1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/machnode.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/node.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/type.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 class RegMask;
  39 // #include "phase.hpp"
  40 class PhaseTransform;
  41 class PhaseGVN;
  42 
  43 // Arena we are currently building Nodes in
  44 const uint Node::NotAMachineReg = 0xffff0000;
  45 
  46 #ifndef PRODUCT
  47 extern int nodes_created;
  48 #endif
  49 
  50 #ifdef ASSERT
  51 
  52 //-------------------------- construct_node------------------------------------
  53 // Set a breakpoint here to identify where a particular node index is built.
  54 void Node::verify_construction() {
  55   _debug_orig = NULL;
  56   int old_debug_idx = Compile::debug_idx();
  57   int new_debug_idx = old_debug_idx+1;
  58   if (new_debug_idx > 0) {
  59     // Arrange that the lowest five decimal digits of _debug_idx
  60     // will repeat those of _idx. In case this is somehow pathological,
  61     // we continue to assign negative numbers (!) consecutively.
  62     const int mod = 100000;
  63     int bump = (int)(_idx - new_debug_idx) % mod;
  64     if (bump < 0)  bump += mod;
  65     assert(bump >= 0 && bump < mod, "");
  66     new_debug_idx += bump;
  67   }
  68   Compile::set_debug_idx(new_debug_idx);
  69   set_debug_idx( new_debug_idx );
  70   assert(Compile::current()->unique() < (UINT_MAX - 1), "Node limit exceeded UINT_MAX");
  71   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  72     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  73     BREAKPOINT;
  74   }
  75 #if OPTO_DU_ITERATOR_ASSERT
  76   _last_del = NULL;
  77   _del_tick = 0;
  78 #endif
  79   _hash_lock = 0;
  80 }
  81 
  82 
  83 // #ifdef ASSERT ...
  84 
  85 #if OPTO_DU_ITERATOR_ASSERT
  86 void DUIterator_Common::sample(const Node* node) {
  87   _vdui     = VerifyDUIterators;
  88   _node     = node;
  89   _outcnt   = node->_outcnt;
  90   _del_tick = node->_del_tick;
  91   _last     = NULL;
  92 }
  93 
  94 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  95   assert(_node     == node, "consistent iterator source");
  96   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
  97 }
  98 
  99 void DUIterator_Common::verify_resync() {
 100   // Ensure that the loop body has just deleted the last guy produced.
 101   const Node* node = _node;
 102   // Ensure that at least one copy of the last-seen edge was deleted.
 103   // Note:  It is OK to delete multiple copies of the last-seen edge.
 104   // Unfortunately, we have no way to verify that all the deletions delete
 105   // that same edge.  On this point we must use the Honor System.
 106   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 107   assert(node->_last_del == _last, "must have deleted the edge just produced");
 108   // We liked this deletion, so accept the resulting outcnt and tick.
 109   _outcnt   = node->_outcnt;
 110   _del_tick = node->_del_tick;
 111 }
 112 
 113 void DUIterator_Common::reset(const DUIterator_Common& that) {
 114   if (this == &that)  return;  // ignore assignment to self
 115   if (!_vdui) {
 116     // We need to initialize everything, overwriting garbage values.
 117     _last = that._last;
 118     _vdui = that._vdui;
 119   }
 120   // Note:  It is legal (though odd) for an iterator over some node x
 121   // to be reassigned to iterate over another node y.  Some doubly-nested
 122   // progress loops depend on being able to do this.
 123   const Node* node = that._node;
 124   // Re-initialize everything, except _last.
 125   _node     = node;
 126   _outcnt   = node->_outcnt;
 127   _del_tick = node->_del_tick;
 128 }
 129 
 130 void DUIterator::sample(const Node* node) {
 131   DUIterator_Common::sample(node);      // Initialize the assertion data.
 132   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 133 }
 134 
 135 void DUIterator::verify(const Node* node, bool at_end_ok) {
 136   DUIterator_Common::verify(node, at_end_ok);
 137   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 138 }
 139 
 140 void DUIterator::verify_increment() {
 141   if (_refresh_tick & 1) {
 142     // We have refreshed the index during this loop.
 143     // Fix up _idx to meet asserts.
 144     if (_idx > _outcnt)  _idx = _outcnt;
 145   }
 146   verify(_node, true);
 147 }
 148 
 149 void DUIterator::verify_resync() {
 150   // Note:  We do not assert on _outcnt, because insertions are OK here.
 151   DUIterator_Common::verify_resync();
 152   // Make sure we are still in sync, possibly with no more out-edges:
 153   verify(_node, true);
 154 }
 155 
 156 void DUIterator::reset(const DUIterator& that) {
 157   if (this == &that)  return;  // self assignment is always a no-op
 158   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 159   assert(that._idx          == 0, "assign only the result of Node::outs()");
 160   assert(_idx               == that._idx, "already assigned _idx");
 161   if (!_vdui) {
 162     // We need to initialize everything, overwriting garbage values.
 163     sample(that._node);
 164   } else {
 165     DUIterator_Common::reset(that);
 166     if (_refresh_tick & 1) {
 167       _refresh_tick++;                  // Clear the "was refreshed" flag.
 168     }
 169     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 170   }
 171 }
 172 
 173 void DUIterator::refresh() {
 174   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 175   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 176 }
 177 
 178 void DUIterator::verify_finish() {
 179   // If the loop has killed the node, do not require it to re-run.
 180   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 181   // If this assert triggers, it means that a loop used refresh_out_pos
 182   // to re-synch an iteration index, but the loop did not correctly
 183   // re-run itself, using a "while (progress)" construct.
 184   // This iterator enforces the rule that you must keep trying the loop
 185   // until it "runs clean" without any need for refreshing.
 186   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 187 }
 188 
 189 
 190 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 191   DUIterator_Common::verify(node, at_end_ok);
 192   Node** out    = node->_out;
 193   uint   cnt    = node->_outcnt;
 194   assert(cnt == _outcnt, "no insertions allowed");
 195   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 196   // This last check is carefully designed to work for NO_OUT_ARRAY.
 197 }
 198 
 199 void DUIterator_Fast::verify_limit() {
 200   const Node* node = _node;
 201   verify(node, true);
 202   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 203 }
 204 
 205 void DUIterator_Fast::verify_resync() {
 206   const Node* node = _node;
 207   if (_outp == node->_out + _outcnt) {
 208     // Note that the limit imax, not the pointer i, gets updated with the
 209     // exact count of deletions.  (For the pointer it's always "--i".)
 210     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 211     // This is a limit pointer, with a name like "imax".
 212     // Fudge the _last field so that the common assert will be happy.
 213     _last = (Node*) node->_last_del;
 214     DUIterator_Common::verify_resync();
 215   } else {
 216     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 217     // A normal internal pointer.
 218     DUIterator_Common::verify_resync();
 219     // Make sure we are still in sync, possibly with no more out-edges:
 220     verify(node, true);
 221   }
 222 }
 223 
 224 void DUIterator_Fast::verify_relimit(uint n) {
 225   const Node* node = _node;
 226   assert((int)n > 0, "use imax -= n only with a positive count");
 227   // This must be a limit pointer, with a name like "imax".
 228   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 229   // The reported number of deletions must match what the node saw.
 230   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 231   // Fudge the _last field so that the common assert will be happy.
 232   _last = (Node*) node->_last_del;
 233   DUIterator_Common::verify_resync();
 234 }
 235 
 236 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 237   assert(_outp              == that._outp, "already assigned _outp");
 238   DUIterator_Common::reset(that);
 239 }
 240 
 241 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 242   // at_end_ok means the _outp is allowed to underflow by 1
 243   _outp += at_end_ok;
 244   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 245   _outp -= at_end_ok;
 246   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 247 }
 248 
 249 void DUIterator_Last::verify_limit() {
 250   // Do not require the limit address to be resynched.
 251   //verify(node, true);
 252   assert(_outp == _node->_out, "limit still correct");
 253 }
 254 
 255 void DUIterator_Last::verify_step(uint num_edges) {
 256   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 257   _outcnt   -= num_edges;
 258   _del_tick += num_edges;
 259   // Make sure we are still in sync, possibly with no more out-edges:
 260   const Node* node = _node;
 261   verify(node, true);
 262   assert(node->_last_del == _last, "must have deleted the edge just produced");
 263 }
 264 
 265 #endif //OPTO_DU_ITERATOR_ASSERT
 266 
 267 
 268 #endif //ASSERT
 269 
 270 
 271 // This constant used to initialize _out may be any non-null value.
 272 // The value NULL is reserved for the top node only.
 273 #define NO_OUT_ARRAY ((Node**)-1)
 274 
 275 // This funny expression handshakes with Node::operator new
 276 // to pull Compile::current out of the new node's _out field,
 277 // and then calls a subroutine which manages most field
 278 // initializations.  The only one which is tricky is the
 279 // _idx field, which is const, and so must be initialized
 280 // by a return value, not an assignment.
 281 //
 282 // (Aren't you thankful that Java finals don't require so many tricks?)
 283 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 284 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 285 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 286 #endif
 287 
 288 // Out-of-line code from node constructors.
 289 // Executed only when extra debug info. is being passed around.
 290 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 291   C->set_node_notes_at(idx, nn);
 292 }
 293 
 294 // Shared initialization code.
 295 inline int Node::Init(int req, Compile* C) {
 296   assert(Compile::current() == C, "must use operator new(Compile*)");
 297   int idx = C->next_unique();
 298 
 299   // Allocate memory for the necessary number of edges.
 300   if (req > 0) {
 301     // Allocate space for _in array to have double alignment.
 302     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 303 #ifdef ASSERT
 304     _in[req-1] = this; // magic cookie for assertion check
 305 #endif
 306   }
 307   // If there are default notes floating around, capture them:
 308   Node_Notes* nn = C->default_node_notes();
 309   if (nn != NULL)  init_node_notes(C, idx, nn);
 310 
 311   // Note:  At this point, C is dead,
 312   // and we begin to initialize the new Node.
 313 
 314   _cnt = _max = req;
 315   _outcnt = _outmax = 0;
 316   _class_id = Class_Node;
 317   _flags = 0;
 318   _out = NO_OUT_ARRAY;
 319   return idx;
 320 }
 321 
 322 //------------------------------Node-------------------------------------------
 323 // Create a Node, with a given number of required edges.
 324 Node::Node(uint req)
 325   : _idx(IDX_INIT(req))
 326 {
 327   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
 328   debug_only( verify_construction() );
 329   NOT_PRODUCT(nodes_created++);
 330   if (req == 0) {
 331     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 332     _in = NULL;
 333   } else {
 334     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 335     Node** to = _in;
 336     for(uint i = 0; i < req; i++) {
 337       to[i] = NULL;
 338     }
 339   }
 340 }
 341 
 342 //------------------------------Node-------------------------------------------
 343 Node::Node(Node *n0)
 344   : _idx(IDX_INIT(1))
 345 {
 346   debug_only( verify_construction() );
 347   NOT_PRODUCT(nodes_created++);
 348   // Assert we allocated space for input array already
 349   assert( _in[0] == this, "Must pass arg count to 'new'" );
 350   assert( is_not_dead(n0), "can not use dead node");
 351   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 352 }
 353 
 354 //------------------------------Node-------------------------------------------
 355 Node::Node(Node *n0, Node *n1)
 356   : _idx(IDX_INIT(2))
 357 {
 358   debug_only( verify_construction() );
 359   NOT_PRODUCT(nodes_created++);
 360   // Assert we allocated space for input array already
 361   assert( _in[1] == this, "Must pass arg count to 'new'" );
 362   assert( is_not_dead(n0), "can not use dead node");
 363   assert( is_not_dead(n1), "can not use dead node");
 364   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 365   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 366 }
 367 
 368 //------------------------------Node-------------------------------------------
 369 Node::Node(Node *n0, Node *n1, Node *n2)
 370   : _idx(IDX_INIT(3))
 371 {
 372   debug_only( verify_construction() );
 373   NOT_PRODUCT(nodes_created++);
 374   // Assert we allocated space for input array already
 375   assert( _in[2] == this, "Must pass arg count to 'new'" );
 376   assert( is_not_dead(n0), "can not use dead node");
 377   assert( is_not_dead(n1), "can not use dead node");
 378   assert( is_not_dead(n2), "can not use dead node");
 379   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 380   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 381   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 382 }
 383 
 384 //------------------------------Node-------------------------------------------
 385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 386   : _idx(IDX_INIT(4))
 387 {
 388   debug_only( verify_construction() );
 389   NOT_PRODUCT(nodes_created++);
 390   // Assert we allocated space for input array already
 391   assert( _in[3] == this, "Must pass arg count to 'new'" );
 392   assert( is_not_dead(n0), "can not use dead node");
 393   assert( is_not_dead(n1), "can not use dead node");
 394   assert( is_not_dead(n2), "can not use dead node");
 395   assert( is_not_dead(n3), "can not use dead node");
 396   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 397   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 398   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 399   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 400 }
 401 
 402 //------------------------------Node-------------------------------------------
 403 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 404   : _idx(IDX_INIT(5))
 405 {
 406   debug_only( verify_construction() );
 407   NOT_PRODUCT(nodes_created++);
 408   // Assert we allocated space for input array already
 409   assert( _in[4] == this, "Must pass arg count to 'new'" );
 410   assert( is_not_dead(n0), "can not use dead node");
 411   assert( is_not_dead(n1), "can not use dead node");
 412   assert( is_not_dead(n2), "can not use dead node");
 413   assert( is_not_dead(n3), "can not use dead node");
 414   assert( is_not_dead(n4), "can not use dead node");
 415   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 416   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 417   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 418   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 419   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 420 }
 421 
 422 //------------------------------Node-------------------------------------------
 423 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 424                      Node *n4, Node *n5)
 425   : _idx(IDX_INIT(6))
 426 {
 427   debug_only( verify_construction() );
 428   NOT_PRODUCT(nodes_created++);
 429   // Assert we allocated space for input array already
 430   assert( _in[5] == this, "Must pass arg count to 'new'" );
 431   assert( is_not_dead(n0), "can not use dead node");
 432   assert( is_not_dead(n1), "can not use dead node");
 433   assert( is_not_dead(n2), "can not use dead node");
 434   assert( is_not_dead(n3), "can not use dead node");
 435   assert( is_not_dead(n4), "can not use dead node");
 436   assert( is_not_dead(n5), "can not use dead node");
 437   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 438   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 439   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 440   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 441   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 442   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 443 }
 444 
 445 //------------------------------Node-------------------------------------------
 446 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 447                      Node *n4, Node *n5, Node *n6)
 448   : _idx(IDX_INIT(7))
 449 {
 450   debug_only( verify_construction() );
 451   NOT_PRODUCT(nodes_created++);
 452   // Assert we allocated space for input array already
 453   assert( _in[6] == this, "Must pass arg count to 'new'" );
 454   assert( is_not_dead(n0), "can not use dead node");
 455   assert( is_not_dead(n1), "can not use dead node");
 456   assert( is_not_dead(n2), "can not use dead node");
 457   assert( is_not_dead(n3), "can not use dead node");
 458   assert( is_not_dead(n4), "can not use dead node");
 459   assert( is_not_dead(n5), "can not use dead node");
 460   assert( is_not_dead(n6), "can not use dead node");
 461   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 462   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 463   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 464   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 465   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 466   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 467   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 468 }
 469 
 470 
 471 //------------------------------clone------------------------------------------
 472 // Clone a Node.
 473 Node *Node::clone() const {
 474   Compile *compile = Compile::current();
 475   uint s = size_of();           // Size of inherited Node
 476   Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 477   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 478   // Set the new input pointer array
 479   n->_in = (Node**)(((char*)n)+s);
 480   // Cannot share the old output pointer array, so kill it
 481   n->_out = NO_OUT_ARRAY;
 482   // And reset the counters to 0
 483   n->_outcnt = 0;
 484   n->_outmax = 0;
 485   // Unlock this guy, since he is not in any hash table.
 486   debug_only(n->_hash_lock = 0);
 487   // Walk the old node's input list to duplicate its edges
 488   uint i;
 489   for( i = 0; i < len(); i++ ) {
 490     Node *x = in(i);
 491     n->_in[i] = x;
 492     if (x != NULL) x->add_out(n);
 493   }
 494   if (is_macro())
 495     compile->add_macro_node(n);
 496   if (is_expensive())
 497     compile->add_expensive_node(n);
 498 
 499   n->set_idx(compile->next_unique()); // Get new unique index as well
 500   debug_only( n->verify_construction() );
 501   NOT_PRODUCT(nodes_created++);
 502   // Do not patch over the debug_idx of a clone, because it makes it
 503   // impossible to break on the clone's moment of creation.
 504   //debug_only( n->set_debug_idx( debug_idx() ) );
 505 
 506   compile->copy_node_notes_to(n, (Node*) this);
 507 
 508   // MachNode clone
 509   uint nopnds;
 510   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 511     MachNode *mach  = n->as_Mach();
 512     MachNode *mthis = this->as_Mach();
 513     // Get address of _opnd_array.
 514     // It should be the same offset since it is the clone of this node.
 515     MachOper **from = mthis->_opnds;
 516     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 517                     pointer_delta((const void*)from,
 518                                   (const void*)(&mthis->_opnds), 1));
 519     mach->_opnds = to;
 520     for ( uint i = 0; i < nopnds; ++i ) {
 521       to[i] = from[i]->clone(compile);
 522     }
 523   }
 524   // cloning CallNode may need to clone JVMState
 525   if (n->is_Call()) {
 526     CallNode *call = n->as_Call();
 527     call->clone_jvms();
 528   }
 529   return n;                     // Return the clone
 530 }
 531 
 532 //---------------------------setup_is_top--------------------------------------
 533 // Call this when changing the top node, to reassert the invariants
 534 // required by Node::is_top.  See Compile::set_cached_top_node.
 535 void Node::setup_is_top() {
 536   if (this == (Node*)Compile::current()->top()) {
 537     // This node has just become top.  Kill its out array.
 538     _outcnt = _outmax = 0;
 539     _out = NULL;                           // marker value for top
 540     assert(is_top(), "must be top");
 541   } else {
 542     if (_out == NULL)  _out = NO_OUT_ARRAY;
 543     assert(!is_top(), "must not be top");
 544   }
 545 }
 546 
 547 
 548 //------------------------------~Node------------------------------------------
 549 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 550 extern int reclaim_idx ;
 551 extern int reclaim_in  ;
 552 extern int reclaim_node;
 553 void Node::destruct() {
 554   // Eagerly reclaim unique Node numberings
 555   Compile* compile = Compile::current();
 556   if ((uint)_idx+1 == compile->unique()) {
 557     compile->set_unique(compile->unique()-1);
 558 #ifdef ASSERT
 559     reclaim_idx++;
 560 #endif
 561   }
 562   // Clear debug info:
 563   Node_Notes* nn = compile->node_notes_at(_idx);
 564   if (nn != NULL)  nn->clear();
 565   // Walk the input array, freeing the corresponding output edges
 566   _cnt = _max;  // forget req/prec distinction
 567   uint i;
 568   for( i = 0; i < _max; i++ ) {
 569     set_req(i, NULL);
 570     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 571   }
 572   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 573   // See if the input array was allocated just prior to the object
 574   int edge_size = _max*sizeof(void*);
 575   int out_edge_size = _outmax*sizeof(void*);
 576   char *edge_end = ((char*)_in) + edge_size;
 577   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 578   char *out_edge_end = out_array + out_edge_size;
 579   int node_size = size_of();
 580 
 581   // Free the output edge array
 582   if (out_edge_size > 0) {
 583 #ifdef ASSERT
 584     if( out_edge_end == compile->node_arena()->hwm() )
 585       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 586 #endif
 587     compile->node_arena()->Afree(out_array, out_edge_size);
 588   }
 589 
 590   // Free the input edge array and the node itself
 591   if( edge_end == (char*)this ) {
 592 #ifdef ASSERT
 593     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 594       reclaim_in  += edge_size;
 595       reclaim_node+= node_size;
 596     }
 597 #else
 598     // It was; free the input array and object all in one hit
 599     compile->node_arena()->Afree(_in,edge_size+node_size);
 600 #endif
 601   } else {
 602 
 603     // Free just the input array
 604 #ifdef ASSERT
 605     if( edge_end == compile->node_arena()->hwm() )
 606       reclaim_in  += edge_size;
 607 #endif
 608     compile->node_arena()->Afree(_in,edge_size);
 609 
 610     // Free just the object
 611 #ifdef ASSERT
 612     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 613       reclaim_node+= node_size;
 614 #else
 615     compile->node_arena()->Afree(this,node_size);
 616 #endif
 617   }
 618   if (is_macro()) {
 619     compile->remove_macro_node(this);
 620   }
 621   if (is_expensive()) {
 622     compile->remove_expensive_node(this);
 623   }
 624 #ifdef ASSERT
 625   // We will not actually delete the storage, but we'll make the node unusable.
 626   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 627   _in = _out = (Node**) badAddress;
 628   _max = _cnt = _outmax = _outcnt = 0;
 629 #endif
 630 }
 631 
 632 //------------------------------grow-------------------------------------------
 633 // Grow the input array, making space for more edges
 634 void Node::grow( uint len ) {
 635   Arena* arena = Compile::current()->node_arena();
 636   uint new_max = _max;
 637   if( new_max == 0 ) {
 638     _max = 4;
 639     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 640     Node** to = _in;
 641     to[0] = NULL;
 642     to[1] = NULL;
 643     to[2] = NULL;
 644     to[3] = NULL;
 645     return;
 646   }
 647   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 648   // Trimming to limit allows a uint8 to handle up to 255 edges.
 649   // Previously I was using only powers-of-2 which peaked at 128 edges.
 650   //if( new_max >= limit ) new_max = limit-1;
 651   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 652   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 653   _max = new_max;               // Record new max length
 654   // This assertion makes sure that Node::_max is wide enough to
 655   // represent the numerical value of new_max.
 656   assert(_max == new_max && _max > len, "int width of _max is too small");
 657 }
 658 
 659 //-----------------------------out_grow----------------------------------------
 660 // Grow the input array, making space for more edges
 661 void Node::out_grow( uint len ) {
 662   assert(!is_top(), "cannot grow a top node's out array");
 663   Arena* arena = Compile::current()->node_arena();
 664   uint new_max = _outmax;
 665   if( new_max == 0 ) {
 666     _outmax = 4;
 667     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 668     return;
 669   }
 670   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 671   // Trimming to limit allows a uint8 to handle up to 255 edges.
 672   // Previously I was using only powers-of-2 which peaked at 128 edges.
 673   //if( new_max >= limit ) new_max = limit-1;
 674   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 675   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 676   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 677   _outmax = new_max;               // Record new max length
 678   // This assertion makes sure that Node::_max is wide enough to
 679   // represent the numerical value of new_max.
 680   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 681 }
 682 
 683 #ifdef ASSERT
 684 //------------------------------is_dead----------------------------------------
 685 bool Node::is_dead() const {
 686   // Mach and pinch point nodes may look like dead.
 687   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 688     return false;
 689   for( uint i = 0; i < _max; i++ )
 690     if( _in[i] != NULL )
 691       return false;
 692   dump();
 693   return true;
 694 }
 695 #endif
 696 
 697 
 698 //------------------------------is_unreachable---------------------------------
 699 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 700   assert(!is_Mach(), "doesn't work with MachNodes");
 701   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 702 }
 703 
 704 //------------------------------add_req----------------------------------------
 705 // Add a new required input at the end
 706 void Node::add_req( Node *n ) {
 707   assert( is_not_dead(n), "can not use dead node");
 708 
 709   // Look to see if I can move precedence down one without reallocating
 710   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 711     grow( _max+1 );
 712 
 713   // Find a precedence edge to move
 714   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 715     uint i;
 716     for( i=_cnt; i<_max; i++ )
 717       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 718         break;                  // There must be one, since we grew the array
 719     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 720   }
 721   _in[_cnt++] = n;            // Stuff over old prec edge
 722   if (n != NULL) n->add_out((Node *)this);
 723 }
 724 
 725 //---------------------------add_req_batch-------------------------------------
 726 // Add a new required input at the end
 727 void Node::add_req_batch( Node *n, uint m ) {
 728   assert( is_not_dead(n), "can not use dead node");
 729   // check various edge cases
 730   if ((int)m <= 1) {
 731     assert((int)m >= 0, "oob");
 732     if (m != 0)  add_req(n);
 733     return;
 734   }
 735 
 736   // Look to see if I can move precedence down one without reallocating
 737   if( (_cnt+m) > _max || _in[_max-m] )
 738     grow( _max+m );
 739 
 740   // Find a precedence edge to move
 741   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 742     uint i;
 743     for( i=_cnt; i<_max; i++ )
 744       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 745         break;                  // There must be one, since we grew the array
 746     // Slide all the precs over by m positions (assume #prec << m).
 747     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 748   }
 749 
 750   // Stuff over the old prec edges
 751   for(uint i=0; i<m; i++ ) {
 752     _in[_cnt++] = n;
 753   }
 754 
 755   // Insert multiple out edges on the node.
 756   if (n != NULL && !n->is_top()) {
 757     for(uint i=0; i<m; i++ ) {
 758       n->add_out((Node *)this);
 759     }
 760   }
 761 }
 762 
 763 //------------------------------del_req----------------------------------------
 764 // Delete the required edge and compact the edge array
 765 void Node::del_req( uint idx ) {
 766   assert( idx < _cnt, "oob");
 767   assert( !VerifyHashTableKeys || _hash_lock == 0,
 768           "remove node from hash table before modifying it");
 769   // First remove corresponding def-use edge
 770   Node *n = in(idx);
 771   if (n != NULL) n->del_out((Node *)this);
 772   _in[idx] = in(--_cnt);  // Compact the array
 773   _in[_cnt] = NULL;       // NULL out emptied slot
 774 }
 775 
 776 //------------------------------ins_req----------------------------------------
 777 // Insert a new required input at the end
 778 void Node::ins_req( uint idx, Node *n ) {
 779   assert( is_not_dead(n), "can not use dead node");
 780   add_req(NULL);                // Make space
 781   assert( idx < _max, "Must have allocated enough space");
 782   // Slide over
 783   if(_cnt-idx-1 > 0) {
 784     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 785   }
 786   _in[idx] = n;                            // Stuff over old required edge
 787   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 788 }
 789 
 790 //-----------------------------find_edge---------------------------------------
 791 int Node::find_edge(Node* n) {
 792   for (uint i = 0; i < len(); i++) {
 793     if (_in[i] == n)  return i;
 794   }
 795   return -1;
 796 }
 797 
 798 //----------------------------replace_edge-------------------------------------
 799 int Node::replace_edge(Node* old, Node* neww) {
 800   if (old == neww)  return 0;  // nothing to do
 801   uint nrep = 0;
 802   for (uint i = 0; i < len(); i++) {
 803     if (in(i) == old) {
 804       if (i < req())
 805         set_req(i, neww);
 806       else
 807         set_prec(i, neww);
 808       nrep++;
 809     }
 810   }
 811   return nrep;
 812 }
 813 
 814 //-------------------------disconnect_inputs-----------------------------------
 815 // NULL out all inputs to eliminate incoming Def-Use edges.
 816 // Return the number of edges between 'n' and 'this'
 817 int Node::disconnect_inputs(Node *n, Compile* C) {
 818   int edges_to_n = 0;
 819 
 820   uint cnt = req();
 821   for( uint i = 0; i < cnt; ++i ) {
 822     if( in(i) == 0 ) continue;
 823     if( in(i) == n ) ++edges_to_n;
 824     set_req(i, NULL);
 825   }
 826   // Remove precedence edges if any exist
 827   // Note: Safepoints may have precedence edges, even during parsing
 828   if( (req() != len()) && (in(req()) != NULL) ) {
 829     uint max = len();
 830     for( uint i = 0; i < max; ++i ) {
 831       if( in(i) == 0 ) continue;
 832       if( in(i) == n ) ++edges_to_n;
 833       set_prec(i, NULL);
 834     }
 835   }
 836 
 837   // Node::destruct requires all out edges be deleted first
 838   // debug_only(destruct();)   // no reuse benefit expected
 839   if (edges_to_n == 0) {
 840     C->record_dead_node(_idx);
 841   }
 842   return edges_to_n;
 843 }
 844 
 845 //-----------------------------uncast---------------------------------------
 846 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 847 // Strip away casting.  (It is depth-limited.)
 848 Node* Node::uncast() const {
 849   // Should be inline:
 850   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 851   if (is_ConstraintCast() || is_CheckCastPP())
 852     return uncast_helper(this);
 853   else
 854     return (Node*) this;
 855 }
 856 
 857 //---------------------------uncast_helper-------------------------------------
 858 Node* Node::uncast_helper(const Node* p) {
 859 #ifdef ASSERT
 860   uint depth_count = 0;
 861   const Node* orig_p = p;
 862 #endif
 863 
 864   while (true) {
 865 #ifdef ASSERT
 866     if (depth_count >= K) {
 867       orig_p->dump(4);
 868       if (p != orig_p)
 869         p->dump(1);
 870     }
 871     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 872 #endif
 873     if (p == NULL || p->req() != 2) {
 874       break;
 875     } else if (p->is_ConstraintCast()) {
 876       p = p->in(1);
 877     } else if (p->is_CheckCastPP()) {
 878       p = p->in(1);
 879     } else {
 880       break;
 881     }
 882   }
 883   return (Node*) p;
 884 }
 885 
 886 //------------------------------add_prec---------------------------------------
 887 // Add a new precedence input.  Precedence inputs are unordered, with
 888 // duplicates removed and NULLs packed down at the end.
 889 void Node::add_prec( Node *n ) {
 890   assert( is_not_dead(n), "can not use dead node");
 891 
 892   // Check for NULL at end
 893   if( _cnt >= _max || in(_max-1) )
 894     grow( _max+1 );
 895 
 896   // Find a precedence edge to move
 897   uint i = _cnt;
 898   while( in(i) != NULL ) i++;
 899   _in[i] = n;                                // Stuff prec edge over NULL
 900   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 901 }
 902 
 903 //------------------------------rm_prec----------------------------------------
 904 // Remove a precedence input.  Precedence inputs are unordered, with
 905 // duplicates removed and NULLs packed down at the end.
 906 void Node::rm_prec( uint j ) {
 907 
 908   // Find end of precedence list to pack NULLs
 909   uint i;
 910   for( i=j; i<_max; i++ )
 911     if( !_in[i] )               // Find the NULL at end of prec edge list
 912       break;
 913   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
 914   _in[j] = _in[--i];            // Move last element over removed guy
 915   _in[i] = NULL;                // NULL out last element
 916 }
 917 
 918 //------------------------------size_of----------------------------------------
 919 uint Node::size_of() const { return sizeof(*this); }
 920 
 921 //------------------------------ideal_reg--------------------------------------
 922 uint Node::ideal_reg() const { return 0; }
 923 
 924 //------------------------------jvms-------------------------------------------
 925 JVMState* Node::jvms() const { return NULL; }
 926 
 927 #ifdef ASSERT
 928 //------------------------------jvms-------------------------------------------
 929 bool Node::verify_jvms(const JVMState* using_jvms) const {
 930   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 931     if (jvms == using_jvms)  return true;
 932   }
 933   return false;
 934 }
 935 
 936 //------------------------------init_NodeProperty------------------------------
 937 void Node::init_NodeProperty() {
 938   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
 939   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
 940 }
 941 #endif
 942 
 943 //------------------------------format-----------------------------------------
 944 // Print as assembly
 945 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
 946 //------------------------------emit-------------------------------------------
 947 // Emit bytes starting at parameter 'ptr'.
 948 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
 949 //------------------------------size-------------------------------------------
 950 // Size of instruction in bytes
 951 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
 952 
 953 //------------------------------CFG Construction-------------------------------
 954 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
 955 // Goto and Return.
 956 const Node *Node::is_block_proj() const { return 0; }
 957 
 958 // Minimum guaranteed type
 959 const Type *Node::bottom_type() const { return Type::BOTTOM; }
 960 
 961 
 962 //------------------------------raise_bottom_type------------------------------
 963 // Get the worst-case Type output for this Node.
 964 void Node::raise_bottom_type(const Type* new_type) {
 965   if (is_Type()) {
 966     TypeNode *n = this->as_Type();
 967     if (VerifyAliases) {
 968       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 969     }
 970     n->set_type(new_type);
 971   } else if (is_Load()) {
 972     LoadNode *n = this->as_Load();
 973     if (VerifyAliases) {
 974       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 975     }
 976     n->set_type(new_type);
 977   }
 978 }
 979 
 980 //------------------------------Identity---------------------------------------
 981 // Return a node that the given node is equivalent to.
 982 Node *Node::Identity( PhaseTransform * ) {
 983   return this;                  // Default to no identities
 984 }
 985 
 986 //------------------------------Value------------------------------------------
 987 // Compute a new Type for a node using the Type of the inputs.
 988 const Type *Node::Value( PhaseTransform * ) const {
 989   return bottom_type();         // Default to worst-case Type
 990 }
 991 
 992 //------------------------------Ideal------------------------------------------
 993 //
 994 // 'Idealize' the graph rooted at this Node.
 995 //
 996 // In order to be efficient and flexible there are some subtle invariants
 997 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
 998 // these invariants, although its too slow to have on by default.  If you are
 999 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1000 //
1001 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1002 // pointer.  If ANY change is made, it must return the root of the reshaped
1003 // graph - even if the root is the same Node.  Example: swapping the inputs
1004 // to an AddINode gives the same answer and same root, but you still have to
1005 // return the 'this' pointer instead of NULL.
1006 //
1007 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1008 // Identity call to return an old Node; basically if Identity can find
1009 // another Node have the Ideal call make no change and return NULL.
1010 // Example: AddINode::Ideal must check for add of zero; in this case it
1011 // returns NULL instead of doing any graph reshaping.
1012 //
1013 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1014 // sharing there may be other users of the old Nodes relying on their current
1015 // semantics.  Modifying them will break the other users.
1016 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1017 // "X+3" unchanged in case it is shared.
1018 //
1019 // If you modify the 'this' pointer's inputs, you should use
1020 // 'set_req'.  If you are making a new Node (either as the new root or
1021 // some new internal piece) you may use 'init_req' to set the initial
1022 // value.  You can make a new Node with either 'new' or 'clone'.  In
1023 // either case, def-use info is correctly maintained.
1024 //
1025 // Example: reshape "(X+3)+4" into "X+7":
1026 //    set_req(1, in(1)->in(1));
1027 //    set_req(2, phase->intcon(7));
1028 //    return this;
1029 // Example: reshape "X*4" into "X<<2"
1030 //    return new (C) LShiftINode(in(1), phase->intcon(2));
1031 //
1032 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1033 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1034 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
1035 //    return new (C) AddINode(shift, in(1));
1036 //
1037 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1038 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
1039 // The Right Thing with def-use info.
1040 //
1041 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1042 // graph uses the 'this' Node it must be the root.  If you want a Node with
1043 // the same Opcode as the 'this' pointer use 'clone'.
1044 //
1045 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1046   return NULL;                  // Default to being Ideal already
1047 }
1048 
1049 // Some nodes have specific Ideal subgraph transformations only if they are
1050 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1051 // for the transformations to happen.
1052 bool Node::has_special_unique_user() const {
1053   assert(outcnt() == 1, "match only for unique out");
1054   Node* n = unique_out();
1055   int op  = Opcode();
1056   if( this->is_Store() ) {
1057     // Condition for back-to-back stores folding.
1058     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1059   } else if( op == Op_AddL ) {
1060     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1061     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1062   } else if( op == Op_SubI || op == Op_SubL ) {
1063     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1064     return n->Opcode() == op && n->in(2) == this;
1065   }
1066   return false;
1067 };
1068 
1069 //--------------------------find_exact_control---------------------------------
1070 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1071 Node* Node::find_exact_control(Node* ctrl) {
1072   if (ctrl == NULL && this->is_Region())
1073     ctrl = this->as_Region()->is_copy();
1074 
1075   if (ctrl != NULL && ctrl->is_CatchProj()) {
1076     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1077       ctrl = ctrl->in(0);
1078     if (ctrl != NULL && !ctrl->is_top())
1079       ctrl = ctrl->in(0);
1080   }
1081 
1082   if (ctrl != NULL && ctrl->is_Proj())
1083     ctrl = ctrl->in(0);
1084 
1085   return ctrl;
1086 }
1087 
1088 //--------------------------dominates------------------------------------------
1089 // Helper function for MemNode::all_controls_dominate().
1090 // Check if 'this' control node dominates or equal to 'sub' control node.
1091 // We already know that if any path back to Root or Start reaches 'this',
1092 // then all paths so, so this is a simple search for one example,
1093 // not an exhaustive search for a counterexample.
1094 bool Node::dominates(Node* sub, Node_List &nlist) {
1095   assert(this->is_CFG(), "expecting control");
1096   assert(sub != NULL && sub->is_CFG(), "expecting control");
1097 
1098   // detect dead cycle without regions
1099   int iterations_without_region_limit = DominatorSearchLimit;
1100 
1101   Node* orig_sub = sub;
1102   Node* dom      = this;
1103   bool  met_dom  = false;
1104   nlist.clear();
1105 
1106   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1107   // After seeing 'dom', continue up to Root or Start.
1108   // If we hit a region (backward split point), it may be a loop head.
1109   // Keep going through one of the region's inputs.  If we reach the
1110   // same region again, go through a different input.  Eventually we
1111   // will either exit through the loop head, or give up.
1112   // (If we get confused, break out and return a conservative 'false'.)
1113   while (sub != NULL) {
1114     if (sub->is_top())  break; // Conservative answer for dead code.
1115     if (sub == dom) {
1116       if (nlist.size() == 0) {
1117         // No Region nodes except loops were visited before and the EntryControl
1118         // path was taken for loops: it did not walk in a cycle.
1119         return true;
1120       } else if (met_dom) {
1121         break;          // already met before: walk in a cycle
1122       } else {
1123         // Region nodes were visited. Continue walk up to Start or Root
1124         // to make sure that it did not walk in a cycle.
1125         met_dom = true; // first time meet
1126         iterations_without_region_limit = DominatorSearchLimit; // Reset
1127      }
1128     }
1129     if (sub->is_Start() || sub->is_Root()) {
1130       // Success if we met 'dom' along a path to Start or Root.
1131       // We assume there are no alternative paths that avoid 'dom'.
1132       // (This assumption is up to the caller to ensure!)
1133       return met_dom;
1134     }
1135     Node* up = sub->in(0);
1136     // Normalize simple pass-through regions and projections:
1137     up = sub->find_exact_control(up);
1138     // If sub == up, we found a self-loop.  Try to push past it.
1139     if (sub == up && sub->is_Loop()) {
1140       // Take loop entry path on the way up to 'dom'.
1141       up = sub->in(1); // in(LoopNode::EntryControl);
1142     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1143       // Always take in(1) path on the way up to 'dom' for clone regions
1144       // (with only one input) or regions which merge > 2 paths
1145       // (usually used to merge fast/slow paths).
1146       up = sub->in(1);
1147     } else if (sub == up && sub->is_Region()) {
1148       // Try both paths for Regions with 2 input paths (it may be a loop head).
1149       // It could give conservative 'false' answer without information
1150       // which region's input is the entry path.
1151       iterations_without_region_limit = DominatorSearchLimit; // Reset
1152 
1153       bool region_was_visited_before = false;
1154       // Was this Region node visited before?
1155       // If so, we have reached it because we accidentally took a
1156       // loop-back edge from 'sub' back into the body of the loop,
1157       // and worked our way up again to the loop header 'sub'.
1158       // So, take the first unexplored path on the way up to 'dom'.
1159       for (int j = nlist.size() - 1; j >= 0; j--) {
1160         intptr_t ni = (intptr_t)nlist.at(j);
1161         Node* visited = (Node*)(ni & ~1);
1162         bool  visited_twice_already = ((ni & 1) != 0);
1163         if (visited == sub) {
1164           if (visited_twice_already) {
1165             // Visited 2 paths, but still stuck in loop body.  Give up.
1166             return false;
1167           }
1168           // The Region node was visited before only once.
1169           // (We will repush with the low bit set, below.)
1170           nlist.remove(j);
1171           // We will find a new edge and re-insert.
1172           region_was_visited_before = true;
1173           break;
1174         }
1175       }
1176 
1177       // Find an incoming edge which has not been seen yet; walk through it.
1178       assert(up == sub, "");
1179       uint skip = region_was_visited_before ? 1 : 0;
1180       for (uint i = 1; i < sub->req(); i++) {
1181         Node* in = sub->in(i);
1182         if (in != NULL && !in->is_top() && in != sub) {
1183           if (skip == 0) {
1184             up = in;
1185             break;
1186           }
1187           --skip;               // skip this nontrivial input
1188         }
1189       }
1190 
1191       // Set 0 bit to indicate that both paths were taken.
1192       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1193     }
1194 
1195     if (up == sub) {
1196       break;    // some kind of tight cycle
1197     }
1198     if (up == orig_sub && met_dom) {
1199       // returned back after visiting 'dom'
1200       break;    // some kind of cycle
1201     }
1202     if (--iterations_without_region_limit < 0) {
1203       break;    // dead cycle
1204     }
1205     sub = up;
1206   }
1207 
1208   // Did not meet Root or Start node in pred. chain.
1209   // Conservative answer for dead code.
1210   return false;
1211 }
1212 
1213 //------------------------------remove_dead_region-----------------------------
1214 // This control node is dead.  Follow the subgraph below it making everything
1215 // using it dead as well.  This will happen normally via the usual IterGVN
1216 // worklist but this call is more efficient.  Do not update use-def info
1217 // inside the dead region, just at the borders.
1218 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1219   // Con's are a popular node to re-hit in the hash table again.
1220   if( dead->is_Con() ) return;
1221 
1222   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1223   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1224   Node_List  nstack(Thread::current()->resource_area());
1225 
1226   Node *top = igvn->C->top();
1227   nstack.push(dead);
1228 
1229   while (nstack.size() > 0) {
1230     dead = nstack.pop();
1231     if (dead->outcnt() > 0) {
1232       // Keep dead node on stack until all uses are processed.
1233       nstack.push(dead);
1234       // For all Users of the Dead...    ;-)
1235       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1236         Node* use = dead->last_out(k);
1237         igvn->hash_delete(use);       // Yank from hash table prior to mod
1238         if (use->in(0) == dead) {     // Found another dead node
1239           assert (!use->is_Con(), "Control for Con node should be Root node.");
1240           use->set_req(0, top);       // Cut dead edge to prevent processing
1241           nstack.push(use);           // the dead node again.
1242         } else {                      // Else found a not-dead user
1243           for (uint j = 1; j < use->req(); j++) {
1244             if (use->in(j) == dead) { // Turn all dead inputs into TOP
1245               use->set_req(j, top);
1246             }
1247           }
1248           igvn->_worklist.push(use);
1249         }
1250         // Refresh the iterator, since any number of kills might have happened.
1251         k = dead->last_outs(kmin);
1252       }
1253     } else { // (dead->outcnt() == 0)
1254       // Done with outputs.
1255       igvn->hash_delete(dead);
1256       igvn->_worklist.remove(dead);
1257       igvn->set_type(dead, Type::TOP);
1258       if (dead->is_macro()) {
1259         igvn->C->remove_macro_node(dead);
1260       }
1261       if (dead->is_expensive()) {
1262         igvn->C->remove_expensive_node(dead);
1263       }
1264       igvn->C->record_dead_node(dead->_idx);
1265       // Kill all inputs to the dead guy
1266       for (uint i=0; i < dead->req(); i++) {
1267         Node *n = dead->in(i);      // Get input to dead guy
1268         if (n != NULL && !n->is_top()) { // Input is valid?
1269           dead->set_req(i, top);    // Smash input away
1270           if (n->outcnt() == 0) {   // Input also goes dead?
1271             if (!n->is_Con())
1272               nstack.push(n);       // Clear it out as well
1273           } else if (n->outcnt() == 1 &&
1274                      n->has_special_unique_user()) {
1275             igvn->add_users_to_worklist( n );
1276           } else if (n->outcnt() <= 2 && n->is_Store()) {
1277             // Push store's uses on worklist to enable folding optimization for
1278             // store/store and store/load to the same address.
1279             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1280             // and remove_globally_dead_node().
1281             igvn->add_users_to_worklist( n );
1282           }
1283         }
1284       }
1285     } // (dead->outcnt() == 0)
1286   }   // while (nstack.size() > 0) for outputs
1287   return;
1288 }
1289 
1290 //------------------------------remove_dead_region-----------------------------
1291 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1292   Node *n = in(0);
1293   if( !n ) return false;
1294   // Lost control into this guy?  I.e., it became unreachable?
1295   // Aggressively kill all unreachable code.
1296   if (can_reshape && n->is_top()) {
1297     kill_dead_code(this, phase->is_IterGVN());
1298     return false; // Node is dead.
1299   }
1300 
1301   if( n->is_Region() && n->as_Region()->is_copy() ) {
1302     Node *m = n->nonnull_req();
1303     set_req(0, m);
1304     return true;
1305   }
1306   return false;
1307 }
1308 
1309 //------------------------------Ideal_DU_postCCP-------------------------------
1310 // Idealize graph, using DU info.  Must clone result into new-space
1311 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1312   return NULL;                 // Default to no change
1313 }
1314 
1315 //------------------------------hash-------------------------------------------
1316 // Hash function over Nodes.
1317 uint Node::hash() const {
1318   uint sum = 0;
1319   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1320     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1321   return (sum>>2) + _cnt + Opcode();
1322 }
1323 
1324 //------------------------------cmp--------------------------------------------
1325 // Compare special parts of simple Nodes
1326 uint Node::cmp( const Node &n ) const {
1327   return 1;                     // Must be same
1328 }
1329 
1330 //------------------------------rematerialize-----------------------------------
1331 // Should we clone rather than spill this instruction?
1332 bool Node::rematerialize() const {
1333   if ( is_Mach() )
1334     return this->as_Mach()->rematerialize();
1335   else
1336     return (_flags & Flag_rematerialize) != 0;
1337 }
1338 
1339 //------------------------------needs_anti_dependence_check---------------------
1340 // Nodes which use memory without consuming it, hence need antidependences.
1341 bool Node::needs_anti_dependence_check() const {
1342   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1343     return false;
1344   else
1345     return in(1)->bottom_type()->has_memory();
1346 }
1347 
1348 
1349 // Get an integer constant from a ConNode (or CastIINode).
1350 // Return a default value if there is no apparent constant here.
1351 const TypeInt* Node::find_int_type() const {
1352   if (this->is_Type()) {
1353     return this->as_Type()->type()->isa_int();
1354   } else if (this->is_Con()) {
1355     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1356     return this->bottom_type()->isa_int();
1357   }
1358   return NULL;
1359 }
1360 
1361 // Get a pointer constant from a ConstNode.
1362 // Returns the constant if it is a pointer ConstNode
1363 intptr_t Node::get_ptr() const {
1364   assert( Opcode() == Op_ConP, "" );
1365   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1366 }
1367 
1368 // Get a narrow oop constant from a ConNNode.
1369 intptr_t Node::get_narrowcon() const {
1370   assert( Opcode() == Op_ConN, "" );
1371   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1372 }
1373 
1374 // Get a long constant from a ConNode.
1375 // Return a default value if there is no apparent constant here.
1376 const TypeLong* Node::find_long_type() const {
1377   if (this->is_Type()) {
1378     return this->as_Type()->type()->isa_long();
1379   } else if (this->is_Con()) {
1380     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1381     return this->bottom_type()->isa_long();
1382   }
1383   return NULL;
1384 }
1385 
1386 
1387 /**
1388  * Return a ptr type for nodes which should have it.
1389  */
1390 const TypePtr* Node::get_ptr_type() const {
1391   const TypePtr* tp = this->bottom_type()->make_ptr();
1392 #ifdef ASSERT
1393   if (tp == NULL) {
1394     this->dump(1);
1395     assert((tp != NULL), "unexpected node type");
1396   }
1397 #endif
1398   return tp;
1399 }
1400 
1401 // Get a double constant from a ConstNode.
1402 // Returns the constant if it is a double ConstNode
1403 jdouble Node::getd() const {
1404   assert( Opcode() == Op_ConD, "" );
1405   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1406 }
1407 
1408 // Get a float constant from a ConstNode.
1409 // Returns the constant if it is a float ConstNode
1410 jfloat Node::getf() const {
1411   assert( Opcode() == Op_ConF, "" );
1412   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1413 }
1414 
1415 #ifndef PRODUCT
1416 
1417 //----------------------------NotANode----------------------------------------
1418 // Used in debugging code to avoid walking across dead or uninitialized edges.
1419 static inline bool NotANode(const Node* n) {
1420   if (n == NULL)                   return true;
1421   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1422   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1423   return false;
1424 }
1425 
1426 
1427 //------------------------------find------------------------------------------
1428 // Find a neighbor of this Node with the given _idx
1429 // If idx is negative, find its absolute value, following both _in and _out.
1430 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1431                         VectorSet* old_space, VectorSet* new_space ) {
1432   int node_idx = (idx >= 0) ? idx : -idx;
1433   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1434   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1435   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1436   if( v->test(n->_idx) ) return;
1437   if( (int)n->_idx == node_idx
1438       debug_only(|| n->debug_idx() == node_idx) ) {
1439     if (result != NULL)
1440       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1441                  (uintptr_t)result, (uintptr_t)n, node_idx);
1442     result = n;
1443   }
1444   v->set(n->_idx);
1445   for( uint i=0; i<n->len(); i++ ) {
1446     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1447     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1448   }
1449   // Search along forward edges also:
1450   if (idx < 0 && !only_ctrl) {
1451     for( uint j=0; j<n->outcnt(); j++ ) {
1452       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1453     }
1454   }
1455 #ifdef ASSERT
1456   // Search along debug_orig edges last, checking for cycles
1457   Node* orig = n->debug_orig();
1458   if (orig != NULL) {
1459     do {
1460       if (NotANode(orig))  break;
1461       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1462       orig = orig->debug_orig();
1463     } while (orig != NULL && orig != n->debug_orig());
1464   }
1465 #endif //ASSERT
1466 }
1467 
1468 // call this from debugger:
1469 Node* find_node(Node* n, int idx) {
1470   return n->find(idx);
1471 }
1472 
1473 //------------------------------find-------------------------------------------
1474 Node* Node::find(int idx) const {
1475   ResourceArea *area = Thread::current()->resource_area();
1476   VectorSet old_space(area), new_space(area);
1477   Node* result = NULL;
1478   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1479   return result;
1480 }
1481 
1482 //------------------------------find_ctrl--------------------------------------
1483 // Find an ancestor to this node in the control history with given _idx
1484 Node* Node::find_ctrl(int idx) const {
1485   ResourceArea *area = Thread::current()->resource_area();
1486   VectorSet old_space(area), new_space(area);
1487   Node* result = NULL;
1488   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1489   return result;
1490 }
1491 #endif
1492 
1493 
1494 
1495 #ifndef PRODUCT
1496 int Node::_in_dump_cnt = 0;
1497 
1498 // -----------------------------Name-------------------------------------------
1499 extern const char *NodeClassNames[];
1500 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1501 
1502 static bool is_disconnected(const Node* n) {
1503   for (uint i = 0; i < n->req(); i++) {
1504     if (n->in(i) != NULL)  return false;
1505   }
1506   return true;
1507 }
1508 
1509 #ifdef ASSERT
1510 static void dump_orig(Node* orig, outputStream *st) {
1511   Compile* C = Compile::current();
1512   if (NotANode(orig)) orig = NULL;
1513   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1514   if (orig == NULL) return;
1515   st->print(" !orig=");
1516   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1517   if (NotANode(fast)) fast = NULL;
1518   while (orig != NULL) {
1519     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1520     if (discon) st->print("[");
1521     if (!Compile::current()->node_arena()->contains(orig))
1522       st->print("o");
1523     st->print("%d", orig->_idx);
1524     if (discon) st->print("]");
1525     orig = orig->debug_orig();
1526     if (NotANode(orig)) orig = NULL;
1527     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1528     if (orig != NULL) st->print(",");
1529     if (fast != NULL) {
1530       // Step fast twice for each single step of orig:
1531       fast = fast->debug_orig();
1532       if (NotANode(fast)) fast = NULL;
1533       if (fast != NULL && fast != orig) {
1534         fast = fast->debug_orig();
1535         if (NotANode(fast)) fast = NULL;
1536       }
1537       if (fast == orig) {
1538         st->print("...");
1539         break;
1540       }
1541     }
1542   }
1543 }
1544 
1545 void Node::set_debug_orig(Node* orig) {
1546   _debug_orig = orig;
1547   if (BreakAtNode == 0)  return;
1548   if (NotANode(orig))  orig = NULL;
1549   int trip = 10;
1550   while (orig != NULL) {
1551     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1552       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1553                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1554       BREAKPOINT;
1555     }
1556     orig = orig->debug_orig();
1557     if (NotANode(orig))  orig = NULL;
1558     if (trip-- <= 0)  break;
1559   }
1560 }
1561 #endif //ASSERT
1562 
1563 //------------------------------dump------------------------------------------
1564 // Dump a Node
1565 void Node::dump(const char* suffix, outputStream *st) const {
1566   Compile* C = Compile::current();
1567   bool is_new = C->node_arena()->contains(this);
1568   _in_dump_cnt++;
1569   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
1570 
1571   // Dump the required and precedence inputs
1572   dump_req(st);
1573   dump_prec(st);
1574   // Dump the outputs
1575   dump_out(st);
1576 
1577   if (is_disconnected(this)) {
1578 #ifdef ASSERT
1579     st->print("  [%d]",debug_idx());
1580     dump_orig(debug_orig(), st);
1581 #endif
1582     st->cr();
1583     _in_dump_cnt--;
1584     return;                     // don't process dead nodes
1585   }
1586 
1587   // Dump node-specific info
1588   dump_spec(st);
1589 #ifdef ASSERT
1590   // Dump the non-reset _debug_idx
1591   if (Verbose && WizardMode) {
1592     st->print("  [%d]",debug_idx());
1593   }
1594 #endif
1595 
1596   const Type *t = bottom_type();
1597 
1598   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1599     const TypeInstPtr  *toop = t->isa_instptr();
1600     const TypeKlassPtr *tkls = t->isa_klassptr();
1601     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1602     if (klass && klass->is_loaded() && klass->is_interface()) {
1603       st->print("  Interface:");
1604     } else if (toop) {
1605       st->print("  Oop:");
1606     } else if (tkls) {
1607       st->print("  Klass:");
1608     }
1609     t->dump_on(st);
1610   } else if (t == Type::MEMORY) {
1611     st->print("  Memory:");
1612     MemNode::dump_adr_type(this, adr_type(), st);
1613   } else if (Verbose || WizardMode) {
1614     st->print("  Type:");
1615     if (t) {
1616       t->dump_on(st);
1617     } else {
1618       st->print("no type");
1619     }
1620   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1621     // Dump MachSpillcopy vector type.
1622     t->dump_on(st);
1623   }
1624   if (is_new) {
1625     debug_only(dump_orig(debug_orig(), st));
1626     Node_Notes* nn = C->node_notes_at(_idx);
1627     if (nn != NULL && !nn->is_clear()) {
1628       if (nn->jvms() != NULL) {
1629         st->print(" !jvms:");
1630         nn->jvms()->dump_spec(st);
1631       }
1632     }
1633   }
1634   if (suffix) st->print(suffix);
1635   _in_dump_cnt--;
1636 }
1637 
1638 //------------------------------dump_req--------------------------------------
1639 void Node::dump_req(outputStream *st) const {
1640   // Dump the required input edges
1641   for (uint i = 0; i < req(); i++) {    // For all required inputs
1642     Node* d = in(i);
1643     if (d == NULL) {
1644       st->print("_ ");
1645     } else if (NotANode(d)) {
1646       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1647     } else {
1648       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1649     }
1650   }
1651 }
1652 
1653 
1654 //------------------------------dump_prec-------------------------------------
1655 void Node::dump_prec(outputStream *st) const {
1656   // Dump the precedence edges
1657   int any_prec = 0;
1658   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1659     Node* p = in(i);
1660     if (p != NULL) {
1661       if (!any_prec++) st->print(" |");
1662       if (NotANode(p)) { st->print("NotANode "); continue; }
1663       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1664     }
1665   }
1666 }
1667 
1668 //------------------------------dump_out--------------------------------------
1669 void Node::dump_out(outputStream *st) const {
1670   // Delimit the output edges
1671   st->print(" [[");
1672   // Dump the output edges
1673   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1674     Node* u = _out[i];
1675     if (u == NULL) {
1676       st->print("_ ");
1677     } else if (NotANode(u)) {
1678       st->print("NotANode ");
1679     } else {
1680       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1681     }
1682   }
1683   st->print("]] ");
1684 }
1685 
1686 //------------------------------dump_nodes-------------------------------------
1687 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1688   Node* s = (Node*)start; // remove const
1689   if (NotANode(s)) return;
1690 
1691   uint depth = (uint)ABS(d);
1692   int direction = d;
1693   Compile* C = Compile::current();
1694   GrowableArray <Node *> nstack(C->unique());
1695 
1696   nstack.append(s);
1697   int begin = 0;
1698   int end = 0;
1699   for(uint i = 0; i < depth; i++) {
1700     end = nstack.length();
1701     for(int j = begin; j < end; j++) {
1702       Node* tp  = nstack.at(j);
1703       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1704       for(uint k = 0; k < limit; k++) {
1705         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1706 
1707         if (NotANode(n))  continue;
1708         // do not recurse through top or the root (would reach unrelated stuff)
1709         if (n->is_Root() || n->is_top())  continue;
1710         if (only_ctrl && !n->is_CFG()) continue;
1711 
1712         bool on_stack = nstack.contains(n);
1713         if (!on_stack) {
1714           nstack.append(n);
1715         }
1716       }
1717     }
1718     begin = end;
1719   }
1720   end = nstack.length();
1721   if (direction > 0) {
1722     for(int j = end-1; j >= 0; j--) {
1723       nstack.at(j)->dump();
1724     }
1725   } else {
1726     for(int j = 0; j < end; j++) {
1727       nstack.at(j)->dump();
1728     }
1729   }
1730 }
1731 
1732 //------------------------------dump-------------------------------------------
1733 void Node::dump(int d) const {
1734   dump_nodes(this, d, false);
1735 }
1736 
1737 //------------------------------dump_ctrl--------------------------------------
1738 // Dump a Node's control history to depth
1739 void Node::dump_ctrl(int d) const {
1740   dump_nodes(this, d, true);
1741 }
1742 
1743 // VERIFICATION CODE
1744 // For each input edge to a node (ie - for each Use-Def edge), verify that
1745 // there is a corresponding Def-Use edge.
1746 //------------------------------verify_edges-----------------------------------
1747 void Node::verify_edges(Unique_Node_List &visited) {
1748   uint i, j, idx;
1749   int  cnt;
1750   Node *n;
1751 
1752   // Recursive termination test
1753   if (visited.member(this))  return;
1754   visited.push(this);
1755 
1756   // Walk over all input edges, checking for correspondence
1757   for( i = 0; i < len(); i++ ) {
1758     n = in(i);
1759     if (n != NULL && !n->is_top()) {
1760       // Count instances of (Node *)this
1761       cnt = 0;
1762       for (idx = 0; idx < n->_outcnt; idx++ ) {
1763         if (n->_out[idx] == (Node *)this)  cnt++;
1764       }
1765       assert( cnt > 0,"Failed to find Def-Use edge." );
1766       // Check for duplicate edges
1767       // walk the input array downcounting the input edges to n
1768       for( j = 0; j < len(); j++ ) {
1769         if( in(j) == n ) cnt--;
1770       }
1771       assert( cnt == 0,"Mismatched edge count.");
1772     } else if (n == NULL) {
1773       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1774     } else {
1775       assert(n->is_top(), "sanity");
1776       // Nothing to check.
1777     }
1778   }
1779   // Recursive walk over all input edges
1780   for( i = 0; i < len(); i++ ) {
1781     n = in(i);
1782     if( n != NULL )
1783       in(i)->verify_edges(visited);
1784   }
1785 }
1786 
1787 //------------------------------verify_recur-----------------------------------
1788 static const Node *unique_top = NULL;
1789 
1790 void Node::verify_recur(const Node *n, int verify_depth,
1791                         VectorSet &old_space, VectorSet &new_space) {
1792   if ( verify_depth == 0 )  return;
1793   if (verify_depth > 0)  --verify_depth;
1794 
1795   Compile* C = Compile::current();
1796 
1797   // Contained in new_space or old_space?
1798   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1799   // Check for visited in the proper space.  Numberings are not unique
1800   // across spaces so we need a separate VectorSet for each space.
1801   if( v->test_set(n->_idx) ) return;
1802 
1803   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1804     if (C->cached_top_node() == NULL)
1805       C->set_cached_top_node((Node*)n);
1806     assert(C->cached_top_node() == n, "TOP node must be unique");
1807   }
1808 
1809   for( uint i = 0; i < n->len(); i++ ) {
1810     Node *x = n->in(i);
1811     if (!x || x->is_top()) continue;
1812 
1813     // Verify my input has a def-use edge to me
1814     if (true /*VerifyDefUse*/) {
1815       // Count use-def edges from n to x
1816       int cnt = 0;
1817       for( uint j = 0; j < n->len(); j++ )
1818         if( n->in(j) == x )
1819           cnt++;
1820       // Count def-use edges from x to n
1821       uint max = x->_outcnt;
1822       for( uint k = 0; k < max; k++ )
1823         if (x->_out[k] == n)
1824           cnt--;
1825       assert( cnt == 0, "mismatched def-use edge counts" );
1826     }
1827 
1828     verify_recur(x, verify_depth, old_space, new_space);
1829   }
1830 
1831 }
1832 
1833 //------------------------------verify-----------------------------------------
1834 // Check Def-Use info for my subgraph
1835 void Node::verify() const {
1836   Compile* C = Compile::current();
1837   Node* old_top = C->cached_top_node();
1838   ResourceMark rm;
1839   ResourceArea *area = Thread::current()->resource_area();
1840   VectorSet old_space(area), new_space(area);
1841   verify_recur(this, -1, old_space, new_space);
1842   C->set_cached_top_node(old_top);
1843 }
1844 #endif
1845 
1846 
1847 //------------------------------walk-------------------------------------------
1848 // Graph walk, with both pre-order and post-order functions
1849 void Node::walk(NFunc pre, NFunc post, void *env) {
1850   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1851   walk_(pre, post, env, visited);
1852 }
1853 
1854 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1855   if( visited.test_set(_idx) ) return;
1856   pre(*this,env);               // Call the pre-order walk function
1857   for( uint i=0; i<_max; i++ )
1858     if( in(i) )                 // Input exists and is not walked?
1859       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1860   post(*this,env);              // Call the post-order walk function
1861 }
1862 
1863 void Node::nop(Node &, void*) {}
1864 
1865 //------------------------------Registers--------------------------------------
1866 // Do we Match on this edge index or not?  Generally false for Control
1867 // and true for everything else.  Weird for calls & returns.
1868 uint Node::match_edge(uint idx) const {
1869   return idx;                   // True for other than index 0 (control)
1870 }
1871 
1872 // Register classes are defined for specific machines
1873 const RegMask &Node::out_RegMask() const {
1874   ShouldNotCallThis();
1875   return *(new RegMask());
1876 }
1877 
1878 const RegMask &Node::in_RegMask(uint) const {
1879   ShouldNotCallThis();
1880   return *(new RegMask());
1881 }
1882 
1883 //=============================================================================
1884 //-----------------------------------------------------------------------------
1885 void Node_Array::reset( Arena *new_arena ) {
1886   _a->Afree(_nodes,_max*sizeof(Node*));
1887   _max   = 0;
1888   _nodes = NULL;
1889   _a     = new_arena;
1890 }
1891 
1892 //------------------------------clear------------------------------------------
1893 // Clear all entries in _nodes to NULL but keep storage
1894 void Node_Array::clear() {
1895   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1896 }
1897 
1898 //-----------------------------------------------------------------------------
1899 void Node_Array::grow( uint i ) {
1900   if( !_max ) {
1901     _max = 1;
1902     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1903     _nodes[0] = NULL;
1904   }
1905   uint old = _max;
1906   while( i >= _max ) _max <<= 1;        // Double to fit
1907   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1908   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1909 }
1910 
1911 //-----------------------------------------------------------------------------
1912 void Node_Array::insert( uint i, Node *n ) {
1913   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1914   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1915   _nodes[i] = n;
1916 }
1917 
1918 //-----------------------------------------------------------------------------
1919 void Node_Array::remove( uint i ) {
1920   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1921   _nodes[_max-1] = NULL;
1922 }
1923 
1924 //-----------------------------------------------------------------------------
1925 void Node_Array::sort( C_sort_func_t func) {
1926   qsort( _nodes, _max, sizeof( Node* ), func );
1927 }
1928 
1929 //-----------------------------------------------------------------------------
1930 void Node_Array::dump() const {
1931 #ifndef PRODUCT
1932   for( uint i = 0; i < _max; i++ ) {
1933     Node *nn = _nodes[i];
1934     if( nn != NULL ) {
1935       tty->print("%5d--> ",i); nn->dump();
1936     }
1937   }
1938 #endif
1939 }
1940 
1941 //--------------------------is_iteratively_computed------------------------------
1942 // Operation appears to be iteratively computed (such as an induction variable)
1943 // It is possible for this operation to return false for a loop-varying
1944 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1945 bool Node::is_iteratively_computed() {
1946   if (ideal_reg()) { // does operation have a result register?
1947     for (uint i = 1; i < req(); i++) {
1948       Node* n = in(i);
1949       if (n != NULL && n->is_Phi()) {
1950         for (uint j = 1; j < n->req(); j++) {
1951           if (n->in(j) == this) {
1952             return true;
1953           }
1954         }
1955       }
1956     }
1957   }
1958   return false;
1959 }
1960 
1961 //--------------------------find_similar------------------------------
1962 // Return a node with opcode "opc" and same inputs as "this" if one can
1963 // be found; Otherwise return NULL;
1964 Node* Node::find_similar(int opc) {
1965   if (req() >= 2) {
1966     Node* def = in(1);
1967     if (def && def->outcnt() >= 2) {
1968       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
1969         Node* use = def->fast_out(i);
1970         if (use->Opcode() == opc &&
1971             use->req() == req()) {
1972           uint j;
1973           for (j = 0; j < use->req(); j++) {
1974             if (use->in(j) != in(j)) {
1975               break;
1976             }
1977           }
1978           if (j == use->req()) {
1979             return use;
1980           }
1981         }
1982       }
1983     }
1984   }
1985   return NULL;
1986 }
1987 
1988 
1989 //--------------------------unique_ctrl_out------------------------------
1990 // Return the unique control out if only one. Null if none or more than one.
1991 Node* Node::unique_ctrl_out() {
1992   Node* found = NULL;
1993   for (uint i = 0; i < outcnt(); i++) {
1994     Node* use = raw_out(i);
1995     if (use->is_CFG() && use != this) {
1996       if (found != NULL) return NULL;
1997       found = use;
1998     }
1999   }
2000   return found;
2001 }
2002 
2003 //=============================================================================
2004 //------------------------------yank-------------------------------------------
2005 // Find and remove
2006 void Node_List::yank( Node *n ) {
2007   uint i;
2008   for( i = 0; i < _cnt; i++ )
2009     if( _nodes[i] == n )
2010       break;
2011 
2012   if( i < _cnt )
2013     _nodes[i] = _nodes[--_cnt];
2014 }
2015 
2016 //------------------------------dump-------------------------------------------
2017 void Node_List::dump() const {
2018 #ifndef PRODUCT
2019   for( uint i = 0; i < _cnt; i++ )
2020     if( _nodes[i] ) {
2021       tty->print("%5d--> ",i);
2022       _nodes[i]->dump();
2023     }
2024 #endif
2025 }
2026 
2027 //=============================================================================
2028 //------------------------------remove-----------------------------------------
2029 void Unique_Node_List::remove( Node *n ) {
2030   if( _in_worklist[n->_idx] ) {
2031     for( uint i = 0; i < size(); i++ )
2032       if( _nodes[i] == n ) {
2033         map(i,Node_List::pop());
2034         _in_worklist >>= n->_idx;
2035         return;
2036       }
2037     ShouldNotReachHere();
2038   }
2039 }
2040 
2041 //-----------------------remove_useless_nodes----------------------------------
2042 // Remove useless nodes from worklist
2043 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2044 
2045   for( uint i = 0; i < size(); ++i ) {
2046     Node *n = at(i);
2047     assert( n != NULL, "Did not expect null entries in worklist");
2048     if( ! useful.test(n->_idx) ) {
2049       _in_worklist >>= n->_idx;
2050       map(i,Node_List::pop());
2051       // Node *replacement = Node_List::pop();
2052       // if( i != size() ) { // Check if removing last entry
2053       //   _nodes[i] = replacement;
2054       // }
2055       --i;  // Visit popped node
2056       // If it was last entry, loop terminates since size() was also reduced
2057     }
2058   }
2059 }
2060 
2061 //=============================================================================
2062 void Node_Stack::grow() {
2063   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2064   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2065   size_t max = old_max << 1;             // max * 2
2066   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2067   _inode_max = _inodes + max;
2068   _inode_top = _inodes + old_top;        // restore _top
2069 }
2070 
2071 // Node_Stack is used to map nodes.
2072 Node* Node_Stack::find(uint idx) const {
2073   uint sz = size();
2074   for (uint i=0; i < sz; i++) {
2075     if (idx == index_at(i) )
2076       return node_at(i);
2077   }
2078   return NULL;
2079 }
2080 
2081 //=============================================================================
2082 uint TypeNode::size_of() const { return sizeof(*this); }
2083 #ifndef PRODUCT
2084 void TypeNode::dump_spec(outputStream *st) const {
2085   if( !Verbose && !WizardMode ) {
2086     // standard dump does this in Verbose and WizardMode
2087     st->print(" #"); _type->dump_on(st);
2088   }
2089 }
2090 #endif
2091 uint TypeNode::hash() const {
2092   return Node::hash() + _type->hash();
2093 }
2094 uint TypeNode::cmp( const Node &n ) const
2095 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2096 const Type *TypeNode::bottom_type() const { return _type; }
2097 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2098 
2099 //------------------------------ideal_reg--------------------------------------
2100 uint TypeNode::ideal_reg() const {
2101   return Matcher::base2reg[_type->base()];
2102 }