1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 
  83 // Shared stub locations
  84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  94 
  95 #ifdef COMPILER2
  96 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  97 #endif // COMPILER2
  98 
  99 
 100 //----------------------------generate_stubs-----------------------------------
 101 void SharedRuntime::generate_stubs() {
 102   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 103   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 104   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 105   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 106   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 107 
 108 #ifdef COMPILER2
 109   // Vectors are generated only by C2.
 110   if (is_wide_vector(MaxVectorSize)) {
 111     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 112   }
 113 #endif // COMPILER2
 114   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 115   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 116 
 117   generate_deopt_blob();
 118 
 119 #ifdef COMPILER2
 120   generate_uncommon_trap_blob();
 121 #endif // COMPILER2
 122 }
 123 
 124 #include <math.h>
 125 
 126 #ifndef USDT2
 127 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 128 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 129                       char*, int, char*, int, char*, int);
 130 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 131                       char*, int, char*, int, char*, int);
 132 #endif /* !USDT2 */
 133 
 134 // Implementation of SharedRuntime
 135 
 136 #ifndef PRODUCT
 137 // For statistics
 138 int SharedRuntime::_ic_miss_ctr = 0;
 139 int SharedRuntime::_wrong_method_ctr = 0;
 140 int SharedRuntime::_resolve_static_ctr = 0;
 141 int SharedRuntime::_resolve_virtual_ctr = 0;
 142 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 143 int SharedRuntime::_implicit_null_throws = 0;
 144 int SharedRuntime::_implicit_div0_throws = 0;
 145 int SharedRuntime::_throw_null_ctr = 0;
 146 
 147 int SharedRuntime::_nof_normal_calls = 0;
 148 int SharedRuntime::_nof_optimized_calls = 0;
 149 int SharedRuntime::_nof_inlined_calls = 0;
 150 int SharedRuntime::_nof_megamorphic_calls = 0;
 151 int SharedRuntime::_nof_static_calls = 0;
 152 int SharedRuntime::_nof_inlined_static_calls = 0;
 153 int SharedRuntime::_nof_interface_calls = 0;
 154 int SharedRuntime::_nof_optimized_interface_calls = 0;
 155 int SharedRuntime::_nof_inlined_interface_calls = 0;
 156 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 157 int SharedRuntime::_nof_removable_exceptions = 0;
 158 
 159 int SharedRuntime::_new_instance_ctr=0;
 160 int SharedRuntime::_new_array_ctr=0;
 161 int SharedRuntime::_multi1_ctr=0;
 162 int SharedRuntime::_multi2_ctr=0;
 163 int SharedRuntime::_multi3_ctr=0;
 164 int SharedRuntime::_multi4_ctr=0;
 165 int SharedRuntime::_multi5_ctr=0;
 166 int SharedRuntime::_mon_enter_stub_ctr=0;
 167 int SharedRuntime::_mon_exit_stub_ctr=0;
 168 int SharedRuntime::_mon_enter_ctr=0;
 169 int SharedRuntime::_mon_exit_ctr=0;
 170 int SharedRuntime::_partial_subtype_ctr=0;
 171 int SharedRuntime::_jbyte_array_copy_ctr=0;
 172 int SharedRuntime::_jshort_array_copy_ctr=0;
 173 int SharedRuntime::_jint_array_copy_ctr=0;
 174 int SharedRuntime::_jlong_array_copy_ctr=0;
 175 int SharedRuntime::_oop_array_copy_ctr=0;
 176 int SharedRuntime::_checkcast_array_copy_ctr=0;
 177 int SharedRuntime::_unsafe_array_copy_ctr=0;
 178 int SharedRuntime::_generic_array_copy_ctr=0;
 179 int SharedRuntime::_slow_array_copy_ctr=0;
 180 int SharedRuntime::_find_handler_ctr=0;
 181 int SharedRuntime::_rethrow_ctr=0;
 182 
 183 int     SharedRuntime::_ICmiss_index                    = 0;
 184 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 185 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 186 
 187 
 188 void SharedRuntime::trace_ic_miss(address at) {
 189   for (int i = 0; i < _ICmiss_index; i++) {
 190     if (_ICmiss_at[i] == at) {
 191       _ICmiss_count[i]++;
 192       return;
 193     }
 194   }
 195   int index = _ICmiss_index++;
 196   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 197   _ICmiss_at[index] = at;
 198   _ICmiss_count[index] = 1;
 199 }
 200 
 201 void SharedRuntime::print_ic_miss_histogram() {
 202   if (ICMissHistogram) {
 203     tty->print_cr ("IC Miss Histogram:");
 204     int tot_misses = 0;
 205     for (int i = 0; i < _ICmiss_index; i++) {
 206       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 207       tot_misses += _ICmiss_count[i];
 208     }
 209     tty->print_cr ("Total IC misses: %7d", tot_misses);
 210   }
 211 }
 212 #endif // PRODUCT
 213 
 214 #ifndef SERIALGC
 215 
 216 // G1 write-barrier pre: executed before a pointer store.
 217 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 218   if (orig == NULL) {
 219     assert(false, "should be optimized out");
 220     return;
 221   }
 222   assert(orig->is_oop(true /* ignore mark word */), "Error");
 223   // store the original value that was in the field reference
 224   thread->satb_mark_queue().enqueue(orig);
 225 JRT_END
 226 
 227 // G1 write-barrier post: executed after a pointer store.
 228 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 229   thread->dirty_card_queue().enqueue(card_addr);
 230 JRT_END
 231 
 232 #endif // !SERIALGC
 233 
 234 
 235 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 236   return x * y;
 237 JRT_END
 238 
 239 
 240 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 241   if (x == min_jlong && y == CONST64(-1)) {
 242     return x;
 243   } else {
 244     return x / y;
 245   }
 246 JRT_END
 247 
 248 
 249 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 250   if (x == min_jlong && y == CONST64(-1)) {
 251     return 0;
 252   } else {
 253     return x % y;
 254   }
 255 JRT_END
 256 
 257 
 258 const juint  float_sign_mask  = 0x7FFFFFFF;
 259 const juint  float_infinity   = 0x7F800000;
 260 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 261 const julong double_infinity  = CONST64(0x7FF0000000000000);
 262 
 263 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 264 #ifdef _WIN64
 265   // 64-bit Windows on amd64 returns the wrong values for
 266   // infinity operands.
 267   union { jfloat f; juint i; } xbits, ybits;
 268   xbits.f = x;
 269   ybits.f = y;
 270   // x Mod Infinity == x unless x is infinity
 271   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 272        ((ybits.i & float_sign_mask) == float_infinity) ) {
 273     return x;
 274   }
 275 #endif
 276   return ((jfloat)fmod((double)x,(double)y));
 277 JRT_END
 278 
 279 
 280 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 281 #ifdef _WIN64
 282   union { jdouble d; julong l; } xbits, ybits;
 283   xbits.d = x;
 284   ybits.d = y;
 285   // x Mod Infinity == x unless x is infinity
 286   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 287        ((ybits.l & double_sign_mask) == double_infinity) ) {
 288     return x;
 289   }
 290 #endif
 291   return ((jdouble)fmod((double)x,(double)y));
 292 JRT_END
 293 
 294 #ifdef __SOFTFP__
 295 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 296   return x + y;
 297 JRT_END
 298 
 299 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 300   return x - y;
 301 JRT_END
 302 
 303 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 304   return x * y;
 305 JRT_END
 306 
 307 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 308   return x / y;
 309 JRT_END
 310 
 311 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 312   return x + y;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 316   return x - y;
 317 JRT_END
 318 
 319 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 320   return x * y;
 321 JRT_END
 322 
 323 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 324   return x / y;
 325 JRT_END
 326 
 327 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 328   return (jfloat)x;
 329 JRT_END
 330 
 331 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 332   return (jdouble)x;
 333 JRT_END
 334 
 335 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 336   return (jdouble)x;
 337 JRT_END
 338 
 339 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 340   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 341 JRT_END
 342 
 343 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 344   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 345 JRT_END
 346 
 347 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 348   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 349 JRT_END
 350 
 351 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 352   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 353 JRT_END
 354 
 355 // Functions to return the opposite of the aeabi functions for nan.
 356 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 357   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 361   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 365   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 369   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 370 JRT_END
 371 
 372 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 373   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 374 JRT_END
 375 
 376 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 377   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 378 JRT_END
 379 
 380 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 381   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 382 JRT_END
 383 
 384 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 385   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 386 JRT_END
 387 
 388 // Intrinsics make gcc generate code for these.
 389 float  SharedRuntime::fneg(float f)   {
 390   return -f;
 391 }
 392 
 393 double SharedRuntime::dneg(double f)  {
 394   return -f;
 395 }
 396 
 397 #endif // __SOFTFP__
 398 
 399 #if defined(__SOFTFP__) || defined(E500V2)
 400 // Intrinsics make gcc generate code for these.
 401 double SharedRuntime::dabs(double f)  {
 402   return (f <= (double)0.0) ? (double)0.0 - f : f;
 403 }
 404 
 405 #endif
 406 
 407 #if defined(__SOFTFP__) || defined(PPC)
 408 double SharedRuntime::dsqrt(double f) {
 409   return sqrt(f);
 410 }
 411 #endif
 412 
 413 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 414   if (g_isnan(x))
 415     return 0;
 416   if (x >= (jfloat) max_jint)
 417     return max_jint;
 418   if (x <= (jfloat) min_jint)
 419     return min_jint;
 420   return (jint) x;
 421 JRT_END
 422 
 423 
 424 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 425   if (g_isnan(x))
 426     return 0;
 427   if (x >= (jfloat) max_jlong)
 428     return max_jlong;
 429   if (x <= (jfloat) min_jlong)
 430     return min_jlong;
 431   return (jlong) x;
 432 JRT_END
 433 
 434 
 435 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 436   if (g_isnan(x))
 437     return 0;
 438   if (x >= (jdouble) max_jint)
 439     return max_jint;
 440   if (x <= (jdouble) min_jint)
 441     return min_jint;
 442   return (jint) x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 447   if (g_isnan(x))
 448     return 0;
 449   if (x >= (jdouble) max_jlong)
 450     return max_jlong;
 451   if (x <= (jdouble) min_jlong)
 452     return min_jlong;
 453   return (jlong) x;
 454 JRT_END
 455 
 456 
 457 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 458   return (jfloat)x;
 459 JRT_END
 460 
 461 
 462 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 463   return (jfloat)x;
 464 JRT_END
 465 
 466 
 467 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 468   return (jdouble)x;
 469 JRT_END
 470 
 471 // Exception handling accross interpreter/compiler boundaries
 472 //
 473 // exception_handler_for_return_address(...) returns the continuation address.
 474 // The continuation address is the entry point of the exception handler of the
 475 // previous frame depending on the return address.
 476 
 477 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 478   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 479 
 480   // Reset method handle flag.
 481   thread->set_is_method_handle_return(false);
 482 
 483   // The fastest case first
 484   CodeBlob* blob = CodeCache::find_blob(return_address);
 485   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 486   if (nm != NULL) {
 487     // Set flag if return address is a method handle call site.
 488     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 489     // native nmethods don't have exception handlers
 490     assert(!nm->is_native_method(), "no exception handler");
 491     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 492     if (nm->is_deopt_pc(return_address)) {
 493       return SharedRuntime::deopt_blob()->unpack_with_exception();
 494     } else {
 495       return nm->exception_begin();
 496     }
 497   }
 498 
 499   // Entry code
 500   if (StubRoutines::returns_to_call_stub(return_address)) {
 501     return StubRoutines::catch_exception_entry();
 502   }
 503   // Interpreted code
 504   if (Interpreter::contains(return_address)) {
 505     return Interpreter::rethrow_exception_entry();
 506   }
 507 
 508   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 509   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 510 
 511 #ifndef PRODUCT
 512   { ResourceMark rm;
 513     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 514     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 515     tty->print_cr("b) other problem");
 516   }
 517 #endif // PRODUCT
 518 
 519   ShouldNotReachHere();
 520   return NULL;
 521 }
 522 
 523 
 524 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 525   return raw_exception_handler_for_return_address(thread, return_address);
 526 JRT_END
 527 
 528 
 529 address SharedRuntime::get_poll_stub(address pc) {
 530   address stub;
 531   // Look up the code blob
 532   CodeBlob *cb = CodeCache::find_blob(pc);
 533 
 534   // Should be an nmethod
 535   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 536 
 537   // Look up the relocation information
 538   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 539     "safepoint polling: type must be poll" );
 540 
 541   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 542     "Only polling locations are used for safepoint");
 543 
 544   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 545   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 546   if (at_poll_return) {
 547     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 548            "polling page return stub not created yet");
 549     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 550   } else if (has_wide_vectors) {
 551     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 552            "polling page vectors safepoint stub not created yet");
 553     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 554   } else {
 555     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 556            "polling page safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 558   }
 559 #ifndef PRODUCT
 560   if( TraceSafepoint ) {
 561     char buf[256];
 562     jio_snprintf(buf, sizeof(buf),
 563                  "... found polling page %s exception at pc = "
 564                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 565                  at_poll_return ? "return" : "loop",
 566                  (intptr_t)pc, (intptr_t)stub);
 567     tty->print_raw_cr(buf);
 568   }
 569 #endif // PRODUCT
 570   return stub;
 571 }
 572 
 573 
 574 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 575   assert(caller.is_interpreted_frame(), "");
 576   int args_size = ArgumentSizeComputer(sig).size() + 1;
 577   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 578   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 579   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 580   return result;
 581 }
 582 
 583 
 584 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 585   if (JvmtiExport::can_post_on_exceptions()) {
 586     vframeStream vfst(thread, true);
 587     methodHandle method = methodHandle(thread, vfst.method());
 588     address bcp = method()->bcp_from(vfst.bci());
 589     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 590   }
 591   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 592 }
 593 
 594 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 595   Handle h_exception = Exceptions::new_exception(thread, name, message);
 596   throw_and_post_jvmti_exception(thread, h_exception);
 597 }
 598 
 599 // The interpreter code to call this tracing function is only
 600 // called/generated when TraceRedefineClasses has the right bits
 601 // set. Since obsolete methods are never compiled, we don't have
 602 // to modify the compilers to generate calls to this function.
 603 //
 604 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 605     JavaThread* thread, methodOopDesc* method))
 606   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 607 
 608   if (method->is_obsolete()) {
 609     // We are calling an obsolete method, but this is not necessarily
 610     // an error. Our method could have been redefined just after we
 611     // fetched the methodOop from the constant pool.
 612 
 613     // RC_TRACE macro has an embedded ResourceMark
 614     RC_TRACE_WITH_THREAD(0x00001000, thread,
 615                          ("calling obsolete method '%s'",
 616                           method->name_and_sig_as_C_string()));
 617     if (RC_TRACE_ENABLED(0x00002000)) {
 618       // this option is provided to debug calls to obsolete methods
 619       guarantee(false, "faulting at call to an obsolete method.");
 620     }
 621   }
 622   return 0;
 623 JRT_END
 624 
 625 // ret_pc points into caller; we are returning caller's exception handler
 626 // for given exception
 627 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 628                                                     bool force_unwind, bool top_frame_only) {
 629   assert(nm != NULL, "must exist");
 630   ResourceMark rm;
 631 
 632   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 633   // determine handler bci, if any
 634   EXCEPTION_MARK;
 635 
 636   int handler_bci = -1;
 637   int scope_depth = 0;
 638   if (!force_unwind) {
 639     int bci = sd->bci();
 640     bool recursive_exception = false;
 641     do {
 642       bool skip_scope_increment = false;
 643       // exception handler lookup
 644       KlassHandle ek (THREAD, exception->klass());
 645       handler_bci = methodOopDesc::fast_exception_handler_bci_for(sd->method(), ek, bci, THREAD);
 646       if (HAS_PENDING_EXCEPTION) {
 647         recursive_exception = true;
 648         // We threw an exception while trying to find the exception handler.
 649         // Transfer the new exception to the exception handle which will
 650         // be set into thread local storage, and do another lookup for an
 651         // exception handler for this exception, this time starting at the
 652         // BCI of the exception handler which caused the exception to be
 653         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 654         // argument to ensure that the correct exception is thrown (4870175).
 655         exception = Handle(THREAD, PENDING_EXCEPTION);
 656         CLEAR_PENDING_EXCEPTION;
 657         if (handler_bci >= 0) {
 658           bci = handler_bci;
 659           handler_bci = -1;
 660           skip_scope_increment = true;
 661         }
 662       }
 663       else {
 664         recursive_exception = false;
 665       }
 666       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 667         sd = sd->sender();
 668         if (sd != NULL) {
 669           bci = sd->bci();
 670         }
 671         ++scope_depth;
 672       }
 673     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 674   }
 675 
 676   // found handling method => lookup exception handler
 677   int catch_pco = ret_pc - nm->code_begin();
 678 
 679   ExceptionHandlerTable table(nm);
 680   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 681   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 682     // Allow abbreviated catch tables.  The idea is to allow a method
 683     // to materialize its exceptions without committing to the exact
 684     // routing of exceptions.  In particular this is needed for adding
 685     // a synthethic handler to unlock monitors when inlining
 686     // synchonized methods since the unlock path isn't represented in
 687     // the bytecodes.
 688     t = table.entry_for(catch_pco, -1, 0);
 689   }
 690 
 691 #ifdef COMPILER1
 692   if (t == NULL && nm->is_compiled_by_c1()) {
 693     assert(nm->unwind_handler_begin() != NULL, "");
 694     return nm->unwind_handler_begin();
 695   }
 696 #endif
 697 
 698   if (t == NULL) {
 699     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 700     tty->print_cr("   Exception:");
 701     exception->print();
 702     tty->cr();
 703     tty->print_cr(" Compiled exception table :");
 704     table.print();
 705     nm->print_code();
 706     guarantee(false, "missing exception handler");
 707     return NULL;
 708   }
 709 
 710   return nm->code_begin() + t->pco();
 711 }
 712 
 713 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 714   // These errors occur only at call sites
 715   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 716 JRT_END
 717 
 718 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 719   // These errors occur only at call sites
 720   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 721 JRT_END
 722 
 723 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 724   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 725 JRT_END
 726 
 727 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 728   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 729 JRT_END
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 732   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 733   // cache sites (when the callee activation is not yet set up) so we are at a call site
 734   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 735 JRT_END
 736 
 737 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 738   // We avoid using the normal exception construction in this case because
 739   // it performs an upcall to Java, and we're already out of stack space.
 740   klassOop k = SystemDictionary::StackOverflowError_klass();
 741   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 742   Handle exception (thread, exception_oop);
 743   if (StackTraceInThrowable) {
 744     java_lang_Throwable::fill_in_stack_trace(exception);
 745   }
 746   throw_and_post_jvmti_exception(thread, exception);
 747 JRT_END
 748 
 749 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 750                                                            address pc,
 751                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 752 {
 753   address target_pc = NULL;
 754 
 755   if (Interpreter::contains(pc)) {
 756 #ifdef CC_INTERP
 757     // C++ interpreter doesn't throw implicit exceptions
 758     ShouldNotReachHere();
 759 #else
 760     switch (exception_kind) {
 761       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 762       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 763       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 764       default:                      ShouldNotReachHere();
 765     }
 766 #endif // !CC_INTERP
 767   } else {
 768     switch (exception_kind) {
 769       case STACK_OVERFLOW: {
 770         // Stack overflow only occurs upon frame setup; the callee is
 771         // going to be unwound. Dispatch to a shared runtime stub
 772         // which will cause the StackOverflowError to be fabricated
 773         // and processed.
 774         // For stack overflow in deoptimization blob, cleanup thread.
 775         if (thread->deopt_mark() != NULL) {
 776           Deoptimization::cleanup_deopt_info(thread, NULL);
 777         }
 778         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 779         return StubRoutines::throw_StackOverflowError_entry();
 780       }
 781 
 782       case IMPLICIT_NULL: {
 783         if (VtableStubs::contains(pc)) {
 784           // We haven't yet entered the callee frame. Fabricate an
 785           // exception and begin dispatching it in the caller. Since
 786           // the caller was at a call site, it's safe to destroy all
 787           // caller-saved registers, as these entry points do.
 788           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 789 
 790           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 791           if (vt_stub == NULL) return NULL;
 792 
 793           if (vt_stub->is_abstract_method_error(pc)) {
 794             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 795             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 796             return StubRoutines::throw_AbstractMethodError_entry();
 797           } else {
 798             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 799             return StubRoutines::throw_NullPointerException_at_call_entry();
 800           }
 801         } else {
 802           CodeBlob* cb = CodeCache::find_blob(pc);
 803 
 804           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 805           if (cb == NULL) return NULL;
 806 
 807           // Exception happened in CodeCache. Must be either:
 808           // 1. Inline-cache check in C2I handler blob,
 809           // 2. Inline-cache check in nmethod, or
 810           // 3. Implict null exception in nmethod
 811 
 812           if (!cb->is_nmethod()) {
 813             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 814                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 815             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 816             // There is no handler here, so we will simply unwind.
 817             return StubRoutines::throw_NullPointerException_at_call_entry();
 818           }
 819 
 820           // Otherwise, it's an nmethod.  Consult its exception handlers.
 821           nmethod* nm = (nmethod*)cb;
 822           if (nm->inlinecache_check_contains(pc)) {
 823             // exception happened inside inline-cache check code
 824             // => the nmethod is not yet active (i.e., the frame
 825             // is not set up yet) => use return address pushed by
 826             // caller => don't push another return address
 827             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 828             return StubRoutines::throw_NullPointerException_at_call_entry();
 829           }
 830 
 831           if (nm->method()->is_method_handle_intrinsic()) {
 832             // exception happened inside MH dispatch code, similar to a vtable stub
 833             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 834             return StubRoutines::throw_NullPointerException_at_call_entry();
 835           }
 836 
 837 #ifndef PRODUCT
 838           _implicit_null_throws++;
 839 #endif
 840           target_pc = nm->continuation_for_implicit_exception(pc);
 841           // If there's an unexpected fault, target_pc might be NULL,
 842           // in which case we want to fall through into the normal
 843           // error handling code.
 844         }
 845 
 846         break; // fall through
 847       }
 848 
 849 
 850       case IMPLICIT_DIVIDE_BY_ZERO: {
 851         nmethod* nm = CodeCache::find_nmethod(pc);
 852         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 853 #ifndef PRODUCT
 854         _implicit_div0_throws++;
 855 #endif
 856         target_pc = nm->continuation_for_implicit_exception(pc);
 857         // If there's an unexpected fault, target_pc might be NULL,
 858         // in which case we want to fall through into the normal
 859         // error handling code.
 860         break; // fall through
 861       }
 862 
 863       default: ShouldNotReachHere();
 864     }
 865 
 866     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 867 
 868     // for AbortVMOnException flag
 869     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 870     if (exception_kind == IMPLICIT_NULL) {
 871       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 872     } else {
 873       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 874     }
 875     return target_pc;
 876   }
 877 
 878   ShouldNotReachHere();
 879   return NULL;
 880 }
 881 
 882 
 883 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 884 {
 885   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 886 }
 887 JNI_END
 888 
 889 JNI_ENTRY(void, throw_unsupported_operation_exception(JNIEnv* env, ...))
 890 {
 891   THROW(vmSymbols::java_lang_UnsupportedOperationException());
 892 }
 893 JNI_END
 894 
 895 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 896   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 897 }
 898 
 899 address SharedRuntime::native_method_throw_unsupported_operation_exception_entry() {
 900   return CAST_FROM_FN_PTR(address, &throw_unsupported_operation_exception);
 901 }
 902 
 903 
 904 #ifndef PRODUCT
 905 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 906   const frame f = thread->last_frame();
 907   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 908 #ifndef PRODUCT
 909   methodHandle mh(THREAD, f.interpreter_frame_method());
 910   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 911 #endif // !PRODUCT
 912   return preserve_this_value;
 913 JRT_END
 914 #endif // !PRODUCT
 915 
 916 
 917 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 918   os::yield_all(attempts);
 919 JRT_END
 920 
 921 
 922 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 923   assert(obj->is_oop(), "must be a valid oop");
 924   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 925   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 926 JRT_END
 927 
 928 
 929 jlong SharedRuntime::get_java_tid(Thread* thread) {
 930   if (thread != NULL) {
 931     if (thread->is_Java_thread()) {
 932       oop obj = ((JavaThread*)thread)->threadObj();
 933       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 934     }
 935   }
 936   return 0;
 937 }
 938 
 939 /**
 940  * This function ought to be a void function, but cannot be because
 941  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 942  * 6254741.  Once that is fixed we can remove the dummy return value.
 943  */
 944 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 945   return dtrace_object_alloc_base(Thread::current(), o);
 946 }
 947 
 948 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 949   assert(DTraceAllocProbes, "wrong call");
 950   Klass* klass = o->blueprint();
 951   int size = o->size();
 952   Symbol* name = klass->name();
 953 #ifndef USDT2
 954   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 955                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 956 #else /* USDT2 */
 957   HOTSPOT_OBJECT_ALLOC(
 958                    get_java_tid(thread),
 959                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 960 #endif /* USDT2 */
 961   return 0;
 962 }
 963 
 964 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 965     JavaThread* thread, methodOopDesc* method))
 966   assert(DTraceMethodProbes, "wrong call");
 967   Symbol* kname = method->klass_name();
 968   Symbol* name = method->name();
 969   Symbol* sig = method->signature();
 970 #ifndef USDT2
 971   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 972       kname->bytes(), kname->utf8_length(),
 973       name->bytes(), name->utf8_length(),
 974       sig->bytes(), sig->utf8_length());
 975 #else /* USDT2 */
 976   HOTSPOT_METHOD_ENTRY(
 977       get_java_tid(thread),
 978       (char *) kname->bytes(), kname->utf8_length(),
 979       (char *) name->bytes(), name->utf8_length(),
 980       (char *) sig->bytes(), sig->utf8_length());
 981 #endif /* USDT2 */
 982   return 0;
 983 JRT_END
 984 
 985 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 986     JavaThread* thread, methodOopDesc* method))
 987   assert(DTraceMethodProbes, "wrong call");
 988   Symbol* kname = method->klass_name();
 989   Symbol* name = method->name();
 990   Symbol* sig = method->signature();
 991 #ifndef USDT2
 992   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 993       kname->bytes(), kname->utf8_length(),
 994       name->bytes(), name->utf8_length(),
 995       sig->bytes(), sig->utf8_length());
 996 #else /* USDT2 */
 997   HOTSPOT_METHOD_RETURN(
 998       get_java_tid(thread),
 999       (char *) kname->bytes(), kname->utf8_length(),
1000       (char *) name->bytes(), name->utf8_length(),
1001       (char *) sig->bytes(), sig->utf8_length());
1002 #endif /* USDT2 */
1003   return 0;
1004 JRT_END
1005 
1006 
1007 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1008 // for a call current in progress, i.e., arguments has been pushed on stack
1009 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1010 // vtable updates, etc.  Caller frame must be compiled.
1011 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1012   ResourceMark rm(THREAD);
1013 
1014   // last java frame on stack (which includes native call frames)
1015   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1016 
1017   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1018 }
1019 
1020 
1021 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1022 // for a call current in progress, i.e., arguments has been pushed on stack
1023 // but callee has not been invoked yet.  Caller frame must be compiled.
1024 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1025                                               vframeStream& vfst,
1026                                               Bytecodes::Code& bc,
1027                                               CallInfo& callinfo, TRAPS) {
1028   Handle receiver;
1029   Handle nullHandle;  //create a handy null handle for exception returns
1030 
1031   assert(!vfst.at_end(), "Java frame must exist");
1032 
1033   // Find caller and bci from vframe
1034   methodHandle caller(THREAD, vfst.method());
1035   int          bci   = vfst.bci();
1036 
1037   // Find bytecode
1038   Bytecode_invoke bytecode(caller, bci);
1039   bc = bytecode.invoke_code();
1040   int bytecode_index = bytecode.index();
1041 
1042   // Find receiver for non-static call
1043   if (bc != Bytecodes::_invokestatic &&
1044       bc != Bytecodes::_invokedynamic) {
1045     // This register map must be update since we need to find the receiver for
1046     // compiled frames. The receiver might be in a register.
1047     RegisterMap reg_map2(thread);
1048     frame stubFrame   = thread->last_frame();
1049     // Caller-frame is a compiled frame
1050     frame callerFrame = stubFrame.sender(&reg_map2);
1051 
1052     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1053     if (callee.is_null()) {
1054       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1055     }
1056     // Retrieve from a compiled argument list
1057     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1058 
1059     if (receiver.is_null()) {
1060       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1061     }
1062   }
1063 
1064   // Resolve method. This is parameterized by bytecode.
1065   constantPoolHandle constants(THREAD, caller->constants());
1066   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1067   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1068 
1069 #ifdef ASSERT
1070   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1071   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1072     assert(receiver.not_null(), "should have thrown exception");
1073     KlassHandle receiver_klass(THREAD, receiver->klass());
1074     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1075                             // klass is already loaded
1076     KlassHandle static_receiver_klass(THREAD, rk);
1077     // Method handle invokes might have been optimized to a direct call
1078     // so don't check for the receiver class.
1079     // FIXME this weakens the assert too much
1080     methodHandle callee = callinfo.selected_method();
1081     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1082            callee->is_method_handle_intrinsic() ||
1083            callee->is_compiled_lambda_form(),
1084            "actual receiver must be subclass of static receiver klass");
1085     if (receiver_klass->oop_is_instance()) {
1086       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
1087         tty->print_cr("ERROR: Klass not yet initialized!!");
1088         receiver_klass.print();
1089       }
1090       assert(!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1091     }
1092   }
1093 #endif
1094 
1095   return receiver;
1096 }
1097 
1098 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1099   ResourceMark rm(THREAD);
1100   // We need first to check if any Java activations (compiled, interpreted)
1101   // exist on the stack since last JavaCall.  If not, we need
1102   // to get the target method from the JavaCall wrapper.
1103   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1104   methodHandle callee_method;
1105   if (vfst.at_end()) {
1106     // No Java frames were found on stack since we did the JavaCall.
1107     // Hence the stack can only contain an entry_frame.  We need to
1108     // find the target method from the stub frame.
1109     RegisterMap reg_map(thread, false);
1110     frame fr = thread->last_frame();
1111     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1112     fr = fr.sender(&reg_map);
1113     assert(fr.is_entry_frame(), "must be");
1114     // fr is now pointing to the entry frame.
1115     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1116     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1117   } else {
1118     Bytecodes::Code bc;
1119     CallInfo callinfo;
1120     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1121     callee_method = callinfo.selected_method();
1122   }
1123   assert(callee_method()->is_method(), "must be");
1124   return callee_method;
1125 }
1126 
1127 // Resolves a call.
1128 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1129                                            bool is_virtual,
1130                                            bool is_optimized, TRAPS) {
1131   methodHandle callee_method;
1132   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1133   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1134     int retry_count = 0;
1135     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1136            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1137       // If has a pending exception then there is no need to re-try to
1138       // resolve this method.
1139       // If the method has been redefined, we need to try again.
1140       // Hack: we have no way to update the vtables of arrays, so don't
1141       // require that java.lang.Object has been updated.
1142 
1143       // It is very unlikely that method is redefined more than 100 times
1144       // in the middle of resolve. If it is looping here more than 100 times
1145       // means then there could be a bug here.
1146       guarantee((retry_count++ < 100),
1147                 "Could not resolve to latest version of redefined method");
1148       // method is redefined in the middle of resolve so re-try.
1149       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1150     }
1151   }
1152   return callee_method;
1153 }
1154 
1155 // Resolves a call.  The compilers generate code for calls that go here
1156 // and are patched with the real destination of the call.
1157 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1158                                            bool is_virtual,
1159                                            bool is_optimized, TRAPS) {
1160 
1161   ResourceMark rm(thread);
1162   RegisterMap cbl_map(thread, false);
1163   frame caller_frame = thread->last_frame().sender(&cbl_map);
1164 
1165   CodeBlob* caller_cb = caller_frame.cb();
1166   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1167   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1168   // make sure caller is not getting deoptimized
1169   // and removed before we are done with it.
1170   // CLEANUP - with lazy deopt shouldn't need this lock
1171   nmethodLocker caller_lock(caller_nm);
1172 
1173 
1174   // determine call info & receiver
1175   // note: a) receiver is NULL for static calls
1176   //       b) an exception is thrown if receiver is NULL for non-static calls
1177   CallInfo call_info;
1178   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1179   Handle receiver = find_callee_info(thread, invoke_code,
1180                                      call_info, CHECK_(methodHandle()));
1181   methodHandle callee_method = call_info.selected_method();
1182 
1183   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1184          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1185          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1186          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1187 
1188 #ifndef PRODUCT
1189   // tracing/debugging/statistics
1190   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1191                 (is_virtual) ? (&_resolve_virtual_ctr) :
1192                                (&_resolve_static_ctr);
1193   Atomic::inc(addr);
1194 
1195   if (TraceCallFixup) {
1196     ResourceMark rm(thread);
1197     tty->print("resolving %s%s (%s) call to",
1198       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1199       Bytecodes::name(invoke_code));
1200     callee_method->print_short_name(tty);
1201     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1202   }
1203 #endif
1204 
1205   // JSR 292 key invariant:
1206   // If the resolved method is a MethodHandle invoke target the call
1207   // site must be a MethodHandle call site, because the lambda form might tail-call
1208   // leaving the stack in a state unknown to either caller or callee
1209   // TODO detune for now but we might need it again
1210 //  assert(!callee_method->is_compiled_lambda_form() ||
1211 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1212 
1213   // Compute entry points. This might require generation of C2I converter
1214   // frames, so we cannot be holding any locks here. Furthermore, the
1215   // computation of the entry points is independent of patching the call.  We
1216   // always return the entry-point, but we only patch the stub if the call has
1217   // not been deoptimized.  Return values: For a virtual call this is an
1218   // (cached_oop, destination address) pair. For a static call/optimized
1219   // virtual this is just a destination address.
1220 
1221   StaticCallInfo static_call_info;
1222   CompiledICInfo virtual_call_info;
1223 
1224   // Make sure the callee nmethod does not get deoptimized and removed before
1225   // we are done patching the code.
1226   nmethod* callee_nm = callee_method->code();
1227   nmethodLocker nl_callee(callee_nm);
1228 #ifdef ASSERT
1229   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1230 #endif
1231 
1232   if (is_virtual) {
1233     assert(receiver.not_null(), "sanity check");
1234     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1235     KlassHandle h_klass(THREAD, receiver->klass());
1236     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1237                      is_optimized, static_bound, virtual_call_info,
1238                      CHECK_(methodHandle()));
1239   } else {
1240     // static call
1241     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1242   }
1243 
1244   // grab lock, check for deoptimization and potentially patch caller
1245   {
1246     MutexLocker ml_patch(CompiledIC_lock);
1247 
1248     // Now that we are ready to patch if the methodOop was redefined then
1249     // don't update call site and let the caller retry.
1250 
1251     if (!callee_method->is_old()) {
1252 #ifdef ASSERT
1253       // We must not try to patch to jump to an already unloaded method.
1254       if (dest_entry_point != 0) {
1255         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1256                "should not unload nmethod while locked");
1257       }
1258 #endif
1259       if (is_virtual) {
1260         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1261         if (inline_cache->is_clean()) {
1262           inline_cache->set_to_monomorphic(virtual_call_info);
1263         }
1264       } else {
1265         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1266         if (ssc->is_clean()) ssc->set(static_call_info);
1267       }
1268     }
1269 
1270   } // unlock CompiledIC_lock
1271 
1272   return callee_method;
1273 }
1274 
1275 
1276 // Inline caches exist only in compiled code
1277 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1278 #ifdef ASSERT
1279   RegisterMap reg_map(thread, false);
1280   frame stub_frame = thread->last_frame();
1281   assert(stub_frame.is_runtime_frame(), "sanity check");
1282   frame caller_frame = stub_frame.sender(&reg_map);
1283   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1284 #endif /* ASSERT */
1285 
1286   methodHandle callee_method;
1287   JRT_BLOCK
1288     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1289     // Return methodOop through TLS
1290     thread->set_vm_result(callee_method());
1291   JRT_BLOCK_END
1292   // return compiled code entry point after potential safepoints
1293   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1294   return callee_method->verified_code_entry();
1295 JRT_END
1296 
1297 
1298 // Handle call site that has been made non-entrant
1299 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1300   // 6243940 We might end up in here if the callee is deoptimized
1301   // as we race to call it.  We don't want to take a safepoint if
1302   // the caller was interpreted because the caller frame will look
1303   // interpreted to the stack walkers and arguments are now
1304   // "compiled" so it is much better to make this transition
1305   // invisible to the stack walking code. The i2c path will
1306   // place the callee method in the callee_target. It is stashed
1307   // there because if we try and find the callee by normal means a
1308   // safepoint is possible and have trouble gc'ing the compiled args.
1309   RegisterMap reg_map(thread, false);
1310   frame stub_frame = thread->last_frame();
1311   assert(stub_frame.is_runtime_frame(), "sanity check");
1312   frame caller_frame = stub_frame.sender(&reg_map);
1313 
1314   // MethodHandle invokes don't have a CompiledIC and should always
1315   // simply redispatch to the callee_target.
1316   address   sender_pc = caller_frame.pc();
1317   CodeBlob* sender_cb = caller_frame.cb();
1318   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1319 
1320   if (caller_frame.is_interpreted_frame() ||
1321       caller_frame.is_entry_frame()) {
1322     methodOop callee = thread->callee_target();
1323     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1324     thread->set_vm_result(callee);
1325     thread->set_callee_target(NULL);
1326     return callee->get_c2i_entry();
1327   }
1328 
1329   // Must be compiled to compiled path which is safe to stackwalk
1330   methodHandle callee_method;
1331   JRT_BLOCK
1332     // Force resolving of caller (if we called from compiled frame)
1333     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1334     thread->set_vm_result(callee_method());
1335   JRT_BLOCK_END
1336   // return compiled code entry point after potential safepoints
1337   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1338   return callee_method->verified_code_entry();
1339 JRT_END
1340 
1341 
1342 // resolve a static call and patch code
1343 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1344   methodHandle callee_method;
1345   JRT_BLOCK
1346     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1347     thread->set_vm_result(callee_method());
1348   JRT_BLOCK_END
1349   // return compiled code entry point after potential safepoints
1350   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1351   return callee_method->verified_code_entry();
1352 JRT_END
1353 
1354 
1355 // resolve virtual call and update inline cache to monomorphic
1356 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1357   methodHandle callee_method;
1358   JRT_BLOCK
1359     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1360     thread->set_vm_result(callee_method());
1361   JRT_BLOCK_END
1362   // return compiled code entry point after potential safepoints
1363   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1364   return callee_method->verified_code_entry();
1365 JRT_END
1366 
1367 
1368 // Resolve a virtual call that can be statically bound (e.g., always
1369 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1370 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1371   methodHandle callee_method;
1372   JRT_BLOCK
1373     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1374     thread->set_vm_result(callee_method());
1375   JRT_BLOCK_END
1376   // return compiled code entry point after potential safepoints
1377   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1378   return callee_method->verified_code_entry();
1379 JRT_END
1380 
1381 
1382 
1383 
1384 
1385 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1386   ResourceMark rm(thread);
1387   CallInfo call_info;
1388   Bytecodes::Code bc;
1389 
1390   // receiver is NULL for static calls. An exception is thrown for NULL
1391   // receivers for non-static calls
1392   Handle receiver = find_callee_info(thread, bc, call_info,
1393                                      CHECK_(methodHandle()));
1394   // Compiler1 can produce virtual call sites that can actually be statically bound
1395   // If we fell thru to below we would think that the site was going megamorphic
1396   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1397   // we'd try and do a vtable dispatch however methods that can be statically bound
1398   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1399   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1400   // plain ic_miss) and the site will be converted to an optimized virtual call site
1401   // never to miss again. I don't believe C2 will produce code like this but if it
1402   // did this would still be the correct thing to do for it too, hence no ifdef.
1403   //
1404   if (call_info.resolved_method()->can_be_statically_bound()) {
1405     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1406     if (TraceCallFixup) {
1407       RegisterMap reg_map(thread, false);
1408       frame caller_frame = thread->last_frame().sender(&reg_map);
1409       ResourceMark rm(thread);
1410       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1411       callee_method->print_short_name(tty);
1412       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1413       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1414     }
1415     return callee_method;
1416   }
1417 
1418   methodHandle callee_method = call_info.selected_method();
1419 
1420   bool should_be_mono = false;
1421 
1422 #ifndef PRODUCT
1423   Atomic::inc(&_ic_miss_ctr);
1424 
1425   // Statistics & Tracing
1426   if (TraceCallFixup) {
1427     ResourceMark rm(thread);
1428     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1429     callee_method->print_short_name(tty);
1430     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1431   }
1432 
1433   if (ICMissHistogram) {
1434     MutexLocker m(VMStatistic_lock);
1435     RegisterMap reg_map(thread, false);
1436     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1437     // produce statistics under the lock
1438     trace_ic_miss(f.pc());
1439   }
1440 #endif
1441 
1442   // install an event collector so that when a vtable stub is created the
1443   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1444   // event can't be posted when the stub is created as locks are held
1445   // - instead the event will be deferred until the event collector goes
1446   // out of scope.
1447   JvmtiDynamicCodeEventCollector event_collector;
1448 
1449   // Update inline cache to megamorphic. Skip update if caller has been
1450   // made non-entrant or we are called from interpreted.
1451   { MutexLocker ml_patch (CompiledIC_lock);
1452     RegisterMap reg_map(thread, false);
1453     frame caller_frame = thread->last_frame().sender(&reg_map);
1454     CodeBlob* cb = caller_frame.cb();
1455     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1456       // Not a non-entrant nmethod, so find inline_cache
1457       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1458       bool should_be_mono = false;
1459       if (inline_cache->is_optimized()) {
1460         if (TraceCallFixup) {
1461           ResourceMark rm(thread);
1462           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1463           callee_method->print_short_name(tty);
1464           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1465         }
1466         should_be_mono = true;
1467       } else {
1468         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1469         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1470 
1471           if (receiver()->klass() == ic_oop->holder_klass()) {
1472             // This isn't a real miss. We must have seen that compiled code
1473             // is now available and we want the call site converted to a
1474             // monomorphic compiled call site.
1475             // We can't assert for callee_method->code() != NULL because it
1476             // could have been deoptimized in the meantime
1477             if (TraceCallFixup) {
1478               ResourceMark rm(thread);
1479               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1480               callee_method->print_short_name(tty);
1481               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1482             }
1483             should_be_mono = true;
1484           }
1485         }
1486       }
1487 
1488       if (should_be_mono) {
1489 
1490         // We have a path that was monomorphic but was going interpreted
1491         // and now we have (or had) a compiled entry. We correct the IC
1492         // by using a new icBuffer.
1493         CompiledICInfo info;
1494         KlassHandle receiver_klass(THREAD, receiver()->klass());
1495         inline_cache->compute_monomorphic_entry(callee_method,
1496                                                 receiver_klass,
1497                                                 inline_cache->is_optimized(),
1498                                                 false,
1499                                                 info, CHECK_(methodHandle()));
1500         inline_cache->set_to_monomorphic(info);
1501       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1502         // Change to megamorphic
1503         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1504       } else {
1505         // Either clean or megamorphic
1506       }
1507     }
1508   } // Release CompiledIC_lock
1509 
1510   return callee_method;
1511 }
1512 
1513 //
1514 // Resets a call-site in compiled code so it will get resolved again.
1515 // This routines handles both virtual call sites, optimized virtual call
1516 // sites, and static call sites. Typically used to change a call sites
1517 // destination from compiled to interpreted.
1518 //
1519 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1520   ResourceMark rm(thread);
1521   RegisterMap reg_map(thread, false);
1522   frame stub_frame = thread->last_frame();
1523   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1524   frame caller = stub_frame.sender(&reg_map);
1525 
1526   // Do nothing if the frame isn't a live compiled frame.
1527   // nmethod could be deoptimized by the time we get here
1528   // so no update to the caller is needed.
1529 
1530   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1531 
1532     address pc = caller.pc();
1533 
1534     // Default call_addr is the location of the "basic" call.
1535     // Determine the address of the call we a reresolving. With
1536     // Inline Caches we will always find a recognizable call.
1537     // With Inline Caches disabled we may or may not find a
1538     // recognizable call. We will always find a call for static
1539     // calls and for optimized virtual calls. For vanilla virtual
1540     // calls it depends on the state of the UseInlineCaches switch.
1541     //
1542     // With Inline Caches disabled we can get here for a virtual call
1543     // for two reasons:
1544     //   1 - calling an abstract method. The vtable for abstract methods
1545     //       will run us thru handle_wrong_method and we will eventually
1546     //       end up in the interpreter to throw the ame.
1547     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1548     //       call and between the time we fetch the entry address and
1549     //       we jump to it the target gets deoptimized. Similar to 1
1550     //       we will wind up in the interprter (thru a c2i with c2).
1551     //
1552     address call_addr = NULL;
1553     {
1554       // Get call instruction under lock because another thread may be
1555       // busy patching it.
1556       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1557       // Location of call instruction
1558       if (NativeCall::is_call_before(pc)) {
1559         NativeCall *ncall = nativeCall_before(pc);
1560         call_addr = ncall->instruction_address();
1561       }
1562     }
1563 
1564     // Check for static or virtual call
1565     bool is_static_call = false;
1566     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1567     // Make sure nmethod doesn't get deoptimized and removed until
1568     // this is done with it.
1569     // CLEANUP - with lazy deopt shouldn't need this lock
1570     nmethodLocker nmlock(caller_nm);
1571 
1572     if (call_addr != NULL) {
1573       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1574       int ret = iter.next(); // Get item
1575       if (ret) {
1576         assert(iter.addr() == call_addr, "must find call");
1577         if (iter.type() == relocInfo::static_call_type) {
1578           is_static_call = true;
1579         } else {
1580           assert(iter.type() == relocInfo::virtual_call_type ||
1581                  iter.type() == relocInfo::opt_virtual_call_type
1582                 , "unexpected relocInfo. type");
1583         }
1584       } else {
1585         assert(!UseInlineCaches, "relocation info. must exist for this address");
1586       }
1587 
1588       // Cleaning the inline cache will force a new resolve. This is more robust
1589       // than directly setting it to the new destination, since resolving of calls
1590       // is always done through the same code path. (experience shows that it
1591       // leads to very hard to track down bugs, if an inline cache gets updated
1592       // to a wrong method). It should not be performance critical, since the
1593       // resolve is only done once.
1594 
1595       MutexLocker ml(CompiledIC_lock);
1596       //
1597       // We do not patch the call site if the nmethod has been made non-entrant
1598       // as it is a waste of time
1599       //
1600       if (caller_nm->is_in_use()) {
1601         if (is_static_call) {
1602           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1603           ssc->set_to_clean();
1604         } else {
1605           // compiled, dispatched call (which used to call an interpreted method)
1606           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1607           inline_cache->set_to_clean();
1608         }
1609       }
1610     }
1611 
1612   }
1613 
1614   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1615 
1616 
1617 #ifndef PRODUCT
1618   Atomic::inc(&_wrong_method_ctr);
1619 
1620   if (TraceCallFixup) {
1621     ResourceMark rm(thread);
1622     tty->print("handle_wrong_method reresolving call to");
1623     callee_method->print_short_name(tty);
1624     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1625   }
1626 #endif
1627 
1628   return callee_method;
1629 }
1630 
1631 #ifdef ASSERT
1632 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1633                                                                 const BasicType* sig_bt,
1634                                                                 const VMRegPair* regs) {
1635   ResourceMark rm;
1636   const int total_args_passed = method->size_of_parameters();
1637   const VMRegPair*    regs_with_member_name = regs;
1638         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1639 
1640   const int member_arg_pos = total_args_passed - 1;
1641   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1642   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1643 
1644   const bool is_outgoing = method->is_method_handle_intrinsic();
1645   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1646 
1647   for (int i = 0; i < member_arg_pos; i++) {
1648     VMReg a =    regs_with_member_name[i].first();
1649     VMReg b = regs_without_member_name[i].first();
1650     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1651   }
1652   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1653 }
1654 #endif
1655 
1656 // ---------------------------------------------------------------------------
1657 // We are calling the interpreter via a c2i. Normally this would mean that
1658 // we were called by a compiled method. However we could have lost a race
1659 // where we went int -> i2c -> c2i and so the caller could in fact be
1660 // interpreted. If the caller is compiled we attempt to patch the caller
1661 // so he no longer calls into the interpreter.
1662 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1663   methodOop moop(method);
1664 
1665   address entry_point = moop->from_compiled_entry();
1666 
1667   // It's possible that deoptimization can occur at a call site which hasn't
1668   // been resolved yet, in which case this function will be called from
1669   // an nmethod that has been patched for deopt and we can ignore the
1670   // request for a fixup.
1671   // Also it is possible that we lost a race in that from_compiled_entry
1672   // is now back to the i2c in that case we don't need to patch and if
1673   // we did we'd leap into space because the callsite needs to use
1674   // "to interpreter" stub in order to load up the methodOop. Don't
1675   // ask me how I know this...
1676 
1677   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1678   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1679     return;
1680   }
1681 
1682   // The check above makes sure this is a nmethod.
1683   nmethod* nm = cb->as_nmethod_or_null();
1684   assert(nm, "must be");
1685 
1686   // Get the return PC for the passed caller PC.
1687   address return_pc = caller_pc + frame::pc_return_offset;
1688 
1689   // There is a benign race here. We could be attempting to patch to a compiled
1690   // entry point at the same time the callee is being deoptimized. If that is
1691   // the case then entry_point may in fact point to a c2i and we'd patch the
1692   // call site with the same old data. clear_code will set code() to NULL
1693   // at the end of it. If we happen to see that NULL then we can skip trying
1694   // to patch. If we hit the window where the callee has a c2i in the
1695   // from_compiled_entry and the NULL isn't present yet then we lose the race
1696   // and patch the code with the same old data. Asi es la vida.
1697 
1698   if (moop->code() == NULL) return;
1699 
1700   if (nm->is_in_use()) {
1701 
1702     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1703     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1704     if (NativeCall::is_call_before(return_pc)) {
1705       NativeCall *call = nativeCall_before(return_pc);
1706       //
1707       // bug 6281185. We might get here after resolving a call site to a vanilla
1708       // virtual call. Because the resolvee uses the verified entry it may then
1709       // see compiled code and attempt to patch the site by calling us. This would
1710       // then incorrectly convert the call site to optimized and its downhill from
1711       // there. If you're lucky you'll get the assert in the bugid, if not you've
1712       // just made a call site that could be megamorphic into a monomorphic site
1713       // for the rest of its life! Just another racing bug in the life of
1714       // fixup_callers_callsite ...
1715       //
1716       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1717       iter.next();
1718       assert(iter.has_current(), "must have a reloc at java call site");
1719       relocInfo::relocType typ = iter.reloc()->type();
1720       if ( typ != relocInfo::static_call_type &&
1721            typ != relocInfo::opt_virtual_call_type &&
1722            typ != relocInfo::static_stub_type) {
1723         return;
1724       }
1725       address destination = call->destination();
1726       if (destination != entry_point) {
1727         CodeBlob* callee = CodeCache::find_blob(destination);
1728         // callee == cb seems weird. It means calling interpreter thru stub.
1729         if (callee == cb || callee->is_adapter_blob()) {
1730           // static call or optimized virtual
1731           if (TraceCallFixup) {
1732             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1733             moop->print_short_name(tty);
1734             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1735           }
1736           call->set_destination_mt_safe(entry_point);
1737         } else {
1738           if (TraceCallFixup) {
1739             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1740             moop->print_short_name(tty);
1741             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1742           }
1743           // assert is too strong could also be resolve destinations.
1744           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1745         }
1746       } else {
1747           if (TraceCallFixup) {
1748             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1749             moop->print_short_name(tty);
1750             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1751           }
1752       }
1753     }
1754   }
1755 IRT_END
1756 
1757 
1758 // same as JVM_Arraycopy, but called directly from compiled code
1759 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1760                                                 oopDesc* dest, jint dest_pos,
1761                                                 jint length,
1762                                                 JavaThread* thread)) {
1763 #ifndef PRODUCT
1764   _slow_array_copy_ctr++;
1765 #endif
1766   // Check if we have null pointers
1767   if (src == NULL || dest == NULL) {
1768     THROW(vmSymbols::java_lang_NullPointerException());
1769   }
1770   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1771   // even though the copy_array API also performs dynamic checks to ensure
1772   // that src and dest are truly arrays (and are conformable).
1773   // The copy_array mechanism is awkward and could be removed, but
1774   // the compilers don't call this function except as a last resort,
1775   // so it probably doesn't matter.
1776   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1777                                         (arrayOopDesc*)dest, dest_pos,
1778                                         length, thread);
1779 }
1780 JRT_END
1781 
1782 char* SharedRuntime::generate_class_cast_message(
1783     JavaThread* thread, const char* objName) {
1784 
1785   // Get target class name from the checkcast instruction
1786   vframeStream vfst(thread, true);
1787   assert(!vfst.at_end(), "Java frame must exist");
1788   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1789   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1790     cc.index(), thread));
1791   return generate_class_cast_message(objName, targetKlass->external_name());
1792 }
1793 
1794 char* SharedRuntime::generate_class_cast_message(
1795     const char* objName, const char* targetKlassName, const char* desc) {
1796   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1797 
1798   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1799   if (NULL == message) {
1800     // Shouldn't happen, but don't cause even more problems if it does
1801     message = const_cast<char*>(objName);
1802   } else {
1803     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1804   }
1805   return message;
1806 }
1807 
1808 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1809   (void) JavaThread::current()->reguard_stack();
1810 JRT_END
1811 
1812 
1813 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1814 #ifndef PRODUCT
1815 int SharedRuntime::_monitor_enter_ctr=0;
1816 #endif
1817 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1818   oop obj(_obj);
1819 #ifndef PRODUCT
1820   _monitor_enter_ctr++;             // monitor enter slow
1821 #endif
1822   if (PrintBiasedLockingStatistics) {
1823     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1824   }
1825   Handle h_obj(THREAD, obj);
1826   if (UseBiasedLocking) {
1827     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1828     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1829   } else {
1830     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1831   }
1832   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1833 JRT_END
1834 
1835 #ifndef PRODUCT
1836 int SharedRuntime::_monitor_exit_ctr=0;
1837 #endif
1838 // Handles the uncommon cases of monitor unlocking in compiled code
1839 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1840    oop obj(_obj);
1841 #ifndef PRODUCT
1842   _monitor_exit_ctr++;              // monitor exit slow
1843 #endif
1844   Thread* THREAD = JavaThread::current();
1845   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1846   // testing was unable to ever fire the assert that guarded it so I have removed it.
1847   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1848 #undef MIGHT_HAVE_PENDING
1849 #ifdef MIGHT_HAVE_PENDING
1850   // Save and restore any pending_exception around the exception mark.
1851   // While the slow_exit must not throw an exception, we could come into
1852   // this routine with one set.
1853   oop pending_excep = NULL;
1854   const char* pending_file;
1855   int pending_line;
1856   if (HAS_PENDING_EXCEPTION) {
1857     pending_excep = PENDING_EXCEPTION;
1858     pending_file  = THREAD->exception_file();
1859     pending_line  = THREAD->exception_line();
1860     CLEAR_PENDING_EXCEPTION;
1861   }
1862 #endif /* MIGHT_HAVE_PENDING */
1863 
1864   {
1865     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1866     EXCEPTION_MARK;
1867     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1868   }
1869 
1870 #ifdef MIGHT_HAVE_PENDING
1871   if (pending_excep != NULL) {
1872     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1873   }
1874 #endif /* MIGHT_HAVE_PENDING */
1875 JRT_END
1876 
1877 #ifndef PRODUCT
1878 
1879 void SharedRuntime::print_statistics() {
1880   ttyLocker ttyl;
1881   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1882 
1883   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1884   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1885   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1886 
1887   SharedRuntime::print_ic_miss_histogram();
1888 
1889   if (CountRemovableExceptions) {
1890     if (_nof_removable_exceptions > 0) {
1891       Unimplemented(); // this counter is not yet incremented
1892       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1893     }
1894   }
1895 
1896   // Dump the JRT_ENTRY counters
1897   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1898   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1899   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1900   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1901   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1902   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1903   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1904 
1905   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1906   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1907   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1908   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1909   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1910 
1911   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1912   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1913   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1914   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1915   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1916   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1917   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1918   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1919   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1920   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1921   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1922   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1923   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1924   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1925   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1926   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1927 
1928   AdapterHandlerLibrary::print_statistics();
1929 
1930   if (xtty != NULL)  xtty->tail("statistics");
1931 }
1932 
1933 inline double percent(int x, int y) {
1934   return 100.0 * x / MAX2(y, 1);
1935 }
1936 
1937 class MethodArityHistogram {
1938  public:
1939   enum { MAX_ARITY = 256 };
1940  private:
1941   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1942   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1943   static int _max_arity;                      // max. arity seen
1944   static int _max_size;                       // max. arg size seen
1945 
1946   static void add_method_to_histogram(nmethod* nm) {
1947     methodOop m = nm->method();
1948     ArgumentCount args(m->signature());
1949     int arity   = args.size() + (m->is_static() ? 0 : 1);
1950     int argsize = m->size_of_parameters();
1951     arity   = MIN2(arity, MAX_ARITY-1);
1952     argsize = MIN2(argsize, MAX_ARITY-1);
1953     int count = nm->method()->compiled_invocation_count();
1954     _arity_histogram[arity]  += count;
1955     _size_histogram[argsize] += count;
1956     _max_arity = MAX2(_max_arity, arity);
1957     _max_size  = MAX2(_max_size, argsize);
1958   }
1959 
1960   void print_histogram_helper(int n, int* histo, const char* name) {
1961     const int N = MIN2(5, n);
1962     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1963     double sum = 0;
1964     double weighted_sum = 0;
1965     int i;
1966     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1967     double rest = sum;
1968     double percent = sum / 100;
1969     for (i = 0; i <= N; i++) {
1970       rest -= histo[i];
1971       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1972     }
1973     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1974     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1975   }
1976 
1977   void print_histogram() {
1978     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1979     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1980     tty->print_cr("\nSame for parameter size (in words):");
1981     print_histogram_helper(_max_size, _size_histogram, "size");
1982     tty->cr();
1983   }
1984 
1985  public:
1986   MethodArityHistogram() {
1987     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1988     _max_arity = _max_size = 0;
1989     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1990     CodeCache::nmethods_do(add_method_to_histogram);
1991     print_histogram();
1992   }
1993 };
1994 
1995 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1996 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1997 int MethodArityHistogram::_max_arity;
1998 int MethodArityHistogram::_max_size;
1999 
2000 void SharedRuntime::print_call_statistics(int comp_total) {
2001   tty->print_cr("Calls from compiled code:");
2002   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2003   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2004   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2005   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2006   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2007   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2008   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2009   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2010   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2011   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2012   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2013   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2014   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2015   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2016   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2017   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2018   tty->cr();
2019   tty->print_cr("Note 1: counter updates are not MT-safe.");
2020   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2021   tty->print_cr("        %% in nested categories are relative to their category");
2022   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2023   tty->cr();
2024 
2025   MethodArityHistogram h;
2026 }
2027 #endif
2028 
2029 
2030 // A simple wrapper class around the calling convention information
2031 // that allows sharing of adapters for the same calling convention.
2032 class AdapterFingerPrint : public CHeapObj<mtCode> {
2033  private:
2034   enum {
2035     _basic_type_bits = 4,
2036     _basic_type_mask = right_n_bits(_basic_type_bits),
2037     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2038     _compact_int_count = 3
2039   };
2040   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2041   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2042 
2043   union {
2044     int  _compact[_compact_int_count];
2045     int* _fingerprint;
2046   } _value;
2047   int _length; // A negative length indicates the fingerprint is in the compact form,
2048                // Otherwise _value._fingerprint is the array.
2049 
2050   // Remap BasicTypes that are handled equivalently by the adapters.
2051   // These are correct for the current system but someday it might be
2052   // necessary to make this mapping platform dependent.
2053   static int adapter_encoding(BasicType in) {
2054     switch(in) {
2055       case T_BOOLEAN:
2056       case T_BYTE:
2057       case T_SHORT:
2058       case T_CHAR:
2059         // There are all promoted to T_INT in the calling convention
2060         return T_INT;
2061 
2062       case T_OBJECT:
2063       case T_ARRAY:
2064         // In other words, we assume that any register good enough for
2065         // an int or long is good enough for a managed pointer.
2066 #ifdef _LP64
2067         return T_LONG;
2068 #else
2069         return T_INT;
2070 #endif
2071 
2072       case T_INT:
2073       case T_LONG:
2074       case T_FLOAT:
2075       case T_DOUBLE:
2076       case T_VOID:
2077         return in;
2078 
2079       default:
2080         ShouldNotReachHere();
2081         return T_CONFLICT;
2082     }
2083   }
2084 
2085  public:
2086   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2087     // The fingerprint is based on the BasicType signature encoded
2088     // into an array of ints with eight entries per int.
2089     int* ptr;
2090     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2091     if (len <= _compact_int_count) {
2092       assert(_compact_int_count == 3, "else change next line");
2093       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2094       // Storing the signature encoded as signed chars hits about 98%
2095       // of the time.
2096       _length = -len;
2097       ptr = _value._compact;
2098     } else {
2099       _length = len;
2100       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2101       ptr = _value._fingerprint;
2102     }
2103 
2104     // Now pack the BasicTypes with 8 per int
2105     int sig_index = 0;
2106     for (int index = 0; index < len; index++) {
2107       int value = 0;
2108       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2109         int bt = ((sig_index < total_args_passed)
2110                   ? adapter_encoding(sig_bt[sig_index++])
2111                   : 0);
2112         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2113         value = (value << _basic_type_bits) | bt;
2114       }
2115       ptr[index] = value;
2116     }
2117   }
2118 
2119   ~AdapterFingerPrint() {
2120     if (_length > 0) {
2121       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2122     }
2123   }
2124 
2125   int value(int index) {
2126     if (_length < 0) {
2127       return _value._compact[index];
2128     }
2129     return _value._fingerprint[index];
2130   }
2131   int length() {
2132     if (_length < 0) return -_length;
2133     return _length;
2134   }
2135 
2136   bool is_compact() {
2137     return _length <= 0;
2138   }
2139 
2140   unsigned int compute_hash() {
2141     int hash = 0;
2142     for (int i = 0; i < length(); i++) {
2143       int v = value(i);
2144       hash = (hash << 8) ^ v ^ (hash >> 5);
2145     }
2146     return (unsigned int)hash;
2147   }
2148 
2149   const char* as_string() {
2150     stringStream st;
2151     st.print("0x");
2152     for (int i = 0; i < length(); i++) {
2153       st.print("%08x", value(i));
2154     }
2155     return st.as_string();
2156   }
2157 
2158   bool equals(AdapterFingerPrint* other) {
2159     if (other->_length != _length) {
2160       return false;
2161     }
2162     if (_length < 0) {
2163       assert(_compact_int_count == 3, "else change next line");
2164       return _value._compact[0] == other->_value._compact[0] &&
2165              _value._compact[1] == other->_value._compact[1] &&
2166              _value._compact[2] == other->_value._compact[2];
2167     } else {
2168       for (int i = 0; i < _length; i++) {
2169         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2170           return false;
2171         }
2172       }
2173     }
2174     return true;
2175   }
2176 };
2177 
2178 
2179 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2180 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2181   friend class AdapterHandlerTableIterator;
2182 
2183  private:
2184 
2185 #ifndef PRODUCT
2186   static int _lookups; // number of calls to lookup
2187   static int _buckets; // number of buckets checked
2188   static int _equals;  // number of buckets checked with matching hash
2189   static int _hits;    // number of successful lookups
2190   static int _compact; // number of equals calls with compact signature
2191 #endif
2192 
2193   AdapterHandlerEntry* bucket(int i) {
2194     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2195   }
2196 
2197  public:
2198   AdapterHandlerTable()
2199     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2200 
2201   // Create a new entry suitable for insertion in the table
2202   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2203     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2204     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2205     return entry;
2206   }
2207 
2208   // Insert an entry into the table
2209   void add(AdapterHandlerEntry* entry) {
2210     int index = hash_to_index(entry->hash());
2211     add_entry(index, entry);
2212   }
2213 
2214   void free_entry(AdapterHandlerEntry* entry) {
2215     entry->deallocate();
2216     BasicHashtable<mtCode>::free_entry(entry);
2217   }
2218 
2219   // Find a entry with the same fingerprint if it exists
2220   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2221     NOT_PRODUCT(_lookups++);
2222     AdapterFingerPrint fp(total_args_passed, sig_bt);
2223     unsigned int hash = fp.compute_hash();
2224     int index = hash_to_index(hash);
2225     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2226       NOT_PRODUCT(_buckets++);
2227       if (e->hash() == hash) {
2228         NOT_PRODUCT(_equals++);
2229         if (fp.equals(e->fingerprint())) {
2230 #ifndef PRODUCT
2231           if (fp.is_compact()) _compact++;
2232           _hits++;
2233 #endif
2234           return e;
2235         }
2236       }
2237     }
2238     return NULL;
2239   }
2240 
2241 #ifndef PRODUCT
2242   void print_statistics() {
2243     ResourceMark rm;
2244     int longest = 0;
2245     int empty = 0;
2246     int total = 0;
2247     int nonempty = 0;
2248     for (int index = 0; index < table_size(); index++) {
2249       int count = 0;
2250       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2251         count++;
2252       }
2253       if (count != 0) nonempty++;
2254       if (count == 0) empty++;
2255       if (count > longest) longest = count;
2256       total += count;
2257     }
2258     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2259                   empty, longest, total, total / (double)nonempty);
2260     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2261                   _lookups, _buckets, _equals, _hits, _compact);
2262   }
2263 #endif
2264 };
2265 
2266 
2267 #ifndef PRODUCT
2268 
2269 int AdapterHandlerTable::_lookups;
2270 int AdapterHandlerTable::_buckets;
2271 int AdapterHandlerTable::_equals;
2272 int AdapterHandlerTable::_hits;
2273 int AdapterHandlerTable::_compact;
2274 
2275 #endif
2276 
2277 class AdapterHandlerTableIterator : public StackObj {
2278  private:
2279   AdapterHandlerTable* _table;
2280   int _index;
2281   AdapterHandlerEntry* _current;
2282 
2283   void scan() {
2284     while (_index < _table->table_size()) {
2285       AdapterHandlerEntry* a = _table->bucket(_index);
2286       _index++;
2287       if (a != NULL) {
2288         _current = a;
2289         return;
2290       }
2291     }
2292   }
2293 
2294  public:
2295   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2296     scan();
2297   }
2298   bool has_next() {
2299     return _current != NULL;
2300   }
2301   AdapterHandlerEntry* next() {
2302     if (_current != NULL) {
2303       AdapterHandlerEntry* result = _current;
2304       _current = _current->next();
2305       if (_current == NULL) scan();
2306       return result;
2307     } else {
2308       return NULL;
2309     }
2310   }
2311 };
2312 
2313 
2314 // ---------------------------------------------------------------------------
2315 // Implementation of AdapterHandlerLibrary
2316 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2317 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2318 const int AdapterHandlerLibrary_size = 16*K;
2319 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2320 
2321 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2322   // Should be called only when AdapterHandlerLibrary_lock is active.
2323   if (_buffer == NULL) // Initialize lazily
2324       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2325   return _buffer;
2326 }
2327 
2328 void AdapterHandlerLibrary::initialize() {
2329   if (_adapters != NULL) return;
2330   _adapters = new AdapterHandlerTable();
2331 
2332   // Create a special handler for abstract methods.  Abstract methods
2333   // are never compiled so an i2c entry is somewhat meaningless, but
2334   // fill it in with something appropriate just in case.  Pass handle
2335   // wrong method for the c2i transitions.
2336   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2337   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2338                                                               StubRoutines::throw_AbstractMethodError_entry(),
2339                                                               wrong_method, wrong_method);
2340 }
2341 
2342 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2343                                                       address i2c_entry,
2344                                                       address c2i_entry,
2345                                                       address c2i_unverified_entry) {
2346   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2347 }
2348 
2349 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2350   // Use customized signature handler.  Need to lock around updates to
2351   // the AdapterHandlerTable (it is not safe for concurrent readers
2352   // and a single writer: this could be fixed if it becomes a
2353   // problem).
2354 
2355   // Get the address of the ic_miss handlers before we grab the
2356   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2357   // was caused by the initialization of the stubs happening
2358   // while we held the lock and then notifying jvmti while
2359   // holding it. This just forces the initialization to be a little
2360   // earlier.
2361   address ic_miss = SharedRuntime::get_ic_miss_stub();
2362   assert(ic_miss != NULL, "must have handler");
2363 
2364   ResourceMark rm;
2365 
2366   NOT_PRODUCT(int insts_size);
2367   AdapterBlob* B = NULL;
2368   AdapterHandlerEntry* entry = NULL;
2369   AdapterFingerPrint* fingerprint = NULL;
2370   {
2371     MutexLocker mu(AdapterHandlerLibrary_lock);
2372     // make sure data structure is initialized
2373     initialize();
2374 
2375     if (method->is_abstract()) {
2376       return _abstract_method_handler;
2377     }
2378 
2379     // Fill in the signature array, for the calling-convention call.
2380     int total_args_passed = method->size_of_parameters(); // All args on stack
2381 
2382     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2383     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2384     int i = 0;
2385     if (!method->is_static())  // Pass in receiver first
2386       sig_bt[i++] = T_OBJECT;
2387     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2388       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2389       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2390         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2391     }
2392     assert(i == total_args_passed, "");
2393 
2394     // Lookup method signature's fingerprint
2395     entry = _adapters->lookup(total_args_passed, sig_bt);
2396 
2397 #ifdef ASSERT
2398     AdapterHandlerEntry* shared_entry = NULL;
2399     if (VerifyAdapterSharing && entry != NULL) {
2400       shared_entry = entry;
2401       entry = NULL;
2402     }
2403 #endif
2404 
2405     if (entry != NULL) {
2406       return entry;
2407     }
2408 
2409     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2410     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2411 
2412     // Make a C heap allocated version of the fingerprint to store in the adapter
2413     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2414 
2415     // Create I2C & C2I handlers
2416 
2417     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2418     if (buf != NULL) {
2419       CodeBuffer buffer(buf);
2420       short buffer_locs[20];
2421       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2422                                              sizeof(buffer_locs)/sizeof(relocInfo));
2423       MacroAssembler _masm(&buffer);
2424 
2425       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2426                                                      total_args_passed,
2427                                                      comp_args_on_stack,
2428                                                      sig_bt,
2429                                                      regs,
2430                                                      fingerprint);
2431 
2432 #ifdef ASSERT
2433       if (VerifyAdapterSharing) {
2434         if (shared_entry != NULL) {
2435           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2436                  "code must match");
2437           // Release the one just created and return the original
2438           _adapters->free_entry(entry);
2439           return shared_entry;
2440         } else  {
2441           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2442         }
2443       }
2444 #endif
2445 
2446       B = AdapterBlob::create(&buffer);
2447       NOT_PRODUCT(insts_size = buffer.insts_size());
2448     }
2449     if (B == NULL) {
2450       // CodeCache is full, disable compilation
2451       // Ought to log this but compile log is only per compile thread
2452       // and we're some non descript Java thread.
2453       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2454       CompileBroker::handle_full_code_cache();
2455       return NULL; // Out of CodeCache space
2456     }
2457     entry->relocate(B->content_begin());
2458 #ifndef PRODUCT
2459     // debugging suppport
2460     if (PrintAdapterHandlers || PrintStubCode) {
2461       ttyLocker ttyl;
2462       entry->print_adapter_on(tty);
2463       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2464                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2465                     method->signature()->as_C_string(), insts_size);
2466       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2467       if (Verbose || PrintStubCode) {
2468         address first_pc = entry->base_address();
2469         if (first_pc != NULL) {
2470           Disassembler::decode(first_pc, first_pc + insts_size);
2471           tty->cr();
2472         }
2473       }
2474     }
2475 #endif
2476 
2477     _adapters->add(entry);
2478   }
2479   // Outside of the lock
2480   if (B != NULL) {
2481     char blob_id[256];
2482     jio_snprintf(blob_id,
2483                  sizeof(blob_id),
2484                  "%s(%s)@" PTR_FORMAT,
2485                  B->name(),
2486                  fingerprint->as_string(),
2487                  B->content_begin());
2488     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2489 
2490     if (JvmtiExport::should_post_dynamic_code_generated()) {
2491       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2492     }
2493   }
2494   return entry;
2495 }
2496 
2497 address AdapterHandlerEntry::base_address() {
2498   address base = _i2c_entry;
2499   if (base == NULL)  base = _c2i_entry;
2500   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2501   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2502   return base;
2503 }
2504 
2505 void AdapterHandlerEntry::relocate(address new_base) {
2506   address old_base = base_address();
2507   assert(old_base != NULL, "");
2508   ptrdiff_t delta = new_base - old_base;
2509   if (_i2c_entry != NULL)
2510     _i2c_entry += delta;
2511   if (_c2i_entry != NULL)
2512     _c2i_entry += delta;
2513   if (_c2i_unverified_entry != NULL)
2514     _c2i_unverified_entry += delta;
2515   assert(base_address() == new_base, "");
2516 }
2517 
2518 
2519 void AdapterHandlerEntry::deallocate() {
2520   delete _fingerprint;
2521 #ifdef ASSERT
2522   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2523   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
2524 #endif
2525 }
2526 
2527 
2528 #ifdef ASSERT
2529 // Capture the code before relocation so that it can be compared
2530 // against other versions.  If the code is captured after relocation
2531 // then relative instructions won't be equivalent.
2532 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2533   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2534   _code_length = length;
2535   memcpy(_saved_code, buffer, length);
2536   _total_args_passed = total_args_passed;
2537   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
2538   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2539 }
2540 
2541 
2542 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2543   if (length != _code_length) {
2544     return false;
2545   }
2546   for (int i = 0; i < length; i++) {
2547     if (buffer[i] != _saved_code[i]) {
2548       return false;
2549     }
2550   }
2551   return true;
2552 }
2553 #endif
2554 
2555 
2556 // Create a native wrapper for this native method.  The wrapper converts the
2557 // java compiled calling convention to the native convention, handlizes
2558 // arguments, and transitions to native.  On return from the native we transition
2559 // back to java blocking if a safepoint is in progress.
2560 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2561   ResourceMark rm;
2562   nmethod* nm = NULL;
2563 
2564   assert(method->is_native(), "must be native");
2565   assert(method->is_method_handle_intrinsic() ||
2566          method->has_native_function(), "must have something valid to call!");
2567 
2568   {
2569     // perform the work while holding the lock, but perform any printing outside the lock
2570     MutexLocker mu(AdapterHandlerLibrary_lock);
2571     // See if somebody beat us to it
2572     nm = method->code();
2573     if (nm) {
2574       return nm;
2575     }
2576 
2577     ResourceMark rm;
2578 
2579     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2580     if (buf != NULL) {
2581       CodeBuffer buffer(buf);
2582       double locs_buf[20];
2583       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2584       MacroAssembler _masm(&buffer);
2585 
2586       // Fill in the signature array, for the calling-convention call.
2587       const int total_args_passed = method->size_of_parameters();
2588 
2589       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2590       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2591       int i=0;
2592       if( !method->is_static() )  // Pass in receiver first
2593         sig_bt[i++] = T_OBJECT;
2594       SignatureStream ss(method->signature());
2595       for( ; !ss.at_return_type(); ss.next()) {
2596         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2597         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2598           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2599       }
2600       assert(i == total_args_passed, "");
2601       BasicType ret_type = ss.type();
2602 
2603       // Now get the compiled-Java layout as input (or output) arguments.
2604       // NOTE: Stubs for compiled entry points of method handle intrinsics
2605       // are just trampolines so the argument registers must be outgoing ones.
2606       const bool is_outgoing = method->is_method_handle_intrinsic();
2607       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2608 
2609       // Generate the compiled-to-native wrapper code
2610       nm = SharedRuntime::generate_native_wrapper(&_masm,
2611                                                   method,
2612                                                   compile_id,
2613                                                   sig_bt,
2614                                                   regs,
2615                                                   ret_type);
2616     }
2617   }
2618 
2619   // Must unlock before calling set_code
2620 
2621   // Install the generated code.
2622   if (nm != NULL) {
2623     if (PrintCompilation) {
2624       ttyLocker ttyl;
2625       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2626     }
2627     method->set_code(method, nm);
2628     nm->post_compiled_method_load_event();
2629   } else {
2630     // CodeCache is full, disable compilation
2631     CompileBroker::handle_full_code_cache();
2632   }
2633   return nm;
2634 }
2635 
2636 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2637   assert(thread == JavaThread::current(), "must be");
2638   // The code is about to enter a JNI lazy critical native method and
2639   // _needs_gc is true, so if this thread is already in a critical
2640   // section then just return, otherwise this thread should block
2641   // until needs_gc has been cleared.
2642   if (thread->in_critical()) {
2643     return;
2644   }
2645   // Lock and unlock a critical section to give the system a chance to block
2646   GC_locker::lock_critical(thread);
2647   GC_locker::unlock_critical(thread);
2648 JRT_END
2649 
2650 #ifdef HAVE_DTRACE_H
2651 // Create a dtrace nmethod for this method.  The wrapper converts the
2652 // java compiled calling convention to the native convention, makes a dummy call
2653 // (actually nops for the size of the call instruction, which become a trap if
2654 // probe is enabled). The returns to the caller. Since this all looks like a
2655 // leaf no thread transition is needed.
2656 
2657 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2658   ResourceMark rm;
2659   nmethod* nm = NULL;
2660 
2661   if (PrintCompilation) {
2662     ttyLocker ttyl;
2663     tty->print("---   n%s  ");
2664     method->print_short_name(tty);
2665     if (method->is_static()) {
2666       tty->print(" (static)");
2667     }
2668     tty->cr();
2669   }
2670 
2671   {
2672     // perform the work while holding the lock, but perform any printing
2673     // outside the lock
2674     MutexLocker mu(AdapterHandlerLibrary_lock);
2675     // See if somebody beat us to it
2676     nm = method->code();
2677     if (nm) {
2678       return nm;
2679     }
2680 
2681     ResourceMark rm;
2682 
2683     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2684     if (buf != NULL) {
2685       CodeBuffer buffer(buf);
2686       // Need a few relocation entries
2687       double locs_buf[20];
2688       buffer.insts()->initialize_shared_locs(
2689         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2690       MacroAssembler _masm(&buffer);
2691 
2692       // Generate the compiled-to-native wrapper code
2693       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2694     }
2695   }
2696   return nm;
2697 }
2698 
2699 // the dtrace method needs to convert java lang string to utf8 string.
2700 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2701   typeArrayOop jlsValue  = java_lang_String::value(src);
2702   int          jlsOffset = java_lang_String::offset(src);
2703   int          jlsLen    = java_lang_String::length(src);
2704   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2705                                            jlsValue->char_at_addr(jlsOffset);
2706   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2707   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2708 }
2709 #endif // ndef HAVE_DTRACE_H
2710 
2711 // -------------------------------------------------------------------------
2712 // Java-Java calling convention
2713 // (what you use when Java calls Java)
2714 
2715 //------------------------------name_for_receiver----------------------------------
2716 // For a given signature, return the VMReg for parameter 0.
2717 VMReg SharedRuntime::name_for_receiver() {
2718   VMRegPair regs;
2719   BasicType sig_bt = T_OBJECT;
2720   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2721   // Return argument 0 register.  In the LP64 build pointers
2722   // take 2 registers, but the VM wants only the 'main' name.
2723   return regs.first();
2724 }
2725 
2726 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2727   // This method is returning a data structure allocating as a
2728   // ResourceObject, so do not put any ResourceMarks in here.
2729   char *s = sig->as_C_string();
2730   int len = (int)strlen(s);
2731   *s++; len--;                  // Skip opening paren
2732   char *t = s+len;
2733   while( *(--t) != ')' ) ;      // Find close paren
2734 
2735   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2736   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2737   int cnt = 0;
2738   if (has_receiver) {
2739     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2740   }
2741 
2742   while( s < t ) {
2743     switch( *s++ ) {            // Switch on signature character
2744     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2745     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2746     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2747     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2748     case 'I': sig_bt[cnt++] = T_INT;     break;
2749     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2750     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2751     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2752     case 'V': sig_bt[cnt++] = T_VOID;    break;
2753     case 'L':                   // Oop
2754       while( *s++ != ';'  ) ;   // Skip signature
2755       sig_bt[cnt++] = T_OBJECT;
2756       break;
2757     case '[': {                 // Array
2758       do {                      // Skip optional size
2759         while( *s >= '0' && *s <= '9' ) s++;
2760       } while( *s++ == '[' );   // Nested arrays?
2761       // Skip element type
2762       if( s[-1] == 'L' )
2763         while( *s++ != ';'  ) ; // Skip signature
2764       sig_bt[cnt++] = T_ARRAY;
2765       break;
2766     }
2767     default : ShouldNotReachHere();
2768     }
2769   }
2770   assert( cnt < 256, "grow table size" );
2771 
2772   int comp_args_on_stack;
2773   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2774 
2775   // the calling convention doesn't count out_preserve_stack_slots so
2776   // we must add that in to get "true" stack offsets.
2777 
2778   if (comp_args_on_stack) {
2779     for (int i = 0; i < cnt; i++) {
2780       VMReg reg1 = regs[i].first();
2781       if( reg1->is_stack()) {
2782         // Yuck
2783         reg1 = reg1->bias(out_preserve_stack_slots());
2784       }
2785       VMReg reg2 = regs[i].second();
2786       if( reg2->is_stack()) {
2787         // Yuck
2788         reg2 = reg2->bias(out_preserve_stack_slots());
2789       }
2790       regs[i].set_pair(reg2, reg1);
2791     }
2792   }
2793 
2794   // results
2795   *arg_size = cnt;
2796   return regs;
2797 }
2798 
2799 // OSR Migration Code
2800 //
2801 // This code is used convert interpreter frames into compiled frames.  It is
2802 // called from very start of a compiled OSR nmethod.  A temp array is
2803 // allocated to hold the interesting bits of the interpreter frame.  All
2804 // active locks are inflated to allow them to move.  The displaced headers and
2805 // active interpeter locals are copied into the temp buffer.  Then we return
2806 // back to the compiled code.  The compiled code then pops the current
2807 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2808 // copies the interpreter locals and displaced headers where it wants.
2809 // Finally it calls back to free the temp buffer.
2810 //
2811 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2812 
2813 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2814 
2815 #ifdef IA64
2816   ShouldNotReachHere(); // NYI
2817 #endif /* IA64 */
2818 
2819   //
2820   // This code is dependent on the memory layout of the interpreter local
2821   // array and the monitors. On all of our platforms the layout is identical
2822   // so this code is shared. If some platform lays the their arrays out
2823   // differently then this code could move to platform specific code or
2824   // the code here could be modified to copy items one at a time using
2825   // frame accessor methods and be platform independent.
2826 
2827   frame fr = thread->last_frame();
2828   assert( fr.is_interpreted_frame(), "" );
2829   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2830 
2831   // Figure out how many monitors are active.
2832   int active_monitor_count = 0;
2833   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2834        kptr < fr.interpreter_frame_monitor_begin();
2835        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2836     if( kptr->obj() != NULL ) active_monitor_count++;
2837   }
2838 
2839   // QQQ we could place number of active monitors in the array so that compiled code
2840   // could double check it.
2841 
2842   methodOop moop = fr.interpreter_frame_method();
2843   int max_locals = moop->max_locals();
2844   // Allocate temp buffer, 1 word per local & 2 per active monitor
2845   int buf_size_words = max_locals + active_monitor_count*2;
2846   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2847 
2848   // Copy the locals.  Order is preserved so that loading of longs works.
2849   // Since there's no GC I can copy the oops blindly.
2850   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2851   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2852                        (HeapWord*)&buf[0],
2853                        max_locals);
2854 
2855   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2856   int i = max_locals;
2857   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2858        kptr2 < fr.interpreter_frame_monitor_begin();
2859        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2860     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2861       BasicLock *lock = kptr2->lock();
2862       // Inflate so the displaced header becomes position-independent
2863       if (lock->displaced_header()->is_unlocked())
2864         ObjectSynchronizer::inflate_helper(kptr2->obj());
2865       // Now the displaced header is free to move
2866       buf[i++] = (intptr_t)lock->displaced_header();
2867       buf[i++] = (intptr_t)kptr2->obj();
2868     }
2869   }
2870   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2871 
2872   return buf;
2873 JRT_END
2874 
2875 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2876   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2877 JRT_END
2878 
2879 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2880   AdapterHandlerTableIterator iter(_adapters);
2881   while (iter.has_next()) {
2882     AdapterHandlerEntry* a = iter.next();
2883     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2884   }
2885   return false;
2886 }
2887 
2888 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2889   AdapterHandlerTableIterator iter(_adapters);
2890   while (iter.has_next()) {
2891     AdapterHandlerEntry* a = iter.next();
2892     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2893       st->print("Adapter for signature: ");
2894       a->print_adapter_on(tty);
2895       return;
2896     }
2897   }
2898   assert(false, "Should have found handler");
2899 }
2900 
2901 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2902   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2903                (intptr_t) this, fingerprint()->as_string(),
2904                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2905 
2906 }
2907 
2908 #ifndef PRODUCT
2909 
2910 void AdapterHandlerLibrary::print_statistics() {
2911   _adapters->print_statistics();
2912 }
2913 
2914 #endif /* PRODUCT */