1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "trace/traceMacros.hpp"
  42 
  43 class LibraryIntrinsic : public InlineCallGenerator {
  44   // Extend the set of intrinsics known to the runtime:
  45  public:
  46  private:
  47   bool             _is_virtual;
  48   bool             _is_predicted;
  49   vmIntrinsics::ID _intrinsic_id;
  50 
  51  public:
  52   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
  53     : InlineCallGenerator(m),
  54       _is_virtual(is_virtual),
  55       _is_predicted(is_predicted),
  56       _intrinsic_id(id)
  57   {
  58   }
  59   virtual bool is_intrinsic() const { return true; }
  60   virtual bool is_virtual()   const { return _is_virtual; }
  61   virtual bool is_predicted()   const { return _is_predicted; }
  62   virtual JVMState* generate(JVMState* jvms);
  63   virtual Node* generate_predicate(JVMState* jvms);
  64   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  65 };
  66 
  67 
  68 // Local helper class for LibraryIntrinsic:
  69 class LibraryCallKit : public GraphKit {
  70  private:
  71   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  72   Node*             _result;        // the result node, if any
  73   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  74 
  75   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  76 
  77  public:
  78   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  79     : GraphKit(jvms),
  80       _intrinsic(intrinsic),
  81       _result(NULL)
  82   {
  83     // Check if this is a root compile.  In that case we don't have a caller.
  84     if (!jvms->has_method()) {
  85       _reexecute_sp = sp();
  86     } else {
  87       // Find out how many arguments the interpreter needs when deoptimizing
  88       // and save the stack pointer value so it can used by uncommon_trap.
  89       // We find the argument count by looking at the declared signature.
  90       bool ignored_will_link;
  91       ciSignature* declared_signature = NULL;
  92       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  93       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  94       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  95     }
  96   }
  97 
  98   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
  99 
 100   ciMethod*         caller()    const    { return jvms()->method(); }
 101   int               bci()       const    { return jvms()->bci(); }
 102   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 103   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 104   ciMethod*         callee()    const    { return _intrinsic->method(); }
 105 
 106   bool try_to_inline();
 107   Node* try_to_predicate();
 108 
 109   void push_result() {
 110     // Push the result onto the stack.
 111     if (!stopped() && result() != NULL) {
 112       BasicType bt = result()->bottom_type()->basic_type();
 113       push_node(bt, result());
 114     }
 115   }
 116 
 117  private:
 118   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 119     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 120   }
 121 
 122   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 123   void  set_result(RegionNode* region, PhiNode* value);
 124   Node*     result() { return _result; }
 125 
 126   virtual int reexecute_sp() { return _reexecute_sp; }
 127 
 128   // Helper functions to inline natives
 129   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 130   Node* generate_slow_guard(Node* test, RegionNode* region);
 131   Node* generate_fair_guard(Node* test, RegionNode* region);
 132   Node* generate_negative_guard(Node* index, RegionNode* region,
 133                                 // resulting CastII of index:
 134                                 Node* *pos_index = NULL);
 135   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 136                                    // resulting CastII of index:
 137                                    Node* *pos_index = NULL);
 138   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 139                              Node* array_length,
 140                              RegionNode* region);
 141   Node* generate_current_thread(Node* &tls_output);
 142   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 143                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 144   Node* load_mirror_from_klass(Node* klass);
 145   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 146                                       RegionNode* region, int null_path,
 147                                       int offset);
 148   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 149                                RegionNode* region, int null_path) {
 150     int offset = java_lang_Class::klass_offset_in_bytes();
 151     return load_klass_from_mirror_common(mirror, never_see_null,
 152                                          region, null_path,
 153                                          offset);
 154   }
 155   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 156                                      RegionNode* region, int null_path) {
 157     int offset = java_lang_Class::array_klass_offset_in_bytes();
 158     return load_klass_from_mirror_common(mirror, never_see_null,
 159                                          region, null_path,
 160                                          offset);
 161   }
 162   Node* generate_access_flags_guard(Node* kls,
 163                                     int modifier_mask, int modifier_bits,
 164                                     RegionNode* region);
 165   Node* generate_interface_guard(Node* kls, RegionNode* region);
 166   Node* generate_array_guard(Node* kls, RegionNode* region) {
 167     return generate_array_guard_common(kls, region, false, false);
 168   }
 169   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 170     return generate_array_guard_common(kls, region, false, true);
 171   }
 172   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 173     return generate_array_guard_common(kls, region, true, false);
 174   }
 175   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, true, true);
 177   }
 178   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 179                                     bool obj_array, bool not_array);
 180   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 181   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 182                                      bool is_virtual = false, bool is_static = false);
 183   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 184     return generate_method_call(method_id, false, true);
 185   }
 186   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 187     return generate_method_call(method_id, true, false);
 188   }
 189   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 190 
 191   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 192   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 193   bool inline_string_compareTo();
 194   bool inline_string_indexOf();
 195   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 196   bool inline_string_equals();
 197   Node* round_double_node(Node* n);
 198   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 199   bool inline_math_native(vmIntrinsics::ID id);
 200   bool inline_trig(vmIntrinsics::ID id);
 201   bool inline_math(vmIntrinsics::ID id);
 202   bool inline_exp();
 203   bool inline_pow();
 204   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 205   bool inline_min_max(vmIntrinsics::ID id);
 206   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 207   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 208   int classify_unsafe_addr(Node* &base, Node* &offset);
 209   Node* make_unsafe_address(Node* base, Node* offset);
 210   // Helper for inline_unsafe_access.
 211   // Generates the guards that check whether the result of
 212   // Unsafe.getObject should be recorded in an SATB log buffer.
 213   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 214   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 215   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 216   bool inline_unsafe_allocate();
 217   bool inline_unsafe_copyMemory();
 218   bool inline_native_currentThread();
 219 #ifdef TRACE_HAVE_INTRINSICS
 220   bool inline_native_classID();
 221   bool inline_native_threadID();
 222 #endif
 223   bool inline_native_time_funcs(address method, const char* funcName);
 224   bool inline_native_isInterrupted();
 225   bool inline_native_Class_query(vmIntrinsics::ID id);
 226   bool inline_native_subtype_check();
 227 
 228   bool inline_native_newArray();
 229   bool inline_native_getLength();
 230   bool inline_array_copyOf(bool is_copyOfRange);
 231   bool inline_array_equals();
 232   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 233   bool inline_native_clone(bool is_virtual);
 234   bool inline_native_Reflection_getCallerClass();
 235   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 236   // Helper function for inlining native object hash method
 237   bool inline_native_hashcode(bool is_virtual, bool is_static);
 238   bool inline_native_getClass();
 239 
 240   // Helper functions for inlining arraycopy
 241   bool inline_arraycopy();
 242   void generate_arraycopy(const TypePtr* adr_type,
 243                           BasicType basic_elem_type,
 244                           Node* src,  Node* src_offset,
 245                           Node* dest, Node* dest_offset,
 246                           Node* copy_length,
 247                           bool disjoint_bases = false,
 248                           bool length_never_negative = false,
 249                           RegionNode* slow_region = NULL);
 250   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 251                                                 RegionNode* slow_region);
 252   void generate_clear_array(const TypePtr* adr_type,
 253                             Node* dest,
 254                             BasicType basic_elem_type,
 255                             Node* slice_off,
 256                             Node* slice_len,
 257                             Node* slice_end);
 258   bool generate_block_arraycopy(const TypePtr* adr_type,
 259                                 BasicType basic_elem_type,
 260                                 AllocateNode* alloc,
 261                                 Node* src,  Node* src_offset,
 262                                 Node* dest, Node* dest_offset,
 263                                 Node* dest_size, bool dest_uninitialized);
 264   void generate_slow_arraycopy(const TypePtr* adr_type,
 265                                Node* src,  Node* src_offset,
 266                                Node* dest, Node* dest_offset,
 267                                Node* copy_length, bool dest_uninitialized);
 268   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 269                                      Node* dest_elem_klass,
 270                                      Node* src,  Node* src_offset,
 271                                      Node* dest, Node* dest_offset,
 272                                      Node* copy_length, bool dest_uninitialized);
 273   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 274                                    Node* src,  Node* src_offset,
 275                                    Node* dest, Node* dest_offset,
 276                                    Node* copy_length, bool dest_uninitialized);
 277   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 278                                     BasicType basic_elem_type,
 279                                     bool disjoint_bases,
 280                                     Node* src,  Node* src_offset,
 281                                     Node* dest, Node* dest_offset,
 282                                     Node* copy_length, bool dest_uninitialized);
 283   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 284   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 285   bool inline_unsafe_ordered_store(BasicType type);
 286   bool inline_fp_conversions(vmIntrinsics::ID id);
 287   bool inline_number_methods(vmIntrinsics::ID id);
 288   bool inline_reference_get();
 289   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 290   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 291   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 292   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 293 };
 294 
 295 
 296 //---------------------------make_vm_intrinsic----------------------------
 297 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 298   vmIntrinsics::ID id = m->intrinsic_id();
 299   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 300 
 301   if (DisableIntrinsic[0] != '\0'
 302       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 303     // disabled by a user request on the command line:
 304     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 305     return NULL;
 306   }
 307 
 308   if (!m->is_loaded()) {
 309     // do not attempt to inline unloaded methods
 310     return NULL;
 311   }
 312 
 313   // Only a few intrinsics implement a virtual dispatch.
 314   // They are expensive calls which are also frequently overridden.
 315   if (is_virtual) {
 316     switch (id) {
 317     case vmIntrinsics::_hashCode:
 318     case vmIntrinsics::_clone:
 319       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 320       break;
 321     default:
 322       return NULL;
 323     }
 324   }
 325 
 326   // -XX:-InlineNatives disables nearly all intrinsics:
 327   if (!InlineNatives) {
 328     switch (id) {
 329     case vmIntrinsics::_indexOf:
 330     case vmIntrinsics::_compareTo:
 331     case vmIntrinsics::_equals:
 332     case vmIntrinsics::_equalsC:
 333     case vmIntrinsics::_getAndAddInt:
 334     case vmIntrinsics::_getAndAddLong:
 335     case vmIntrinsics::_getAndSetInt:
 336     case vmIntrinsics::_getAndSetLong:
 337     case vmIntrinsics::_getAndSetObject:
 338       break;  // InlineNatives does not control String.compareTo
 339     case vmIntrinsics::_Reference_get:
 340       break;  // InlineNatives does not control Reference.get
 341     default:
 342       return NULL;
 343     }
 344   }
 345 
 346   bool is_predicted = false;
 347 
 348   switch (id) {
 349   case vmIntrinsics::_compareTo:
 350     if (!SpecialStringCompareTo)  return NULL;
 351     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 352     break;
 353   case vmIntrinsics::_indexOf:
 354     if (!SpecialStringIndexOf)  return NULL;
 355     break;
 356   case vmIntrinsics::_equals:
 357     if (!SpecialStringEquals)  return NULL;
 358     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 359     break;
 360   case vmIntrinsics::_equalsC:
 361     if (!SpecialArraysEquals)  return NULL;
 362     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 363     break;
 364   case vmIntrinsics::_arraycopy:
 365     if (!InlineArrayCopy)  return NULL;
 366     break;
 367   case vmIntrinsics::_copyMemory:
 368     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 369     if (!InlineArrayCopy)  return NULL;
 370     break;
 371   case vmIntrinsics::_hashCode:
 372     if (!InlineObjectHash)  return NULL;
 373     break;
 374   case vmIntrinsics::_clone:
 375   case vmIntrinsics::_copyOf:
 376   case vmIntrinsics::_copyOfRange:
 377     if (!InlineObjectCopy)  return NULL;
 378     // These also use the arraycopy intrinsic mechanism:
 379     if (!InlineArrayCopy)  return NULL;
 380     break;
 381   case vmIntrinsics::_checkIndex:
 382     // We do not intrinsify this.  The optimizer does fine with it.
 383     return NULL;
 384 
 385   case vmIntrinsics::_getCallerClass:
 386     if (!UseNewReflection)  return NULL;
 387     if (!InlineReflectionGetCallerClass)  return NULL;
 388     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 389     break;
 390 
 391   case vmIntrinsics::_bitCount_i:
 392     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 393     break;
 394 
 395   case vmIntrinsics::_bitCount_l:
 396     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 397     break;
 398 
 399   case vmIntrinsics::_numberOfLeadingZeros_i:
 400     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 401     break;
 402 
 403   case vmIntrinsics::_numberOfLeadingZeros_l:
 404     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 405     break;
 406 
 407   case vmIntrinsics::_numberOfTrailingZeros_i:
 408     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 409     break;
 410 
 411   case vmIntrinsics::_numberOfTrailingZeros_l:
 412     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_reverseBytes_c:
 416     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 417     break;
 418   case vmIntrinsics::_reverseBytes_s:
 419     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 420     break;
 421   case vmIntrinsics::_reverseBytes_i:
 422     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 423     break;
 424   case vmIntrinsics::_reverseBytes_l:
 425     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_Reference_get:
 429     // Use the intrinsic version of Reference.get() so that the value in
 430     // the referent field can be registered by the G1 pre-barrier code.
 431     // Also add memory barrier to prevent commoning reads from this field
 432     // across safepoint since GC can change it value.
 433     break;
 434 
 435   case vmIntrinsics::_compareAndSwapObject:
 436 #ifdef _LP64
 437     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 438 #endif
 439     break;
 440 
 441   case vmIntrinsics::_compareAndSwapLong:
 442     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 443     break;
 444 
 445   case vmIntrinsics::_getAndAddInt:
 446     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 447     break;
 448 
 449   case vmIntrinsics::_getAndAddLong:
 450     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 451     break;
 452 
 453   case vmIntrinsics::_getAndSetInt:
 454     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_getAndSetLong:
 458     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_getAndSetObject:
 462 #ifdef _LP64
 463     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 464     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 465     break;
 466 #else
 467     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 468     break;
 469 #endif
 470 
 471   case vmIntrinsics::_aescrypt_encryptBlock:
 472   case vmIntrinsics::_aescrypt_decryptBlock:
 473     if (!UseAESIntrinsics) return NULL;
 474     break;
 475 
 476   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 477   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 478     if (!UseAESIntrinsics) return NULL;
 479     // these two require the predicated logic
 480     is_predicted = true;
 481     break;
 482 
 483  default:
 484     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 485     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 486     break;
 487   }
 488 
 489   // -XX:-InlineClassNatives disables natives from the Class class.
 490   // The flag applies to all reflective calls, notably Array.newArray
 491   // (visible to Java programmers as Array.newInstance).
 492   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 493       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 494     if (!InlineClassNatives)  return NULL;
 495   }
 496 
 497   // -XX:-InlineThreadNatives disables natives from the Thread class.
 498   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 499     if (!InlineThreadNatives)  return NULL;
 500   }
 501 
 502   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 503   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 504       m->holder()->name() == ciSymbol::java_lang_Float() ||
 505       m->holder()->name() == ciSymbol::java_lang_Double()) {
 506     if (!InlineMathNatives)  return NULL;
 507   }
 508 
 509   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 510   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 511     if (!InlineUnsafeOps)  return NULL;
 512   }
 513 
 514   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
 515 }
 516 
 517 //----------------------register_library_intrinsics-----------------------
 518 // Initialize this file's data structures, for each Compile instance.
 519 void Compile::register_library_intrinsics() {
 520   // Nothing to do here.
 521 }
 522 
 523 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 524   LibraryCallKit kit(jvms, this);
 525   Compile* C = kit.C;
 526   int nodes = C->unique();
 527 #ifndef PRODUCT
 528   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 529     char buf[1000];
 530     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 531     tty->print_cr("Intrinsic %s", str);
 532   }
 533 #endif
 534   ciMethod* callee = kit.callee();
 535   const int bci    = kit.bci();
 536 
 537   // Try to inline the intrinsic.
 538   if (kit.try_to_inline()) {
 539     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 540       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 541     }
 542     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 543     if (C->log()) {
 544       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 545                      vmIntrinsics::name_at(intrinsic_id()),
 546                      (is_virtual() ? " virtual='1'" : ""),
 547                      C->unique() - nodes);
 548     }
 549     // Push the result from the inlined method onto the stack.
 550     kit.push_result();
 551     return kit.transfer_exceptions_into_jvms();
 552   }
 553 
 554   // The intrinsic bailed out
 555   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 556     if (jvms->has_method()) {
 557       // Not a root compile.
 558       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 559       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 560     } else {
 561       // Root compile
 562       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 563                vmIntrinsics::name_at(intrinsic_id()),
 564                (is_virtual() ? " (virtual)" : ""), bci);
 565     }
 566   }
 567   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 568   return NULL;
 569 }
 570 
 571 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 572   LibraryCallKit kit(jvms, this);
 573   Compile* C = kit.C;
 574   int nodes = C->unique();
 575 #ifndef PRODUCT
 576   assert(is_predicted(), "sanity");
 577   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 578     char buf[1000];
 579     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 580     tty->print_cr("Predicate for intrinsic %s", str);
 581   }
 582 #endif
 583   ciMethod* callee = kit.callee();
 584   const int bci    = kit.bci();
 585 
 586   Node* slow_ctl = kit.try_to_predicate();
 587   if (!kit.failing()) {
 588     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 589       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 590     }
 591     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 592     if (C->log()) {
 593       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 594                      vmIntrinsics::name_at(intrinsic_id()),
 595                      (is_virtual() ? " virtual='1'" : ""),
 596                      C->unique() - nodes);
 597     }
 598     return slow_ctl; // Could be NULL if the check folds.
 599   }
 600 
 601   // The intrinsic bailed out
 602   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 603     if (jvms->has_method()) {
 604       // Not a root compile.
 605       const char* msg = "failed to generate predicate for intrinsic";
 606       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 607     } else {
 608       // Root compile
 609       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 610                                         vmIntrinsics::name_at(intrinsic_id()),
 611                                         (is_virtual() ? " (virtual)" : ""), bci);
 612     }
 613   }
 614   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 615   return NULL;
 616 }
 617 
 618 bool LibraryCallKit::try_to_inline() {
 619   // Handle symbolic names for otherwise undistinguished boolean switches:
 620   const bool is_store       = true;
 621   const bool is_native_ptr  = true;
 622   const bool is_static      = true;
 623   const bool is_volatile    = true;
 624 
 625   if (!jvms()->has_method()) {
 626     // Root JVMState has a null method.
 627     assert(map()->memory()->Opcode() == Op_Parm, "");
 628     // Insert the memory aliasing node
 629     set_all_memory(reset_memory());
 630   }
 631   assert(merged_memory(), "");
 632 
 633 
 634   switch (intrinsic_id()) {
 635   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 636   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 637   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 638 
 639   case vmIntrinsics::_dsin:
 640   case vmIntrinsics::_dcos:
 641   case vmIntrinsics::_dtan:
 642   case vmIntrinsics::_dabs:
 643   case vmIntrinsics::_datan2:
 644   case vmIntrinsics::_dsqrt:
 645   case vmIntrinsics::_dexp:
 646   case vmIntrinsics::_dlog:
 647   case vmIntrinsics::_dlog10:
 648   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 649 
 650   case vmIntrinsics::_min:
 651   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 652 
 653   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 654 
 655   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 656   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 657   case vmIntrinsics::_equals:                   return inline_string_equals();
 658 
 659   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 660   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 661   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 662   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 663   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 664   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 665   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 666   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 667   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 668 
 669   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 670   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 671   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 672   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 673   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 674   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 675   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 676   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 677   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 678 
 679   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 680   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 681   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 682   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 683   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 684   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 685   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 686   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 687 
 688   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 689   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 690   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 691   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 692   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 693   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 694   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 695   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 696 
 697   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 698   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 699   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 700   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 701   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 702   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 703   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 704   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 705   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 706 
 707   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 708   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 709   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 710   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 711   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 712   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 713   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 714   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 715   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 716 
 717   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 718   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 719   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 720   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 721 
 722   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 723   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 724   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 725 
 726   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 727   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 728   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 729 
 730   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 731   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 732   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 733   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 734   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 735 
 736   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 737   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 738 
 739 #ifdef TRACE_HAVE_INTRINSICS
 740   case vmIntrinsics::_classID:                  return inline_native_classID();
 741   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 742   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 743 #endif
 744   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 745   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 746   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 747   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 748   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 749   case vmIntrinsics::_getLength:                return inline_native_getLength();
 750   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 751   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 752   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 753   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 754 
 755   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 756 
 757   case vmIntrinsics::_isInstance:
 758   case vmIntrinsics::_getModifiers:
 759   case vmIntrinsics::_isInterface:
 760   case vmIntrinsics::_isArray:
 761   case vmIntrinsics::_isPrimitive:
 762   case vmIntrinsics::_getSuperclass:
 763   case vmIntrinsics::_getComponentType:
 764   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 765 
 766   case vmIntrinsics::_floatToRawIntBits:
 767   case vmIntrinsics::_floatToIntBits:
 768   case vmIntrinsics::_intBitsToFloat:
 769   case vmIntrinsics::_doubleToRawLongBits:
 770   case vmIntrinsics::_doubleToLongBits:
 771   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 772 
 773   case vmIntrinsics::_numberOfLeadingZeros_i:
 774   case vmIntrinsics::_numberOfLeadingZeros_l:
 775   case vmIntrinsics::_numberOfTrailingZeros_i:
 776   case vmIntrinsics::_numberOfTrailingZeros_l:
 777   case vmIntrinsics::_bitCount_i:
 778   case vmIntrinsics::_bitCount_l:
 779   case vmIntrinsics::_reverseBytes_i:
 780   case vmIntrinsics::_reverseBytes_l:
 781   case vmIntrinsics::_reverseBytes_s:
 782   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 783 
 784   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 785 
 786   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 787 
 788   case vmIntrinsics::_aescrypt_encryptBlock:
 789   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 790 
 791   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 792   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 793     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 794 
 795   default:
 796     // If you get here, it may be that someone has added a new intrinsic
 797     // to the list in vmSymbols.hpp without implementing it here.
 798 #ifndef PRODUCT
 799     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 800       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 801                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 802     }
 803 #endif
 804     return false;
 805   }
 806 }
 807 
 808 Node* LibraryCallKit::try_to_predicate() {
 809   if (!jvms()->has_method()) {
 810     // Root JVMState has a null method.
 811     assert(map()->memory()->Opcode() == Op_Parm, "");
 812     // Insert the memory aliasing node
 813     set_all_memory(reset_memory());
 814   }
 815   assert(merged_memory(), "");
 816 
 817   switch (intrinsic_id()) {
 818   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 819     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 820   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 821     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 822 
 823   default:
 824     // If you get here, it may be that someone has added a new intrinsic
 825     // to the list in vmSymbols.hpp without implementing it here.
 826 #ifndef PRODUCT
 827     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 828       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 829                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 830     }
 831 #endif
 832     Node* slow_ctl = control();
 833     set_control(top()); // No fast path instrinsic
 834     return slow_ctl;
 835   }
 836 }
 837 
 838 //------------------------------set_result-------------------------------
 839 // Helper function for finishing intrinsics.
 840 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 841   record_for_igvn(region);
 842   set_control(_gvn.transform(region));
 843   set_result( _gvn.transform(value));
 844   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 845 }
 846 
 847 //------------------------------generate_guard---------------------------
 848 // Helper function for generating guarded fast-slow graph structures.
 849 // The given 'test', if true, guards a slow path.  If the test fails
 850 // then a fast path can be taken.  (We generally hope it fails.)
 851 // In all cases, GraphKit::control() is updated to the fast path.
 852 // The returned value represents the control for the slow path.
 853 // The return value is never 'top'; it is either a valid control
 854 // or NULL if it is obvious that the slow path can never be taken.
 855 // Also, if region and the slow control are not NULL, the slow edge
 856 // is appended to the region.
 857 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 858   if (stopped()) {
 859     // Already short circuited.
 860     return NULL;
 861   }
 862 
 863   // Build an if node and its projections.
 864   // If test is true we take the slow path, which we assume is uncommon.
 865   if (_gvn.type(test) == TypeInt::ZERO) {
 866     // The slow branch is never taken.  No need to build this guard.
 867     return NULL;
 868   }
 869 
 870   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 871 
 872   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
 873   if (if_slow == top()) {
 874     // The slow branch is never taken.  No need to build this guard.
 875     return NULL;
 876   }
 877 
 878   if (region != NULL)
 879     region->add_req(if_slow);
 880 
 881   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
 882   set_control(if_fast);
 883 
 884   return if_slow;
 885 }
 886 
 887 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 888   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 889 }
 890 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 891   return generate_guard(test, region, PROB_FAIR);
 892 }
 893 
 894 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 895                                                      Node* *pos_index) {
 896   if (stopped())
 897     return NULL;                // already stopped
 898   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 899     return NULL;                // index is already adequately typed
 900   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 901   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 902   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 903   if (is_neg != NULL && pos_index != NULL) {
 904     // Emulate effect of Parse::adjust_map_after_if.
 905     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 906     ccast->set_req(0, control());
 907     (*pos_index) = _gvn.transform(ccast);
 908   }
 909   return is_neg;
 910 }
 911 
 912 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 913                                                         Node* *pos_index) {
 914   if (stopped())
 915     return NULL;                // already stopped
 916   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 917     return NULL;                // index is already adequately typed
 918   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 919   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 920   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
 921   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 922   if (is_notp != NULL && pos_index != NULL) {
 923     // Emulate effect of Parse::adjust_map_after_if.
 924     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 925     ccast->set_req(0, control());
 926     (*pos_index) = _gvn.transform(ccast);
 927   }
 928   return is_notp;
 929 }
 930 
 931 // Make sure that 'position' is a valid limit index, in [0..length].
 932 // There are two equivalent plans for checking this:
 933 //   A. (offset + copyLength)  unsigned<=  arrayLength
 934 //   B. offset  <=  (arrayLength - copyLength)
 935 // We require that all of the values above, except for the sum and
 936 // difference, are already known to be non-negative.
 937 // Plan A is robust in the face of overflow, if offset and copyLength
 938 // are both hugely positive.
 939 //
 940 // Plan B is less direct and intuitive, but it does not overflow at
 941 // all, since the difference of two non-negatives is always
 942 // representable.  Whenever Java methods must perform the equivalent
 943 // check they generally use Plan B instead of Plan A.
 944 // For the moment we use Plan A.
 945 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 946                                                   Node* subseq_length,
 947                                                   Node* array_length,
 948                                                   RegionNode* region) {
 949   if (stopped())
 950     return NULL;                // already stopped
 951   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 952   if (zero_offset && subseq_length->eqv_uncast(array_length))
 953     return NULL;                // common case of whole-array copy
 954   Node* last = subseq_length;
 955   if (!zero_offset)             // last += offset
 956     last = _gvn.transform( new (C) AddINode(last, offset));
 957   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
 958   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 959   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 960   return is_over;
 961 }
 962 
 963 
 964 //--------------------------generate_current_thread--------------------
 965 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 966   ciKlass*    thread_klass = env()->Thread_klass();
 967   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 968   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
 969   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 970   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 971   tls_output = thread;
 972   return threadObj;
 973 }
 974 
 975 
 976 //------------------------------make_string_method_node------------------------
 977 // Helper method for String intrinsic functions. This version is called
 978 // with str1 and str2 pointing to String object nodes.
 979 //
 980 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
 981   Node* no_ctrl = NULL;
 982 
 983   // Get start addr of string
 984   Node* str1_value   = load_String_value(no_ctrl, str1);
 985   Node* str1_offset  = load_String_offset(no_ctrl, str1);
 986   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 987 
 988   // Get length of string 1
 989   Node* str1_len  = load_String_length(no_ctrl, str1);
 990 
 991   Node* str2_value   = load_String_value(no_ctrl, str2);
 992   Node* str2_offset  = load_String_offset(no_ctrl, str2);
 993   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 994 
 995   Node* str2_len = NULL;
 996   Node* result = NULL;
 997 
 998   switch (opcode) {
 999   case Op_StrIndexOf:
1000     // Get length of string 2
1001     str2_len = load_String_length(no_ctrl, str2);
1002 
1003     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1004                                  str1_start, str1_len, str2_start, str2_len);
1005     break;
1006   case Op_StrComp:
1007     // Get length of string 2
1008     str2_len = load_String_length(no_ctrl, str2);
1009 
1010     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1011                                  str1_start, str1_len, str2_start, str2_len);
1012     break;
1013   case Op_StrEquals:
1014     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1015                                str1_start, str2_start, str1_len);
1016     break;
1017   default:
1018     ShouldNotReachHere();
1019     return NULL;
1020   }
1021 
1022   // All these intrinsics have checks.
1023   C->set_has_split_ifs(true); // Has chance for split-if optimization
1024 
1025   return _gvn.transform(result);
1026 }
1027 
1028 // Helper method for String intrinsic functions. This version is called
1029 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1030 // to Int nodes containing the lenghts of str1 and str2.
1031 //
1032 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1033   Node* result = NULL;
1034   switch (opcode) {
1035   case Op_StrIndexOf:
1036     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1037                                  str1_start, cnt1, str2_start, cnt2);
1038     break;
1039   case Op_StrComp:
1040     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1041                                  str1_start, cnt1, str2_start, cnt2);
1042     break;
1043   case Op_StrEquals:
1044     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1045                                  str1_start, str2_start, cnt1);
1046     break;
1047   default:
1048     ShouldNotReachHere();
1049     return NULL;
1050   }
1051 
1052   // All these intrinsics have checks.
1053   C->set_has_split_ifs(true); // Has chance for split-if optimization
1054 
1055   return _gvn.transform(result);
1056 }
1057 
1058 //------------------------------inline_string_compareTo------------------------
1059 // public int java.lang.String.compareTo(String anotherString);
1060 bool LibraryCallKit::inline_string_compareTo() {
1061   Node* receiver = null_check(argument(0));
1062   Node* arg      = null_check(argument(1));
1063   if (stopped()) {
1064     return true;
1065   }
1066   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1067   return true;
1068 }
1069 
1070 //------------------------------inline_string_equals------------------------
1071 bool LibraryCallKit::inline_string_equals() {
1072   Node* receiver = null_check_receiver();
1073   // NOTE: Do not null check argument for String.equals() because spec
1074   // allows to specify NULL as argument.
1075   Node* argument = this->argument(1);
1076   if (stopped()) {
1077     return true;
1078   }
1079 
1080   // paths (plus control) merge
1081   RegionNode* region = new (C) RegionNode(5);
1082   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1083 
1084   // does source == target string?
1085   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1086   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1087 
1088   Node* if_eq = generate_slow_guard(bol, NULL);
1089   if (if_eq != NULL) {
1090     // receiver == argument
1091     phi->init_req(2, intcon(1));
1092     region->init_req(2, if_eq);
1093   }
1094 
1095   // get String klass for instanceOf
1096   ciInstanceKlass* klass = env()->String_klass();
1097 
1098   if (!stopped()) {
1099     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1100     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1101     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1102 
1103     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1104     //instanceOf == true, fallthrough
1105 
1106     if (inst_false != NULL) {
1107       phi->init_req(3, intcon(0));
1108       region->init_req(3, inst_false);
1109     }
1110   }
1111 
1112   if (!stopped()) {
1113     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1114 
1115     // Properly cast the argument to String
1116     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1117     // This path is taken only when argument's type is String:NotNull.
1118     argument = cast_not_null(argument, false);
1119 
1120     Node* no_ctrl = NULL;
1121 
1122     // Get start addr of receiver
1123     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1124     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1125     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1126 
1127     // Get length of receiver
1128     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1129 
1130     // Get start addr of argument
1131     Node* argument_val    = load_String_value(no_ctrl, argument);
1132     Node* argument_offset = load_String_offset(no_ctrl, argument);
1133     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1134 
1135     // Get length of argument
1136     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1137 
1138     // Check for receiver count != argument count
1139     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
1140     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
1141     Node* if_ne = generate_slow_guard(bol, NULL);
1142     if (if_ne != NULL) {
1143       phi->init_req(4, intcon(0));
1144       region->init_req(4, if_ne);
1145     }
1146 
1147     // Check for count == 0 is done by assembler code for StrEquals.
1148 
1149     if (!stopped()) {
1150       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1151       phi->init_req(1, equals);
1152       region->init_req(1, control());
1153     }
1154   }
1155 
1156   // post merge
1157   set_control(_gvn.transform(region));
1158   record_for_igvn(region);
1159 
1160   set_result(_gvn.transform(phi));
1161   return true;
1162 }
1163 
1164 //------------------------------inline_array_equals----------------------------
1165 bool LibraryCallKit::inline_array_equals() {
1166   Node* arg1 = argument(0);
1167   Node* arg2 = argument(1);
1168   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1169   return true;
1170 }
1171 
1172 // Java version of String.indexOf(constant string)
1173 // class StringDecl {
1174 //   StringDecl(char[] ca) {
1175 //     offset = 0;
1176 //     count = ca.length;
1177 //     value = ca;
1178 //   }
1179 //   int offset;
1180 //   int count;
1181 //   char[] value;
1182 // }
1183 //
1184 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1185 //                             int targetOffset, int cache_i, int md2) {
1186 //   int cache = cache_i;
1187 //   int sourceOffset = string_object.offset;
1188 //   int sourceCount = string_object.count;
1189 //   int targetCount = target_object.length;
1190 //
1191 //   int targetCountLess1 = targetCount - 1;
1192 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1193 //
1194 //   char[] source = string_object.value;
1195 //   char[] target = target_object;
1196 //   int lastChar = target[targetCountLess1];
1197 //
1198 //  outer_loop:
1199 //   for (int i = sourceOffset; i < sourceEnd; ) {
1200 //     int src = source[i + targetCountLess1];
1201 //     if (src == lastChar) {
1202 //       // With random strings and a 4-character alphabet,
1203 //       // reverse matching at this point sets up 0.8% fewer
1204 //       // frames, but (paradoxically) makes 0.3% more probes.
1205 //       // Since those probes are nearer the lastChar probe,
1206 //       // there is may be a net D$ win with reverse matching.
1207 //       // But, reversing loop inhibits unroll of inner loop
1208 //       // for unknown reason.  So, does running outer loop from
1209 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1210 //       for (int j = 0; j < targetCountLess1; j++) {
1211 //         if (target[targetOffset + j] != source[i+j]) {
1212 //           if ((cache & (1 << source[i+j])) == 0) {
1213 //             if (md2 < j+1) {
1214 //               i += j+1;
1215 //               continue outer_loop;
1216 //             }
1217 //           }
1218 //           i += md2;
1219 //           continue outer_loop;
1220 //         }
1221 //       }
1222 //       return i - sourceOffset;
1223 //     }
1224 //     if ((cache & (1 << src)) == 0) {
1225 //       i += targetCountLess1;
1226 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1227 //     i++;
1228 //   }
1229 //   return -1;
1230 // }
1231 
1232 //------------------------------string_indexOf------------------------
1233 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1234                                      jint cache_i, jint md2_i) {
1235 
1236   Node* no_ctrl  = NULL;
1237   float likely   = PROB_LIKELY(0.9);
1238   float unlikely = PROB_UNLIKELY(0.9);
1239 
1240   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1241 
1242   Node* source        = load_String_value(no_ctrl, string_object);
1243   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1244   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1245 
1246   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1247   jint target_length = target_array->length();
1248   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1249   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1250 
1251   IdealKit kit(this, false, true);
1252 #define __ kit.
1253   Node* zero             = __ ConI(0);
1254   Node* one              = __ ConI(1);
1255   Node* cache            = __ ConI(cache_i);
1256   Node* md2              = __ ConI(md2_i);
1257   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1258   Node* targetCount      = __ ConI(target_length);
1259   Node* targetCountLess1 = __ ConI(target_length - 1);
1260   Node* targetOffset     = __ ConI(targetOffset_i);
1261   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1262 
1263   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1264   Node* outer_loop = __ make_label(2 /* goto */);
1265   Node* return_    = __ make_label(1);
1266 
1267   __ set(rtn,__ ConI(-1));
1268   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1269        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1270        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1271        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1272        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1273          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1274               Node* tpj = __ AddI(targetOffset, __ value(j));
1275               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1276               Node* ipj  = __ AddI(__ value(i), __ value(j));
1277               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1278               __ if_then(targ, BoolTest::ne, src2); {
1279                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1280                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1281                     __ increment(i, __ AddI(__ value(j), one));
1282                     __ goto_(outer_loop);
1283                   } __ end_if(); __ dead(j);
1284                 }__ end_if(); __ dead(j);
1285                 __ increment(i, md2);
1286                 __ goto_(outer_loop);
1287               }__ end_if();
1288               __ increment(j, one);
1289          }__ end_loop(); __ dead(j);
1290          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1291          __ goto_(return_);
1292        }__ end_if();
1293        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1294          __ increment(i, targetCountLess1);
1295        }__ end_if();
1296        __ increment(i, one);
1297        __ bind(outer_loop);
1298   }__ end_loop(); __ dead(i);
1299   __ bind(return_);
1300 
1301   // Final sync IdealKit and GraphKit.
1302   final_sync(kit);
1303   Node* result = __ value(rtn);
1304 #undef __
1305   C->set_has_loops(true);
1306   return result;
1307 }
1308 
1309 //------------------------------inline_string_indexOf------------------------
1310 bool LibraryCallKit::inline_string_indexOf() {
1311   Node* receiver = argument(0);
1312   Node* arg      = argument(1);
1313 
1314   Node* result;
1315   // Disable the use of pcmpestri until it can be guaranteed that
1316   // the load doesn't cross into the uncommited space.
1317   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1318       UseSSE42Intrinsics) {
1319     // Generate SSE4.2 version of indexOf
1320     // We currently only have match rules that use SSE4.2
1321 
1322     receiver = null_check(receiver);
1323     arg      = null_check(arg);
1324     if (stopped()) {
1325       return true;
1326     }
1327 
1328     ciInstanceKlass* str_klass = env()->String_klass();
1329     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1330 
1331     // Make the merge point
1332     RegionNode* result_rgn = new (C) RegionNode(4);
1333     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1334     Node* no_ctrl  = NULL;
1335 
1336     // Get start addr of source string
1337     Node* source = load_String_value(no_ctrl, receiver);
1338     Node* source_offset = load_String_offset(no_ctrl, receiver);
1339     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1340 
1341     // Get length of source string
1342     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1343 
1344     // Get start addr of substring
1345     Node* substr = load_String_value(no_ctrl, arg);
1346     Node* substr_offset = load_String_offset(no_ctrl, arg);
1347     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1348 
1349     // Get length of source string
1350     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1351 
1352     // Check for substr count > string count
1353     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
1354     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
1355     Node* if_gt = generate_slow_guard(bol, NULL);
1356     if (if_gt != NULL) {
1357       result_phi->init_req(2, intcon(-1));
1358       result_rgn->init_req(2, if_gt);
1359     }
1360 
1361     if (!stopped()) {
1362       // Check for substr count == 0
1363       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
1364       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
1365       Node* if_zero = generate_slow_guard(bol, NULL);
1366       if (if_zero != NULL) {
1367         result_phi->init_req(3, intcon(0));
1368         result_rgn->init_req(3, if_zero);
1369       }
1370     }
1371 
1372     if (!stopped()) {
1373       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1374       result_phi->init_req(1, result);
1375       result_rgn->init_req(1, control());
1376     }
1377     set_control(_gvn.transform(result_rgn));
1378     record_for_igvn(result_rgn);
1379     result = _gvn.transform(result_phi);
1380 
1381   } else { // Use LibraryCallKit::string_indexOf
1382     // don't intrinsify if argument isn't a constant string.
1383     if (!arg->is_Con()) {
1384      return false;
1385     }
1386     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1387     if (str_type == NULL) {
1388       return false;
1389     }
1390     ciInstanceKlass* klass = env()->String_klass();
1391     ciObject* str_const = str_type->const_oop();
1392     if (str_const == NULL || str_const->klass() != klass) {
1393       return false;
1394     }
1395     ciInstance* str = str_const->as_instance();
1396     assert(str != NULL, "must be instance");
1397 
1398     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1399     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1400 
1401     int o;
1402     int c;
1403     if (java_lang_String::has_offset_field()) {
1404       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1405       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1406     } else {
1407       o = 0;
1408       c = pat->length();
1409     }
1410 
1411     // constant strings have no offset and count == length which
1412     // simplifies the resulting code somewhat so lets optimize for that.
1413     if (o != 0 || c != pat->length()) {
1414      return false;
1415     }
1416 
1417     receiver = null_check(receiver, T_OBJECT);
1418     // NOTE: No null check on the argument is needed since it's a constant String oop.
1419     if (stopped()) {
1420       return true;
1421     }
1422 
1423     // The null string as a pattern always returns 0 (match at beginning of string)
1424     if (c == 0) {
1425       set_result(intcon(0));
1426       return true;
1427     }
1428 
1429     // Generate default indexOf
1430     jchar lastChar = pat->char_at(o + (c - 1));
1431     int cache = 0;
1432     int i;
1433     for (i = 0; i < c - 1; i++) {
1434       assert(i < pat->length(), "out of range");
1435       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1436     }
1437 
1438     int md2 = c;
1439     for (i = 0; i < c - 1; i++) {
1440       assert(i < pat->length(), "out of range");
1441       if (pat->char_at(o + i) == lastChar) {
1442         md2 = (c - 1) - i;
1443       }
1444     }
1445 
1446     result = string_indexOf(receiver, pat, o, cache, md2);
1447   }
1448   set_result(result);
1449   return true;
1450 }
1451 
1452 //--------------------------round_double_node--------------------------------
1453 // Round a double node if necessary.
1454 Node* LibraryCallKit::round_double_node(Node* n) {
1455   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1456     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1457   return n;
1458 }
1459 
1460 //------------------------------inline_math-----------------------------------
1461 // public static double Math.abs(double)
1462 // public static double Math.sqrt(double)
1463 // public static double Math.log(double)
1464 // public static double Math.log10(double)
1465 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1466   Node* arg = round_double_node(argument(0));
1467   Node* n;
1468   switch (id) {
1469   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1470   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1471   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1472   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1473   default:  fatal_unexpected_iid(id);  break;
1474   }
1475   set_result(_gvn.transform(n));
1476   return true;
1477 }
1478 
1479 //------------------------------inline_trig----------------------------------
1480 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1481 // argument reduction which will turn into a fast/slow diamond.
1482 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1483   Node* arg = round_double_node(argument(0));
1484   Node* n = NULL;
1485 
1486   switch (id) {
1487   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1488   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1489   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1490   default:  fatal_unexpected_iid(id);  break;
1491   }
1492   n = _gvn.transform(n);
1493 
1494   // Rounding required?  Check for argument reduction!
1495   if (Matcher::strict_fp_requires_explicit_rounding) {
1496     static const double     pi_4 =  0.7853981633974483;
1497     static const double neg_pi_4 = -0.7853981633974483;
1498     // pi/2 in 80-bit extended precision
1499     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1500     // -pi/2 in 80-bit extended precision
1501     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1502     // Cutoff value for using this argument reduction technique
1503     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1504     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1505 
1506     // Pseudocode for sin:
1507     // if (x <= Math.PI / 4.0) {
1508     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1509     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1510     // } else {
1511     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1512     // }
1513     // return StrictMath.sin(x);
1514 
1515     // Pseudocode for cos:
1516     // if (x <= Math.PI / 4.0) {
1517     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1518     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1519     // } else {
1520     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1521     // }
1522     // return StrictMath.cos(x);
1523 
1524     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1525     // requires a special machine instruction to load it.  Instead we'll try
1526     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1527     // probably do the math inside the SIN encoding.
1528 
1529     // Make the merge point
1530     RegionNode* r = new (C) RegionNode(3);
1531     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1532 
1533     // Flatten arg so we need only 1 test
1534     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1535     // Node for PI/4 constant
1536     Node *pi4 = makecon(TypeD::make(pi_4));
1537     // Check PI/4 : abs(arg)
1538     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1539     // Check: If PI/4 < abs(arg) then go slow
1540     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
1541     // Branch either way
1542     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1543     set_control(opt_iff(r,iff));
1544 
1545     // Set fast path result
1546     phi->init_req(2, n);
1547 
1548     // Slow path - non-blocking leaf call
1549     Node* call = NULL;
1550     switch (id) {
1551     case vmIntrinsics::_dsin:
1552       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1553                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1554                                "Sin", NULL, arg, top());
1555       break;
1556     case vmIntrinsics::_dcos:
1557       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1558                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1559                                "Cos", NULL, arg, top());
1560       break;
1561     case vmIntrinsics::_dtan:
1562       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1563                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1564                                "Tan", NULL, arg, top());
1565       break;
1566     }
1567     assert(control()->in(0) == call, "");
1568     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1569     r->init_req(1, control());
1570     phi->init_req(1, slow_result);
1571 
1572     // Post-merge
1573     set_control(_gvn.transform(r));
1574     record_for_igvn(r);
1575     n = _gvn.transform(phi);
1576 
1577     C->set_has_split_ifs(true); // Has chance for split-if optimization
1578   }
1579   set_result(n);
1580   return true;
1581 }
1582 
1583 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1584   //-------------------
1585   //result=(result.isNaN())? funcAddr():result;
1586   // Check: If isNaN() by checking result!=result? then either trap
1587   // or go to runtime
1588   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1589   // Build the boolean node
1590   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1591 
1592   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1593     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1594       // The pow or exp intrinsic returned a NaN, which requires a call
1595       // to the runtime.  Recompile with the runtime call.
1596       uncommon_trap(Deoptimization::Reason_intrinsic,
1597                     Deoptimization::Action_make_not_entrant);
1598     }
1599     set_result(result);
1600   } else {
1601     // If this inlining ever returned NaN in the past, we compile a call
1602     // to the runtime to properly handle corner cases
1603 
1604     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1605     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
1606     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
1607 
1608     if (!if_slow->is_top()) {
1609       RegionNode* result_region = new (C) RegionNode(3);
1610       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1611 
1612       result_region->init_req(1, if_fast);
1613       result_val->init_req(1, result);
1614 
1615       set_control(if_slow);
1616 
1617       const TypePtr* no_memory_effects = NULL;
1618       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1619                                    no_memory_effects,
1620                                    x, top(), y, y ? top() : NULL);
1621       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1622 #ifdef ASSERT
1623       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1624       assert(value_top == top(), "second value must be top");
1625 #endif
1626 
1627       result_region->init_req(2, control());
1628       result_val->init_req(2, value);
1629       set_result(result_region, result_val);
1630     } else {
1631       set_result(result);
1632     }
1633   }
1634 }
1635 
1636 //------------------------------inline_exp-------------------------------------
1637 // Inline exp instructions, if possible.  The Intel hardware only misses
1638 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1639 bool LibraryCallKit::inline_exp() {
1640   Node* arg = round_double_node(argument(0));
1641   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1642 
1643   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1644 
1645   C->set_has_split_ifs(true); // Has chance for split-if optimization
1646   return true;
1647 }
1648 
1649 //------------------------------inline_pow-------------------------------------
1650 // Inline power instructions, if possible.
1651 bool LibraryCallKit::inline_pow() {
1652   // Pseudocode for pow
1653   // if (x <= 0.0) {
1654   //   long longy = (long)y;
1655   //   if ((double)longy == y) { // if y is long
1656   //     if (y + 1 == y) longy = 0; // huge number: even
1657   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1658   //   } else {
1659   //     result = NaN;
1660   //   }
1661   // } else {
1662   //   result = DPow(x,y);
1663   // }
1664   // if (result != result)?  {
1665   //   result = uncommon_trap() or runtime_call();
1666   // }
1667   // return result;
1668 
1669   Node* x = round_double_node(argument(0));
1670   Node* y = round_double_node(argument(2));
1671 
1672   Node* result = NULL;
1673 
1674   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1675     // Short form: skip the fancy tests and just check for NaN result.
1676     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1677   } else {
1678     // If this inlining ever returned NaN in the past, include all
1679     // checks + call to the runtime.
1680 
1681     // Set the merge point for If node with condition of (x <= 0.0)
1682     // There are four possible paths to region node and phi node
1683     RegionNode *r = new (C) RegionNode(4);
1684     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1685 
1686     // Build the first if node: if (x <= 0.0)
1687     // Node for 0 constant
1688     Node *zeronode = makecon(TypeD::ZERO);
1689     // Check x:0
1690     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1691     // Check: If (x<=0) then go complex path
1692     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
1693     // Branch either way
1694     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1695     // Fast path taken; set region slot 3
1696     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
1697     r->init_req(3,fast_taken); // Capture fast-control
1698 
1699     // Fast path not-taken, i.e. slow path
1700     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
1701 
1702     // Set fast path result
1703     Node *fast_result = _gvn.transform( new (C) PowDNode(C, control(), x, y) );
1704     phi->init_req(3, fast_result);
1705 
1706     // Complex path
1707     // Build the second if node (if y is long)
1708     // Node for (long)y
1709     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
1710     // Node for (double)((long) y)
1711     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
1712     // Check (double)((long) y) : y
1713     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1714     // Check if (y isn't long) then go to slow path
1715 
1716     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
1717     // Branch either way
1718     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1719     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
1720 
1721     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
1722 
1723     // Calculate DPow(abs(x), y)*(1 & (long)y)
1724     // Node for constant 1
1725     Node *conone = longcon(1);
1726     // 1& (long)y
1727     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
1728 
1729     // A huge number is always even. Detect a huge number by checking
1730     // if y + 1 == y and set integer to be tested for parity to 0.
1731     // Required for corner case:
1732     // (long)9.223372036854776E18 = max_jlong
1733     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1734     // max_jlong is odd but 9.223372036854776E18 is even
1735     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
1736     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1737     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
1738     Node* correctedsign = NULL;
1739     if (ConditionalMoveLimit != 0) {
1740       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1741     } else {
1742       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1743       RegionNode *r = new (C) RegionNode(3);
1744       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1745       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
1746       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
1747       phi->init_req(1, signnode);
1748       phi->init_req(2, longcon(0));
1749       correctedsign = _gvn.transform(phi);
1750       ylong_path = _gvn.transform(r);
1751       record_for_igvn(r);
1752     }
1753 
1754     // zero node
1755     Node *conzero = longcon(0);
1756     // Check (1&(long)y)==0?
1757     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1758     // Check if (1&(long)y)!=0?, if so the result is negative
1759     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
1760     // abs(x)
1761     Node *absx=_gvn.transform( new (C) AbsDNode(x));
1762     // abs(x)^y
1763     Node *absxpowy = _gvn.transform( new (C) PowDNode(C, control(), absx, y) );
1764     // -abs(x)^y
1765     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1766     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1767     Node *signresult = NULL;
1768     if (ConditionalMoveLimit != 0) {
1769       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1770     } else {
1771       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1772       RegionNode *r = new (C) RegionNode(3);
1773       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1774       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
1775       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
1776       phi->init_req(1, absxpowy);
1777       phi->init_req(2, negabsxpowy);
1778       signresult = _gvn.transform(phi);
1779       ylong_path = _gvn.transform(r);
1780       record_for_igvn(r);
1781     }
1782     // Set complex path fast result
1783     r->init_req(2, ylong_path);
1784     phi->init_req(2, signresult);
1785 
1786     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1787     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1788     r->init_req(1,slow_path);
1789     phi->init_req(1,slow_result);
1790 
1791     // Post merge
1792     set_control(_gvn.transform(r));
1793     record_for_igvn(r);
1794     result = _gvn.transform(phi);
1795   }
1796 
1797   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1798 
1799   C->set_has_split_ifs(true); // Has chance for split-if optimization
1800   return true;
1801 }
1802 
1803 //------------------------------runtime_math-----------------------------
1804 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1805   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1806          "must be (DD)D or (D)D type");
1807 
1808   // Inputs
1809   Node* a = round_double_node(argument(0));
1810   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1811 
1812   const TypePtr* no_memory_effects = NULL;
1813   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1814                                  no_memory_effects,
1815                                  a, top(), b, b ? top() : NULL);
1816   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1817 #ifdef ASSERT
1818   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1819   assert(value_top == top(), "second value must be top");
1820 #endif
1821 
1822   set_result(value);
1823   return true;
1824 }
1825 
1826 //------------------------------inline_math_native-----------------------------
1827 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1828 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1829   switch (id) {
1830     // These intrinsics are not properly supported on all hardware
1831   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1832     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1833   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1834     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1835   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1836     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1837 
1838   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1839     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1840   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1841     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1842 
1843     // These intrinsics are supported on all hardware
1844   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1845   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1846 
1847   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1848     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1849   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1850     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1851 #undef FN_PTR
1852 
1853    // These intrinsics are not yet correctly implemented
1854   case vmIntrinsics::_datan2:
1855     return false;
1856 
1857   default:
1858     fatal_unexpected_iid(id);
1859     return false;
1860   }
1861 }
1862 
1863 static bool is_simple_name(Node* n) {
1864   return (n->req() == 1         // constant
1865           || (n->is_Type() && n->as_Type()->type()->singleton())
1866           || n->is_Proj()       // parameter or return value
1867           || n->is_Phi()        // local of some sort
1868           );
1869 }
1870 
1871 //----------------------------inline_min_max-----------------------------------
1872 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1873   set_result(generate_min_max(id, argument(0), argument(1)));
1874   return true;
1875 }
1876 
1877 Node*
1878 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1879   // These are the candidate return value:
1880   Node* xvalue = x0;
1881   Node* yvalue = y0;
1882 
1883   if (xvalue == yvalue) {
1884     return xvalue;
1885   }
1886 
1887   bool want_max = (id == vmIntrinsics::_max);
1888 
1889   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1890   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1891   if (txvalue == NULL || tyvalue == NULL)  return top();
1892   // This is not really necessary, but it is consistent with a
1893   // hypothetical MaxINode::Value method:
1894   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1895 
1896   // %%% This folding logic should (ideally) be in a different place.
1897   // Some should be inside IfNode, and there to be a more reliable
1898   // transformation of ?: style patterns into cmoves.  We also want
1899   // more powerful optimizations around cmove and min/max.
1900 
1901   // Try to find a dominating comparison of these guys.
1902   // It can simplify the index computation for Arrays.copyOf
1903   // and similar uses of System.arraycopy.
1904   // First, compute the normalized version of CmpI(x, y).
1905   int   cmp_op = Op_CmpI;
1906   Node* xkey = xvalue;
1907   Node* ykey = yvalue;
1908   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
1909   if (ideal_cmpxy->is_Cmp()) {
1910     // E.g., if we have CmpI(length - offset, count),
1911     // it might idealize to CmpI(length, count + offset)
1912     cmp_op = ideal_cmpxy->Opcode();
1913     xkey = ideal_cmpxy->in(1);
1914     ykey = ideal_cmpxy->in(2);
1915   }
1916 
1917   // Start by locating any relevant comparisons.
1918   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1919   Node* cmpxy = NULL;
1920   Node* cmpyx = NULL;
1921   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1922     Node* cmp = start_from->fast_out(k);
1923     if (cmp->outcnt() > 0 &&            // must have prior uses
1924         cmp->in(0) == NULL &&           // must be context-independent
1925         cmp->Opcode() == cmp_op) {      // right kind of compare
1926       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1927       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1928     }
1929   }
1930 
1931   const int NCMPS = 2;
1932   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1933   int cmpn;
1934   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1935     if (cmps[cmpn] != NULL)  break;     // find a result
1936   }
1937   if (cmpn < NCMPS) {
1938     // Look for a dominating test that tells us the min and max.
1939     int depth = 0;                // Limit search depth for speed
1940     Node* dom = control();
1941     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1942       if (++depth >= 100)  break;
1943       Node* ifproj = dom;
1944       if (!ifproj->is_Proj())  continue;
1945       Node* iff = ifproj->in(0);
1946       if (!iff->is_If())  continue;
1947       Node* bol = iff->in(1);
1948       if (!bol->is_Bool())  continue;
1949       Node* cmp = bol->in(1);
1950       if (cmp == NULL)  continue;
1951       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1952         if (cmps[cmpn] == cmp)  break;
1953       if (cmpn == NCMPS)  continue;
1954       BoolTest::mask btest = bol->as_Bool()->_test._test;
1955       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1956       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1957       // At this point, we know that 'x btest y' is true.
1958       switch (btest) {
1959       case BoolTest::eq:
1960         // They are proven equal, so we can collapse the min/max.
1961         // Either value is the answer.  Choose the simpler.
1962         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1963           return yvalue;
1964         return xvalue;
1965       case BoolTest::lt:          // x < y
1966       case BoolTest::le:          // x <= y
1967         return (want_max ? yvalue : xvalue);
1968       case BoolTest::gt:          // x > y
1969       case BoolTest::ge:          // x >= y
1970         return (want_max ? xvalue : yvalue);
1971       }
1972     }
1973   }
1974 
1975   // We failed to find a dominating test.
1976   // Let's pick a test that might GVN with prior tests.
1977   Node*          best_bol   = NULL;
1978   BoolTest::mask best_btest = BoolTest::illegal;
1979   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1980     Node* cmp = cmps[cmpn];
1981     if (cmp == NULL)  continue;
1982     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1983       Node* bol = cmp->fast_out(j);
1984       if (!bol->is_Bool())  continue;
1985       BoolTest::mask btest = bol->as_Bool()->_test._test;
1986       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1987       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1988       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1989         best_bol   = bol->as_Bool();
1990         best_btest = btest;
1991       }
1992     }
1993   }
1994 
1995   Node* answer_if_true  = NULL;
1996   Node* answer_if_false = NULL;
1997   switch (best_btest) {
1998   default:
1999     if (cmpxy == NULL)
2000       cmpxy = ideal_cmpxy;
2001     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
2002     // and fall through:
2003   case BoolTest::lt:          // x < y
2004   case BoolTest::le:          // x <= y
2005     answer_if_true  = (want_max ? yvalue : xvalue);
2006     answer_if_false = (want_max ? xvalue : yvalue);
2007     break;
2008   case BoolTest::gt:          // x > y
2009   case BoolTest::ge:          // x >= y
2010     answer_if_true  = (want_max ? xvalue : yvalue);
2011     answer_if_false = (want_max ? yvalue : xvalue);
2012     break;
2013   }
2014 
2015   jint hi, lo;
2016   if (want_max) {
2017     // We can sharpen the minimum.
2018     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2019     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2020   } else {
2021     // We can sharpen the maximum.
2022     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2023     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2024   }
2025 
2026   // Use a flow-free graph structure, to avoid creating excess control edges
2027   // which could hinder other optimizations.
2028   // Since Math.min/max is often used with arraycopy, we want
2029   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2030   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2031                                answer_if_false, answer_if_true,
2032                                TypeInt::make(lo, hi, widen));
2033 
2034   return _gvn.transform(cmov);
2035 
2036   /*
2037   // This is not as desirable as it may seem, since Min and Max
2038   // nodes do not have a full set of optimizations.
2039   // And they would interfere, anyway, with 'if' optimizations
2040   // and with CMoveI canonical forms.
2041   switch (id) {
2042   case vmIntrinsics::_min:
2043     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2044   case vmIntrinsics::_max:
2045     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2046   default:
2047     ShouldNotReachHere();
2048   }
2049   */
2050 }
2051 
2052 inline int
2053 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2054   const TypePtr* base_type = TypePtr::NULL_PTR;
2055   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2056   if (base_type == NULL) {
2057     // Unknown type.
2058     return Type::AnyPtr;
2059   } else if (base_type == TypePtr::NULL_PTR) {
2060     // Since this is a NULL+long form, we have to switch to a rawptr.
2061     base   = _gvn.transform( new (C) CastX2PNode(offset) );
2062     offset = MakeConX(0);
2063     return Type::RawPtr;
2064   } else if (base_type->base() == Type::RawPtr) {
2065     return Type::RawPtr;
2066   } else if (base_type->isa_oopptr()) {
2067     // Base is never null => always a heap address.
2068     if (base_type->ptr() == TypePtr::NotNull) {
2069       return Type::OopPtr;
2070     }
2071     // Offset is small => always a heap address.
2072     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2073     if (offset_type != NULL &&
2074         base_type->offset() == 0 &&     // (should always be?)
2075         offset_type->_lo >= 0 &&
2076         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2077       return Type::OopPtr;
2078     }
2079     // Otherwise, it might either be oop+off or NULL+addr.
2080     return Type::AnyPtr;
2081   } else {
2082     // No information:
2083     return Type::AnyPtr;
2084   }
2085 }
2086 
2087 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2088   int kind = classify_unsafe_addr(base, offset);
2089   if (kind == Type::RawPtr) {
2090     return basic_plus_adr(top(), base, offset);
2091   } else {
2092     return basic_plus_adr(base, offset);
2093   }
2094 }
2095 
2096 //--------------------------inline_number_methods-----------------------------
2097 // inline int     Integer.numberOfLeadingZeros(int)
2098 // inline int        Long.numberOfLeadingZeros(long)
2099 //
2100 // inline int     Integer.numberOfTrailingZeros(int)
2101 // inline int        Long.numberOfTrailingZeros(long)
2102 //
2103 // inline int     Integer.bitCount(int)
2104 // inline int        Long.bitCount(long)
2105 //
2106 // inline char  Character.reverseBytes(char)
2107 // inline short     Short.reverseBytes(short)
2108 // inline int     Integer.reverseBytes(int)
2109 // inline long       Long.reverseBytes(long)
2110 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2111   Node* arg = argument(0);
2112   Node* n;
2113   switch (id) {
2114   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2115   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2116   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2117   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2118   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2119   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2120   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2121   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2122   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2123   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2124   default:  fatal_unexpected_iid(id);  break;
2125   }
2126   set_result(_gvn.transform(n));
2127   return true;
2128 }
2129 
2130 //----------------------------inline_unsafe_access----------------------------
2131 
2132 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2133 
2134 // Helper that guards and inserts a pre-barrier.
2135 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2136                                         Node* pre_val, bool need_mem_bar) {
2137   // We could be accessing the referent field of a reference object. If so, when G1
2138   // is enabled, we need to log the value in the referent field in an SATB buffer.
2139   // This routine performs some compile time filters and generates suitable
2140   // runtime filters that guard the pre-barrier code.
2141   // Also add memory barrier for non volatile load from the referent field
2142   // to prevent commoning of loads across safepoint.
2143   if (!UseG1GC && !need_mem_bar)
2144     return;
2145 
2146   // Some compile time checks.
2147 
2148   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2149   const TypeX* otype = offset->find_intptr_t_type();
2150   if (otype != NULL && otype->is_con() &&
2151       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2152     // Constant offset but not the reference_offset so just return
2153     return;
2154   }
2155 
2156   // We only need to generate the runtime guards for instances.
2157   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2158   if (btype != NULL) {
2159     if (btype->isa_aryptr()) {
2160       // Array type so nothing to do
2161       return;
2162     }
2163 
2164     const TypeInstPtr* itype = btype->isa_instptr();
2165     if (itype != NULL) {
2166       // Can the klass of base_oop be statically determined to be
2167       // _not_ a sub-class of Reference and _not_ Object?
2168       ciKlass* klass = itype->klass();
2169       if ( klass->is_loaded() &&
2170           !klass->is_subtype_of(env()->Reference_klass()) &&
2171           !env()->Object_klass()->is_subtype_of(klass)) {
2172         return;
2173       }
2174     }
2175   }
2176 
2177   // The compile time filters did not reject base_oop/offset so
2178   // we need to generate the following runtime filters
2179   //
2180   // if (offset == java_lang_ref_Reference::_reference_offset) {
2181   //   if (instance_of(base, java.lang.ref.Reference)) {
2182   //     pre_barrier(_, pre_val, ...);
2183   //   }
2184   // }
2185 
2186   float likely   = PROB_LIKELY(  0.999);
2187   float unlikely = PROB_UNLIKELY(0.999);
2188 
2189   IdealKit ideal(this);
2190 #define __ ideal.
2191 
2192   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2193 
2194   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2195       // Update graphKit memory and control from IdealKit.
2196       sync_kit(ideal);
2197 
2198       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2199       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2200 
2201       // Update IdealKit memory and control from graphKit.
2202       __ sync_kit(this);
2203 
2204       Node* one = __ ConI(1);
2205       // is_instof == 0 if base_oop == NULL
2206       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2207 
2208         // Update graphKit from IdeakKit.
2209         sync_kit(ideal);
2210 
2211         // Use the pre-barrier to record the value in the referent field
2212         pre_barrier(false /* do_load */,
2213                     __ ctrl(),
2214                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2215                     pre_val /* pre_val */,
2216                     T_OBJECT);
2217         if (need_mem_bar) {
2218           // Add memory barrier to prevent commoning reads from this field
2219           // across safepoint since GC can change its value.
2220           insert_mem_bar(Op_MemBarCPUOrder);
2221         }
2222         // Update IdealKit from graphKit.
2223         __ sync_kit(this);
2224 
2225       } __ end_if(); // _ref_type != ref_none
2226   } __ end_if(); // offset == referent_offset
2227 
2228   // Final sync IdealKit and GraphKit.
2229   final_sync(ideal);
2230 #undef __
2231 }
2232 
2233 
2234 // Interpret Unsafe.fieldOffset cookies correctly:
2235 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2236 
2237 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2238   // Attempt to infer a sharper value type from the offset and base type.
2239   ciKlass* sharpened_klass = NULL;
2240 
2241   // See if it is an instance field, with an object type.
2242   if (alias_type->field() != NULL) {
2243     assert(!is_native_ptr, "native pointer op cannot use a java address");
2244     if (alias_type->field()->type()->is_klass()) {
2245       sharpened_klass = alias_type->field()->type()->as_klass();
2246     }
2247   }
2248 
2249   // See if it is a narrow oop array.
2250   if (adr_type->isa_aryptr()) {
2251     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2252       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2253       if (elem_type != NULL) {
2254         sharpened_klass = elem_type->klass();
2255       }
2256     }
2257   }
2258 
2259   // The sharpened class might be unloaded if there is no class loader
2260   // contraint in place.
2261   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2262     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2263 
2264 #ifndef PRODUCT
2265     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2266       tty->print("  from base type: ");  adr_type->dump();
2267       tty->print("  sharpened value: ");  tjp->dump();
2268     }
2269 #endif
2270     // Sharpen the value type.
2271     return tjp;
2272   }
2273   return NULL;
2274 }
2275 
2276 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2277   if (callee()->is_static())  return false;  // caller must have the capability!
2278 
2279 #ifndef PRODUCT
2280   {
2281     ResourceMark rm;
2282     // Check the signatures.
2283     ciSignature* sig = callee()->signature();
2284 #ifdef ASSERT
2285     if (!is_store) {
2286       // Object getObject(Object base, int/long offset), etc.
2287       BasicType rtype = sig->return_type()->basic_type();
2288       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2289           rtype = T_ADDRESS;  // it is really a C void*
2290       assert(rtype == type, "getter must return the expected value");
2291       if (!is_native_ptr) {
2292         assert(sig->count() == 2, "oop getter has 2 arguments");
2293         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2294         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2295       } else {
2296         assert(sig->count() == 1, "native getter has 1 argument");
2297         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2298       }
2299     } else {
2300       // void putObject(Object base, int/long offset, Object x), etc.
2301       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2302       if (!is_native_ptr) {
2303         assert(sig->count() == 3, "oop putter has 3 arguments");
2304         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2305         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2306       } else {
2307         assert(sig->count() == 2, "native putter has 2 arguments");
2308         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2309       }
2310       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2311       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2312         vtype = T_ADDRESS;  // it is really a C void*
2313       assert(vtype == type, "putter must accept the expected value");
2314     }
2315 #endif // ASSERT
2316  }
2317 #endif //PRODUCT
2318 
2319   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2320 
2321   Node* receiver = argument(0);  // type: oop
2322 
2323   // Build address expression.  See the code in inline_unsafe_prefetch.
2324   Node* adr;
2325   Node* heap_base_oop = top();
2326   Node* offset = top();
2327   Node* val;
2328 
2329   if (!is_native_ptr) {
2330     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2331     Node* base = argument(1);  // type: oop
2332     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2333     offset = argument(2);  // type: long
2334     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2335     // to be plain byte offsets, which are also the same as those accepted
2336     // by oopDesc::field_base.
2337     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2338            "fieldOffset must be byte-scaled");
2339     // 32-bit machines ignore the high half!
2340     offset = ConvL2X(offset);
2341     adr = make_unsafe_address(base, offset);
2342     heap_base_oop = base;
2343     val = is_store ? argument(4) : NULL;
2344   } else {
2345     Node* ptr = argument(1);  // type: long
2346     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2347     adr = make_unsafe_address(NULL, ptr);
2348     val = is_store ? argument(3) : NULL;
2349   }
2350 
2351   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2352 
2353   // First guess at the value type.
2354   const Type *value_type = Type::get_const_basic_type(type);
2355 
2356   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2357   // there was not enough information to nail it down.
2358   Compile::AliasType* alias_type = C->alias_type(adr_type);
2359   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2360 
2361   // We will need memory barriers unless we can determine a unique
2362   // alias category for this reference.  (Note:  If for some reason
2363   // the barriers get omitted and the unsafe reference begins to "pollute"
2364   // the alias analysis of the rest of the graph, either Compile::can_alias
2365   // or Compile::must_alias will throw a diagnostic assert.)
2366   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2367 
2368   // If we are reading the value of the referent field of a Reference
2369   // object (either by using Unsafe directly or through reflection)
2370   // then, if G1 is enabled, we need to record the referent in an
2371   // SATB log buffer using the pre-barrier mechanism.
2372   // Also we need to add memory barrier to prevent commoning reads
2373   // from this field across safepoint since GC can change its value.
2374   bool need_read_barrier = !is_native_ptr && !is_store &&
2375                            offset != top() && heap_base_oop != top();
2376 
2377   if (!is_store && type == T_OBJECT) {
2378     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2379     if (tjp != NULL) {
2380       value_type = tjp;
2381     }
2382   }
2383 
2384   receiver = null_check(receiver);
2385   if (stopped()) {
2386     return true;
2387   }
2388   // Heap pointers get a null-check from the interpreter,
2389   // as a courtesy.  However, this is not guaranteed by Unsafe,
2390   // and it is not possible to fully distinguish unintended nulls
2391   // from intended ones in this API.
2392 
2393   if (is_volatile) {
2394     // We need to emit leading and trailing CPU membars (see below) in
2395     // addition to memory membars when is_volatile. This is a little
2396     // too strong, but avoids the need to insert per-alias-type
2397     // volatile membars (for stores; compare Parse::do_put_xxx), which
2398     // we cannot do effectively here because we probably only have a
2399     // rough approximation of type.
2400     need_mem_bar = true;
2401     // For Stores, place a memory ordering barrier now.
2402     if (is_store)
2403       insert_mem_bar(Op_MemBarRelease);
2404   }
2405 
2406   // Memory barrier to prevent normal and 'unsafe' accesses from
2407   // bypassing each other.  Happens after null checks, so the
2408   // exception paths do not take memory state from the memory barrier,
2409   // so there's no problems making a strong assert about mixing users
2410   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2411   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2412   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2413 
2414   if (!is_store) {
2415     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2416     // load value
2417     switch (type) {
2418     case T_BOOLEAN:
2419     case T_CHAR:
2420     case T_BYTE:
2421     case T_SHORT:
2422     case T_INT:
2423     case T_LONG:
2424     case T_FLOAT:
2425     case T_DOUBLE:
2426       break;
2427     case T_OBJECT:
2428       if (need_read_barrier) {
2429         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2430       }
2431       break;
2432     case T_ADDRESS:
2433       // Cast to an int type.
2434       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2435       p = ConvX2L(p);
2436       break;
2437     default:
2438       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2439       break;
2440     }
2441     // The load node has the control of the preceding MemBarCPUOrder.  All
2442     // following nodes will have the control of the MemBarCPUOrder inserted at
2443     // the end of this method.  So, pushing the load onto the stack at a later
2444     // point is fine.
2445     set_result(p);
2446   } else {
2447     // place effect of store into memory
2448     switch (type) {
2449     case T_DOUBLE:
2450       val = dstore_rounding(val);
2451       break;
2452     case T_ADDRESS:
2453       // Repackage the long as a pointer.
2454       val = ConvL2X(val);
2455       val = _gvn.transform( new (C) CastX2PNode(val) );
2456       break;
2457     }
2458 
2459     if (type != T_OBJECT ) {
2460       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2461     } else {
2462       // Possibly an oop being stored to Java heap or native memory
2463       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2464         // oop to Java heap.
2465         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2466       } else {
2467         // We can't tell at compile time if we are storing in the Java heap or outside
2468         // of it. So we need to emit code to conditionally do the proper type of
2469         // store.
2470 
2471         IdealKit ideal(this);
2472 #define __ ideal.
2473         // QQQ who knows what probability is here??
2474         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2475           // Sync IdealKit and graphKit.
2476           sync_kit(ideal);
2477           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2478           // Update IdealKit memory.
2479           __ sync_kit(this);
2480         } __ else_(); {
2481           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2482         } __ end_if();
2483         // Final sync IdealKit and GraphKit.
2484         final_sync(ideal);
2485 #undef __
2486       }
2487     }
2488   }
2489 
2490   if (is_volatile) {
2491     if (!is_store)
2492       insert_mem_bar(Op_MemBarAcquire);
2493     else
2494       insert_mem_bar(Op_MemBarVolatile);
2495   }
2496 
2497   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2498 
2499   return true;
2500 }
2501 
2502 //----------------------------inline_unsafe_prefetch----------------------------
2503 
2504 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2505 #ifndef PRODUCT
2506   {
2507     ResourceMark rm;
2508     // Check the signatures.
2509     ciSignature* sig = callee()->signature();
2510 #ifdef ASSERT
2511     // Object getObject(Object base, int/long offset), etc.
2512     BasicType rtype = sig->return_type()->basic_type();
2513     if (!is_native_ptr) {
2514       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2515       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2516       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2517     } else {
2518       assert(sig->count() == 1, "native prefetch has 1 argument");
2519       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2520     }
2521 #endif // ASSERT
2522   }
2523 #endif // !PRODUCT
2524 
2525   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2526 
2527   const int idx = is_static ? 0 : 1;
2528   if (!is_static) {
2529     null_check_receiver();
2530     if (stopped()) {
2531       return true;
2532     }
2533   }
2534 
2535   // Build address expression.  See the code in inline_unsafe_access.
2536   Node *adr;
2537   if (!is_native_ptr) {
2538     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2539     Node* base   = argument(idx + 0);  // type: oop
2540     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2541     Node* offset = argument(idx + 1);  // type: long
2542     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2543     // to be plain byte offsets, which are also the same as those accepted
2544     // by oopDesc::field_base.
2545     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2546            "fieldOffset must be byte-scaled");
2547     // 32-bit machines ignore the high half!
2548     offset = ConvL2X(offset);
2549     adr = make_unsafe_address(base, offset);
2550   } else {
2551     Node* ptr = argument(idx + 0);  // type: long
2552     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2553     adr = make_unsafe_address(NULL, ptr);
2554   }
2555 
2556   // Generate the read or write prefetch
2557   Node *prefetch;
2558   if (is_store) {
2559     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2560   } else {
2561     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2562   }
2563   prefetch->init_req(0, control());
2564   set_i_o(_gvn.transform(prefetch));
2565 
2566   return true;
2567 }
2568 
2569 //----------------------------inline_unsafe_load_store----------------------------
2570 // This method serves a couple of different customers (depending on LoadStoreKind):
2571 //
2572 // LS_cmpxchg:
2573 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2574 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2575 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2576 //
2577 // LS_xadd:
2578 //   public int  getAndAddInt( Object o, long offset, int  delta)
2579 //   public long getAndAddLong(Object o, long offset, long delta)
2580 //
2581 // LS_xchg:
2582 //   int    getAndSet(Object o, long offset, int    newValue)
2583 //   long   getAndSet(Object o, long offset, long   newValue)
2584 //   Object getAndSet(Object o, long offset, Object newValue)
2585 //
2586 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2587   // This basic scheme here is the same as inline_unsafe_access, but
2588   // differs in enough details that combining them would make the code
2589   // overly confusing.  (This is a true fact! I originally combined
2590   // them, but even I was confused by it!) As much code/comments as
2591   // possible are retained from inline_unsafe_access though to make
2592   // the correspondences clearer. - dl
2593 
2594   if (callee()->is_static())  return false;  // caller must have the capability!
2595 
2596 #ifndef PRODUCT
2597   BasicType rtype;
2598   {
2599     ResourceMark rm;
2600     // Check the signatures.
2601     ciSignature* sig = callee()->signature();
2602     rtype = sig->return_type()->basic_type();
2603     if (kind == LS_xadd || kind == LS_xchg) {
2604       // Check the signatures.
2605 #ifdef ASSERT
2606       assert(rtype == type, "get and set must return the expected type");
2607       assert(sig->count() == 3, "get and set has 3 arguments");
2608       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2609       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2610       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2611 #endif // ASSERT
2612     } else if (kind == LS_cmpxchg) {
2613       // Check the signatures.
2614 #ifdef ASSERT
2615       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2616       assert(sig->count() == 4, "CAS has 4 arguments");
2617       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2618       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2619 #endif // ASSERT
2620     } else {
2621       ShouldNotReachHere();
2622     }
2623   }
2624 #endif //PRODUCT
2625 
2626   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2627 
2628   // Get arguments:
2629   Node* receiver = NULL;
2630   Node* base     = NULL;
2631   Node* offset   = NULL;
2632   Node* oldval   = NULL;
2633   Node* newval   = NULL;
2634   if (kind == LS_cmpxchg) {
2635     const bool two_slot_type = type2size[type] == 2;
2636     receiver = argument(0);  // type: oop
2637     base     = argument(1);  // type: oop
2638     offset   = argument(2);  // type: long
2639     oldval   = argument(4);  // type: oop, int, or long
2640     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2641   } else if (kind == LS_xadd || kind == LS_xchg){
2642     receiver = argument(0);  // type: oop
2643     base     = argument(1);  // type: oop
2644     offset   = argument(2);  // type: long
2645     oldval   = NULL;
2646     newval   = argument(4);  // type: oop, int, or long
2647   }
2648 
2649   // Null check receiver.
2650   receiver = null_check(receiver);
2651   if (stopped()) {
2652     return true;
2653   }
2654 
2655   // Build field offset expression.
2656   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2657   // to be plain byte offsets, which are also the same as those accepted
2658   // by oopDesc::field_base.
2659   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2660   // 32-bit machines ignore the high half of long offsets
2661   offset = ConvL2X(offset);
2662   Node* adr = make_unsafe_address(base, offset);
2663   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2664 
2665   // For CAS, unlike inline_unsafe_access, there seems no point in
2666   // trying to refine types. Just use the coarse types here.
2667   const Type *value_type = Type::get_const_basic_type(type);
2668   Compile::AliasType* alias_type = C->alias_type(adr_type);
2669   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2670 
2671   if (kind == LS_xchg && type == T_OBJECT) {
2672     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2673     if (tjp != NULL) {
2674       value_type = tjp;
2675     }
2676   }
2677 
2678   int alias_idx = C->get_alias_index(adr_type);
2679 
2680   // Memory-model-wise, a LoadStore acts like a little synchronized
2681   // block, so needs barriers on each side.  These don't translate
2682   // into actual barriers on most machines, but we still need rest of
2683   // compiler to respect ordering.
2684 
2685   insert_mem_bar(Op_MemBarRelease);
2686   insert_mem_bar(Op_MemBarCPUOrder);
2687 
2688   // 4984716: MemBars must be inserted before this
2689   //          memory node in order to avoid a false
2690   //          dependency which will confuse the scheduler.
2691   Node *mem = memory(alias_idx);
2692 
2693   // For now, we handle only those cases that actually exist: ints,
2694   // longs, and Object. Adding others should be straightforward.
2695   Node* load_store;
2696   switch(type) {
2697   case T_INT:
2698     if (kind == LS_xadd) {
2699       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2700     } else if (kind == LS_xchg) {
2701       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2702     } else if (kind == LS_cmpxchg) {
2703       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2704     } else {
2705       ShouldNotReachHere();
2706     }
2707     break;
2708   case T_LONG:
2709     if (kind == LS_xadd) {
2710       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2711     } else if (kind == LS_xchg) {
2712       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2713     } else if (kind == LS_cmpxchg) {
2714       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2715     } else {
2716       ShouldNotReachHere();
2717     }
2718     break;
2719   case T_OBJECT:
2720     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2721     // could be delayed during Parse (for example, in adjust_map_after_if()).
2722     // Execute transformation here to avoid barrier generation in such case.
2723     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2724       newval = _gvn.makecon(TypePtr::NULL_PTR);
2725 
2726     // Reference stores need a store barrier.
2727     pre_barrier(true /* do_load*/,
2728                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2729                 NULL /* pre_val*/,
2730                 T_OBJECT);
2731 #ifdef _LP64
2732     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2733       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2734       if (kind == LS_xchg) {
2735         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2736                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2737       } else {
2738         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2739         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2740         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2741                                                                    newval_enc, oldval_enc));
2742       }
2743     } else
2744 #endif
2745     {
2746       if (kind == LS_xchg) {
2747         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2748       } else {
2749         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2750         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2751       }
2752     }
2753     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2754     break;
2755   default:
2756     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2757     break;
2758   }
2759 
2760   // SCMemProjNodes represent the memory state of a LoadStore. Their
2761   // main role is to prevent LoadStore nodes from being optimized away
2762   // when their results aren't used.
2763   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
2764   set_memory(proj, alias_idx);
2765 
2766   // Add the trailing membar surrounding the access
2767   insert_mem_bar(Op_MemBarCPUOrder);
2768   insert_mem_bar(Op_MemBarAcquire);
2769 
2770 #ifdef _LP64
2771   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
2772     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2773   }
2774 #endif
2775 
2776   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2777   set_result(load_store);
2778   return true;
2779 }
2780 
2781 //----------------------------inline_unsafe_ordered_store----------------------
2782 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2783 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2784 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2785 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2786   // This is another variant of inline_unsafe_access, differing in
2787   // that it always issues store-store ("release") barrier and ensures
2788   // store-atomicity (which only matters for "long").
2789 
2790   if (callee()->is_static())  return false;  // caller must have the capability!
2791 
2792 #ifndef PRODUCT
2793   {
2794     ResourceMark rm;
2795     // Check the signatures.
2796     ciSignature* sig = callee()->signature();
2797 #ifdef ASSERT
2798     BasicType rtype = sig->return_type()->basic_type();
2799     assert(rtype == T_VOID, "must return void");
2800     assert(sig->count() == 3, "has 3 arguments");
2801     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2802     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2803 #endif // ASSERT
2804   }
2805 #endif //PRODUCT
2806 
2807   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2808 
2809   // Get arguments:
2810   Node* receiver = argument(0);  // type: oop
2811   Node* base     = argument(1);  // type: oop
2812   Node* offset   = argument(2);  // type: long
2813   Node* val      = argument(4);  // type: oop, int, or long
2814 
2815   // Null check receiver.
2816   receiver = null_check(receiver);
2817   if (stopped()) {
2818     return true;
2819   }
2820 
2821   // Build field offset expression.
2822   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2823   // 32-bit machines ignore the high half of long offsets
2824   offset = ConvL2X(offset);
2825   Node* adr = make_unsafe_address(base, offset);
2826   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2827   const Type *value_type = Type::get_const_basic_type(type);
2828   Compile::AliasType* alias_type = C->alias_type(adr_type);
2829 
2830   insert_mem_bar(Op_MemBarRelease);
2831   insert_mem_bar(Op_MemBarCPUOrder);
2832   // Ensure that the store is atomic for longs:
2833   const bool require_atomic_access = true;
2834   Node* store;
2835   if (type == T_OBJECT) // reference stores need a store barrier.
2836     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2837   else {
2838     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2839   }
2840   insert_mem_bar(Op_MemBarCPUOrder);
2841   return true;
2842 }
2843 
2844 //----------------------------inline_unsafe_allocate---------------------------
2845 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
2846 bool LibraryCallKit::inline_unsafe_allocate() {
2847   if (callee()->is_static())  return false;  // caller must have the capability!
2848 
2849   null_check_receiver();  // null-check, then ignore
2850   Node* cls = null_check(argument(1));
2851   if (stopped())  return true;
2852 
2853   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2854   kls = null_check(kls);
2855   if (stopped())  return true;  // argument was like int.class
2856 
2857   // Note:  The argument might still be an illegal value like
2858   // Serializable.class or Object[].class.   The runtime will handle it.
2859   // But we must make an explicit check for initialization.
2860   Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
2861   // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
2862   // can generate code to load it as unsigned byte.
2863   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2864   Node* bits = intcon(instanceKlass::fully_initialized);
2865   Node* test = _gvn.transform(new (C) SubINode(inst, bits));
2866   // The 'test' is non-zero if we need to take a slow path.
2867 
2868   Node* obj = new_instance(kls, test);
2869   set_result(obj);
2870   return true;
2871 }
2872 
2873 #ifdef TRACE_HAVE_INTRINSICS
2874 /*
2875  * oop -> myklass
2876  * myklass->trace_id |= USED
2877  * return myklass->trace_id & ~0x3
2878  */
2879 bool LibraryCallKit::inline_native_classID() {
2880   null_check_receiver();  // null-check, then ignore
2881   Node* cls = null_check(argument(1), T_OBJECT);
2882   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2883   kls = null_check(kls, T_OBJECT);
2884   ByteSize offset = TRACE_ID_OFFSET;
2885   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2886   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
2887   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2888   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
2889   Node* clsused = longcon(0x01l); // set the class bit
2890   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
2891 
2892   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2893   store_to_memory(control(), insp, orl, T_LONG, adr_type);
2894   set_result(andl);
2895   return true;
2896 }
2897 
2898 bool LibraryCallKit::inline_native_threadID() {
2899   Node* tls_ptr = NULL;
2900   Node* cur_thr = generate_current_thread(tls_ptr);
2901   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2902   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2903   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
2904 
2905   Node* threadid = NULL;
2906   size_t thread_id_size = OSThread::thread_id_size();
2907   if (thread_id_size == (size_t) BytesPerLong) {
2908     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
2909   } else if (thread_id_size == (size_t) BytesPerInt) {
2910     threadid = make_load(control(), p, TypeInt::INT, T_INT);
2911   } else {
2912     ShouldNotReachHere();
2913   }
2914   set_result(threadid);
2915   return true;
2916 }
2917 #endif
2918 
2919 //------------------------inline_native_time_funcs--------------
2920 // inline code for System.currentTimeMillis() and System.nanoTime()
2921 // these have the same type and signature
2922 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2923   const TypeFunc* tf = OptoRuntime::void_long_Type();
2924   const TypePtr* no_memory_effects = NULL;
2925   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2926   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
2927 #ifdef ASSERT
2928   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
2929   assert(value_top == top(), "second value must be top");
2930 #endif
2931   set_result(value);
2932   return true;
2933 }
2934 
2935 //------------------------inline_native_currentThread------------------
2936 bool LibraryCallKit::inline_native_currentThread() {
2937   Node* junk = NULL;
2938   set_result(generate_current_thread(junk));
2939   return true;
2940 }
2941 
2942 //------------------------inline_native_isInterrupted------------------
2943 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
2944 bool LibraryCallKit::inline_native_isInterrupted() {
2945   // Add a fast path to t.isInterrupted(clear_int):
2946   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2947   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2948   // So, in the common case that the interrupt bit is false,
2949   // we avoid making a call into the VM.  Even if the interrupt bit
2950   // is true, if the clear_int argument is false, we avoid the VM call.
2951   // However, if the receiver is not currentThread, we must call the VM,
2952   // because there must be some locking done around the operation.
2953 
2954   // We only go to the fast case code if we pass two guards.
2955   // Paths which do not pass are accumulated in the slow_region.
2956 
2957   enum {
2958     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
2959     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
2960     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
2961     PATH_LIMIT
2962   };
2963 
2964   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
2965   // out of the function.
2966   insert_mem_bar(Op_MemBarCPUOrder);
2967 
2968   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
2969   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
2970 
2971   RegionNode* slow_region = new (C) RegionNode(1);
2972   record_for_igvn(slow_region);
2973 
2974   // (a) Receiving thread must be the current thread.
2975   Node* rec_thr = argument(0);
2976   Node* tls_ptr = NULL;
2977   Node* cur_thr = generate_current_thread(tls_ptr);
2978   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
2979   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
2980 
2981   generate_slow_guard(bol_thr, slow_region);
2982 
2983   // (b) Interrupt bit on TLS must be false.
2984   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2985   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2986   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2987 
2988   // Set the control input on the field _interrupted read to prevent it floating up.
2989   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2990   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
2991   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
2992 
2993   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2994 
2995   // First fast path:  if (!TLS._interrupted) return false;
2996   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
2997   result_rgn->init_req(no_int_result_path, false_bit);
2998   result_val->init_req(no_int_result_path, intcon(0));
2999 
3000   // drop through to next case
3001   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
3002 
3003   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3004   Node* clr_arg = argument(1);
3005   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
3006   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
3007   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3008 
3009   // Second fast path:  ... else if (!clear_int) return true;
3010   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
3011   result_rgn->init_req(no_clear_result_path, false_arg);
3012   result_val->init_req(no_clear_result_path, intcon(1));
3013 
3014   // drop through to next case
3015   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
3016 
3017   // (d) Otherwise, go to the slow path.
3018   slow_region->add_req(control());
3019   set_control( _gvn.transform(slow_region) );
3020 
3021   if (stopped()) {
3022     // There is no slow path.
3023     result_rgn->init_req(slow_result_path, top());
3024     result_val->init_req(slow_result_path, top());
3025   } else {
3026     // non-virtual because it is a private non-static
3027     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3028 
3029     Node* slow_val = set_results_for_java_call(slow_call);
3030     // this->control() comes from set_results_for_java_call
3031 
3032     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3033     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3034 
3035     // These two phis are pre-filled with copies of of the fast IO and Memory
3036     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3037     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3038 
3039     result_rgn->init_req(slow_result_path, control());
3040     result_io ->init_req(slow_result_path, i_o());
3041     result_mem->init_req(slow_result_path, reset_memory());
3042     result_val->init_req(slow_result_path, slow_val);
3043 
3044     set_all_memory(_gvn.transform(result_mem));
3045     set_i_o(       _gvn.transform(result_io));
3046   }
3047 
3048   C->set_has_split_ifs(true); // Has chance for split-if optimization
3049   set_result(result_rgn, result_val);
3050   return true;
3051 }
3052 
3053 //---------------------------load_mirror_from_klass----------------------------
3054 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3055 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3056   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3057   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3058 }
3059 
3060 //-----------------------load_klass_from_mirror_common-------------------------
3061 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3062 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3063 // and branch to the given path on the region.
3064 // If never_see_null, take an uncommon trap on null, so we can optimistically
3065 // compile for the non-null case.
3066 // If the region is NULL, force never_see_null = true.
3067 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3068                                                     bool never_see_null,
3069                                                     RegionNode* region,
3070                                                     int null_path,
3071                                                     int offset) {
3072   if (region == NULL)  never_see_null = true;
3073   Node* p = basic_plus_adr(mirror, offset);
3074   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3075   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
3076   Node* null_ctl = top();
3077   kls = null_check_oop(kls, &null_ctl, never_see_null);
3078   if (region != NULL) {
3079     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3080     region->init_req(null_path, null_ctl);
3081   } else {
3082     assert(null_ctl == top(), "no loose ends");
3083   }
3084   return kls;
3085 }
3086 
3087 //--------------------(inline_native_Class_query helpers)---------------------
3088 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3089 // Fall through if (mods & mask) == bits, take the guard otherwise.
3090 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3091   // Branch around if the given klass has the given modifier bit set.
3092   // Like generate_guard, adds a new path onto the region.
3093   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3094   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3095   Node* mask = intcon(modifier_mask);
3096   Node* bits = intcon(modifier_bits);
3097   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
3098   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
3099   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
3100   return generate_fair_guard(bol, region);
3101 }
3102 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3103   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3104 }
3105 
3106 //-------------------------inline_native_Class_query-------------------
3107 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3108   const Type* return_type = TypeInt::BOOL;
3109   Node* prim_return_value = top();  // what happens if it's a primitive class?
3110   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3111   bool expect_prim = false;     // most of these guys expect to work on refs
3112 
3113   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3114 
3115   Node* mirror = argument(0);
3116   Node* obj    = top();
3117 
3118   switch (id) {
3119   case vmIntrinsics::_isInstance:
3120     // nothing is an instance of a primitive type
3121     prim_return_value = intcon(0);
3122     obj = argument(1);
3123     break;
3124   case vmIntrinsics::_getModifiers:
3125     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3126     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3127     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3128     break;
3129   case vmIntrinsics::_isInterface:
3130     prim_return_value = intcon(0);
3131     break;
3132   case vmIntrinsics::_isArray:
3133     prim_return_value = intcon(0);
3134     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3135     break;
3136   case vmIntrinsics::_isPrimitive:
3137     prim_return_value = intcon(1);
3138     expect_prim = true;  // obviously
3139     break;
3140   case vmIntrinsics::_getSuperclass:
3141     prim_return_value = null();
3142     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3143     break;
3144   case vmIntrinsics::_getComponentType:
3145     prim_return_value = null();
3146     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3147     break;
3148   case vmIntrinsics::_getClassAccessFlags:
3149     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3150     return_type = TypeInt::INT;  // not bool!  6297094
3151     break;
3152   default:
3153     fatal_unexpected_iid(id);
3154     break;
3155   }
3156 
3157   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3158   if (mirror_con == NULL)  return false;  // cannot happen?
3159 
3160 #ifndef PRODUCT
3161   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3162     ciType* k = mirror_con->java_mirror_type();
3163     if (k) {
3164       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3165       k->print_name();
3166       tty->cr();
3167     }
3168   }
3169 #endif
3170 
3171   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3172   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3173   record_for_igvn(region);
3174   PhiNode* phi = new (C) PhiNode(region, return_type);
3175 
3176   // The mirror will never be null of Reflection.getClassAccessFlags, however
3177   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3178   // if it is. See bug 4774291.
3179 
3180   // For Reflection.getClassAccessFlags(), the null check occurs in
3181   // the wrong place; see inline_unsafe_access(), above, for a similar
3182   // situation.
3183   mirror = null_check(mirror);
3184   // If mirror or obj is dead, only null-path is taken.
3185   if (stopped())  return true;
3186 
3187   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3188 
3189   // Now load the mirror's klass metaobject, and null-check it.
3190   // Side-effects region with the control path if the klass is null.
3191   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3192   // If kls is null, we have a primitive mirror.
3193   phi->init_req(_prim_path, prim_return_value);
3194   if (stopped()) { set_result(region, phi); return true; }
3195 
3196   Node* p;  // handy temp
3197   Node* null_ctl;
3198 
3199   // Now that we have the non-null klass, we can perform the real query.
3200   // For constant classes, the query will constant-fold in LoadNode::Value.
3201   Node* query_value = top();
3202   switch (id) {
3203   case vmIntrinsics::_isInstance:
3204     // nothing is an instance of a primitive type
3205     query_value = gen_instanceof(obj, kls);
3206     break;
3207 
3208   case vmIntrinsics::_getModifiers:
3209     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3210     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3211     break;
3212 
3213   case vmIntrinsics::_isInterface:
3214     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3215     if (generate_interface_guard(kls, region) != NULL)
3216       // A guard was added.  If the guard is taken, it was an interface.
3217       phi->add_req(intcon(1));
3218     // If we fall through, it's a plain class.
3219     query_value = intcon(0);
3220     break;
3221 
3222   case vmIntrinsics::_isArray:
3223     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3224     if (generate_array_guard(kls, region) != NULL)
3225       // A guard was added.  If the guard is taken, it was an array.
3226       phi->add_req(intcon(1));
3227     // If we fall through, it's a plain class.
3228     query_value = intcon(0);
3229     break;
3230 
3231   case vmIntrinsics::_isPrimitive:
3232     query_value = intcon(0); // "normal" path produces false
3233     break;
3234 
3235   case vmIntrinsics::_getSuperclass:
3236     // The rules here are somewhat unfortunate, but we can still do better
3237     // with random logic than with a JNI call.
3238     // Interfaces store null or Object as _super, but must report null.
3239     // Arrays store an intermediate super as _super, but must report Object.
3240     // Other types can report the actual _super.
3241     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3242     if (generate_interface_guard(kls, region) != NULL)
3243       // A guard was added.  If the guard is taken, it was an interface.
3244       phi->add_req(null());
3245     if (generate_array_guard(kls, region) != NULL)
3246       // A guard was added.  If the guard is taken, it was an array.
3247       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3248     // If we fall through, it's a plain class.  Get its _super.
3249     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3250     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3251     null_ctl = top();
3252     kls = null_check_oop(kls, &null_ctl);
3253     if (null_ctl != top()) {
3254       // If the guard is taken, Object.superClass is null (both klass and mirror).
3255       region->add_req(null_ctl);
3256       phi   ->add_req(null());
3257     }
3258     if (!stopped()) {
3259       query_value = load_mirror_from_klass(kls);
3260     }
3261     break;
3262 
3263   case vmIntrinsics::_getComponentType:
3264     if (generate_array_guard(kls, region) != NULL) {
3265       // Be sure to pin the oop load to the guard edge just created:
3266       Node* is_array_ctrl = region->in(region->req()-1);
3267       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
3268       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3269       phi->add_req(cmo);
3270     }
3271     query_value = null();  // non-array case is null
3272     break;
3273 
3274   case vmIntrinsics::_getClassAccessFlags:
3275     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3276     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3277     break;
3278 
3279   default:
3280     fatal_unexpected_iid(id);
3281     break;
3282   }
3283 
3284   // Fall-through is the normal case of a query to a real class.
3285   phi->init_req(1, query_value);
3286   region->init_req(1, control());
3287 
3288   C->set_has_split_ifs(true); // Has chance for split-if optimization
3289   set_result(region, phi);
3290   return true;
3291 }
3292 
3293 //--------------------------inline_native_subtype_check------------------------
3294 // This intrinsic takes the JNI calls out of the heart of
3295 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3296 bool LibraryCallKit::inline_native_subtype_check() {
3297   // Pull both arguments off the stack.
3298   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3299   args[0] = argument(0);
3300   args[1] = argument(1);
3301   Node* klasses[2];             // corresponding Klasses: superk, subk
3302   klasses[0] = klasses[1] = top();
3303 
3304   enum {
3305     // A full decision tree on {superc is prim, subc is prim}:
3306     _prim_0_path = 1,           // {P,N} => false
3307                                 // {P,P} & superc!=subc => false
3308     _prim_same_path,            // {P,P} & superc==subc => true
3309     _prim_1_path,               // {N,P} => false
3310     _ref_subtype_path,          // {N,N} & subtype check wins => true
3311     _both_ref_path,             // {N,N} & subtype check loses => false
3312     PATH_LIMIT
3313   };
3314 
3315   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3316   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3317   record_for_igvn(region);
3318 
3319   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3320   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3321   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3322 
3323   // First null-check both mirrors and load each mirror's klass metaobject.
3324   int which_arg;
3325   for (which_arg = 0; which_arg <= 1; which_arg++) {
3326     Node* arg = args[which_arg];
3327     arg = null_check(arg);
3328     if (stopped())  break;
3329     args[which_arg] = arg;
3330 
3331     Node* p = basic_plus_adr(arg, class_klass_offset);
3332     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3333     klasses[which_arg] = _gvn.transform(kls);
3334   }
3335 
3336   // Having loaded both klasses, test each for null.
3337   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3338   for (which_arg = 0; which_arg <= 1; which_arg++) {
3339     Node* kls = klasses[which_arg];
3340     Node* null_ctl = top();
3341     kls = null_check_oop(kls, &null_ctl, never_see_null);
3342     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3343     region->init_req(prim_path, null_ctl);
3344     if (stopped())  break;
3345     klasses[which_arg] = kls;
3346   }
3347 
3348   if (!stopped()) {
3349     // now we have two reference types, in klasses[0..1]
3350     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3351     Node* superk = klasses[0];  // the receiver
3352     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3353     // now we have a successful reference subtype check
3354     region->set_req(_ref_subtype_path, control());
3355   }
3356 
3357   // If both operands are primitive (both klasses null), then
3358   // we must return true when they are identical primitives.
3359   // It is convenient to test this after the first null klass check.
3360   set_control(region->in(_prim_0_path)); // go back to first null check
3361   if (!stopped()) {
3362     // Since superc is primitive, make a guard for the superc==subc case.
3363     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
3364     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
3365     generate_guard(bol_eq, region, PROB_FAIR);
3366     if (region->req() == PATH_LIMIT+1) {
3367       // A guard was added.  If the added guard is taken, superc==subc.
3368       region->swap_edges(PATH_LIMIT, _prim_same_path);
3369       region->del_req(PATH_LIMIT);
3370     }
3371     region->set_req(_prim_0_path, control()); // Not equal after all.
3372   }
3373 
3374   // these are the only paths that produce 'true':
3375   phi->set_req(_prim_same_path,   intcon(1));
3376   phi->set_req(_ref_subtype_path, intcon(1));
3377 
3378   // pull together the cases:
3379   assert(region->req() == PATH_LIMIT, "sane region");
3380   for (uint i = 1; i < region->req(); i++) {
3381     Node* ctl = region->in(i);
3382     if (ctl == NULL || ctl == top()) {
3383       region->set_req(i, top());
3384       phi   ->set_req(i, top());
3385     } else if (phi->in(i) == NULL) {
3386       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3387     }
3388   }
3389 
3390   set_control(_gvn.transform(region));
3391   set_result(_gvn.transform(phi));
3392   return true;
3393 }
3394 
3395 //---------------------generate_array_guard_common------------------------
3396 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3397                                                   bool obj_array, bool not_array) {
3398   // If obj_array/non_array==false/false:
3399   // Branch around if the given klass is in fact an array (either obj or prim).
3400   // If obj_array/non_array==false/true:
3401   // Branch around if the given klass is not an array klass of any kind.
3402   // If obj_array/non_array==true/true:
3403   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3404   // If obj_array/non_array==true/false:
3405   // Branch around if the kls is an oop array (Object[] or subtype)
3406   //
3407   // Like generate_guard, adds a new path onto the region.
3408   jint  layout_con = 0;
3409   Node* layout_val = get_layout_helper(kls, layout_con);
3410   if (layout_val == NULL) {
3411     bool query = (obj_array
3412                   ? Klass::layout_helper_is_objArray(layout_con)
3413                   : Klass::layout_helper_is_javaArray(layout_con));
3414     if (query == not_array) {
3415       return NULL;                       // never a branch
3416     } else {                             // always a branch
3417       Node* always_branch = control();
3418       if (region != NULL)
3419         region->add_req(always_branch);
3420       set_control(top());
3421       return always_branch;
3422     }
3423   }
3424   // Now test the correct condition.
3425   jint  nval = (obj_array
3426                 ? ((jint)Klass::_lh_array_tag_type_value
3427                    <<    Klass::_lh_array_tag_shift)
3428                 : Klass::_lh_neutral_value);
3429   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
3430   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3431   // invert the test if we are looking for a non-array
3432   if (not_array)  btest = BoolTest(btest).negate();
3433   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
3434   return generate_fair_guard(bol, region);
3435 }
3436 
3437 
3438 //-----------------------inline_native_newArray--------------------------
3439 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3440 bool LibraryCallKit::inline_native_newArray() {
3441   Node* mirror    = argument(0);
3442   Node* count_val = argument(1);
3443 
3444   mirror = null_check(mirror);
3445   // If mirror or obj is dead, only null-path is taken.
3446   if (stopped())  return true;
3447 
3448   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3449   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3450   PhiNode*    result_val = new(C) PhiNode(result_reg,
3451                                           TypeInstPtr::NOTNULL);
3452   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3453   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3454                                           TypePtr::BOTTOM);
3455 
3456   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3457   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3458                                                   result_reg, _slow_path);
3459   Node* normal_ctl   = control();
3460   Node* no_array_ctl = result_reg->in(_slow_path);
3461 
3462   // Generate code for the slow case.  We make a call to newArray().
3463   set_control(no_array_ctl);
3464   if (!stopped()) {
3465     // Either the input type is void.class, or else the
3466     // array klass has not yet been cached.  Either the
3467     // ensuing call will throw an exception, or else it
3468     // will cache the array klass for next time.
3469     PreserveJVMState pjvms(this);
3470     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3471     Node* slow_result = set_results_for_java_call(slow_call);
3472     // this->control() comes from set_results_for_java_call
3473     result_reg->set_req(_slow_path, control());
3474     result_val->set_req(_slow_path, slow_result);
3475     result_io ->set_req(_slow_path, i_o());
3476     result_mem->set_req(_slow_path, reset_memory());
3477   }
3478 
3479   set_control(normal_ctl);
3480   if (!stopped()) {
3481     // Normal case:  The array type has been cached in the java.lang.Class.
3482     // The following call works fine even if the array type is polymorphic.
3483     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3484     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3485     result_reg->init_req(_normal_path, control());
3486     result_val->init_req(_normal_path, obj);
3487     result_io ->init_req(_normal_path, i_o());
3488     result_mem->init_req(_normal_path, reset_memory());
3489   }
3490 
3491   // Return the combined state.
3492   set_i_o(        _gvn.transform(result_io)  );
3493   set_all_memory( _gvn.transform(result_mem) );
3494 
3495   C->set_has_split_ifs(true); // Has chance for split-if optimization
3496   set_result(result_reg, result_val);
3497   return true;
3498 }
3499 
3500 //----------------------inline_native_getLength--------------------------
3501 // public static native int java.lang.reflect.Array.getLength(Object array);
3502 bool LibraryCallKit::inline_native_getLength() {
3503   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3504 
3505   Node* array = null_check(argument(0));
3506   // If array is dead, only null-path is taken.
3507   if (stopped())  return true;
3508 
3509   // Deoptimize if it is a non-array.
3510   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3511 
3512   if (non_array != NULL) {
3513     PreserveJVMState pjvms(this);
3514     set_control(non_array);
3515     uncommon_trap(Deoptimization::Reason_intrinsic,
3516                   Deoptimization::Action_maybe_recompile);
3517   }
3518 
3519   // If control is dead, only non-array-path is taken.
3520   if (stopped())  return true;
3521 
3522   // The works fine even if the array type is polymorphic.
3523   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3524   Node* result = load_array_length(array);
3525 
3526   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3527   set_result(result);
3528   return true;
3529 }
3530 
3531 //------------------------inline_array_copyOf----------------------------
3532 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3533 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3534 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3535   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3536 
3537   // Get the arguments.
3538   Node* original          = argument(0);
3539   Node* start             = is_copyOfRange? argument(1): intcon(0);
3540   Node* end               = is_copyOfRange? argument(2): argument(1);
3541   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3542 
3543   Node* newcopy;
3544 
3545   // Set the original stack and the reexecute bit for the interpreter to reexecute
3546   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3547   { PreserveReexecuteState preexecs(this);
3548     jvms()->set_should_reexecute(true);
3549 
3550     array_type_mirror = null_check(array_type_mirror);
3551     original          = null_check(original);
3552 
3553     // Check if a null path was taken unconditionally.
3554     if (stopped())  return true;
3555 
3556     Node* orig_length = load_array_length(original);
3557 
3558     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3559     klass_node = null_check(klass_node);
3560 
3561     RegionNode* bailout = new (C) RegionNode(1);
3562     record_for_igvn(bailout);
3563 
3564     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3565     // Bail out if that is so.
3566     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3567     if (not_objArray != NULL) {
3568       // Improve the klass node's type from the new optimistic assumption:
3569       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3570       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3571       Node* cast = new (C) CastPPNode(klass_node, akls);
3572       cast->init_req(0, control());
3573       klass_node = _gvn.transform(cast);
3574     }
3575 
3576     // Bail out if either start or end is negative.
3577     generate_negative_guard(start, bailout, &start);
3578     generate_negative_guard(end,   bailout, &end);
3579 
3580     Node* length = end;
3581     if (_gvn.type(start) != TypeInt::ZERO) {
3582       length = _gvn.transform(new (C) SubINode(end, start));
3583     }
3584 
3585     // Bail out if length is negative.
3586     // Without this the new_array would throw
3587     // NegativeArraySizeException but IllegalArgumentException is what
3588     // should be thrown
3589     generate_negative_guard(length, bailout, &length);
3590 
3591     if (bailout->req() > 1) {
3592       PreserveJVMState pjvms(this);
3593       set_control(_gvn.transform(bailout));
3594       uncommon_trap(Deoptimization::Reason_intrinsic,
3595                     Deoptimization::Action_maybe_recompile);
3596     }
3597 
3598     if (!stopped()) {
3599       // How many elements will we copy from the original?
3600       // The answer is MinI(orig_length - start, length).
3601       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3602       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3603 
3604       newcopy = new_array(klass_node, length, 0);  // no argments to push
3605 
3606       // Generate a direct call to the right arraycopy function(s).
3607       // We know the copy is disjoint but we might not know if the
3608       // oop stores need checking.
3609       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3610       // This will fail a store-check if x contains any non-nulls.
3611       bool disjoint_bases = true;
3612       // if start > orig_length then the length of the copy may be
3613       // negative.
3614       bool length_never_negative = !is_copyOfRange;
3615       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3616                          original, start, newcopy, intcon(0), moved,
3617                          disjoint_bases, length_never_negative);
3618     }
3619   } // original reexecute is set back here
3620 
3621   C->set_has_split_ifs(true); // Has chance for split-if optimization
3622   if (!stopped()) {
3623     set_result(newcopy);
3624   }
3625   return true;
3626 }
3627 
3628 
3629 //----------------------generate_virtual_guard---------------------------
3630 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3631 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3632                                              RegionNode* slow_region) {
3633   ciMethod* method = callee();
3634   int vtable_index = method->vtable_index();
3635   // Get the methodOop out of the appropriate vtable entry.
3636   int entry_offset  = (instanceKlass::vtable_start_offset() +
3637                      vtable_index*vtableEntry::size()) * wordSize +
3638                      vtableEntry::method_offset_in_bytes();
3639   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3640   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3641 
3642   // Compare the target method with the expected method (e.g., Object.hashCode).
3643   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3644 
3645   Node* native_call = makecon(native_call_addr);
3646   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
3647   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
3648 
3649   return generate_slow_guard(test_native, slow_region);
3650 }
3651 
3652 //-----------------------generate_method_call----------------------------
3653 // Use generate_method_call to make a slow-call to the real
3654 // method if the fast path fails.  An alternative would be to
3655 // use a stub like OptoRuntime::slow_arraycopy_Java.
3656 // This only works for expanding the current library call,
3657 // not another intrinsic.  (E.g., don't use this for making an
3658 // arraycopy call inside of the copyOf intrinsic.)
3659 CallJavaNode*
3660 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3661   // When compiling the intrinsic method itself, do not use this technique.
3662   guarantee(callee() != C->method(), "cannot make slow-call to self");
3663 
3664   ciMethod* method = callee();
3665   // ensure the JVMS we have will be correct for this call
3666   guarantee(method_id == method->intrinsic_id(), "must match");
3667 
3668   const TypeFunc* tf = TypeFunc::make(method);
3669   CallJavaNode* slow_call;
3670   if (is_static) {
3671     assert(!is_virtual, "");
3672     slow_call = new(C) CallStaticJavaNode(tf,
3673                            SharedRuntime::get_resolve_static_call_stub(),
3674                            method, bci());
3675   } else if (is_virtual) {
3676     null_check_receiver();
3677     int vtable_index = methodOopDesc::invalid_vtable_index;
3678     if (UseInlineCaches) {
3679       // Suppress the vtable call
3680     } else {
3681       // hashCode and clone are not a miranda methods,
3682       // so the vtable index is fixed.
3683       // No need to use the linkResolver to get it.
3684        vtable_index = method->vtable_index();
3685     }
3686     slow_call = new(C) CallDynamicJavaNode(tf,
3687                           SharedRuntime::get_resolve_virtual_call_stub(),
3688                           method, vtable_index, bci());
3689   } else {  // neither virtual nor static:  opt_virtual
3690     null_check_receiver();
3691     slow_call = new(C) CallStaticJavaNode(tf,
3692                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3693                                 method, bci());
3694     slow_call->set_optimized_virtual(true);
3695   }
3696   set_arguments_for_java_call(slow_call);
3697   set_edges_for_java_call(slow_call);
3698   return slow_call;
3699 }
3700 
3701 
3702 //------------------------------inline_native_hashcode--------------------
3703 // Build special case code for calls to hashCode on an object.
3704 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3705   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3706   assert(!(is_virtual && is_static), "either virtual, special, or static");
3707 
3708   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3709 
3710   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3711   PhiNode*    result_val = new(C) PhiNode(result_reg,
3712                                           TypeInt::INT);
3713   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3714   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3715                                           TypePtr::BOTTOM);
3716   Node* obj = NULL;
3717   if (!is_static) {
3718     // Check for hashing null object
3719     obj = null_check_receiver();
3720     if (stopped())  return true;        // unconditionally null
3721     result_reg->init_req(_null_path, top());
3722     result_val->init_req(_null_path, top());
3723   } else {
3724     // Do a null check, and return zero if null.
3725     // System.identityHashCode(null) == 0
3726     obj = argument(0);
3727     Node* null_ctl = top();
3728     obj = null_check_oop(obj, &null_ctl);
3729     result_reg->init_req(_null_path, null_ctl);
3730     result_val->init_req(_null_path, _gvn.intcon(0));
3731   }
3732 
3733   // Unconditionally null?  Then return right away.
3734   if (stopped()) {
3735     set_control( result_reg->in(_null_path));
3736     if (!stopped())
3737       set_result(result_val->in(_null_path));
3738     return true;
3739   }
3740 
3741   // After null check, get the object's klass.
3742   Node* obj_klass = load_object_klass(obj);
3743 
3744   // This call may be virtual (invokevirtual) or bound (invokespecial).
3745   // For each case we generate slightly different code.
3746 
3747   // We only go to the fast case code if we pass a number of guards.  The
3748   // paths which do not pass are accumulated in the slow_region.
3749   RegionNode* slow_region = new (C) RegionNode(1);
3750   record_for_igvn(slow_region);
3751 
3752   // If this is a virtual call, we generate a funny guard.  We pull out
3753   // the vtable entry corresponding to hashCode() from the target object.
3754   // If the target method which we are calling happens to be the native
3755   // Object hashCode() method, we pass the guard.  We do not need this
3756   // guard for non-virtual calls -- the caller is known to be the native
3757   // Object hashCode().
3758   if (is_virtual) {
3759     generate_virtual_guard(obj_klass, slow_region);
3760   }
3761 
3762   // Get the header out of the object, use LoadMarkNode when available
3763   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3764   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3765 
3766   // Test the header to see if it is unlocked.
3767   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3768   Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
3769   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3770   Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
3771   Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
3772 
3773   generate_slow_guard(test_unlocked, slow_region);
3774 
3775   // Get the hash value and check to see that it has been properly assigned.
3776   // We depend on hash_mask being at most 32 bits and avoid the use of
3777   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3778   // vm: see markOop.hpp.
3779   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3780   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3781   Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
3782   // This hack lets the hash bits live anywhere in the mark object now, as long
3783   // as the shift drops the relevant bits into the low 32 bits.  Note that
3784   // Java spec says that HashCode is an int so there's no point in capturing
3785   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3786   hshifted_header      = ConvX2I(hshifted_header);
3787   Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
3788 
3789   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3790   Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
3791   Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
3792 
3793   generate_slow_guard(test_assigned, slow_region);
3794 
3795   Node* init_mem = reset_memory();
3796   // fill in the rest of the null path:
3797   result_io ->init_req(_null_path, i_o());
3798   result_mem->init_req(_null_path, init_mem);
3799 
3800   result_val->init_req(_fast_path, hash_val);
3801   result_reg->init_req(_fast_path, control());
3802   result_io ->init_req(_fast_path, i_o());
3803   result_mem->init_req(_fast_path, init_mem);
3804 
3805   // Generate code for the slow case.  We make a call to hashCode().
3806   set_control(_gvn.transform(slow_region));
3807   if (!stopped()) {
3808     // No need for PreserveJVMState, because we're using up the present state.
3809     set_all_memory(init_mem);
3810     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3811     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3812     Node* slow_result = set_results_for_java_call(slow_call);
3813     // this->control() comes from set_results_for_java_call
3814     result_reg->init_req(_slow_path, control());
3815     result_val->init_req(_slow_path, slow_result);
3816     result_io  ->set_req(_slow_path, i_o());
3817     result_mem ->set_req(_slow_path, reset_memory());
3818   }
3819 
3820   // Return the combined state.
3821   set_i_o(        _gvn.transform(result_io)  );
3822   set_all_memory( _gvn.transform(result_mem) );
3823 
3824   set_result(result_reg, result_val);
3825   return true;
3826 }
3827 
3828 //---------------------------inline_native_getClass----------------------------
3829 // public final native Class<?> java.lang.Object.getClass();
3830 //
3831 // Build special case code for calls to getClass on an object.
3832 bool LibraryCallKit::inline_native_getClass() {
3833   Node* obj = null_check_receiver();
3834   if (stopped())  return true;
3835   set_result(load_mirror_from_klass(load_object_klass(obj)));
3836   return true;
3837 }
3838 
3839 //-----------------inline_native_Reflection_getCallerClass---------------------
3840 // public static native Class<?> sun.reflect.Reflection.getCallerClass(int realFramesToSkip);
3841 //
3842 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3843 //
3844 // NOTE that this code must perform the same logic as
3845 // vframeStream::security_get_caller_frame in that it must skip
3846 // Method.invoke() and auxiliary frames.
3847 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3848 #ifndef PRODUCT
3849   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3850     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3851   }
3852 #endif
3853 
3854   Node* caller_depth_node = argument(0);
3855 
3856   // The depth value must be a constant in order for the runtime call
3857   // to be eliminated.
3858   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3859   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3860 #ifndef PRODUCT
3861     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3862       tty->print_cr("  Bailing out because caller depth was not a constant");
3863     }
3864 #endif
3865     return false;
3866   }
3867   // Note that the JVM state at this point does not include the
3868   // getCallerClass() frame which we are trying to inline. The
3869   // semantics of getCallerClass(), however, are that the "first"
3870   // frame is the getCallerClass() frame, so we subtract one from the
3871   // requested depth before continuing. We don't inline requests of
3872   // getCallerClass(0).
3873   int caller_depth = caller_depth_type->get_con() - 1;
3874   if (caller_depth < 0) {
3875 #ifndef PRODUCT
3876     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3877       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3878     }
3879 #endif
3880     return false;
3881   }
3882 
3883   if (!jvms()->has_method()) {
3884 #ifndef PRODUCT
3885     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3886       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3887     }
3888 #endif
3889     return false;
3890   }
3891   int _depth = jvms()->depth();  // cache call chain depth
3892 
3893   // Walk back up the JVM state to find the caller at the required
3894   // depth. NOTE that this code must perform the same logic as
3895   // vframeStream::security_get_caller_frame in that it must skip
3896   // Method.invoke() and auxiliary frames. Note also that depth is
3897   // 1-based (1 is the bottom of the inlining).
3898   int inlining_depth = _depth;
3899   JVMState* caller_jvms = NULL;
3900 
3901   if (inlining_depth > 0) {
3902     caller_jvms = jvms();
3903     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3904     do {
3905       // The following if-tests should be performed in this order
3906       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3907         // Skip a Method.invoke() or auxiliary frame
3908       } else if (caller_depth > 0) {
3909         // Skip real frame
3910         --caller_depth;
3911       } else {
3912         // We're done: reached desired caller after skipping.
3913         break;
3914       }
3915       caller_jvms = caller_jvms->caller();
3916       --inlining_depth;
3917     } while (inlining_depth > 0);
3918   }
3919 
3920   if (inlining_depth == 0) {
3921 #ifndef PRODUCT
3922     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3923       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3924       tty->print_cr("  JVM state at this point:");
3925       for (int i = _depth; i >= 1; i--) {
3926         ciMethod* m = jvms()->of_depth(i)->method();
3927         tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3928       }
3929     }
3930 #endif
3931     return false; // Reached end of inlining
3932   }
3933 
3934   // Acquire method holder as java.lang.Class
3935   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3936   ciInstance*      caller_mirror = caller_klass->java_mirror();
3937 
3938   // Push this as a constant
3939   set_result(makecon(TypeInstPtr::make(caller_mirror)));
3940 
3941 #ifndef PRODUCT
3942   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3943     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3944     tty->print_cr("  JVM state at this point:");
3945     for (int i = _depth; i >= 1; i--) {
3946       ciMethod* m = jvms()->of_depth(i)->method();
3947       tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3948     }
3949   }
3950 #endif
3951   return true;
3952 }
3953 
3954 // Helper routine for above
3955 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3956   ciMethod* method = jvms->method();
3957 
3958   // Is this the Method.invoke method itself?
3959   if (method->intrinsic_id() == vmIntrinsics::_invoke)
3960     return true;
3961 
3962   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3963   ciKlass* k = method->holder();
3964   if (k->is_instance_klass()) {
3965     ciInstanceKlass* ik = k->as_instance_klass();
3966     for (; ik != NULL; ik = ik->super()) {
3967       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3968           ik == env()->find_system_klass(ik->name())) {
3969         return true;
3970       }
3971     }
3972   }
3973 
3974   if (method->is_method_handle_intrinsic() ||
3975            method->is_compiled_lambda_form()) {
3976     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3977     return true;
3978   }
3979 
3980   return false;
3981 }
3982 
3983 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3984   Node* arg = argument(0);
3985   Node* result;
3986 
3987   switch (id) {
3988   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
3989   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
3990   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
3991   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
3992 
3993   case vmIntrinsics::_doubleToLongBits: {
3994     // two paths (plus control) merge in a wood
3995     RegionNode *r = new (C) RegionNode(3);
3996     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
3997 
3998     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
3999     // Build the boolean node
4000     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4001 
4002     // Branch either way.
4003     // NaN case is less traveled, which makes all the difference.
4004     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4005     Node *opt_isnan = _gvn.transform(ifisnan);
4006     assert( opt_isnan->is_If(), "Expect an IfNode");
4007     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4008     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4009 
4010     set_control(iftrue);
4011 
4012     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4013     Node *slow_result = longcon(nan_bits); // return NaN
4014     phi->init_req(1, _gvn.transform( slow_result ));
4015     r->init_req(1, iftrue);
4016 
4017     // Else fall through
4018     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4019     set_control(iffalse);
4020 
4021     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4022     r->init_req(2, iffalse);
4023 
4024     // Post merge
4025     set_control(_gvn.transform(r));
4026     record_for_igvn(r);
4027 
4028     C->set_has_split_ifs(true); // Has chance for split-if optimization
4029     result = phi;
4030     assert(result->bottom_type()->isa_long(), "must be");
4031     break;
4032   }
4033 
4034   case vmIntrinsics::_floatToIntBits: {
4035     // two paths (plus control) merge in a wood
4036     RegionNode *r = new (C) RegionNode(3);
4037     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4038 
4039     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4040     // Build the boolean node
4041     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4042 
4043     // Branch either way.
4044     // NaN case is less traveled, which makes all the difference.
4045     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4046     Node *opt_isnan = _gvn.transform(ifisnan);
4047     assert( opt_isnan->is_If(), "Expect an IfNode");
4048     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4049     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4050 
4051     set_control(iftrue);
4052 
4053     static const jint nan_bits = 0x7fc00000;
4054     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4055     phi->init_req(1, _gvn.transform( slow_result ));
4056     r->init_req(1, iftrue);
4057 
4058     // Else fall through
4059     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4060     set_control(iffalse);
4061 
4062     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4063     r->init_req(2, iffalse);
4064 
4065     // Post merge
4066     set_control(_gvn.transform(r));
4067     record_for_igvn(r);
4068 
4069     C->set_has_split_ifs(true); // Has chance for split-if optimization
4070     result = phi;
4071     assert(result->bottom_type()->isa_int(), "must be");
4072     break;
4073   }
4074 
4075   default:
4076     fatal_unexpected_iid(id);
4077     break;
4078   }
4079   set_result(_gvn.transform(result));
4080   return true;
4081 }
4082 
4083 #ifdef _LP64
4084 #define XTOP ,top() /*additional argument*/
4085 #else  //_LP64
4086 #define XTOP        /*no additional argument*/
4087 #endif //_LP64
4088 
4089 //----------------------inline_unsafe_copyMemory-------------------------
4090 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4091 bool LibraryCallKit::inline_unsafe_copyMemory() {
4092   if (callee()->is_static())  return false;  // caller must have the capability!
4093   null_check_receiver();  // null-check receiver
4094   if (stopped())  return true;
4095 
4096   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4097 
4098   Node* src_ptr =         argument(1);   // type: oop
4099   Node* src_off = ConvL2X(argument(2));  // type: long
4100   Node* dst_ptr =         argument(4);   // type: oop
4101   Node* dst_off = ConvL2X(argument(5));  // type: long
4102   Node* size    = ConvL2X(argument(7));  // type: long
4103 
4104   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4105          "fieldOffset must be byte-scaled");
4106 
4107   Node* src = make_unsafe_address(src_ptr, src_off);
4108   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4109 
4110   // Conservatively insert a memory barrier on all memory slices.
4111   // Do not let writes of the copy source or destination float below the copy.
4112   insert_mem_bar(Op_MemBarCPUOrder);
4113 
4114   // Call it.  Note that the length argument is not scaled.
4115   make_runtime_call(RC_LEAF|RC_NO_FP,
4116                     OptoRuntime::fast_arraycopy_Type(),
4117                     StubRoutines::unsafe_arraycopy(),
4118                     "unsafe_arraycopy",
4119                     TypeRawPtr::BOTTOM,
4120                     src, dst, size XTOP);
4121 
4122   // Do not let reads of the copy destination float above the copy.
4123   insert_mem_bar(Op_MemBarCPUOrder);
4124 
4125   return true;
4126 }
4127 
4128 //------------------------clone_coping-----------------------------------
4129 // Helper function for inline_native_clone.
4130 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4131   assert(obj_size != NULL, "");
4132   Node* raw_obj = alloc_obj->in(1);
4133   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4134 
4135   AllocateNode* alloc = NULL;
4136   if (ReduceBulkZeroing) {
4137     // We will be completely responsible for initializing this object -
4138     // mark Initialize node as complete.
4139     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4140     // The object was just allocated - there should be no any stores!
4141     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4142     // Mark as complete_with_arraycopy so that on AllocateNode
4143     // expansion, we know this AllocateNode is initialized by an array
4144     // copy and a StoreStore barrier exists after the array copy.
4145     alloc->initialization()->set_complete_with_arraycopy();
4146   }
4147 
4148   // Copy the fastest available way.
4149   // TODO: generate fields copies for small objects instead.
4150   Node* src  = obj;
4151   Node* dest = alloc_obj;
4152   Node* size = _gvn.transform(obj_size);
4153 
4154   // Exclude the header but include array length to copy by 8 bytes words.
4155   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4156   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4157                             instanceOopDesc::base_offset_in_bytes();
4158   // base_off:
4159   // 8  - 32-bit VM
4160   // 12 - 64-bit VM, compressed oops
4161   // 16 - 64-bit VM, normal oops
4162   if (base_off % BytesPerLong != 0) {
4163     assert(UseCompressedOops, "");
4164     if (is_array) {
4165       // Exclude length to copy by 8 bytes words.
4166       base_off += sizeof(int);
4167     } else {
4168       // Include klass to copy by 8 bytes words.
4169       base_off = instanceOopDesc::klass_offset_in_bytes();
4170     }
4171     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4172   }
4173   src  = basic_plus_adr(src,  base_off);
4174   dest = basic_plus_adr(dest, base_off);
4175 
4176   // Compute the length also, if needed:
4177   Node* countx = size;
4178   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
4179   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4180 
4181   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4182   bool disjoint_bases = true;
4183   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4184                                src, NULL, dest, NULL, countx,
4185                                /*dest_uninitialized*/true);
4186 
4187   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4188   if (card_mark) {
4189     assert(!is_array, "");
4190     // Put in store barrier for any and all oops we are sticking
4191     // into this object.  (We could avoid this if we could prove
4192     // that the object type contains no oop fields at all.)
4193     Node* no_particular_value = NULL;
4194     Node* no_particular_field = NULL;
4195     int raw_adr_idx = Compile::AliasIdxRaw;
4196     post_barrier(control(),
4197                  memory(raw_adr_type),
4198                  alloc_obj,
4199                  no_particular_field,
4200                  raw_adr_idx,
4201                  no_particular_value,
4202                  T_OBJECT,
4203                  false);
4204   }
4205 
4206   // Do not let reads from the cloned object float above the arraycopy.
4207   if (alloc != NULL) {
4208     // Do not let stores that initialize this object be reordered with
4209     // a subsequent store that would make this object accessible by
4210     // other threads.
4211     // Record what AllocateNode this StoreStore protects so that
4212     // escape analysis can go from the MemBarStoreStoreNode to the
4213     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4214     // based on the escape status of the AllocateNode.
4215     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4216   } else {
4217     insert_mem_bar(Op_MemBarCPUOrder);
4218   }
4219 }
4220 
4221 //------------------------inline_native_clone----------------------------
4222 // protected native Object java.lang.Object.clone();
4223 //
4224 // Here are the simple edge cases:
4225 //  null receiver => normal trap
4226 //  virtual and clone was overridden => slow path to out-of-line clone
4227 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4228 //
4229 // The general case has two steps, allocation and copying.
4230 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4231 //
4232 // Copying also has two cases, oop arrays and everything else.
4233 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4234 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4235 //
4236 // These steps fold up nicely if and when the cloned object's klass
4237 // can be sharply typed as an object array, a type array, or an instance.
4238 //
4239 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4240   PhiNode* result_val;
4241 
4242   // Set the reexecute bit for the interpreter to reexecute
4243   // the bytecode that invokes Object.clone if deoptimization happens.
4244   { PreserveReexecuteState preexecs(this);
4245     jvms()->set_should_reexecute(true);
4246 
4247     Node* obj = null_check_receiver();
4248     if (stopped())  return true;
4249 
4250     Node* obj_klass = load_object_klass(obj);
4251     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4252     const TypeOopPtr*   toop   = ((tklass != NULL)
4253                                 ? tklass->as_instance_type()
4254                                 : TypeInstPtr::NOTNULL);
4255 
4256     // Conservatively insert a memory barrier on all memory slices.
4257     // Do not let writes into the original float below the clone.
4258     insert_mem_bar(Op_MemBarCPUOrder);
4259 
4260     // paths into result_reg:
4261     enum {
4262       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4263       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4264       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4265       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4266       PATH_LIMIT
4267     };
4268     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4269     result_val             = new(C) PhiNode(result_reg,
4270                                             TypeInstPtr::NOTNULL);
4271     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4272     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4273                                             TypePtr::BOTTOM);
4274     record_for_igvn(result_reg);
4275 
4276     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4277     int raw_adr_idx = Compile::AliasIdxRaw;
4278 
4279     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4280     if (array_ctl != NULL) {
4281       // It's an array.
4282       PreserveJVMState pjvms(this);
4283       set_control(array_ctl);
4284       Node* obj_length = load_array_length(obj);
4285       Node* obj_size  = NULL;
4286       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4287 
4288       if (!use_ReduceInitialCardMarks()) {
4289         // If it is an oop array, it requires very special treatment,
4290         // because card marking is required on each card of the array.
4291         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4292         if (is_obja != NULL) {
4293           PreserveJVMState pjvms2(this);
4294           set_control(is_obja);
4295           // Generate a direct call to the right arraycopy function(s).
4296           bool disjoint_bases = true;
4297           bool length_never_negative = true;
4298           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4299                              obj, intcon(0), alloc_obj, intcon(0),
4300                              obj_length,
4301                              disjoint_bases, length_never_negative);
4302           result_reg->init_req(_objArray_path, control());
4303           result_val->init_req(_objArray_path, alloc_obj);
4304           result_i_o ->set_req(_objArray_path, i_o());
4305           result_mem ->set_req(_objArray_path, reset_memory());
4306         }
4307       }
4308       // Otherwise, there are no card marks to worry about.
4309       // (We can dispense with card marks if we know the allocation
4310       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4311       //  causes the non-eden paths to take compensating steps to
4312       //  simulate a fresh allocation, so that no further
4313       //  card marks are required in compiled code to initialize
4314       //  the object.)
4315 
4316       if (!stopped()) {
4317         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4318 
4319         // Present the results of the copy.
4320         result_reg->init_req(_array_path, control());
4321         result_val->init_req(_array_path, alloc_obj);
4322         result_i_o ->set_req(_array_path, i_o());
4323         result_mem ->set_req(_array_path, reset_memory());
4324       }
4325     }
4326 
4327     // We only go to the instance fast case code if we pass a number of guards.
4328     // The paths which do not pass are accumulated in the slow_region.
4329     RegionNode* slow_region = new (C) RegionNode(1);
4330     record_for_igvn(slow_region);
4331     if (!stopped()) {
4332       // It's an instance (we did array above).  Make the slow-path tests.
4333       // If this is a virtual call, we generate a funny guard.  We grab
4334       // the vtable entry corresponding to clone() from the target object.
4335       // If the target method which we are calling happens to be the
4336       // Object clone() method, we pass the guard.  We do not need this
4337       // guard for non-virtual calls; the caller is known to be the native
4338       // Object clone().
4339       if (is_virtual) {
4340         generate_virtual_guard(obj_klass, slow_region);
4341       }
4342 
4343       // The object must be cloneable and must not have a finalizer.
4344       // Both of these conditions may be checked in a single test.
4345       // We could optimize the cloneable test further, but we don't care.
4346       generate_access_flags_guard(obj_klass,
4347                                   // Test both conditions:
4348                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4349                                   // Must be cloneable but not finalizer:
4350                                   JVM_ACC_IS_CLONEABLE,
4351                                   slow_region);
4352     }
4353 
4354     if (!stopped()) {
4355       // It's an instance, and it passed the slow-path tests.
4356       PreserveJVMState pjvms(this);
4357       Node* obj_size  = NULL;
4358       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4359 
4360       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4361 
4362       // Present the results of the slow call.
4363       result_reg->init_req(_instance_path, control());
4364       result_val->init_req(_instance_path, alloc_obj);
4365       result_i_o ->set_req(_instance_path, i_o());
4366       result_mem ->set_req(_instance_path, reset_memory());
4367     }
4368 
4369     // Generate code for the slow case.  We make a call to clone().
4370     set_control(_gvn.transform(slow_region));
4371     if (!stopped()) {
4372       PreserveJVMState pjvms(this);
4373       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4374       Node* slow_result = set_results_for_java_call(slow_call);
4375       // this->control() comes from set_results_for_java_call
4376       result_reg->init_req(_slow_path, control());
4377       result_val->init_req(_slow_path, slow_result);
4378       result_i_o ->set_req(_slow_path, i_o());
4379       result_mem ->set_req(_slow_path, reset_memory());
4380     }
4381 
4382     // Return the combined state.
4383     set_control(    _gvn.transform(result_reg) );
4384     set_i_o(        _gvn.transform(result_i_o) );
4385     set_all_memory( _gvn.transform(result_mem) );
4386   } // original reexecute is set back here
4387 
4388   set_result(_gvn.transform(result_val));
4389   return true;
4390 }
4391 
4392 //------------------------------basictype2arraycopy----------------------------
4393 address LibraryCallKit::basictype2arraycopy(BasicType t,
4394                                             Node* src_offset,
4395                                             Node* dest_offset,
4396                                             bool disjoint_bases,
4397                                             const char* &name,
4398                                             bool dest_uninitialized) {
4399   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4400   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4401 
4402   bool aligned = false;
4403   bool disjoint = disjoint_bases;
4404 
4405   // if the offsets are the same, we can treat the memory regions as
4406   // disjoint, because either the memory regions are in different arrays,
4407   // or they are identical (which we can treat as disjoint.)  We can also
4408   // treat a copy with a destination index  less that the source index
4409   // as disjoint since a low->high copy will work correctly in this case.
4410   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4411       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4412     // both indices are constants
4413     int s_offs = src_offset_inttype->get_con();
4414     int d_offs = dest_offset_inttype->get_con();
4415     int element_size = type2aelembytes(t);
4416     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4417               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4418     if (s_offs >= d_offs)  disjoint = true;
4419   } else if (src_offset == dest_offset && src_offset != NULL) {
4420     // This can occur if the offsets are identical non-constants.
4421     disjoint = true;
4422   }
4423 
4424   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4425 }
4426 
4427 
4428 //------------------------------inline_arraycopy-----------------------
4429 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4430 //                                                      Object dest, int destPos,
4431 //                                                      int length);
4432 bool LibraryCallKit::inline_arraycopy() {
4433   // Get the arguments.
4434   Node* src         = argument(0);  // type: oop
4435   Node* src_offset  = argument(1);  // type: int
4436   Node* dest        = argument(2);  // type: oop
4437   Node* dest_offset = argument(3);  // type: int
4438   Node* length      = argument(4);  // type: int
4439 
4440   // Compile time checks.  If any of these checks cannot be verified at compile time,
4441   // we do not make a fast path for this call.  Instead, we let the call remain as it
4442   // is.  The checks we choose to mandate at compile time are:
4443   //
4444   // (1) src and dest are arrays.
4445   const Type* src_type  = src->Value(&_gvn);
4446   const Type* dest_type = dest->Value(&_gvn);
4447   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4448   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4449   if (top_src  == NULL || top_src->klass()  == NULL ||
4450       top_dest == NULL || top_dest->klass() == NULL) {
4451     // Conservatively insert a memory barrier on all memory slices.
4452     // Do not let writes into the source float below the arraycopy.
4453     insert_mem_bar(Op_MemBarCPUOrder);
4454 
4455     // Call StubRoutines::generic_arraycopy stub.
4456     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4457                        src, src_offset, dest, dest_offset, length);
4458 
4459     // Do not let reads from the destination float above the arraycopy.
4460     // Since we cannot type the arrays, we don't know which slices
4461     // might be affected.  We could restrict this barrier only to those
4462     // memory slices which pertain to array elements--but don't bother.
4463     if (!InsertMemBarAfterArraycopy)
4464       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4465       insert_mem_bar(Op_MemBarCPUOrder);
4466     return true;
4467   }
4468 
4469   // (2) src and dest arrays must have elements of the same BasicType
4470   // Figure out the size and type of the elements we will be copying.
4471   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4472   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4473   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4474   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4475 
4476   if (src_elem != dest_elem || dest_elem == T_VOID) {
4477     // The component types are not the same or are not recognized.  Punt.
4478     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4479     generate_slow_arraycopy(TypePtr::BOTTOM,
4480                             src, src_offset, dest, dest_offset, length,
4481                             /*dest_uninitialized*/false);
4482     return true;
4483   }
4484 
4485   //---------------------------------------------------------------------------
4486   // We will make a fast path for this call to arraycopy.
4487 
4488   // We have the following tests left to perform:
4489   //
4490   // (3) src and dest must not be null.
4491   // (4) src_offset must not be negative.
4492   // (5) dest_offset must not be negative.
4493   // (6) length must not be negative.
4494   // (7) src_offset + length must not exceed length of src.
4495   // (8) dest_offset + length must not exceed length of dest.
4496   // (9) each element of an oop array must be assignable
4497 
4498   RegionNode* slow_region = new (C) RegionNode(1);
4499   record_for_igvn(slow_region);
4500 
4501   // (3) operands must not be null
4502   // We currently perform our null checks with the null_check routine.
4503   // This means that the null exceptions will be reported in the caller
4504   // rather than (correctly) reported inside of the native arraycopy call.
4505   // This should be corrected, given time.  We do our null check with the
4506   // stack pointer restored.
4507   src  = null_check(src,  T_ARRAY);
4508   dest = null_check(dest, T_ARRAY);
4509 
4510   // (4) src_offset must not be negative.
4511   generate_negative_guard(src_offset, slow_region);
4512 
4513   // (5) dest_offset must not be negative.
4514   generate_negative_guard(dest_offset, slow_region);
4515 
4516   // (6) length must not be negative (moved to generate_arraycopy()).
4517   // generate_negative_guard(length, slow_region);
4518 
4519   // (7) src_offset + length must not exceed length of src.
4520   generate_limit_guard(src_offset, length,
4521                        load_array_length(src),
4522                        slow_region);
4523 
4524   // (8) dest_offset + length must not exceed length of dest.
4525   generate_limit_guard(dest_offset, length,
4526                        load_array_length(dest),
4527                        slow_region);
4528 
4529   // (9) each element of an oop array must be assignable
4530   // The generate_arraycopy subroutine checks this.
4531 
4532   // This is where the memory effects are placed:
4533   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4534   generate_arraycopy(adr_type, dest_elem,
4535                      src, src_offset, dest, dest_offset, length,
4536                      false, false, slow_region);
4537 
4538   return true;
4539 }
4540 
4541 //-----------------------------generate_arraycopy----------------------
4542 // Generate an optimized call to arraycopy.
4543 // Caller must guard against non-arrays.
4544 // Caller must determine a common array basic-type for both arrays.
4545 // Caller must validate offsets against array bounds.
4546 // The slow_region has already collected guard failure paths
4547 // (such as out of bounds length or non-conformable array types).
4548 // The generated code has this shape, in general:
4549 //
4550 //     if (length == 0)  return   // via zero_path
4551 //     slowval = -1
4552 //     if (types unknown) {
4553 //       slowval = call generic copy loop
4554 //       if (slowval == 0)  return  // via checked_path
4555 //     } else if (indexes in bounds) {
4556 //       if ((is object array) && !(array type check)) {
4557 //         slowval = call checked copy loop
4558 //         if (slowval == 0)  return  // via checked_path
4559 //       } else {
4560 //         call bulk copy loop
4561 //         return  // via fast_path
4562 //       }
4563 //     }
4564 //     // adjust params for remaining work:
4565 //     if (slowval != -1) {
4566 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4567 //     }
4568 //   slow_region:
4569 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4570 //     return  // via slow_call_path
4571 //
4572 // This routine is used from several intrinsics:  System.arraycopy,
4573 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4574 //
4575 void
4576 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4577                                    BasicType basic_elem_type,
4578                                    Node* src,  Node* src_offset,
4579                                    Node* dest, Node* dest_offset,
4580                                    Node* copy_length,
4581                                    bool disjoint_bases,
4582                                    bool length_never_negative,
4583                                    RegionNode* slow_region) {
4584 
4585   if (slow_region == NULL) {
4586     slow_region = new(C) RegionNode(1);
4587     record_for_igvn(slow_region);
4588   }
4589 
4590   Node* original_dest      = dest;
4591   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4592   bool  dest_uninitialized = false;
4593 
4594   // See if this is the initialization of a newly-allocated array.
4595   // If so, we will take responsibility here for initializing it to zero.
4596   // (Note:  Because tightly_coupled_allocation performs checks on the
4597   // out-edges of the dest, we need to avoid making derived pointers
4598   // from it until we have checked its uses.)
4599   if (ReduceBulkZeroing
4600       && !ZeroTLAB              // pointless if already zeroed
4601       && basic_elem_type != T_CONFLICT // avoid corner case
4602       && !src->eqv_uncast(dest)
4603       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4604           != NULL)
4605       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4606       && alloc->maybe_set_complete(&_gvn)) {
4607     // "You break it, you buy it."
4608     InitializeNode* init = alloc->initialization();
4609     assert(init->is_complete(), "we just did this");
4610     init->set_complete_with_arraycopy();
4611     assert(dest->is_CheckCastPP(), "sanity");
4612     assert(dest->in(0)->in(0) == init, "dest pinned");
4613     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4614     // From this point on, every exit path is responsible for
4615     // initializing any non-copied parts of the object to zero.
4616     // Also, if this flag is set we make sure that arraycopy interacts properly
4617     // with G1, eliding pre-barriers. See CR 6627983.
4618     dest_uninitialized = true;
4619   } else {
4620     // No zeroing elimination here.
4621     alloc             = NULL;
4622     //original_dest   = dest;
4623     //dest_uninitialized = false;
4624   }
4625 
4626   // Results are placed here:
4627   enum { fast_path        = 1,  // normal void-returning assembly stub
4628          checked_path     = 2,  // special assembly stub with cleanup
4629          slow_call_path   = 3,  // something went wrong; call the VM
4630          zero_path        = 4,  // bypass when length of copy is zero
4631          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4632          PATH_LIMIT       = 6
4633   };
4634   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4635   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4636   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4637   record_for_igvn(result_region);
4638   _gvn.set_type_bottom(result_i_o);
4639   _gvn.set_type_bottom(result_memory);
4640   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4641 
4642   // The slow_control path:
4643   Node* slow_control;
4644   Node* slow_i_o = i_o();
4645   Node* slow_mem = memory(adr_type);
4646   debug_only(slow_control = (Node*) badAddress);
4647 
4648   // Checked control path:
4649   Node* checked_control = top();
4650   Node* checked_mem     = NULL;
4651   Node* checked_i_o     = NULL;
4652   Node* checked_value   = NULL;
4653 
4654   if (basic_elem_type == T_CONFLICT) {
4655     assert(!dest_uninitialized, "");
4656     Node* cv = generate_generic_arraycopy(adr_type,
4657                                           src, src_offset, dest, dest_offset,
4658                                           copy_length, dest_uninitialized);
4659     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4660     checked_control = control();
4661     checked_i_o     = i_o();
4662     checked_mem     = memory(adr_type);
4663     checked_value   = cv;
4664     set_control(top());         // no fast path
4665   }
4666 
4667   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4668   if (not_pos != NULL) {
4669     PreserveJVMState pjvms(this);
4670     set_control(not_pos);
4671 
4672     // (6) length must not be negative.
4673     if (!length_never_negative) {
4674       generate_negative_guard(copy_length, slow_region);
4675     }
4676 
4677     // copy_length is 0.
4678     if (!stopped() && dest_uninitialized) {
4679       Node* dest_length = alloc->in(AllocateNode::ALength);
4680       if (copy_length->eqv_uncast(dest_length)
4681           || _gvn.find_int_con(dest_length, 1) <= 0) {
4682         // There is no zeroing to do. No need for a secondary raw memory barrier.
4683       } else {
4684         // Clear the whole thing since there are no source elements to copy.
4685         generate_clear_array(adr_type, dest, basic_elem_type,
4686                              intcon(0), NULL,
4687                              alloc->in(AllocateNode::AllocSize));
4688         // Use a secondary InitializeNode as raw memory barrier.
4689         // Currently it is needed only on this path since other
4690         // paths have stub or runtime calls as raw memory barriers.
4691         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4692                                                        Compile::AliasIdxRaw,
4693                                                        top())->as_Initialize();
4694         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4695       }
4696     }
4697 
4698     // Present the results of the fast call.
4699     result_region->init_req(zero_path, control());
4700     result_i_o   ->init_req(zero_path, i_o());
4701     result_memory->init_req(zero_path, memory(adr_type));
4702   }
4703 
4704   if (!stopped() && dest_uninitialized) {
4705     // We have to initialize the *uncopied* part of the array to zero.
4706     // The copy destination is the slice dest[off..off+len].  The other slices
4707     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4708     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4709     Node* dest_length = alloc->in(AllocateNode::ALength);
4710     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
4711                                                           copy_length) );
4712 
4713     // If there is a head section that needs zeroing, do it now.
4714     if (find_int_con(dest_offset, -1) != 0) {
4715       generate_clear_array(adr_type, dest, basic_elem_type,
4716                            intcon(0), dest_offset,
4717                            NULL);
4718     }
4719 
4720     // Next, perform a dynamic check on the tail length.
4721     // It is often zero, and we can win big if we prove this.
4722     // There are two wins:  Avoid generating the ClearArray
4723     // with its attendant messy index arithmetic, and upgrade
4724     // the copy to a more hardware-friendly word size of 64 bits.
4725     Node* tail_ctl = NULL;
4726     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4727       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
4728       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
4729       tail_ctl = generate_slow_guard(bol_lt, NULL);
4730       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4731     }
4732 
4733     // At this point, let's assume there is no tail.
4734     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4735       // There is no tail.  Try an upgrade to a 64-bit copy.
4736       bool didit = false;
4737       { PreserveJVMState pjvms(this);
4738         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4739                                          src, src_offset, dest, dest_offset,
4740                                          dest_size, dest_uninitialized);
4741         if (didit) {
4742           // Present the results of the block-copying fast call.
4743           result_region->init_req(bcopy_path, control());
4744           result_i_o   ->init_req(bcopy_path, i_o());
4745           result_memory->init_req(bcopy_path, memory(adr_type));
4746         }
4747       }
4748       if (didit)
4749         set_control(top());     // no regular fast path
4750     }
4751 
4752     // Clear the tail, if any.
4753     if (tail_ctl != NULL) {
4754       Node* notail_ctl = stopped() ? NULL : control();
4755       set_control(tail_ctl);
4756       if (notail_ctl == NULL) {
4757         generate_clear_array(adr_type, dest, basic_elem_type,
4758                              dest_tail, NULL,
4759                              dest_size);
4760       } else {
4761         // Make a local merge.
4762         Node* done_ctl = new(C) RegionNode(3);
4763         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4764         done_ctl->init_req(1, notail_ctl);
4765         done_mem->init_req(1, memory(adr_type));
4766         generate_clear_array(adr_type, dest, basic_elem_type,
4767                              dest_tail, NULL,
4768                              dest_size);
4769         done_ctl->init_req(2, control());
4770         done_mem->init_req(2, memory(adr_type));
4771         set_control( _gvn.transform(done_ctl) );
4772         set_memory(  _gvn.transform(done_mem), adr_type );
4773       }
4774     }
4775   }
4776 
4777   BasicType copy_type = basic_elem_type;
4778   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4779   if (!stopped() && copy_type == T_OBJECT) {
4780     // If src and dest have compatible element types, we can copy bits.
4781     // Types S[] and D[] are compatible if D is a supertype of S.
4782     //
4783     // If they are not, we will use checked_oop_disjoint_arraycopy,
4784     // which performs a fast optimistic per-oop check, and backs off
4785     // further to JVM_ArrayCopy on the first per-oop check that fails.
4786     // (Actually, we don't move raw bits only; the GC requires card marks.)
4787 
4788     // Get the klassOop for both src and dest
4789     Node* src_klass  = load_object_klass(src);
4790     Node* dest_klass = load_object_klass(dest);
4791 
4792     // Generate the subtype check.
4793     // This might fold up statically, or then again it might not.
4794     //
4795     // Non-static example:  Copying List<String>.elements to a new String[].
4796     // The backing store for a List<String> is always an Object[],
4797     // but its elements are always type String, if the generic types
4798     // are correct at the source level.
4799     //
4800     // Test S[] against D[], not S against D, because (probably)
4801     // the secondary supertype cache is less busy for S[] than S.
4802     // This usually only matters when D is an interface.
4803     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4804     // Plug failing path into checked_oop_disjoint_arraycopy
4805     if (not_subtype_ctrl != top()) {
4806       PreserveJVMState pjvms(this);
4807       set_control(not_subtype_ctrl);
4808       // (At this point we can assume disjoint_bases, since types differ.)
4809       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
4810       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4811       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4812       Node* dest_elem_klass = _gvn.transform(n1);
4813       Node* cv = generate_checkcast_arraycopy(adr_type,
4814                                               dest_elem_klass,
4815                                               src, src_offset, dest, dest_offset,
4816                                               ConvI2X(copy_length), dest_uninitialized);
4817       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4818       checked_control = control();
4819       checked_i_o     = i_o();
4820       checked_mem     = memory(adr_type);
4821       checked_value   = cv;
4822     }
4823     // At this point we know we do not need type checks on oop stores.
4824 
4825     // Let's see if we need card marks:
4826     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4827       // If we do not need card marks, copy using the jint or jlong stub.
4828       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4829       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4830              "sizes agree");
4831     }
4832   }
4833 
4834   if (!stopped()) {
4835     // Generate the fast path, if possible.
4836     PreserveJVMState pjvms(this);
4837     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4838                                  src, src_offset, dest, dest_offset,
4839                                  ConvI2X(copy_length), dest_uninitialized);
4840 
4841     // Present the results of the fast call.
4842     result_region->init_req(fast_path, control());
4843     result_i_o   ->init_req(fast_path, i_o());
4844     result_memory->init_req(fast_path, memory(adr_type));
4845   }
4846 
4847   // Here are all the slow paths up to this point, in one bundle:
4848   slow_control = top();
4849   if (slow_region != NULL)
4850     slow_control = _gvn.transform(slow_region);
4851   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
4852 
4853   set_control(checked_control);
4854   if (!stopped()) {
4855     // Clean up after the checked call.
4856     // The returned value is either 0 or -1^K,
4857     // where K = number of partially transferred array elements.
4858     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
4859     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
4860     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4861 
4862     // If it is 0, we are done, so transfer to the end.
4863     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
4864     result_region->init_req(checked_path, checks_done);
4865     result_i_o   ->init_req(checked_path, checked_i_o);
4866     result_memory->init_req(checked_path, checked_mem);
4867 
4868     // If it is not zero, merge into the slow call.
4869     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
4870     RegionNode* slow_reg2 = new(C) RegionNode(3);
4871     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
4872     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4873     record_for_igvn(slow_reg2);
4874     slow_reg2  ->init_req(1, slow_control);
4875     slow_i_o2  ->init_req(1, slow_i_o);
4876     slow_mem2  ->init_req(1, slow_mem);
4877     slow_reg2  ->init_req(2, control());
4878     slow_i_o2  ->init_req(2, checked_i_o);
4879     slow_mem2  ->init_req(2, checked_mem);
4880 
4881     slow_control = _gvn.transform(slow_reg2);
4882     slow_i_o     = _gvn.transform(slow_i_o2);
4883     slow_mem     = _gvn.transform(slow_mem2);
4884 
4885     if (alloc != NULL) {
4886       // We'll restart from the very beginning, after zeroing the whole thing.
4887       // This can cause double writes, but that's OK since dest is brand new.
4888       // So we ignore the low 31 bits of the value returned from the stub.
4889     } else {
4890       // We must continue the copy exactly where it failed, or else
4891       // another thread might see the wrong number of writes to dest.
4892       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
4893       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
4894       slow_offset->init_req(1, intcon(0));
4895       slow_offset->init_req(2, checked_offset);
4896       slow_offset  = _gvn.transform(slow_offset);
4897 
4898       // Adjust the arguments by the conditionally incoming offset.
4899       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
4900       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
4901       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
4902 
4903       // Tweak the node variables to adjust the code produced below:
4904       src_offset  = src_off_plus;
4905       dest_offset = dest_off_plus;
4906       copy_length = length_minus;
4907     }
4908   }
4909 
4910   set_control(slow_control);
4911   if (!stopped()) {
4912     // Generate the slow path, if needed.
4913     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4914 
4915     set_memory(slow_mem, adr_type);
4916     set_i_o(slow_i_o);
4917 
4918     if (dest_uninitialized) {
4919       generate_clear_array(adr_type, dest, basic_elem_type,
4920                            intcon(0), NULL,
4921                            alloc->in(AllocateNode::AllocSize));
4922     }
4923 
4924     generate_slow_arraycopy(adr_type,
4925                             src, src_offset, dest, dest_offset,
4926                             copy_length, /*dest_uninitialized*/false);
4927 
4928     result_region->init_req(slow_call_path, control());
4929     result_i_o   ->init_req(slow_call_path, i_o());
4930     result_memory->init_req(slow_call_path, memory(adr_type));
4931   }
4932 
4933   // Remove unused edges.
4934   for (uint i = 1; i < result_region->req(); i++) {
4935     if (result_region->in(i) == NULL)
4936       result_region->init_req(i, top());
4937   }
4938 
4939   // Finished; return the combined state.
4940   set_control( _gvn.transform(result_region) );
4941   set_i_o(     _gvn.transform(result_i_o)    );
4942   set_memory(  _gvn.transform(result_memory), adr_type );
4943 
4944   // The memory edges above are precise in order to model effects around
4945   // array copies accurately to allow value numbering of field loads around
4946   // arraycopy.  Such field loads, both before and after, are common in Java
4947   // collections and similar classes involving header/array data structures.
4948   //
4949   // But with low number of register or when some registers are used or killed
4950   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4951   // The next memory barrier is added to avoid it. If the arraycopy can be
4952   // optimized away (which it can, sometimes) then we can manually remove
4953   // the membar also.
4954   //
4955   // Do not let reads from the cloned object float above the arraycopy.
4956   if (alloc != NULL) {
4957     // Do not let stores that initialize this object be reordered with
4958     // a subsequent store that would make this object accessible by
4959     // other threads.
4960     // Record what AllocateNode this StoreStore protects so that
4961     // escape analysis can go from the MemBarStoreStoreNode to the
4962     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4963     // based on the escape status of the AllocateNode.
4964     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4965   } else if (InsertMemBarAfterArraycopy)
4966     insert_mem_bar(Op_MemBarCPUOrder);
4967 }
4968 
4969 
4970 // Helper function which determines if an arraycopy immediately follows
4971 // an allocation, with no intervening tests or other escapes for the object.
4972 AllocateArrayNode*
4973 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4974                                            RegionNode* slow_region) {
4975   if (stopped())             return NULL;  // no fast path
4976   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4977 
4978   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4979   if (alloc == NULL)  return NULL;
4980 
4981   Node* rawmem = memory(Compile::AliasIdxRaw);
4982   // Is the allocation's memory state untouched?
4983   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4984     // Bail out if there have been raw-memory effects since the allocation.
4985     // (Example:  There might have been a call or safepoint.)
4986     return NULL;
4987   }
4988   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4989   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4990     return NULL;
4991   }
4992 
4993   // There must be no unexpected observers of this allocation.
4994   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4995     Node* obs = ptr->fast_out(i);
4996     if (obs != this->map()) {
4997       return NULL;
4998     }
4999   }
5000 
5001   // This arraycopy must unconditionally follow the allocation of the ptr.
5002   Node* alloc_ctl = ptr->in(0);
5003   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5004 
5005   Node* ctl = control();
5006   while (ctl != alloc_ctl) {
5007     // There may be guards which feed into the slow_region.
5008     // Any other control flow means that we might not get a chance
5009     // to finish initializing the allocated object.
5010     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5011       IfNode* iff = ctl->in(0)->as_If();
5012       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5013       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5014       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5015         ctl = iff->in(0);       // This test feeds the known slow_region.
5016         continue;
5017       }
5018       // One more try:  Various low-level checks bottom out in
5019       // uncommon traps.  If the debug-info of the trap omits
5020       // any reference to the allocation, as we've already
5021       // observed, then there can be no objection to the trap.
5022       bool found_trap = false;
5023       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5024         Node* obs = not_ctl->fast_out(j);
5025         if (obs->in(0) == not_ctl && obs->is_Call() &&
5026             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5027           found_trap = true; break;
5028         }
5029       }
5030       if (found_trap) {
5031         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5032         continue;
5033       }
5034     }
5035     return NULL;
5036   }
5037 
5038   // If we get this far, we have an allocation which immediately
5039   // precedes the arraycopy, and we can take over zeroing the new object.
5040   // The arraycopy will finish the initialization, and provide
5041   // a new control state to which we will anchor the destination pointer.
5042 
5043   return alloc;
5044 }
5045 
5046 // Helper for initialization of arrays, creating a ClearArray.
5047 // It writes zero bits in [start..end), within the body of an array object.
5048 // The memory effects are all chained onto the 'adr_type' alias category.
5049 //
5050 // Since the object is otherwise uninitialized, we are free
5051 // to put a little "slop" around the edges of the cleared area,
5052 // as long as it does not go back into the array's header,
5053 // or beyond the array end within the heap.
5054 //
5055 // The lower edge can be rounded down to the nearest jint and the
5056 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5057 //
5058 // Arguments:
5059 //   adr_type           memory slice where writes are generated
5060 //   dest               oop of the destination array
5061 //   basic_elem_type    element type of the destination
5062 //   slice_idx          array index of first element to store
5063 //   slice_len          number of elements to store (or NULL)
5064 //   dest_size          total size in bytes of the array object
5065 //
5066 // Exactly one of slice_len or dest_size must be non-NULL.
5067 // If dest_size is non-NULL, zeroing extends to the end of the object.
5068 // If slice_len is non-NULL, the slice_idx value must be a constant.
5069 void
5070 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5071                                      Node* dest,
5072                                      BasicType basic_elem_type,
5073                                      Node* slice_idx,
5074                                      Node* slice_len,
5075                                      Node* dest_size) {
5076   // one or the other but not both of slice_len and dest_size:
5077   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5078   if (slice_len == NULL)  slice_len = top();
5079   if (dest_size == NULL)  dest_size = top();
5080 
5081   // operate on this memory slice:
5082   Node* mem = memory(adr_type); // memory slice to operate on
5083 
5084   // scaling and rounding of indexes:
5085   int scale = exact_log2(type2aelembytes(basic_elem_type));
5086   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5087   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5088   int bump_bit  = (-1 << scale) & BytesPerInt;
5089 
5090   // determine constant starts and ends
5091   const intptr_t BIG_NEG = -128;
5092   assert(BIG_NEG + 2*abase < 0, "neg enough");
5093   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5094   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5095   if (slice_len_con == 0) {
5096     return;                     // nothing to do here
5097   }
5098   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5099   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5100   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5101     assert(end_con < 0, "not two cons");
5102     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5103                        BytesPerLong);
5104   }
5105 
5106   if (start_con >= 0 && end_con >= 0) {
5107     // Constant start and end.  Simple.
5108     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5109                                        start_con, end_con, &_gvn);
5110   } else if (start_con >= 0 && dest_size != top()) {
5111     // Constant start, pre-rounded end after the tail of the array.
5112     Node* end = dest_size;
5113     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5114                                        start_con, end, &_gvn);
5115   } else if (start_con >= 0 && slice_len != top()) {
5116     // Constant start, non-constant end.  End needs rounding up.
5117     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5118     intptr_t end_base  = abase + (slice_idx_con << scale);
5119     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5120     Node*    end       = ConvI2X(slice_len);
5121     if (scale != 0)
5122       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
5123     end_base += end_round;
5124     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
5125     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
5126     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5127                                        start_con, end, &_gvn);
5128   } else if (start_con < 0 && dest_size != top()) {
5129     // Non-constant start, pre-rounded end after the tail of the array.
5130     // This is almost certainly a "round-to-end" operation.
5131     Node* start = slice_idx;
5132     start = ConvI2X(start);
5133     if (scale != 0)
5134       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
5135     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
5136     if ((bump_bit | clear_low) != 0) {
5137       int to_clear = (bump_bit | clear_low);
5138       // Align up mod 8, then store a jint zero unconditionally
5139       // just before the mod-8 boundary.
5140       if (((abase + bump_bit) & ~to_clear) - bump_bit
5141           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5142         bump_bit = 0;
5143         assert((abase & to_clear) == 0, "array base must be long-aligned");
5144       } else {
5145         // Bump 'start' up to (or past) the next jint boundary:
5146         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
5147         assert((abase & clear_low) == 0, "array base must be int-aligned");
5148       }
5149       // Round bumped 'start' down to jlong boundary in body of array.
5150       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
5151       if (bump_bit != 0) {
5152         // Store a zero to the immediately preceding jint:
5153         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
5154         Node* p1 = basic_plus_adr(dest, x1);
5155         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5156         mem = _gvn.transform(mem);
5157       }
5158     }
5159     Node* end = dest_size; // pre-rounded
5160     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5161                                        start, end, &_gvn);
5162   } else {
5163     // Non-constant start, unrounded non-constant end.
5164     // (Nobody zeroes a random midsection of an array using this routine.)
5165     ShouldNotReachHere();       // fix caller
5166   }
5167 
5168   // Done.
5169   set_memory(mem, adr_type);
5170 }
5171 
5172 
5173 bool
5174 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5175                                          BasicType basic_elem_type,
5176                                          AllocateNode* alloc,
5177                                          Node* src,  Node* src_offset,
5178                                          Node* dest, Node* dest_offset,
5179                                          Node* dest_size, bool dest_uninitialized) {
5180   // See if there is an advantage from block transfer.
5181   int scale = exact_log2(type2aelembytes(basic_elem_type));
5182   if (scale >= LogBytesPerLong)
5183     return false;               // it is already a block transfer
5184 
5185   // Look at the alignment of the starting offsets.
5186   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5187 
5188   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5189   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5190   if (src_off_con < 0 || dest_off_con < 0)
5191     // At present, we can only understand constants.
5192     return false;
5193 
5194   intptr_t src_off  = abase + (src_off_con  << scale);
5195   intptr_t dest_off = abase + (dest_off_con << scale);
5196 
5197   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5198     // Non-aligned; too bad.
5199     // One more chance:  Pick off an initial 32-bit word.
5200     // This is a common case, since abase can be odd mod 8.
5201     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5202         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5203       Node* sptr = basic_plus_adr(src,  src_off);
5204       Node* dptr = basic_plus_adr(dest, dest_off);
5205       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5206       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5207       src_off += BytesPerInt;
5208       dest_off += BytesPerInt;
5209     } else {
5210       return false;
5211     }
5212   }
5213   assert(src_off % BytesPerLong == 0, "");
5214   assert(dest_off % BytesPerLong == 0, "");
5215 
5216   // Do this copy by giant steps.
5217   Node* sptr  = basic_plus_adr(src,  src_off);
5218   Node* dptr  = basic_plus_adr(dest, dest_off);
5219   Node* countx = dest_size;
5220   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
5221   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5222 
5223   bool disjoint_bases = true;   // since alloc != NULL
5224   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5225                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5226 
5227   return true;
5228 }
5229 
5230 
5231 // Helper function; generates code for the slow case.
5232 // We make a call to a runtime method which emulates the native method,
5233 // but without the native wrapper overhead.
5234 void
5235 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5236                                         Node* src,  Node* src_offset,
5237                                         Node* dest, Node* dest_offset,
5238                                         Node* copy_length, bool dest_uninitialized) {
5239   assert(!dest_uninitialized, "Invariant");
5240   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5241                                  OptoRuntime::slow_arraycopy_Type(),
5242                                  OptoRuntime::slow_arraycopy_Java(),
5243                                  "slow_arraycopy", adr_type,
5244                                  src, src_offset, dest, dest_offset,
5245                                  copy_length);
5246 
5247   // Handle exceptions thrown by this fellow:
5248   make_slow_call_ex(call, env()->Throwable_klass(), false);
5249 }
5250 
5251 // Helper function; generates code for cases requiring runtime checks.
5252 Node*
5253 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5254                                              Node* dest_elem_klass,
5255                                              Node* src,  Node* src_offset,
5256                                              Node* dest, Node* dest_offset,
5257                                              Node* copy_length, bool dest_uninitialized) {
5258   if (stopped())  return NULL;
5259 
5260   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5261   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5262     return NULL;
5263   }
5264 
5265   // Pick out the parameters required to perform a store-check
5266   // for the target array.  This is an optimistic check.  It will
5267   // look in each non-null element's class, at the desired klass's
5268   // super_check_offset, for the desired klass.
5269   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5270   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5271   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5272   Node* check_offset = ConvI2X(_gvn.transform(n3));
5273   Node* check_value  = dest_elem_klass;
5274 
5275   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5276   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5277 
5278   // (We know the arrays are never conjoint, because their types differ.)
5279   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5280                                  OptoRuntime::checkcast_arraycopy_Type(),
5281                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5282                                  // five arguments, of which two are
5283                                  // intptr_t (jlong in LP64)
5284                                  src_start, dest_start,
5285                                  copy_length XTOP,
5286                                  check_offset XTOP,
5287                                  check_value);
5288 
5289   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5290 }
5291 
5292 
5293 // Helper function; generates code for cases requiring runtime checks.
5294 Node*
5295 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5296                                            Node* src,  Node* src_offset,
5297                                            Node* dest, Node* dest_offset,
5298                                            Node* copy_length, bool dest_uninitialized) {
5299   assert(!dest_uninitialized, "Invariant");
5300   if (stopped())  return NULL;
5301   address copyfunc_addr = StubRoutines::generic_arraycopy();
5302   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5303     return NULL;
5304   }
5305 
5306   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5307                     OptoRuntime::generic_arraycopy_Type(),
5308                     copyfunc_addr, "generic_arraycopy", adr_type,
5309                     src, src_offset, dest, dest_offset, copy_length);
5310 
5311   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5312 }
5313 
5314 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5315 void
5316 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5317                                              BasicType basic_elem_type,
5318                                              bool disjoint_bases,
5319                                              Node* src,  Node* src_offset,
5320                                              Node* dest, Node* dest_offset,
5321                                              Node* copy_length, bool dest_uninitialized) {
5322   if (stopped())  return;               // nothing to do
5323 
5324   Node* src_start  = src;
5325   Node* dest_start = dest;
5326   if (src_offset != NULL || dest_offset != NULL) {
5327     assert(src_offset != NULL && dest_offset != NULL, "");
5328     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5329     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5330   }
5331 
5332   // Figure out which arraycopy runtime method to call.
5333   const char* copyfunc_name = "arraycopy";
5334   address     copyfunc_addr =
5335       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5336                           disjoint_bases, copyfunc_name, dest_uninitialized);
5337 
5338   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5339   make_runtime_call(RC_LEAF|RC_NO_FP,
5340                     OptoRuntime::fast_arraycopy_Type(),
5341                     copyfunc_addr, copyfunc_name, adr_type,
5342                     src_start, dest_start, copy_length XTOP);
5343 }
5344 
5345 //----------------------------inline_reference_get----------------------------
5346 // public T java.lang.ref.Reference.get();
5347 bool LibraryCallKit::inline_reference_get() {
5348   const int referent_offset = java_lang_ref_Reference::referent_offset;
5349   guarantee(referent_offset > 0, "should have already been set");
5350 
5351   // Get the argument:
5352   Node* reference_obj = null_check_receiver();
5353   if (stopped()) return true;
5354 
5355   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5356 
5357   ciInstanceKlass* klass = env()->Object_klass();
5358   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5359 
5360   Node* no_ctrl = NULL;
5361   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5362 
5363   // Use the pre-barrier to record the value in the referent field
5364   pre_barrier(false /* do_load */,
5365               control(),
5366               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5367               result /* pre_val */,
5368               T_OBJECT);
5369 
5370   // Add memory barrier to prevent commoning reads from this field
5371   // across safepoint since GC can change its value.
5372   insert_mem_bar(Op_MemBarCPUOrder);
5373 
5374   set_result(result);
5375   return true;
5376 }
5377 
5378 
5379 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5380                                               bool is_exact=true, bool is_static=false) {
5381 
5382   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5383   assert(tinst != NULL, "obj is null");
5384   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5385   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5386 
5387   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5388                                                                           ciSymbol::make(fieldTypeString),
5389                                                                           is_static);
5390   if (field == NULL) return (Node *) NULL;
5391   assert (field != NULL, "undefined field");
5392 
5393   // Next code  copied from Parse::do_get_xxx():
5394 
5395   // Compute address and memory type.
5396   int offset  = field->offset_in_bytes();
5397   bool is_vol = field->is_volatile();
5398   ciType* field_klass = field->type();
5399   assert(field_klass->is_loaded(), "should be loaded");
5400   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5401   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5402   BasicType bt = field->layout_type();
5403 
5404   // Build the resultant type of the load
5405   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5406 
5407   // Build the load.
5408   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5409   return loadedField;
5410 }
5411 
5412 
5413 //------------------------------inline_aescrypt_Block-----------------------
5414 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5415   address stubAddr;
5416   const char *stubName;
5417   assert(UseAES, "need AES instruction support");
5418 
5419   switch(id) {
5420   case vmIntrinsics::_aescrypt_encryptBlock:
5421     stubAddr = StubRoutines::aescrypt_encryptBlock();
5422     stubName = "aescrypt_encryptBlock";
5423     break;
5424   case vmIntrinsics::_aescrypt_decryptBlock:
5425     stubAddr = StubRoutines::aescrypt_decryptBlock();
5426     stubName = "aescrypt_decryptBlock";
5427     break;
5428   }
5429   if (stubAddr == NULL) return false;
5430 
5431   Node* aescrypt_object = argument(0);
5432   Node* src             = argument(1);
5433   Node* src_offset      = argument(2);
5434   Node* dest            = argument(3);
5435   Node* dest_offset     = argument(4);
5436 
5437   // (1) src and dest are arrays.
5438   const Type* src_type = src->Value(&_gvn);
5439   const Type* dest_type = dest->Value(&_gvn);
5440   const TypeAryPtr* top_src = src_type->isa_aryptr();
5441   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5442   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5443 
5444   // for the quick and dirty code we will skip all the checks.
5445   // we are just trying to get the call to be generated.
5446   Node* src_start  = src;
5447   Node* dest_start = dest;
5448   if (src_offset != NULL || dest_offset != NULL) {
5449     assert(src_offset != NULL && dest_offset != NULL, "");
5450     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5451     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5452   }
5453 
5454   // now need to get the start of its expanded key array
5455   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5456   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5457   if (k_start == NULL) return false;
5458 
5459   // Call the stub.
5460   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5461                     stubAddr, stubName, TypePtr::BOTTOM,
5462                     src_start, dest_start, k_start);
5463 
5464   return true;
5465 }
5466 
5467 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5468 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5469   address stubAddr;
5470   const char *stubName;
5471 
5472   assert(UseAES, "need AES instruction support");
5473 
5474   switch(id) {
5475   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5476     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5477     stubName = "cipherBlockChaining_encryptAESCrypt";
5478     break;
5479   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5480     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5481     stubName = "cipherBlockChaining_decryptAESCrypt";
5482     break;
5483   }
5484   if (stubAddr == NULL) return false;
5485 
5486   Node* cipherBlockChaining_object = argument(0);
5487   Node* src                        = argument(1);
5488   Node* src_offset                 = argument(2);
5489   Node* len                        = argument(3);
5490   Node* dest                       = argument(4);
5491   Node* dest_offset                = argument(5);
5492 
5493   // (1) src and dest are arrays.
5494   const Type* src_type = src->Value(&_gvn);
5495   const Type* dest_type = dest->Value(&_gvn);
5496   const TypeAryPtr* top_src = src_type->isa_aryptr();
5497   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5498   assert (top_src  != NULL && top_src->klass()  != NULL
5499           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5500 
5501   // checks are the responsibility of the caller
5502   Node* src_start  = src;
5503   Node* dest_start = dest;
5504   if (src_offset != NULL || dest_offset != NULL) {
5505     assert(src_offset != NULL && dest_offset != NULL, "");
5506     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5507     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5508   }
5509 
5510   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5511   // (because of the predicated logic executed earlier).
5512   // so we cast it here safely.
5513   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5514 
5515   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5516   if (embeddedCipherObj == NULL) return false;
5517 
5518   // cast it to what we know it will be at runtime
5519   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5520   assert(tinst != NULL, "CBC obj is null");
5521   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5522   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5523   if (!klass_AESCrypt->is_loaded()) return false;
5524 
5525   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5526   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5527   const TypeOopPtr* xtype = aklass->as_instance_type();
5528   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5529   aescrypt_object = _gvn.transform(aescrypt_object);
5530 
5531   // we need to get the start of the aescrypt_object's expanded key array
5532   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5533   if (k_start == NULL) return false;
5534 
5535   // similarly, get the start address of the r vector
5536   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5537   if (objRvec == NULL) return false;
5538   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5539 
5540   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5541   make_runtime_call(RC_LEAF|RC_NO_FP,
5542                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5543                     stubAddr, stubName, TypePtr::BOTTOM,
5544                     src_start, dest_start, k_start, r_start, len);
5545 
5546   // return is void so no result needs to be pushed
5547 
5548   return true;
5549 }
5550 
5551 //------------------------------get_key_start_from_aescrypt_object-----------------------
5552 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5553   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5554   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5555   if (objAESCryptKey == NULL) return (Node *) NULL;
5556 
5557   // now have the array, need to get the start address of the K array
5558   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5559   return k_start;
5560 }
5561 
5562 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5563 // Return node representing slow path of predicate check.
5564 // the pseudo code we want to emulate with this predicate is:
5565 // for encryption:
5566 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5567 // for decryption:
5568 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5569 //    note cipher==plain is more conservative than the original java code but that's OK
5570 //
5571 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5572   // First, check receiver for NULL since it is virtual method.
5573   Node* objCBC = argument(0);
5574   objCBC = null_check(objCBC);
5575 
5576   if (stopped()) return NULL; // Always NULL
5577 
5578   // Load embeddedCipher field of CipherBlockChaining object.
5579   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5580 
5581   // get AESCrypt klass for instanceOf check
5582   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5583   // will have same classloader as CipherBlockChaining object
5584   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5585   assert(tinst != NULL, "CBCobj is null");
5586   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5587 
5588   // we want to do an instanceof comparison against the AESCrypt class
5589   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5590   if (!klass_AESCrypt->is_loaded()) {
5591     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5592     Node* ctrl = control();
5593     set_control(top()); // no regular fast path
5594     return ctrl;
5595   }
5596   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5597 
5598   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5599   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5600   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5601 
5602   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5603 
5604   // for encryption, we are done
5605   if (!decrypting)
5606     return instof_false;  // even if it is NULL
5607 
5608   // for decryption, we need to add a further check to avoid
5609   // taking the intrinsic path when cipher and plain are the same
5610   // see the original java code for why.
5611   RegionNode* region = new(C) RegionNode(3);
5612   region->init_req(1, instof_false);
5613   Node* src = argument(1);
5614   Node* dest = argument(4);
5615   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5616   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5617   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5618   region->init_req(2, src_dest_conjoint);
5619 
5620   record_for_igvn(region);
5621   return _gvn.transform(region);
5622 }