1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/oopFactory.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/instanceKlass.hpp"
  40 #include "oops/objArrayOop.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "oops/symbol.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/jvmtiThreadState.hpp"
  46 #include "prims/privilegedStack.hpp"
  47 #include "runtime/aprofiler.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/osThread.hpp"
  62 #include "runtime/safepoint.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/statSampler.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/task.hpp"
  67 #include "runtime/threadCritical.hpp"
  68 #include "runtime/threadLocalStorage.hpp"
  69 #include "runtime/vframe.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "runtime/vframe_hp.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "runtime/vm_operations.hpp"
  74 #include "services/attachListener.hpp"
  75 #include "services/management.hpp"
  76 #include "services/memTracker.hpp"
  77 #include "services/threadService.hpp"
  78 #include "trace/tracing.hpp"
  79 #include "trace/traceMacros.hpp"
  80 #include "utilities/defaultStream.hpp"
  81 #include "utilities/dtrace.hpp"
  82 #include "utilities/events.hpp"
  83 #include "utilities/preserveException.hpp"
  84 #ifdef TARGET_OS_FAMILY_linux
  85 # include "os_linux.inline.hpp"
  86 # include "thread_linux.inline.hpp"
  87 #endif
  88 #ifdef TARGET_OS_FAMILY_solaris
  89 # include "os_solaris.inline.hpp"
  90 # include "thread_solaris.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_windows
  93 # include "os_windows.inline.hpp"
  94 # include "thread_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 # include "thread_bsd.inline.hpp"
  99 #endif
 100 #ifndef SERIALGC
 101 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 102 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 103 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 104 #endif
 105 #ifdef COMPILER1
 106 #include "c1/c1_Compiler.hpp"
 107 #endif
 108 #ifdef COMPILER2
 109 #include "opto/c2compiler.hpp"
 110 #include "opto/idealGraphPrinter.hpp"
 111 #endif
 112 
 113 #ifdef DTRACE_ENABLED
 114 
 115 // Only bother with this argument setup if dtrace is available
 116 
 117 #ifndef USDT2
 118 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 119 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 120 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 121   intptr_t, intptr_t, bool);
 122 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 123   intptr_t, intptr_t, bool);
 124 
 125 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 126   {                                                                        \
 127     ResourceMark rm(this);                                                 \
 128     int len = 0;                                                           \
 129     const char* name = (javathread)->get_thread_name();                    \
 130     len = strlen(name);                                                    \
 131     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 132       name, len,                                                           \
 133       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 134       (javathread)->osthread()->thread_id(),                               \
 135       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 136   }
 137 
 138 #else /* USDT2 */
 139 
 140 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 141 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 142 
 143 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 144   {                                                                        \
 145     ResourceMark rm(this);                                                 \
 146     int len = 0;                                                           \
 147     const char* name = (javathread)->get_thread_name();                    \
 148     len = strlen(name);                                                    \
 149     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 150       (char *) name, len,                                                           \
 151       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 152       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 153       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 154   }
 155 
 156 #endif /* USDT2 */
 157 
 158 #else //  ndef DTRACE_ENABLED
 159 
 160 #define DTRACE_THREAD_PROBE(probe, javathread)
 161 
 162 #endif // ndef DTRACE_ENABLED
 163 
 164 
 165 // Class hierarchy
 166 // - Thread
 167 //   - VMThread
 168 //   - WatcherThread
 169 //   - ConcurrentMarkSweepThread
 170 //   - JavaThread
 171 //     - CompilerThread
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const int alignment = markOopDesc::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : os::malloc(aligned_size, flags, CURRENT_PC);
 181     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (TraceBiasedLocking) {
 186       if (aligned_addr != real_malloc_addr)
 187         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                       real_malloc_addr, aligned_addr);
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : os::malloc(size, flags, CURRENT_PC);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 201     FreeHeap(real_malloc_addr, mtThread);
 202   } else {
 203     FreeHeap(p, mtThread);
 204   }
 205 }
 206 
 207 
 208 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 209 // JavaThread
 210 
 211 
 212 Thread::Thread() {
 213   // stack and get_thread
 214   set_stack_base(NULL);
 215   set_stack_size(0);
 216   set_self_raw_id(0);
 217   set_lgrp_id(-1);
 218 
 219   // allocated data structures
 220   set_osthread(NULL);
 221   set_resource_area(new (mtThread)ResourceArea());
 222   set_handle_area(new (mtThread) HandleArea(NULL));
 223   set_active_handles(NULL);
 224   set_free_handle_block(NULL);
 225   set_last_handle_mark(NULL);
 226 
 227   // This initial value ==> never claimed.
 228   _oops_do_parity = 0;
 229 
 230   // the handle mark links itself to last_handle_mark
 231   new HandleMark(this);
 232 
 233   // plain initialization
 234   debug_only(_owned_locks = NULL;)
 235   debug_only(_allow_allocation_count = 0;)
 236   NOT_PRODUCT(_allow_safepoint_count = 0;)
 237   NOT_PRODUCT(_skip_gcalot = false;)
 238   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 239   _jvmti_env_iteration_count = 0;
 240   set_allocated_bytes(0);
 241   _vm_operation_started_count = 0;
 242   _vm_operation_completed_count = 0;
 243   _current_pending_monitor = NULL;
 244   _current_pending_monitor_is_from_java = true;
 245   _current_waiting_monitor = NULL;
 246   _num_nested_signal = 0;
 247   omFreeList = NULL ;
 248   omFreeCount = 0 ;
 249   omFreeProvision = 32 ;
 250   omInUseList = NULL ;
 251   omInUseCount = 0 ;
 252 
 253 #ifdef ASSERT
 254   _visited_for_critical_count = false;
 255 #endif
 256 
 257   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 258   _suspend_flags = 0;
 259 
 260   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 261   _hashStateX = os::random() ;
 262   _hashStateY = 842502087 ;
 263   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 264   _hashStateW = 273326509 ;
 265 
 266   _OnTrap   = 0 ;
 267   _schedctl = NULL ;
 268   _Stalled  = 0 ;
 269   _TypeTag  = 0x2BAD ;
 270 
 271   // Many of the following fields are effectively final - immutable
 272   // Note that nascent threads can't use the Native Monitor-Mutex
 273   // construct until the _MutexEvent is initialized ...
 274   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 275   // we might instead use a stack of ParkEvents that we could provision on-demand.
 276   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 277   // and ::Release()
 278   _ParkEvent   = ParkEvent::Allocate (this) ;
 279   _SleepEvent  = ParkEvent::Allocate (this) ;
 280   _MutexEvent  = ParkEvent::Allocate (this) ;
 281   _MuxEvent    = ParkEvent::Allocate (this) ;
 282 
 283 #ifdef CHECK_UNHANDLED_OOPS
 284   if (CheckUnhandledOops) {
 285     _unhandled_oops = new UnhandledOops(this);
 286   }
 287 #endif // CHECK_UNHANDLED_OOPS
 288 #ifdef ASSERT
 289   if (UseBiasedLocking) {
 290     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 291     assert(this == _real_malloc_address ||
 292            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 293            "bug in forced alignment of thread objects");
 294   }
 295 #endif /* ASSERT */
 296 }
 297 
 298 void Thread::initialize_thread_local_storage() {
 299   // Note: Make sure this method only calls
 300   // non-blocking operations. Otherwise, it might not work
 301   // with the thread-startup/safepoint interaction.
 302 
 303   // During Java thread startup, safepoint code should allow this
 304   // method to complete because it may need to allocate memory to
 305   // store information for the new thread.
 306 
 307   // initialize structure dependent on thread local storage
 308   ThreadLocalStorage::set_thread(this);
 309 }
 310 
 311 void Thread::record_stack_base_and_size() {
 312   set_stack_base(os::current_stack_base());
 313   set_stack_size(os::current_stack_size());
 314   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 315   // in initialize_thread(). Without the adjustment, stack size is
 316   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 317   // So far, only Solaris has real implementation of initialize_thread().
 318   //
 319   // set up any platform-specific state.
 320   os::initialize_thread(this);
 321 
 322    // record thread's native stack, stack grows downward
 323   if (MemTracker::is_on()) {
 324     address stack_low_addr = stack_base() - stack_size();
 325     MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 326       CURRENT_PC);
 327   }
 328 }
 329 
 330 
 331 Thread::~Thread() {
 332   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 333   ObjectSynchronizer::omFlush (this) ;
 334 
 335   // stack_base can be NULL if the thread is never started or exited before
 336   // record_stack_base_and_size called. Although, we would like to ensure
 337   // that all started threads do call record_stack_base_and_size(), there is
 338   // not proper way to enforce that.
 339   if (_stack_base != NULL) {
 340     address low_stack_addr = stack_base() - stack_size();
 341     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 342 #ifdef ASSERT
 343     set_stack_base(NULL);
 344 #endif
 345   }
 346 
 347   // deallocate data structures
 348   delete resource_area();
 349   // since the handle marks are using the handle area, we have to deallocated the root
 350   // handle mark before deallocating the thread's handle area,
 351   assert(last_handle_mark() != NULL, "check we have an element");
 352   delete last_handle_mark();
 353   assert(last_handle_mark() == NULL, "check we have reached the end");
 354 
 355   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 356   // We NULL out the fields for good hygiene.
 357   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 358   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 359   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 360   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 361 
 362   delete handle_area();
 363 
 364   // osthread() can be NULL, if creation of thread failed.
 365   if (osthread() != NULL) os::free_thread(osthread());
 366 
 367   delete _SR_lock;
 368 
 369   // clear thread local storage if the Thread is deleting itself
 370   if (this == Thread::current()) {
 371     ThreadLocalStorage::set_thread(NULL);
 372   } else {
 373     // In the case where we're not the current thread, invalidate all the
 374     // caches in case some code tries to get the current thread or the
 375     // thread that was destroyed, and gets stale information.
 376     ThreadLocalStorage::invalidate_all();
 377   }
 378   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 379 }
 380 
 381 // NOTE: dummy function for assertion purpose.
 382 void Thread::run() {
 383   ShouldNotReachHere();
 384 }
 385 
 386 #ifdef ASSERT
 387 // Private method to check for dangling thread pointer
 388 void check_for_dangling_thread_pointer(Thread *thread) {
 389  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 390          "possibility of dangling Thread pointer");
 391 }
 392 #endif
 393 
 394 
 395 #ifndef PRODUCT
 396 // Tracing method for basic thread operations
 397 void Thread::trace(const char* msg, const Thread* const thread) {
 398   if (!TraceThreadEvents) return;
 399   ResourceMark rm;
 400   ThreadCritical tc;
 401   const char *name = "non-Java thread";
 402   int prio = -1;
 403   if (thread->is_Java_thread()
 404       && !thread->is_Compiler_thread()) {
 405     // The Threads_lock must be held to get information about
 406     // this thread but may not be in some situations when
 407     // tracing  thread events.
 408     bool release_Threads_lock = false;
 409     if (!Threads_lock->owned_by_self()) {
 410       Threads_lock->lock();
 411       release_Threads_lock = true;
 412     }
 413     JavaThread* jt = (JavaThread *)thread;
 414     name = (char *)jt->get_thread_name();
 415     oop thread_oop = jt->threadObj();
 416     if (thread_oop != NULL) {
 417       prio = java_lang_Thread::priority(thread_oop);
 418     }
 419     if (release_Threads_lock) {
 420       Threads_lock->unlock();
 421     }
 422   }
 423   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 424 }
 425 #endif
 426 
 427 
 428 ThreadPriority Thread::get_priority(const Thread* const thread) {
 429   trace("get priority", thread);
 430   ThreadPriority priority;
 431   // Can return an error!
 432   (void)os::get_priority(thread, priority);
 433   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 434   return priority;
 435 }
 436 
 437 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 438   trace("set priority", thread);
 439   debug_only(check_for_dangling_thread_pointer(thread);)
 440   // Can return an error!
 441   (void)os::set_priority(thread, priority);
 442 }
 443 
 444 
 445 void Thread::start(Thread* thread) {
 446   trace("start", thread);
 447   // Start is different from resume in that its safety is guaranteed by context or
 448   // being called from a Java method synchronized on the Thread object.
 449   if (!DisableStartThread) {
 450     if (thread->is_Java_thread()) {
 451       // Initialize the thread state to RUNNABLE before starting this thread.
 452       // Can not set it after the thread started because we do not know the
 453       // exact thread state at that time. It could be in MONITOR_WAIT or
 454       // in SLEEPING or some other state.
 455       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 456                                           java_lang_Thread::RUNNABLE);
 457     }
 458     os::start_thread(thread);
 459   }
 460 }
 461 
 462 // Enqueue a VM_Operation to do the job for us - sometime later
 463 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 464   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 465   VMThread::execute(vm_stop);
 466 }
 467 
 468 
 469 //
 470 // Check if an external suspend request has completed (or has been
 471 // cancelled). Returns true if the thread is externally suspended and
 472 // false otherwise.
 473 //
 474 // The bits parameter returns information about the code path through
 475 // the routine. Useful for debugging:
 476 //
 477 // set in is_ext_suspend_completed():
 478 // 0x00000001 - routine was entered
 479 // 0x00000010 - routine return false at end
 480 // 0x00000100 - thread exited (return false)
 481 // 0x00000200 - suspend request cancelled (return false)
 482 // 0x00000400 - thread suspended (return true)
 483 // 0x00001000 - thread is in a suspend equivalent state (return true)
 484 // 0x00002000 - thread is native and walkable (return true)
 485 // 0x00004000 - thread is native_trans and walkable (needed retry)
 486 //
 487 // set in wait_for_ext_suspend_completion():
 488 // 0x00010000 - routine was entered
 489 // 0x00020000 - suspend request cancelled before loop (return false)
 490 // 0x00040000 - thread suspended before loop (return true)
 491 // 0x00080000 - suspend request cancelled in loop (return false)
 492 // 0x00100000 - thread suspended in loop (return true)
 493 // 0x00200000 - suspend not completed during retry loop (return false)
 494 //
 495 
 496 // Helper class for tracing suspend wait debug bits.
 497 //
 498 // 0x00000100 indicates that the target thread exited before it could
 499 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 500 // 0x00080000 each indicate a cancelled suspend request so they don't
 501 // count as wait failures either.
 502 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 503 
 504 class TraceSuspendDebugBits : public StackObj {
 505  private:
 506   JavaThread * jt;
 507   bool         is_wait;
 508   bool         called_by_wait;  // meaningful when !is_wait
 509   uint32_t *   bits;
 510 
 511  public:
 512   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 513                         uint32_t *_bits) {
 514     jt             = _jt;
 515     is_wait        = _is_wait;
 516     called_by_wait = _called_by_wait;
 517     bits           = _bits;
 518   }
 519 
 520   ~TraceSuspendDebugBits() {
 521     if (!is_wait) {
 522 #if 1
 523       // By default, don't trace bits for is_ext_suspend_completed() calls.
 524       // That trace is very chatty.
 525       return;
 526 #else
 527       if (!called_by_wait) {
 528         // If tracing for is_ext_suspend_completed() is enabled, then only
 529         // trace calls to it from wait_for_ext_suspend_completion()
 530         return;
 531       }
 532 #endif
 533     }
 534 
 535     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 536       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 537         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 538         ResourceMark rm;
 539 
 540         tty->print_cr(
 541             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 542             jt->get_thread_name(), *bits);
 543 
 544         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 545       }
 546     }
 547   }
 548 };
 549 #undef DEBUG_FALSE_BITS
 550 
 551 
 552 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 553   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 554 
 555   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 556   bool do_trans_retry;           // flag to force the retry
 557 
 558   *bits |= 0x00000001;
 559 
 560   do {
 561     do_trans_retry = false;
 562 
 563     if (is_exiting()) {
 564       // Thread is in the process of exiting. This is always checked
 565       // first to reduce the risk of dereferencing a freed JavaThread.
 566       *bits |= 0x00000100;
 567       return false;
 568     }
 569 
 570     if (!is_external_suspend()) {
 571       // Suspend request is cancelled. This is always checked before
 572       // is_ext_suspended() to reduce the risk of a rogue resume
 573       // confusing the thread that made the suspend request.
 574       *bits |= 0x00000200;
 575       return false;
 576     }
 577 
 578     if (is_ext_suspended()) {
 579       // thread is suspended
 580       *bits |= 0x00000400;
 581       return true;
 582     }
 583 
 584     // Now that we no longer do hard suspends of threads running
 585     // native code, the target thread can be changing thread state
 586     // while we are in this routine:
 587     //
 588     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 589     //
 590     // We save a copy of the thread state as observed at this moment
 591     // and make our decision about suspend completeness based on the
 592     // copy. This closes the race where the thread state is seen as
 593     // _thread_in_native_trans in the if-thread_blocked check, but is
 594     // seen as _thread_blocked in if-thread_in_native_trans check.
 595     JavaThreadState save_state = thread_state();
 596 
 597     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 598       // If the thread's state is _thread_blocked and this blocking
 599       // condition is known to be equivalent to a suspend, then we can
 600       // consider the thread to be externally suspended. This means that
 601       // the code that sets _thread_blocked has been modified to do
 602       // self-suspension if the blocking condition releases. We also
 603       // used to check for CONDVAR_WAIT here, but that is now covered by
 604       // the _thread_blocked with self-suspension check.
 605       //
 606       // Return true since we wouldn't be here unless there was still an
 607       // external suspend request.
 608       *bits |= 0x00001000;
 609       return true;
 610     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 611       // Threads running native code will self-suspend on native==>VM/Java
 612       // transitions. If its stack is walkable (should always be the case
 613       // unless this function is called before the actual java_suspend()
 614       // call), then the wait is done.
 615       *bits |= 0x00002000;
 616       return true;
 617     } else if (!called_by_wait && !did_trans_retry &&
 618                save_state == _thread_in_native_trans &&
 619                frame_anchor()->walkable()) {
 620       // The thread is transitioning from thread_in_native to another
 621       // thread state. check_safepoint_and_suspend_for_native_trans()
 622       // will force the thread to self-suspend. If it hasn't gotten
 623       // there yet we may have caught the thread in-between the native
 624       // code check above and the self-suspend. Lucky us. If we were
 625       // called by wait_for_ext_suspend_completion(), then it
 626       // will be doing the retries so we don't have to.
 627       //
 628       // Since we use the saved thread state in the if-statement above,
 629       // there is a chance that the thread has already transitioned to
 630       // _thread_blocked by the time we get here. In that case, we will
 631       // make a single unnecessary pass through the logic below. This
 632       // doesn't hurt anything since we still do the trans retry.
 633 
 634       *bits |= 0x00004000;
 635 
 636       // Once the thread leaves thread_in_native_trans for another
 637       // thread state, we break out of this retry loop. We shouldn't
 638       // need this flag to prevent us from getting back here, but
 639       // sometimes paranoia is good.
 640       did_trans_retry = true;
 641 
 642       // We wait for the thread to transition to a more usable state.
 643       for (int i = 1; i <= SuspendRetryCount; i++) {
 644         // We used to do an "os::yield_all(i)" call here with the intention
 645         // that yielding would increase on each retry. However, the parameter
 646         // is ignored on Linux which means the yield didn't scale up. Waiting
 647         // on the SR_lock below provides a much more predictable scale up for
 648         // the delay. It also provides a simple/direct point to check for any
 649         // safepoint requests from the VMThread
 650 
 651         // temporarily drops SR_lock while doing wait with safepoint check
 652         // (if we're a JavaThread - the WatcherThread can also call this)
 653         // and increase delay with each retry
 654         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 655 
 656         // check the actual thread state instead of what we saved above
 657         if (thread_state() != _thread_in_native_trans) {
 658           // the thread has transitioned to another thread state so
 659           // try all the checks (except this one) one more time.
 660           do_trans_retry = true;
 661           break;
 662         }
 663       } // end retry loop
 664 
 665 
 666     }
 667   } while (do_trans_retry);
 668 
 669   *bits |= 0x00000010;
 670   return false;
 671 }
 672 
 673 //
 674 // Wait for an external suspend request to complete (or be cancelled).
 675 // Returns true if the thread is externally suspended and false otherwise.
 676 //
 677 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 678        uint32_t *bits) {
 679   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 680                              false /* !called_by_wait */, bits);
 681 
 682   // local flag copies to minimize SR_lock hold time
 683   bool is_suspended;
 684   bool pending;
 685   uint32_t reset_bits;
 686 
 687   // set a marker so is_ext_suspend_completed() knows we are the caller
 688   *bits |= 0x00010000;
 689 
 690   // We use reset_bits to reinitialize the bits value at the top of
 691   // each retry loop. This allows the caller to make use of any
 692   // unused bits for their own marking purposes.
 693   reset_bits = *bits;
 694 
 695   {
 696     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 697     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 698                                             delay, bits);
 699     pending = is_external_suspend();
 700   }
 701   // must release SR_lock to allow suspension to complete
 702 
 703   if (!pending) {
 704     // A cancelled suspend request is the only false return from
 705     // is_ext_suspend_completed() that keeps us from entering the
 706     // retry loop.
 707     *bits |= 0x00020000;
 708     return false;
 709   }
 710 
 711   if (is_suspended) {
 712     *bits |= 0x00040000;
 713     return true;
 714   }
 715 
 716   for (int i = 1; i <= retries; i++) {
 717     *bits = reset_bits;  // reinit to only track last retry
 718 
 719     // We used to do an "os::yield_all(i)" call here with the intention
 720     // that yielding would increase on each retry. However, the parameter
 721     // is ignored on Linux which means the yield didn't scale up. Waiting
 722     // on the SR_lock below provides a much more predictable scale up for
 723     // the delay. It also provides a simple/direct point to check for any
 724     // safepoint requests from the VMThread
 725 
 726     {
 727       MutexLocker ml(SR_lock());
 728       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 729       // can also call this)  and increase delay with each retry
 730       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 731 
 732       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 733                                               delay, bits);
 734 
 735       // It is possible for the external suspend request to be cancelled
 736       // (by a resume) before the actual suspend operation is completed.
 737       // Refresh our local copy to see if we still need to wait.
 738       pending = is_external_suspend();
 739     }
 740 
 741     if (!pending) {
 742       // A cancelled suspend request is the only false return from
 743       // is_ext_suspend_completed() that keeps us from staying in the
 744       // retry loop.
 745       *bits |= 0x00080000;
 746       return false;
 747     }
 748 
 749     if (is_suspended) {
 750       *bits |= 0x00100000;
 751       return true;
 752     }
 753   } // end retry loop
 754 
 755   // thread did not suspend after all our retries
 756   *bits |= 0x00200000;
 757   return false;
 758 }
 759 
 760 #ifndef PRODUCT
 761 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 762 
 763   // This should not need to be atomic as the only way for simultaneous
 764   // updates is via interrupts. Even then this should be rare or non-existant
 765   // and we don't care that much anyway.
 766 
 767   int index = _jmp_ring_index;
 768   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 769   _jmp_ring[index]._target = (intptr_t) target;
 770   _jmp_ring[index]._instruction = (intptr_t) instr;
 771   _jmp_ring[index]._file = file;
 772   _jmp_ring[index]._line = line;
 773 }
 774 #endif /* PRODUCT */
 775 
 776 // Called by flat profiler
 777 // Callers have already called wait_for_ext_suspend_completion
 778 // The assertion for that is currently too complex to put here:
 779 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 780   bool gotframe = false;
 781   // self suspension saves needed state.
 782   if (has_last_Java_frame() && _anchor.walkable()) {
 783      *_fr = pd_last_frame();
 784      gotframe = true;
 785   }
 786   return gotframe;
 787 }
 788 
 789 void Thread::interrupt(Thread* thread) {
 790   trace("interrupt", thread);
 791   debug_only(check_for_dangling_thread_pointer(thread);)
 792   os::interrupt(thread);
 793 }
 794 
 795 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 796   trace("is_interrupted", thread);
 797   debug_only(check_for_dangling_thread_pointer(thread);)
 798   // Note:  If clear_interrupted==false, this simply fetches and
 799   // returns the value of the field osthread()->interrupted().
 800   return os::is_interrupted(thread, clear_interrupted);
 801 }
 802 
 803 
 804 // GC Support
 805 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 806   jint thread_parity = _oops_do_parity;
 807   if (thread_parity != strong_roots_parity) {
 808     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 809     if (res == thread_parity) {
 810       return true;
 811     } else {
 812       guarantee(res == strong_roots_parity, "Or else what?");
 813       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 814          "Should only fail when parallel.");
 815       return false;
 816     }
 817   }
 818   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 819          "Should only fail when parallel.");
 820   return false;
 821 }
 822 
 823 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 824   active_handles()->oops_do(f);
 825   // Do oop for ThreadShadow
 826   f->do_oop((oop*)&_pending_exception);
 827   handle_area()->oops_do(f);
 828 }
 829 
 830 void Thread::nmethods_do(CodeBlobClosure* cf) {
 831   // no nmethods in a generic thread...
 832 }
 833 
 834 void Thread::print_on(outputStream* st) const {
 835   // get_priority assumes osthread initialized
 836   if (osthread() != NULL) {
 837     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 838     osthread()->print_on(st);
 839   }
 840   debug_only(if (WizardMode) print_owned_locks_on(st);)
 841 }
 842 
 843 // Thread::print_on_error() is called by fatal error handler. Don't use
 844 // any lock or allocate memory.
 845 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 846   if      (is_VM_thread())                  st->print("VMThread");
 847   else if (is_Compiler_thread())            st->print("CompilerThread");
 848   else if (is_Java_thread())                st->print("JavaThread");
 849   else if (is_GC_task_thread())             st->print("GCTaskThread");
 850   else if (is_Watcher_thread())             st->print("WatcherThread");
 851   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 852   else st->print("Thread");
 853 
 854   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 855             _stack_base - _stack_size, _stack_base);
 856 
 857   if (osthread()) {
 858     st->print(" [id=%d]", osthread()->thread_id());
 859   }
 860 }
 861 
 862 #ifdef ASSERT
 863 void Thread::print_owned_locks_on(outputStream* st) const {
 864   Monitor *cur = _owned_locks;
 865   if (cur == NULL) {
 866     st->print(" (no locks) ");
 867   } else {
 868     st->print_cr(" Locks owned:");
 869     while(cur) {
 870       cur->print_on(st);
 871       cur = cur->next();
 872     }
 873   }
 874 }
 875 
 876 static int ref_use_count  = 0;
 877 
 878 bool Thread::owns_locks_but_compiled_lock() const {
 879   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 880     if (cur != Compile_lock) return true;
 881   }
 882   return false;
 883 }
 884 
 885 
 886 #endif
 887 
 888 #ifndef PRODUCT
 889 
 890 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 891 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 892 // no threads which allow_vm_block's are held
 893 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 894     // Check if current thread is allowed to block at a safepoint
 895     if (!(_allow_safepoint_count == 0))
 896       fatal("Possible safepoint reached by thread that does not allow it");
 897     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 898       fatal("LEAF method calling lock?");
 899     }
 900 
 901 #ifdef ASSERT
 902     if (potential_vm_operation && is_Java_thread()
 903         && !Universe::is_bootstrapping()) {
 904       // Make sure we do not hold any locks that the VM thread also uses.
 905       // This could potentially lead to deadlocks
 906       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 907         // Threads_lock is special, since the safepoint synchronization will not start before this is
 908         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 909         // since it is used to transfer control between JavaThreads and the VMThread
 910         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 911         if ( (cur->allow_vm_block() &&
 912               cur != Threads_lock &&
 913               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 914               cur != VMOperationRequest_lock &&
 915               cur != VMOperationQueue_lock) ||
 916               cur->rank() == Mutex::special) {
 917           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 918         }
 919       }
 920     }
 921 
 922     if (GCALotAtAllSafepoints) {
 923       // We could enter a safepoint here and thus have a gc
 924       InterfaceSupport::check_gc_alot();
 925     }
 926 #endif
 927 }
 928 #endif
 929 
 930 bool Thread::is_in_stack(address adr) const {
 931   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 932   address end = os::current_stack_pointer();
 933   if (stack_base() >= adr && adr >= end) return true;
 934 
 935   return false;
 936 }
 937 
 938 
 939 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 940 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 941 // used for compilation in the future. If that change is made, the need for these methods
 942 // should be revisited, and they should be removed if possible.
 943 
 944 bool Thread::is_lock_owned(address adr) const {
 945   return on_local_stack(adr);
 946 }
 947 
 948 bool Thread::set_as_starting_thread() {
 949  // NOTE: this must be called inside the main thread.
 950   return os::create_main_thread((JavaThread*)this);
 951 }
 952 
 953 static void initialize_class(Symbol* class_name, TRAPS) {
 954   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 955   instanceKlass::cast(klass)->initialize(CHECK);
 956 }
 957 
 958 
 959 // Creates the initial ThreadGroup
 960 static Handle create_initial_thread_group(TRAPS) {
 961   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 962   instanceKlassHandle klass (THREAD, k);
 963 
 964   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 965   {
 966     JavaValue result(T_VOID);
 967     JavaCalls::call_special(&result,
 968                             system_instance,
 969                             klass,
 970                             vmSymbols::object_initializer_name(),
 971                             vmSymbols::void_method_signature(),
 972                             CHECK_NH);
 973   }
 974   Universe::set_system_thread_group(system_instance());
 975 
 976   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 977   {
 978     JavaValue result(T_VOID);
 979     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 980     JavaCalls::call_special(&result,
 981                             main_instance,
 982                             klass,
 983                             vmSymbols::object_initializer_name(),
 984                             vmSymbols::threadgroup_string_void_signature(),
 985                             system_instance,
 986                             string,
 987                             CHECK_NH);
 988   }
 989   return main_instance;
 990 }
 991 
 992 // Creates the initial Thread
 993 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 994   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 995   instanceKlassHandle klass (THREAD, k);
 996   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 997 
 998   java_lang_Thread::set_thread(thread_oop(), thread);
 999   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1000   thread->set_threadObj(thread_oop());
1001 
1002   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1003 
1004   JavaValue result(T_VOID);
1005   JavaCalls::call_special(&result, thread_oop,
1006                                    klass,
1007                                    vmSymbols::object_initializer_name(),
1008                                    vmSymbols::threadgroup_string_void_signature(),
1009                                    thread_group,
1010                                    string,
1011                                    CHECK_NULL);
1012   return thread_oop();
1013 }
1014 
1015 static void call_initializeSystemClass(TRAPS) {
1016   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1017   instanceKlassHandle klass (THREAD, k);
1018 
1019   JavaValue result(T_VOID);
1020   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1021                                          vmSymbols::void_method_signature(), CHECK);
1022 }
1023 
1024 char java_runtime_name[128] = "";
1025 char java_runtime_version[128] = "";
1026 
1027 // extract the JRE name from sun.misc.Version.java_runtime_name
1028 static const char* get_java_runtime_name(TRAPS) {
1029   klassOop k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1030                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1031   fieldDescriptor fd;
1032   bool found = k != NULL &&
1033                instanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1034                                                         vmSymbols::string_signature(), &fd);
1035   if (found) {
1036     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1037     if (name_oop == NULL)
1038       return NULL;
1039     const char* name = java_lang_String::as_utf8_string(name_oop,
1040                                                         java_runtime_name,
1041                                                         sizeof(java_runtime_name));
1042     return name;
1043   } else {
1044     return NULL;
1045   }
1046 }
1047 
1048 // extract the JRE version from sun.misc.Version.java_runtime_version
1049 static const char* get_java_runtime_version(TRAPS) {
1050   klassOop k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1051                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1052   fieldDescriptor fd;
1053   bool found = k != NULL &&
1054                instanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1055                                                         vmSymbols::string_signature(), &fd);
1056   if (found) {
1057     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1058     if (name_oop == NULL)
1059       return NULL;
1060     const char* name = java_lang_String::as_utf8_string(name_oop,
1061                                                         java_runtime_version,
1062                                                         sizeof(java_runtime_version));
1063     return name;
1064   } else {
1065     return NULL;
1066   }
1067 }
1068 
1069 // General purpose hook into Java code, run once when the VM is initialized.
1070 // The Java library method itself may be changed independently from the VM.
1071 static void call_postVMInitHook(TRAPS) {
1072   klassOop k = SystemDictionary::PostVMInitHook_klass();
1073   instanceKlassHandle klass (THREAD, k);
1074   if (klass.not_null()) {
1075     JavaValue result(T_VOID);
1076     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1077                                            vmSymbols::void_method_signature(),
1078                                            CHECK);
1079   }
1080 }
1081 
1082 static void reset_vm_info_property(TRAPS) {
1083   // the vm info string
1084   ResourceMark rm(THREAD);
1085   const char *vm_info = VM_Version::vm_info_string();
1086 
1087   // java.lang.System class
1088   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1089   instanceKlassHandle klass (THREAD, k);
1090 
1091   // setProperty arguments
1092   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1093   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1094 
1095   // return value
1096   JavaValue r(T_OBJECT);
1097 
1098   // public static String setProperty(String key, String value);
1099   JavaCalls::call_static(&r,
1100                          klass,
1101                          vmSymbols::setProperty_name(),
1102                          vmSymbols::string_string_string_signature(),
1103                          key_str,
1104                          value_str,
1105                          CHECK);
1106 }
1107 
1108 
1109 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1110   assert(thread_group.not_null(), "thread group should be specified");
1111   assert(threadObj() == NULL, "should only create Java thread object once");
1112 
1113   klassOop k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1114   instanceKlassHandle klass (THREAD, k);
1115   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1116 
1117   java_lang_Thread::set_thread(thread_oop(), this);
1118   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1119   set_threadObj(thread_oop());
1120 
1121   JavaValue result(T_VOID);
1122   if (thread_name != NULL) {
1123     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1124     // Thread gets assigned specified name and null target
1125     JavaCalls::call_special(&result,
1126                             thread_oop,
1127                             klass,
1128                             vmSymbols::object_initializer_name(),
1129                             vmSymbols::threadgroup_string_void_signature(),
1130                             thread_group, // Argument 1
1131                             name,         // Argument 2
1132                             THREAD);
1133   } else {
1134     // Thread gets assigned name "Thread-nnn" and null target
1135     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1136     JavaCalls::call_special(&result,
1137                             thread_oop,
1138                             klass,
1139                             vmSymbols::object_initializer_name(),
1140                             vmSymbols::threadgroup_runnable_void_signature(),
1141                             thread_group, // Argument 1
1142                             Handle(),     // Argument 2
1143                             THREAD);
1144   }
1145 
1146 
1147   if (daemon) {
1148       java_lang_Thread::set_daemon(thread_oop());
1149   }
1150 
1151   if (HAS_PENDING_EXCEPTION) {
1152     return;
1153   }
1154 
1155   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1156   Handle threadObj(this, this->threadObj());
1157 
1158   JavaCalls::call_special(&result,
1159                          thread_group,
1160                          group,
1161                          vmSymbols::add_method_name(),
1162                          vmSymbols::thread_void_signature(),
1163                          threadObj,          // Arg 1
1164                          THREAD);
1165 
1166 
1167 }
1168 
1169 // NamedThread --  non-JavaThread subclasses with multiple
1170 // uniquely named instances should derive from this.
1171 NamedThread::NamedThread() : Thread() {
1172   _name = NULL;
1173   _processed_thread = NULL;
1174 }
1175 
1176 NamedThread::~NamedThread() {
1177   if (_name != NULL) {
1178     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1179     _name = NULL;
1180   }
1181 }
1182 
1183 void NamedThread::set_name(const char* format, ...) {
1184   guarantee(_name == NULL, "Only get to set name once.");
1185   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1186   guarantee(_name != NULL, "alloc failure");
1187   va_list ap;
1188   va_start(ap, format);
1189   jio_vsnprintf(_name, max_name_len, format, ap);
1190   va_end(ap);
1191 }
1192 
1193 // ======= WatcherThread ========
1194 
1195 // The watcher thread exists to simulate timer interrupts.  It should
1196 // be replaced by an abstraction over whatever native support for
1197 // timer interrupts exists on the platform.
1198 
1199 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1200 bool WatcherThread::_startable = false;
1201 volatile bool  WatcherThread::_should_terminate = false;
1202 
1203 WatcherThread::WatcherThread() : Thread() {
1204   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1205   if (os::create_thread(this, os::watcher_thread)) {
1206     _watcher_thread = this;
1207 
1208     // Set the watcher thread to the highest OS priority which should not be
1209     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1210     // is created. The only normal thread using this priority is the reference
1211     // handler thread, which runs for very short intervals only.
1212     // If the VMThread's priority is not lower than the WatcherThread profiling
1213     // will be inaccurate.
1214     os::set_priority(this, MaxPriority);
1215     if (!DisableStartThread) {
1216       os::start_thread(this);
1217     }
1218   }
1219 }
1220 
1221 int WatcherThread::sleep() const {
1222   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1223 
1224   // remaining will be zero if there are no tasks,
1225   // causing the WatcherThread to sleep until a task is
1226   // enrolled
1227   int remaining = PeriodicTask::time_to_wait();
1228   int time_slept = 0;
1229 
1230   // we expect this to timeout - we only ever get unparked when
1231   // we should terminate or when a new task has been enrolled
1232   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1233 
1234   jlong time_before_loop = os::javaTimeNanos();
1235 
1236   for (;;) {
1237     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1238     jlong now = os::javaTimeNanos();
1239 
1240     if (remaining == 0) {
1241         // if we didn't have any tasks we could have waited for a long time
1242         // consider the time_slept zero and reset time_before_loop
1243         time_slept = 0;
1244         time_before_loop = now;
1245     } else {
1246         // need to recalulate since we might have new tasks in _tasks
1247         time_slept = (int) ((now - time_before_loop) / 1000000);
1248     }
1249 
1250     // Change to task list or spurious wakeup of some kind
1251     if (timedout || _should_terminate) {
1252         break;
1253     }
1254 
1255     remaining = PeriodicTask::time_to_wait();
1256     if (remaining == 0) {
1257         // Last task was just disenrolled so loop around and wait until
1258         // another task gets enrolled
1259         continue;
1260     }
1261 
1262     remaining -= time_slept;
1263     if (remaining <= 0)
1264       break;
1265   }
1266 
1267   return time_slept;
1268 }
1269 
1270 void WatcherThread::run() {
1271   assert(this == watcher_thread(), "just checking");
1272 
1273   this->record_stack_base_and_size();
1274   this->initialize_thread_local_storage();
1275   this->set_active_handles(JNIHandleBlock::allocate_block());
1276   while(!_should_terminate) {
1277     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1278     assert(watcher_thread() == this,  "thread consistency check");
1279 
1280     // Calculate how long it'll be until the next PeriodicTask work
1281     // should be done, and sleep that amount of time.
1282     int time_waited = sleep();
1283 
1284     if (is_error_reported()) {
1285       // A fatal error has happened, the error handler(VMError::report_and_die)
1286       // should abort JVM after creating an error log file. However in some
1287       // rare cases, the error handler itself might deadlock. Here we try to
1288       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1289       //
1290       // This code is in WatcherThread because WatcherThread wakes up
1291       // periodically so the fatal error handler doesn't need to do anything;
1292       // also because the WatcherThread is less likely to crash than other
1293       // threads.
1294 
1295       for (;;) {
1296         if (!ShowMessageBoxOnError
1297          && (OnError == NULL || OnError[0] == '\0')
1298          && Arguments::abort_hook() == NULL) {
1299              os::sleep(this, 2 * 60 * 1000, false);
1300              fdStream err(defaultStream::output_fd());
1301              err.print_raw_cr("# [ timer expired, abort... ]");
1302              // skip atexit/vm_exit/vm_abort hooks
1303              os::die();
1304         }
1305 
1306         // Wake up 5 seconds later, the fatal handler may reset OnError or
1307         // ShowMessageBoxOnError when it is ready to abort.
1308         os::sleep(this, 5 * 1000, false);
1309       }
1310     }
1311 
1312     PeriodicTask::real_time_tick(time_waited);
1313   }
1314 
1315   // Signal that it is terminated
1316   {
1317     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1318     _watcher_thread = NULL;
1319     Terminator_lock->notify();
1320   }
1321 
1322   // Thread destructor usually does this..
1323   ThreadLocalStorage::set_thread(NULL);
1324 }
1325 
1326 void WatcherThread::start() {
1327   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1328 
1329   if (watcher_thread() == NULL && _startable) {
1330     _should_terminate = false;
1331     // Create the single instance of WatcherThread
1332     new WatcherThread();
1333   }
1334 }
1335 
1336 void WatcherThread::make_startable() {
1337   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1338   _startable = true;
1339 }
1340 
1341 void WatcherThread::stop() {
1342   {
1343     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1344     _should_terminate = true;
1345     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1346 
1347     WatcherThread* watcher = watcher_thread();
1348     if (watcher != NULL)
1349       watcher->unpark();
1350   }
1351 
1352   // it is ok to take late safepoints here, if needed
1353   MutexLocker mu(Terminator_lock);
1354 
1355   while(watcher_thread() != NULL) {
1356     // This wait should make safepoint checks, wait without a timeout,
1357     // and wait as a suspend-equivalent condition.
1358     //
1359     // Note: If the FlatProfiler is running, then this thread is waiting
1360     // for the WatcherThread to terminate and the WatcherThread, via the
1361     // FlatProfiler task, is waiting for the external suspend request on
1362     // this thread to complete. wait_for_ext_suspend_completion() will
1363     // eventually timeout, but that takes time. Making this wait a
1364     // suspend-equivalent condition solves that timeout problem.
1365     //
1366     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1367                           Mutex::_as_suspend_equivalent_flag);
1368   }
1369 }
1370 
1371 void WatcherThread::unpark() {
1372   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1373   PeriodicTask_lock->notify();
1374 }
1375 
1376 void WatcherThread::print_on(outputStream* st) const {
1377   st->print("\"%s\" ", name());
1378   Thread::print_on(st);
1379   st->cr();
1380 }
1381 
1382 // ======= JavaThread ========
1383 
1384 // A JavaThread is a normal Java thread
1385 
1386 void JavaThread::initialize() {
1387   // Initialize fields
1388 
1389   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1390   set_claimed_par_id(-1);
1391 
1392   set_saved_exception_pc(NULL);
1393   set_threadObj(NULL);
1394   _anchor.clear();
1395   set_entry_point(NULL);
1396   set_jni_functions(jni_functions());
1397   set_callee_target(NULL);
1398   set_vm_result(NULL);
1399   set_vm_result_2(NULL);
1400   set_vframe_array_head(NULL);
1401   set_vframe_array_last(NULL);
1402   set_deferred_locals(NULL);
1403   set_deopt_mark(NULL);
1404   set_deopt_nmethod(NULL);
1405   clear_must_deopt_id();
1406   set_monitor_chunks(NULL);
1407   set_next(NULL);
1408   set_thread_state(_thread_new);
1409   set_recorder(NULL);
1410   _terminated = _not_terminated;
1411   _privileged_stack_top = NULL;
1412   _array_for_gc = NULL;
1413   _suspend_equivalent = false;
1414   _in_deopt_handler = 0;
1415   _doing_unsafe_access = false;
1416   _stack_guard_state = stack_guard_unused;
1417   _exception_oop = NULL;
1418   _exception_pc  = 0;
1419   _exception_handler_pc = 0;
1420   _is_method_handle_return = 0;
1421   _jvmti_thread_state= NULL;
1422   _should_post_on_exceptions_flag = JNI_FALSE;
1423   _jvmti_get_loaded_classes_closure = NULL;
1424   _interp_only_mode    = 0;
1425   _special_runtime_exit_condition = _no_async_condition;
1426   _pending_async_exception = NULL;
1427   _is_compiling = false;
1428   _thread_stat = NULL;
1429   _thread_stat = new ThreadStatistics();
1430   _blocked_on_compilation = false;
1431   _jni_active_critical = 0;
1432   _do_not_unlock_if_synchronized = false;
1433   _cached_monitor_info = NULL;
1434   _parker = Parker::Allocate(this) ;
1435 
1436 #ifndef PRODUCT
1437   _jmp_ring_index = 0;
1438   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1439     record_jump(NULL, NULL, NULL, 0);
1440   }
1441 #endif /* PRODUCT */
1442 
1443   set_thread_profiler(NULL);
1444   if (FlatProfiler::is_active()) {
1445     // This is where we would decide to either give each thread it's own profiler
1446     // or use one global one from FlatProfiler,
1447     // or up to some count of the number of profiled threads, etc.
1448     ThreadProfiler* pp = new ThreadProfiler();
1449     pp->engage();
1450     set_thread_profiler(pp);
1451   }
1452 
1453   // Setup safepoint state info for this thread
1454   ThreadSafepointState::create(this);
1455 
1456   debug_only(_java_call_counter = 0);
1457 
1458   // JVMTI PopFrame support
1459   _popframe_condition = popframe_inactive;
1460   _popframe_preserved_args = NULL;
1461   _popframe_preserved_args_size = 0;
1462 
1463   pd_initialize();
1464 }
1465 
1466 #ifndef SERIALGC
1467 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1468 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1469 #endif // !SERIALGC
1470 
1471 JavaThread::JavaThread(bool is_attaching_via_jni) :
1472   Thread()
1473 #ifndef SERIALGC
1474   , _satb_mark_queue(&_satb_mark_queue_set),
1475   _dirty_card_queue(&_dirty_card_queue_set)
1476 #endif // !SERIALGC
1477 {
1478   initialize();
1479   if (is_attaching_via_jni) {
1480     _jni_attach_state = _attaching_via_jni;
1481   } else {
1482     _jni_attach_state = _not_attaching_via_jni;
1483   }
1484   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1485   _safepoint_visible = false;
1486 }
1487 
1488 bool JavaThread::reguard_stack(address cur_sp) {
1489   if (_stack_guard_state != stack_guard_yellow_disabled) {
1490     return true; // Stack already guarded or guard pages not needed.
1491   }
1492 
1493   if (register_stack_overflow()) {
1494     // For those architectures which have separate register and
1495     // memory stacks, we must check the register stack to see if
1496     // it has overflowed.
1497     return false;
1498   }
1499 
1500   // Java code never executes within the yellow zone: the latter is only
1501   // there to provoke an exception during stack banging.  If java code
1502   // is executing there, either StackShadowPages should be larger, or
1503   // some exception code in c1, c2 or the interpreter isn't unwinding
1504   // when it should.
1505   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1506 
1507   enable_stack_yellow_zone();
1508   return true;
1509 }
1510 
1511 bool JavaThread::reguard_stack(void) {
1512   return reguard_stack(os::current_stack_pointer());
1513 }
1514 
1515 
1516 void JavaThread::block_if_vm_exited() {
1517   if (_terminated == _vm_exited) {
1518     // _vm_exited is set at safepoint, and Threads_lock is never released
1519     // we will block here forever
1520     Threads_lock->lock_without_safepoint_check();
1521     ShouldNotReachHere();
1522   }
1523 }
1524 
1525 
1526 // Remove this ifdef when C1 is ported to the compiler interface.
1527 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1528 
1529 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1530   Thread()
1531 #ifndef SERIALGC
1532   , _satb_mark_queue(&_satb_mark_queue_set),
1533   _dirty_card_queue(&_dirty_card_queue_set)
1534 #endif // !SERIALGC
1535 {
1536   if (TraceThreadEvents) {
1537     tty->print_cr("creating thread %p", this);
1538   }
1539   initialize();
1540   _jni_attach_state = _not_attaching_via_jni;
1541   set_entry_point(entry_point);
1542   // Create the native thread itself.
1543   // %note runtime_23
1544   os::ThreadType thr_type = os::java_thread;
1545   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1546                                                      os::java_thread;
1547   os::create_thread(this, thr_type, stack_sz);
1548   _safepoint_visible = false;
1549   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1550   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1551   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1552   // the exception consists of creating the exception object & initializing it, initialization
1553   // will leave the VM via a JavaCall and then all locks must be unlocked).
1554   //
1555   // The thread is still suspended when we reach here. Thread must be explicit started
1556   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1557   // by calling Threads:add. The reason why this is not done here, is because the thread
1558   // object must be fully initialized (take a look at JVM_Start)
1559 }
1560 
1561 JavaThread::~JavaThread() {
1562   if (TraceThreadEvents) {
1563       tty->print_cr("terminate thread %p", this);
1564   }
1565 
1566   // By now, this thread should already be invisible to safepoint,
1567   // and its per-thread recorder also collected.
1568   assert(!is_safepoint_visible(), "wrong state");
1569 #if INCLUDE_NMT
1570   assert(get_recorder() == NULL, "Already collected");
1571 #endif // INCLUDE_NMT
1572 
1573   // JSR166 -- return the parker to the free list
1574   Parker::Release(_parker);
1575   _parker = NULL ;
1576 
1577   // Free any remaining  previous UnrollBlock
1578   vframeArray* old_array = vframe_array_last();
1579 
1580   if (old_array != NULL) {
1581     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1582     old_array->set_unroll_block(NULL);
1583     delete old_info;
1584     delete old_array;
1585   }
1586 
1587   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1588   if (deferred != NULL) {
1589     // This can only happen if thread is destroyed before deoptimization occurs.
1590     assert(deferred->length() != 0, "empty array!");
1591     do {
1592       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1593       deferred->remove_at(0);
1594       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1595       delete dlv;
1596     } while (deferred->length() != 0);
1597     delete deferred;
1598   }
1599 
1600   // All Java related clean up happens in exit
1601   ThreadSafepointState::destroy(this);
1602   if (_thread_profiler != NULL) delete _thread_profiler;
1603   if (_thread_stat != NULL) delete _thread_stat;
1604 }
1605 
1606 
1607 // The first routine called by a new Java thread
1608 void JavaThread::run() {
1609   // initialize thread-local alloc buffer related fields
1610   this->initialize_tlab();
1611 
1612   // used to test validitity of stack trace backs
1613   this->record_base_of_stack_pointer();
1614 
1615   // Record real stack base and size.
1616   this->record_stack_base_and_size();
1617 
1618   // Initialize thread local storage; set before calling MutexLocker
1619   this->initialize_thread_local_storage();
1620 
1621   this->create_stack_guard_pages();
1622 
1623   this->cache_global_variables();
1624 
1625   // Thread is now sufficient initialized to be handled by the safepoint code as being
1626   // in the VM. Change thread state from _thread_new to _thread_in_vm
1627   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1628 
1629   assert(JavaThread::current() == this, "sanity check");
1630   assert(!Thread::current()->owns_locks(), "sanity check");
1631 
1632   DTRACE_THREAD_PROBE(start, this);
1633 
1634   // This operation might block. We call that after all safepoint checks for a new thread has
1635   // been completed.
1636   this->set_active_handles(JNIHandleBlock::allocate_block());
1637 
1638   if (JvmtiExport::should_post_thread_life()) {
1639     JvmtiExport::post_thread_start(this);
1640   }
1641 
1642   EventThreadStart event;
1643   if (event.should_commit()) {
1644      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1645      event.commit();
1646   }
1647 
1648   // We call another function to do the rest so we are sure that the stack addresses used
1649   // from there will be lower than the stack base just computed
1650   thread_main_inner();
1651 
1652   // Note, thread is no longer valid at this point!
1653 }
1654 
1655 
1656 void JavaThread::thread_main_inner() {
1657   assert(JavaThread::current() == this, "sanity check");
1658   assert(this->threadObj() != NULL, "just checking");
1659 
1660   // Execute thread entry point unless this thread has a pending exception
1661   // or has been stopped before starting.
1662   // Note: Due to JVM_StopThread we can have pending exceptions already!
1663   if (!this->has_pending_exception() &&
1664       !java_lang_Thread::is_stillborn(this->threadObj())) {
1665     {
1666       ResourceMark rm(this);
1667       this->set_native_thread_name(this->get_thread_name());
1668     }
1669     HandleMark hm(this);
1670     this->entry_point()(this, this);
1671   }
1672 
1673   DTRACE_THREAD_PROBE(stop, this);
1674 
1675   this->exit(false);
1676   delete this;
1677 }
1678 
1679 
1680 static void ensure_join(JavaThread* thread) {
1681   // We do not need to grap the Threads_lock, since we are operating on ourself.
1682   Handle threadObj(thread, thread->threadObj());
1683   assert(threadObj.not_null(), "java thread object must exist");
1684   ObjectLocker lock(threadObj, thread);
1685   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1686   thread->clear_pending_exception();
1687   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1688   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1689   // Clear the native thread instance - this makes isAlive return false and allows the join()
1690   // to complete once we've done the notify_all below
1691   java_lang_Thread::set_thread(threadObj(), NULL);
1692   lock.notify_all(thread);
1693   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1694   thread->clear_pending_exception();
1695 }
1696 
1697 
1698 // For any new cleanup additions, please check to see if they need to be applied to
1699 // cleanup_failed_attach_current_thread as well.
1700 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1701   assert(this == JavaThread::current(),  "thread consistency check");
1702   if (!InitializeJavaLangSystem) return;
1703 
1704   HandleMark hm(this);
1705   Handle uncaught_exception(this, this->pending_exception());
1706   this->clear_pending_exception();
1707   Handle threadObj(this, this->threadObj());
1708   assert(threadObj.not_null(), "Java thread object should be created");
1709 
1710   if (get_thread_profiler() != NULL) {
1711     get_thread_profiler()->disengage();
1712     ResourceMark rm;
1713     get_thread_profiler()->print(get_thread_name());
1714   }
1715 
1716 
1717   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1718   {
1719     EXCEPTION_MARK;
1720 
1721     CLEAR_PENDING_EXCEPTION;
1722   }
1723   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1724   // has to be fixed by a runtime query method
1725   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1726     // JSR-166: change call from from ThreadGroup.uncaughtException to
1727     // java.lang.Thread.dispatchUncaughtException
1728     if (uncaught_exception.not_null()) {
1729       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1730       {
1731         EXCEPTION_MARK;
1732         // Check if the method Thread.dispatchUncaughtException() exists. If so
1733         // call it.  Otherwise we have an older library without the JSR-166 changes,
1734         // so call ThreadGroup.uncaughtException()
1735         KlassHandle recvrKlass(THREAD, threadObj->klass());
1736         CallInfo callinfo;
1737         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1738         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1739                                            vmSymbols::dispatchUncaughtException_name(),
1740                                            vmSymbols::throwable_void_signature(),
1741                                            KlassHandle(), false, false, THREAD);
1742         CLEAR_PENDING_EXCEPTION;
1743         methodHandle method = callinfo.selected_method();
1744         if (method.not_null()) {
1745           JavaValue result(T_VOID);
1746           JavaCalls::call_virtual(&result,
1747                                   threadObj, thread_klass,
1748                                   vmSymbols::dispatchUncaughtException_name(),
1749                                   vmSymbols::throwable_void_signature(),
1750                                   uncaught_exception,
1751                                   THREAD);
1752         } else {
1753           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1754           JavaValue result(T_VOID);
1755           JavaCalls::call_virtual(&result,
1756                                   group, thread_group,
1757                                   vmSymbols::uncaughtException_name(),
1758                                   vmSymbols::thread_throwable_void_signature(),
1759                                   threadObj,           // Arg 1
1760                                   uncaught_exception,  // Arg 2
1761                                   THREAD);
1762         }
1763         if (HAS_PENDING_EXCEPTION) {
1764           ResourceMark rm(this);
1765           jio_fprintf(defaultStream::error_stream(),
1766                 "\nException: %s thrown from the UncaughtExceptionHandler"
1767                 " in thread \"%s\"\n",
1768                 Klass::cast(pending_exception()->klass())->external_name(),
1769                 get_thread_name());
1770           CLEAR_PENDING_EXCEPTION;
1771         }
1772       }
1773     }
1774 
1775     // Called before the java thread exit since we want to read info
1776     // from java_lang_Thread object
1777     EventThreadEnd event;
1778     if (event.should_commit()) {
1779         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1780         event.commit();
1781     }
1782 
1783     // Call after last event on thread
1784     EVENT_THREAD_EXIT(this);
1785 
1786     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1787     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1788     // is deprecated anyhow.
1789     { int count = 3;
1790       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1791         EXCEPTION_MARK;
1792         JavaValue result(T_VOID);
1793         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1794         JavaCalls::call_virtual(&result,
1795                               threadObj, thread_klass,
1796                               vmSymbols::exit_method_name(),
1797                               vmSymbols::void_method_signature(),
1798                               THREAD);
1799         CLEAR_PENDING_EXCEPTION;
1800       }
1801     }
1802 
1803     // notify JVMTI
1804     if (JvmtiExport::should_post_thread_life()) {
1805       JvmtiExport::post_thread_end(this);
1806     }
1807 
1808     // We have notified the agents that we are exiting, before we go on,
1809     // we must check for a pending external suspend request and honor it
1810     // in order to not surprise the thread that made the suspend request.
1811     while (true) {
1812       {
1813         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1814         if (!is_external_suspend()) {
1815           set_terminated(_thread_exiting);
1816           ThreadService::current_thread_exiting(this);
1817           break;
1818         }
1819         // Implied else:
1820         // Things get a little tricky here. We have a pending external
1821         // suspend request, but we are holding the SR_lock so we
1822         // can't just self-suspend. So we temporarily drop the lock
1823         // and then self-suspend.
1824       }
1825 
1826       ThreadBlockInVM tbivm(this);
1827       java_suspend_self();
1828 
1829       // We're done with this suspend request, but we have to loop around
1830       // and check again. Eventually we will get SR_lock without a pending
1831       // external suspend request and will be able to mark ourselves as
1832       // exiting.
1833     }
1834     // no more external suspends are allowed at this point
1835   } else {
1836     // before_exit() has already posted JVMTI THREAD_END events
1837   }
1838 
1839   // Notify waiters on thread object. This has to be done after exit() is called
1840   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1841   // group should have the destroyed bit set before waiters are notified).
1842   ensure_join(this);
1843   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1844 
1845   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1846   // held by this thread must be released.  A detach operation must only
1847   // get here if there are no Java frames on the stack.  Therefore, any
1848   // owned monitors at this point MUST be JNI-acquired monitors which are
1849   // pre-inflated and in the monitor cache.
1850   //
1851   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1852   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1853     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1854     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1855     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1856   }
1857 
1858   // These things needs to be done while we are still a Java Thread. Make sure that thread
1859   // is in a consistent state, in case GC happens
1860   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1861 
1862   if (active_handles() != NULL) {
1863     JNIHandleBlock* block = active_handles();
1864     set_active_handles(NULL);
1865     JNIHandleBlock::release_block(block);
1866   }
1867 
1868   if (free_handle_block() != NULL) {
1869     JNIHandleBlock* block = free_handle_block();
1870     set_free_handle_block(NULL);
1871     JNIHandleBlock::release_block(block);
1872   }
1873 
1874   // These have to be removed while this is still a valid thread.
1875   remove_stack_guard_pages();
1876 
1877   if (UseTLAB) {
1878     tlab().make_parsable(true);  // retire TLAB
1879   }
1880 
1881   if (JvmtiEnv::environments_might_exist()) {
1882     JvmtiExport::cleanup_thread(this);
1883   }
1884 
1885   // We must flush any deferred card marks before removing a thread from
1886   // the list of active threads.
1887   Universe::heap()->flush_deferred_store_barrier(this);
1888   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1889 
1890 #ifndef SERIALGC
1891   // We must flush the G1-related buffers before removing a thread
1892   // from the list of active threads. We must do this after any deferred
1893   // card marks have been flushed (above) so that any entries that are
1894   // added to the thread's dirty card queue as a result are not lost.
1895   if (UseG1GC) {
1896     flush_barrier_queues();
1897   }
1898 #endif
1899 
1900   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1901   Threads::remove(this);
1902 }
1903 
1904 #ifndef SERIALGC
1905 // Flush G1-related queues.
1906 void JavaThread::flush_barrier_queues() {
1907   satb_mark_queue().flush();
1908   dirty_card_queue().flush();
1909 }
1910 
1911 void JavaThread::initialize_queues() {
1912   assert(!SafepointSynchronize::is_at_safepoint(),
1913          "we should not be at a safepoint");
1914 
1915   ObjPtrQueue& satb_queue = satb_mark_queue();
1916   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1917   // The SATB queue should have been constructed with its active
1918   // field set to false.
1919   assert(!satb_queue.is_active(), "SATB queue should not be active");
1920   assert(satb_queue.is_empty(), "SATB queue should be empty");
1921   // If we are creating the thread during a marking cycle, we should
1922   // set the active field of the SATB queue to true.
1923   if (satb_queue_set.is_active()) {
1924     satb_queue.set_active(true);
1925   }
1926 
1927   DirtyCardQueue& dirty_queue = dirty_card_queue();
1928   // The dirty card queue should have been constructed with its
1929   // active field set to true.
1930   assert(dirty_queue.is_active(), "dirty card queue should be active");
1931 }
1932 #endif // !SERIALGC
1933 
1934 void JavaThread::cleanup_failed_attach_current_thread() {
1935   if (get_thread_profiler() != NULL) {
1936     get_thread_profiler()->disengage();
1937     ResourceMark rm;
1938     get_thread_profiler()->print(get_thread_name());
1939   }
1940 
1941   if (active_handles() != NULL) {
1942     JNIHandleBlock* block = active_handles();
1943     set_active_handles(NULL);
1944     JNIHandleBlock::release_block(block);
1945   }
1946 
1947   if (free_handle_block() != NULL) {
1948     JNIHandleBlock* block = free_handle_block();
1949     set_free_handle_block(NULL);
1950     JNIHandleBlock::release_block(block);
1951   }
1952 
1953   // These have to be removed while this is still a valid thread.
1954   remove_stack_guard_pages();
1955 
1956   if (UseTLAB) {
1957     tlab().make_parsable(true);  // retire TLAB, if any
1958   }
1959 
1960 #ifndef SERIALGC
1961   if (UseG1GC) {
1962     flush_barrier_queues();
1963   }
1964 #endif
1965 
1966   Threads::remove(this);
1967   delete this;
1968 }
1969 
1970 
1971 
1972 
1973 JavaThread* JavaThread::active() {
1974   Thread* thread = ThreadLocalStorage::thread();
1975   assert(thread != NULL, "just checking");
1976   if (thread->is_Java_thread()) {
1977     return (JavaThread*) thread;
1978   } else {
1979     assert(thread->is_VM_thread(), "this must be a vm thread");
1980     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1981     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1982     assert(ret->is_Java_thread(), "must be a Java thread");
1983     return ret;
1984   }
1985 }
1986 
1987 bool JavaThread::is_lock_owned(address adr) const {
1988   if (Thread::is_lock_owned(adr)) return true;
1989 
1990   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1991     if (chunk->contains(adr)) return true;
1992   }
1993 
1994   return false;
1995 }
1996 
1997 
1998 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1999   chunk->set_next(monitor_chunks());
2000   set_monitor_chunks(chunk);
2001 }
2002 
2003 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2004   guarantee(monitor_chunks() != NULL, "must be non empty");
2005   if (monitor_chunks() == chunk) {
2006     set_monitor_chunks(chunk->next());
2007   } else {
2008     MonitorChunk* prev = monitor_chunks();
2009     while (prev->next() != chunk) prev = prev->next();
2010     prev->set_next(chunk->next());
2011   }
2012 }
2013 
2014 // JVM support.
2015 
2016 // Note: this function shouldn't block if it's called in
2017 // _thread_in_native_trans state (such as from
2018 // check_special_condition_for_native_trans()).
2019 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2020 
2021   if (has_last_Java_frame() && has_async_condition()) {
2022     // If we are at a polling page safepoint (not a poll return)
2023     // then we must defer async exception because live registers
2024     // will be clobbered by the exception path. Poll return is
2025     // ok because the call we a returning from already collides
2026     // with exception handling registers and so there is no issue.
2027     // (The exception handling path kills call result registers but
2028     //  this is ok since the exception kills the result anyway).
2029 
2030     if (is_at_poll_safepoint()) {
2031       // if the code we are returning to has deoptimized we must defer
2032       // the exception otherwise live registers get clobbered on the
2033       // exception path before deoptimization is able to retrieve them.
2034       //
2035       RegisterMap map(this, false);
2036       frame caller_fr = last_frame().sender(&map);
2037       assert(caller_fr.is_compiled_frame(), "what?");
2038       if (caller_fr.is_deoptimized_frame()) {
2039         if (TraceExceptions) {
2040           ResourceMark rm;
2041           tty->print_cr("deferred async exception at compiled safepoint");
2042         }
2043         return;
2044       }
2045     }
2046   }
2047 
2048   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2049   if (condition == _no_async_condition) {
2050     // Conditions have changed since has_special_runtime_exit_condition()
2051     // was called:
2052     // - if we were here only because of an external suspend request,
2053     //   then that was taken care of above (or cancelled) so we are done
2054     // - if we were here because of another async request, then it has
2055     //   been cleared between the has_special_runtime_exit_condition()
2056     //   and now so again we are done
2057     return;
2058   }
2059 
2060   // Check for pending async. exception
2061   if (_pending_async_exception != NULL) {
2062     // Only overwrite an already pending exception, if it is not a threadDeath.
2063     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2064 
2065       // We cannot call Exceptions::_throw(...) here because we cannot block
2066       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2067 
2068       if (TraceExceptions) {
2069         ResourceMark rm;
2070         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2071         if (has_last_Java_frame() ) {
2072           frame f = last_frame();
2073           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2074         }
2075         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2076       }
2077       _pending_async_exception = NULL;
2078       clear_has_async_exception();
2079     }
2080   }
2081 
2082   if (check_unsafe_error &&
2083       condition == _async_unsafe_access_error && !has_pending_exception()) {
2084     condition = _no_async_condition;  // done
2085     switch (thread_state()) {
2086     case _thread_in_vm:
2087       {
2088         JavaThread* THREAD = this;
2089         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2090       }
2091     case _thread_in_native:
2092       {
2093         ThreadInVMfromNative tiv(this);
2094         JavaThread* THREAD = this;
2095         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2096       }
2097     case _thread_in_Java:
2098       {
2099         ThreadInVMfromJava tiv(this);
2100         JavaThread* THREAD = this;
2101         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2102       }
2103     default:
2104       ShouldNotReachHere();
2105     }
2106   }
2107 
2108   assert(condition == _no_async_condition || has_pending_exception() ||
2109          (!check_unsafe_error && condition == _async_unsafe_access_error),
2110          "must have handled the async condition, if no exception");
2111 }
2112 
2113 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2114   //
2115   // Check for pending external suspend. Internal suspend requests do
2116   // not use handle_special_runtime_exit_condition().
2117   // If JNIEnv proxies are allowed, don't self-suspend if the target
2118   // thread is not the current thread. In older versions of jdbx, jdbx
2119   // threads could call into the VM with another thread's JNIEnv so we
2120   // can be here operating on behalf of a suspended thread (4432884).
2121   bool do_self_suspend = is_external_suspend_with_lock();
2122   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2123     //
2124     // Because thread is external suspended the safepoint code will count
2125     // thread as at a safepoint. This can be odd because we can be here
2126     // as _thread_in_Java which would normally transition to _thread_blocked
2127     // at a safepoint. We would like to mark the thread as _thread_blocked
2128     // before calling java_suspend_self like all other callers of it but
2129     // we must then observe proper safepoint protocol. (We can't leave
2130     // _thread_blocked with a safepoint in progress). However we can be
2131     // here as _thread_in_native_trans so we can't use a normal transition
2132     // constructor/destructor pair because they assert on that type of
2133     // transition. We could do something like:
2134     //
2135     // JavaThreadState state = thread_state();
2136     // set_thread_state(_thread_in_vm);
2137     // {
2138     //   ThreadBlockInVM tbivm(this);
2139     //   java_suspend_self()
2140     // }
2141     // set_thread_state(_thread_in_vm_trans);
2142     // if (safepoint) block;
2143     // set_thread_state(state);
2144     //
2145     // but that is pretty messy. Instead we just go with the way the
2146     // code has worked before and note that this is the only path to
2147     // java_suspend_self that doesn't put the thread in _thread_blocked
2148     // mode.
2149 
2150     frame_anchor()->make_walkable(this);
2151     java_suspend_self();
2152 
2153     // We might be here for reasons in addition to the self-suspend request
2154     // so check for other async requests.
2155   }
2156 
2157   if (check_asyncs) {
2158     check_and_handle_async_exceptions();
2159   }
2160 }
2161 
2162 void JavaThread::send_thread_stop(oop java_throwable)  {
2163   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2164   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2165   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2166 
2167   // Do not throw asynchronous exceptions against the compiler thread
2168   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2169   if (is_Compiler_thread()) return;
2170 
2171   {
2172     // Actually throw the Throwable against the target Thread - however
2173     // only if there is no thread death exception installed already.
2174     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2175       // If the topmost frame is a runtime stub, then we are calling into
2176       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2177       // must deoptimize the caller before continuing, as the compiled  exception handler table
2178       // may not be valid
2179       if (has_last_Java_frame()) {
2180         frame f = last_frame();
2181         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2182           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2183           RegisterMap reg_map(this, UseBiasedLocking);
2184           frame compiled_frame = f.sender(&reg_map);
2185           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2186             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2187           }
2188         }
2189       }
2190 
2191       // Set async. pending exception in thread.
2192       set_pending_async_exception(java_throwable);
2193 
2194       if (TraceExceptions) {
2195        ResourceMark rm;
2196        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
2197       }
2198       // for AbortVMOnException flag
2199       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
2200     }
2201   }
2202 
2203 
2204   // Interrupt thread so it will wake up from a potential wait()
2205   Thread::interrupt(this);
2206 }
2207 
2208 // External suspension mechanism.
2209 //
2210 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2211 // to any VM_locks and it is at a transition
2212 // Self-suspension will happen on the transition out of the vm.
2213 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2214 //
2215 // Guarantees on return:
2216 //   + Target thread will not execute any new bytecode (that's why we need to
2217 //     force a safepoint)
2218 //   + Target thread will not enter any new monitors
2219 //
2220 void JavaThread::java_suspend() {
2221   { MutexLocker mu(Threads_lock);
2222     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2223        return;
2224     }
2225   }
2226 
2227   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2228     if (!is_external_suspend()) {
2229       // a racing resume has cancelled us; bail out now
2230       return;
2231     }
2232 
2233     // suspend is done
2234     uint32_t debug_bits = 0;
2235     // Warning: is_ext_suspend_completed() may temporarily drop the
2236     // SR_lock to allow the thread to reach a stable thread state if
2237     // it is currently in a transient thread state.
2238     if (is_ext_suspend_completed(false /* !called_by_wait */,
2239                                  SuspendRetryDelay, &debug_bits) ) {
2240       return;
2241     }
2242   }
2243 
2244   VM_ForceSafepoint vm_suspend;
2245   VMThread::execute(&vm_suspend);
2246 }
2247 
2248 // Part II of external suspension.
2249 // A JavaThread self suspends when it detects a pending external suspend
2250 // request. This is usually on transitions. It is also done in places
2251 // where continuing to the next transition would surprise the caller,
2252 // e.g., monitor entry.
2253 //
2254 // Returns the number of times that the thread self-suspended.
2255 //
2256 // Note: DO NOT call java_suspend_self() when you just want to block current
2257 //       thread. java_suspend_self() is the second stage of cooperative
2258 //       suspension for external suspend requests and should only be used
2259 //       to complete an external suspend request.
2260 //
2261 int JavaThread::java_suspend_self() {
2262   int ret = 0;
2263 
2264   // we are in the process of exiting so don't suspend
2265   if (is_exiting()) {
2266      clear_external_suspend();
2267      return ret;
2268   }
2269 
2270   assert(_anchor.walkable() ||
2271     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2272     "must have walkable stack");
2273 
2274   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2275 
2276   assert(!this->is_ext_suspended(),
2277     "a thread trying to self-suspend should not already be suspended");
2278 
2279   if (this->is_suspend_equivalent()) {
2280     // If we are self-suspending as a result of the lifting of a
2281     // suspend equivalent condition, then the suspend_equivalent
2282     // flag is not cleared until we set the ext_suspended flag so
2283     // that wait_for_ext_suspend_completion() returns consistent
2284     // results.
2285     this->clear_suspend_equivalent();
2286   }
2287 
2288   // A racing resume may have cancelled us before we grabbed SR_lock
2289   // above. Or another external suspend request could be waiting for us
2290   // by the time we return from SR_lock()->wait(). The thread
2291   // that requested the suspension may already be trying to walk our
2292   // stack and if we return now, we can change the stack out from under
2293   // it. This would be a "bad thing (TM)" and cause the stack walker
2294   // to crash. We stay self-suspended until there are no more pending
2295   // external suspend requests.
2296   while (is_external_suspend()) {
2297     ret++;
2298     this->set_ext_suspended();
2299 
2300     // _ext_suspended flag is cleared by java_resume()
2301     while (is_ext_suspended()) {
2302       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2303     }
2304   }
2305 
2306   return ret;
2307 }
2308 
2309 #ifdef ASSERT
2310 // verify the JavaThread has not yet been published in the Threads::list, and
2311 // hence doesn't need protection from concurrent access at this stage
2312 void JavaThread::verify_not_published() {
2313   if (!Threads_lock->owned_by_self()) {
2314    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2315    assert( !Threads::includes(this),
2316            "java thread shouldn't have been published yet!");
2317   }
2318   else {
2319    assert( !Threads::includes(this),
2320            "java thread shouldn't have been published yet!");
2321   }
2322 }
2323 #endif
2324 
2325 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2326 // progress or when _suspend_flags is non-zero.
2327 // Current thread needs to self-suspend if there is a suspend request and/or
2328 // block if a safepoint is in progress.
2329 // Async exception ISN'T checked.
2330 // Note only the ThreadInVMfromNative transition can call this function
2331 // directly and when thread state is _thread_in_native_trans
2332 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2333   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2334 
2335   JavaThread *curJT = JavaThread::current();
2336   bool do_self_suspend = thread->is_external_suspend();
2337 
2338   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2339 
2340   // If JNIEnv proxies are allowed, don't self-suspend if the target
2341   // thread is not the current thread. In older versions of jdbx, jdbx
2342   // threads could call into the VM with another thread's JNIEnv so we
2343   // can be here operating on behalf of a suspended thread (4432884).
2344   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2345     JavaThreadState state = thread->thread_state();
2346 
2347     // We mark this thread_blocked state as a suspend-equivalent so
2348     // that a caller to is_ext_suspend_completed() won't be confused.
2349     // The suspend-equivalent state is cleared by java_suspend_self().
2350     thread->set_suspend_equivalent();
2351 
2352     // If the safepoint code sees the _thread_in_native_trans state, it will
2353     // wait until the thread changes to other thread state. There is no
2354     // guarantee on how soon we can obtain the SR_lock and complete the
2355     // self-suspend request. It would be a bad idea to let safepoint wait for
2356     // too long. Temporarily change the state to _thread_blocked to
2357     // let the VM thread know that this thread is ready for GC. The problem
2358     // of changing thread state is that safepoint could happen just after
2359     // java_suspend_self() returns after being resumed, and VM thread will
2360     // see the _thread_blocked state. We must check for safepoint
2361     // after restoring the state and make sure we won't leave while a safepoint
2362     // is in progress.
2363     thread->set_thread_state(_thread_blocked);
2364     thread->java_suspend_self();
2365     thread->set_thread_state(state);
2366     // Make sure new state is seen by VM thread
2367     if (os::is_MP()) {
2368       if (UseMembar) {
2369         // Force a fence between the write above and read below
2370         OrderAccess::fence();
2371       } else {
2372         // Must use this rather than serialization page in particular on Windows
2373         InterfaceSupport::serialize_memory(thread);
2374       }
2375     }
2376   }
2377 
2378   if (SafepointSynchronize::do_call_back()) {
2379     // If we are safepointing, then block the caller which may not be
2380     // the same as the target thread (see above).
2381     SafepointSynchronize::block(curJT);
2382   }
2383 
2384   if (thread->is_deopt_suspend()) {
2385     thread->clear_deopt_suspend();
2386     RegisterMap map(thread, false);
2387     frame f = thread->last_frame();
2388     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2389       f = f.sender(&map);
2390     }
2391     if (f.id() == thread->must_deopt_id()) {
2392       thread->clear_must_deopt_id();
2393       f.deoptimize(thread);
2394     } else {
2395       fatal("missed deoptimization!");
2396     }
2397   }
2398 }
2399 
2400 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2401 // progress or when _suspend_flags is non-zero.
2402 // Current thread needs to self-suspend if there is a suspend request and/or
2403 // block if a safepoint is in progress.
2404 // Also check for pending async exception (not including unsafe access error).
2405 // Note only the native==>VM/Java barriers can call this function and when
2406 // thread state is _thread_in_native_trans.
2407 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2408   check_safepoint_and_suspend_for_native_trans(thread);
2409 
2410   if (thread->has_async_exception()) {
2411     // We are in _thread_in_native_trans state, don't handle unsafe
2412     // access error since that may block.
2413     thread->check_and_handle_async_exceptions(false);
2414   }
2415 }
2416 
2417 // This is a variant of the normal
2418 // check_special_condition_for_native_trans with slightly different
2419 // semantics for use by critical native wrappers.  It does all the
2420 // normal checks but also performs the transition back into
2421 // thread_in_Java state.  This is required so that critical natives
2422 // can potentially block and perform a GC if they are the last thread
2423 // exiting the GC_locker.
2424 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2425   check_special_condition_for_native_trans(thread);
2426 
2427   // Finish the transition
2428   thread->set_thread_state(_thread_in_Java);
2429 
2430   if (thread->do_critical_native_unlock()) {
2431     ThreadInVMfromJavaNoAsyncException tiv(thread);
2432     GC_locker::unlock_critical(thread);
2433     thread->clear_critical_native_unlock();
2434   }
2435 }
2436 
2437 // We need to guarantee the Threads_lock here, since resumes are not
2438 // allowed during safepoint synchronization
2439 // Can only resume from an external suspension
2440 void JavaThread::java_resume() {
2441   assert_locked_or_safepoint(Threads_lock);
2442 
2443   // Sanity check: thread is gone, has started exiting or the thread
2444   // was not externally suspended.
2445   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2446     return;
2447   }
2448 
2449   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2450 
2451   clear_external_suspend();
2452 
2453   if (is_ext_suspended()) {
2454     clear_ext_suspended();
2455     SR_lock()->notify_all();
2456   }
2457 }
2458 
2459 void JavaThread::create_stack_guard_pages() {
2460   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2461   address low_addr = stack_base() - stack_size();
2462   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2463 
2464   int allocate = os::allocate_stack_guard_pages();
2465   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2466 
2467   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2468     warning("Attempt to allocate stack guard pages failed.");
2469     return;
2470   }
2471 
2472   if (os::guard_memory((char *) low_addr, len)) {
2473     _stack_guard_state = stack_guard_enabled;
2474   } else {
2475     warning("Attempt to protect stack guard pages failed.");
2476     if (os::uncommit_memory((char *) low_addr, len)) {
2477       warning("Attempt to deallocate stack guard pages failed.");
2478     }
2479   }
2480 }
2481 
2482 void JavaThread::remove_stack_guard_pages() {
2483   assert(Thread::current() == this, "from different thread");
2484   if (_stack_guard_state == stack_guard_unused) return;
2485   address low_addr = stack_base() - stack_size();
2486   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2487 
2488   if (os::allocate_stack_guard_pages()) {
2489     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2490       _stack_guard_state = stack_guard_unused;
2491     } else {
2492       warning("Attempt to deallocate stack guard pages failed.");
2493     }
2494   } else {
2495     if (_stack_guard_state == stack_guard_unused) return;
2496     if (os::unguard_memory((char *) low_addr, len)) {
2497       _stack_guard_state = stack_guard_unused;
2498     } else {
2499         warning("Attempt to unprotect stack guard pages failed.");
2500     }
2501   }
2502 }
2503 
2504 void JavaThread::enable_stack_yellow_zone() {
2505   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2506   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2507 
2508   // The base notation is from the stacks point of view, growing downward.
2509   // We need to adjust it to work correctly with guard_memory()
2510   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2511 
2512   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2513   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2514 
2515   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2516     _stack_guard_state = stack_guard_enabled;
2517   } else {
2518     warning("Attempt to guard stack yellow zone failed.");
2519   }
2520   enable_register_stack_guard();
2521 }
2522 
2523 void JavaThread::disable_stack_yellow_zone() {
2524   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2525   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2526 
2527   // Simply return if called for a thread that does not use guard pages.
2528   if (_stack_guard_state == stack_guard_unused) return;
2529 
2530   // The base notation is from the stacks point of view, growing downward.
2531   // We need to adjust it to work correctly with guard_memory()
2532   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2533 
2534   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2535     _stack_guard_state = stack_guard_yellow_disabled;
2536   } else {
2537     warning("Attempt to unguard stack yellow zone failed.");
2538   }
2539   disable_register_stack_guard();
2540 }
2541 
2542 void JavaThread::enable_stack_red_zone() {
2543   // The base notation is from the stacks point of view, growing downward.
2544   // We need to adjust it to work correctly with guard_memory()
2545   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2546   address base = stack_red_zone_base() - stack_red_zone_size();
2547 
2548   guarantee(base < stack_base(),"Error calculating stack red zone");
2549   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2550 
2551   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2552     warning("Attempt to guard stack red zone failed.");
2553   }
2554 }
2555 
2556 void JavaThread::disable_stack_red_zone() {
2557   // The base notation is from the stacks point of view, growing downward.
2558   // We need to adjust it to work correctly with guard_memory()
2559   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2560   address base = stack_red_zone_base() - stack_red_zone_size();
2561   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2562     warning("Attempt to unguard stack red zone failed.");
2563   }
2564 }
2565 
2566 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2567   // ignore is there is no stack
2568   if (!has_last_Java_frame()) return;
2569   // traverse the stack frames. Starts from top frame.
2570   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2571     frame* fr = fst.current();
2572     f(fr, fst.register_map());
2573   }
2574 }
2575 
2576 
2577 #ifndef PRODUCT
2578 // Deoptimization
2579 // Function for testing deoptimization
2580 void JavaThread::deoptimize() {
2581   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2582   StackFrameStream fst(this, UseBiasedLocking);
2583   bool deopt = false;           // Dump stack only if a deopt actually happens.
2584   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2585   // Iterate over all frames in the thread and deoptimize
2586   for(; !fst.is_done(); fst.next()) {
2587     if(fst.current()->can_be_deoptimized()) {
2588 
2589       if (only_at) {
2590         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2591         // consists of comma or carriage return separated numbers so
2592         // search for the current bci in that string.
2593         address pc = fst.current()->pc();
2594         nmethod* nm =  (nmethod*) fst.current()->cb();
2595         ScopeDesc* sd = nm->scope_desc_at( pc);
2596         char buffer[8];
2597         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2598         size_t len = strlen(buffer);
2599         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2600         while (found != NULL) {
2601           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2602               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2603             // Check that the bci found is bracketed by terminators.
2604             break;
2605           }
2606           found = strstr(found + 1, buffer);
2607         }
2608         if (!found) {
2609           continue;
2610         }
2611       }
2612 
2613       if (DebugDeoptimization && !deopt) {
2614         deopt = true; // One-time only print before deopt
2615         tty->print_cr("[BEFORE Deoptimization]");
2616         trace_frames();
2617         trace_stack();
2618       }
2619       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2620     }
2621   }
2622 
2623   if (DebugDeoptimization && deopt) {
2624     tty->print_cr("[AFTER Deoptimization]");
2625     trace_frames();
2626   }
2627 }
2628 
2629 
2630 // Make zombies
2631 void JavaThread::make_zombies() {
2632   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2633     if (fst.current()->can_be_deoptimized()) {
2634       // it is a Java nmethod
2635       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2636       nm->make_not_entrant();
2637     }
2638   }
2639 }
2640 #endif // PRODUCT
2641 
2642 
2643 void JavaThread::deoptimized_wrt_marked_nmethods() {
2644   if (!has_last_Java_frame()) return;
2645   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2646   StackFrameStream fst(this, UseBiasedLocking);
2647   for(; !fst.is_done(); fst.next()) {
2648     if (fst.current()->should_be_deoptimized()) {
2649       if (LogCompilation && xtty != NULL) {
2650         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2651         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2652                    this->name(), nm != NULL ? nm->compile_id() : -1);
2653       }
2654 
2655       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2656     }
2657   }
2658 }
2659 
2660 
2661 // GC support
2662 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2663 
2664 void JavaThread::gc_epilogue() {
2665   frames_do(frame_gc_epilogue);
2666 }
2667 
2668 
2669 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2670 
2671 void JavaThread::gc_prologue() {
2672   frames_do(frame_gc_prologue);
2673 }
2674 
2675 // If the caller is a NamedThread, then remember, in the current scope,
2676 // the given JavaThread in its _processed_thread field.
2677 class RememberProcessedThread: public StackObj {
2678   NamedThread* _cur_thr;
2679 public:
2680   RememberProcessedThread(JavaThread* jthr) {
2681     Thread* thread = Thread::current();
2682     if (thread->is_Named_thread()) {
2683       _cur_thr = (NamedThread *)thread;
2684       _cur_thr->set_processed_thread(jthr);
2685     } else {
2686       _cur_thr = NULL;
2687     }
2688   }
2689 
2690   ~RememberProcessedThread() {
2691     if (_cur_thr) {
2692       _cur_thr->set_processed_thread(NULL);
2693     }
2694   }
2695 };
2696 
2697 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2698   // Verify that the deferred card marks have been flushed.
2699   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2700 
2701   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2702   // since there may be more than one thread using each ThreadProfiler.
2703 
2704   // Traverse the GCHandles
2705   Thread::oops_do(f, cf);
2706 
2707   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2708           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2709 
2710   if (has_last_Java_frame()) {
2711     // Record JavaThread to GC thread
2712     RememberProcessedThread rpt(this);
2713 
2714     // Traverse the privileged stack
2715     if (_privileged_stack_top != NULL) {
2716       _privileged_stack_top->oops_do(f);
2717     }
2718 
2719     // traverse the registered growable array
2720     if (_array_for_gc != NULL) {
2721       for (int index = 0; index < _array_for_gc->length(); index++) {
2722         f->do_oop(_array_for_gc->adr_at(index));
2723       }
2724     }
2725 
2726     // Traverse the monitor chunks
2727     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2728       chunk->oops_do(f);
2729     }
2730 
2731     // Traverse the execution stack
2732     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2733       fst.current()->oops_do(f, cf, fst.register_map());
2734     }
2735   }
2736 
2737   // callee_target is never live across a gc point so NULL it here should
2738   // it still contain a methdOop.
2739 
2740   set_callee_target(NULL);
2741 
2742   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2743   // If we have deferred set_locals there might be oops waiting to be
2744   // written
2745   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2746   if (list != NULL) {
2747     for (int i = 0; i < list->length(); i++) {
2748       list->at(i)->oops_do(f);
2749     }
2750   }
2751 
2752   // Traverse instance variables at the end since the GC may be moving things
2753   // around using this function
2754   f->do_oop((oop*) &_threadObj);
2755   f->do_oop((oop*) &_vm_result);
2756   f->do_oop((oop*) &_vm_result_2);
2757   f->do_oop((oop*) &_exception_oop);
2758   f->do_oop((oop*) &_pending_async_exception);
2759 
2760   if (jvmti_thread_state() != NULL) {
2761     jvmti_thread_state()->oops_do(f);
2762   }
2763 }
2764 
2765 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2766   Thread::nmethods_do(cf);  // (super method is a no-op)
2767 
2768   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2769           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2770 
2771   if (has_last_Java_frame()) {
2772     // Traverse the execution stack
2773     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2774       fst.current()->nmethods_do(cf);
2775     }
2776   }
2777 }
2778 
2779 // Printing
2780 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2781   switch (_thread_state) {
2782   case _thread_uninitialized:     return "_thread_uninitialized";
2783   case _thread_new:               return "_thread_new";
2784   case _thread_new_trans:         return "_thread_new_trans";
2785   case _thread_in_native:         return "_thread_in_native";
2786   case _thread_in_native_trans:   return "_thread_in_native_trans";
2787   case _thread_in_vm:             return "_thread_in_vm";
2788   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2789   case _thread_in_Java:           return "_thread_in_Java";
2790   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2791   case _thread_blocked:           return "_thread_blocked";
2792   case _thread_blocked_trans:     return "_thread_blocked_trans";
2793   default:                        return "unknown thread state";
2794   }
2795 }
2796 
2797 #ifndef PRODUCT
2798 void JavaThread::print_thread_state_on(outputStream *st) const {
2799   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2800 };
2801 void JavaThread::print_thread_state() const {
2802   print_thread_state_on(tty);
2803 };
2804 #endif // PRODUCT
2805 
2806 // Called by Threads::print() for VM_PrintThreads operation
2807 void JavaThread::print_on(outputStream *st) const {
2808   st->print("\"%s\" ", get_thread_name());
2809   oop thread_oop = threadObj();
2810   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2811   Thread::print_on(st);
2812   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2813   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2814   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2815     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2816   }
2817 #ifndef PRODUCT
2818   print_thread_state_on(st);
2819   _safepoint_state->print_on(st);
2820 #endif // PRODUCT
2821 }
2822 
2823 // Called by fatal error handler. The difference between this and
2824 // JavaThread::print() is that we can't grab lock or allocate memory.
2825 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2826   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2827   oop thread_obj = threadObj();
2828   if (thread_obj != NULL) {
2829      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2830   }
2831   st->print(" [");
2832   st->print("%s", _get_thread_state_name(_thread_state));
2833   if (osthread()) {
2834     st->print(", id=%d", osthread()->thread_id());
2835   }
2836   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2837             _stack_base - _stack_size, _stack_base);
2838   st->print("]");
2839   return;
2840 }
2841 
2842 // Verification
2843 
2844 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2845 
2846 void JavaThread::verify() {
2847   // Verify oops in the thread.
2848   oops_do(&VerifyOopClosure::verify_oop, NULL);
2849 
2850   // Verify the stack frames.
2851   frames_do(frame_verify);
2852 }
2853 
2854 // CR 6300358 (sub-CR 2137150)
2855 // Most callers of this method assume that it can't return NULL but a
2856 // thread may not have a name whilst it is in the process of attaching to
2857 // the VM - see CR 6412693, and there are places where a JavaThread can be
2858 // seen prior to having it's threadObj set (eg JNI attaching threads and
2859 // if vm exit occurs during initialization). These cases can all be accounted
2860 // for such that this method never returns NULL.
2861 const char* JavaThread::get_thread_name() const {
2862 #ifdef ASSERT
2863   // early safepoints can hit while current thread does not yet have TLS
2864   if (!SafepointSynchronize::is_at_safepoint()) {
2865     Thread *cur = Thread::current();
2866     if (!(cur->is_Java_thread() && cur == this)) {
2867       // Current JavaThreads are allowed to get their own name without
2868       // the Threads_lock.
2869       assert_locked_or_safepoint(Threads_lock);
2870     }
2871   }
2872 #endif // ASSERT
2873     return get_thread_name_string();
2874 }
2875 
2876 // Returns a non-NULL representation of this thread's name, or a suitable
2877 // descriptive string if there is no set name
2878 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2879   const char* name_str;
2880   oop thread_obj = threadObj();
2881   if (thread_obj != NULL) {
2882     typeArrayOop name = java_lang_Thread::name(thread_obj);
2883     if (name != NULL) {
2884       if (buf == NULL) {
2885         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2886       }
2887       else {
2888         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2889       }
2890     }
2891     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2892       name_str = "<no-name - thread is attaching>";
2893     }
2894     else {
2895       name_str = Thread::name();
2896     }
2897   }
2898   else {
2899     name_str = Thread::name();
2900   }
2901   assert(name_str != NULL, "unexpected NULL thread name");
2902   return name_str;
2903 }
2904 
2905 
2906 const char* JavaThread::get_threadgroup_name() const {
2907   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2908   oop thread_obj = threadObj();
2909   if (thread_obj != NULL) {
2910     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2911     if (thread_group != NULL) {
2912       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2913       // ThreadGroup.name can be null
2914       if (name != NULL) {
2915         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2916         return str;
2917       }
2918     }
2919   }
2920   return NULL;
2921 }
2922 
2923 const char* JavaThread::get_parent_name() const {
2924   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2925   oop thread_obj = threadObj();
2926   if (thread_obj != NULL) {
2927     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2928     if (thread_group != NULL) {
2929       oop parent = java_lang_ThreadGroup::parent(thread_group);
2930       if (parent != NULL) {
2931         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2932         // ThreadGroup.name can be null
2933         if (name != NULL) {
2934           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2935           return str;
2936         }
2937       }
2938     }
2939   }
2940   return NULL;
2941 }
2942 
2943 ThreadPriority JavaThread::java_priority() const {
2944   oop thr_oop = threadObj();
2945   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2946   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2947   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2948   return priority;
2949 }
2950 
2951 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2952 
2953   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2954   // Link Java Thread object <-> C++ Thread
2955 
2956   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2957   // and put it into a new Handle.  The Handle "thread_oop" can then
2958   // be used to pass the C++ thread object to other methods.
2959 
2960   // Set the Java level thread object (jthread) field of the
2961   // new thread (a JavaThread *) to C++ thread object using the
2962   // "thread_oop" handle.
2963 
2964   // Set the thread field (a JavaThread *) of the
2965   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2966 
2967   Handle thread_oop(Thread::current(),
2968                     JNIHandles::resolve_non_null(jni_thread));
2969   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2970     "must be initialized");
2971   set_threadObj(thread_oop());
2972   java_lang_Thread::set_thread(thread_oop(), this);
2973 
2974   if (prio == NoPriority) {
2975     prio = java_lang_Thread::priority(thread_oop());
2976     assert(prio != NoPriority, "A valid priority should be present");
2977   }
2978 
2979   // Push the Java priority down to the native thread; needs Threads_lock
2980   Thread::set_priority(this, prio);
2981 
2982   // Add the new thread to the Threads list and set it in motion.
2983   // We must have threads lock in order to call Threads::add.
2984   // It is crucial that we do not block before the thread is
2985   // added to the Threads list for if a GC happens, then the java_thread oop
2986   // will not be visited by GC.
2987   Threads::add(this);
2988 }
2989 
2990 oop JavaThread::current_park_blocker() {
2991   // Support for JSR-166 locks
2992   oop thread_oop = threadObj();
2993   if (thread_oop != NULL &&
2994       JDK_Version::current().supports_thread_park_blocker()) {
2995     return java_lang_Thread::park_blocker(thread_oop);
2996   }
2997   return NULL;
2998 }
2999 
3000 
3001 void JavaThread::print_stack_on(outputStream* st) {
3002   if (!has_last_Java_frame()) return;
3003   ResourceMark rm;
3004   HandleMark   hm;
3005 
3006   RegisterMap reg_map(this);
3007   vframe* start_vf = last_java_vframe(&reg_map);
3008   int count = 0;
3009   for (vframe* f = start_vf; f; f = f->sender() ) {
3010     if (f->is_java_frame()) {
3011       javaVFrame* jvf = javaVFrame::cast(f);
3012       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3013 
3014       // Print out lock information
3015       if (JavaMonitorsInStackTrace) {
3016         jvf->print_lock_info_on(st, count);
3017       }
3018     } else {
3019       // Ignore non-Java frames
3020     }
3021 
3022     // Bail-out case for too deep stacks
3023     count++;
3024     if (MaxJavaStackTraceDepth == count) return;
3025   }
3026 }
3027 
3028 
3029 // JVMTI PopFrame support
3030 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3031   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3032   if (in_bytes(size_in_bytes) != 0) {
3033     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3034     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3035     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3036   }
3037 }
3038 
3039 void* JavaThread::popframe_preserved_args() {
3040   return _popframe_preserved_args;
3041 }
3042 
3043 ByteSize JavaThread::popframe_preserved_args_size() {
3044   return in_ByteSize(_popframe_preserved_args_size);
3045 }
3046 
3047 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3048   int sz = in_bytes(popframe_preserved_args_size());
3049   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3050   return in_WordSize(sz / wordSize);
3051 }
3052 
3053 void JavaThread::popframe_free_preserved_args() {
3054   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3055   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3056   _popframe_preserved_args = NULL;
3057   _popframe_preserved_args_size = 0;
3058 }
3059 
3060 #ifndef PRODUCT
3061 
3062 void JavaThread::trace_frames() {
3063   tty->print_cr("[Describe stack]");
3064   int frame_no = 1;
3065   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3066     tty->print("  %d. ", frame_no++);
3067     fst.current()->print_value_on(tty,this);
3068     tty->cr();
3069   }
3070 }
3071 
3072 class PrintAndVerifyOopClosure: public OopClosure {
3073  protected:
3074   template <class T> inline void do_oop_work(T* p) {
3075     oop obj = oopDesc::load_decode_heap_oop(p);
3076     if (obj == NULL) return;
3077     tty->print(INTPTR_FORMAT ": ", p);
3078     if (obj->is_oop_or_null()) {
3079       if (obj->is_objArray()) {
3080         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3081       } else {
3082         obj->print();
3083       }
3084     } else {
3085       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3086     }
3087     tty->cr();
3088   }
3089  public:
3090   virtual void do_oop(oop* p) { do_oop_work(p); }
3091   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3092 };
3093 
3094 
3095 static void oops_print(frame* f, const RegisterMap *map) {
3096   PrintAndVerifyOopClosure print;
3097   f->print_value();
3098   f->oops_do(&print, NULL, (RegisterMap*)map);
3099 }
3100 
3101 // Print our all the locations that contain oops and whether they are
3102 // valid or not.  This useful when trying to find the oldest frame
3103 // where an oop has gone bad since the frame walk is from youngest to
3104 // oldest.
3105 void JavaThread::trace_oops() {
3106   tty->print_cr("[Trace oops]");
3107   frames_do(oops_print);
3108 }
3109 
3110 
3111 #ifdef ASSERT
3112 // Print or validate the layout of stack frames
3113 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3114   ResourceMark rm;
3115   PRESERVE_EXCEPTION_MARK;
3116   FrameValues values;
3117   int frame_no = 0;
3118   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3119     fst.current()->describe(values, ++frame_no);
3120     if (depth == frame_no) break;
3121   }
3122   if (validate_only) {
3123     values.validate();
3124   } else {
3125     tty->print_cr("[Describe stack layout]");
3126     values.print(this);
3127   }
3128 }
3129 #endif
3130 
3131 void JavaThread::trace_stack_from(vframe* start_vf) {
3132   ResourceMark rm;
3133   int vframe_no = 1;
3134   for (vframe* f = start_vf; f; f = f->sender() ) {
3135     if (f->is_java_frame()) {
3136       javaVFrame::cast(f)->print_activation(vframe_no++);
3137     } else {
3138       f->print();
3139     }
3140     if (vframe_no > StackPrintLimit) {
3141       tty->print_cr("...<more frames>...");
3142       return;
3143     }
3144   }
3145 }
3146 
3147 
3148 void JavaThread::trace_stack() {
3149   if (!has_last_Java_frame()) return;
3150   ResourceMark rm;
3151   HandleMark   hm;
3152   RegisterMap reg_map(this);
3153   trace_stack_from(last_java_vframe(&reg_map));
3154 }
3155 
3156 
3157 #endif // PRODUCT
3158 
3159 
3160 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3161   assert(reg_map != NULL, "a map must be given");
3162   frame f = last_frame();
3163   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3164     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3165   }
3166   return NULL;
3167 }
3168 
3169 
3170 klassOop JavaThread::security_get_caller_class(int depth) {
3171   vframeStream vfst(this);
3172   vfst.security_get_caller_frame(depth);
3173   if (!vfst.at_end()) {
3174     return vfst.method()->method_holder();
3175   }
3176   return NULL;
3177 }
3178 
3179 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3180   assert(thread->is_Compiler_thread(), "must be compiler thread");
3181   CompileBroker::compiler_thread_loop();
3182 }
3183 
3184 // Create a CompilerThread
3185 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3186 : JavaThread(&compiler_thread_entry) {
3187   _env   = NULL;
3188   _log   = NULL;
3189   _task  = NULL;
3190   _queue = queue;
3191   _counters = counters;
3192   _buffer_blob = NULL;
3193   _scanned_nmethod = NULL;
3194 
3195 #ifndef PRODUCT
3196   _ideal_graph_printer = NULL;
3197 #endif
3198 }
3199 
3200 void CompilerThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3201   JavaThread::oops_do(f, cf);
3202   if (_scanned_nmethod != NULL && cf != NULL) {
3203     // Safepoints can occur when the sweeper is scanning an nmethod so
3204     // process it here to make sure it isn't unloaded in the middle of
3205     // a scan.
3206     cf->do_code_blob(_scanned_nmethod);
3207   }
3208 }
3209 
3210 // ======= Threads ========
3211 
3212 // The Threads class links together all active threads, and provides
3213 // operations over all threads.  It is protected by its own Mutex
3214 // lock, which is also used in other contexts to protect thread
3215 // operations from having the thread being operated on from exiting
3216 // and going away unexpectedly (e.g., safepoint synchronization)
3217 
3218 JavaThread* Threads::_thread_list = NULL;
3219 int         Threads::_number_of_threads = 0;
3220 int         Threads::_number_of_non_daemon_threads = 0;
3221 int         Threads::_return_code = 0;
3222 size_t      JavaThread::_stack_size_at_create = 0;
3223 
3224 // All JavaThreads
3225 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3226 
3227 void os_stream();
3228 
3229 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3230 void Threads::threads_do(ThreadClosure* tc) {
3231   assert_locked_or_safepoint(Threads_lock);
3232   // ALL_JAVA_THREADS iterates through all JavaThreads
3233   ALL_JAVA_THREADS(p) {
3234     tc->do_thread(p);
3235   }
3236   // Someday we could have a table or list of all non-JavaThreads.
3237   // For now, just manually iterate through them.
3238   tc->do_thread(VMThread::vm_thread());
3239   Universe::heap()->gc_threads_do(tc);
3240   WatcherThread *wt = WatcherThread::watcher_thread();
3241   // Strictly speaking, the following NULL check isn't sufficient to make sure
3242   // the data for WatcherThread is still valid upon being examined. However,
3243   // considering that WatchThread terminates when the VM is on the way to
3244   // exit at safepoint, the chance of the above is extremely small. The right
3245   // way to prevent termination of WatcherThread would be to acquire
3246   // Terminator_lock, but we can't do that without violating the lock rank
3247   // checking in some cases.
3248   if (wt != NULL)
3249     tc->do_thread(wt);
3250 
3251   // If CompilerThreads ever become non-JavaThreads, add them here
3252 }
3253 
3254 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3255 
3256   extern void JDK_Version_init();
3257 
3258   // Check version
3259   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3260 
3261   // Initialize the output stream module
3262   ostream_init();
3263 
3264   // Process java launcher properties.
3265   Arguments::process_sun_java_launcher_properties(args);
3266 
3267   // Initialize the os module before using TLS
3268   os::init();
3269 
3270   // Initialize system properties.
3271   Arguments::init_system_properties();
3272 
3273   // So that JDK version can be used as a discrimintor when parsing arguments
3274   JDK_Version_init();
3275 
3276   // Update/Initialize System properties after JDK version number is known
3277   Arguments::init_version_specific_system_properties();
3278 
3279   // Parse arguments
3280   jint parse_result = Arguments::parse(args);
3281   if (parse_result != JNI_OK) return parse_result;
3282 
3283   if (PauseAtStartup) {
3284     os::pause();
3285   }
3286 
3287 #ifndef USDT2
3288   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3289 #else /* USDT2 */
3290   HOTSPOT_VM_INIT_BEGIN();
3291 #endif /* USDT2 */
3292 
3293   // Record VM creation timing statistics
3294   TraceVmCreationTime create_vm_timer;
3295   create_vm_timer.start();
3296 
3297   // Timing (must come after argument parsing)
3298   TraceTime timer("Create VM", TraceStartupTime);
3299 
3300   // Initialize the os module after parsing the args
3301   jint os_init_2_result = os::init_2();
3302   if (os_init_2_result != JNI_OK) return os_init_2_result;
3303 
3304   // intialize TLS
3305   ThreadLocalStorage::init();
3306 
3307   // Bootstrap native memory tracking, so it can start recording memory
3308   // activities before worker thread is started. This is the first phase
3309   // of bootstrapping, VM is currently running in single-thread mode.
3310   MemTracker::bootstrap_single_thread();
3311 
3312   // Initialize output stream logging
3313   ostream_init_log();
3314 
3315   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3316   // Must be before create_vm_init_agents()
3317   if (Arguments::init_libraries_at_startup()) {
3318     convert_vm_init_libraries_to_agents();
3319   }
3320 
3321   // Launch -agentlib/-agentpath and converted -Xrun agents
3322   if (Arguments::init_agents_at_startup()) {
3323     create_vm_init_agents();
3324   }
3325 
3326   // Initialize Threads state
3327   _thread_list = NULL;
3328   _number_of_threads = 0;
3329   _number_of_non_daemon_threads = 0;
3330 
3331   // Initialize global data structures and create system classes in heap
3332   vm_init_globals();
3333 
3334   // Attach the main thread to this os thread
3335   JavaThread* main_thread = new JavaThread();
3336   main_thread->set_thread_state(_thread_in_vm);
3337   // must do this before set_active_handles and initialize_thread_local_storage
3338   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3339   // change the stack size recorded here to one based on the java thread
3340   // stacksize. This adjusted size is what is used to figure the placement
3341   // of the guard pages.
3342   main_thread->record_stack_base_and_size();
3343   main_thread->initialize_thread_local_storage();
3344 
3345   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3346 
3347   if (!main_thread->set_as_starting_thread()) {
3348     vm_shutdown_during_initialization(
3349       "Failed necessary internal allocation. Out of swap space");
3350     delete main_thread;
3351     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3352     return JNI_ENOMEM;
3353   }
3354 
3355   // Enable guard page *after* os::create_main_thread(), otherwise it would
3356   // crash Linux VM, see notes in os_linux.cpp.
3357   main_thread->create_stack_guard_pages();
3358 
3359   // Initialize Java-Level synchronization subsystem
3360   ObjectMonitor::Initialize() ;
3361 
3362   // Second phase of bootstrapping, VM is about entering multi-thread mode
3363   MemTracker::bootstrap_multi_thread();
3364 
3365   // Initialize global modules
3366   jint status = init_globals();
3367   if (status != JNI_OK) {
3368     delete main_thread;
3369     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3370     return status;
3371   }
3372 
3373   // Should be done after the heap is fully created
3374   main_thread->cache_global_variables();
3375 
3376   HandleMark hm;
3377 
3378   { MutexLocker mu(Threads_lock);
3379     Threads::add(main_thread);
3380   }
3381 
3382   // Any JVMTI raw monitors entered in onload will transition into
3383   // real raw monitor. VM is setup enough here for raw monitor enter.
3384   JvmtiExport::transition_pending_onload_raw_monitors();
3385 
3386   if (VerifyBeforeGC &&
3387       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3388     Universe::heap()->prepare_for_verify();
3389     Universe::verify();   // make sure we're starting with a clean slate
3390   }
3391 
3392   // Fully start NMT
3393   MemTracker::start();
3394 
3395   // Create the VMThread
3396   { TraceTime timer("Start VMThread", TraceStartupTime);
3397     VMThread::create();
3398     Thread* vmthread = VMThread::vm_thread();
3399 
3400     if (!os::create_thread(vmthread, os::vm_thread))
3401       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3402 
3403     // Wait for the VM thread to become ready, and VMThread::run to initialize
3404     // Monitors can have spurious returns, must always check another state flag
3405     {
3406       MutexLocker ml(Notify_lock);
3407       os::start_thread(vmthread);
3408       while (vmthread->active_handles() == NULL) {
3409         Notify_lock->wait();
3410       }
3411     }
3412   }
3413 
3414   assert (Universe::is_fully_initialized(), "not initialized");
3415   EXCEPTION_MARK;
3416 
3417   // At this point, the Universe is initialized, but we have not executed
3418   // any byte code.  Now is a good time (the only time) to dump out the
3419   // internal state of the JVM for sharing.
3420 
3421   if (DumpSharedSpaces) {
3422     Universe::heap()->preload_and_dump(CHECK_0);
3423     ShouldNotReachHere();
3424   }
3425 
3426   // Always call even when there are not JVMTI environments yet, since environments
3427   // may be attached late and JVMTI must track phases of VM execution
3428   JvmtiExport::enter_start_phase();
3429 
3430   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3431   JvmtiExport::post_vm_start();
3432 
3433   {
3434     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3435 
3436     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3437       create_vm_init_libraries();
3438     }
3439 
3440     if (InitializeJavaLangString) {
3441       initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3442     } else {
3443       warning("java.lang.String not initialized");
3444     }
3445 
3446     if (AggressiveOpts) {
3447       {
3448         // Forcibly initialize java/util/HashMap and mutate the private
3449         // static final "frontCacheEnabled" field before we start creating instances
3450 #ifdef ASSERT
3451         klassOop tmp_k = SystemDictionary::find(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3452         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3453 #endif
3454         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3455         KlassHandle k = KlassHandle(THREAD, k_o);
3456         guarantee(k.not_null(), "Must find java/util/HashMap");
3457         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3458         ik->initialize(CHECK_0);
3459         fieldDescriptor fd;
3460         // Possible we might not find this field; if so, don't break
3461         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3462           k()->java_mirror()->bool_field_put(fd.offset(), true);
3463         }
3464       }
3465 
3466       if (UseStringCache) {
3467         // Forcibly initialize java/lang/StringValue and mutate the private
3468         // static final "stringCacheEnabled" field before we start creating instances
3469         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbols::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3470         // Possible that StringValue isn't present: if so, silently don't break
3471         if (k_o != NULL) {
3472           KlassHandle k = KlassHandle(THREAD, k_o);
3473           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3474           ik->initialize(CHECK_0);
3475           fieldDescriptor fd;
3476           // Possible we might not find this field: if so, silently don't break
3477           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3478             k()->java_mirror()->bool_field_put(fd.offset(), true);
3479           }
3480         }
3481       }
3482     }
3483 
3484     // Initialize java_lang.System (needed before creating the thread)
3485     if (InitializeJavaLangSystem) {
3486       initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3487       initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3488       Handle thread_group = create_initial_thread_group(CHECK_0);
3489       Universe::set_main_thread_group(thread_group());
3490       initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3491       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3492       main_thread->set_threadObj(thread_object);
3493       // Set thread status to running since main thread has
3494       // been started and running.
3495       java_lang_Thread::set_thread_status(thread_object,
3496                                           java_lang_Thread::RUNNABLE);
3497 
3498       // The VM preresolve methods to these classes. Make sure that get initialized
3499       initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3500       initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3501       // The VM creates & returns objects of this class. Make sure it's initialized.
3502       initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3503       call_initializeSystemClass(CHECK_0);
3504 
3505       // get the Java runtime name after java.lang.System is initialized
3506       JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3507       JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3508     } else {
3509       warning("java.lang.System not initialized");
3510     }
3511 
3512     // an instance of OutOfMemory exception has been allocated earlier
3513     if (InitializeJavaLangExceptionsErrors) {
3514       initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3515       initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3516       initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3517       initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3518       initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3519       initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3520       initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3521       initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3522     } else {
3523       warning("java.lang.OutOfMemoryError has not been initialized");
3524       warning("java.lang.NullPointerException has not been initialized");
3525       warning("java.lang.ClassCastException has not been initialized");
3526       warning("java.lang.ArrayStoreException has not been initialized");
3527       warning("java.lang.ArithmeticException has not been initialized");
3528       warning("java.lang.StackOverflowError has not been initialized");
3529       warning("java.lang.IllegalArgumentException has not been initialized");
3530     }
3531   }
3532 
3533   // See        : bugid 4211085.
3534   // Background : the static initializer of java.lang.Compiler tries to read
3535   //              property"java.compiler" and read & write property "java.vm.info".
3536   //              When a security manager is installed through the command line
3537   //              option "-Djava.security.manager", the above properties are not
3538   //              readable and the static initializer for java.lang.Compiler fails
3539   //              resulting in a NoClassDefFoundError.  This can happen in any
3540   //              user code which calls methods in java.lang.Compiler.
3541   // Hack :       the hack is to pre-load and initialize this class, so that only
3542   //              system domains are on the stack when the properties are read.
3543   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3544   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3545   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3546   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3547   //              Once that is done, we should remove this hack.
3548   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3549 
3550   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3551   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3552   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3553   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3554   // This should also be taken out as soon as 4211383 gets fixed.
3555   reset_vm_info_property(CHECK_0);
3556 
3557   quicken_jni_functions();
3558 
3559   // Must be run after init_ft which initializes ft_enabled
3560   if (TRACE_INITIALIZE() != JNI_OK) {
3561     vm_exit_during_initialization("Failed to initialize tracing backend");
3562   }
3563 
3564   // Set flag that basic initialization has completed. Used by exceptions and various
3565   // debug stuff, that does not work until all basic classes have been initialized.
3566   set_init_completed();
3567 
3568 #ifndef USDT2
3569   HS_DTRACE_PROBE(hotspot, vm__init__end);
3570 #else /* USDT2 */
3571   HOTSPOT_VM_INIT_END();
3572 #endif /* USDT2 */
3573 
3574   // record VM initialization completion time
3575   Management::record_vm_init_completed();
3576 
3577   // Compute system loader. Note that this has to occur after set_init_completed, since
3578   // valid exceptions may be thrown in the process.
3579   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3580   // set_init_completed has just been called, causing exceptions not to be shortcut
3581   // anymore. We call vm_exit_during_initialization directly instead.
3582   SystemDictionary::compute_java_system_loader(THREAD);
3583   if (HAS_PENDING_EXCEPTION) {
3584     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3585   }
3586 
3587 #ifndef SERIALGC
3588   // Support for ConcurrentMarkSweep. This should be cleaned up
3589   // and better encapsulated. The ugly nested if test would go away
3590   // once things are properly refactored. XXX YSR
3591   if (UseConcMarkSweepGC || UseG1GC) {
3592     if (UseConcMarkSweepGC) {
3593       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3594     } else {
3595       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3596     }
3597     if (HAS_PENDING_EXCEPTION) {
3598       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3599     }
3600   }
3601 #endif // SERIALGC
3602 
3603   // Always call even when there are not JVMTI environments yet, since environments
3604   // may be attached late and JVMTI must track phases of VM execution
3605   JvmtiExport::enter_live_phase();
3606 
3607   // Signal Dispatcher needs to be started before VMInit event is posted
3608   os::signal_init();
3609 
3610   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3611   if (!DisableAttachMechanism) {
3612     if (StartAttachListener || AttachListener::init_at_startup()) {
3613       AttachListener::init();
3614     }
3615   }
3616 
3617   // Launch -Xrun agents
3618   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3619   // back-end can launch with -Xdebug -Xrunjdwp.
3620   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3621     create_vm_init_libraries();
3622   }
3623 
3624   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3625   JvmtiExport::post_vm_initialized();
3626 
3627   if (TRACE_START() != JNI_OK) {
3628     vm_exit_during_initialization("Failed to start tracing backend.");
3629   }
3630 
3631   if (CleanChunkPoolAsync) {
3632     Chunk::start_chunk_pool_cleaner_task();
3633   }
3634 
3635   // initialize compiler(s)
3636   CompileBroker::compilation_init();
3637 
3638   Management::initialize(THREAD);
3639   if (HAS_PENDING_EXCEPTION) {
3640     // management agent fails to start possibly due to
3641     // configuration problem and is responsible for printing
3642     // stack trace if appropriate. Simply exit VM.
3643     vm_exit(1);
3644   }
3645 
3646   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3647   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3648   if (MemProfiling)                   MemProfiler::engage();
3649   StatSampler::engage();
3650   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3651 
3652   BiasedLocking::init();
3653 
3654   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3655     call_postVMInitHook(THREAD);
3656     // The Java side of PostVMInitHook.run must deal with all
3657     // exceptions and provide means of diagnosis.
3658     if (HAS_PENDING_EXCEPTION) {
3659       CLEAR_PENDING_EXCEPTION;
3660     }
3661   }
3662 
3663   {
3664       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3665       // Make sure the watcher thread can be started by WatcherThread::start()
3666       // or by dynamic enrollment.
3667       WatcherThread::make_startable();
3668       // Start up the WatcherThread if there are any periodic tasks
3669       // NOTE:  All PeriodicTasks should be registered by now. If they
3670       //   aren't, late joiners might appear to start slowly (we might
3671       //   take a while to process their first tick).
3672       if (PeriodicTask::num_tasks() > 0) {
3673           WatcherThread::start();
3674       }
3675   }
3676 
3677   // Give os specific code one last chance to start
3678   os::init_3();
3679 
3680   create_vm_timer.end();
3681   return JNI_OK;
3682 }
3683 
3684 // type for the Agent_OnLoad and JVM_OnLoad entry points
3685 extern "C" {
3686   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3687 }
3688 // Find a command line agent library and return its entry point for
3689 //         -agentlib:  -agentpath:   -Xrun
3690 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3691 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3692   OnLoadEntry_t on_load_entry = NULL;
3693   void *library = agent->os_lib();  // check if we have looked it up before
3694 
3695   if (library == NULL) {
3696     char buffer[JVM_MAXPATHLEN];
3697     char ebuf[1024];
3698     const char *name = agent->name();
3699     const char *msg = "Could not find agent library ";
3700 
3701     if (agent->is_absolute_path()) {
3702       library = os::dll_load(name, ebuf, sizeof ebuf);
3703       if (library == NULL) {
3704         const char *sub_msg = " in absolute path, with error: ";
3705         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3706         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3707         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3708         // If we can't find the agent, exit.
3709         vm_exit_during_initialization(buf, NULL);
3710         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3711       }
3712     } else {
3713       // Try to load the agent from the standard dll directory
3714       os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3715       library = os::dll_load(buffer, ebuf, sizeof ebuf);
3716       if (library == NULL) { // Try the local directory
3717         char ns[1] = {0};
3718         os::dll_build_name(buffer, sizeof(buffer), ns, name);
3719         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3720         if (library == NULL) {
3721           const char *sub_msg = " on the library path, with error: ";
3722           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3723           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3724           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3725           // If we can't find the agent, exit.
3726           vm_exit_during_initialization(buf, NULL);
3727           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3728         }
3729       }
3730     }
3731     agent->set_os_lib(library);
3732   }
3733 
3734   // Find the OnLoad function.
3735   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3736     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, os::dll_lookup(library, on_load_symbols[symbol_index]));
3737     if (on_load_entry != NULL) break;
3738   }
3739   return on_load_entry;
3740 }
3741 
3742 // Find the JVM_OnLoad entry point
3743 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3744   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3745   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3746 }
3747 
3748 // Find the Agent_OnLoad entry point
3749 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3750   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3751   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3752 }
3753 
3754 // For backwards compatibility with -Xrun
3755 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3756 // treated like -agentpath:
3757 // Must be called before agent libraries are created
3758 void Threads::convert_vm_init_libraries_to_agents() {
3759   AgentLibrary* agent;
3760   AgentLibrary* next;
3761 
3762   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3763     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3764     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3765 
3766     // If there is an JVM_OnLoad function it will get called later,
3767     // otherwise see if there is an Agent_OnLoad
3768     if (on_load_entry == NULL) {
3769       on_load_entry = lookup_agent_on_load(agent);
3770       if (on_load_entry != NULL) {
3771         // switch it to the agent list -- so that Agent_OnLoad will be called,
3772         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3773         Arguments::convert_library_to_agent(agent);
3774       } else {
3775         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3776       }
3777     }
3778   }
3779 }
3780 
3781 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3782 // Invokes Agent_OnLoad
3783 // Called very early -- before JavaThreads exist
3784 void Threads::create_vm_init_agents() {
3785   extern struct JavaVM_ main_vm;
3786   AgentLibrary* agent;
3787 
3788   JvmtiExport::enter_onload_phase();
3789   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3790     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3791 
3792     if (on_load_entry != NULL) {
3793       // Invoke the Agent_OnLoad function
3794       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3795       if (err != JNI_OK) {
3796         vm_exit_during_initialization("agent library failed to init", agent->name());
3797       }
3798     } else {
3799       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3800     }
3801   }
3802   JvmtiExport::enter_primordial_phase();
3803 }
3804 
3805 extern "C" {
3806   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3807 }
3808 
3809 void Threads::shutdown_vm_agents() {
3810   // Send any Agent_OnUnload notifications
3811   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3812   extern struct JavaVM_ main_vm;
3813   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3814 
3815     // Find the Agent_OnUnload function.
3816     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3817       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3818                os::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3819 
3820       // Invoke the Agent_OnUnload function
3821       if (unload_entry != NULL) {
3822         JavaThread* thread = JavaThread::current();
3823         ThreadToNativeFromVM ttn(thread);
3824         HandleMark hm(thread);
3825         (*unload_entry)(&main_vm);
3826         break;
3827       }
3828     }
3829   }
3830 }
3831 
3832 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3833 // Invokes JVM_OnLoad
3834 void Threads::create_vm_init_libraries() {
3835   extern struct JavaVM_ main_vm;
3836   AgentLibrary* agent;
3837 
3838   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3839     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3840 
3841     if (on_load_entry != NULL) {
3842       // Invoke the JVM_OnLoad function
3843       JavaThread* thread = JavaThread::current();
3844       ThreadToNativeFromVM ttn(thread);
3845       HandleMark hm(thread);
3846       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3847       if (err != JNI_OK) {
3848         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3849       }
3850     } else {
3851       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3852     }
3853   }
3854 }
3855 
3856 // Last thread running calls java.lang.Shutdown.shutdown()
3857 void JavaThread::invoke_shutdown_hooks() {
3858   HandleMark hm(this);
3859 
3860   // We could get here with a pending exception, if so clear it now.
3861   if (this->has_pending_exception()) {
3862     this->clear_pending_exception();
3863   }
3864 
3865   EXCEPTION_MARK;
3866   klassOop k =
3867     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3868                                       THREAD);
3869   if (k != NULL) {
3870     // SystemDictionary::resolve_or_null will return null if there was
3871     // an exception.  If we cannot load the Shutdown class, just don't
3872     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3873     // and finalizers (if runFinalizersOnExit is set) won't be run.
3874     // Note that if a shutdown hook was registered or runFinalizersOnExit
3875     // was called, the Shutdown class would have already been loaded
3876     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3877     instanceKlassHandle shutdown_klass (THREAD, k);
3878     JavaValue result(T_VOID);
3879     JavaCalls::call_static(&result,
3880                            shutdown_klass,
3881                            vmSymbols::shutdown_method_name(),
3882                            vmSymbols::void_method_signature(),
3883                            THREAD);
3884   }
3885   CLEAR_PENDING_EXCEPTION;
3886 }
3887 
3888 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3889 // the program falls off the end of main(). Another VM exit path is through
3890 // vm_exit() when the program calls System.exit() to return a value or when
3891 // there is a serious error in VM. The two shutdown paths are not exactly
3892 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3893 // and VM_Exit op at VM level.
3894 //
3895 // Shutdown sequence:
3896 //   + Shutdown native memory tracking if it is on
3897 //   + Wait until we are the last non-daemon thread to execute
3898 //     <-- every thing is still working at this moment -->
3899 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3900 //        shutdown hooks, run finalizers if finalization-on-exit
3901 //   + Call before_exit(), prepare for VM exit
3902 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3903 //        currently the only user of this mechanism is File.deleteOnExit())
3904 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3905 //        post thread end and vm death events to JVMTI,
3906 //        stop signal thread
3907 //   + Call JavaThread::exit(), it will:
3908 //      > release JNI handle blocks, remove stack guard pages
3909 //      > remove this thread from Threads list
3910 //     <-- no more Java code from this thread after this point -->
3911 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3912 //     the compiler threads at safepoint
3913 //     <-- do not use anything that could get blocked by Safepoint -->
3914 //   + Disable tracing at JNI/JVM barriers
3915 //   + Set _vm_exited flag for threads that are still running native code
3916 //   + Delete this thread
3917 //   + Call exit_globals()
3918 //      > deletes tty
3919 //      > deletes PerfMemory resources
3920 //   + Return to caller
3921 
3922 bool Threads::destroy_vm() {
3923   JavaThread* thread = JavaThread::current();
3924 
3925   // Wait until we are the last non-daemon thread to execute
3926   { MutexLocker nu(Threads_lock);
3927     while (Threads::number_of_non_daemon_threads() > 1 )
3928       // This wait should make safepoint checks, wait without a timeout,
3929       // and wait as a suspend-equivalent condition.
3930       //
3931       // Note: If the FlatProfiler is running and this thread is waiting
3932       // for another non-daemon thread to finish, then the FlatProfiler
3933       // is waiting for the external suspend request on this thread to
3934       // complete. wait_for_ext_suspend_completion() will eventually
3935       // timeout, but that takes time. Making this wait a suspend-
3936       // equivalent condition solves that timeout problem.
3937       //
3938       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3939                          Mutex::_as_suspend_equivalent_flag);
3940   }
3941 
3942   // Hang forever on exit if we are reporting an error.
3943   if (ShowMessageBoxOnError && is_error_reported()) {
3944     os::infinite_sleep();
3945   }
3946   os::wait_for_keypress_at_exit();
3947 
3948   if (JDK_Version::is_jdk12x_version()) {
3949     // We are the last thread running, so check if finalizers should be run.
3950     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3951     HandleMark rm(thread);
3952     Universe::run_finalizers_on_exit();
3953   } else {
3954     // run Java level shutdown hooks
3955     thread->invoke_shutdown_hooks();
3956   }
3957 
3958   before_exit(thread);
3959 
3960   thread->exit(true);
3961 
3962   // Stop VM thread.
3963   {
3964     // 4945125 The vm thread comes to a safepoint during exit.
3965     // GC vm_operations can get caught at the safepoint, and the
3966     // heap is unparseable if they are caught. Grab the Heap_lock
3967     // to prevent this. The GC vm_operations will not be able to
3968     // queue until after the vm thread is dead.
3969     // After this point, we'll never emerge out of the safepoint before
3970     // the VM exits, so concurrent GC threads do not need to be explicitly
3971     // stopped; they remain inactive until the process exits.
3972     // Note: some concurrent G1 threads may be running during a safepoint,
3973     // but these will not be accessing the heap, just some G1-specific side
3974     // data structures that are not accessed by any other threads but them
3975     // after this point in a terminal safepoint.
3976 
3977     MutexLocker ml(Heap_lock);
3978 
3979     VMThread::wait_for_vm_thread_exit();
3980     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3981     VMThread::destroy();
3982   }
3983 
3984   // clean up ideal graph printers
3985 #if defined(COMPILER2) && !defined(PRODUCT)
3986   IdealGraphPrinter::clean_up();
3987 #endif
3988 
3989   // Now, all Java threads are gone except daemon threads. Daemon threads
3990   // running Java code or in VM are stopped by the Safepoint. However,
3991   // daemon threads executing native code are still running.  But they
3992   // will be stopped at native=>Java/VM barriers. Note that we can't
3993   // simply kill or suspend them, as it is inherently deadlock-prone.
3994 
3995 #ifndef PRODUCT
3996   // disable function tracing at JNI/JVM barriers
3997   TraceJNICalls = false;
3998   TraceJVMCalls = false;
3999   TraceRuntimeCalls = false;
4000 #endif
4001 
4002   VM_Exit::set_vm_exited();
4003 
4004   notify_vm_shutdown();
4005 
4006   delete thread;
4007 
4008   // exit_globals() will delete tty
4009   exit_globals();
4010 
4011   return true;
4012 }
4013 
4014 
4015 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4016   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4017   return is_supported_jni_version(version);
4018 }
4019 
4020 
4021 jboolean Threads::is_supported_jni_version(jint version) {
4022   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4023   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4024   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4025   return JNI_FALSE;
4026 }
4027 
4028 
4029 void Threads::add(JavaThread* p, bool force_daemon) {
4030   // The threads lock must be owned at this point
4031   assert_locked_or_safepoint(Threads_lock);
4032 
4033   // See the comment for this method in thread.hpp for its purpose and
4034   // why it is called here.
4035   p->initialize_queues();
4036   p->set_next(_thread_list);
4037   _thread_list = p;
4038   _number_of_threads++;
4039   oop threadObj = p->threadObj();
4040   bool daemon = true;
4041   // Bootstrapping problem: threadObj can be null for initial
4042   // JavaThread (or for threads attached via JNI)
4043   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4044     _number_of_non_daemon_threads++;
4045     daemon = false;
4046   }
4047 
4048   p->set_safepoint_visible(true);
4049 
4050   ThreadService::add_thread(p, daemon);
4051 
4052   // Possible GC point.
4053   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4054 }
4055 
4056 void Threads::remove(JavaThread* p) {
4057   // Extra scope needed for Thread_lock, so we can check
4058   // that we do not remove thread without safepoint code notice
4059   { MutexLocker ml(Threads_lock);
4060 
4061     assert(includes(p), "p must be present");
4062 
4063     JavaThread* current = _thread_list;
4064     JavaThread* prev    = NULL;
4065 
4066     while (current != p) {
4067       prev    = current;
4068       current = current->next();
4069     }
4070 
4071     if (prev) {
4072       prev->set_next(current->next());
4073     } else {
4074       _thread_list = p->next();
4075     }
4076     _number_of_threads--;
4077     oop threadObj = p->threadObj();
4078     bool daemon = true;
4079     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4080       _number_of_non_daemon_threads--;
4081       daemon = false;
4082 
4083       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4084       // on destroy_vm will wake up.
4085       if (number_of_non_daemon_threads() == 1)
4086         Threads_lock->notify_all();
4087     }
4088     ThreadService::remove_thread(p, daemon);
4089 
4090     // Make sure that safepoint code disregard this thread. This is needed since
4091     // the thread might mess around with locks after this point. This can cause it
4092     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4093     // of this thread since it is removed from the queue.
4094     p->set_terminated_value();
4095 
4096     // Now, this thread is not visible to safepoint
4097     p->set_safepoint_visible(false);
4098     // once the thread becomes safepoint invisible, we can not use its per-thread
4099     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4100     // to release its per-thread recorder here.
4101     MemTracker::thread_exiting(p);
4102   } // unlock Threads_lock
4103 
4104   // Since Events::log uses a lock, we grab it outside the Threads_lock
4105   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4106 }
4107 
4108 // Threads_lock must be held when this is called (or must be called during a safepoint)
4109 bool Threads::includes(JavaThread* p) {
4110   assert(Threads_lock->is_locked(), "sanity check");
4111   ALL_JAVA_THREADS(q) {
4112     if (q == p ) {
4113       return true;
4114     }
4115   }
4116   return false;
4117 }
4118 
4119 // Operations on the Threads list for GC.  These are not explicitly locked,
4120 // but the garbage collector must provide a safe context for them to run.
4121 // In particular, these things should never be called when the Threads_lock
4122 // is held by some other thread. (Note: the Safepoint abstraction also
4123 // uses the Threads_lock to gurantee this property. It also makes sure that
4124 // all threads gets blocked when exiting or starting).
4125 
4126 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4127   ALL_JAVA_THREADS(p) {
4128     p->oops_do(f, cf);
4129   }
4130   VMThread::vm_thread()->oops_do(f, cf);
4131 }
4132 
4133 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
4134   // Introduce a mechanism allowing parallel threads to claim threads as
4135   // root groups.  Overhead should be small enough to use all the time,
4136   // even in sequential code.
4137   SharedHeap* sh = SharedHeap::heap();
4138   // Cannot yet substitute active_workers for n_par_threads
4139   // because of G1CollectedHeap::verify() use of
4140   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4141   // turn off parallelism in process_strong_roots while active_workers
4142   // is being used for parallelism elsewhere.
4143   bool is_par = sh->n_par_threads() > 0;
4144   assert(!is_par ||
4145          (SharedHeap::heap()->n_par_threads() ==
4146           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4147   int cp = SharedHeap::heap()->strong_roots_parity();
4148   ALL_JAVA_THREADS(p) {
4149     if (p->claim_oops_do(is_par, cp)) {
4150       p->oops_do(f, cf);
4151     }
4152   }
4153   VMThread* vmt = VMThread::vm_thread();
4154   if (vmt->claim_oops_do(is_par, cp)) {
4155     vmt->oops_do(f, cf);
4156   }
4157 }
4158 
4159 #ifndef SERIALGC
4160 // Used by ParallelScavenge
4161 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4162   ALL_JAVA_THREADS(p) {
4163     q->enqueue(new ThreadRootsTask(p));
4164   }
4165   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4166 }
4167 
4168 // Used by Parallel Old
4169 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4170   ALL_JAVA_THREADS(p) {
4171     q->enqueue(new ThreadRootsMarkingTask(p));
4172   }
4173   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4174 }
4175 #endif // SERIALGC
4176 
4177 void Threads::nmethods_do(CodeBlobClosure* cf) {
4178   ALL_JAVA_THREADS(p) {
4179     p->nmethods_do(cf);
4180   }
4181   VMThread::vm_thread()->nmethods_do(cf);
4182 }
4183 
4184 void Threads::gc_epilogue() {
4185   ALL_JAVA_THREADS(p) {
4186     p->gc_epilogue();
4187   }
4188 }
4189 
4190 void Threads::gc_prologue() {
4191   ALL_JAVA_THREADS(p) {
4192     p->gc_prologue();
4193   }
4194 }
4195 
4196 void Threads::deoptimized_wrt_marked_nmethods() {
4197   ALL_JAVA_THREADS(p) {
4198     p->deoptimized_wrt_marked_nmethods();
4199   }
4200 }
4201 
4202 
4203 // Get count Java threads that are waiting to enter the specified monitor.
4204 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4205   address monitor, bool doLock) {
4206   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4207     "must grab Threads_lock or be at safepoint");
4208   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4209 
4210   int i = 0;
4211   {
4212     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4213     ALL_JAVA_THREADS(p) {
4214       if (p->is_Compiler_thread()) continue;
4215 
4216       address pending = (address)p->current_pending_monitor();
4217       if (pending == monitor) {             // found a match
4218         if (i < count) result->append(p);   // save the first count matches
4219         i++;
4220       }
4221     }
4222   }
4223   return result;
4224 }
4225 
4226 
4227 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4228   assert(doLock ||
4229          Threads_lock->owned_by_self() ||
4230          SafepointSynchronize::is_at_safepoint(),
4231          "must grab Threads_lock or be at safepoint");
4232 
4233   // NULL owner means not locked so we can skip the search
4234   if (owner == NULL) return NULL;
4235 
4236   {
4237     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4238     ALL_JAVA_THREADS(p) {
4239       // first, see if owner is the address of a Java thread
4240       if (owner == (address)p) return p;
4241     }
4242   }
4243   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
4244   if (UseHeavyMonitors) return NULL;
4245 
4246   //
4247   // If we didn't find a matching Java thread and we didn't force use of
4248   // heavyweight monitors, then the owner is the stack address of the
4249   // Lock Word in the owning Java thread's stack.
4250   //
4251   JavaThread* the_owner = NULL;
4252   {
4253     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4254     ALL_JAVA_THREADS(q) {
4255       if (q->is_lock_owned(owner)) {
4256         the_owner = q;
4257         break;
4258       }
4259     }
4260   }
4261   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
4262   return the_owner;
4263 }
4264 
4265 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4266 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4267   char buf[32];
4268   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4269 
4270   st->print_cr("Full thread dump %s (%s %s):",
4271                 Abstract_VM_Version::vm_name(),
4272                 Abstract_VM_Version::vm_release(),
4273                 Abstract_VM_Version::vm_info_string()
4274                );
4275   st->cr();
4276 
4277 #ifndef SERIALGC
4278   // Dump concurrent locks
4279   ConcurrentLocksDump concurrent_locks;
4280   if (print_concurrent_locks) {
4281     concurrent_locks.dump_at_safepoint();
4282   }
4283 #endif // SERIALGC
4284 
4285   ALL_JAVA_THREADS(p) {
4286     ResourceMark rm;
4287     p->print_on(st);
4288     if (print_stacks) {
4289       if (internal_format) {
4290         p->trace_stack();
4291       } else {
4292         p->print_stack_on(st);
4293       }
4294     }
4295     st->cr();
4296 #ifndef SERIALGC
4297     if (print_concurrent_locks) {
4298       concurrent_locks.print_locks_on(p, st);
4299     }
4300 #endif // SERIALGC
4301   }
4302 
4303   VMThread::vm_thread()->print_on(st);
4304   st->cr();
4305   Universe::heap()->print_gc_threads_on(st);
4306   WatcherThread* wt = WatcherThread::watcher_thread();
4307   if (wt != NULL) wt->print_on(st);
4308   st->cr();
4309   CompileBroker::print_compiler_threads_on(st);
4310   st->flush();
4311 }
4312 
4313 // Threads::print_on_error() is called by fatal error handler. It's possible
4314 // that VM is not at safepoint and/or current thread is inside signal handler.
4315 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4316 // memory (even in resource area), it might deadlock the error handler.
4317 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4318   bool found_current = false;
4319   st->print_cr("Java Threads: ( => current thread )");
4320   ALL_JAVA_THREADS(thread) {
4321     bool is_current = (current == thread);
4322     found_current = found_current || is_current;
4323 
4324     st->print("%s", is_current ? "=>" : "  ");
4325 
4326     st->print(PTR_FORMAT, thread);
4327     st->print(" ");
4328     thread->print_on_error(st, buf, buflen);
4329     st->cr();
4330   }
4331   st->cr();
4332 
4333   st->print_cr("Other Threads:");
4334   if (VMThread::vm_thread()) {
4335     bool is_current = (current == VMThread::vm_thread());
4336     found_current = found_current || is_current;
4337     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4338 
4339     st->print(PTR_FORMAT, VMThread::vm_thread());
4340     st->print(" ");
4341     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4342     st->cr();
4343   }
4344   WatcherThread* wt = WatcherThread::watcher_thread();
4345   if (wt != NULL) {
4346     bool is_current = (current == wt);
4347     found_current = found_current || is_current;
4348     st->print("%s", is_current ? "=>" : "  ");
4349 
4350     st->print(PTR_FORMAT, wt);
4351     st->print(" ");
4352     wt->print_on_error(st, buf, buflen);
4353     st->cr();
4354   }
4355   if (!found_current) {
4356     st->cr();
4357     st->print("=>" PTR_FORMAT " (exited) ", current);
4358     current->print_on_error(st, buf, buflen);
4359     st->cr();
4360   }
4361 }
4362 
4363 // Internal SpinLock and Mutex
4364 // Based on ParkEvent
4365 
4366 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4367 //
4368 // We employ SpinLocks _only for low-contention, fixed-length
4369 // short-duration critical sections where we're concerned
4370 // about native mutex_t or HotSpot Mutex:: latency.
4371 // The mux construct provides a spin-then-block mutual exclusion
4372 // mechanism.
4373 //
4374 // Testing has shown that contention on the ListLock guarding gFreeList
4375 // is common.  If we implement ListLock as a simple SpinLock it's common
4376 // for the JVM to devolve to yielding with little progress.  This is true
4377 // despite the fact that the critical sections protected by ListLock are
4378 // extremely short.
4379 //
4380 // TODO-FIXME: ListLock should be of type SpinLock.
4381 // We should make this a 1st-class type, integrated into the lock
4382 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4383 // should have sufficient padding to avoid false-sharing and excessive
4384 // cache-coherency traffic.
4385 
4386 
4387 typedef volatile int SpinLockT ;
4388 
4389 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4390   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4391      return ;   // normal fast-path return
4392   }
4393 
4394   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4395   TEVENT (SpinAcquire - ctx) ;
4396   int ctr = 0 ;
4397   int Yields = 0 ;
4398   for (;;) {
4399      while (*adr != 0) {
4400         ++ctr ;
4401         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4402            if (Yields > 5) {
4403              // Consider using a simple NakedSleep() instead.
4404              // Then SpinAcquire could be called by non-JVM threads
4405              Thread::current()->_ParkEvent->park(1) ;
4406            } else {
4407              os::NakedYield() ;
4408              ++Yields ;
4409            }
4410         } else {
4411            SpinPause() ;
4412         }
4413      }
4414      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4415   }
4416 }
4417 
4418 void Thread::SpinRelease (volatile int * adr) {
4419   assert (*adr != 0, "invariant") ;
4420   OrderAccess::fence() ;      // guarantee at least release consistency.
4421   // Roach-motel semantics.
4422   // It's safe if subsequent LDs and STs float "up" into the critical section,
4423   // but prior LDs and STs within the critical section can't be allowed
4424   // to reorder or float past the ST that releases the lock.
4425   *adr = 0 ;
4426 }
4427 
4428 // muxAcquire and muxRelease:
4429 //
4430 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4431 //    The LSB of the word is set IFF the lock is held.
4432 //    The remainder of the word points to the head of a singly-linked list
4433 //    of threads blocked on the lock.
4434 //
4435 // *  The current implementation of muxAcquire-muxRelease uses its own
4436 //    dedicated Thread._MuxEvent instance.  If we're interested in
4437 //    minimizing the peak number of extant ParkEvent instances then
4438 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4439 //    as certain invariants were satisfied.  Specifically, care would need
4440 //    to be taken with regards to consuming unpark() "permits".
4441 //    A safe rule of thumb is that a thread would never call muxAcquire()
4442 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4443 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4444 //    consume an unpark() permit intended for monitorenter, for instance.
4445 //    One way around this would be to widen the restricted-range semaphore
4446 //    implemented in park().  Another alternative would be to provide
4447 //    multiple instances of the PlatformEvent() for each thread.  One
4448 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4449 //
4450 // *  Usage:
4451 //    -- Only as leaf locks
4452 //    -- for short-term locking only as muxAcquire does not perform
4453 //       thread state transitions.
4454 //
4455 // Alternatives:
4456 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4457 //    but with parking or spin-then-park instead of pure spinning.
4458 // *  Use Taura-Oyama-Yonenzawa locks.
4459 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4460 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4461 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4462 //    acquiring threads use timers (ParkTimed) to detect and recover from
4463 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4464 //    boundaries by using placement-new.
4465 // *  Augment MCS with advisory back-link fields maintained with CAS().
4466 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4467 //    The validity of the backlinks must be ratified before we trust the value.
4468 //    If the backlinks are invalid the exiting thread must back-track through the
4469 //    the forward links, which are always trustworthy.
4470 // *  Add a successor indication.  The LockWord is currently encoded as
4471 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4472 //    to provide the usual futile-wakeup optimization.
4473 //    See RTStt for details.
4474 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4475 //
4476 
4477 
4478 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4479 enum MuxBits { LOCKBIT = 1 } ;
4480 
4481 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4482   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4483   if (w == 0) return ;
4484   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4485      return ;
4486   }
4487 
4488   TEVENT (muxAcquire - Contention) ;
4489   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4490   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4491   for (;;) {
4492      int its = (os::is_MP() ? 100 : 0) + 1 ;
4493 
4494      // Optional spin phase: spin-then-park strategy
4495      while (--its >= 0) {
4496        w = *Lock ;
4497        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4498           return ;
4499        }
4500      }
4501 
4502      Self->reset() ;
4503      Self->OnList = intptr_t(Lock) ;
4504      // The following fence() isn't _strictly necessary as the subsequent
4505      // CAS() both serializes execution and ratifies the fetched *Lock value.
4506      OrderAccess::fence();
4507      for (;;) {
4508         w = *Lock ;
4509         if ((w & LOCKBIT) == 0) {
4510             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4511                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4512                 return ;
4513             }
4514             continue ;      // Interference -- *Lock changed -- Just retry
4515         }
4516         assert (w & LOCKBIT, "invariant") ;
4517         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4518         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4519      }
4520 
4521      while (Self->OnList != 0) {
4522         Self->park() ;
4523      }
4524   }
4525 }
4526 
4527 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4528   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4529   if (w == 0) return ;
4530   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4531     return ;
4532   }
4533 
4534   TEVENT (muxAcquire - Contention) ;
4535   ParkEvent * ReleaseAfter = NULL ;
4536   if (ev == NULL) {
4537     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4538   }
4539   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4540   for (;;) {
4541     guarantee (ev->OnList == 0, "invariant") ;
4542     int its = (os::is_MP() ? 100 : 0) + 1 ;
4543 
4544     // Optional spin phase: spin-then-park strategy
4545     while (--its >= 0) {
4546       w = *Lock ;
4547       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4548         if (ReleaseAfter != NULL) {
4549           ParkEvent::Release (ReleaseAfter) ;
4550         }
4551         return ;
4552       }
4553     }
4554 
4555     ev->reset() ;
4556     ev->OnList = intptr_t(Lock) ;
4557     // The following fence() isn't _strictly necessary as the subsequent
4558     // CAS() both serializes execution and ratifies the fetched *Lock value.
4559     OrderAccess::fence();
4560     for (;;) {
4561       w = *Lock ;
4562       if ((w & LOCKBIT) == 0) {
4563         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4564           ev->OnList = 0 ;
4565           // We call ::Release while holding the outer lock, thus
4566           // artificially lengthening the critical section.
4567           // Consider deferring the ::Release() until the subsequent unlock(),
4568           // after we've dropped the outer lock.
4569           if (ReleaseAfter != NULL) {
4570             ParkEvent::Release (ReleaseAfter) ;
4571           }
4572           return ;
4573         }
4574         continue ;      // Interference -- *Lock changed -- Just retry
4575       }
4576       assert (w & LOCKBIT, "invariant") ;
4577       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4578       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4579     }
4580 
4581     while (ev->OnList != 0) {
4582       ev->park() ;
4583     }
4584   }
4585 }
4586 
4587 // Release() must extract a successor from the list and then wake that thread.
4588 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4589 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4590 // Release() would :
4591 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4592 // (B) Extract a successor from the private list "in-hand"
4593 // (C) attempt to CAS() the residual back into *Lock over null.
4594 //     If there were any newly arrived threads and the CAS() would fail.
4595 //     In that case Release() would detach the RATs, re-merge the list in-hand
4596 //     with the RATs and repeat as needed.  Alternately, Release() might
4597 //     detach and extract a successor, but then pass the residual list to the wakee.
4598 //     The wakee would be responsible for reattaching and remerging before it
4599 //     competed for the lock.
4600 //
4601 // Both "pop" and DMR are immune from ABA corruption -- there can be
4602 // multiple concurrent pushers, but only one popper or detacher.
4603 // This implementation pops from the head of the list.  This is unfair,
4604 // but tends to provide excellent throughput as hot threads remain hot.
4605 // (We wake recently run threads first).
4606 
4607 void Thread::muxRelease (volatile intptr_t * Lock)  {
4608   for (;;) {
4609     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4610     assert (w & LOCKBIT, "invariant") ;
4611     if (w == LOCKBIT) return ;
4612     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4613     assert (List != NULL, "invariant") ;
4614     assert (List->OnList == intptr_t(Lock), "invariant") ;
4615     ParkEvent * nxt = List->ListNext ;
4616 
4617     // The following CAS() releases the lock and pops the head element.
4618     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4619       continue ;
4620     }
4621     List->OnList = 0 ;
4622     OrderAccess::fence() ;
4623     List->unpark () ;
4624     return ;
4625   }
4626 }
4627 
4628 
4629 void Threads::verify() {
4630   ALL_JAVA_THREADS(p) {
4631     p->verify();
4632   }
4633   VMThread* thread = VMThread::vm_thread();
4634   if (thread != NULL) thread->verify();
4635 }