n->is_LoadStore()) {
2979         // get the memory projection
2980         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2981           Node *use = n->fast_out(i);
2982           if (use->Opcode() == Op_SCMemProj) {
2983             n = use;
2984             break;
2985           }
2986         }
2987         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
2988       }
2989     }
2990     // push user on appropriate worklist
2991     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2992       Node *use = n->fast_out(i);
2993       if (use->is_Phi() || use->is_ClearArray()) {
2994         memnode_worklist.append_if_missing(use);
2995       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
2996         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
2997           continue;
2998         memnode_worklist.append_if_missing(use);
2999       } else if (use->is_MemBar()) {
3000         memnode_worklist.append_if_missing(use);
3001 #ifdef ASSERT
3002       } else if(use->is_Mem()) {
3003         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3004       } else if (use->is_MergeMem()) {
3005         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3006       } else {
3007         uint op = use->Opcode();
3008         if (!(op == Op_StoreCM ||
3009               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3010                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3011               op == Op_AryEq || op == Op_StrComp ||
3012               op == Op_StrEquals || op == Op_StrIndexOf)) {
3013           n->dump();
3014           use->dump();
3015           assert(false, "EA: missing memory path");
3016         }
3017 #endif
3018       }
3019     }
3020   }
3021 
3022   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3023   //            Walk each memory slice moving the first node encountered of each
3024   //            instance type to the the input corresponding to its alias index.
3025   uint length = _mergemem_worklist.length();
3026   for( uint next = 0; next < length; ++next ) {
3027     MergeMemNode* nmm = _mergemem_worklist.at(next);
3028     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3029     // Note: we don't want to use MergeMemStream here because we only want to
3030     // scan inputs which exist at the start, not ones we add during processing.
3031     // Note 2: MergeMem may already contains instance memory slices added
3032     // during find_inst_mem() call when memory nodes were processed above.
3033     igvn->hash_delete(nmm);
3034     uint nslices = nmm->req();
3035     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3036       Node* mem = nmm->in(i);
3037       Node* cur = NULL;
3038       if (mem == NULL || mem->is_top())
3039         continue;
3040       // First, update mergemem by moving memory nodes to corresponding slices
3041       // if their type became more precise since this mergemem was created.
3042       while (mem->is_Mem()) {
3043         const Type *at = igvn->type(mem->in(MemNode::Address));
3044         if (at != Type::TOP) {
3045           assert (at->isa_ptr() != NULL, "pointer type required.");
3046           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3047           if (idx == i) {
3048             if (cur == NULL)
3049               cur = mem;
3050           } else {
3051             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3052               nmm->set_memory_at(idx, mem);
3053             }
3054           }
3055         }
3056         mem = mem->in(MemNode::Memory);
3057       }
3058       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3059       // Find any instance of the current type if we haven't encountered
3060       // already a memory slice of the instance along the memory chain.
3061       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3062         if((uint)_compile->get_general_index(ni) == i) {
3063           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3064           if (nmm->is_empty_memory(m)) {
3065             Node* result = find_inst_mem(mem, ni, orig_phis);
3066             if (_compile->failing()) {
3067               return;
3068             }
3069             nmm->set_memory_at(ni, result);
3070           }
3071         }
3072       }
3073     }
3074     // Find the rest of instances values
3075     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3076       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3077       Node* result = step_through_mergemem(nmm, ni, tinst);
3078       if (result == nmm->base_memory()) {
3079         // Didn't find instance memory, search through general slice recursively.
3080         result = nmm->memory_at(_compile->get_general_index(ni));
3081         result = find_inst_mem(result, ni, orig_phis);
3082         if (_compile->failing()) {
3083           return;
3084         }
3085         nmm->set_memory_at(ni, result);
3086       }
3087     }
3088     igvn->hash_insert(nmm);
3089     record_for_optimizer(nmm);
3090   }
3091 
3092   //  Phase 4:  Update the inputs of non-instance memory Phis and
3093   //            the Memory input of memnodes
3094   // First update the inputs of any non-instance Phi's from
3095   // which we split out an instance Phi.  Note we don't have
3096   // to recursively process Phi's encounted on the input memory
3097   // chains as is done in split_memory_phi() since they  will
3098   // also be processed here.
3099   for (int j = 0; j < orig_phis.length(); j++) {
3100     PhiNode *phi = orig_phis.at(j);
3101     int alias_idx = _compile->get_alias_index(phi->adr_type());
3102     igvn->hash_delete(phi);
3103     for (uint i = 1; i < phi->req(); i++) {
3104       Node *mem = phi->in(i);
3105       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3106       if (_compile->failing()) {
3107         return;
3108       }
3109       if (mem != new_mem) {
3110         phi->set_req(i, new_mem);
3111       }
3112     }
3113     igvn->hash_insert(phi);
3114     record_for_optimizer(phi);
3115   }
3116 
3117   // Update the memory inputs of MemNodes with the value we computed
3118   // in Phase 2 and move stores memory users to corresponding memory slices.
3119   // Disable memory split verification code until the fix for 6984348.
3120   // Currently it produces false negative results since it does not cover all cases.
3121 #if 0 // ifdef ASSERT
3122   visited.Reset();
3123   Node_Stack old_mems(arena, _compile->unique() >> 2);
3124 #endif
3125   for (uint i = 0; i < ideal_nodes.size(); i++) {
3126     Node*    n = ideal_nodes.at(i);
3127     Node* nmem = get_map(n->_idx);
3128     assert(nmem != NULL, "sanity");
3129     if (n->is_Mem()) {
3130 #if 0 // ifdef ASSERT
3131       Node* old_mem = n->in(MemNode::Memory);
3132       if (!visited.test_set(old_mem->_idx)) {
3133         old_mems.push(old_mem, old_mem->outcnt());
3134       }
3135 #endif
3136       assert(n->in(MemNode::Memory) != nmem, "sanity");
3137       if (!n->is_Load()) {
3138         // Move memory users of a store first.
3139         move_inst_mem(n, orig_phis);
3140       }
3141       // Now update memory input
3142       igvn->hash_delete(n);
3143       n->set_req(MemNode::Memory, nmem);
3144       igvn->hash_insert(n);
3145       record_for_optimizer(n);
3146     } else {
3147       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3148              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3149     }
3150   }
3151 #if 0 // ifdef ASSERT
3152   // Verify that memory was split correctly
3153   while (old_mems.is_nonempty()) {
3154     Node* old_mem = old_mems.node();
3155     uint  old_cnt = old_mems.index();
3156     old_mems.pop();
3157     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3158   }
3159 #endif
3160 }
3161 
3162 #ifndef PRODUCT
3163 static const char *node_type_names[] = {
3164   "UnknownType",
3165   "JavaObject",
3166   "LocalVar",
3167   "Field",
3168   "Arraycopy"
3169 };
3170 
3171 static const char *esc_names[] = {
3172   "UnknownEscape",
3173   "NoEscape",
3174   "ArgEscape",
3175   "GlobalEscape"
3176 };
3177 
3178 void PointsToNode::dump(bool print_state) const {
3179   NodeType nt = node_type();
3180   tty->print("%s ", node_type_names[(int) nt]);
3181   if (print_state) {
3182     EscapeState es = escape_state();
3183     EscapeState fields_es = fields_escape_state();
3184     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3185     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3186       tty->print("NSR ");
3187   }
3188   if (is_Field()) {
3189     FieldNode* f = (FieldNode*)this;
3190     if (f->is_oop())
3191       tty->print("oop ");
3192     if (f->offset() > 0)
3193       tty->print("+%d ", f->offset());
3194     tty->print("(");
3195     for (BaseIterator i(f); i.has_next(); i.next()) {
3196       PointsToNode* b = i.get();
3197       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3198     }
3199     tty->print(" )");
3200   }
3201   tty->print("[");
3202   for (EdgeIterator i(this); i.has_next(); i.next()) {
3203     PointsToNode* e = i.get();
3204     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3205   }
3206   tty->print(" [");
3207   for (UseIterator i(this); i.has_next(); i.next()) {
3208     PointsToNode* u = i.get();
3209     bool is_base = false;
3210     if (PointsToNode::is_base_use(u)) {
3211       is_base = true;
3212       u = PointsToNode::get_use_node(u)->as_Field();
3213     }
3214     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3215   }
3216   tty->print(" ]]  ");
3217   if (_node == NULL)
3218     tty->print_cr("<null>");
3219   else
3220     _node->dump();
3221 }
3222 
3223 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3224   bool first = true;
3225   int ptnodes_length = ptnodes_worklist.length();
3226   for (int i = 0; i < ptnodes_length; i++) {
3227     PointsToNode *ptn = ptnodes_worklist.at(i);
3228     if (ptn == NULL || !ptn->is_JavaObject())
3229       continue;
3230     PointsToNode::EscapeState es = ptn->escape_state();
3231     if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
3232       if (first) {
3233         tty->cr();
3234         tty->print("======== Connection graph for ");
3235         _compile->method()->print_short_name();
3236         tty->cr();
3237         first = false;
3238       }
3239       ptn->dump();
3240       // Print all locals and fields which reference this allocation
3241       for (UseIterator j(ptn); j.has_next(); j.next()) {
3242         PointsToNode* use = j.get();
3243         if (use->is_LocalVar()) {
3244           use->dump(Verbose);
3245         } else if (Verbose) {
3246           use->dump();
3247         }
3248       }
3249       tty->cr();
3250     }
3251   }
3252 }
3253 #endif