1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/debugInfo.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/output.hpp"
  37 #include "opto/regalloc.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "opto/type.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "utilities/xmlstream.hpp"
  43 
  44 extern uint size_java_to_interp();
  45 extern uint reloc_java_to_interp();
  46 extern uint size_exception_handler();
  47 extern uint size_deopt_handler();
  48 
  49 #ifndef PRODUCT
  50 #define DEBUG_ARG(x) , x
  51 #else
  52 #define DEBUG_ARG(x)
  53 #endif
  54 
  55 extern int emit_exception_handler(CodeBuffer &cbuf);
  56 extern int emit_deopt_handler(CodeBuffer &cbuf);
  57 
  58 //------------------------------Output-----------------------------------------
  59 // Convert Nodes to instruction bits and pass off to the VM
  60 void Compile::Output() {
  61   // RootNode goes
  62   assert( _cfg->_broot->_nodes.size() == 0, "" );
  63 
  64   // The number of new nodes (mostly MachNop) is proportional to
  65   // the number of java calls and inner loops which are aligned.
  66   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  67                             C->inner_loops()*(OptoLoopAlignment-1)),
  68                            "out of nodes before code generation" ) ) {
  69     return;
  70   }
  71   // Make sure I can find the Start Node
  72   Block_Array& bbs = _cfg->_bbs;
  73   Block *entry = _cfg->_blocks[1];
  74   Block *broot = _cfg->_broot;
  75 
  76   const StartNode *start = entry->_nodes[0]->as_Start();
  77 
  78   // Replace StartNode with prolog
  79   MachPrologNode *prolog = new (this) MachPrologNode();
  80   entry->_nodes.map( 0, prolog );
  81   bbs.map( prolog->_idx, entry );
  82   bbs.map( start->_idx, NULL ); // start is no longer in any block
  83 
  84   // Virtual methods need an unverified entry point
  85 
  86   if( is_osr_compilation() ) {
  87     if( PoisonOSREntry ) {
  88       // TODO: Should use a ShouldNotReachHereNode...
  89       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  90     }
  91   } else {
  92     if( _method && !_method->flags().is_static() ) {
  93       // Insert unvalidated entry point
  94       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  95     }
  96 
  97   }
  98 
  99 
 100   // Break before main entry point
 101   if( (_method && _method->break_at_execute())
 102 #ifndef PRODUCT
 103     ||(OptoBreakpoint && is_method_compilation())
 104     ||(OptoBreakpointOSR && is_osr_compilation())
 105     ||(OptoBreakpointC2R && !_method)
 106 #endif
 107     ) {
 108     // checking for _method means that OptoBreakpoint does not apply to
 109     // runtime stubs or frame converters
 110     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 111   }
 112 
 113   // Insert epilogs before every return
 114   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 115     Block *b = _cfg->_blocks[i];
 116     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
 117       Node *m = b->end();
 118       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
 119         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 120         b->add_inst( epilog );
 121         bbs.map(epilog->_idx, b);
 122         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
 123       }
 124     }
 125   }
 126 
 127 # ifdef ENABLE_ZAP_DEAD_LOCALS
 128   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
 129 # endif
 130 
 131   uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
 132   blk_starts[0]    = 0;
 133 
 134   // Initialize code buffer and process short branches.
 135   CodeBuffer* cb = init_buffer(blk_starts);
 136 
 137   if (cb == NULL || failing())  return;
 138 
 139   ScheduleAndBundle();
 140 
 141 #ifndef PRODUCT
 142   if (trace_opto_output()) {
 143     tty->print("\n---- After ScheduleAndBundle ----\n");
 144     for (uint i = 0; i < _cfg->_num_blocks; i++) {
 145       tty->print("\nBB#%03d:\n", i);
 146       Block *bb = _cfg->_blocks[i];
 147       for (uint j = 0; j < bb->_nodes.size(); j++) {
 148         Node *n = bb->_nodes[j];
 149         OptoReg::Name reg = _regalloc->get_reg_first(n);
 150         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 151         n->dump();
 152       }
 153     }
 154   }
 155 #endif
 156 
 157   if (failing())  return;
 158 
 159   BuildOopMaps();
 160 
 161   if (failing())  return;
 162 
 163   fill_buffer(cb, blk_starts);
 164 }
 165 
 166 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 167   // Determine if we need to generate a stack overflow check.
 168   // Do it if the method is not a stub function and
 169   // has java calls or has frame size > vm_page_size/8.
 170   return (UseStackBanging && stub_function() == NULL &&
 171           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 172 }
 173 
 174 bool Compile::need_register_stack_bang() const {
 175   // Determine if we need to generate a register stack overflow check.
 176   // This is only used on architectures which have split register
 177   // and memory stacks (ie. IA64).
 178   // Bang if the method is not a stub function and has java calls
 179   return (stub_function() == NULL && has_java_calls());
 180 }
 181 
 182 # ifdef ENABLE_ZAP_DEAD_LOCALS
 183 
 184 
 185 // In order to catch compiler oop-map bugs, we have implemented
 186 // a debugging mode called ZapDeadCompilerLocals.
 187 // This mode causes the compiler to insert a call to a runtime routine,
 188 // "zap_dead_locals", right before each place in compiled code
 189 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 190 // The runtime routine checks that locations mapped as oops are really
 191 // oops, that locations mapped as values do not look like oops,
 192 // and that locations mapped as dead are not used later
 193 // (by zapping them to an invalid address).
 194 
 195 int Compile::_CompiledZap_count = 0;
 196 
 197 void Compile::Insert_zap_nodes() {
 198   bool skip = false;
 199 
 200 
 201   // Dink with static counts because code code without the extra
 202   // runtime calls is MUCH faster for debugging purposes
 203 
 204        if ( CompileZapFirst  ==  0  ) ; // nothing special
 205   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 206   else if ( CompileZapFirst  == CompiledZap_count() )
 207     warning("starting zap compilation after skipping");
 208 
 209        if ( CompileZapLast  ==  -1  ) ; // nothing special
 210   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 211   else if ( CompileZapLast  ==  CompiledZap_count() )
 212     warning("about to compile last zap");
 213 
 214   ++_CompiledZap_count; // counts skipped zaps, too
 215 
 216   if ( skip )  return;
 217 
 218 
 219   if ( _method == NULL )
 220     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 221 
 222   // Insert call to zap runtime stub before every node with an oop map
 223   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 224     Block *b = _cfg->_blocks[i];
 225     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 226       Node *n = b->_nodes[j];
 227 
 228       // Determining if we should insert a zap-a-lot node in output.
 229       // We do that for all nodes that has oopmap info, except for calls
 230       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 231       // and expect the C code to reset it.  Hence, there can be no safepoints between
 232       // the inlined-allocation and the call to new_Java, etc.
 233       // We also cannot zap monitor calls, as they must hold the microlock
 234       // during the call to Zap, which also wants to grab the microlock.
 235       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 236       if ( insert ) { // it is MachSafePoint
 237         if ( !n->is_MachCall() ) {
 238           insert = false;
 239         } else if ( n->is_MachCall() ) {
 240           MachCallNode* call = n->as_MachCall();
 241           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 242               call->entry_point() == OptoRuntime::new_array_Java() ||
 243               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 244               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 245               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 246               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 247               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 248               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 249               ) {
 250             insert = false;
 251           }
 252         }
 253         if (insert) {
 254           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 255           b->_nodes.insert( j, zap );
 256           _cfg->_bbs.map( zap->_idx, b );
 257           ++j;
 258         }
 259       }
 260     }
 261   }
 262 }
 263 
 264 
 265 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 266   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 267   CallStaticJavaNode* ideal_node =
 268     new (this) CallStaticJavaNode( tf,
 269          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 270                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 271   // We need to copy the OopMap from the site we're zapping at.
 272   // We have to make a copy, because the zap site might not be
 273   // a call site, and zap_dead is a call site.
 274   OopMap* clone = node_to_check->oop_map()->deep_copy();
 275 
 276   // Add the cloned OopMap to the zap node
 277   ideal_node->set_oop_map(clone);
 278   return _matcher->match_sfpt(ideal_node);
 279 }
 280 
 281 //------------------------------is_node_getting_a_safepoint--------------------
 282 bool Compile::is_node_getting_a_safepoint( Node* n) {
 283   // This code duplicates the logic prior to the call of add_safepoint
 284   // below in this file.
 285   if( n->is_MachSafePoint() ) return true;
 286   return false;
 287 }
 288 
 289 # endif // ENABLE_ZAP_DEAD_LOCALS
 290 
 291 //------------------------------compute_loop_first_inst_sizes------------------
 292 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 293 // of a loop. When aligning a loop we need to provide enough instructions
 294 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 295 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 296 // By default, the size is set to 999999 by Block's constructor so that
 297 // a loop will be aligned if the size is not reset here.
 298 //
 299 // Note: Mach instructions could contain several HW instructions
 300 // so the size is estimated only.
 301 //
 302 void Compile::compute_loop_first_inst_sizes() {
 303   // The next condition is used to gate the loop alignment optimization.
 304   // Don't aligned a loop if there are enough instructions at the head of a loop
 305   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 306   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 307   // equal to 11 bytes which is the largest address NOP instruction.
 308   if( MaxLoopPad < OptoLoopAlignment-1 ) {
 309     uint last_block = _cfg->_num_blocks-1;
 310     for( uint i=1; i <= last_block; i++ ) {
 311       Block *b = _cfg->_blocks[i];
 312       // Check the first loop's block which requires an alignment.
 313       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
 314         uint sum_size = 0;
 315         uint inst_cnt = NumberOfLoopInstrToAlign;
 316         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 317 
 318         // Check subsequent fallthrough blocks if the loop's first
 319         // block(s) does not have enough instructions.
 320         Block *nb = b;
 321         while( inst_cnt > 0 &&
 322                i < last_block &&
 323                !_cfg->_blocks[i+1]->has_loop_alignment() &&
 324                !nb->has_successor(b) ) {
 325           i++;
 326           nb = _cfg->_blocks[i];
 327           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 328         } // while( inst_cnt > 0 && i < last_block  )
 329 
 330         b->set_first_inst_size(sum_size);
 331       } // f( b->head()->is_Loop() )
 332     } // for( i <= last_block )
 333   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 334 }
 335 
 336 //----------------------shorten_branches---------------------------------------
 337 // The architecture description provides short branch variants for some long
 338 // branch instructions. Replace eligible long branches with short branches.
 339 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
 340 
 341   // ------------------
 342   // Compute size of each block, method size, and relocation information size
 343   uint nblocks  = _cfg->_num_blocks;
 344 
 345   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 346   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 347   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 348   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 349   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 350 
 351   bool has_short_branch_candidate = false;
 352 
 353   // Initialize the sizes to 0
 354   code_size  = 0;          // Size in bytes of generated code
 355   stub_size  = 0;          // Size in bytes of all stub entries
 356   // Size in bytes of all relocation entries, including those in local stubs.
 357   // Start with 2-bytes of reloc info for the unvalidated entry point
 358   reloc_size = 1;          // Number of relocation entries
 359 
 360   // Make three passes.  The first computes pessimistic blk_starts,
 361   // relative jmp_offset and reloc_size information.  The second performs
 362   // short branch substitution using the pessimistic sizing.  The
 363   // third inserts nops where needed.
 364 
 365   // Step one, perform a pessimistic sizing pass.
 366   uint last_call_adr = max_uint;
 367   uint last_avoid_back_to_back_adr = max_uint;
 368   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 369   for (uint i = 0; i < nblocks; i++) { // For all blocks
 370     Block *b = _cfg->_blocks[i];
 371 
 372     // During short branch replacement, we store the relative (to blk_starts)
 373     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 374     // This is so that we do not need to recompute sizes of all nodes when
 375     // we compute correct blk_starts in our next sizing pass.
 376     jmp_offset[i] = 0;
 377     jmp_size[i]   = 0;
 378     jmp_nidx[i]   = -1;
 379     DEBUG_ONLY( jmp_target[i] = 0; )
 380     DEBUG_ONLY( jmp_rule[i]   = 0; )
 381 
 382     // Sum all instruction sizes to compute block size
 383     uint last_inst = b->_nodes.size();
 384     uint blk_size = 0;
 385     for (uint j = 0; j < last_inst; j++) {
 386       Node* nj = b->_nodes[j];
 387       // Handle machine instruction nodes
 388       if (nj->is_Mach()) {
 389         MachNode *mach = nj->as_Mach();
 390         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 391         reloc_size += mach->reloc();
 392         if( mach->is_MachCall() ) {
 393           MachCallNode *mcall = mach->as_MachCall();
 394           // This destination address is NOT PC-relative
 395 
 396           mcall->method_set((intptr_t)mcall->entry_point());
 397 
 398           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
 399             stub_size  += size_java_to_interp();
 400             reloc_size += reloc_java_to_interp();
 401           }
 402         } else if (mach->is_MachSafePoint()) {
 403           // If call/safepoint are adjacent, account for possible
 404           // nop to disambiguate the two safepoints.
 405           // ScheduleAndBundle() can rearrange nodes in a block,
 406           // check for all offsets inside this block.
 407           if (last_call_adr >= blk_starts[i]) {
 408             blk_size += nop_size;
 409           }
 410         }
 411         if (mach->avoid_back_to_back()) {
 412           // Nop is inserted between "avoid back to back" instructions.
 413           // ScheduleAndBundle() can rearrange nodes in a block,
 414           // check for all offsets inside this block.
 415           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 416             blk_size += nop_size;
 417           }
 418         }
 419         if (mach->may_be_short_branch()) {
 420           if (!nj->is_MachBranch()) {
 421 #ifndef PRODUCT
 422             nj->dump(3);
 423 #endif
 424             Unimplemented();
 425           }
 426           assert(jmp_nidx[i] == -1, "block should have only one branch");
 427           jmp_offset[i] = blk_size;
 428           jmp_size[i]   = nj->size(_regalloc);
 429           jmp_nidx[i]   = j;
 430           has_short_branch_candidate = true;
 431         }
 432       }
 433       blk_size += nj->size(_regalloc);
 434       // Remember end of call offset
 435       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 436         last_call_adr = blk_starts[i]+blk_size;
 437       }
 438       // Remember end of avoid_back_to_back offset
 439       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
 440         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 441       }
 442     }
 443 
 444     // When the next block starts a loop, we may insert pad NOP
 445     // instructions.  Since we cannot know our future alignment,
 446     // assume the worst.
 447     if (i< nblocks-1) {
 448       Block *nb = _cfg->_blocks[i+1];
 449       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 450       if (max_loop_pad > 0) {
 451         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 452         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 453         // If either is the last instruction in this block, bump by
 454         // max_loop_pad in lock-step with blk_size, so sizing
 455         // calculations in subsequent blocks still can conservatively
 456         // detect that it may the last instruction in this block.
 457         if (last_call_adr == blk_starts[i]+blk_size) {
 458           last_call_adr += max_loop_pad;
 459         }
 460         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 461           last_avoid_back_to_back_adr += max_loop_pad;
 462         }
 463         blk_size += max_loop_pad;
 464       }
 465     }
 466 
 467     // Save block size; update total method size
 468     blk_starts[i+1] = blk_starts[i]+blk_size;
 469   }
 470 
 471   // Step two, replace eligible long jumps.
 472   bool progress = true;
 473   uint last_may_be_short_branch_adr = max_uint;
 474   while (has_short_branch_candidate && progress) {
 475     progress = false;
 476     has_short_branch_candidate = false;
 477     int adjust_block_start = 0;
 478     for (uint i = 0; i < nblocks; i++) {
 479       Block *b = _cfg->_blocks[i];
 480       int idx = jmp_nidx[i];
 481       MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
 482       if (mach != NULL && mach->may_be_short_branch()) {
 483 #ifdef ASSERT
 484         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 485         int j;
 486         // Find the branch; ignore trailing NOPs.
 487         for (j = b->_nodes.size()-1; j>=0; j--) {
 488           Node* n = b->_nodes[j];
 489           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 490             break;
 491         }
 492         assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
 493 #endif
 494         int br_size = jmp_size[i];
 495         int br_offs = blk_starts[i] + jmp_offset[i];
 496 
 497         // This requires the TRUE branch target be in succs[0]
 498         uint bnum = b->non_connector_successor(0)->_pre_order;
 499         int offset = blk_starts[bnum] - br_offs;
 500         if (bnum > i) { // adjust following block's offset
 501           offset -= adjust_block_start;
 502         }
 503         // In the following code a nop could be inserted before
 504         // the branch which will increase the backward distance.
 505         bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
 506         if (needs_padding && offset <= 0)
 507           offset -= nop_size;
 508 
 509         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 510           // We've got a winner.  Replace this branch.
 511           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 512 
 513           // Update the jmp_size.
 514           int new_size = replacement->size(_regalloc);
 515           int diff     = br_size - new_size;
 516           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 517           // Conservatively take into accound padding between
 518           // avoid_back_to_back branches. Previous branch could be
 519           // converted into avoid_back_to_back branch during next
 520           // rounds.
 521           if (needs_padding && replacement->avoid_back_to_back()) {
 522             jmp_offset[i] += nop_size;
 523             diff -= nop_size;
 524           }
 525           adjust_block_start += diff;
 526           b->_nodes.map(idx, replacement);
 527           mach->subsume_by(replacement, C);
 528           mach = replacement;
 529           progress = true;
 530 
 531           jmp_size[i] = new_size;
 532           DEBUG_ONLY( jmp_target[i] = bnum; );
 533           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 534         } else {
 535           // The jump distance is not short, try again during next iteration.
 536           has_short_branch_candidate = true;
 537         }
 538       } // (mach->may_be_short_branch())
 539       if (mach != NULL && (mach->may_be_short_branch() ||
 540                            mach->avoid_back_to_back())) {
 541         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 542       }
 543       blk_starts[i+1] -= adjust_block_start;
 544     }
 545   }
 546 
 547 #ifdef ASSERT
 548   for (uint i = 0; i < nblocks; i++) { // For all blocks
 549     if (jmp_target[i] != 0) {
 550       int br_size = jmp_size[i];
 551       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 552       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 553         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 554       }
 555       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 556     }
 557   }
 558 #endif
 559 
 560   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 561   // after ScheduleAndBundle().
 562 
 563   // ------------------
 564   // Compute size for code buffer
 565   code_size = blk_starts[nblocks];
 566 
 567   // Relocation records
 568   reloc_size += 1;              // Relo entry for exception handler
 569 
 570   // Adjust reloc_size to number of record of relocation info
 571   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 572   // a relocation index.
 573   // The CodeBuffer will expand the locs array if this estimate is too low.
 574   reloc_size *= 10 / sizeof(relocInfo);
 575 }
 576 
 577 //------------------------------FillLocArray-----------------------------------
 578 // Create a bit of debug info and append it to the array.  The mapping is from
 579 // Java local or expression stack to constant, register or stack-slot.  For
 580 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 581 // entry has been taken care of and caller should skip it).
 582 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 583   // This should never have accepted Bad before
 584   assert(OptoReg::is_valid(regnum), "location must be valid");
 585   return (OptoReg::is_reg(regnum))
 586     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 587     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 588 }
 589 
 590 
 591 ObjectValue*
 592 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 593   for (int i = 0; i < objs->length(); i++) {
 594     assert(objs->at(i)->is_object(), "corrupt object cache");
 595     ObjectValue* sv = (ObjectValue*) objs->at(i);
 596     if (sv->id() == id) {
 597       return sv;
 598     }
 599   }
 600   // Otherwise..
 601   return NULL;
 602 }
 603 
 604 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 605                                      ObjectValue* sv ) {
 606   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 607   objs->append(sv);
 608 }
 609 
 610 
 611 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 612                             GrowableArray<ScopeValue*> *array,
 613                             GrowableArray<ScopeValue*> *objs ) {
 614   assert( local, "use _top instead of null" );
 615   if (array->length() != idx) {
 616     assert(array->length() == idx + 1, "Unexpected array count");
 617     // Old functionality:
 618     //   return
 619     // New functionality:
 620     //   Assert if the local is not top. In product mode let the new node
 621     //   override the old entry.
 622     assert(local == top(), "LocArray collision");
 623     if (local == top()) {
 624       return;
 625     }
 626     array->pop();
 627   }
 628   const Type *t = local->bottom_type();
 629 
 630   // Is it a safepoint scalar object node?
 631   if (local->is_SafePointScalarObject()) {
 632     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 633 
 634     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 635     if (sv == NULL) {
 636       ciKlass* cik = t->is_oopptr()->klass();
 637       assert(cik->is_instance_klass() ||
 638              cik->is_array_klass(), "Not supported allocation.");
 639       sv = new ObjectValue(spobj->_idx,
 640                            new ConstantOopWriteValue(cik->constant_encoding()));
 641       Compile::set_sv_for_object_node(objs, sv);
 642 
 643       uint first_ind = spobj->first_index();
 644       for (uint i = 0; i < spobj->n_fields(); i++) {
 645         Node* fld_node = sfpt->in(first_ind+i);
 646         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 647       }
 648     }
 649     array->append(sv);
 650     return;
 651   }
 652 
 653   // Grab the register number for the local
 654   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 655   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 656     // Record the double as two float registers.
 657     // The register mask for such a value always specifies two adjacent
 658     // float registers, with the lower register number even.
 659     // Normally, the allocation of high and low words to these registers
 660     // is irrelevant, because nearly all operations on register pairs
 661     // (e.g., StoreD) treat them as a single unit.
 662     // Here, we assume in addition that the words in these two registers
 663     // stored "naturally" (by operations like StoreD and double stores
 664     // within the interpreter) such that the lower-numbered register
 665     // is written to the lower memory address.  This may seem like
 666     // a machine dependency, but it is not--it is a requirement on
 667     // the author of the <arch>.ad file to ensure that, for every
 668     // even/odd double-register pair to which a double may be allocated,
 669     // the word in the even single-register is stored to the first
 670     // memory word.  (Note that register numbers are completely
 671     // arbitrary, and are not tied to any machine-level encodings.)
 672 #ifdef _LP64
 673     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 674       array->append(new ConstantIntValue(0));
 675       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 676     } else if ( t->base() == Type::Long ) {
 677       array->append(new ConstantIntValue(0));
 678       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 679     } else if ( t->base() == Type::RawPtr ) {
 680       // jsr/ret return address which must be restored into a the full
 681       // width 64-bit stack slot.
 682       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 683     }
 684 #else //_LP64
 685 #ifdef SPARC
 686     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 687       // For SPARC we have to swap high and low words for
 688       // long values stored in a single-register (g0-g7).
 689       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 690       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 691     } else
 692 #endif //SPARC
 693     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 694       // Repack the double/long as two jints.
 695       // The convention the interpreter uses is that the second local
 696       // holds the first raw word of the native double representation.
 697       // This is actually reasonable, since locals and stack arrays
 698       // grow downwards in all implementations.
 699       // (If, on some machine, the interpreter's Java locals or stack
 700       // were to grow upwards, the embedded doubles would be word-swapped.)
 701       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 702       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 703     }
 704 #endif //_LP64
 705     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 706                OptoReg::is_reg(regnum) ) {
 707       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 708                                    ? Location::float_in_dbl : Location::normal ));
 709     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 710       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 711                                    ? Location::int_in_long : Location::normal ));
 712     } else if( t->base() == Type::NarrowOop ) {
 713       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 714     } else {
 715       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 716     }
 717     return;
 718   }
 719 
 720   // No register.  It must be constant data.
 721   switch (t->base()) {
 722   case Type::Half:              // Second half of a double
 723     ShouldNotReachHere();       // Caller should skip 2nd halves
 724     break;
 725   case Type::AnyPtr:
 726     array->append(new ConstantOopWriteValue(NULL));
 727     break;
 728   case Type::AryPtr:
 729   case Type::InstPtr:
 730   case Type::KlassPtr:          // fall through
 731     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 732     break;
 733   case Type::NarrowOop:
 734     if (t == TypeNarrowOop::NULL_PTR) {
 735       array->append(new ConstantOopWriteValue(NULL));
 736     } else {
 737       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 738     }
 739     break;
 740   case Type::Int:
 741     array->append(new ConstantIntValue(t->is_int()->get_con()));
 742     break;
 743   case Type::RawPtr:
 744     // A return address (T_ADDRESS).
 745     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 746 #ifdef _LP64
 747     // Must be restored to the full-width 64-bit stack slot.
 748     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 749 #else
 750     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 751 #endif
 752     break;
 753   case Type::FloatCon: {
 754     float f = t->is_float_constant()->getf();
 755     array->append(new ConstantIntValue(jint_cast(f)));
 756     break;
 757   }
 758   case Type::DoubleCon: {
 759     jdouble d = t->is_double_constant()->getd();
 760 #ifdef _LP64
 761     array->append(new ConstantIntValue(0));
 762     array->append(new ConstantDoubleValue(d));
 763 #else
 764     // Repack the double as two jints.
 765     // The convention the interpreter uses is that the second local
 766     // holds the first raw word of the native double representation.
 767     // This is actually reasonable, since locals and stack arrays
 768     // grow downwards in all implementations.
 769     // (If, on some machine, the interpreter's Java locals or stack
 770     // were to grow upwards, the embedded doubles would be word-swapped.)
 771     jint   *dp = (jint*)&d;
 772     array->append(new ConstantIntValue(dp[1]));
 773     array->append(new ConstantIntValue(dp[0]));
 774 #endif
 775     break;
 776   }
 777   case Type::Long: {
 778     jlong d = t->is_long()->get_con();
 779 #ifdef _LP64
 780     array->append(new ConstantIntValue(0));
 781     array->append(new ConstantLongValue(d));
 782 #else
 783     // Repack the long as two jints.
 784     // The convention the interpreter uses is that the second local
 785     // holds the first raw word of the native double representation.
 786     // This is actually reasonable, since locals and stack arrays
 787     // grow downwards in all implementations.
 788     // (If, on some machine, the interpreter's Java locals or stack
 789     // were to grow upwards, the embedded doubles would be word-swapped.)
 790     jint *dp = (jint*)&d;
 791     array->append(new ConstantIntValue(dp[1]));
 792     array->append(new ConstantIntValue(dp[0]));
 793 #endif
 794     break;
 795   }
 796   case Type::Top:               // Add an illegal value here
 797     array->append(new LocationValue(Location()));
 798     break;
 799   default:
 800     ShouldNotReachHere();
 801     break;
 802   }
 803 }
 804 
 805 // Determine if this node starts a bundle
 806 bool Compile::starts_bundle(const Node *n) const {
 807   return (_node_bundling_limit > n->_idx &&
 808           _node_bundling_base[n->_idx].starts_bundle());
 809 }
 810 
 811 //--------------------------Process_OopMap_Node--------------------------------
 812 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 813 
 814   // Handle special safepoint nodes for synchronization
 815   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 816   MachCallNode      *mcall;
 817 
 818 #ifdef ENABLE_ZAP_DEAD_LOCALS
 819   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 820 #endif
 821 
 822   int safepoint_pc_offset = current_offset;
 823   bool is_method_handle_invoke = false;
 824   bool return_oop = false;
 825 
 826   // Add the safepoint in the DebugInfoRecorder
 827   if( !mach->is_MachCall() ) {
 828     mcall = NULL;
 829     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 830   } else {
 831     mcall = mach->as_MachCall();
 832 
 833     // Is the call a MethodHandle call?
 834     if (mcall->is_MachCallJava()) {
 835       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 836         assert(has_method_handle_invokes(), "must have been set during call generation");
 837         is_method_handle_invoke = true;
 838       }
 839     }
 840 
 841     // Check if a call returns an object.
 842     if (mcall->return_value_is_used() &&
 843         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 844       return_oop = true;
 845     }
 846     safepoint_pc_offset += mcall->ret_addr_offset();
 847     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 848   }
 849 
 850   // Loop over the JVMState list to add scope information
 851   // Do not skip safepoints with a NULL method, they need monitor info
 852   JVMState* youngest_jvms = sfn->jvms();
 853   int max_depth = youngest_jvms->depth();
 854 
 855   // Allocate the object pool for scalar-replaced objects -- the map from
 856   // small-integer keys (which can be recorded in the local and ostack
 857   // arrays) to descriptions of the object state.
 858   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 859 
 860   // Visit scopes from oldest to youngest.
 861   for (int depth = 1; depth <= max_depth; depth++) {
 862     JVMState* jvms = youngest_jvms->of_depth(depth);
 863     int idx;
 864     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 865     // Safepoints that do not have method() set only provide oop-map and monitor info
 866     // to support GC; these do not support deoptimization.
 867     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 868     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 869     int num_mon  = jvms->nof_monitors();
 870     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 871            "JVMS local count must match that of the method");
 872 
 873     // Add Local and Expression Stack Information
 874 
 875     // Insert locals into the locarray
 876     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 877     for( idx = 0; idx < num_locs; idx++ ) {
 878       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 879     }
 880 
 881     // Insert expression stack entries into the exparray
 882     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 883     for( idx = 0; idx < num_exps; idx++ ) {
 884       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 885     }
 886 
 887     // Add in mappings of the monitors
 888     assert( !method ||
 889             !method->is_synchronized() ||
 890             method->is_native() ||
 891             num_mon > 0 ||
 892             !GenerateSynchronizationCode,
 893             "monitors must always exist for synchronized methods");
 894 
 895     // Build the growable array of ScopeValues for exp stack
 896     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 897 
 898     // Loop over monitors and insert into array
 899     for(idx = 0; idx < num_mon; idx++) {
 900       // Grab the node that defines this monitor
 901       Node* box_node = sfn->monitor_box(jvms, idx);
 902       Node* obj_node = sfn->monitor_obj(jvms, idx);
 903 
 904       // Create ScopeValue for object
 905       ScopeValue *scval = NULL;
 906 
 907       if( obj_node->is_SafePointScalarObject() ) {
 908         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 909         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 910         if (scval == NULL) {
 911           const Type *t = obj_node->bottom_type();
 912           ciKlass* cik = t->is_oopptr()->klass();
 913           assert(cik->is_instance_klass() ||
 914                  cik->is_array_klass(), "Not supported allocation.");
 915           ObjectValue* sv = new ObjectValue(spobj->_idx,
 916                                 new ConstantOopWriteValue(cik->constant_encoding()));
 917           Compile::set_sv_for_object_node(objs, sv);
 918 
 919           uint first_ind = spobj->first_index();
 920           for (uint i = 0; i < spobj->n_fields(); i++) {
 921             Node* fld_node = sfn->in(first_ind+i);
 922             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 923           }
 924           scval = sv;
 925         }
 926       } else if( !obj_node->is_Con() ) {
 927         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 928         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 929           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 930         } else {
 931           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 932         }
 933       } else {
 934         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
 935         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 936       }
 937 
 938       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
 939       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 940       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
 941       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
 942     }
 943 
 944     // We dump the object pool first, since deoptimization reads it in first.
 945     debug_info()->dump_object_pool(objs);
 946 
 947     // Build first class objects to pass to scope
 948     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 949     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 950     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 951 
 952     // Make method available for all Safepoints
 953     ciMethod* scope_method = method ? method : _method;
 954     // Describe the scope here
 955     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 956     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 957     // Now we can describe the scope.
 958     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 959   } // End jvms loop
 960 
 961   // Mark the end of the scope set.
 962   debug_info()->end_safepoint(safepoint_pc_offset);
 963 }
 964 
 965 
 966 
 967 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 968 class NonSafepointEmitter {
 969   Compile*  C;
 970   JVMState* _pending_jvms;
 971   int       _pending_offset;
 972 
 973   void emit_non_safepoint();
 974 
 975  public:
 976   NonSafepointEmitter(Compile* compile) {
 977     this->C = compile;
 978     _pending_jvms = NULL;
 979     _pending_offset = 0;
 980   }
 981 
 982   void observe_instruction(Node* n, int pc_offset) {
 983     if (!C->debug_info()->recording_non_safepoints())  return;
 984 
 985     Node_Notes* nn = C->node_notes_at(n->_idx);
 986     if (nn == NULL || nn->jvms() == NULL)  return;
 987     if (_pending_jvms != NULL &&
 988         _pending_jvms->same_calls_as(nn->jvms())) {
 989       // Repeated JVMS?  Stretch it up here.
 990       _pending_offset = pc_offset;
 991     } else {
 992       if (_pending_jvms != NULL &&
 993           _pending_offset < pc_offset) {
 994         emit_non_safepoint();
 995       }
 996       _pending_jvms = NULL;
 997       if (pc_offset > C->debug_info()->last_pc_offset()) {
 998         // This is the only way _pending_jvms can become non-NULL:
 999         _pending_jvms = nn->jvms();
1000         _pending_offset = pc_offset;
1001       }
1002     }
1003   }
1004 
1005   // Stay out of the way of real safepoints:
1006   void observe_safepoint(JVMState* jvms, int pc_offset) {
1007     if (_pending_jvms != NULL &&
1008         !_pending_jvms->same_calls_as(jvms) &&
1009         _pending_offset < pc_offset) {
1010       emit_non_safepoint();
1011     }
1012     _pending_jvms = NULL;
1013   }
1014 
1015   void flush_at_end() {
1016     if (_pending_jvms != NULL) {
1017       emit_non_safepoint();
1018     }
1019     _pending_jvms = NULL;
1020   }
1021 };
1022 
1023 void NonSafepointEmitter::emit_non_safepoint() {
1024   JVMState* youngest_jvms = _pending_jvms;
1025   int       pc_offset     = _pending_offset;
1026 
1027   // Clear it now:
1028   _pending_jvms = NULL;
1029 
1030   DebugInformationRecorder* debug_info = C->debug_info();
1031   assert(debug_info->recording_non_safepoints(), "sanity");
1032 
1033   debug_info->add_non_safepoint(pc_offset);
1034   int max_depth = youngest_jvms->depth();
1035 
1036   // Visit scopes from oldest to youngest.
1037   for (int depth = 1; depth <= max_depth; depth++) {
1038     JVMState* jvms = youngest_jvms->of_depth(depth);
1039     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1040     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1041     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1042   }
1043 
1044   // Mark the end of the scope set.
1045   debug_info->end_non_safepoint(pc_offset);
1046 }
1047 
1048 
1049 
1050 // helper for fill_buffer bailout logic
1051 static void turn_off_compiler(Compile* C) {
1052   if (CodeCache::largest_free_block() >= CodeCacheMinimumFreeSpace*10) {
1053     // Do not turn off compilation if a single giant method has
1054     // blown the code cache size.
1055     C->record_failure("excessive request to CodeCache");
1056   } else {
1057     // Let CompilerBroker disable further compilations.
1058     C->record_failure("CodeCache is full");
1059   }
1060 }
1061 
1062 
1063 //------------------------------init_buffer------------------------------------
1064 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1065 
1066   // Set the initially allocated size
1067   int  code_req   = initial_code_capacity;
1068   int  locs_req   = initial_locs_capacity;
1069   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1070   int  const_req  = initial_const_capacity;
1071 
1072   int  pad_req    = NativeCall::instruction_size;
1073   // The extra spacing after the code is necessary on some platforms.
1074   // Sometimes we need to patch in a jump after the last instruction,
1075   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1076 
1077   // Compute the byte offset where we can store the deopt pc.
1078   if (fixed_slots() != 0) {
1079     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1080   }
1081 
1082   // Compute prolog code size
1083   _method_size = 0;
1084   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1085 #ifdef IA64
1086   if (save_argument_registers()) {
1087     // 4815101: this is a stub with implicit and unknown precision fp args.
1088     // The usual spill mechanism can only generate stfd's in this case, which
1089     // doesn't work if the fp reg to spill contains a single-precision denorm.
1090     // Instead, we hack around the normal spill mechanism using stfspill's and
1091     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1092     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1093     //
1094     // If we ever implement 16-byte 'registers' == stack slots, we can
1095     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1096     // instead of stfd/stfs/ldfd/ldfs.
1097     _frame_slots += 8*(16/BytesPerInt);
1098   }
1099 #endif
1100   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1101 
1102   if (has_mach_constant_base_node()) {
1103     // Fill the constant table.
1104     // Note:  This must happen before shorten_branches.
1105     for (uint i = 0; i < _cfg->_num_blocks; i++) {
1106       Block* b = _cfg->_blocks[i];
1107 
1108       for (uint j = 0; j < b->_nodes.size(); j++) {
1109         Node* n = b->_nodes[j];
1110 
1111         // If the node is a MachConstantNode evaluate the constant
1112         // value section.
1113         if (n->is_MachConstant()) {
1114           MachConstantNode* machcon = n->as_MachConstant();
1115           machcon->eval_constant(C);
1116         }
1117       }
1118     }
1119 
1120     // Calculate the offsets of the constants and the size of the
1121     // constant table (including the padding to the next section).
1122     constant_table().calculate_offsets_and_size();
1123     const_req = constant_table().size();
1124   }
1125 
1126   // Initialize the space for the BufferBlob used to find and verify
1127   // instruction size in MachNode::emit_size()
1128   init_scratch_buffer_blob(const_req);
1129   if (failing())  return NULL; // Out of memory
1130 
1131   // Pre-compute the length of blocks and replace
1132   // long branches with short if machine supports it.
1133   shorten_branches(blk_starts, code_req, locs_req, stub_req);
1134 
1135   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1136   int exception_handler_req = size_exception_handler();
1137   int deopt_handler_req = size_deopt_handler();
1138   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1139   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1140   stub_req += MAX_stubs_size;   // ensure per-stub margin
1141   code_req += MAX_inst_size;    // ensure per-instruction margin
1142 
1143   if (StressCodeBuffers)
1144     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1145 
1146   int total_req =
1147     const_req +
1148     code_req +
1149     pad_req +
1150     stub_req +
1151     exception_handler_req +
1152     deopt_handler_req;               // deopt handler
1153 
1154   if (has_method_handle_invokes())
1155     total_req += deopt_handler_req;  // deopt MH handler
1156 
1157   CodeBuffer* cb = code_buffer();
1158   cb->initialize(total_req, locs_req);
1159 
1160   // Have we run out of code space?
1161   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1162     turn_off_compiler(this);
1163     return NULL;
1164   }
1165   // Configure the code buffer.
1166   cb->initialize_consts_size(const_req);
1167   cb->initialize_stubs_size(stub_req);
1168   cb->initialize_oop_recorder(env()->oop_recorder());
1169 
1170   // fill in the nop array for bundling computations
1171   MachNode *_nop_list[Bundle::_nop_count];
1172   Bundle::initialize_nops(_nop_list, this);
1173 
1174   return cb;
1175 }
1176 
1177 //------------------------------fill_buffer------------------------------------
1178 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1179   // blk_starts[] contains offsets calculated during short branches processing,
1180   // offsets should not be increased during following steps.
1181 
1182   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1183   // of a loop. It is used to determine the padding for loop alignment.
1184   compute_loop_first_inst_sizes();
1185 
1186   // Create oopmap set.
1187   _oop_map_set = new OopMapSet();
1188 
1189   // !!!!! This preserves old handling of oopmaps for now
1190   debug_info()->set_oopmaps(_oop_map_set);
1191 
1192   uint nblocks  = _cfg->_num_blocks;
1193   // Count and start of implicit null check instructions
1194   uint inct_cnt = 0;
1195   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1196 
1197   // Count and start of calls
1198   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1199 
1200   uint  return_offset = 0;
1201   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1202 
1203   int previous_offset = 0;
1204   int current_offset  = 0;
1205   int last_call_offset = -1;
1206   int last_avoid_back_to_back_offset = -1;
1207 #ifdef ASSERT
1208   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1209   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1210   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1211   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1212 #endif
1213 
1214   // Create an array of unused labels, one for each basic block, if printing is enabled
1215 #ifndef PRODUCT
1216   int *node_offsets      = NULL;
1217   uint node_offset_limit = unique();
1218 
1219   if (print_assembly())
1220     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1221 #endif
1222 
1223   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1224 
1225   // Emit the constant table.
1226   if (has_mach_constant_base_node()) {
1227     constant_table().emit(*cb);
1228   }
1229 
1230   // Create an array of labels, one for each basic block
1231   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1232   for (uint i=0; i <= nblocks; i++) {
1233     blk_labels[i].init();
1234   }
1235 
1236   // ------------------
1237   // Now fill in the code buffer
1238   Node *delay_slot = NULL;
1239 
1240   for (uint i=0; i < nblocks; i++) {
1241     Block *b = _cfg->_blocks[i];
1242 
1243     Node *head = b->head();
1244 
1245     // If this block needs to start aligned (i.e, can be reached other
1246     // than by falling-thru from the previous block), then force the
1247     // start of a new bundle.
1248     if (Pipeline::requires_bundling() && starts_bundle(head))
1249       cb->flush_bundle(true);
1250 
1251 #ifdef ASSERT
1252     if (!b->is_connector()) {
1253       stringStream st;
1254       b->dump_head(&_cfg->_bbs, &st);
1255       MacroAssembler(cb).block_comment(st.as_string());
1256     }
1257     jmp_target[i] = 0;
1258     jmp_offset[i] = 0;
1259     jmp_size[i]   = 0;
1260     jmp_rule[i]   = 0;
1261 #endif
1262     int blk_offset = current_offset;
1263 
1264     // Define the label at the beginning of the basic block
1265     MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
1266 
1267     uint last_inst = b->_nodes.size();
1268 
1269     // Emit block normally, except for last instruction.
1270     // Emit means "dump code bits into code buffer".
1271     for (uint j = 0; j<last_inst; j++) {
1272 
1273       // Get the node
1274       Node* n = b->_nodes[j];
1275 
1276       // See if delay slots are supported
1277       if (valid_bundle_info(n) &&
1278           node_bundling(n)->used_in_unconditional_delay()) {
1279         assert(delay_slot == NULL, "no use of delay slot node");
1280         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1281 
1282         delay_slot = n;
1283         continue;
1284       }
1285 
1286       // If this starts a new instruction group, then flush the current one
1287       // (but allow split bundles)
1288       if (Pipeline::requires_bundling() && starts_bundle(n))
1289         cb->flush_bundle(false);
1290 
1291       // The following logic is duplicated in the code ifdeffed for
1292       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1293       // should be factored out.  Or maybe dispersed to the nodes?
1294 
1295       // Special handling for SafePoint/Call Nodes
1296       bool is_mcall = false;
1297       if (n->is_Mach()) {
1298         MachNode *mach = n->as_Mach();
1299         is_mcall = n->is_MachCall();
1300         bool is_sfn = n->is_MachSafePoint();
1301 
1302         // If this requires all previous instructions be flushed, then do so
1303         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1304           cb->flush_bundle(true);
1305           current_offset = cb->insts_size();
1306         }
1307 
1308         // A padding may be needed again since a previous instruction
1309         // could be moved to delay slot.
1310 
1311         // align the instruction if necessary
1312         int padding = mach->compute_padding(current_offset);
1313         // Make sure safepoint node for polling is distinct from a call's
1314         // return by adding a nop if needed.
1315         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1316           padding = nop_size;
1317         }
1318         if (padding == 0 && mach->avoid_back_to_back() &&
1319             current_offset == last_avoid_back_to_back_offset) {
1320           // Avoid back to back some instructions.
1321           padding = nop_size;
1322         }
1323 
1324         if(padding > 0) {
1325           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1326           int nops_cnt = padding / nop_size;
1327           MachNode *nop = new (this) MachNopNode(nops_cnt);
1328           b->_nodes.insert(j++, nop);
1329           last_inst++;
1330           _cfg->_bbs.map( nop->_idx, b );
1331           nop->emit(*cb, _regalloc);
1332           cb->flush_bundle(true);
1333           current_offset = cb->insts_size();
1334         }
1335 
1336         // Remember the start of the last call in a basic block
1337         if (is_mcall) {
1338           MachCallNode *mcall = mach->as_MachCall();
1339 
1340           // This destination address is NOT PC-relative
1341           mcall->method_set((intptr_t)mcall->entry_point());
1342 
1343           // Save the return address
1344           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1345 
1346           if (mcall->is_MachCallLeaf()) {
1347             is_mcall = false;
1348             is_sfn = false;
1349           }
1350         }
1351 
1352         // sfn will be valid whenever mcall is valid now because of inheritance
1353         if (is_sfn || is_mcall) {
1354 
1355           // Handle special safepoint nodes for synchronization
1356           if (!is_mcall) {
1357             MachSafePointNode *sfn = mach->as_MachSafePoint();
1358             // !!!!! Stubs only need an oopmap right now, so bail out
1359             if (sfn->jvms()->method() == NULL) {
1360               // Write the oopmap directly to the code blob??!!
1361 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1362               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1363 #             endif
1364               continue;
1365             }
1366           } // End synchronization
1367 
1368           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1369                                            current_offset);
1370           Process_OopMap_Node(mach, current_offset);
1371         } // End if safepoint
1372 
1373         // If this is a null check, then add the start of the previous instruction to the list
1374         else if( mach->is_MachNullCheck() ) {
1375           inct_starts[inct_cnt++] = previous_offset;
1376         }
1377 
1378         // If this is a branch, then fill in the label with the target BB's label
1379         else if (mach->is_MachBranch()) {
1380           // This requires the TRUE branch target be in succs[0]
1381           uint block_num = b->non_connector_successor(0)->_pre_order;
1382 
1383           // Try to replace long branch if delay slot is not used,
1384           // it is mostly for back branches since forward branch's
1385           // distance is not updated yet.
1386           bool delay_slot_is_used = valid_bundle_info(n) &&
1387                                     node_bundling(n)->use_unconditional_delay();
1388           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1389            assert(delay_slot == NULL, "not expecting delay slot node");
1390            int br_size = n->size(_regalloc);
1391             int offset = blk_starts[block_num] - current_offset;
1392             if (block_num >= i) {
1393               // Current and following block's offset are not
1394               // finilized yet, adjust distance by the difference
1395               // between calculated and final offsets of current block.
1396               offset -= (blk_starts[i] - blk_offset);
1397             }
1398             // In the following code a nop could be inserted before
1399             // the branch which will increase the backward distance.
1400             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1401             if (needs_padding && offset <= 0)
1402               offset -= nop_size;
1403 
1404             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1405               // We've got a winner.  Replace this branch.
1406               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1407 
1408               // Update the jmp_size.
1409               int new_size = replacement->size(_regalloc);
1410               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1411               // Insert padding between avoid_back_to_back branches.
1412               if (needs_padding && replacement->avoid_back_to_back()) {
1413                 MachNode *nop = new (this) MachNopNode();
1414                 b->_nodes.insert(j++, nop);
1415                 _cfg->_bbs.map(nop->_idx, b);
1416                 last_inst++;
1417                 nop->emit(*cb, _regalloc);
1418                 cb->flush_bundle(true);
1419                 current_offset = cb->insts_size();
1420               }
1421 #ifdef ASSERT
1422               jmp_target[i] = block_num;
1423               jmp_offset[i] = current_offset - blk_offset;
1424               jmp_size[i]   = new_size;
1425               jmp_rule[i]   = mach->rule();
1426 #endif
1427               b->_nodes.map(j, replacement);
1428               mach->subsume_by(replacement, C);
1429               n    = replacement;
1430               mach = replacement;
1431             }
1432           }
1433           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1434         } else if (mach->ideal_Opcode() == Op_Jump) {
1435           for (uint h = 0; h < b->_num_succs; h++) {
1436             Block* succs_block = b->_succs[h];
1437             for (uint j = 1; j < succs_block->num_preds(); j++) {
1438               Node* jpn = succs_block->pred(j);
1439               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1440                 uint block_num = succs_block->non_connector()->_pre_order;
1441                 Label *blkLabel = &blk_labels[block_num];
1442                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1443               }
1444             }
1445           }
1446         }
1447 
1448 #ifdef ASSERT
1449         // Check that oop-store precedes the card-mark
1450         else if (mach->ideal_Opcode() == Op_StoreCM) {
1451           uint storeCM_idx = j;
1452           int count = 0;
1453           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1454             Node *oop_store = mach->in(prec);  // Precedence edge
1455             if (oop_store == NULL) continue;
1456             count++;
1457             uint i4;
1458             for( i4 = 0; i4 < last_inst; ++i4 ) {
1459               if( b->_nodes[i4] == oop_store ) break;
1460             }
1461             // Note: This test can provide a false failure if other precedence
1462             // edges have been added to the storeCMNode.
1463             assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1464           }
1465           assert(count > 0, "storeCM expects at least one precedence edge");
1466         }
1467 #endif
1468 
1469         else if (!n->is_Proj()) {
1470           // Remember the beginning of the previous instruction, in case
1471           // it's followed by a flag-kill and a null-check.  Happens on
1472           // Intel all the time, with add-to-memory kind of opcodes.
1473           previous_offset = current_offset;
1474         }
1475       }
1476 
1477       // Verify that there is sufficient space remaining
1478       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1479       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1480         turn_off_compiler(this);
1481         return;
1482       }
1483 
1484       // Save the offset for the listing
1485 #ifndef PRODUCT
1486       if (node_offsets && n->_idx < node_offset_limit)
1487         node_offsets[n->_idx] = cb->insts_size();
1488 #endif
1489 
1490       // "Normal" instruction case
1491       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1492       n->emit(*cb, _regalloc);
1493       current_offset  = cb->insts_size();
1494 
1495 #ifdef ASSERT
1496       if (n->size(_regalloc) < (current_offset-instr_offset)) {
1497         n->dump();
1498         assert(false, "wrong size of mach node");
1499       }
1500 #endif
1501       non_safepoints.observe_instruction(n, current_offset);
1502 
1503       // mcall is last "call" that can be a safepoint
1504       // record it so we can see if a poll will directly follow it
1505       // in which case we'll need a pad to make the PcDesc sites unique
1506       // see  5010568. This can be slightly inaccurate but conservative
1507       // in the case that return address is not actually at current_offset.
1508       // This is a small price to pay.
1509 
1510       if (is_mcall) {
1511         last_call_offset = current_offset;
1512       }
1513 
1514       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1515         // Avoid back to back some instructions.
1516         last_avoid_back_to_back_offset = current_offset;
1517       }
1518 
1519       // See if this instruction has a delay slot
1520       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1521         assert(delay_slot != NULL, "expecting delay slot node");
1522 
1523         // Back up 1 instruction
1524         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1525 
1526         // Save the offset for the listing
1527 #ifndef PRODUCT
1528         if (node_offsets && delay_slot->_idx < node_offset_limit)
1529           node_offsets[delay_slot->_idx] = cb->insts_size();
1530 #endif
1531 
1532         // Support a SafePoint in the delay slot
1533         if (delay_slot->is_MachSafePoint()) {
1534           MachNode *mach = delay_slot->as_Mach();
1535           // !!!!! Stubs only need an oopmap right now, so bail out
1536           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1537             // Write the oopmap directly to the code blob??!!
1538 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1539             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1540 #           endif
1541             delay_slot = NULL;
1542             continue;
1543           }
1544 
1545           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1546           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1547                                            adjusted_offset);
1548           // Generate an OopMap entry
1549           Process_OopMap_Node(mach, adjusted_offset);
1550         }
1551 
1552         // Insert the delay slot instruction
1553         delay_slot->emit(*cb, _regalloc);
1554 
1555         // Don't reuse it
1556         delay_slot = NULL;
1557       }
1558 
1559     } // End for all instructions in block
1560 
1561     // If the next block is the top of a loop, pad this block out to align
1562     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1563     if (i < nblocks-1) {
1564       Block *nb = _cfg->_blocks[i+1];
1565       int padding = nb->alignment_padding(current_offset);
1566       if( padding > 0 ) {
1567         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1568         b->_nodes.insert( b->_nodes.size(), nop );
1569         _cfg->_bbs.map( nop->_idx, b );
1570         nop->emit(*cb, _regalloc);
1571         current_offset = cb->insts_size();
1572       }
1573     }
1574     // Verify that the distance for generated before forward
1575     // short branches is still valid.
1576     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1577 
1578     // Save new block start offset
1579     blk_starts[i] = blk_offset;
1580   } // End of for all blocks
1581   blk_starts[nblocks] = current_offset;
1582 
1583   non_safepoints.flush_at_end();
1584 
1585   // Offset too large?
1586   if (failing())  return;
1587 
1588   // Define a pseudo-label at the end of the code
1589   MacroAssembler(cb).bind( blk_labels[nblocks] );
1590 
1591   // Compute the size of the first block
1592   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1593 
1594   assert(cb->insts_size() < 500000, "method is unreasonably large");
1595 
1596 #ifdef ASSERT
1597   for (uint i = 0; i < nblocks; i++) { // For all blocks
1598     if (jmp_target[i] != 0) {
1599       int br_size = jmp_size[i];
1600       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1601       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1602         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1603         assert(false, "Displacement too large for short jmp");
1604       }
1605     }
1606   }
1607 #endif
1608 
1609   // ------------------
1610 
1611 #ifndef PRODUCT
1612   // Information on the size of the method, without the extraneous code
1613   Scheduling::increment_method_size(cb->insts_size());
1614 #endif
1615 
1616   // ------------------
1617   // Fill in exception table entries.
1618   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1619 
1620   // Only java methods have exception handlers and deopt handlers
1621   if (_method) {
1622     // Emit the exception handler code.
1623     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1624     // Emit the deopt handler code.
1625     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1626 
1627     // Emit the MethodHandle deopt handler code (if required).
1628     if (has_method_handle_invokes()) {
1629       // We can use the same code as for the normal deopt handler, we
1630       // just need a different entry point address.
1631       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1632     }
1633   }
1634 
1635   // One last check for failed CodeBuffer::expand:
1636   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1637     turn_off_compiler(this);
1638     return;
1639   }
1640 
1641 #ifndef PRODUCT
1642   // Dump the assembly code, including basic-block numbers
1643   if (print_assembly()) {
1644     ttyLocker ttyl;  // keep the following output all in one block
1645     if (!VMThread::should_terminate()) {  // test this under the tty lock
1646       // This output goes directly to the tty, not the compiler log.
1647       // To enable tools to match it up with the compilation activity,
1648       // be sure to tag this tty output with the compile ID.
1649       if (xtty != NULL) {
1650         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1651                    is_osr_compilation()    ? " compile_kind='osr'" :
1652                    "");
1653       }
1654       if (method() != NULL) {
1655         method()->print_oop();
1656         print_codes();
1657       }
1658       dump_asm(node_offsets, node_offset_limit);
1659       if (xtty != NULL) {
1660         xtty->tail("opto_assembly");
1661       }
1662     }
1663   }
1664 #endif
1665 
1666 }
1667 
1668 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1669   _inc_table.set_size(cnt);
1670 
1671   uint inct_cnt = 0;
1672   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1673     Block *b = _cfg->_blocks[i];
1674     Node *n = NULL;
1675     int j;
1676 
1677     // Find the branch; ignore trailing NOPs.
1678     for( j = b->_nodes.size()-1; j>=0; j-- ) {
1679       n = b->_nodes[j];
1680       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1681         break;
1682     }
1683 
1684     // If we didn't find anything, continue
1685     if( j < 0 ) continue;
1686 
1687     // Compute ExceptionHandlerTable subtable entry and add it
1688     // (skip empty blocks)
1689     if( n->is_Catch() ) {
1690 
1691       // Get the offset of the return from the call
1692       uint call_return = call_returns[b->_pre_order];
1693 #ifdef ASSERT
1694       assert( call_return > 0, "no call seen for this basic block" );
1695       while( b->_nodes[--j]->is_MachProj() ) ;
1696       assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
1697 #endif
1698       // last instruction is a CatchNode, find it's CatchProjNodes
1699       int nof_succs = b->_num_succs;
1700       // allocate space
1701       GrowableArray<intptr_t> handler_bcis(nof_succs);
1702       GrowableArray<intptr_t> handler_pcos(nof_succs);
1703       // iterate through all successors
1704       for (int j = 0; j < nof_succs; j++) {
1705         Block* s = b->_succs[j];
1706         bool found_p = false;
1707         for( uint k = 1; k < s->num_preds(); k++ ) {
1708           Node *pk = s->pred(k);
1709           if( pk->is_CatchProj() && pk->in(0) == n ) {
1710             const CatchProjNode* p = pk->as_CatchProj();
1711             found_p = true;
1712             // add the corresponding handler bci & pco information
1713             if( p->_con != CatchProjNode::fall_through_index ) {
1714               // p leads to an exception handler (and is not fall through)
1715               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1716               // no duplicates, please
1717               if( !handler_bcis.contains(p->handler_bci()) ) {
1718                 uint block_num = s->non_connector()->_pre_order;
1719                 handler_bcis.append(p->handler_bci());
1720                 handler_pcos.append(blk_labels[block_num].loc_pos());
1721               }
1722             }
1723           }
1724         }
1725         assert(found_p, "no matching predecessor found");
1726         // Note:  Due to empty block removal, one block may have
1727         // several CatchProj inputs, from the same Catch.
1728       }
1729 
1730       // Set the offset of the return from the call
1731       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1732       continue;
1733     }
1734 
1735     // Handle implicit null exception table updates
1736     if( n->is_MachNullCheck() ) {
1737       uint block_num = b->non_connector_successor(0)->_pre_order;
1738       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1739       continue;
1740     }
1741   } // End of for all blocks fill in exception table entries
1742 }
1743 
1744 // Static Variables
1745 #ifndef PRODUCT
1746 uint Scheduling::_total_nop_size = 0;
1747 uint Scheduling::_total_method_size = 0;
1748 uint Scheduling::_total_branches = 0;
1749 uint Scheduling::_total_unconditional_delays = 0;
1750 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1751 #endif
1752 
1753 // Initializer for class Scheduling
1754 
1755 Scheduling::Scheduling(Arena *arena, Compile &compile)
1756   : _arena(arena),
1757     _cfg(compile.cfg()),
1758     _bbs(compile.cfg()->_bbs),
1759     _regalloc(compile.regalloc()),
1760     _reg_node(arena),
1761     _bundle_instr_count(0),
1762     _bundle_cycle_number(0),
1763     _scheduled(arena),
1764     _available(arena),
1765     _next_node(NULL),
1766     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1767     _pinch_free_list(arena)
1768 #ifndef PRODUCT
1769   , _branches(0)
1770   , _unconditional_delays(0)
1771 #endif
1772 {
1773   // Create a MachNopNode
1774   _nop = new (&compile) MachNopNode();
1775 
1776   // Now that the nops are in the array, save the count
1777   // (but allow entries for the nops)
1778   _node_bundling_limit = compile.unique();
1779   uint node_max = _regalloc->node_regs_max_index();
1780 
1781   compile.set_node_bundling_limit(_node_bundling_limit);
1782 
1783   // This one is persistent within the Compile class
1784   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1785 
1786   // Allocate space for fixed-size arrays
1787   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1788   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1789   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1790 
1791   // Clear the arrays
1792   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1793   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1794   memset(_uses,               0, node_max * sizeof(short));
1795   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1796 
1797   // Clear the bundling information
1798   memcpy(_bundle_use_elements,
1799     Pipeline_Use::elaborated_elements,
1800     sizeof(Pipeline_Use::elaborated_elements));
1801 
1802   // Get the last node
1803   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1804 
1805   _next_node = bb->_nodes[bb->_nodes.size()-1];
1806 }
1807 
1808 #ifndef PRODUCT
1809 // Scheduling destructor
1810 Scheduling::~Scheduling() {
1811   _total_branches             += _branches;
1812   _total_unconditional_delays += _unconditional_delays;
1813 }
1814 #endif
1815 
1816 // Step ahead "i" cycles
1817 void Scheduling::step(uint i) {
1818 
1819   Bundle *bundle = node_bundling(_next_node);
1820   bundle->set_starts_bundle();
1821 
1822   // Update the bundle record, but leave the flags information alone
1823   if (_bundle_instr_count > 0) {
1824     bundle->set_instr_count(_bundle_instr_count);
1825     bundle->set_resources_used(_bundle_use.resourcesUsed());
1826   }
1827 
1828   // Update the state information
1829   _bundle_instr_count = 0;
1830   _bundle_cycle_number += i;
1831   _bundle_use.step(i);
1832 }
1833 
1834 void Scheduling::step_and_clear() {
1835   Bundle *bundle = node_bundling(_next_node);
1836   bundle->set_starts_bundle();
1837 
1838   // Update the bundle record
1839   if (_bundle_instr_count > 0) {
1840     bundle->set_instr_count(_bundle_instr_count);
1841     bundle->set_resources_used(_bundle_use.resourcesUsed());
1842 
1843     _bundle_cycle_number += 1;
1844   }
1845 
1846   // Clear the bundling information
1847   _bundle_instr_count = 0;
1848   _bundle_use.reset();
1849 
1850   memcpy(_bundle_use_elements,
1851     Pipeline_Use::elaborated_elements,
1852     sizeof(Pipeline_Use::elaborated_elements));
1853 }
1854 
1855 //------------------------------ScheduleAndBundle------------------------------
1856 // Perform instruction scheduling and bundling over the sequence of
1857 // instructions in backwards order.
1858 void Compile::ScheduleAndBundle() {
1859 
1860   // Don't optimize this if it isn't a method
1861   if (!_method)
1862     return;
1863 
1864   // Don't optimize this if scheduling is disabled
1865   if (!do_scheduling())
1866     return;
1867 
1868   // Scheduling code works only with pairs (8 bytes) maximum.
1869   if (max_vector_size() > 8)
1870     return;
1871 
1872   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1873 
1874   // Create a data structure for all the scheduling information
1875   Scheduling scheduling(Thread::current()->resource_area(), *this);
1876 
1877   // Walk backwards over each basic block, computing the needed alignment
1878   // Walk over all the basic blocks
1879   scheduling.DoScheduling();
1880 }
1881 
1882 //------------------------------ComputeLocalLatenciesForward-------------------
1883 // Compute the latency of all the instructions.  This is fairly simple,
1884 // because we already have a legal ordering.  Walk over the instructions
1885 // from first to last, and compute the latency of the instruction based
1886 // on the latency of the preceding instruction(s).
1887 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1888 #ifndef PRODUCT
1889   if (_cfg->C->trace_opto_output())
1890     tty->print("# -> ComputeLocalLatenciesForward\n");
1891 #endif
1892 
1893   // Walk over all the schedulable instructions
1894   for( uint j=_bb_start; j < _bb_end; j++ ) {
1895 
1896     // This is a kludge, forcing all latency calculations to start at 1.
1897     // Used to allow latency 0 to force an instruction to the beginning
1898     // of the bb
1899     uint latency = 1;
1900     Node *use = bb->_nodes[j];
1901     uint nlen = use->len();
1902 
1903     // Walk over all the inputs
1904     for ( uint k=0; k < nlen; k++ ) {
1905       Node *def = use->in(k);
1906       if (!def)
1907         continue;
1908 
1909       uint l = _node_latency[def->_idx] + use->latency(k);
1910       if (latency < l)
1911         latency = l;
1912     }
1913 
1914     _node_latency[use->_idx] = latency;
1915 
1916 #ifndef PRODUCT
1917     if (_cfg->C->trace_opto_output()) {
1918       tty->print("# latency %4d: ", latency);
1919       use->dump();
1920     }
1921 #endif
1922   }
1923 
1924 #ifndef PRODUCT
1925   if (_cfg->C->trace_opto_output())
1926     tty->print("# <- ComputeLocalLatenciesForward\n");
1927 #endif
1928 
1929 } // end ComputeLocalLatenciesForward
1930 
1931 // See if this node fits into the present instruction bundle
1932 bool Scheduling::NodeFitsInBundle(Node *n) {
1933   uint n_idx = n->_idx;
1934 
1935   // If this is the unconditional delay instruction, then it fits
1936   if (n == _unconditional_delay_slot) {
1937 #ifndef PRODUCT
1938     if (_cfg->C->trace_opto_output())
1939       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1940 #endif
1941     return (true);
1942   }
1943 
1944   // If the node cannot be scheduled this cycle, skip it
1945   if (_current_latency[n_idx] > _bundle_cycle_number) {
1946 #ifndef PRODUCT
1947     if (_cfg->C->trace_opto_output())
1948       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1949         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1950 #endif
1951     return (false);
1952   }
1953 
1954   const Pipeline *node_pipeline = n->pipeline();
1955 
1956   uint instruction_count = node_pipeline->instructionCount();
1957   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1958     instruction_count = 0;
1959   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1960     instruction_count++;
1961 
1962   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1963 #ifndef PRODUCT
1964     if (_cfg->C->trace_opto_output())
1965       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1966         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1967 #endif
1968     return (false);
1969   }
1970 
1971   // Don't allow non-machine nodes to be handled this way
1972   if (!n->is_Mach() && instruction_count == 0)
1973     return (false);
1974 
1975   // See if there is any overlap
1976   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1977 
1978   if (delay > 0) {
1979 #ifndef PRODUCT
1980     if (_cfg->C->trace_opto_output())
1981       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1982 #endif
1983     return false;
1984   }
1985 
1986 #ifndef PRODUCT
1987   if (_cfg->C->trace_opto_output())
1988     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1989 #endif
1990 
1991   return true;
1992 }
1993 
1994 Node * Scheduling::ChooseNodeToBundle() {
1995   uint siz = _available.size();
1996 
1997   if (siz == 0) {
1998 
1999 #ifndef PRODUCT
2000     if (_cfg->C->trace_opto_output())
2001       tty->print("#   ChooseNodeToBundle: NULL\n");
2002 #endif
2003     return (NULL);
2004   }
2005 
2006   // Fast path, if only 1 instruction in the bundle
2007   if (siz == 1) {
2008 #ifndef PRODUCT
2009     if (_cfg->C->trace_opto_output()) {
2010       tty->print("#   ChooseNodeToBundle (only 1): ");
2011       _available[0]->dump();
2012     }
2013 #endif
2014     return (_available[0]);
2015   }
2016 
2017   // Don't bother, if the bundle is already full
2018   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2019     for ( uint i = 0; i < siz; i++ ) {
2020       Node *n = _available[i];
2021 
2022       // Skip projections, we'll handle them another way
2023       if (n->is_Proj())
2024         continue;
2025 
2026       // This presupposed that instructions are inserted into the
2027       // available list in a legality order; i.e. instructions that
2028       // must be inserted first are at the head of the list
2029       if (NodeFitsInBundle(n)) {
2030 #ifndef PRODUCT
2031         if (_cfg->C->trace_opto_output()) {
2032           tty->print("#   ChooseNodeToBundle: ");
2033           n->dump();
2034         }
2035 #endif
2036         return (n);
2037       }
2038     }
2039   }
2040 
2041   // Nothing fits in this bundle, choose the highest priority
2042 #ifndef PRODUCT
2043   if (_cfg->C->trace_opto_output()) {
2044     tty->print("#   ChooseNodeToBundle: ");
2045     _available[0]->dump();
2046   }
2047 #endif
2048 
2049   return _available[0];
2050 }
2051 
2052 //------------------------------AddNodeToAvailableList-------------------------
2053 void Scheduling::AddNodeToAvailableList(Node *n) {
2054   assert( !n->is_Proj(), "projections never directly made available" );
2055 #ifndef PRODUCT
2056   if (_cfg->C->trace_opto_output()) {
2057     tty->print("#   AddNodeToAvailableList: ");
2058     n->dump();
2059   }
2060 #endif
2061 
2062   int latency = _current_latency[n->_idx];
2063 
2064   // Insert in latency order (insertion sort)
2065   uint i;
2066   for ( i=0; i < _available.size(); i++ )
2067     if (_current_latency[_available[i]->_idx] > latency)
2068       break;
2069 
2070   // Special Check for compares following branches
2071   if( n->is_Mach() && _scheduled.size() > 0 ) {
2072     int op = n->as_Mach()->ideal_Opcode();
2073     Node *last = _scheduled[0];
2074     if( last->is_MachIf() && last->in(1) == n &&
2075         ( op == Op_CmpI ||
2076           op == Op_CmpU ||
2077           op == Op_CmpP ||
2078           op == Op_CmpF ||
2079           op == Op_CmpD ||
2080           op == Op_CmpL ) ) {
2081 
2082       // Recalculate position, moving to front of same latency
2083       for ( i=0 ; i < _available.size(); i++ )
2084         if (_current_latency[_available[i]->_idx] >= latency)
2085           break;
2086     }
2087   }
2088 
2089   // Insert the node in the available list
2090   _available.insert(i, n);
2091 
2092 #ifndef PRODUCT
2093   if (_cfg->C->trace_opto_output())
2094     dump_available();
2095 #endif
2096 }
2097 
2098 //------------------------------DecrementUseCounts-----------------------------
2099 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2100   for ( uint i=0; i < n->len(); i++ ) {
2101     Node *def = n->in(i);
2102     if (!def) continue;
2103     if( def->is_Proj() )        // If this is a machine projection, then
2104       def = def->in(0);         // propagate usage thru to the base instruction
2105 
2106     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
2107       continue;
2108 
2109     // Compute the latency
2110     uint l = _bundle_cycle_number + n->latency(i);
2111     if (_current_latency[def->_idx] < l)
2112       _current_latency[def->_idx] = l;
2113 
2114     // If this does not have uses then schedule it
2115     if ((--_uses[def->_idx]) == 0)
2116       AddNodeToAvailableList(def);
2117   }
2118 }
2119 
2120 //------------------------------AddNodeToBundle--------------------------------
2121 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2122 #ifndef PRODUCT
2123   if (_cfg->C->trace_opto_output()) {
2124     tty->print("#   AddNodeToBundle: ");
2125     n->dump();
2126   }
2127 #endif
2128 
2129   // Remove this from the available list
2130   uint i;
2131   for (i = 0; i < _available.size(); i++)
2132     if (_available[i] == n)
2133       break;
2134   assert(i < _available.size(), "entry in _available list not found");
2135   _available.remove(i);
2136 
2137   // See if this fits in the current bundle
2138   const Pipeline *node_pipeline = n->pipeline();
2139   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2140 
2141   // Check for instructions to be placed in the delay slot. We
2142   // do this before we actually schedule the current instruction,
2143   // because the delay slot follows the current instruction.
2144   if (Pipeline::_branch_has_delay_slot &&
2145       node_pipeline->hasBranchDelay() &&
2146       !_unconditional_delay_slot) {
2147 
2148     uint siz = _available.size();
2149 
2150     // Conditional branches can support an instruction that
2151     // is unconditionally executed and not dependent by the
2152     // branch, OR a conditionally executed instruction if
2153     // the branch is taken.  In practice, this means that
2154     // the first instruction at the branch target is
2155     // copied to the delay slot, and the branch goes to
2156     // the instruction after that at the branch target
2157     if ( n->is_MachBranch() ) {
2158 
2159       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2160       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2161 
2162 #ifndef PRODUCT
2163       _branches++;
2164 #endif
2165 
2166       // At least 1 instruction is on the available list
2167       // that is not dependent on the branch
2168       for (uint i = 0; i < siz; i++) {
2169         Node *d = _available[i];
2170         const Pipeline *avail_pipeline = d->pipeline();
2171 
2172         // Don't allow safepoints in the branch shadow, that will
2173         // cause a number of difficulties
2174         if ( avail_pipeline->instructionCount() == 1 &&
2175             !avail_pipeline->hasMultipleBundles() &&
2176             !avail_pipeline->hasBranchDelay() &&
2177             Pipeline::instr_has_unit_size() &&
2178             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2179             NodeFitsInBundle(d) &&
2180             !node_bundling(d)->used_in_delay()) {
2181 
2182           if (d->is_Mach() && !d->is_MachSafePoint()) {
2183             // A node that fits in the delay slot was found, so we need to
2184             // set the appropriate bits in the bundle pipeline information so
2185             // that it correctly indicates resource usage.  Later, when we
2186             // attempt to add this instruction to the bundle, we will skip
2187             // setting the resource usage.
2188             _unconditional_delay_slot = d;
2189             node_bundling(n)->set_use_unconditional_delay();
2190             node_bundling(d)->set_used_in_unconditional_delay();
2191             _bundle_use.add_usage(avail_pipeline->resourceUse());
2192             _current_latency[d->_idx] = _bundle_cycle_number;
2193             _next_node = d;
2194             ++_bundle_instr_count;
2195 #ifndef PRODUCT
2196             _unconditional_delays++;
2197 #endif
2198             break;
2199           }
2200         }
2201       }
2202     }
2203 
2204     // No delay slot, add a nop to the usage
2205     if (!_unconditional_delay_slot) {
2206       // See if adding an instruction in the delay slot will overflow
2207       // the bundle.
2208       if (!NodeFitsInBundle(_nop)) {
2209 #ifndef PRODUCT
2210         if (_cfg->C->trace_opto_output())
2211           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2212 #endif
2213         step(1);
2214       }
2215 
2216       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2217       _next_node = _nop;
2218       ++_bundle_instr_count;
2219     }
2220 
2221     // See if the instruction in the delay slot requires a
2222     // step of the bundles
2223     if (!NodeFitsInBundle(n)) {
2224 #ifndef PRODUCT
2225         if (_cfg->C->trace_opto_output())
2226           tty->print("#  *** STEP(branch won't fit) ***\n");
2227 #endif
2228         // Update the state information
2229         _bundle_instr_count = 0;
2230         _bundle_cycle_number += 1;
2231         _bundle_use.step(1);
2232     }
2233   }
2234 
2235   // Get the number of instructions
2236   uint instruction_count = node_pipeline->instructionCount();
2237   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2238     instruction_count = 0;
2239 
2240   // Compute the latency information
2241   uint delay = 0;
2242 
2243   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2244     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2245     if (relative_latency < 0)
2246       relative_latency = 0;
2247 
2248     delay = _bundle_use.full_latency(relative_latency, node_usage);
2249 
2250     // Does not fit in this bundle, start a new one
2251     if (delay > 0) {
2252       step(delay);
2253 
2254 #ifndef PRODUCT
2255       if (_cfg->C->trace_opto_output())
2256         tty->print("#  *** STEP(%d) ***\n", delay);
2257 #endif
2258     }
2259   }
2260 
2261   // If this was placed in the delay slot, ignore it
2262   if (n != _unconditional_delay_slot) {
2263 
2264     if (delay == 0) {
2265       if (node_pipeline->hasMultipleBundles()) {
2266 #ifndef PRODUCT
2267         if (_cfg->C->trace_opto_output())
2268           tty->print("#  *** STEP(multiple instructions) ***\n");
2269 #endif
2270         step(1);
2271       }
2272 
2273       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2274 #ifndef PRODUCT
2275         if (_cfg->C->trace_opto_output())
2276           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2277             instruction_count + _bundle_instr_count,
2278             Pipeline::_max_instrs_per_cycle);
2279 #endif
2280         step(1);
2281       }
2282     }
2283 
2284     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2285       _bundle_instr_count++;
2286 
2287     // Set the node's latency
2288     _current_latency[n->_idx] = _bundle_cycle_number;
2289 
2290     // Now merge the functional unit information
2291     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2292       _bundle_use.add_usage(node_usage);
2293 
2294     // Increment the number of instructions in this bundle
2295     _bundle_instr_count += instruction_count;
2296 
2297     // Remember this node for later
2298     if (n->is_Mach())
2299       _next_node = n;
2300   }
2301 
2302   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2303   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2304   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2305   // into the block.  All other scheduled nodes get put in the schedule here.
2306   int op = n->Opcode();
2307   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2308       (op != Op_Node &&         // Not an unused antidepedence node and
2309        // not an unallocated boxlock
2310        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2311 
2312     // Push any trailing projections
2313     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2314       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2315         Node *foi = n->fast_out(i);
2316         if( foi->is_Proj() )
2317           _scheduled.push(foi);
2318       }
2319     }
2320 
2321     // Put the instruction in the schedule list
2322     _scheduled.push(n);
2323   }
2324 
2325 #ifndef PRODUCT
2326   if (_cfg->C->trace_opto_output())
2327     dump_available();
2328 #endif
2329 
2330   // Walk all the definitions, decrementing use counts, and
2331   // if a definition has a 0 use count, place it in the available list.
2332   DecrementUseCounts(n,bb);
2333 }
2334 
2335 //------------------------------ComputeUseCount--------------------------------
2336 // This method sets the use count within a basic block.  We will ignore all
2337 // uses outside the current basic block.  As we are doing a backwards walk,
2338 // any node we reach that has a use count of 0 may be scheduled.  This also
2339 // avoids the problem of cyclic references from phi nodes, as long as phi
2340 // nodes are at the front of the basic block.  This method also initializes
2341 // the available list to the set of instructions that have no uses within this
2342 // basic block.
2343 void Scheduling::ComputeUseCount(const Block *bb) {
2344 #ifndef PRODUCT
2345   if (_cfg->C->trace_opto_output())
2346     tty->print("# -> ComputeUseCount\n");
2347 #endif
2348 
2349   // Clear the list of available and scheduled instructions, just in case
2350   _available.clear();
2351   _scheduled.clear();
2352 
2353   // No delay slot specified
2354   _unconditional_delay_slot = NULL;
2355 
2356 #ifdef ASSERT
2357   for( uint i=0; i < bb->_nodes.size(); i++ )
2358     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2359 #endif
2360 
2361   // Force the _uses count to never go to zero for unscheduable pieces
2362   // of the block
2363   for( uint k = 0; k < _bb_start; k++ )
2364     _uses[bb->_nodes[k]->_idx] = 1;
2365   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2366     _uses[bb->_nodes[l]->_idx] = 1;
2367 
2368   // Iterate backwards over the instructions in the block.  Don't count the
2369   // branch projections at end or the block header instructions.
2370   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2371     Node *n = bb->_nodes[j];
2372     if( n->is_Proj() ) continue; // Projections handled another way
2373 
2374     // Account for all uses
2375     for ( uint k = 0; k < n->len(); k++ ) {
2376       Node *inp = n->in(k);
2377       if (!inp) continue;
2378       assert(inp != n, "no cycles allowed" );
2379       if( _bbs[inp->_idx] == bb ) { // Block-local use?
2380         if( inp->is_Proj() )    // Skip through Proj's
2381           inp = inp->in(0);
2382         ++_uses[inp->_idx];     // Count 1 block-local use
2383       }
2384     }
2385 
2386     // If this instruction has a 0 use count, then it is available
2387     if (!_uses[n->_idx]) {
2388       _current_latency[n->_idx] = _bundle_cycle_number;
2389       AddNodeToAvailableList(n);
2390     }
2391 
2392 #ifndef PRODUCT
2393     if (_cfg->C->trace_opto_output()) {
2394       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2395       n->dump();
2396     }
2397 #endif
2398   }
2399 
2400 #ifndef PRODUCT
2401   if (_cfg->C->trace_opto_output())
2402     tty->print("# <- ComputeUseCount\n");
2403 #endif
2404 }
2405 
2406 // This routine performs scheduling on each basic block in reverse order,
2407 // using instruction latencies and taking into account function unit
2408 // availability.
2409 void Scheduling::DoScheduling() {
2410 #ifndef PRODUCT
2411   if (_cfg->C->trace_opto_output())
2412     tty->print("# -> DoScheduling\n");
2413 #endif
2414 
2415   Block *succ_bb = NULL;
2416   Block *bb;
2417 
2418   // Walk over all the basic blocks in reverse order
2419   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2420     bb = _cfg->_blocks[i];
2421 
2422 #ifndef PRODUCT
2423     if (_cfg->C->trace_opto_output()) {
2424       tty->print("#  Schedule BB#%03d (initial)\n", i);
2425       for (uint j = 0; j < bb->_nodes.size(); j++)
2426         bb->_nodes[j]->dump();
2427     }
2428 #endif
2429 
2430     // On the head node, skip processing
2431     if( bb == _cfg->_broot )
2432       continue;
2433 
2434     // Skip empty, connector blocks
2435     if (bb->is_connector())
2436       continue;
2437 
2438     // If the following block is not the sole successor of
2439     // this one, then reset the pipeline information
2440     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2441 #ifndef PRODUCT
2442       if (_cfg->C->trace_opto_output()) {
2443         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2444                    _next_node->_idx, _bundle_instr_count);
2445       }
2446 #endif
2447       step_and_clear();
2448     }
2449 
2450     // Leave untouched the starting instruction, any Phis, a CreateEx node
2451     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2452     _bb_end = bb->_nodes.size()-1;
2453     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2454       Node *n = bb->_nodes[_bb_start];
2455       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2456       // Also, MachIdealNodes do not get scheduled
2457       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2458       MachNode *mach = n->as_Mach();
2459       int iop = mach->ideal_Opcode();
2460       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2461       if( iop == Op_Con ) continue;      // Do not schedule Top
2462       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2463           mach->pipeline() == MachNode::pipeline_class() &&
2464           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2465         continue;
2466       break;                    // Funny loop structure to be sure...
2467     }
2468     // Compute last "interesting" instruction in block - last instruction we
2469     // might schedule.  _bb_end points just after last schedulable inst.  We
2470     // normally schedule conditional branches (despite them being forced last
2471     // in the block), because they have delay slots we can fill.  Calls all
2472     // have their delay slots filled in the template expansions, so we don't
2473     // bother scheduling them.
2474     Node *last = bb->_nodes[_bb_end];
2475     // Ignore trailing NOPs.
2476     while (_bb_end > 0 && last->is_Mach() &&
2477            last->as_Mach()->ideal_Opcode() == Op_Con) {
2478       last = bb->_nodes[--_bb_end];
2479     }
2480     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2481     if( last->is_Catch() ||
2482        // Exclude unreachable path case when Halt node is in a separate block.
2483        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2484       // There must be a prior call.  Skip it.
2485       while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
2486         assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
2487       }
2488     } else if( last->is_MachNullCheck() ) {
2489       // Backup so the last null-checked memory instruction is
2490       // outside the schedulable range. Skip over the nullcheck,
2491       // projection, and the memory nodes.
2492       Node *mem = last->in(1);
2493       do {
2494         _bb_end--;
2495       } while (mem != bb->_nodes[_bb_end]);
2496     } else {
2497       // Set _bb_end to point after last schedulable inst.
2498       _bb_end++;
2499     }
2500 
2501     assert( _bb_start <= _bb_end, "inverted block ends" );
2502 
2503     // Compute the register antidependencies for the basic block
2504     ComputeRegisterAntidependencies(bb);
2505     if (_cfg->C->failing())  return;  // too many D-U pinch points
2506 
2507     // Compute intra-bb latencies for the nodes
2508     ComputeLocalLatenciesForward(bb);
2509 
2510     // Compute the usage within the block, and set the list of all nodes
2511     // in the block that have no uses within the block.
2512     ComputeUseCount(bb);
2513 
2514     // Schedule the remaining instructions in the block
2515     while ( _available.size() > 0 ) {
2516       Node *n = ChooseNodeToBundle();
2517       AddNodeToBundle(n,bb);
2518     }
2519 
2520     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2521 #ifdef ASSERT
2522     for( uint l = _bb_start; l < _bb_end; l++ ) {
2523       Node *n = bb->_nodes[l];
2524       uint m;
2525       for( m = 0; m < _bb_end-_bb_start; m++ )
2526         if( _scheduled[m] == n )
2527           break;
2528       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2529     }
2530 #endif
2531 
2532     // Now copy the instructions (in reverse order) back to the block
2533     for ( uint k = _bb_start; k < _bb_end; k++ )
2534       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2535 
2536 #ifndef PRODUCT
2537     if (_cfg->C->trace_opto_output()) {
2538       tty->print("#  Schedule BB#%03d (final)\n", i);
2539       uint current = 0;
2540       for (uint j = 0; j < bb->_nodes.size(); j++) {
2541         Node *n = bb->_nodes[j];
2542         if( valid_bundle_info(n) ) {
2543           Bundle *bundle = node_bundling(n);
2544           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2545             tty->print("*** Bundle: ");
2546             bundle->dump();
2547           }
2548           n->dump();
2549         }
2550       }
2551     }
2552 #endif
2553 #ifdef ASSERT
2554   verify_good_schedule(bb,"after block local scheduling");
2555 #endif
2556   }
2557 
2558 #ifndef PRODUCT
2559   if (_cfg->C->trace_opto_output())
2560     tty->print("# <- DoScheduling\n");
2561 #endif
2562 
2563   // Record final node-bundling array location
2564   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2565 
2566 } // end DoScheduling
2567 
2568 //------------------------------verify_good_schedule---------------------------
2569 // Verify that no live-range used in the block is killed in the block by a
2570 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2571 
2572 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2573 static bool edge_from_to( Node *from, Node *to ) {
2574   for( uint i=0; i<from->len(); i++ )
2575     if( from->in(i) == to )
2576       return true;
2577   return false;
2578 }
2579 
2580 #ifdef ASSERT
2581 //------------------------------verify_do_def----------------------------------
2582 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2583   // Check for bad kills
2584   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2585     Node *prior_use = _reg_node[def];
2586     if( prior_use && !edge_from_to(prior_use,n) ) {
2587       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2588       n->dump();
2589       tty->print_cr("...");
2590       prior_use->dump();
2591       assert(edge_from_to(prior_use,n),msg);
2592     }
2593     _reg_node.map(def,NULL); // Kill live USEs
2594   }
2595 }
2596 
2597 //------------------------------verify_good_schedule---------------------------
2598 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2599 
2600   // Zap to something reasonable for the verify code
2601   _reg_node.clear();
2602 
2603   // Walk over the block backwards.  Check to make sure each DEF doesn't
2604   // kill a live value (other than the one it's supposed to).  Add each
2605   // USE to the live set.
2606   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2607     Node *n = b->_nodes[i];
2608     int n_op = n->Opcode();
2609     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2610       // Fat-proj kills a slew of registers
2611       RegMask rm = n->out_RegMask();// Make local copy
2612       while( rm.is_NotEmpty() ) {
2613         OptoReg::Name kill = rm.find_first_elem();
2614         rm.Remove(kill);
2615         verify_do_def( n, kill, msg );
2616       }
2617     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2618       // Get DEF'd registers the normal way
2619       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2620       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2621     }
2622 
2623     // Now make all USEs live
2624     for( uint i=1; i<n->req(); i++ ) {
2625       Node *def = n->in(i);
2626       assert(def != 0, "input edge required");
2627       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2628       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2629       if( OptoReg::is_valid(reg_lo) ) {
2630         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2631         _reg_node.map(reg_lo,n);
2632       }
2633       if( OptoReg::is_valid(reg_hi) ) {
2634         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2635         _reg_node.map(reg_hi,n);
2636       }
2637     }
2638 
2639   }
2640 
2641   // Zap to something reasonable for the Antidependence code
2642   _reg_node.clear();
2643 }
2644 #endif
2645 
2646 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2647 static void add_prec_edge_from_to( Node *from, Node *to ) {
2648   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2649     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2650     from = from->in(0);
2651   }
2652   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2653       !edge_from_to( from, to ) ) // Avoid duplicate edge
2654     from->add_prec(to);
2655 }
2656 
2657 //------------------------------anti_do_def------------------------------------
2658 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2659   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2660     return;
2661 
2662   Node *pinch = _reg_node[def_reg]; // Get pinch point
2663   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2664       is_def ) {    // Check for a true def (not a kill)
2665     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2666     return;
2667   }
2668 
2669   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2670   debug_only( def = (Node*)0xdeadbeef; )
2671 
2672   // After some number of kills there _may_ be a later def
2673   Node *later_def = NULL;
2674 
2675   // Finding a kill requires a real pinch-point.
2676   // Check for not already having a pinch-point.
2677   // Pinch points are Op_Node's.
2678   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2679     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2680     if ( _pinch_free_list.size() > 0) {
2681       pinch = _pinch_free_list.pop();
2682     } else {
2683       pinch = new (_cfg->C) Node(1); // Pinch point to-be
2684     }
2685     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2686       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2687       return;
2688     }
2689     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2690     _reg_node.map(def_reg,pinch); // Record pinch-point
2691     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2692     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2693       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2694       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2695       later_def = NULL;           // and no later def
2696     }
2697     pinch->set_req(0,later_def);  // Hook later def so we can find it
2698   } else {                        // Else have valid pinch point
2699     if( pinch->in(0) )            // If there is a later-def
2700       later_def = pinch->in(0);   // Get it
2701   }
2702 
2703   // Add output-dependence edge from later def to kill
2704   if( later_def )               // If there is some original def
2705     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2706 
2707   // See if current kill is also a use, and so is forced to be the pinch-point.
2708   if( pinch->Opcode() == Op_Node ) {
2709     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2710     for( uint i=1; i<uses->req(); i++ ) {
2711       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2712           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2713         // Yes, found a use/kill pinch-point
2714         pinch->set_req(0,NULL);  //
2715         pinch->replace_by(kill); // Move anti-dep edges up
2716         pinch = kill;
2717         _reg_node.map(def_reg,pinch);
2718         return;
2719       }
2720     }
2721   }
2722 
2723   // Add edge from kill to pinch-point
2724   add_prec_edge_from_to(kill,pinch);
2725 }
2726 
2727 //------------------------------anti_do_use------------------------------------
2728 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2729   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2730     return;
2731   Node *pinch = _reg_node[use_reg]; // Get pinch point
2732   // Check for no later def_reg/kill in block
2733   if( pinch && _bbs[pinch->_idx] == b &&
2734       // Use has to be block-local as well
2735       _bbs[use->_idx] == b ) {
2736     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2737         pinch->req() == 1 ) {   // pinch not yet in block?
2738       pinch->del_req(0);        // yank pointer to later-def, also set flag
2739       // Insert the pinch-point in the block just after the last use
2740       b->_nodes.insert(b->find_node(use)+1,pinch);
2741       _bb_end++;                // Increase size scheduled region in block
2742     }
2743 
2744     add_prec_edge_from_to(pinch,use);
2745   }
2746 }
2747 
2748 //------------------------------ComputeRegisterAntidependences-----------------
2749 // We insert antidependences between the reads and following write of
2750 // allocated registers to prevent illegal code motion. Hopefully, the
2751 // number of added references should be fairly small, especially as we
2752 // are only adding references within the current basic block.
2753 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2754 
2755 #ifdef ASSERT
2756   verify_good_schedule(b,"before block local scheduling");
2757 #endif
2758 
2759   // A valid schedule, for each register independently, is an endless cycle
2760   // of: a def, then some uses (connected to the def by true dependencies),
2761   // then some kills (defs with no uses), finally the cycle repeats with a new
2762   // def.  The uses are allowed to float relative to each other, as are the
2763   // kills.  No use is allowed to slide past a kill (or def).  This requires
2764   // antidependencies between all uses of a single def and all kills that
2765   // follow, up to the next def.  More edges are redundant, because later defs
2766   // & kills are already serialized with true or antidependencies.  To keep
2767   // the edge count down, we add a 'pinch point' node if there's more than
2768   // one use or more than one kill/def.
2769 
2770   // We add dependencies in one bottom-up pass.
2771 
2772   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2773 
2774   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2775   // register.  If not, we record the DEF/KILL in _reg_node, the
2776   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2777   // "pinch point", a new Node that's in the graph but not in the block.
2778   // We put edges from the prior and current DEF/KILLs to the pinch point.
2779   // We put the pinch point in _reg_node.  If there's already a pinch point
2780   // we merely add an edge from the current DEF/KILL to the pinch point.
2781 
2782   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2783   // put an edge from the pinch point to the USE.
2784 
2785   // To be expedient, the _reg_node array is pre-allocated for the whole
2786   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2787   // or a valid def/kill/pinch-point, or a leftover node from some prior
2788   // block.  Leftover node from some prior block is treated like a NULL (no
2789   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2790   // it being in the current block.
2791   bool fat_proj_seen = false;
2792   uint last_safept = _bb_end-1;
2793   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2794   Node* last_safept_node = end_node;
2795   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2796     Node *n = b->_nodes[i];
2797     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2798     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2799       // Fat-proj kills a slew of registers
2800       // This can add edges to 'n' and obscure whether or not it was a def,
2801       // hence the is_def flag.
2802       fat_proj_seen = true;
2803       RegMask rm = n->out_RegMask();// Make local copy
2804       while( rm.is_NotEmpty() ) {
2805         OptoReg::Name kill = rm.find_first_elem();
2806         rm.Remove(kill);
2807         anti_do_def( b, n, kill, is_def );
2808       }
2809     } else {
2810       // Get DEF'd registers the normal way
2811       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2812       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2813     }
2814 
2815     // Kill projections on a branch should appear to occur on the
2816     // branch, not afterwards, so grab the masks from the projections
2817     // and process them.
2818     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2819       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2820         Node* use = n->fast_out(i);
2821         if (use->is_Proj()) {
2822           RegMask rm = use->out_RegMask();// Make local copy
2823           while( rm.is_NotEmpty() ) {
2824             OptoReg::Name kill = rm.find_first_elem();
2825             rm.Remove(kill);
2826             anti_do_def( b, n, kill, false );
2827           }
2828         }
2829       }
2830     }
2831 
2832     // Check each register used by this instruction for a following DEF/KILL
2833     // that must occur afterward and requires an anti-dependence edge.
2834     for( uint j=0; j<n->req(); j++ ) {
2835       Node *def = n->in(j);
2836       if( def ) {
2837         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2838         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2839         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2840       }
2841     }
2842     // Do not allow defs of new derived values to float above GC
2843     // points unless the base is definitely available at the GC point.
2844 
2845     Node *m = b->_nodes[i];
2846 
2847     // Add precedence edge from following safepoint to use of derived pointer
2848     if( last_safept_node != end_node &&
2849         m != last_safept_node) {
2850       for (uint k = 1; k < m->req(); k++) {
2851         const Type *t = m->in(k)->bottom_type();
2852         if( t->isa_oop_ptr() &&
2853             t->is_ptr()->offset() != 0 ) {
2854           last_safept_node->add_prec( m );
2855           break;
2856         }
2857       }
2858     }
2859 
2860     if( n->jvms() ) {           // Precedence edge from derived to safept
2861       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2862       if( b->_nodes[last_safept] != last_safept_node ) {
2863         last_safept = b->find_node(last_safept_node);
2864       }
2865       for( uint j=last_safept; j > i; j-- ) {
2866         Node *mach = b->_nodes[j];
2867         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2868           mach->add_prec( n );
2869       }
2870       last_safept = i;
2871       last_safept_node = m;
2872     }
2873   }
2874 
2875   if (fat_proj_seen) {
2876     // Garbage collect pinch nodes that were not consumed.
2877     // They are usually created by a fat kill MachProj for a call.
2878     garbage_collect_pinch_nodes();
2879   }
2880 }
2881 
2882 //------------------------------garbage_collect_pinch_nodes-------------------------------
2883 
2884 // Garbage collect pinch nodes for reuse by other blocks.
2885 //
2886 // The block scheduler's insertion of anti-dependence
2887 // edges creates many pinch nodes when the block contains
2888 // 2 or more Calls.  A pinch node is used to prevent a
2889 // combinatorial explosion of edges.  If a set of kills for a
2890 // register is anti-dependent on a set of uses (or defs), rather
2891 // than adding an edge in the graph between each pair of kill
2892 // and use (or def), a pinch is inserted between them:
2893 //
2894 //            use1   use2  use3
2895 //                \   |   /
2896 //                 \  |  /
2897 //                  pinch
2898 //                 /  |  \
2899 //                /   |   \
2900 //            kill1 kill2 kill3
2901 //
2902 // One pinch node is created per register killed when
2903 // the second call is encountered during a backwards pass
2904 // over the block.  Most of these pinch nodes are never
2905 // wired into the graph because the register is never
2906 // used or def'ed in the block.
2907 //
2908 void Scheduling::garbage_collect_pinch_nodes() {
2909 #ifndef PRODUCT
2910     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2911 #endif
2912     int trace_cnt = 0;
2913     for (uint k = 0; k < _reg_node.Size(); k++) {
2914       Node* pinch = _reg_node[k];
2915       if (pinch != NULL && pinch->Opcode() == Op_Node &&
2916           // no predecence input edges
2917           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2918         cleanup_pinch(pinch);
2919         _pinch_free_list.push(pinch);
2920         _reg_node.map(k, NULL);
2921 #ifndef PRODUCT
2922         if (_cfg->C->trace_opto_output()) {
2923           trace_cnt++;
2924           if (trace_cnt > 40) {
2925             tty->print("\n");
2926             trace_cnt = 0;
2927           }
2928           tty->print(" %d", pinch->_idx);
2929         }
2930 #endif
2931       }
2932     }
2933 #ifndef PRODUCT
2934     if (_cfg->C->trace_opto_output()) tty->print("\n");
2935 #endif
2936 }
2937 
2938 // Clean up a pinch node for reuse.
2939 void Scheduling::cleanup_pinch( Node *pinch ) {
2940   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2941 
2942   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2943     Node* use = pinch->last_out(i);
2944     uint uses_found = 0;
2945     for (uint j = use->req(); j < use->len(); j++) {
2946       if (use->in(j) == pinch) {
2947         use->rm_prec(j);
2948         uses_found++;
2949       }
2950     }
2951     assert(uses_found > 0, "must be a precedence edge");
2952     i -= uses_found;    // we deleted 1 or more copies of this edge
2953   }
2954   // May have a later_def entry
2955   pinch->set_req(0, NULL);
2956 }
2957 
2958 //------------------------------print_statistics-------------------------------
2959 #ifndef PRODUCT
2960 
2961 void Scheduling::dump_available() const {
2962   tty->print("#Availist  ");
2963   for (uint i = 0; i < _available.size(); i++)
2964     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2965   tty->cr();
2966 }
2967 
2968 // Print Scheduling Statistics
2969 void Scheduling::print_statistics() {
2970   // Print the size added by nops for bundling
2971   tty->print("Nops added %d bytes to total of %d bytes",
2972     _total_nop_size, _total_method_size);
2973   if (_total_method_size > 0)
2974     tty->print(", for %.2f%%",
2975       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2976   tty->print("\n");
2977 
2978   // Print the number of branch shadows filled
2979   if (Pipeline::_branch_has_delay_slot) {
2980     tty->print("Of %d branches, %d had unconditional delay slots filled",
2981       _total_branches, _total_unconditional_delays);
2982     if (_total_branches > 0)
2983       tty->print(", for %.2f%%",
2984         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2985     tty->print("\n");
2986   }
2987 
2988   uint total_instructions = 0, total_bundles = 0;
2989 
2990   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2991     uint bundle_count   = _total_instructions_per_bundle[i];
2992     total_instructions += bundle_count * i;
2993     total_bundles      += bundle_count;
2994   }
2995 
2996   if (total_bundles > 0)
2997     tty->print("Average ILP (excluding nops) is %.2f\n",
2998       ((double)total_instructions) / ((double)total_bundles));
2999 }
3000 #endif