1 /*
   2  * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/methodOop.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/top.hpp"
  41 #ifdef TARGET_OS_FAMILY_linux
  42 # include "thread_linux.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_FAMILY_solaris
  45 # include "thread_solaris.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_windows
  48 # include "thread_windows.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_FAMILY_bsd
  51 # include "thread_bsd.inline.hpp"
  52 #endif
  53 #ifdef COMPILER2
  54 #include "opto/runtime.hpp"
  55 #endif
  56 
  57 // Declaration and definition of StubGenerator (no .hpp file).
  58 // For a more detailed description of the stub routine structure
  59 // see the comment in stubRoutines.hpp
  60 
  61 #define __ _masm->
  62 #define a__ ((Assembler*)_masm)->
  63 
  64 #ifdef PRODUCT
  65 #define BLOCK_COMMENT(str) /* nothing */
  66 #else
  67 #define BLOCK_COMMENT(str) __ block_comment(str)
  68 #endif
  69 
  70 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  71 
  72 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
  73 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
  74 
  75 // -------------------------------------------------------------------------------------------------------------------------
  76 // Stub Code definitions
  77 
  78 static address handle_unsafe_access() {
  79   JavaThread* thread = JavaThread::current();
  80   address pc  = thread->saved_exception_pc();
  81   // pc is the instruction which we must emulate
  82   // doing a no-op is fine:  return garbage from the load
  83   // therefore, compute npc
  84   address npc = Assembler::locate_next_instruction(pc);
  85 
  86   // request an async exception
  87   thread->set_pending_unsafe_access_error();
  88 
  89   // return address of next instruction to execute
  90   return npc;
  91 }
  92 
  93 class StubGenerator: public StubCodeGenerator {
  94  private:
  95 
  96 #ifdef PRODUCT
  97 #define inc_counter_np(counter) (0)
  98 #else
  99   void inc_counter_np_(int& counter) {
 100     __ incrementl(ExternalAddress((address)&counter));
 101   }
 102 #define inc_counter_np(counter) \
 103   BLOCK_COMMENT("inc_counter " #counter); \
 104   inc_counter_np_(counter);
 105 #endif //PRODUCT
 106 
 107   void inc_copy_counter_np(BasicType t) {
 108 #ifndef PRODUCT
 109     switch (t) {
 110     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
 111     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
 112     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
 113     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
 114     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
 115     }
 116     ShouldNotReachHere();
 117 #endif //PRODUCT
 118   }
 119 
 120   //------------------------------------------------------------------------------------------------------------------------
 121   // Call stubs are used to call Java from C
 122   //
 123   //    [ return_from_Java     ] <--- rsp
 124   //    [ argument word n      ]
 125   //      ...
 126   // -N [ argument word 1      ]
 127   // -7 [ Possible padding for stack alignment ]
 128   // -6 [ Possible padding for stack alignment ]
 129   // -5 [ Possible padding for stack alignment ]
 130   // -4 [ mxcsr save           ] <--- rsp_after_call
 131   // -3 [ saved rbx,            ]
 132   // -2 [ saved rsi            ]
 133   // -1 [ saved rdi            ]
 134   //  0 [ saved rbp,            ] <--- rbp,
 135   //  1 [ return address       ]
 136   //  2 [ ptr. to call wrapper ]
 137   //  3 [ result               ]
 138   //  4 [ result_type          ]
 139   //  5 [ method               ]
 140   //  6 [ entry_point          ]
 141   //  7 [ parameters           ]
 142   //  8 [ parameter_size       ]
 143   //  9 [ thread               ]
 144 
 145 
 146   address generate_call_stub(address& return_address) {
 147     StubCodeMark mark(this, "StubRoutines", "call_stub");
 148     address start = __ pc();
 149 
 150     // stub code parameters / addresses
 151     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
 152     bool  sse_save = false;
 153     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
 154     const int     locals_count_in_bytes  (4*wordSize);
 155     const Address mxcsr_save    (rbp, -4 * wordSize);
 156     const Address saved_rbx     (rbp, -3 * wordSize);
 157     const Address saved_rsi     (rbp, -2 * wordSize);
 158     const Address saved_rdi     (rbp, -1 * wordSize);
 159     const Address result        (rbp,  3 * wordSize);
 160     const Address result_type   (rbp,  4 * wordSize);
 161     const Address method        (rbp,  5 * wordSize);
 162     const Address entry_point   (rbp,  6 * wordSize);
 163     const Address parameters    (rbp,  7 * wordSize);
 164     const Address parameter_size(rbp,  8 * wordSize);
 165     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
 166     sse_save =  UseSSE > 0;
 167 
 168     // stub code
 169     __ enter();
 170     __ movptr(rcx, parameter_size);              // parameter counter
 171     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
 172     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
 173     __ subptr(rsp, rcx);
 174     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
 175 
 176     // save rdi, rsi, & rbx, according to C calling conventions
 177     __ movptr(saved_rdi, rdi);
 178     __ movptr(saved_rsi, rsi);
 179     __ movptr(saved_rbx, rbx);
 180     // save and initialize %mxcsr
 181     if (sse_save) {
 182       Label skip_ldmx;
 183       __ stmxcsr(mxcsr_save);
 184       __ movl(rax, mxcsr_save);
 185       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 186       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 187       __ cmp32(rax, mxcsr_std);
 188       __ jcc(Assembler::equal, skip_ldmx);
 189       __ ldmxcsr(mxcsr_std);
 190       __ bind(skip_ldmx);
 191     }
 192 
 193     // make sure the control word is correct.
 194     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 195 
 196 #ifdef ASSERT
 197     // make sure we have no pending exceptions
 198     { Label L;
 199       __ movptr(rcx, thread);
 200       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 201       __ jcc(Assembler::equal, L);
 202       __ stop("StubRoutines::call_stub: entered with pending exception");
 203       __ bind(L);
 204     }
 205 #endif
 206 
 207     // pass parameters if any
 208     BLOCK_COMMENT("pass parameters if any");
 209     Label parameters_done;
 210     __ movl(rcx, parameter_size);  // parameter counter
 211     __ testl(rcx, rcx);
 212     __ jcc(Assembler::zero, parameters_done);
 213 
 214     // parameter passing loop
 215 
 216     Label loop;
 217     // Copy Java parameters in reverse order (receiver last)
 218     // Note that the argument order is inverted in the process
 219     // source is rdx[rcx: N-1..0]
 220     // dest   is rsp[rbx: 0..N-1]
 221 
 222     __ movptr(rdx, parameters);          // parameter pointer
 223     __ xorptr(rbx, rbx);
 224 
 225     __ BIND(loop);
 226 
 227     // get parameter
 228     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
 229     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
 230                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
 231     __ increment(rbx);
 232     __ decrement(rcx);
 233     __ jcc(Assembler::notZero, loop);
 234 
 235     // call Java function
 236     __ BIND(parameters_done);
 237     __ movptr(rbx, method);           // get methodOop
 238     __ movptr(rax, entry_point);      // get entry_point
 239     __ mov(rsi, rsp);                 // set sender sp
 240     BLOCK_COMMENT("call Java function");
 241     __ call(rax);
 242 
 243     BLOCK_COMMENT("call_stub_return_address:");
 244     return_address = __ pc();
 245 
 246 #ifdef COMPILER2
 247     {
 248       Label L_skip;
 249       if (UseSSE >= 2) {
 250         __ verify_FPU(0, "call_stub_return");
 251       } else {
 252         for (int i = 1; i < 8; i++) {
 253           __ ffree(i);
 254         }
 255 
 256         // UseSSE <= 1 so double result should be left on TOS
 257         __ movl(rsi, result_type);
 258         __ cmpl(rsi, T_DOUBLE);
 259         __ jcc(Assembler::equal, L_skip);
 260         if (UseSSE == 0) {
 261           // UseSSE == 0 so float result should be left on TOS
 262           __ cmpl(rsi, T_FLOAT);
 263           __ jcc(Assembler::equal, L_skip);
 264         }
 265         __ ffree(0);
 266       }
 267       __ BIND(L_skip);
 268     }
 269 #endif // COMPILER2
 270 
 271     // store result depending on type
 272     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 273     __ movptr(rdi, result);
 274     Label is_long, is_float, is_double, exit;
 275     __ movl(rsi, result_type);
 276     __ cmpl(rsi, T_LONG);
 277     __ jcc(Assembler::equal, is_long);
 278     __ cmpl(rsi, T_FLOAT);
 279     __ jcc(Assembler::equal, is_float);
 280     __ cmpl(rsi, T_DOUBLE);
 281     __ jcc(Assembler::equal, is_double);
 282 
 283     // handle T_INT case
 284     __ movl(Address(rdi, 0), rax);
 285     __ BIND(exit);
 286 
 287     // check that FPU stack is empty
 288     __ verify_FPU(0, "generate_call_stub");
 289 
 290     // pop parameters
 291     __ lea(rsp, rsp_after_call);
 292 
 293     // restore %mxcsr
 294     if (sse_save) {
 295       __ ldmxcsr(mxcsr_save);
 296     }
 297 
 298     // restore rdi, rsi and rbx,
 299     __ movptr(rbx, saved_rbx);
 300     __ movptr(rsi, saved_rsi);
 301     __ movptr(rdi, saved_rdi);
 302     __ addptr(rsp, 4*wordSize);
 303 
 304     // return
 305     __ pop(rbp);
 306     __ ret(0);
 307 
 308     // handle return types different from T_INT
 309     __ BIND(is_long);
 310     __ movl(Address(rdi, 0 * wordSize), rax);
 311     __ movl(Address(rdi, 1 * wordSize), rdx);
 312     __ jmp(exit);
 313 
 314     __ BIND(is_float);
 315     // interpreter uses xmm0 for return values
 316     if (UseSSE >= 1) {
 317       __ movflt(Address(rdi, 0), xmm0);
 318     } else {
 319       __ fstp_s(Address(rdi, 0));
 320     }
 321     __ jmp(exit);
 322 
 323     __ BIND(is_double);
 324     // interpreter uses xmm0 for return values
 325     if (UseSSE >= 2) {
 326       __ movdbl(Address(rdi, 0), xmm0);
 327     } else {
 328       __ fstp_d(Address(rdi, 0));
 329     }
 330     __ jmp(exit);
 331 
 332     return start;
 333   }
 334 
 335 
 336   //------------------------------------------------------------------------------------------------------------------------
 337   // Return point for a Java call if there's an exception thrown in Java code.
 338   // The exception is caught and transformed into a pending exception stored in
 339   // JavaThread that can be tested from within the VM.
 340   //
 341   // Note: Usually the parameters are removed by the callee. In case of an exception
 342   //       crossing an activation frame boundary, that is not the case if the callee
 343   //       is compiled code => need to setup the rsp.
 344   //
 345   // rax,: exception oop
 346 
 347   address generate_catch_exception() {
 348     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 349     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
 350     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
 351     address start = __ pc();
 352 
 353     // get thread directly
 354     __ movptr(rcx, thread);
 355 #ifdef ASSERT
 356     // verify that threads correspond
 357     { Label L;
 358       __ get_thread(rbx);
 359       __ cmpptr(rbx, rcx);
 360       __ jcc(Assembler::equal, L);
 361       __ stop("StubRoutines::catch_exception: threads must correspond");
 362       __ bind(L);
 363     }
 364 #endif
 365     // set pending exception
 366     __ verify_oop(rax);
 367     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
 368     __ lea(Address(rcx, Thread::exception_file_offset   ()),
 369            ExternalAddress((address)__FILE__));
 370     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
 371     // complete return to VM
 372     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
 373     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 374 
 375     return start;
 376   }
 377 
 378 
 379   //------------------------------------------------------------------------------------------------------------------------
 380   // Continuation point for runtime calls returning with a pending exception.
 381   // The pending exception check happened in the runtime or native call stub.
 382   // The pending exception in Thread is converted into a Java-level exception.
 383   //
 384   // Contract with Java-level exception handlers:
 385   // rax: exception
 386   // rdx: throwing pc
 387   //
 388   // NOTE: At entry of this stub, exception-pc must be on stack !!
 389 
 390   address generate_forward_exception() {
 391     StubCodeMark mark(this, "StubRoutines", "forward exception");
 392     address start = __ pc();
 393     const Register thread = rcx;
 394 
 395     // other registers used in this stub
 396     const Register exception_oop = rax;
 397     const Register handler_addr  = rbx;
 398     const Register exception_pc  = rdx;
 399 
 400     // Upon entry, the sp points to the return address returning into Java
 401     // (interpreted or compiled) code; i.e., the return address becomes the
 402     // throwing pc.
 403     //
 404     // Arguments pushed before the runtime call are still on the stack but
 405     // the exception handler will reset the stack pointer -> ignore them.
 406     // A potential result in registers can be ignored as well.
 407 
 408 #ifdef ASSERT
 409     // make sure this code is only executed if there is a pending exception
 410     { Label L;
 411       __ get_thread(thread);
 412       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 413       __ jcc(Assembler::notEqual, L);
 414       __ stop("StubRoutines::forward exception: no pending exception (1)");
 415       __ bind(L);
 416     }
 417 #endif
 418 
 419     // compute exception handler into rbx,
 420     __ get_thread(thread);
 421     __ movptr(exception_pc, Address(rsp, 0));
 422     BLOCK_COMMENT("call exception_handler_for_return_address");
 423     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 424     __ mov(handler_addr, rax);
 425 
 426     // setup rax & rdx, remove return address & clear pending exception
 427     __ get_thread(thread);
 428     __ pop(exception_pc);
 429     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 430     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 431 
 432 #ifdef ASSERT
 433     // make sure exception is set
 434     { Label L;
 435       __ testptr(exception_oop, exception_oop);
 436       __ jcc(Assembler::notEqual, L);
 437       __ stop("StubRoutines::forward exception: no pending exception (2)");
 438       __ bind(L);
 439     }
 440 #endif
 441 
 442     // Verify that there is really a valid exception in RAX.
 443     __ verify_oop(exception_oop);
 444 
 445     // continue at exception handler (return address removed)
 446     // rax: exception
 447     // rbx: exception handler
 448     // rdx: throwing pc
 449     __ jmp(handler_addr);
 450 
 451     return start;
 452   }
 453 
 454 
 455   //----------------------------------------------------------------------------------------------------
 456   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
 457   //
 458   // xchg exists as far back as 8086, lock needed for MP only
 459   // Stack layout immediately after call:
 460   //
 461   // 0 [ret addr ] <--- rsp
 462   // 1 [  ex     ]
 463   // 2 [  dest   ]
 464   //
 465   // Result:   *dest <- ex, return (old *dest)
 466   //
 467   // Note: win32 does not currently use this code
 468 
 469   address generate_atomic_xchg() {
 470     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 471     address start = __ pc();
 472 
 473     __ push(rdx);
 474     Address exchange(rsp, 2 * wordSize);
 475     Address dest_addr(rsp, 3 * wordSize);
 476     __ movl(rax, exchange);
 477     __ movptr(rdx, dest_addr);
 478     __ xchgl(rax, Address(rdx, 0));
 479     __ pop(rdx);
 480     __ ret(0);
 481 
 482     return start;
 483   }
 484 
 485   //----------------------------------------------------------------------------------------------------
 486   // Support for void verify_mxcsr()
 487   //
 488   // This routine is used with -Xcheck:jni to verify that native
 489   // JNI code does not return to Java code without restoring the
 490   // MXCSR register to our expected state.
 491 
 492 
 493   address generate_verify_mxcsr() {
 494     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 495     address start = __ pc();
 496 
 497     const Address mxcsr_save(rsp, 0);
 498 
 499     if (CheckJNICalls && UseSSE > 0 ) {
 500       Label ok_ret;
 501       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 502       __ push(rax);
 503       __ subptr(rsp, wordSize);      // allocate a temp location
 504       __ stmxcsr(mxcsr_save);
 505       __ movl(rax, mxcsr_save);
 506       __ andl(rax, MXCSR_MASK);
 507       __ cmp32(rax, mxcsr_std);
 508       __ jcc(Assembler::equal, ok_ret);
 509 
 510       __ warn("MXCSR changed by native JNI code.");
 511 
 512       __ ldmxcsr(mxcsr_std);
 513 
 514       __ bind(ok_ret);
 515       __ addptr(rsp, wordSize);
 516       __ pop(rax);
 517     }
 518 
 519     __ ret(0);
 520 
 521     return start;
 522   }
 523 
 524 
 525   //---------------------------------------------------------------------------
 526   // Support for void verify_fpu_cntrl_wrd()
 527   //
 528   // This routine is used with -Xcheck:jni to verify that native
 529   // JNI code does not return to Java code without restoring the
 530   // FP control word to our expected state.
 531 
 532   address generate_verify_fpu_cntrl_wrd() {
 533     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
 534     address start = __ pc();
 535 
 536     const Address fpu_cntrl_wrd_save(rsp, 0);
 537 
 538     if (CheckJNICalls) {
 539       Label ok_ret;
 540       __ push(rax);
 541       __ subptr(rsp, wordSize);      // allocate a temp location
 542       __ fnstcw(fpu_cntrl_wrd_save);
 543       __ movl(rax, fpu_cntrl_wrd_save);
 544       __ andl(rax, FPU_CNTRL_WRD_MASK);
 545       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
 546       __ cmp32(rax, fpu_std);
 547       __ jcc(Assembler::equal, ok_ret);
 548 
 549       __ warn("Floating point control word changed by native JNI code.");
 550 
 551       __ fldcw(fpu_std);
 552 
 553       __ bind(ok_ret);
 554       __ addptr(rsp, wordSize);
 555       __ pop(rax);
 556     }
 557 
 558     __ ret(0);
 559 
 560     return start;
 561   }
 562 
 563   //---------------------------------------------------------------------------
 564   // Wrapper for slow-case handling of double-to-integer conversion
 565   // d2i or f2i fast case failed either because it is nan or because
 566   // of under/overflow.
 567   // Input:  FPU TOS: float value
 568   // Output: rax, (rdx): integer (long) result
 569 
 570   address generate_d2i_wrapper(BasicType t, address fcn) {
 571     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
 572     address start = __ pc();
 573 
 574   // Capture info about frame layout
 575   enum layout { FPUState_off         = 0,
 576                 rbp_off              = FPUStateSizeInWords,
 577                 rdi_off,
 578                 rsi_off,
 579                 rcx_off,
 580                 rbx_off,
 581                 saved_argument_off,
 582                 saved_argument_off2, // 2nd half of double
 583                 framesize
 584   };
 585 
 586   assert(FPUStateSizeInWords == 27, "update stack layout");
 587 
 588     // Save outgoing argument to stack across push_FPU_state()
 589     __ subptr(rsp, wordSize * 2);
 590     __ fstp_d(Address(rsp, 0));
 591 
 592     // Save CPU & FPU state
 593     __ push(rbx);
 594     __ push(rcx);
 595     __ push(rsi);
 596     __ push(rdi);
 597     __ push(rbp);
 598     __ push_FPU_state();
 599 
 600     // push_FPU_state() resets the FP top of stack
 601     // Load original double into FP top of stack
 602     __ fld_d(Address(rsp, saved_argument_off * wordSize));
 603     // Store double into stack as outgoing argument
 604     __ subptr(rsp, wordSize*2);
 605     __ fst_d(Address(rsp, 0));
 606 
 607     // Prepare FPU for doing math in C-land
 608     __ empty_FPU_stack();
 609     // Call the C code to massage the double.  Result in EAX
 610     if (t == T_INT)
 611       { BLOCK_COMMENT("SharedRuntime::d2i"); }
 612     else if (t == T_LONG)
 613       { BLOCK_COMMENT("SharedRuntime::d2l"); }
 614     __ call_VM_leaf( fcn, 2 );
 615 
 616     // Restore CPU & FPU state
 617     __ pop_FPU_state();
 618     __ pop(rbp);
 619     __ pop(rdi);
 620     __ pop(rsi);
 621     __ pop(rcx);
 622     __ pop(rbx);
 623     __ addptr(rsp, wordSize * 2);
 624 
 625     __ ret(0);
 626 
 627     return start;
 628   }
 629 
 630 
 631   //---------------------------------------------------------------------------
 632   // The following routine generates a subroutine to throw an asynchronous
 633   // UnknownError when an unsafe access gets a fault that could not be
 634   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
 635   address generate_handler_for_unsafe_access() {
 636     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 637     address start = __ pc();
 638 
 639     __ push(0);                       // hole for return address-to-be
 640     __ pusha();                       // push registers
 641     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 642     BLOCK_COMMENT("call handle_unsafe_access");
 643     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 644     __ movptr(next_pc, rax);          // stuff next address
 645     __ popa();
 646     __ ret(0);                        // jump to next address
 647 
 648     return start;
 649   }
 650 
 651 
 652   //----------------------------------------------------------------------------------------------------
 653   // Non-destructive plausibility checks for oops
 654 
 655   address generate_verify_oop() {
 656     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 657     address start = __ pc();
 658 
 659     // Incoming arguments on stack after saving rax,:
 660     //
 661     // [tos    ]: saved rdx
 662     // [tos + 1]: saved EFLAGS
 663     // [tos + 2]: return address
 664     // [tos + 3]: char* error message
 665     // [tos + 4]: oop   object to verify
 666     // [tos + 5]: saved rax, - saved by caller and bashed
 667 
 668     Label exit, error;
 669     __ pushf();
 670     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 671     __ push(rdx);                                // save rdx
 672     // make sure object is 'reasonable'
 673     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
 674     __ testptr(rax, rax);
 675     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
 676 
 677     // Check if the oop is in the right area of memory
 678     const int oop_mask = Universe::verify_oop_mask();
 679     const int oop_bits = Universe::verify_oop_bits();
 680     __ mov(rdx, rax);
 681     __ andptr(rdx, oop_mask);
 682     __ cmpptr(rdx, oop_bits);
 683     __ jcc(Assembler::notZero, error);
 684 
 685     // make sure klass is 'reasonable'
 686     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
 687     __ testptr(rax, rax);
 688     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
 689 
 690     // Check if the klass is in the right area of memory
 691     const int klass_mask = Universe::verify_klass_mask();
 692     const int klass_bits = Universe::verify_klass_bits();
 693     __ mov(rdx, rax);
 694     __ andptr(rdx, klass_mask);
 695     __ cmpptr(rdx, klass_bits);
 696     __ jcc(Assembler::notZero, error);
 697 
 698     // make sure klass' klass is 'reasonable'
 699     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
 700     __ testptr(rax, rax);
 701     __ jcc(Assembler::zero, error);              // if klass' klass is NULL it is broken
 702 
 703     __ mov(rdx, rax);
 704     __ andptr(rdx, klass_mask);
 705     __ cmpptr(rdx, klass_bits);
 706     __ jcc(Assembler::notZero, error);           // if klass not in right area
 707                                                  // of memory it is broken too.
 708 
 709     // return if everything seems ok
 710     __ bind(exit);
 711     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 712     __ pop(rdx);                                 // restore rdx
 713     __ popf();                                   // restore EFLAGS
 714     __ ret(3 * wordSize);                        // pop arguments
 715 
 716     // handle errors
 717     __ bind(error);
 718     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 719     __ pop(rdx);                                 // get saved rdx back
 720     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
 721     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
 722     BLOCK_COMMENT("call MacroAssembler::debug");
 723     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 724     __ popa();
 725     __ ret(3 * wordSize);                        // pop arguments
 726     return start;
 727   }
 728 
 729   //
 730   //  Generate pre-barrier for array stores
 731   //
 732   //  Input:
 733   //     start   -  starting address
 734   //     count   -  element count
 735   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
 736     assert_different_registers(start, count);
 737     BarrierSet* bs = Universe::heap()->barrier_set();
 738     switch (bs->kind()) {
 739       case BarrierSet::G1SATBCT:
 740       case BarrierSet::G1SATBCTLogging:
 741         // With G1, don't generate the call if we statically know that the target in uninitialized
 742         if (!uninitialized_target) {
 743            __ pusha();                      // push registers
 744            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
 745                            start, count);
 746            __ popa();
 747          }
 748         break;
 749       case BarrierSet::CardTableModRef:
 750       case BarrierSet::CardTableExtension:
 751       case BarrierSet::ModRef:
 752         break;
 753       default      :
 754         ShouldNotReachHere();
 755 
 756     }
 757   }
 758 
 759 
 760   //
 761   // Generate a post-barrier for an array store
 762   //
 763   //     start    -  starting address
 764   //     count    -  element count
 765   //
 766   //  The two input registers are overwritten.
 767   //
 768   void  gen_write_ref_array_post_barrier(Register start, Register count) {
 769     BarrierSet* bs = Universe::heap()->barrier_set();
 770     assert_different_registers(start, count);
 771     switch (bs->kind()) {
 772       case BarrierSet::G1SATBCT:
 773       case BarrierSet::G1SATBCTLogging:
 774         {
 775           __ pusha();                      // push registers
 776           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
 777                           start, count);
 778           __ popa();
 779         }
 780         break;
 781 
 782       case BarrierSet::CardTableModRef:
 783       case BarrierSet::CardTableExtension:
 784         {
 785           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
 786           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
 787 
 788           Label L_loop;
 789           const Register end = count;  // elements count; end == start+count-1
 790           assert_different_registers(start, end);
 791 
 792           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
 793           __ shrptr(start, CardTableModRefBS::card_shift);
 794           __ shrptr(end,   CardTableModRefBS::card_shift);
 795           __ subptr(end, start); // end --> count
 796         __ BIND(L_loop);
 797           intptr_t disp = (intptr_t) ct->byte_map_base;
 798           Address cardtable(start, count, Address::times_1, disp);
 799           __ movb(cardtable, 0);
 800           __ decrement(count);
 801           __ jcc(Assembler::greaterEqual, L_loop);
 802         }
 803         break;
 804       case BarrierSet::ModRef:
 805         break;
 806       default      :
 807         ShouldNotReachHere();
 808 
 809     }
 810   }
 811 
 812 
 813   // Copy 64 bytes chunks
 814   //
 815   // Inputs:
 816   //   from        - source array address
 817   //   to_from     - destination array address - from
 818   //   qword_count - 8-bytes element count, negative
 819   //
 820   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
 821     assert( UseSSE >= 2, "supported cpu only" );
 822     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 823     // Copy 64-byte chunks
 824     __ jmpb(L_copy_64_bytes);
 825     __ align(OptoLoopAlignment);
 826   __ BIND(L_copy_64_bytes_loop);
 827 
 828     if (UseUnalignedLoadStores) {
 829       if (UseAVX >= 2) {
 830         __ vmovdqu(xmm0, Address(from,  0));
 831         __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
 832         __ vmovdqu(xmm1, Address(from, 32));
 833         __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
 834       } else {
 835         __ movdqu(xmm0, Address(from, 0));
 836         __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
 837         __ movdqu(xmm1, Address(from, 16));
 838         __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
 839         __ movdqu(xmm2, Address(from, 32));
 840         __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
 841         __ movdqu(xmm3, Address(from, 48));
 842         __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
 843       }
 844     } else {
 845       __ movq(xmm0, Address(from, 0));
 846       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
 847       __ movq(xmm1, Address(from, 8));
 848       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
 849       __ movq(xmm2, Address(from, 16));
 850       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
 851       __ movq(xmm3, Address(from, 24));
 852       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
 853       __ movq(xmm4, Address(from, 32));
 854       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
 855       __ movq(xmm5, Address(from, 40));
 856       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
 857       __ movq(xmm6, Address(from, 48));
 858       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
 859       __ movq(xmm7, Address(from, 56));
 860       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
 861     }
 862 
 863     __ addl(from, 64);
 864   __ BIND(L_copy_64_bytes);
 865     __ subl(qword_count, 8);
 866     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 867 
 868     if (UseUnalignedLoadStores && (UseAVX >= 2)) {
 869       // clean upper bits of YMM registers
 870       __ vzeroupper();
 871     }
 872     __ addl(qword_count, 8);
 873     __ jccb(Assembler::zero, L_exit);
 874     //
 875     // length is too short, just copy qwords
 876     //
 877   __ BIND(L_copy_8_bytes);
 878     __ movq(xmm0, Address(from, 0));
 879     __ movq(Address(from, to_from, Address::times_1), xmm0);
 880     __ addl(from, 8);
 881     __ decrement(qword_count);
 882     __ jcc(Assembler::greater, L_copy_8_bytes);
 883   __ BIND(L_exit);
 884   }
 885 
 886   // Copy 64 bytes chunks
 887   //
 888   // Inputs:
 889   //   from        - source array address
 890   //   to_from     - destination array address - from
 891   //   qword_count - 8-bytes element count, negative
 892   //
 893   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
 894     assert( VM_Version::supports_mmx(), "supported cpu only" );
 895     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 896     // Copy 64-byte chunks
 897     __ jmpb(L_copy_64_bytes);
 898     __ align(OptoLoopAlignment);
 899   __ BIND(L_copy_64_bytes_loop);
 900     __ movq(mmx0, Address(from, 0));
 901     __ movq(mmx1, Address(from, 8));
 902     __ movq(mmx2, Address(from, 16));
 903     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
 904     __ movq(mmx3, Address(from, 24));
 905     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
 906     __ movq(mmx4, Address(from, 32));
 907     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
 908     __ movq(mmx5, Address(from, 40));
 909     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
 910     __ movq(mmx6, Address(from, 48));
 911     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
 912     __ movq(mmx7, Address(from, 56));
 913     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
 914     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
 915     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
 916     __ addptr(from, 64);
 917   __ BIND(L_copy_64_bytes);
 918     __ subl(qword_count, 8);
 919     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 920     __ addl(qword_count, 8);
 921     __ jccb(Assembler::zero, L_exit);
 922     //
 923     // length is too short, just copy qwords
 924     //
 925   __ BIND(L_copy_8_bytes);
 926     __ movq(mmx0, Address(from, 0));
 927     __ movq(Address(from, to_from, Address::times_1), mmx0);
 928     __ addptr(from, 8);
 929     __ decrement(qword_count);
 930     __ jcc(Assembler::greater, L_copy_8_bytes);
 931   __ BIND(L_exit);
 932     __ emms();
 933   }
 934 
 935   address generate_disjoint_copy(BasicType t, bool aligned,
 936                                  Address::ScaleFactor sf,
 937                                  address* entry, const char *name,
 938                                  bool dest_uninitialized = false) {
 939     __ align(CodeEntryAlignment);
 940     StubCodeMark mark(this, "StubRoutines", name);
 941     address start = __ pc();
 942 
 943     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
 944     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
 945 
 946     int shift = Address::times_ptr - sf;
 947 
 948     const Register from     = rsi;  // source array address
 949     const Register to       = rdi;  // destination array address
 950     const Register count    = rcx;  // elements count
 951     const Register to_from  = to;   // (to - from)
 952     const Register saved_to = rdx;  // saved destination array address
 953 
 954     __ enter(); // required for proper stackwalking of RuntimeStub frame
 955     __ push(rsi);
 956     __ push(rdi);
 957     __ movptr(from , Address(rsp, 12+ 4));
 958     __ movptr(to   , Address(rsp, 12+ 8));
 959     __ movl(count, Address(rsp, 12+ 12));
 960 
 961     if (entry != NULL) {
 962       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
 963       BLOCK_COMMENT("Entry:");
 964     }
 965 
 966     if (t == T_OBJECT) {
 967       __ testl(count, count);
 968       __ jcc(Assembler::zero, L_0_count);
 969       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
 970       __ mov(saved_to, to);          // save 'to'
 971     }
 972 
 973     __ subptr(to, from); // to --> to_from
 974     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
 975     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
 976     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 977       // align source address at 4 bytes address boundary
 978       if (t == T_BYTE) {
 979         // One byte misalignment happens only for byte arrays
 980         __ testl(from, 1);
 981         __ jccb(Assembler::zero, L_skip_align1);
 982         __ movb(rax, Address(from, 0));
 983         __ movb(Address(from, to_from, Address::times_1, 0), rax);
 984         __ increment(from);
 985         __ decrement(count);
 986       __ BIND(L_skip_align1);
 987       }
 988       // Two bytes misalignment happens only for byte and short (char) arrays
 989       __ testl(from, 2);
 990       __ jccb(Assembler::zero, L_skip_align2);
 991       __ movw(rax, Address(from, 0));
 992       __ movw(Address(from, to_from, Address::times_1, 0), rax);
 993       __ addptr(from, 2);
 994       __ subl(count, 1<<(shift-1));
 995     __ BIND(L_skip_align2);
 996     }
 997     if (!VM_Version::supports_mmx()) {
 998       __ mov(rax, count);      // save 'count'
 999       __ shrl(count, shift); // bytes count
1000       __ addptr(to_from, from);// restore 'to'
1001       __ rep_mov();
1002       __ subptr(to_from, from);// restore 'to_from'
1003       __ mov(count, rax);      // restore 'count'
1004       __ jmpb(L_copy_2_bytes); // all dwords were copied
1005     } else {
1006       if (!UseUnalignedLoadStores) {
1007         // align to 8 bytes, we know we are 4 byte aligned to start
1008         __ testptr(from, 4);
1009         __ jccb(Assembler::zero, L_copy_64_bytes);
1010         __ movl(rax, Address(from, 0));
1011         __ movl(Address(from, to_from, Address::times_1, 0), rax);
1012         __ addptr(from, 4);
1013         __ subl(count, 1<<shift);
1014       }
1015     __ BIND(L_copy_64_bytes);
1016       __ mov(rax, count);
1017       __ shrl(rax, shift+1);  // 8 bytes chunk count
1018       //
1019       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
1020       //
1021       if (UseXMMForArrayCopy) {
1022         xmm_copy_forward(from, to_from, rax);
1023       } else {
1024         mmx_copy_forward(from, to_from, rax);
1025       }
1026     }
1027     // copy tailing dword
1028   __ BIND(L_copy_4_bytes);
1029     __ testl(count, 1<<shift);
1030     __ jccb(Assembler::zero, L_copy_2_bytes);
1031     __ movl(rax, Address(from, 0));
1032     __ movl(Address(from, to_from, Address::times_1, 0), rax);
1033     if (t == T_BYTE || t == T_SHORT) {
1034       __ addptr(from, 4);
1035     __ BIND(L_copy_2_bytes);
1036       // copy tailing word
1037       __ testl(count, 1<<(shift-1));
1038       __ jccb(Assembler::zero, L_copy_byte);
1039       __ movw(rax, Address(from, 0));
1040       __ movw(Address(from, to_from, Address::times_1, 0), rax);
1041       if (t == T_BYTE) {
1042         __ addptr(from, 2);
1043       __ BIND(L_copy_byte);
1044         // copy tailing byte
1045         __ testl(count, 1);
1046         __ jccb(Assembler::zero, L_exit);
1047         __ movb(rax, Address(from, 0));
1048         __ movb(Address(from, to_from, Address::times_1, 0), rax);
1049       __ BIND(L_exit);
1050       } else {
1051       __ BIND(L_copy_byte);
1052       }
1053     } else {
1054     __ BIND(L_copy_2_bytes);
1055     }
1056 
1057     if (t == T_OBJECT) {
1058       __ movl(count, Address(rsp, 12+12)); // reread 'count'
1059       __ mov(to, saved_to); // restore 'to'
1060       gen_write_ref_array_post_barrier(to, count);
1061     __ BIND(L_0_count);
1062     }
1063     inc_copy_counter_np(t);
1064     __ pop(rdi);
1065     __ pop(rsi);
1066     __ leave(); // required for proper stackwalking of RuntimeStub frame
1067     __ xorptr(rax, rax); // return 0
1068     __ ret(0);
1069     return start;
1070   }
1071 
1072 
1073   address generate_fill(BasicType t, bool aligned, const char *name) {
1074     __ align(CodeEntryAlignment);
1075     StubCodeMark mark(this, "StubRoutines", name);
1076     address start = __ pc();
1077 
1078     BLOCK_COMMENT("Entry:");
1079 
1080     const Register to       = rdi;  // source array address
1081     const Register value    = rdx;  // value
1082     const Register count    = rsi;  // elements count
1083 
1084     __ enter(); // required for proper stackwalking of RuntimeStub frame
1085     __ push(rsi);
1086     __ push(rdi);
1087     __ movptr(to   , Address(rsp, 12+ 4));
1088     __ movl(value, Address(rsp, 12+ 8));
1089     __ movl(count, Address(rsp, 12+ 12));
1090 
1091     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1092 
1093     __ pop(rdi);
1094     __ pop(rsi);
1095     __ leave(); // required for proper stackwalking of RuntimeStub frame
1096     __ ret(0);
1097     return start;
1098   }
1099 
1100   address generate_conjoint_copy(BasicType t, bool aligned,
1101                                  Address::ScaleFactor sf,
1102                                  address nooverlap_target,
1103                                  address* entry, const char *name,
1104                                  bool dest_uninitialized = false) {
1105     __ align(CodeEntryAlignment);
1106     StubCodeMark mark(this, "StubRoutines", name);
1107     address start = __ pc();
1108 
1109     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
1110     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
1111 
1112     int shift = Address::times_ptr - sf;
1113 
1114     const Register src   = rax;  // source array address
1115     const Register dst   = rdx;  // destination array address
1116     const Register from  = rsi;  // source array address
1117     const Register to    = rdi;  // destination array address
1118     const Register count = rcx;  // elements count
1119     const Register end   = rax;  // array end address
1120 
1121     __ enter(); // required for proper stackwalking of RuntimeStub frame
1122     __ push(rsi);
1123     __ push(rdi);
1124     __ movptr(src  , Address(rsp, 12+ 4));   // from
1125     __ movptr(dst  , Address(rsp, 12+ 8));   // to
1126     __ movl2ptr(count, Address(rsp, 12+12)); // count
1127 
1128     if (entry != NULL) {
1129       *entry = __ pc(); // Entry point from generic arraycopy stub.
1130       BLOCK_COMMENT("Entry:");
1131     }
1132 
1133     // nooverlap_target expects arguments in rsi and rdi.
1134     __ mov(from, src);
1135     __ mov(to  , dst);
1136 
1137     // arrays overlap test: dispatch to disjoint stub if necessary.
1138     RuntimeAddress nooverlap(nooverlap_target);
1139     __ cmpptr(dst, src);
1140     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
1141     __ jump_cc(Assembler::belowEqual, nooverlap);
1142     __ cmpptr(dst, end);
1143     __ jump_cc(Assembler::aboveEqual, nooverlap);
1144 
1145     if (t == T_OBJECT) {
1146       __ testl(count, count);
1147       __ jcc(Assembler::zero, L_0_count);
1148       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
1149     }
1150 
1151     // copy from high to low
1152     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1153     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
1154     if (t == T_BYTE || t == T_SHORT) {
1155       // Align the end of destination array at 4 bytes address boundary
1156       __ lea(end, Address(dst, count, sf, 0));
1157       if (t == T_BYTE) {
1158         // One byte misalignment happens only for byte arrays
1159         __ testl(end, 1);
1160         __ jccb(Assembler::zero, L_skip_align1);
1161         __ decrement(count);
1162         __ movb(rdx, Address(from, count, sf, 0));
1163         __ movb(Address(to, count, sf, 0), rdx);
1164       __ BIND(L_skip_align1);
1165       }
1166       // Two bytes misalignment happens only for byte and short (char) arrays
1167       __ testl(end, 2);
1168       __ jccb(Assembler::zero, L_skip_align2);
1169       __ subptr(count, 1<<(shift-1));
1170       __ movw(rdx, Address(from, count, sf, 0));
1171       __ movw(Address(to, count, sf, 0), rdx);
1172     __ BIND(L_skip_align2);
1173       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1174       __ jcc(Assembler::below, L_copy_4_bytes);
1175     }
1176 
1177     if (!VM_Version::supports_mmx()) {
1178       __ std();
1179       __ mov(rax, count); // Save 'count'
1180       __ mov(rdx, to);    // Save 'to'
1181       __ lea(rsi, Address(from, count, sf, -4));
1182       __ lea(rdi, Address(to  , count, sf, -4));
1183       __ shrptr(count, shift); // bytes count
1184       __ rep_mov();
1185       __ cld();
1186       __ mov(count, rax); // restore 'count'
1187       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1188       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
1189       __ mov(to, rdx);   // restore 'to'
1190       __ jmpb(L_copy_2_bytes); // all dword were copied
1191    } else {
1192       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1193       __ testptr(end, 4);
1194       __ jccb(Assembler::zero, L_copy_8_bytes);
1195       __ subl(count, 1<<shift);
1196       __ movl(rdx, Address(from, count, sf, 0));
1197       __ movl(Address(to, count, sf, 0), rdx);
1198       __ jmpb(L_copy_8_bytes);
1199 
1200       __ align(OptoLoopAlignment);
1201       // Move 8 bytes
1202     __ BIND(L_copy_8_bytes_loop);
1203       if (UseXMMForArrayCopy) {
1204         __ movq(xmm0, Address(from, count, sf, 0));
1205         __ movq(Address(to, count, sf, 0), xmm0);
1206       } else {
1207         __ movq(mmx0, Address(from, count, sf, 0));
1208         __ movq(Address(to, count, sf, 0), mmx0);
1209       }
1210     __ BIND(L_copy_8_bytes);
1211       __ subl(count, 2<<shift);
1212       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1213       __ addl(count, 2<<shift);
1214       if (!UseXMMForArrayCopy) {
1215         __ emms();
1216       }
1217     }
1218   __ BIND(L_copy_4_bytes);
1219     // copy prefix qword
1220     __ testl(count, 1<<shift);
1221     __ jccb(Assembler::zero, L_copy_2_bytes);
1222     __ movl(rdx, Address(from, count, sf, -4));
1223     __ movl(Address(to, count, sf, -4), rdx);
1224 
1225     if (t == T_BYTE || t == T_SHORT) {
1226         __ subl(count, (1<<shift));
1227       __ BIND(L_copy_2_bytes);
1228         // copy prefix dword
1229         __ testl(count, 1<<(shift-1));
1230         __ jccb(Assembler::zero, L_copy_byte);
1231         __ movw(rdx, Address(from, count, sf, -2));
1232         __ movw(Address(to, count, sf, -2), rdx);
1233         if (t == T_BYTE) {
1234           __ subl(count, 1<<(shift-1));
1235         __ BIND(L_copy_byte);
1236           // copy prefix byte
1237           __ testl(count, 1);
1238           __ jccb(Assembler::zero, L_exit);
1239           __ movb(rdx, Address(from, 0));
1240           __ movb(Address(to, 0), rdx);
1241         __ BIND(L_exit);
1242         } else {
1243         __ BIND(L_copy_byte);
1244         }
1245     } else {
1246     __ BIND(L_copy_2_bytes);
1247     }
1248     if (t == T_OBJECT) {
1249       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
1250       gen_write_ref_array_post_barrier(to, count);
1251     __ BIND(L_0_count);
1252     }
1253     inc_copy_counter_np(t);
1254     __ pop(rdi);
1255     __ pop(rsi);
1256     __ leave(); // required for proper stackwalking of RuntimeStub frame
1257     __ xorptr(rax, rax); // return 0
1258     __ ret(0);
1259     return start;
1260   }
1261 
1262 
1263   address generate_disjoint_long_copy(address* entry, const char *name) {
1264     __ align(CodeEntryAlignment);
1265     StubCodeMark mark(this, "StubRoutines", name);
1266     address start = __ pc();
1267 
1268     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1269     const Register from       = rax;  // source array address
1270     const Register to         = rdx;  // destination array address
1271     const Register count      = rcx;  // elements count
1272     const Register to_from    = rdx;  // (to - from)
1273 
1274     __ enter(); // required for proper stackwalking of RuntimeStub frame
1275     __ movptr(from , Address(rsp, 8+0));       // from
1276     __ movptr(to   , Address(rsp, 8+4));       // to
1277     __ movl2ptr(count, Address(rsp, 8+8));     // count
1278 
1279     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
1280     BLOCK_COMMENT("Entry:");
1281 
1282     __ subptr(to, from); // to --> to_from
1283     if (VM_Version::supports_mmx()) {
1284       if (UseXMMForArrayCopy) {
1285         xmm_copy_forward(from, to_from, count);
1286       } else {
1287         mmx_copy_forward(from, to_from, count);
1288       }
1289     } else {
1290       __ jmpb(L_copy_8_bytes);
1291       __ align(OptoLoopAlignment);
1292     __ BIND(L_copy_8_bytes_loop);
1293       __ fild_d(Address(from, 0));
1294       __ fistp_d(Address(from, to_from, Address::times_1));
1295       __ addptr(from, 8);
1296     __ BIND(L_copy_8_bytes);
1297       __ decrement(count);
1298       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1299     }
1300     inc_copy_counter_np(T_LONG);
1301     __ leave(); // required for proper stackwalking of RuntimeStub frame
1302     __ xorptr(rax, rax); // return 0
1303     __ ret(0);
1304     return start;
1305   }
1306 
1307   address generate_conjoint_long_copy(address nooverlap_target,
1308                                       address* entry, const char *name) {
1309     __ align(CodeEntryAlignment);
1310     StubCodeMark mark(this, "StubRoutines", name);
1311     address start = __ pc();
1312 
1313     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1314     const Register from       = rax;  // source array address
1315     const Register to         = rdx;  // destination array address
1316     const Register count      = rcx;  // elements count
1317     const Register end_from   = rax;  // source array end address
1318 
1319     __ enter(); // required for proper stackwalking of RuntimeStub frame
1320     __ movptr(from , Address(rsp, 8+0));       // from
1321     __ movptr(to   , Address(rsp, 8+4));       // to
1322     __ movl2ptr(count, Address(rsp, 8+8));     // count
1323 
1324     *entry = __ pc(); // Entry point from generic arraycopy stub.
1325     BLOCK_COMMENT("Entry:");
1326 
1327     // arrays overlap test
1328     __ cmpptr(to, from);
1329     RuntimeAddress nooverlap(nooverlap_target);
1330     __ jump_cc(Assembler::belowEqual, nooverlap);
1331     __ lea(end_from, Address(from, count, Address::times_8, 0));
1332     __ cmpptr(to, end_from);
1333     __ movptr(from, Address(rsp, 8));  // from
1334     __ jump_cc(Assembler::aboveEqual, nooverlap);
1335 
1336     __ jmpb(L_copy_8_bytes);
1337 
1338     __ align(OptoLoopAlignment);
1339   __ BIND(L_copy_8_bytes_loop);
1340     if (VM_Version::supports_mmx()) {
1341       if (UseXMMForArrayCopy) {
1342         __ movq(xmm0, Address(from, count, Address::times_8));
1343         __ movq(Address(to, count, Address::times_8), xmm0);
1344       } else {
1345         __ movq(mmx0, Address(from, count, Address::times_8));
1346         __ movq(Address(to, count, Address::times_8), mmx0);
1347       }
1348     } else {
1349       __ fild_d(Address(from, count, Address::times_8));
1350       __ fistp_d(Address(to, count, Address::times_8));
1351     }
1352   __ BIND(L_copy_8_bytes);
1353     __ decrement(count);
1354     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1355 
1356     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
1357       __ emms();
1358     }
1359     inc_copy_counter_np(T_LONG);
1360     __ leave(); // required for proper stackwalking of RuntimeStub frame
1361     __ xorptr(rax, rax); // return 0
1362     __ ret(0);
1363     return start;
1364   }
1365 
1366 
1367   // Helper for generating a dynamic type check.
1368   // The sub_klass must be one of {rbx, rdx, rsi}.
1369   // The temp is killed.
1370   void generate_type_check(Register sub_klass,
1371                            Address& super_check_offset_addr,
1372                            Address& super_klass_addr,
1373                            Register temp,
1374                            Label* L_success, Label* L_failure) {
1375     BLOCK_COMMENT("type_check:");
1376 
1377     Label L_fallthrough;
1378 #define LOCAL_JCC(assembler_con, label_ptr)                             \
1379     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
1380     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
1381 
1382     // The following is a strange variation of the fast path which requires
1383     // one less register, because needed values are on the argument stack.
1384     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
1385     //                                  L_success, L_failure, NULL);
1386     assert_different_registers(sub_klass, temp);
1387 
1388     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1389 
1390     // if the pointers are equal, we are done (e.g., String[] elements)
1391     __ cmpptr(sub_klass, super_klass_addr);
1392     LOCAL_JCC(Assembler::equal, L_success);
1393 
1394     // check the supertype display:
1395     __ movl2ptr(temp, super_check_offset_addr);
1396     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1397     __ movptr(temp, super_check_addr); // load displayed supertype
1398     __ cmpptr(temp, super_klass_addr); // test the super type
1399     LOCAL_JCC(Assembler::equal, L_success);
1400 
1401     // if it was a primary super, we can just fail immediately
1402     __ cmpl(super_check_offset_addr, sc_offset);
1403     LOCAL_JCC(Assembler::notEqual, L_failure);
1404 
1405     // The repne_scan instruction uses fixed registers, which will get spilled.
1406     // We happen to know this works best when super_klass is in rax.
1407     Register super_klass = temp;
1408     __ movptr(super_klass, super_klass_addr);
1409     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
1410                                      L_success, L_failure);
1411 
1412     __ bind(L_fallthrough);
1413 
1414     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
1415     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
1416 
1417 #undef LOCAL_JCC
1418   }
1419 
1420   //
1421   //  Generate checkcasting array copy stub
1422   //
1423   //  Input:
1424   //    4(rsp)   - source array address
1425   //    8(rsp)   - destination array address
1426   //   12(rsp)   - element count, can be zero
1427   //   16(rsp)   - size_t ckoff (super_check_offset)
1428   //   20(rsp)   - oop ckval (super_klass)
1429   //
1430   //  Output:
1431   //    rax, ==  0  -  success
1432   //    rax, == -1^K - failure, where K is partial transfer count
1433   //
1434   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
1435     __ align(CodeEntryAlignment);
1436     StubCodeMark mark(this, "StubRoutines", name);
1437     address start = __ pc();
1438 
1439     Label L_load_element, L_store_element, L_do_card_marks, L_done;
1440 
1441     // register use:
1442     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
1443     //  rdi, rsi      -- element access (oop, klass)
1444     //  rbx,           -- temp
1445     const Register from       = rax;    // source array address
1446     const Register to         = rdx;    // destination array address
1447     const Register length     = rcx;    // elements count
1448     const Register elem       = rdi;    // each oop copied
1449     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
1450     const Register temp       = rbx;    // lone remaining temp
1451 
1452     __ enter(); // required for proper stackwalking of RuntimeStub frame
1453 
1454     __ push(rsi);
1455     __ push(rdi);
1456     __ push(rbx);
1457 
1458     Address   from_arg(rsp, 16+ 4);     // from
1459     Address     to_arg(rsp, 16+ 8);     // to
1460     Address length_arg(rsp, 16+12);     // elements count
1461     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
1462     Address  ckval_arg(rsp, 16+20);     // super_klass
1463 
1464     // Load up:
1465     __ movptr(from,     from_arg);
1466     __ movptr(to,         to_arg);
1467     __ movl2ptr(length, length_arg);
1468 
1469     if (entry != NULL) {
1470       *entry = __ pc(); // Entry point from generic arraycopy stub.
1471       BLOCK_COMMENT("Entry:");
1472     }
1473 
1474     //---------------------------------------------------------------
1475     // Assembler stub will be used for this call to arraycopy
1476     // if the two arrays are subtypes of Object[] but the
1477     // destination array type is not equal to or a supertype
1478     // of the source type.  Each element must be separately
1479     // checked.
1480 
1481     // Loop-invariant addresses.  They are exclusive end pointers.
1482     Address end_from_addr(from, length, Address::times_ptr, 0);
1483     Address   end_to_addr(to,   length, Address::times_ptr, 0);
1484 
1485     Register end_from = from;           // re-use
1486     Register end_to   = to;             // re-use
1487     Register count    = length;         // re-use
1488 
1489     // Loop-variant addresses.  They assume post-incremented count < 0.
1490     Address from_element_addr(end_from, count, Address::times_ptr, 0);
1491     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
1492     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
1493 
1494     // Copy from low to high addresses, indexed from the end of each array.
1495     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1496     __ lea(end_from, end_from_addr);
1497     __ lea(end_to,   end_to_addr);
1498     assert(length == count, "");        // else fix next line:
1499     __ negptr(count);                   // negate and test the length
1500     __ jccb(Assembler::notZero, L_load_element);
1501 
1502     // Empty array:  Nothing to do.
1503     __ xorptr(rax, rax);                  // return 0 on (trivial) success
1504     __ jmp(L_done);
1505 
1506     // ======== begin loop ========
1507     // (Loop is rotated; its entry is L_load_element.)
1508     // Loop control:
1509     //   for (count = -count; count != 0; count++)
1510     // Base pointers src, dst are biased by 8*count,to last element.
1511     __ align(OptoLoopAlignment);
1512 
1513     __ BIND(L_store_element);
1514     __ movptr(to_element_addr, elem);     // store the oop
1515     __ increment(count);                // increment the count toward zero
1516     __ jccb(Assembler::zero, L_do_card_marks);
1517 
1518     // ======== loop entry is here ========
1519     __ BIND(L_load_element);
1520     __ movptr(elem, from_element_addr);   // load the oop
1521     __ testptr(elem, elem);
1522     __ jccb(Assembler::zero, L_store_element);
1523 
1524     // (Could do a trick here:  Remember last successful non-null
1525     // element stored and make a quick oop equality check on it.)
1526 
1527     __ movptr(elem_klass, elem_klass_addr); // query the object klass
1528     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
1529                         &L_store_element, NULL);
1530       // (On fall-through, we have failed the element type check.)
1531     // ======== end loop ========
1532 
1533     // It was a real error; we must depend on the caller to finish the job.
1534     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
1535     // Emit GC store barriers for the oops we have copied (length_arg + count),
1536     // and report their number to the caller.
1537     __ addl(count, length_arg);         // transfers = (length - remaining)
1538     __ movl2ptr(rax, count);            // save the value
1539     __ notptr(rax);                     // report (-1^K) to caller
1540     __ movptr(to, to_arg);              // reload
1541     assert_different_registers(to, count, rax);
1542     gen_write_ref_array_post_barrier(to, count);
1543     __ jmpb(L_done);
1544 
1545     // Come here on success only.
1546     __ BIND(L_do_card_marks);
1547     __ movl2ptr(count, length_arg);
1548     __ movptr(to, to_arg);                // reload
1549     gen_write_ref_array_post_barrier(to, count);
1550     __ xorptr(rax, rax);                  // return 0 on success
1551 
1552     // Common exit point (success or failure).
1553     __ BIND(L_done);
1554     __ pop(rbx);
1555     __ pop(rdi);
1556     __ pop(rsi);
1557     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
1558     __ leave(); // required for proper stackwalking of RuntimeStub frame
1559     __ ret(0);
1560 
1561     return start;
1562   }
1563 
1564   //
1565   //  Generate 'unsafe' array copy stub
1566   //  Though just as safe as the other stubs, it takes an unscaled
1567   //  size_t argument instead of an element count.
1568   //
1569   //  Input:
1570   //    4(rsp)   - source array address
1571   //    8(rsp)   - destination array address
1572   //   12(rsp)   - byte count, can be zero
1573   //
1574   //  Output:
1575   //    rax, ==  0  -  success
1576   //    rax, == -1  -  need to call System.arraycopy
1577   //
1578   // Examines the alignment of the operands and dispatches
1579   // to a long, int, short, or byte copy loop.
1580   //
1581   address generate_unsafe_copy(const char *name,
1582                                address byte_copy_entry,
1583                                address short_copy_entry,
1584                                address int_copy_entry,
1585                                address long_copy_entry) {
1586 
1587     Label L_long_aligned, L_int_aligned, L_short_aligned;
1588 
1589     __ align(CodeEntryAlignment);
1590     StubCodeMark mark(this, "StubRoutines", name);
1591     address start = __ pc();
1592 
1593     const Register from       = rax;  // source array address
1594     const Register to         = rdx;  // destination array address
1595     const Register count      = rcx;  // elements count
1596 
1597     __ enter(); // required for proper stackwalking of RuntimeStub frame
1598     __ push(rsi);
1599     __ push(rdi);
1600     Address  from_arg(rsp, 12+ 4);      // from
1601     Address    to_arg(rsp, 12+ 8);      // to
1602     Address count_arg(rsp, 12+12);      // byte count
1603 
1604     // Load up:
1605     __ movptr(from ,  from_arg);
1606     __ movptr(to   ,    to_arg);
1607     __ movl2ptr(count, count_arg);
1608 
1609     // bump this on entry, not on exit:
1610     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
1611 
1612     const Register bits = rsi;
1613     __ mov(bits, from);
1614     __ orptr(bits, to);
1615     __ orptr(bits, count);
1616 
1617     __ testl(bits, BytesPerLong-1);
1618     __ jccb(Assembler::zero, L_long_aligned);
1619 
1620     __ testl(bits, BytesPerInt-1);
1621     __ jccb(Assembler::zero, L_int_aligned);
1622 
1623     __ testl(bits, BytesPerShort-1);
1624     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
1625 
1626     __ BIND(L_short_aligned);
1627     __ shrptr(count, LogBytesPerShort); // size => short_count
1628     __ movl(count_arg, count);          // update 'count'
1629     __ jump(RuntimeAddress(short_copy_entry));
1630 
1631     __ BIND(L_int_aligned);
1632     __ shrptr(count, LogBytesPerInt); // size => int_count
1633     __ movl(count_arg, count);          // update 'count'
1634     __ jump(RuntimeAddress(int_copy_entry));
1635 
1636     __ BIND(L_long_aligned);
1637     __ shrptr(count, LogBytesPerLong); // size => qword_count
1638     __ movl(count_arg, count);          // update 'count'
1639     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1640     __ pop(rsi);
1641     __ jump(RuntimeAddress(long_copy_entry));
1642 
1643     return start;
1644   }
1645 
1646 
1647   // Perform range checks on the proposed arraycopy.
1648   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
1649   void arraycopy_range_checks(Register src,
1650                               Register src_pos,
1651                               Register dst,
1652                               Register dst_pos,
1653                               Address& length,
1654                               Label& L_failed) {
1655     BLOCK_COMMENT("arraycopy_range_checks:");
1656     const Register src_end = src_pos;   // source array end position
1657     const Register dst_end = dst_pos;   // destination array end position
1658     __ addl(src_end, length); // src_pos + length
1659     __ addl(dst_end, length); // dst_pos + length
1660 
1661     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
1662     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
1663     __ jcc(Assembler::above, L_failed);
1664 
1665     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
1666     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
1667     __ jcc(Assembler::above, L_failed);
1668 
1669     BLOCK_COMMENT("arraycopy_range_checks done");
1670   }
1671 
1672 
1673   //
1674   //  Generate generic array copy stubs
1675   //
1676   //  Input:
1677   //     4(rsp)    -  src oop
1678   //     8(rsp)    -  src_pos
1679   //    12(rsp)    -  dst oop
1680   //    16(rsp)    -  dst_pos
1681   //    20(rsp)    -  element count
1682   //
1683   //  Output:
1684   //    rax, ==  0  -  success
1685   //    rax, == -1^K - failure, where K is partial transfer count
1686   //
1687   address generate_generic_copy(const char *name,
1688                                 address entry_jbyte_arraycopy,
1689                                 address entry_jshort_arraycopy,
1690                                 address entry_jint_arraycopy,
1691                                 address entry_oop_arraycopy,
1692                                 address entry_jlong_arraycopy,
1693                                 address entry_checkcast_arraycopy) {
1694     Label L_failed, L_failed_0, L_objArray;
1695 
1696     { int modulus = CodeEntryAlignment;
1697       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
1698       int advance = target - (__ offset() % modulus);
1699       if (advance < 0)  advance += modulus;
1700       if (advance > 0)  __ nop(advance);
1701     }
1702     StubCodeMark mark(this, "StubRoutines", name);
1703 
1704     // Short-hop target to L_failed.  Makes for denser prologue code.
1705     __ BIND(L_failed_0);
1706     __ jmp(L_failed);
1707     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
1708 
1709     __ align(CodeEntryAlignment);
1710     address start = __ pc();
1711 
1712     __ enter(); // required for proper stackwalking of RuntimeStub frame
1713     __ push(rsi);
1714     __ push(rdi);
1715 
1716     // bump this on entry, not on exit:
1717     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
1718 
1719     // Input values
1720     Address SRC     (rsp, 12+ 4);
1721     Address SRC_POS (rsp, 12+ 8);
1722     Address DST     (rsp, 12+12);
1723     Address DST_POS (rsp, 12+16);
1724     Address LENGTH  (rsp, 12+20);
1725 
1726     //-----------------------------------------------------------------------
1727     // Assembler stub will be used for this call to arraycopy
1728     // if the following conditions are met:
1729     //
1730     // (1) src and dst must not be null.
1731     // (2) src_pos must not be negative.
1732     // (3) dst_pos must not be negative.
1733     // (4) length  must not be negative.
1734     // (5) src klass and dst klass should be the same and not NULL.
1735     // (6) src and dst should be arrays.
1736     // (7) src_pos + length must not exceed length of src.
1737     // (8) dst_pos + length must not exceed length of dst.
1738     //
1739 
1740     const Register src     = rax;       // source array oop
1741     const Register src_pos = rsi;
1742     const Register dst     = rdx;       // destination array oop
1743     const Register dst_pos = rdi;
1744     const Register length  = rcx;       // transfer count
1745 
1746     //  if (src == NULL) return -1;
1747     __ movptr(src, SRC);      // src oop
1748     __ testptr(src, src);
1749     __ jccb(Assembler::zero, L_failed_0);
1750 
1751     //  if (src_pos < 0) return -1;
1752     __ movl2ptr(src_pos, SRC_POS);  // src_pos
1753     __ testl(src_pos, src_pos);
1754     __ jccb(Assembler::negative, L_failed_0);
1755 
1756     //  if (dst == NULL) return -1;
1757     __ movptr(dst, DST);      // dst oop
1758     __ testptr(dst, dst);
1759     __ jccb(Assembler::zero, L_failed_0);
1760 
1761     //  if (dst_pos < 0) return -1;
1762     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
1763     __ testl(dst_pos, dst_pos);
1764     __ jccb(Assembler::negative, L_failed_0);
1765 
1766     //  if (length < 0) return -1;
1767     __ movl2ptr(length, LENGTH);   // length
1768     __ testl(length, length);
1769     __ jccb(Assembler::negative, L_failed_0);
1770 
1771     //  if (src->klass() == NULL) return -1;
1772     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
1773     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
1774     const Register rcx_src_klass = rcx;    // array klass
1775     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
1776 
1777 #ifdef ASSERT
1778     //  assert(src->klass() != NULL);
1779     BLOCK_COMMENT("assert klasses not null");
1780     { Label L1, L2;
1781       __ testptr(rcx_src_klass, rcx_src_klass);
1782       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
1783       __ bind(L1);
1784       __ stop("broken null klass");
1785       __ bind(L2);
1786       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
1787       __ jccb(Assembler::equal, L1);      // this would be broken also
1788       BLOCK_COMMENT("assert done");
1789     }
1790 #endif //ASSERT
1791 
1792     // Load layout helper (32-bits)
1793     //
1794     //  |array_tag|     | header_size | element_type |     |log2_element_size|
1795     // 32        30    24            16              8     2                 0
1796     //
1797     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
1798     //
1799 
1800     int lh_offset = in_bytes(Klass::layout_helper_offset());
1801     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
1802 
1803     // Handle objArrays completely differently...
1804     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
1805     __ cmpl(src_klass_lh_addr, objArray_lh);
1806     __ jcc(Assembler::equal, L_objArray);
1807 
1808     //  if (src->klass() != dst->klass()) return -1;
1809     __ cmpptr(rcx_src_klass, dst_klass_addr);
1810     __ jccb(Assembler::notEqual, L_failed_0);
1811 
1812     const Register rcx_lh = rcx;  // layout helper
1813     assert(rcx_lh == rcx_src_klass, "known alias");
1814     __ movl(rcx_lh, src_klass_lh_addr);
1815 
1816     //  if (!src->is_Array()) return -1;
1817     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
1818     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
1819 
1820     // At this point, it is known to be a typeArray (array_tag 0x3).
1821 #ifdef ASSERT
1822     { Label L;
1823       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
1824       __ jcc(Assembler::greaterEqual, L); // signed cmp
1825       __ stop("must be a primitive array");
1826       __ bind(L);
1827     }
1828 #endif
1829 
1830     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
1831     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1832 
1833     // typeArrayKlass
1834     //
1835     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
1836     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
1837     //
1838     const Register rsi_offset = rsi; // array offset
1839     const Register src_array  = src; // src array offset
1840     const Register dst_array  = dst; // dst array offset
1841     const Register rdi_elsize = rdi; // log2 element size
1842 
1843     __ mov(rsi_offset, rcx_lh);
1844     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
1845     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
1846     __ addptr(src_array, rsi_offset);  // src array offset
1847     __ addptr(dst_array, rsi_offset);  // dst array offset
1848     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
1849 
1850     // next registers should be set before the jump to corresponding stub
1851     const Register from       = src; // source array address
1852     const Register to         = dst; // destination array address
1853     const Register count      = rcx; // elements count
1854     // some of them should be duplicated on stack
1855 #define FROM   Address(rsp, 12+ 4)
1856 #define TO     Address(rsp, 12+ 8)   // Not used now
1857 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
1858 
1859     BLOCK_COMMENT("scale indexes to element size");
1860     __ movl2ptr(rsi, SRC_POS);  // src_pos
1861     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
1862     assert(src_array == from, "");
1863     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
1864     __ movl2ptr(rdi, DST_POS);  // dst_pos
1865     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
1866     assert(dst_array == to, "");
1867     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
1868     __ movptr(FROM, from);      // src_addr
1869     __ mov(rdi_elsize, rcx_lh); // log2 elsize
1870     __ movl2ptr(count, LENGTH); // elements count
1871 
1872     BLOCK_COMMENT("choose copy loop based on element size");
1873     __ cmpl(rdi_elsize, 0);
1874 
1875     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
1876     __ cmpl(rdi_elsize, LogBytesPerShort);
1877     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
1878     __ cmpl(rdi_elsize, LogBytesPerInt);
1879     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
1880 #ifdef ASSERT
1881     __ cmpl(rdi_elsize, LogBytesPerLong);
1882     __ jccb(Assembler::notEqual, L_failed);
1883 #endif
1884     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1885     __ pop(rsi);
1886     __ jump(RuntimeAddress(entry_jlong_arraycopy));
1887 
1888   __ BIND(L_failed);
1889     __ xorptr(rax, rax);
1890     __ notptr(rax); // return -1
1891     __ pop(rdi);
1892     __ pop(rsi);
1893     __ leave(); // required for proper stackwalking of RuntimeStub frame
1894     __ ret(0);
1895 
1896     // objArrayKlass
1897   __ BIND(L_objArray);
1898     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
1899 
1900     Label L_plain_copy, L_checkcast_copy;
1901     //  test array classes for subtyping
1902     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
1903     __ jccb(Assembler::notEqual, L_checkcast_copy);
1904 
1905     // Identically typed arrays can be copied without element-wise checks.
1906     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
1907     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1908 
1909   __ BIND(L_plain_copy);
1910     __ movl2ptr(count, LENGTH); // elements count
1911     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
1912     __ lea(from, Address(src, src_pos, Address::times_ptr,
1913                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
1914     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
1915     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
1916                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
1917     __ movptr(FROM,  from);   // src_addr
1918     __ movptr(TO,    to);     // dst_addr
1919     __ movl(COUNT, count);  // count
1920     __ jump(RuntimeAddress(entry_oop_arraycopy));
1921 
1922   __ BIND(L_checkcast_copy);
1923     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
1924     {
1925       // Handy offsets:
1926       int  ek_offset = in_bytes(objArrayKlass::element_klass_offset());
1927       int sco_offset = in_bytes(Klass::super_check_offset_offset());
1928 
1929       Register rsi_dst_klass = rsi;
1930       Register rdi_temp      = rdi;
1931       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
1932       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
1933       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
1934 
1935       // Before looking at dst.length, make sure dst is also an objArray.
1936       __ movptr(rsi_dst_klass, dst_klass_addr);
1937       __ cmpl(dst_klass_lh_addr, objArray_lh);
1938       __ jccb(Assembler::notEqual, L_failed);
1939 
1940       // It is safe to examine both src.length and dst.length.
1941       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
1942       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1943       // (Now src_pos and dst_pos are killed, but not src and dst.)
1944 
1945       // We'll need this temp (don't forget to pop it after the type check).
1946       __ push(rbx);
1947       Register rbx_src_klass = rbx;
1948 
1949       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
1950       __ movptr(rsi_dst_klass, dst_klass_addr);
1951       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
1952       Label L_fail_array_check;
1953       generate_type_check(rbx_src_klass,
1954                           super_check_offset_addr, dst_klass_addr,
1955                           rdi_temp, NULL, &L_fail_array_check);
1956       // (On fall-through, we have passed the array type check.)
1957       __ pop(rbx);
1958       __ jmp(L_plain_copy);
1959 
1960       __ BIND(L_fail_array_check);
1961       // Reshuffle arguments so we can call checkcast_arraycopy:
1962 
1963       // match initial saves for checkcast_arraycopy
1964       // push(rsi);    // already done; see above
1965       // push(rdi);    // already done; see above
1966       // push(rbx);    // already done; see above
1967 
1968       // Marshal outgoing arguments now, freeing registers.
1969       Address   from_arg(rsp, 16+ 4);   // from
1970       Address     to_arg(rsp, 16+ 8);   // to
1971       Address length_arg(rsp, 16+12);   // elements count
1972       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
1973       Address  ckval_arg(rsp, 16+20);   // super_klass
1974 
1975       Address SRC_POS_arg(rsp, 16+ 8);
1976       Address DST_POS_arg(rsp, 16+16);
1977       Address  LENGTH_arg(rsp, 16+20);
1978       // push rbx, changed the incoming offsets (why not just use rbp,??)
1979       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
1980 
1981       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
1982       __ movl2ptr(length, LENGTH_arg);    // reload elements count
1983       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
1984       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
1985 
1986       __ movptr(ckval_arg, rbx);          // destination element type
1987       __ movl(rbx, Address(rbx, sco_offset));
1988       __ movl(ckoff_arg, rbx);          // corresponding class check offset
1989 
1990       __ movl(length_arg, length);      // outgoing length argument
1991 
1992       __ lea(from, Address(src, src_pos, Address::times_ptr,
1993                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1994       __ movptr(from_arg, from);
1995 
1996       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
1997                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1998       __ movptr(to_arg, to);
1999       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
2000     }
2001 
2002     return start;
2003   }
2004 
2005   void generate_arraycopy_stubs() {
2006     address entry;
2007     address entry_jbyte_arraycopy;
2008     address entry_jshort_arraycopy;
2009     address entry_jint_arraycopy;
2010     address entry_oop_arraycopy;
2011     address entry_jlong_arraycopy;
2012     address entry_checkcast_arraycopy;
2013 
2014     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
2015         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
2016                                "arrayof_jbyte_disjoint_arraycopy");
2017     StubRoutines::_arrayof_jbyte_arraycopy =
2018         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
2019                                NULL, "arrayof_jbyte_arraycopy");
2020     StubRoutines::_jbyte_disjoint_arraycopy =
2021         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
2022                                "jbyte_disjoint_arraycopy");
2023     StubRoutines::_jbyte_arraycopy =
2024         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
2025                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
2026 
2027     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
2028         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
2029                                "arrayof_jshort_disjoint_arraycopy");
2030     StubRoutines::_arrayof_jshort_arraycopy =
2031         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
2032                                NULL, "arrayof_jshort_arraycopy");
2033     StubRoutines::_jshort_disjoint_arraycopy =
2034         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
2035                                "jshort_disjoint_arraycopy");
2036     StubRoutines::_jshort_arraycopy =
2037         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
2038                                &entry_jshort_arraycopy, "jshort_arraycopy");
2039 
2040     // Next arrays are always aligned on 4 bytes at least.
2041     StubRoutines::_jint_disjoint_arraycopy =
2042         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
2043                                "jint_disjoint_arraycopy");
2044     StubRoutines::_jint_arraycopy =
2045         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
2046                                &entry_jint_arraycopy, "jint_arraycopy");
2047 
2048     StubRoutines::_oop_disjoint_arraycopy =
2049         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2050                                "oop_disjoint_arraycopy");
2051     StubRoutines::_oop_arraycopy =
2052         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2053                                &entry_oop_arraycopy, "oop_arraycopy");
2054 
2055     StubRoutines::_oop_disjoint_arraycopy_uninit =
2056         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2057                                "oop_disjoint_arraycopy_uninit",
2058                                /*dest_uninitialized*/true);
2059     StubRoutines::_oop_arraycopy_uninit =
2060         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2061                                NULL, "oop_arraycopy_uninit",
2062                                /*dest_uninitialized*/true);
2063 
2064     StubRoutines::_jlong_disjoint_arraycopy =
2065         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
2066     StubRoutines::_jlong_arraycopy =
2067         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
2068                                     "jlong_arraycopy");
2069 
2070     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2071     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2072     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2073     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2074     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2075     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2076 
2077     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
2078     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
2079     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
2080     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
2081 
2082     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
2083     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
2084     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
2085     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
2086 
2087     StubRoutines::_checkcast_arraycopy =
2088         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2089     StubRoutines::_checkcast_arraycopy_uninit =
2090         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
2091 
2092     StubRoutines::_unsafe_arraycopy =
2093         generate_unsafe_copy("unsafe_arraycopy",
2094                                entry_jbyte_arraycopy,
2095                                entry_jshort_arraycopy,
2096                                entry_jint_arraycopy,
2097                                entry_jlong_arraycopy);
2098 
2099     StubRoutines::_generic_arraycopy =
2100         generate_generic_copy("generic_arraycopy",
2101                                entry_jbyte_arraycopy,
2102                                entry_jshort_arraycopy,
2103                                entry_jint_arraycopy,
2104                                entry_oop_arraycopy,
2105                                entry_jlong_arraycopy,
2106                                entry_checkcast_arraycopy);
2107   }
2108 
2109   void generate_math_stubs() {
2110     {
2111       StubCodeMark mark(this, "StubRoutines", "log");
2112       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2113 
2114       __ fld_d(Address(rsp, 4));
2115       __ flog();
2116       __ ret(0);
2117     }
2118     {
2119       StubCodeMark mark(this, "StubRoutines", "log10");
2120       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2121 
2122       __ fld_d(Address(rsp, 4));
2123       __ flog10();
2124       __ ret(0);
2125     }
2126     {
2127       StubCodeMark mark(this, "StubRoutines", "sin");
2128       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
2129 
2130       __ fld_d(Address(rsp, 4));
2131       __ trigfunc('s');
2132       __ ret(0);
2133     }
2134     {
2135       StubCodeMark mark(this, "StubRoutines", "cos");
2136       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2137 
2138       __ fld_d(Address(rsp, 4));
2139       __ trigfunc('c');
2140       __ ret(0);
2141     }
2142     {
2143       StubCodeMark mark(this, "StubRoutines", "tan");
2144       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2145 
2146       __ fld_d(Address(rsp, 4));
2147       __ trigfunc('t');
2148       __ ret(0);
2149     }
2150     {
2151       StubCodeMark mark(this, "StubRoutines", "exp");
2152       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
2153 
2154       __ fld_d(Address(rsp, 4));
2155       __ exp_with_fallback(0);
2156       __ ret(0);
2157     }
2158     {
2159       StubCodeMark mark(this, "StubRoutines", "pow");
2160       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
2161 
2162       __ fld_d(Address(rsp, 12));
2163       __ fld_d(Address(rsp, 4));
2164       __ pow_with_fallback(0);
2165       __ ret(0);
2166     }
2167   }
2168 
2169   // AES intrinsic stubs
2170   enum {AESBlockSize = 16};
2171 
2172   address generate_key_shuffle_mask() {
2173     __ align(16);
2174     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
2175     address start = __ pc();
2176     __ emit_data(0x00010203, relocInfo::none, 0 );
2177     __ emit_data(0x04050607, relocInfo::none, 0 );
2178     __ emit_data(0x08090a0b, relocInfo::none, 0 );
2179     __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
2180     return start;
2181   }
2182 
2183   // Utility routine for loading a 128-bit key word in little endian format
2184   // can optionally specify that the shuffle mask is already in an xmmregister
2185   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2186     __ movdqu(xmmdst, Address(key, offset));
2187     if (xmm_shuf_mask != NULL) {
2188       __ pshufb(xmmdst, xmm_shuf_mask);
2189     } else {
2190       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2191     }
2192   }
2193 
2194   // aesenc using specified key+offset
2195   // can optionally specify that the shuffle mask is already in an xmmregister
2196   void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2197     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2198     __ aesenc(xmmdst, xmmtmp);
2199   }
2200 
2201   // aesdec using specified key+offset
2202   // can optionally specify that the shuffle mask is already in an xmmregister
2203   void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2204     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2205     __ aesdec(xmmdst, xmmtmp);
2206   }
2207 
2208 
2209   // Arguments:
2210   //
2211   // Inputs:
2212   //   c_rarg0   - source byte array address
2213   //   c_rarg1   - destination byte array address
2214   //   c_rarg2   - K (key) in little endian int array
2215   //
2216   address generate_aescrypt_encryptBlock() {
2217     assert(UseAES, "need AES instructions and misaligned SSE support");
2218     __ align(CodeEntryAlignment);
2219     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2220     Label L_doLast;
2221     address start = __ pc();
2222 
2223     const Register from        = rdx;      // source array address
2224     const Register to          = rdx;      // destination array address
2225     const Register key         = rcx;      // key array address
2226     const Register keylen      = rax;
2227     const Address  from_param(rbp, 8+0);
2228     const Address  to_param  (rbp, 8+4);
2229     const Address  key_param (rbp, 8+8);
2230 
2231     const XMMRegister xmm_result = xmm0;
2232     const XMMRegister xmm_key_shuf_mask = xmm1;
2233     const XMMRegister xmm_temp1  = xmm2;
2234     const XMMRegister xmm_temp2  = xmm3;
2235     const XMMRegister xmm_temp3  = xmm4;
2236     const XMMRegister xmm_temp4  = xmm5;
2237 
2238     __ enter();   // required for proper stackwalking of RuntimeStub frame
2239     __ movptr(from, from_param);
2240     __ movptr(key, key_param);
2241 
2242     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2243     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2244 
2245     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2246     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
2247     __ movptr(to, to_param);
2248 
2249     // For encryption, the java expanded key ordering is just what we need
2250 
2251     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
2252     __ pxor(xmm_result, xmm_temp1);
2253 
2254     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2255     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2256     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2257     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2258 
2259     __ aesenc(xmm_result, xmm_temp1);
2260     __ aesenc(xmm_result, xmm_temp2);
2261     __ aesenc(xmm_result, xmm_temp3);
2262     __ aesenc(xmm_result, xmm_temp4);
2263 
2264     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2265     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2266     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2267     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2268 
2269     __ aesenc(xmm_result, xmm_temp1);
2270     __ aesenc(xmm_result, xmm_temp2);
2271     __ aesenc(xmm_result, xmm_temp3);
2272     __ aesenc(xmm_result, xmm_temp4);
2273 
2274     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2275     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2276 
2277     __ cmpl(keylen, 44);
2278     __ jccb(Assembler::equal, L_doLast);
2279 
2280     __ aesenc(xmm_result, xmm_temp1);
2281     __ aesenc(xmm_result, xmm_temp2);
2282 
2283     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2284     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2285 
2286     __ cmpl(keylen, 52);
2287     __ jccb(Assembler::equal, L_doLast);
2288 
2289     __ aesenc(xmm_result, xmm_temp1);
2290     __ aesenc(xmm_result, xmm_temp2);
2291 
2292     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2293     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2294 
2295     __ BIND(L_doLast);
2296     __ aesenc(xmm_result, xmm_temp1);
2297     __ aesenclast(xmm_result, xmm_temp2);
2298     __ movdqu(Address(to, 0), xmm_result);        // store the result
2299     __ xorptr(rax, rax); // return 0
2300     __ leave(); // required for proper stackwalking of RuntimeStub frame
2301     __ ret(0);
2302 
2303     return start;
2304   }
2305 
2306 
2307   // Arguments:
2308   //
2309   // Inputs:
2310   //   c_rarg0   - source byte array address
2311   //   c_rarg1   - destination byte array address
2312   //   c_rarg2   - K (key) in little endian int array
2313   //
2314   address generate_aescrypt_decryptBlock() {
2315     assert(UseAES, "need AES instructions and misaligned SSE support");
2316     __ align(CodeEntryAlignment);
2317     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
2318     Label L_doLast;
2319     address start = __ pc();
2320 
2321     const Register from        = rdx;      // source array address
2322     const Register to          = rdx;      // destination array address
2323     const Register key         = rcx;      // key array address
2324     const Register keylen      = rax;
2325     const Address  from_param(rbp, 8+0);
2326     const Address  to_param  (rbp, 8+4);
2327     const Address  key_param (rbp, 8+8);
2328 
2329     const XMMRegister xmm_result = xmm0;
2330     const XMMRegister xmm_key_shuf_mask = xmm1;
2331     const XMMRegister xmm_temp1  = xmm2;
2332     const XMMRegister xmm_temp2  = xmm3;
2333     const XMMRegister xmm_temp3  = xmm4;
2334     const XMMRegister xmm_temp4  = xmm5;
2335 
2336     __ enter(); // required for proper stackwalking of RuntimeStub frame
2337     __ movptr(from, from_param);
2338     __ movptr(key, key_param);
2339 
2340     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2341     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2342 
2343     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2344     __ movdqu(xmm_result, Address(from, 0));
2345     __ movptr(to, to_param);
2346 
2347     // for decryption java expanded key ordering is rotated one position from what we want
2348     // so we start from 0x10 here and hit 0x00 last
2349     // we don't know if the key is aligned, hence not using load-execute form
2350     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2351     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2352     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2353     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2354 
2355     __ pxor  (xmm_result, xmm_temp1);
2356     __ aesdec(xmm_result, xmm_temp2);
2357     __ aesdec(xmm_result, xmm_temp3);
2358     __ aesdec(xmm_result, xmm_temp4);
2359 
2360     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2361     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2362     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2363     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2364 
2365     __ aesdec(xmm_result, xmm_temp1);
2366     __ aesdec(xmm_result, xmm_temp2);
2367     __ aesdec(xmm_result, xmm_temp3);
2368     __ aesdec(xmm_result, xmm_temp4);
2369 
2370     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2371     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2372     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
2373 
2374     __ cmpl(keylen, 44);
2375     __ jccb(Assembler::equal, L_doLast);
2376 
2377     __ aesdec(xmm_result, xmm_temp1);
2378     __ aesdec(xmm_result, xmm_temp2);
2379 
2380     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2381     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2382 
2383     __ cmpl(keylen, 52);
2384     __ jccb(Assembler::equal, L_doLast);
2385 
2386     __ aesdec(xmm_result, xmm_temp1);
2387     __ aesdec(xmm_result, xmm_temp2);
2388 
2389     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2390     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2391 
2392     __ BIND(L_doLast);
2393     __ aesdec(xmm_result, xmm_temp1);
2394     __ aesdec(xmm_result, xmm_temp2);
2395 
2396     // for decryption the aesdeclast operation is always on key+0x00
2397     __ aesdeclast(xmm_result, xmm_temp3);
2398     __ movdqu(Address(to, 0), xmm_result);  // store the result
2399     __ xorptr(rax, rax); // return 0
2400     __ leave(); // required for proper stackwalking of RuntimeStub frame
2401     __ ret(0);
2402 
2403     return start;
2404   }
2405 
2406   void handleSOERegisters(bool saving) {
2407     const int saveFrameSizeInBytes = 4 * wordSize;
2408     const Address saved_rbx     (rbp, -3 * wordSize);
2409     const Address saved_rsi     (rbp, -2 * wordSize);
2410     const Address saved_rdi     (rbp, -1 * wordSize);
2411 
2412     if (saving) {
2413       __ subptr(rsp, saveFrameSizeInBytes);
2414       __ movptr(saved_rsi, rsi);
2415       __ movptr(saved_rdi, rdi);
2416       __ movptr(saved_rbx, rbx);
2417     } else {
2418       // restoring
2419       __ movptr(rsi, saved_rsi);
2420       __ movptr(rdi, saved_rdi);
2421       __ movptr(rbx, saved_rbx);
2422     }
2423   }
2424 
2425   // Arguments:
2426   //
2427   // Inputs:
2428   //   c_rarg0   - source byte array address
2429   //   c_rarg1   - destination byte array address
2430   //   c_rarg2   - K (key) in little endian int array
2431   //   c_rarg3   - r vector byte array address
2432   //   c_rarg4   - input length
2433   //
2434   address generate_cipherBlockChaining_encryptAESCrypt() {
2435     assert(UseAES, "need AES instructions and misaligned SSE support");
2436     __ align(CodeEntryAlignment);
2437     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
2438     address start = __ pc();
2439 
2440     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
2441     const Register from        = rsi;      // source array address
2442     const Register to          = rdx;      // destination array address
2443     const Register key         = rcx;      // key array address
2444     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2445                                            // and left with the results of the last encryption block
2446     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2447     const Register pos         = rax;
2448 
2449     // xmm register assignments for the loops below
2450     const XMMRegister xmm_result = xmm0;
2451     const XMMRegister xmm_temp   = xmm1;
2452     // first 6 keys preloaded into xmm2-xmm7
2453     const int XMM_REG_NUM_KEY_FIRST = 2;
2454     const int XMM_REG_NUM_KEY_LAST  = 7;
2455     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2456 
2457     __ enter(); // required for proper stackwalking of RuntimeStub frame
2458     handleSOERegisters(true /*saving*/);
2459 
2460     // load registers from incoming parameters
2461     const Address  from_param(rbp, 8+0);
2462     const Address  to_param  (rbp, 8+4);
2463     const Address  key_param (rbp, 8+8);
2464     const Address  rvec_param (rbp, 8+12);
2465     const Address  len_param  (rbp, 8+16);
2466     __ movptr(from , from_param);
2467     __ movptr(to   , to_param);
2468     __ movptr(key  , key_param);
2469     __ movptr(rvec , rvec_param);
2470     __ movptr(len_reg , len_param);
2471 
2472     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
2473     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2474     // load up xmm regs 2 thru 7 with keys 0-5
2475     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2476       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2477       offset += 0x10;
2478     }
2479 
2480     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
2481 
2482     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2483     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2484     __ cmpl(rax, 44);
2485     __ jcc(Assembler::notEqual, L_key_192_256);
2486 
2487     // 128 bit code follows here
2488     __ movl(pos, 0);
2489     __ align(OptoLoopAlignment);
2490     __ BIND(L_loopTop_128);
2491     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2492     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2493 
2494     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2495     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2496       __ aesenc(xmm_result, as_XMMRegister(rnum));
2497     }
2498     for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
2499       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2500     }
2501     load_key(xmm_temp, key, 0xa0);
2502     __ aesenclast(xmm_result, xmm_temp);
2503 
2504     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2505     // no need to store r to memory until we exit
2506     __ addptr(pos, AESBlockSize);
2507     __ subptr(len_reg, AESBlockSize);
2508     __ jcc(Assembler::notEqual, L_loopTop_128);
2509 
2510     __ BIND(L_exit);
2511     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
2512 
2513     handleSOERegisters(false /*restoring*/);
2514     __ movl(rax, 0);                             // return 0 (why?)
2515     __ leave();                                  // required for proper stackwalking of RuntimeStub frame
2516     __ ret(0);
2517 
2518     __ BIND(L_key_192_256);
2519     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2520     __ cmpl(rax, 52);
2521     __ jcc(Assembler::notEqual, L_key_256);
2522 
2523     // 192-bit code follows here (could be changed to use more xmm registers)
2524     __ movl(pos, 0);
2525     __ align(OptoLoopAlignment);
2526     __ BIND(L_loopTop_192);
2527     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2528     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2529 
2530     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2531     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2532       __ aesenc(xmm_result, as_XMMRegister(rnum));
2533     }
2534     for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
2535       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2536     }
2537     load_key(xmm_temp, key, 0xc0);
2538     __ aesenclast(xmm_result, xmm_temp);
2539 
2540     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2541     // no need to store r to memory until we exit
2542     __ addptr(pos, AESBlockSize);
2543     __ subptr(len_reg, AESBlockSize);
2544     __ jcc(Assembler::notEqual, L_loopTop_192);
2545     __ jmp(L_exit);
2546 
2547     __ BIND(L_key_256);
2548     // 256-bit code follows here (could be changed to use more xmm registers)
2549     __ movl(pos, 0);
2550     __ align(OptoLoopAlignment);
2551     __ BIND(L_loopTop_256);
2552     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2553     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2554 
2555     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2556     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2557       __ aesenc(xmm_result, as_XMMRegister(rnum));
2558     }
2559     for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
2560       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2561     }
2562     load_key(xmm_temp, key, 0xe0);
2563     __ aesenclast(xmm_result, xmm_temp);
2564 
2565     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2566     // no need to store r to memory until we exit
2567     __ addptr(pos, AESBlockSize);
2568     __ subptr(len_reg, AESBlockSize);
2569     __ jcc(Assembler::notEqual, L_loopTop_256);
2570     __ jmp(L_exit);
2571 
2572     return start;
2573   }
2574 
2575 
2576   // CBC AES Decryption.
2577   // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
2578   //
2579   // Arguments:
2580   //
2581   // Inputs:
2582   //   c_rarg0   - source byte array address
2583   //   c_rarg1   - destination byte array address
2584   //   c_rarg2   - K (key) in little endian int array
2585   //   c_rarg3   - r vector byte array address
2586   //   c_rarg4   - input length
2587   //
2588 
2589   address generate_cipherBlockChaining_decryptAESCrypt() {
2590     assert(UseAES, "need AES instructions and misaligned SSE support");
2591     __ align(CodeEntryAlignment);
2592     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
2593     address start = __ pc();
2594 
2595     Label L_exit, L_key_192_256, L_key_256;
2596     Label L_singleBlock_loopTop_128;
2597     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
2598     const Register from        = rsi;      // source array address
2599     const Register to          = rdx;      // destination array address
2600     const Register key         = rcx;      // key array address
2601     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2602                                            // and left with the results of the last encryption block
2603     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2604     const Register pos         = rax;
2605 
2606     // xmm register assignments for the loops below
2607     const XMMRegister xmm_result = xmm0;
2608     const XMMRegister xmm_temp   = xmm1;
2609     // first 6 keys preloaded into xmm2-xmm7
2610     const int XMM_REG_NUM_KEY_FIRST = 2;
2611     const int XMM_REG_NUM_KEY_LAST  = 7;
2612     const int FIRST_NON_REG_KEY_offset = 0x70;
2613     const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2614 
2615     __ enter(); // required for proper stackwalking of RuntimeStub frame
2616     handleSOERegisters(true /*saving*/);
2617 
2618     // load registers from incoming parameters
2619     const Address  from_param(rbp, 8+0);
2620     const Address  to_param  (rbp, 8+4);
2621     const Address  key_param (rbp, 8+8);
2622     const Address  rvec_param (rbp, 8+12);
2623     const Address  len_param  (rbp, 8+16);
2624     __ movptr(from , from_param);
2625     __ movptr(to   , to_param);
2626     __ movptr(key  , key_param);
2627     __ movptr(rvec , rvec_param);
2628     __ movptr(len_reg , len_param);
2629 
2630     // the java expanded key ordering is rotated one position from what we want
2631     // so we start from 0x10 here and hit 0x00 last
2632     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
2633     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2634     // load up xmm regs 2 thru 6 with first 5 keys
2635     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2636       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2637       offset += 0x10;
2638     }
2639 
2640     // inside here, use the rvec register to point to previous block cipher
2641     // with which we xor at the end of each newly decrypted block
2642     const Register  prev_block_cipher_ptr = rvec;
2643 
2644     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2645     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2646     __ cmpl(rax, 44);
2647     __ jcc(Assembler::notEqual, L_key_192_256);
2648 
2649 
2650     // 128-bit code follows here, parallelized
2651     __ movl(pos, 0);
2652     __ align(OptoLoopAlignment);
2653     __ BIND(L_singleBlock_loopTop_128);
2654     __ cmpptr(len_reg, 0);           // any blocks left??
2655     __ jcc(Assembler::equal, L_exit);
2656     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2657     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2658     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2659       __ aesdec(xmm_result, as_XMMRegister(rnum));
2660     }
2661     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
2662       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2663     }
2664     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2665     __ aesdeclast(xmm_result, xmm_temp);
2666     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2667     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2668     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2669     // no need to store r to memory until we exit
2670     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2671     __ addptr(pos, AESBlockSize);
2672     __ subptr(len_reg, AESBlockSize);
2673     __ jmp(L_singleBlock_loopTop_128);
2674 
2675 
2676     __ BIND(L_exit);
2677     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2678     __ movptr(rvec , rvec_param);                                     // restore this since used in loop
2679     __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
2680     handleSOERegisters(false /*restoring*/);
2681     __ movl(rax, 0);                                                  // return 0 (why?)
2682     __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
2683     __ ret(0);
2684 
2685 
2686     __ BIND(L_key_192_256);
2687     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2688     __ cmpl(rax, 52);
2689     __ jcc(Assembler::notEqual, L_key_256);
2690 
2691     // 192-bit code follows here (could be optimized to use parallelism)
2692     __ movl(pos, 0);
2693     __ align(OptoLoopAlignment);
2694     __ BIND(L_singleBlock_loopTop_192);
2695     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2696     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2697     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2698       __ aesdec(xmm_result, as_XMMRegister(rnum));
2699     }
2700     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
2701       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2702     }
2703     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2704     __ aesdeclast(xmm_result, xmm_temp);
2705     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2706     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2707     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2708     // no need to store r to memory until we exit
2709     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2710     __ addptr(pos, AESBlockSize);
2711     __ subptr(len_reg, AESBlockSize);
2712     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
2713     __ jmp(L_exit);
2714 
2715     __ BIND(L_key_256);
2716     // 256-bit code follows here (could be optimized to use parallelism)
2717     __ movl(pos, 0);
2718     __ align(OptoLoopAlignment);
2719     __ BIND(L_singleBlock_loopTop_256);
2720     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2721     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2722     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2723       __ aesdec(xmm_result, as_XMMRegister(rnum));
2724     }
2725     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
2726       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2727     }
2728     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2729     __ aesdeclast(xmm_result, xmm_temp);
2730     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2731     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2732     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2733     // no need to store r to memory until we exit
2734     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2735     __ addptr(pos, AESBlockSize);
2736     __ subptr(len_reg, AESBlockSize);
2737     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
2738     __ jmp(L_exit);
2739 
2740     return start;
2741   }
2742 
2743 
2744  public:
2745   // Information about frame layout at time of blocking runtime call.
2746   // Note that we only have to preserve callee-saved registers since
2747   // the compilers are responsible for supplying a continuation point
2748   // if they expect all registers to be preserved.
2749   enum layout {
2750     thread_off,    // last_java_sp
2751     arg1_off,
2752     arg2_off,
2753     rbp_off,       // callee saved register
2754     ret_pc,
2755     framesize
2756   };
2757 
2758  private:
2759 
2760 #undef  __
2761 #define __ masm->
2762 
2763   //------------------------------------------------------------------------------------------------------------------------
2764   // Continuation point for throwing of implicit exceptions that are not handled in
2765   // the current activation. Fabricates an exception oop and initiates normal
2766   // exception dispatching in this frame.
2767   //
2768   // Previously the compiler (c2) allowed for callee save registers on Java calls.
2769   // This is no longer true after adapter frames were removed but could possibly
2770   // be brought back in the future if the interpreter code was reworked and it
2771   // was deemed worthwhile. The comment below was left to describe what must
2772   // happen here if callee saves were resurrected. As it stands now this stub
2773   // could actually be a vanilla BufferBlob and have now oopMap at all.
2774   // Since it doesn't make much difference we've chosen to leave it the
2775   // way it was in the callee save days and keep the comment.
2776 
2777   // If we need to preserve callee-saved values we need a callee-saved oop map and
2778   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
2779   // If the compiler needs all registers to be preserved between the fault
2780   // point and the exception handler then it must assume responsibility for that in
2781   // AbstractCompiler::continuation_for_implicit_null_exception or
2782   // continuation_for_implicit_division_by_zero_exception. All other implicit
2783   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
2784   // either at call sites or otherwise assume that stack unwinding will be initiated,
2785   // so caller saved registers were assumed volatile in the compiler.
2786   address generate_throw_exception(const char* name, address runtime_entry,
2787                                    Register arg1 = noreg, Register arg2 = noreg) {
2788 
2789     int insts_size = 256;
2790     int locs_size  = 32;
2791 
2792     CodeBuffer code(name, insts_size, locs_size);
2793     OopMapSet* oop_maps  = new OopMapSet();
2794     MacroAssembler* masm = new MacroAssembler(&code);
2795 
2796     address start = __ pc();
2797 
2798     // This is an inlined and slightly modified version of call_VM
2799     // which has the ability to fetch the return PC out of
2800     // thread-local storage and also sets up last_Java_sp slightly
2801     // differently than the real call_VM
2802     Register java_thread = rbx;
2803     __ get_thread(java_thread);
2804 
2805     __ enter(); // required for proper stackwalking of RuntimeStub frame
2806 
2807     // pc and rbp, already pushed
2808     __ subptr(rsp, (framesize-2) * wordSize); // prolog
2809 
2810     // Frame is now completed as far as size and linkage.
2811 
2812     int frame_complete = __ pc() - start;
2813 
2814     // push java thread (becomes first argument of C function)
2815     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2816     if (arg1 != noreg) {
2817       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
2818     }
2819     if (arg2 != noreg) {
2820       assert(arg1 != noreg, "missing reg arg");
2821       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
2822     }
2823 
2824     // Set up last_Java_sp and last_Java_fp
2825     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
2826 
2827     // Call runtime
2828     BLOCK_COMMENT("call runtime_entry");
2829     __ call(RuntimeAddress(runtime_entry));
2830     // Generate oop map
2831     OopMap* map =  new OopMap(framesize, 0);
2832     oop_maps->add_gc_map(__ pc() - start, map);
2833 
2834     // restore the thread (cannot use the pushed argument since arguments
2835     // may be overwritten by C code generated by an optimizing compiler);
2836     // however can use the register value directly if it is callee saved.
2837     __ get_thread(java_thread);
2838 
2839     __ reset_last_Java_frame(java_thread, true, false);
2840 
2841     __ leave(); // required for proper stackwalking of RuntimeStub frame
2842 
2843     // check for pending exceptions
2844 #ifdef ASSERT
2845     Label L;
2846     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2847     __ jcc(Assembler::notEqual, L);
2848     __ should_not_reach_here();
2849     __ bind(L);
2850 #endif /* ASSERT */
2851     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2852 
2853 
2854     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
2855     return stub->entry_point();
2856   }
2857 
2858 
2859   void create_control_words() {
2860     // Round to nearest, 53-bit mode, exceptions masked
2861     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
2862     // Round to zero, 53-bit mode, exception mased
2863     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
2864     // Round to nearest, 24-bit mode, exceptions masked
2865     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
2866     // Round to nearest, 64-bit mode, exceptions masked
2867     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
2868     // Round to nearest, 64-bit mode, exceptions masked
2869     StubRoutines::_mxcsr_std           = 0x1F80;
2870     // Note: the following two constants are 80-bit values
2871     //       layout is critical for correct loading by FPU.
2872     // Bias for strict fp multiply/divide
2873     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
2874     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
2875     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
2876     // Un-Bias for strict fp multiply/divide
2877     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
2878     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
2879     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
2880   }
2881 
2882   //---------------------------------------------------------------------------
2883   // Initialization
2884 
2885   void generate_initial() {
2886     // Generates all stubs and initializes the entry points
2887 
2888     //------------------------------------------------------------------------------------------------------------------------
2889     // entry points that exist in all platforms
2890     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
2891     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
2892     StubRoutines::_forward_exception_entry      = generate_forward_exception();
2893 
2894     StubRoutines::_call_stub_entry              =
2895       generate_call_stub(StubRoutines::_call_stub_return_address);
2896     // is referenced by megamorphic call
2897     StubRoutines::_catch_exception_entry        = generate_catch_exception();
2898 
2899     // These are currently used by Solaris/Intel
2900     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
2901 
2902     StubRoutines::_handler_for_unsafe_access_entry =
2903       generate_handler_for_unsafe_access();
2904 
2905     // platform dependent
2906     create_control_words();
2907 
2908     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
2909     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
2910     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
2911                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
2912     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
2913                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
2914 
2915     // Build this early so it's available for the interpreter
2916     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
2917   }
2918 
2919 
2920   void generate_all() {
2921     // Generates all stubs and initializes the entry points
2922 
2923     // These entry points require SharedInfo::stack0 to be set up in non-core builds
2924     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
2925     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
2926     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
2927     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
2928 
2929     //------------------------------------------------------------------------------------------------------------------------
2930     // entry points that are platform specific
2931 
2932     // support for verify_oop (must happen after universe_init)
2933     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
2934 
2935     // arraycopy stubs used by compilers
2936     generate_arraycopy_stubs();
2937 
2938     generate_math_stubs();
2939 
2940     // don't bother generating these AES intrinsic stubs unless global flag is set
2941     if (UseAESIntrinsics) {
2942       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
2943 
2944       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
2945       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
2946       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
2947       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
2948     }
2949   }
2950 
2951 
2952  public:
2953   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
2954     if (all) {
2955       generate_all();
2956     } else {
2957       generate_initial();
2958     }
2959   }
2960 }; // end class declaration
2961 
2962 
2963 void StubGenerator_generate(CodeBuffer* code, bool all) {
2964   StubGenerator g(code, all);
2965 }