1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/methodOop.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/top.hpp"
  41 #ifdef TARGET_OS_FAMILY_linux
  42 # include "thread_linux.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_FAMILY_solaris
  45 # include "thread_solaris.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_FAMILY_windows
  48 # include "thread_windows.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_FAMILY_bsd
  51 # include "thread_bsd.inline.hpp"
  52 #endif
  53 #ifdef COMPILER2
  54 #include "opto/runtime.hpp"
  55 #endif
  56 
  57 // Declaration and definition of StubGenerator (no .hpp file).
  58 // For a more detailed description of the stub routine structure
  59 // see the comment in stubRoutines.hpp
  60 
  61 #define __ _masm->
  62 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
  63 #define a__ ((Assembler*)_masm)->
  64 
  65 #ifdef PRODUCT
  66 #define BLOCK_COMMENT(str) /* nothing */
  67 #else
  68 #define BLOCK_COMMENT(str) __ block_comment(str)
  69 #endif
  70 
  71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  72 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
  73 
  74 // Stub Code definitions
  75 
  76 static address handle_unsafe_access() {
  77   JavaThread* thread = JavaThread::current();
  78   address pc = thread->saved_exception_pc();
  79   // pc is the instruction which we must emulate
  80   // doing a no-op is fine:  return garbage from the load
  81   // therefore, compute npc
  82   address npc = Assembler::locate_next_instruction(pc);
  83 
  84   // request an async exception
  85   thread->set_pending_unsafe_access_error();
  86 
  87   // return address of next instruction to execute
  88   return npc;
  89 }
  90 
  91 class StubGenerator: public StubCodeGenerator {
  92  private:
  93 
  94 #ifdef PRODUCT
  95 #define inc_counter_np(counter) (0)
  96 #else
  97   void inc_counter_np_(int& counter) {
  98     // This can destroy rscratch1 if counter is far from the code cache
  99     __ incrementl(ExternalAddress((address)&counter));
 100   }
 101 #define inc_counter_np(counter) \
 102   BLOCK_COMMENT("inc_counter " #counter); \
 103   inc_counter_np_(counter);
 104 #endif
 105 
 106   // Call stubs are used to call Java from C
 107   //
 108   // Linux Arguments:
 109   //    c_rarg0:   call wrapper address                   address
 110   //    c_rarg1:   result                                 address
 111   //    c_rarg2:   result type                            BasicType
 112   //    c_rarg3:   method                                 methodOop
 113   //    c_rarg4:   (interpreter) entry point              address
 114   //    c_rarg5:   parameters                             intptr_t*
 115   //    16(rbp): parameter size (in words)              int
 116   //    24(rbp): thread                                 Thread*
 117   //
 118   //     [ return_from_Java     ] <--- rsp
 119   //     [ argument word n      ]
 120   //      ...
 121   // -12 [ argument word 1      ]
 122   // -11 [ saved r15            ] <--- rsp_after_call
 123   // -10 [ saved r14            ]
 124   //  -9 [ saved r13            ]
 125   //  -8 [ saved r12            ]
 126   //  -7 [ saved rbx            ]
 127   //  -6 [ call wrapper         ]
 128   //  -5 [ result               ]
 129   //  -4 [ result type          ]
 130   //  -3 [ method               ]
 131   //  -2 [ entry point          ]
 132   //  -1 [ parameters           ]
 133   //   0 [ saved rbp            ] <--- rbp
 134   //   1 [ return address       ]
 135   //   2 [ parameter size       ]
 136   //   3 [ thread               ]
 137   //
 138   // Windows Arguments:
 139   //    c_rarg0:   call wrapper address                   address
 140   //    c_rarg1:   result                                 address
 141   //    c_rarg2:   result type                            BasicType
 142   //    c_rarg3:   method                                 methodOop
 143   //    48(rbp): (interpreter) entry point              address
 144   //    56(rbp): parameters                             intptr_t*
 145   //    64(rbp): parameter size (in words)              int
 146   //    72(rbp): thread                                 Thread*
 147   //
 148   //     [ return_from_Java     ] <--- rsp
 149   //     [ argument word n      ]
 150   //      ...
 151   // -28 [ argument word 1      ]
 152   // -27 [ saved xmm15          ] <--- rsp_after_call
 153   //     [ saved xmm7-xmm14     ]
 154   //  -9 [ saved xmm6           ] (each xmm register takes 2 slots)
 155   //  -7 [ saved r15            ]
 156   //  -6 [ saved r14            ]
 157   //  -5 [ saved r13            ]
 158   //  -4 [ saved r12            ]
 159   //  -3 [ saved rdi            ]
 160   //  -2 [ saved rsi            ]
 161   //  -1 [ saved rbx            ]
 162   //   0 [ saved rbp            ] <--- rbp
 163   //   1 [ return address       ]
 164   //   2 [ call wrapper         ]
 165   //   3 [ result               ]
 166   //   4 [ result type          ]
 167   //   5 [ method               ]
 168   //   6 [ entry point          ]
 169   //   7 [ parameters           ]
 170   //   8 [ parameter size       ]
 171   //   9 [ thread               ]
 172   //
 173   //    Windows reserves the callers stack space for arguments 1-4.
 174   //    We spill c_rarg0-c_rarg3 to this space.
 175 
 176   // Call stub stack layout word offsets from rbp
 177   enum call_stub_layout {
 178 #ifdef _WIN64
 179     xmm_save_first     = 6,  // save from xmm6
 180     xmm_save_last      = 15, // to xmm15
 181     xmm_save_base      = -9,
 182     rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27
 183     r15_off            = -7,
 184     r14_off            = -6,
 185     r13_off            = -5,
 186     r12_off            = -4,
 187     rdi_off            = -3,
 188     rsi_off            = -2,
 189     rbx_off            = -1,
 190     rbp_off            =  0,
 191     retaddr_off        =  1,
 192     call_wrapper_off   =  2,
 193     result_off         =  3,
 194     result_type_off    =  4,
 195     method_off         =  5,
 196     entry_point_off    =  6,
 197     parameters_off     =  7,
 198     parameter_size_off =  8,
 199     thread_off         =  9
 200 #else
 201     rsp_after_call_off = -12,
 202     mxcsr_off          = rsp_after_call_off,
 203     r15_off            = -11,
 204     r14_off            = -10,
 205     r13_off            = -9,
 206     r12_off            = -8,
 207     rbx_off            = -7,
 208     call_wrapper_off   = -6,
 209     result_off         = -5,
 210     result_type_off    = -4,
 211     method_off         = -3,
 212     entry_point_off    = -2,
 213     parameters_off     = -1,
 214     rbp_off            =  0,
 215     retaddr_off        =  1,
 216     parameter_size_off =  2,
 217     thread_off         =  3
 218 #endif
 219   };
 220 
 221 #ifdef _WIN64
 222   Address xmm_save(int reg) {
 223     assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range");
 224     return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize);
 225   }
 226 #endif
 227 
 228   address generate_call_stub(address& return_address) {
 229     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
 230            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
 231            "adjust this code");
 232     StubCodeMark mark(this, "StubRoutines", "call_stub");
 233     address start = __ pc();
 234 
 235     // same as in generate_catch_exception()!
 236     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 237 
 238     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
 239     const Address result        (rbp, result_off         * wordSize);
 240     const Address result_type   (rbp, result_type_off    * wordSize);
 241     const Address method        (rbp, method_off         * wordSize);
 242     const Address entry_point   (rbp, entry_point_off    * wordSize);
 243     const Address parameters    (rbp, parameters_off     * wordSize);
 244     const Address parameter_size(rbp, parameter_size_off * wordSize);
 245 
 246     // same as in generate_catch_exception()!
 247     const Address thread        (rbp, thread_off         * wordSize);
 248 
 249     const Address r15_save(rbp, r15_off * wordSize);
 250     const Address r14_save(rbp, r14_off * wordSize);
 251     const Address r13_save(rbp, r13_off * wordSize);
 252     const Address r12_save(rbp, r12_off * wordSize);
 253     const Address rbx_save(rbp, rbx_off * wordSize);
 254 
 255     // stub code
 256     __ enter();
 257     __ subptr(rsp, -rsp_after_call_off * wordSize);
 258 
 259     // save register parameters
 260 #ifndef _WIN64
 261     __ movptr(parameters,   c_rarg5); // parameters
 262     __ movptr(entry_point,  c_rarg4); // entry_point
 263 #endif
 264 
 265     __ movptr(method,       c_rarg3); // method
 266     __ movl(result_type,  c_rarg2);   // result type
 267     __ movptr(result,       c_rarg1); // result
 268     __ movptr(call_wrapper, c_rarg0); // call wrapper
 269 
 270     // save regs belonging to calling function
 271     __ movptr(rbx_save, rbx);
 272     __ movptr(r12_save, r12);
 273     __ movptr(r13_save, r13);
 274     __ movptr(r14_save, r14);
 275     __ movptr(r15_save, r15);
 276 #ifdef _WIN64
 277     for (int i = 6; i <= 15; i++) {
 278       __ movdqu(xmm_save(i), as_XMMRegister(i));
 279     }
 280 
 281     const Address rdi_save(rbp, rdi_off * wordSize);
 282     const Address rsi_save(rbp, rsi_off * wordSize);
 283 
 284     __ movptr(rsi_save, rsi);
 285     __ movptr(rdi_save, rdi);
 286 #else
 287     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
 288     {
 289       Label skip_ldmx;
 290       __ stmxcsr(mxcsr_save);
 291       __ movl(rax, mxcsr_save);
 292       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 293       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
 294       __ cmp32(rax, mxcsr_std);
 295       __ jcc(Assembler::equal, skip_ldmx);
 296       __ ldmxcsr(mxcsr_std);
 297       __ bind(skip_ldmx);
 298     }
 299 #endif
 300 
 301     // Load up thread register
 302     __ movptr(r15_thread, thread);
 303     __ reinit_heapbase();
 304 
 305 #ifdef ASSERT
 306     // make sure we have no pending exceptions
 307     {
 308       Label L;
 309       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 310       __ jcc(Assembler::equal, L);
 311       __ stop("StubRoutines::call_stub: entered with pending exception");
 312       __ bind(L);
 313     }
 314 #endif
 315 
 316     // pass parameters if any
 317     BLOCK_COMMENT("pass parameters if any");
 318     Label parameters_done;
 319     __ movl(c_rarg3, parameter_size);
 320     __ testl(c_rarg3, c_rarg3);
 321     __ jcc(Assembler::zero, parameters_done);
 322 
 323     Label loop;
 324     __ movptr(c_rarg2, parameters);       // parameter pointer
 325     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
 326     __ BIND(loop);
 327     __ movptr(rax, Address(c_rarg2, 0));// get parameter
 328     __ addptr(c_rarg2, wordSize);       // advance to next parameter
 329     __ decrementl(c_rarg1);             // decrement counter
 330     __ push(rax);                       // pass parameter
 331     __ jcc(Assembler::notZero, loop);
 332 
 333     // call Java function
 334     __ BIND(parameters_done);
 335     __ movptr(rbx, method);             // get methodOop
 336     __ movptr(c_rarg1, entry_point);    // get entry_point
 337     __ mov(r13, rsp);                   // set sender sp
 338     BLOCK_COMMENT("call Java function");
 339     __ call(c_rarg1);
 340 
 341     BLOCK_COMMENT("call_stub_return_address:");
 342     return_address = __ pc();
 343 
 344     // store result depending on type (everything that is not
 345     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 346     __ movptr(c_rarg0, result);
 347     Label is_long, is_float, is_double, exit;
 348     __ movl(c_rarg1, result_type);
 349     __ cmpl(c_rarg1, T_OBJECT);
 350     __ jcc(Assembler::equal, is_long);
 351     __ cmpl(c_rarg1, T_LONG);
 352     __ jcc(Assembler::equal, is_long);
 353     __ cmpl(c_rarg1, T_FLOAT);
 354     __ jcc(Assembler::equal, is_float);
 355     __ cmpl(c_rarg1, T_DOUBLE);
 356     __ jcc(Assembler::equal, is_double);
 357 
 358     // handle T_INT case
 359     __ movl(Address(c_rarg0, 0), rax);
 360 
 361     __ BIND(exit);
 362 
 363     // pop parameters
 364     __ lea(rsp, rsp_after_call);
 365 
 366 #ifdef ASSERT
 367     // verify that threads correspond
 368     {
 369       Label L, S;
 370       __ cmpptr(r15_thread, thread);
 371       __ jcc(Assembler::notEqual, S);
 372       __ get_thread(rbx);
 373       __ cmpptr(r15_thread, rbx);
 374       __ jcc(Assembler::equal, L);
 375       __ bind(S);
 376       __ jcc(Assembler::equal, L);
 377       __ stop("StubRoutines::call_stub: threads must correspond");
 378       __ bind(L);
 379     }
 380 #endif
 381 
 382     // restore regs belonging to calling function
 383 #ifdef _WIN64
 384     for (int i = 15; i >= 6; i--) {
 385       __ movdqu(as_XMMRegister(i), xmm_save(i));
 386     }
 387 #endif
 388     __ movptr(r15, r15_save);
 389     __ movptr(r14, r14_save);
 390     __ movptr(r13, r13_save);
 391     __ movptr(r12, r12_save);
 392     __ movptr(rbx, rbx_save);
 393 
 394 #ifdef _WIN64
 395     __ movptr(rdi, rdi_save);
 396     __ movptr(rsi, rsi_save);
 397 #else
 398     __ ldmxcsr(mxcsr_save);
 399 #endif
 400 
 401     // restore rsp
 402     __ addptr(rsp, -rsp_after_call_off * wordSize);
 403 
 404     // return
 405     __ pop(rbp);
 406     __ ret(0);
 407 
 408     // handle return types different from T_INT
 409     __ BIND(is_long);
 410     __ movq(Address(c_rarg0, 0), rax);
 411     __ jmp(exit);
 412 
 413     __ BIND(is_float);
 414     __ movflt(Address(c_rarg0, 0), xmm0);
 415     __ jmp(exit);
 416 
 417     __ BIND(is_double);
 418     __ movdbl(Address(c_rarg0, 0), xmm0);
 419     __ jmp(exit);
 420 
 421     return start;
 422   }
 423 
 424   // Return point for a Java call if there's an exception thrown in
 425   // Java code.  The exception is caught and transformed into a
 426   // pending exception stored in JavaThread that can be tested from
 427   // within the VM.
 428   //
 429   // Note: Usually the parameters are removed by the callee. In case
 430   // of an exception crossing an activation frame boundary, that is
 431   // not the case if the callee is compiled code => need to setup the
 432   // rsp.
 433   //
 434   // rax: exception oop
 435 
 436   address generate_catch_exception() {
 437     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 438     address start = __ pc();
 439 
 440     // same as in generate_call_stub():
 441     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
 442     const Address thread        (rbp, thread_off         * wordSize);
 443 
 444 #ifdef ASSERT
 445     // verify that threads correspond
 446     {
 447       Label L, S;
 448       __ cmpptr(r15_thread, thread);
 449       __ jcc(Assembler::notEqual, S);
 450       __ get_thread(rbx);
 451       __ cmpptr(r15_thread, rbx);
 452       __ jcc(Assembler::equal, L);
 453       __ bind(S);
 454       __ stop("StubRoutines::catch_exception: threads must correspond");
 455       __ bind(L);
 456     }
 457 #endif
 458 
 459     // set pending exception
 460     __ verify_oop(rax);
 461 
 462     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
 463     __ lea(rscratch1, ExternalAddress((address)__FILE__));
 464     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
 465     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
 466 
 467     // complete return to VM
 468     assert(StubRoutines::_call_stub_return_address != NULL,
 469            "_call_stub_return_address must have been generated before");
 470     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 471 
 472     return start;
 473   }
 474 
 475   // Continuation point for runtime calls returning with a pending
 476   // exception.  The pending exception check happened in the runtime
 477   // or native call stub.  The pending exception in Thread is
 478   // converted into a Java-level exception.
 479   //
 480   // Contract with Java-level exception handlers:
 481   // rax: exception
 482   // rdx: throwing pc
 483   //
 484   // NOTE: At entry of this stub, exception-pc must be on stack !!
 485 
 486   address generate_forward_exception() {
 487     StubCodeMark mark(this, "StubRoutines", "forward exception");
 488     address start = __ pc();
 489 
 490     // Upon entry, the sp points to the return address returning into
 491     // Java (interpreted or compiled) code; i.e., the return address
 492     // becomes the throwing pc.
 493     //
 494     // Arguments pushed before the runtime call are still on the stack
 495     // but the exception handler will reset the stack pointer ->
 496     // ignore them.  A potential result in registers can be ignored as
 497     // well.
 498 
 499 #ifdef ASSERT
 500     // make sure this code is only executed if there is a pending exception
 501     {
 502       Label L;
 503       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
 504       __ jcc(Assembler::notEqual, L);
 505       __ stop("StubRoutines::forward exception: no pending exception (1)");
 506       __ bind(L);
 507     }
 508 #endif
 509 
 510     // compute exception handler into rbx
 511     __ movptr(c_rarg0, Address(rsp, 0));
 512     BLOCK_COMMENT("call exception_handler_for_return_address");
 513     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
 514                          SharedRuntime::exception_handler_for_return_address),
 515                     r15_thread, c_rarg0);
 516     __ mov(rbx, rax);
 517 
 518     // setup rax & rdx, remove return address & clear pending exception
 519     __ pop(rdx);
 520     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
 521     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 522 
 523 #ifdef ASSERT
 524     // make sure exception is set
 525     {
 526       Label L;
 527       __ testptr(rax, rax);
 528       __ jcc(Assembler::notEqual, L);
 529       __ stop("StubRoutines::forward exception: no pending exception (2)");
 530       __ bind(L);
 531     }
 532 #endif
 533 
 534     // continue at exception handler (return address removed)
 535     // rax: exception
 536     // rbx: exception handler
 537     // rdx: throwing pc
 538     __ verify_oop(rax);
 539     __ jmp(rbx);
 540 
 541     return start;
 542   }
 543 
 544   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
 545   //
 546   // Arguments :
 547   //    c_rarg0: exchange_value
 548   //    c_rarg0: dest
 549   //
 550   // Result:
 551   //    *dest <- ex, return (orig *dest)
 552   address generate_atomic_xchg() {
 553     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 554     address start = __ pc();
 555 
 556     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
 557     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
 558     __ ret(0);
 559 
 560     return start;
 561   }
 562 
 563   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
 564   //
 565   // Arguments :
 566   //    c_rarg0: exchange_value
 567   //    c_rarg1: dest
 568   //
 569   // Result:
 570   //    *dest <- ex, return (orig *dest)
 571   address generate_atomic_xchg_ptr() {
 572     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
 573     address start = __ pc();
 574 
 575     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 576     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
 577     __ ret(0);
 578 
 579     return start;
 580   }
 581 
 582   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
 583   //                                         jint compare_value)
 584   //
 585   // Arguments :
 586   //    c_rarg0: exchange_value
 587   //    c_rarg1: dest
 588   //    c_rarg2: compare_value
 589   //
 590   // Result:
 591   //    if ( compare_value == *dest ) {
 592   //       *dest = exchange_value
 593   //       return compare_value;
 594   //    else
 595   //       return *dest;
 596   address generate_atomic_cmpxchg() {
 597     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
 598     address start = __ pc();
 599 
 600     __ movl(rax, c_rarg2);
 601    if ( os::is_MP() ) __ lock();
 602     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
 603     __ ret(0);
 604 
 605     return start;
 606   }
 607 
 608   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
 609   //                                             volatile jlong* dest,
 610   //                                             jlong compare_value)
 611   // Arguments :
 612   //    c_rarg0: exchange_value
 613   //    c_rarg1: dest
 614   //    c_rarg2: compare_value
 615   //
 616   // Result:
 617   //    if ( compare_value == *dest ) {
 618   //       *dest = exchange_value
 619   //       return compare_value;
 620   //    else
 621   //       return *dest;
 622   address generate_atomic_cmpxchg_long() {
 623     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
 624     address start = __ pc();
 625 
 626     __ movq(rax, c_rarg2);
 627    if ( os::is_MP() ) __ lock();
 628     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
 629     __ ret(0);
 630 
 631     return start;
 632   }
 633 
 634   // Support for jint atomic::add(jint add_value, volatile jint* dest)
 635   //
 636   // Arguments :
 637   //    c_rarg0: add_value
 638   //    c_rarg1: dest
 639   //
 640   // Result:
 641   //    *dest += add_value
 642   //    return *dest;
 643   address generate_atomic_add() {
 644     StubCodeMark mark(this, "StubRoutines", "atomic_add");
 645     address start = __ pc();
 646 
 647     __ movl(rax, c_rarg0);
 648    if ( os::is_MP() ) __ lock();
 649     __ xaddl(Address(c_rarg1, 0), c_rarg0);
 650     __ addl(rax, c_rarg0);
 651     __ ret(0);
 652 
 653     return start;
 654   }
 655 
 656   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
 657   //
 658   // Arguments :
 659   //    c_rarg0: add_value
 660   //    c_rarg1: dest
 661   //
 662   // Result:
 663   //    *dest += add_value
 664   //    return *dest;
 665   address generate_atomic_add_ptr() {
 666     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
 667     address start = __ pc();
 668 
 669     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
 670    if ( os::is_MP() ) __ lock();
 671     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
 672     __ addptr(rax, c_rarg0);
 673     __ ret(0);
 674 
 675     return start;
 676   }
 677 
 678   // Support for intptr_t OrderAccess::fence()
 679   //
 680   // Arguments :
 681   //
 682   // Result:
 683   address generate_orderaccess_fence() {
 684     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
 685     address start = __ pc();
 686     __ membar(Assembler::StoreLoad);
 687     __ ret(0);
 688 
 689     return start;
 690   }
 691 
 692   // Support for intptr_t get_previous_fp()
 693   //
 694   // This routine is used to find the previous frame pointer for the
 695   // caller (current_frame_guess). This is used as part of debugging
 696   // ps() is seemingly lost trying to find frames.
 697   // This code assumes that caller current_frame_guess) has a frame.
 698   address generate_get_previous_fp() {
 699     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
 700     const Address old_fp(rbp, 0);
 701     const Address older_fp(rax, 0);
 702     address start = __ pc();
 703 
 704     __ enter();
 705     __ movptr(rax, old_fp); // callers fp
 706     __ movptr(rax, older_fp); // the frame for ps()
 707     __ pop(rbp);
 708     __ ret(0);
 709 
 710     return start;
 711   }
 712 
 713   // Support for intptr_t get_previous_sp()
 714   //
 715   // This routine is used to find the previous stack pointer for the
 716   // caller.
 717   address generate_get_previous_sp() {
 718     StubCodeMark mark(this, "StubRoutines", "get_previous_sp");
 719     address start = __ pc();
 720 
 721     __ movptr(rax, rsp);
 722     __ addptr(rax, 8); // return address is at the top of the stack.
 723     __ ret(0);
 724 
 725     return start;
 726   }
 727 
 728   //----------------------------------------------------------------------------------------------------
 729   // Support for void verify_mxcsr()
 730   //
 731   // This routine is used with -Xcheck:jni to verify that native
 732   // JNI code does not return to Java code without restoring the
 733   // MXCSR register to our expected state.
 734 
 735   address generate_verify_mxcsr() {
 736     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 737     address start = __ pc();
 738 
 739     const Address mxcsr_save(rsp, 0);
 740 
 741     if (CheckJNICalls) {
 742       Label ok_ret;
 743       __ push(rax);
 744       __ subptr(rsp, wordSize);      // allocate a temp location
 745       __ stmxcsr(mxcsr_save);
 746       __ movl(rax, mxcsr_save);
 747       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 748       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
 749       __ jcc(Assembler::equal, ok_ret);
 750 
 751       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
 752 
 753       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
 754 
 755       __ bind(ok_ret);
 756       __ addptr(rsp, wordSize);
 757       __ pop(rax);
 758     }
 759 
 760     __ ret(0);
 761 
 762     return start;
 763   }
 764 
 765   address generate_f2i_fixup() {
 766     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
 767     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 768 
 769     address start = __ pc();
 770 
 771     Label L;
 772 
 773     __ push(rax);
 774     __ push(c_rarg3);
 775     __ push(c_rarg2);
 776     __ push(c_rarg1);
 777 
 778     __ movl(rax, 0x7f800000);
 779     __ xorl(c_rarg3, c_rarg3);
 780     __ movl(c_rarg2, inout);
 781     __ movl(c_rarg1, c_rarg2);
 782     __ andl(c_rarg1, 0x7fffffff);
 783     __ cmpl(rax, c_rarg1); // NaN? -> 0
 784     __ jcc(Assembler::negative, L);
 785     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
 786     __ movl(c_rarg3, 0x80000000);
 787     __ movl(rax, 0x7fffffff);
 788     __ cmovl(Assembler::positive, c_rarg3, rax);
 789 
 790     __ bind(L);
 791     __ movptr(inout, c_rarg3);
 792 
 793     __ pop(c_rarg1);
 794     __ pop(c_rarg2);
 795     __ pop(c_rarg3);
 796     __ pop(rax);
 797 
 798     __ ret(0);
 799 
 800     return start;
 801   }
 802 
 803   address generate_f2l_fixup() {
 804     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
 805     Address inout(rsp, 5 * wordSize); // return address + 4 saves
 806     address start = __ pc();
 807 
 808     Label L;
 809 
 810     __ push(rax);
 811     __ push(c_rarg3);
 812     __ push(c_rarg2);
 813     __ push(c_rarg1);
 814 
 815     __ movl(rax, 0x7f800000);
 816     __ xorl(c_rarg3, c_rarg3);
 817     __ movl(c_rarg2, inout);
 818     __ movl(c_rarg1, c_rarg2);
 819     __ andl(c_rarg1, 0x7fffffff);
 820     __ cmpl(rax, c_rarg1); // NaN? -> 0
 821     __ jcc(Assembler::negative, L);
 822     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
 823     __ mov64(c_rarg3, 0x8000000000000000);
 824     __ mov64(rax, 0x7fffffffffffffff);
 825     __ cmov(Assembler::positive, c_rarg3, rax);
 826 
 827     __ bind(L);
 828     __ movptr(inout, c_rarg3);
 829 
 830     __ pop(c_rarg1);
 831     __ pop(c_rarg2);
 832     __ pop(c_rarg3);
 833     __ pop(rax);
 834 
 835     __ ret(0);
 836 
 837     return start;
 838   }
 839 
 840   address generate_d2i_fixup() {
 841     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
 842     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 843 
 844     address start = __ pc();
 845 
 846     Label L;
 847 
 848     __ push(rax);
 849     __ push(c_rarg3);
 850     __ push(c_rarg2);
 851     __ push(c_rarg1);
 852     __ push(c_rarg0);
 853 
 854     __ movl(rax, 0x7ff00000);
 855     __ movq(c_rarg2, inout);
 856     __ movl(c_rarg3, c_rarg2);
 857     __ mov(c_rarg1, c_rarg2);
 858     __ mov(c_rarg0, c_rarg2);
 859     __ negl(c_rarg3);
 860     __ shrptr(c_rarg1, 0x20);
 861     __ orl(c_rarg3, c_rarg2);
 862     __ andl(c_rarg1, 0x7fffffff);
 863     __ xorl(c_rarg2, c_rarg2);
 864     __ shrl(c_rarg3, 0x1f);
 865     __ orl(c_rarg1, c_rarg3);
 866     __ cmpl(rax, c_rarg1);
 867     __ jcc(Assembler::negative, L); // NaN -> 0
 868     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
 869     __ movl(c_rarg2, 0x80000000);
 870     __ movl(rax, 0x7fffffff);
 871     __ cmov(Assembler::positive, c_rarg2, rax);
 872 
 873     __ bind(L);
 874     __ movptr(inout, c_rarg2);
 875 
 876     __ pop(c_rarg0);
 877     __ pop(c_rarg1);
 878     __ pop(c_rarg2);
 879     __ pop(c_rarg3);
 880     __ pop(rax);
 881 
 882     __ ret(0);
 883 
 884     return start;
 885   }
 886 
 887   address generate_d2l_fixup() {
 888     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
 889     Address inout(rsp, 6 * wordSize); // return address + 5 saves
 890 
 891     address start = __ pc();
 892 
 893     Label L;
 894 
 895     __ push(rax);
 896     __ push(c_rarg3);
 897     __ push(c_rarg2);
 898     __ push(c_rarg1);
 899     __ push(c_rarg0);
 900 
 901     __ movl(rax, 0x7ff00000);
 902     __ movq(c_rarg2, inout);
 903     __ movl(c_rarg3, c_rarg2);
 904     __ mov(c_rarg1, c_rarg2);
 905     __ mov(c_rarg0, c_rarg2);
 906     __ negl(c_rarg3);
 907     __ shrptr(c_rarg1, 0x20);
 908     __ orl(c_rarg3, c_rarg2);
 909     __ andl(c_rarg1, 0x7fffffff);
 910     __ xorl(c_rarg2, c_rarg2);
 911     __ shrl(c_rarg3, 0x1f);
 912     __ orl(c_rarg1, c_rarg3);
 913     __ cmpl(rax, c_rarg1);
 914     __ jcc(Assembler::negative, L); // NaN -> 0
 915     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
 916     __ mov64(c_rarg2, 0x8000000000000000);
 917     __ mov64(rax, 0x7fffffffffffffff);
 918     __ cmovq(Assembler::positive, c_rarg2, rax);
 919 
 920     __ bind(L);
 921     __ movq(inout, c_rarg2);
 922 
 923     __ pop(c_rarg0);
 924     __ pop(c_rarg1);
 925     __ pop(c_rarg2);
 926     __ pop(c_rarg3);
 927     __ pop(rax);
 928 
 929     __ ret(0);
 930 
 931     return start;
 932   }
 933 
 934   address generate_fp_mask(const char *stub_name, int64_t mask) {
 935     __ align(CodeEntryAlignment);
 936     StubCodeMark mark(this, "StubRoutines", stub_name);
 937     address start = __ pc();
 938 
 939     __ emit_data64( mask, relocInfo::none );
 940     __ emit_data64( mask, relocInfo::none );
 941 
 942     return start;
 943   }
 944 
 945   // The following routine generates a subroutine to throw an
 946   // asynchronous UnknownError when an unsafe access gets a fault that
 947   // could not be reasonably prevented by the programmer.  (Example:
 948   // SIGBUS/OBJERR.)
 949   address generate_handler_for_unsafe_access() {
 950     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 951     address start = __ pc();
 952 
 953     __ push(0);                       // hole for return address-to-be
 954     __ pusha();                       // push registers
 955     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 956 
 957     // FIXME: this probably needs alignment logic
 958 
 959     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 960     BLOCK_COMMENT("call handle_unsafe_access");
 961     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 962     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 963 
 964     __ movptr(next_pc, rax);          // stuff next address
 965     __ popa();
 966     __ ret(0);                        // jump to next address
 967 
 968     return start;
 969   }
 970 
 971   // Non-destructive plausibility checks for oops
 972   //
 973   // Arguments:
 974   //    all args on stack!
 975   //
 976   // Stack after saving c_rarg3:
 977   //    [tos + 0]: saved c_rarg3
 978   //    [tos + 1]: saved c_rarg2
 979   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
 980   //    [tos + 3]: saved flags
 981   //    [tos + 4]: return address
 982   //  * [tos + 5]: error message (char*)
 983   //  * [tos + 6]: object to verify (oop)
 984   //  * [tos + 7]: saved rax - saved by caller and bashed
 985   //  * [tos + 8]: saved r10 (rscratch1) - saved by caller
 986   //  * = popped on exit
 987   address generate_verify_oop() {
 988     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 989     address start = __ pc();
 990 
 991     Label exit, error;
 992 
 993     __ pushf();
 994     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 995 
 996     __ push(r12);
 997 
 998     // save c_rarg2 and c_rarg3
 999     __ push(c_rarg2);
1000     __ push(c_rarg3);
1001 
1002     enum {
1003            // After previous pushes.
1004            oop_to_verify = 6 * wordSize,
1005            saved_rax     = 7 * wordSize,
1006            saved_r10     = 8 * wordSize,
1007 
1008            // Before the call to MacroAssembler::debug(), see below.
1009            return_addr   = 16 * wordSize,
1010            error_msg     = 17 * wordSize
1011     };
1012 
1013     // get object
1014     __ movptr(rax, Address(rsp, oop_to_verify));
1015 
1016     // make sure object is 'reasonable'
1017     __ testptr(rax, rax);
1018     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
1019     // Check if the oop is in the right area of memory
1020     __ movptr(c_rarg2, rax);
1021     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
1022     __ andptr(c_rarg2, c_rarg3);
1023     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
1024     __ cmpptr(c_rarg2, c_rarg3);
1025     __ jcc(Assembler::notZero, error);
1026 
1027     // set r12 to heapbase for load_klass()
1028     __ reinit_heapbase();
1029 
1030     // make sure klass is 'reasonable'
1031     __ load_klass(rax, rax);  // get klass
1032     __ testptr(rax, rax);
1033     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
1034     // Check if the klass is in the right area of memory
1035     __ mov(c_rarg2, rax);
1036     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
1037     __ andptr(c_rarg2, c_rarg3);
1038     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
1039     __ cmpptr(c_rarg2, c_rarg3);
1040     __ jcc(Assembler::notZero, error);
1041 
1042     // make sure klass' klass is 'reasonable'
1043     __ load_klass(rax, rax);
1044     __ testptr(rax, rax);
1045     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
1046     // Check if the klass' klass is in the right area of memory
1047     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
1048     __ andptr(rax, c_rarg3);
1049     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
1050     __ cmpptr(rax, c_rarg3);
1051     __ jcc(Assembler::notZero, error);
1052 
1053     // return if everything seems ok
1054     __ bind(exit);
1055     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1056     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1057     __ pop(c_rarg3);                             // restore c_rarg3
1058     __ pop(c_rarg2);                             // restore c_rarg2
1059     __ pop(r12);                                 // restore r12
1060     __ popf();                                   // restore flags
1061     __ ret(4 * wordSize);                        // pop caller saved stuff
1062 
1063     // handle errors
1064     __ bind(error);
1065     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
1066     __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back
1067     __ pop(c_rarg3);                             // get saved c_rarg3 back
1068     __ pop(c_rarg2);                             // get saved c_rarg2 back
1069     __ pop(r12);                                 // get saved r12 back
1070     __ popf();                                   // get saved flags off stack --
1071                                                  // will be ignored
1072 
1073     __ pusha();                                  // push registers
1074                                                  // (rip is already
1075                                                  // already pushed)
1076     // debug(char* msg, int64_t pc, int64_t regs[])
1077     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
1078     // pushed all the registers, so now the stack looks like:
1079     //     [tos +  0] 16 saved registers
1080     //     [tos + 16] return address
1081     //   * [tos + 17] error message (char*)
1082     //   * [tos + 18] object to verify (oop)
1083     //   * [tos + 19] saved rax - saved by caller and bashed
1084     //   * [tos + 20] saved r10 (rscratch1) - saved by caller
1085     //   * = popped on exit
1086 
1087     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
1088     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
1089     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
1090     __ mov(r12, rsp);                               // remember rsp
1091     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1092     __ andptr(rsp, -16);                            // align stack as required by ABI
1093     BLOCK_COMMENT("call MacroAssembler::debug");
1094     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
1095     __ mov(rsp, r12);                               // restore rsp
1096     __ popa();                                      // pop registers (includes r12)
1097     __ ret(4 * wordSize);                           // pop caller saved stuff
1098 
1099     return start;
1100   }
1101 
1102   //
1103   // Verify that a register contains clean 32-bits positive value
1104   // (high 32-bits are 0) so it could be used in 64-bits shifts.
1105   //
1106   //  Input:
1107   //    Rint  -  32-bits value
1108   //    Rtmp  -  scratch
1109   //
1110   void assert_clean_int(Register Rint, Register Rtmp) {
1111 #ifdef ASSERT
1112     Label L;
1113     assert_different_registers(Rtmp, Rint);
1114     __ movslq(Rtmp, Rint);
1115     __ cmpq(Rtmp, Rint);
1116     __ jcc(Assembler::equal, L);
1117     __ stop("high 32-bits of int value are not 0");
1118     __ bind(L);
1119 #endif
1120   }
1121 
1122   //  Generate overlap test for array copy stubs
1123   //
1124   //  Input:
1125   //     c_rarg0 - from
1126   //     c_rarg1 - to
1127   //     c_rarg2 - element count
1128   //
1129   //  Output:
1130   //     rax   - &from[element count - 1]
1131   //
1132   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
1133     assert(no_overlap_target != NULL, "must be generated");
1134     array_overlap_test(no_overlap_target, NULL, sf);
1135   }
1136   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
1137     array_overlap_test(NULL, &L_no_overlap, sf);
1138   }
1139   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
1140     const Register from     = c_rarg0;
1141     const Register to       = c_rarg1;
1142     const Register count    = c_rarg2;
1143     const Register end_from = rax;
1144 
1145     __ cmpptr(to, from);
1146     __ lea(end_from, Address(from, count, sf, 0));
1147     if (NOLp == NULL) {
1148       ExternalAddress no_overlap(no_overlap_target);
1149       __ jump_cc(Assembler::belowEqual, no_overlap);
1150       __ cmpptr(to, end_from);
1151       __ jump_cc(Assembler::aboveEqual, no_overlap);
1152     } else {
1153       __ jcc(Assembler::belowEqual, (*NOLp));
1154       __ cmpptr(to, end_from);
1155       __ jcc(Assembler::aboveEqual, (*NOLp));
1156     }
1157   }
1158 
1159   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
1160   //
1161   // Outputs:
1162   //    rdi - rcx
1163   //    rsi - rdx
1164   //    rdx - r8
1165   //    rcx - r9
1166   //
1167   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
1168   // are non-volatile.  r9 and r10 should not be used by the caller.
1169   //
1170   void setup_arg_regs(int nargs = 3) {
1171     const Register saved_rdi = r9;
1172     const Register saved_rsi = r10;
1173     assert(nargs == 3 || nargs == 4, "else fix");
1174 #ifdef _WIN64
1175     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
1176            "unexpected argument registers");
1177     if (nargs >= 4)
1178       __ mov(rax, r9);  // r9 is also saved_rdi
1179     __ movptr(saved_rdi, rdi);
1180     __ movptr(saved_rsi, rsi);
1181     __ mov(rdi, rcx); // c_rarg0
1182     __ mov(rsi, rdx); // c_rarg1
1183     __ mov(rdx, r8);  // c_rarg2
1184     if (nargs >= 4)
1185       __ mov(rcx, rax); // c_rarg3 (via rax)
1186 #else
1187     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
1188            "unexpected argument registers");
1189 #endif
1190   }
1191 
1192   void restore_arg_regs() {
1193     const Register saved_rdi = r9;
1194     const Register saved_rsi = r10;
1195 #ifdef _WIN64
1196     __ movptr(rdi, saved_rdi);
1197     __ movptr(rsi, saved_rsi);
1198 #endif
1199   }
1200 
1201   // Generate code for an array write pre barrier
1202   //
1203   //     addr    -  starting address
1204   //     count   -  element count
1205   //     tmp     - scratch register
1206   //
1207   //     Destroy no registers!
1208   //
1209   void  gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
1210     BarrierSet* bs = Universe::heap()->barrier_set();
1211     switch (bs->kind()) {
1212       case BarrierSet::G1SATBCT:
1213       case BarrierSet::G1SATBCTLogging:
1214         // With G1, don't generate the call if we statically know that the target in uninitialized
1215         if (!dest_uninitialized) {
1216            __ pusha();                      // push registers
1217            if (count == c_rarg0) {
1218              if (addr == c_rarg1) {
1219                // exactly backwards!!
1220                __ xchgptr(c_rarg1, c_rarg0);
1221              } else {
1222                __ movptr(c_rarg1, count);
1223                __ movptr(c_rarg0, addr);
1224              }
1225            } else {
1226              __ movptr(c_rarg0, addr);
1227              __ movptr(c_rarg1, count);
1228            }
1229            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre), 2);
1230            __ popa();
1231         }
1232          break;
1233       case BarrierSet::CardTableModRef:
1234       case BarrierSet::CardTableExtension:
1235       case BarrierSet::ModRef:
1236         break;
1237       default:
1238         ShouldNotReachHere();
1239 
1240     }
1241   }
1242 
1243   //
1244   // Generate code for an array write post barrier
1245   //
1246   //  Input:
1247   //     start    - register containing starting address of destination array
1248   //     count    - elements count
1249   //     scratch  - scratch register
1250   //
1251   //  The input registers are overwritten.
1252   //
1253   void  gen_write_ref_array_post_barrier(Register start, Register count, Register scratch) {
1254     assert_different_registers(start, count, scratch);
1255     BarrierSet* bs = Universe::heap()->barrier_set();
1256     switch (bs->kind()) {
1257       case BarrierSet::G1SATBCT:
1258       case BarrierSet::G1SATBCTLogging:
1259         {
1260           __ pusha();             // push registers (overkill)
1261           if (c_rarg0 == count) { // On win64 c_rarg0 == rcx
1262             assert_different_registers(c_rarg1, start);
1263             __ mov(c_rarg1, count);
1264             __ mov(c_rarg0, start);
1265           } else {
1266             assert_different_registers(c_rarg0, count);
1267             __ mov(c_rarg0, start);
1268             __ mov(c_rarg1, count);
1269           }
1270           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post), 2);
1271           __ popa();
1272         }
1273         break;
1274       case BarrierSet::CardTableModRef:
1275       case BarrierSet::CardTableExtension:
1276         {
1277           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1278           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1279 
1280           Label L_loop;
1281           const Register end = count;
1282 
1283           __ leaq(end, Address(start, count, TIMES_OOP, 0));  // end == start+count*oop_size
1284           __ subptr(end, BytesPerHeapOop); // end - 1 to make inclusive
1285           __ shrptr(start, CardTableModRefBS::card_shift);
1286           __ shrptr(end,   CardTableModRefBS::card_shift);
1287           __ subptr(end, start); // end --> cards count
1288 
1289           int64_t disp = (int64_t) ct->byte_map_base;
1290           __ mov64(scratch, disp);
1291           __ addptr(start, scratch);
1292         __ BIND(L_loop);
1293           __ movb(Address(start, count, Address::times_1), 0);
1294           __ decrement(count);
1295           __ jcc(Assembler::greaterEqual, L_loop);
1296         }
1297         break;
1298       default:
1299         ShouldNotReachHere();
1300 
1301     }
1302   }
1303 
1304 
1305   // Copy big chunks forward
1306   //
1307   // Inputs:
1308   //   end_from     - source arrays end address
1309   //   end_to       - destination array end address
1310   //   qword_count  - 64-bits element count, negative
1311   //   to           - scratch
1312   //   L_copy_bytes - entry label
1313   //   L_copy_8_bytes  - exit  label
1314   //
1315   void copy_bytes_forward(Register end_from, Register end_to,
1316                              Register qword_count, Register to,
1317                              Label& L_copy_bytes, Label& L_copy_8_bytes) {
1318     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1319     Label L_loop;
1320     __ align(OptoLoopAlignment);
1321     if (UseUnalignedLoadStores) {
1322       Label L_end;
1323       // Copy 64-bytes per iteration
1324       __ BIND(L_loop);
1325       if (UseAVX >= 2) {
1326         __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
1327         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
1328         __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24));
1329         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1);
1330       } else {
1331         __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56));
1332         __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0);
1333         __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40));
1334         __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1);
1335         __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24));
1336         __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2);
1337         __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8));
1338         __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3);
1339       }
1340       __ BIND(L_copy_bytes);
1341       __ addptr(qword_count, 8);
1342       __ jcc(Assembler::lessEqual, L_loop);
1343       __ subptr(qword_count, 4);  // sub(8) and add(4)
1344       __ jccb(Assembler::greater, L_end);
1345       // Copy trailing 32 bytes
1346       if (UseAVX >= 2) {
1347         __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1348         __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1349       } else {
1350         __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
1351         __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
1352         __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
1353         __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
1354       }
1355       __ addptr(qword_count, 4);
1356       __ BIND(L_end);
1357       if (UseAVX >= 2) {
1358         // clean upper bits of YMM registers
1359         __ vzeroupper();
1360       }
1361     } else {
1362       // Copy 32-bytes per iteration
1363       __ BIND(L_loop);
1364       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
1365       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
1366       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
1367       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
1368       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
1369       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
1370       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
1371       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
1372 
1373       __ BIND(L_copy_bytes);
1374       __ addptr(qword_count, 4);
1375       __ jcc(Assembler::lessEqual, L_loop);
1376     }
1377     __ subptr(qword_count, 4);
1378     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
1379   }
1380 
1381   // Copy big chunks backward
1382   //
1383   // Inputs:
1384   //   from         - source arrays address
1385   //   dest         - destination array address
1386   //   qword_count  - 64-bits element count
1387   //   to           - scratch
1388   //   L_copy_bytes - entry label
1389   //   L_copy_8_bytes  - exit  label
1390   //
1391   void copy_bytes_backward(Register from, Register dest,
1392                               Register qword_count, Register to,
1393                               Label& L_copy_bytes, Label& L_copy_8_bytes) {
1394     DEBUG_ONLY(__ stop("enter at entry label, not here"));
1395     Label L_loop;
1396     __ align(OptoLoopAlignment);
1397     if (UseUnalignedLoadStores) {
1398       Label L_end;
1399       // Copy 64-bytes per iteration
1400       __ BIND(L_loop);
1401       if (UseAVX >= 2) {
1402         __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32));
1403         __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0);
1404         __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1405         __ vmovdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1406       } else {
1407         __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48));
1408         __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0);
1409         __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32));
1410         __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1);
1411         __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16));
1412         __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2);
1413         __ movdqu(xmm3, Address(from, qword_count, Address::times_8,  0));
1414         __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm3);
1415       }
1416       __ BIND(L_copy_bytes);
1417       __ subptr(qword_count, 8);
1418       __ jcc(Assembler::greaterEqual, L_loop);
1419 
1420       __ addptr(qword_count, 4);  // add(8) and sub(4)
1421       __ jccb(Assembler::less, L_end);
1422       // Copy trailing 32 bytes
1423       if (UseAVX >= 2) {
1424         __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0));
1425         __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0);
1426       } else {
1427         __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
1428         __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
1429         __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
1430         __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
1431       }
1432       __ subptr(qword_count, 4);
1433       __ BIND(L_end);
1434       if (UseAVX >= 2) {
1435         // clean upper bits of YMM registers
1436         __ vzeroupper();
1437       }
1438     } else {
1439       // Copy 32-bytes per iteration
1440       __ BIND(L_loop);
1441       __ movq(to, Address(from, qword_count, Address::times_8, 24));
1442       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
1443       __ movq(to, Address(from, qword_count, Address::times_8, 16));
1444       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
1445       __ movq(to, Address(from, qword_count, Address::times_8,  8));
1446       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
1447       __ movq(to, Address(from, qword_count, Address::times_8,  0));
1448       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
1449 
1450       __ BIND(L_copy_bytes);
1451       __ subptr(qword_count, 4);
1452       __ jcc(Assembler::greaterEqual, L_loop);
1453     }
1454     __ addptr(qword_count, 4);
1455     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
1456   }
1457 
1458 
1459   // Arguments:
1460   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1461   //             ignored
1462   //   name    - stub name string
1463   //
1464   // Inputs:
1465   //   c_rarg0   - source array address
1466   //   c_rarg1   - destination array address
1467   //   c_rarg2   - element count, treated as ssize_t, can be zero
1468   //
1469   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1470   // we let the hardware handle it.  The one to eight bytes within words,
1471   // dwords or qwords that span cache line boundaries will still be loaded
1472   // and stored atomically.
1473   //
1474   // Side Effects:
1475   //   disjoint_byte_copy_entry is set to the no-overlap entry point
1476   //   used by generate_conjoint_byte_copy().
1477   //
1478   address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) {
1479     __ align(CodeEntryAlignment);
1480     StubCodeMark mark(this, "StubRoutines", name);
1481     address start = __ pc();
1482 
1483     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1484     Label L_copy_byte, L_exit;
1485     const Register from        = rdi;  // source array address
1486     const Register to          = rsi;  // destination array address
1487     const Register count       = rdx;  // elements count
1488     const Register byte_count  = rcx;
1489     const Register qword_count = count;
1490     const Register end_from    = from; // source array end address
1491     const Register end_to      = to;   // destination array end address
1492     // End pointers are inclusive, and if count is not zero they point
1493     // to the last unit copied:  end_to[0] := end_from[0]
1494 
1495     __ enter(); // required for proper stackwalking of RuntimeStub frame
1496     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1497 
1498     if (entry != NULL) {
1499       *entry = __ pc();
1500        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1501       BLOCK_COMMENT("Entry:");
1502     }
1503 
1504     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1505                       // r9 and r10 may be used to save non-volatile registers
1506 
1507     // 'from', 'to' and 'count' are now valid
1508     __ movptr(byte_count, count);
1509     __ shrptr(count, 3); // count => qword_count
1510 
1511     // Copy from low to high addresses.  Use 'to' as scratch.
1512     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1513     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1514     __ negptr(qword_count); // make the count negative
1515     __ jmp(L_copy_bytes);
1516 
1517     // Copy trailing qwords
1518   __ BIND(L_copy_8_bytes);
1519     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1520     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1521     __ increment(qword_count);
1522     __ jcc(Assembler::notZero, L_copy_8_bytes);
1523 
1524     // Check for and copy trailing dword
1525   __ BIND(L_copy_4_bytes);
1526     __ testl(byte_count, 4);
1527     __ jccb(Assembler::zero, L_copy_2_bytes);
1528     __ movl(rax, Address(end_from, 8));
1529     __ movl(Address(end_to, 8), rax);
1530 
1531     __ addptr(end_from, 4);
1532     __ addptr(end_to, 4);
1533 
1534     // Check for and copy trailing word
1535   __ BIND(L_copy_2_bytes);
1536     __ testl(byte_count, 2);
1537     __ jccb(Assembler::zero, L_copy_byte);
1538     __ movw(rax, Address(end_from, 8));
1539     __ movw(Address(end_to, 8), rax);
1540 
1541     __ addptr(end_from, 2);
1542     __ addptr(end_to, 2);
1543 
1544     // Check for and copy trailing byte
1545   __ BIND(L_copy_byte);
1546     __ testl(byte_count, 1);
1547     __ jccb(Assembler::zero, L_exit);
1548     __ movb(rax, Address(end_from, 8));
1549     __ movb(Address(end_to, 8), rax);
1550 
1551   __ BIND(L_exit);
1552     restore_arg_regs();
1553     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1554     __ xorptr(rax, rax); // return 0
1555     __ leave(); // required for proper stackwalking of RuntimeStub frame
1556     __ ret(0);
1557 
1558     // Copy in multi-bytes chunks
1559     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1560     __ jmp(L_copy_4_bytes);
1561 
1562     return start;
1563   }
1564 
1565   // Arguments:
1566   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1567   //             ignored
1568   //   name    - stub name string
1569   //
1570   // Inputs:
1571   //   c_rarg0   - source array address
1572   //   c_rarg1   - destination array address
1573   //   c_rarg2   - element count, treated as ssize_t, can be zero
1574   //
1575   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
1576   // we let the hardware handle it.  The one to eight bytes within words,
1577   // dwords or qwords that span cache line boundaries will still be loaded
1578   // and stored atomically.
1579   //
1580   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
1581                                       address* entry, const char *name) {
1582     __ align(CodeEntryAlignment);
1583     StubCodeMark mark(this, "StubRoutines", name);
1584     address start = __ pc();
1585 
1586     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
1587     const Register from        = rdi;  // source array address
1588     const Register to          = rsi;  // destination array address
1589     const Register count       = rdx;  // elements count
1590     const Register byte_count  = rcx;
1591     const Register qword_count = count;
1592 
1593     __ enter(); // required for proper stackwalking of RuntimeStub frame
1594     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1595 
1596     if (entry != NULL) {
1597       *entry = __ pc();
1598       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1599       BLOCK_COMMENT("Entry:");
1600     }
1601 
1602     array_overlap_test(nooverlap_target, Address::times_1);
1603     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1604                       // r9 and r10 may be used to save non-volatile registers
1605 
1606     // 'from', 'to' and 'count' are now valid
1607     __ movptr(byte_count, count);
1608     __ shrptr(count, 3);   // count => qword_count
1609 
1610     // Copy from high to low addresses.
1611 
1612     // Check for and copy trailing byte
1613     __ testl(byte_count, 1);
1614     __ jcc(Assembler::zero, L_copy_2_bytes);
1615     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
1616     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
1617     __ decrement(byte_count); // Adjust for possible trailing word
1618 
1619     // Check for and copy trailing word
1620   __ BIND(L_copy_2_bytes);
1621     __ testl(byte_count, 2);
1622     __ jcc(Assembler::zero, L_copy_4_bytes);
1623     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
1624     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
1625 
1626     // Check for and copy trailing dword
1627   __ BIND(L_copy_4_bytes);
1628     __ testl(byte_count, 4);
1629     __ jcc(Assembler::zero, L_copy_bytes);
1630     __ movl(rax, Address(from, qword_count, Address::times_8));
1631     __ movl(Address(to, qword_count, Address::times_8), rax);
1632     __ jmp(L_copy_bytes);
1633 
1634     // Copy trailing qwords
1635   __ BIND(L_copy_8_bytes);
1636     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1637     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1638     __ decrement(qword_count);
1639     __ jcc(Assembler::notZero, L_copy_8_bytes);
1640 
1641     restore_arg_regs();
1642     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1643     __ xorptr(rax, rax); // return 0
1644     __ leave(); // required for proper stackwalking of RuntimeStub frame
1645     __ ret(0);
1646 
1647     // Copy in multi-bytes chunks
1648     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1649 
1650     restore_arg_regs();
1651     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free
1652     __ xorptr(rax, rax); // return 0
1653     __ leave(); // required for proper stackwalking of RuntimeStub frame
1654     __ ret(0);
1655 
1656     return start;
1657   }
1658 
1659   // Arguments:
1660   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1661   //             ignored
1662   //   name    - stub name string
1663   //
1664   // Inputs:
1665   //   c_rarg0   - source array address
1666   //   c_rarg1   - destination array address
1667   //   c_rarg2   - element count, treated as ssize_t, can be zero
1668   //
1669   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1670   // let the hardware handle it.  The two or four words within dwords
1671   // or qwords that span cache line boundaries will still be loaded
1672   // and stored atomically.
1673   //
1674   // Side Effects:
1675   //   disjoint_short_copy_entry is set to the no-overlap entry point
1676   //   used by generate_conjoint_short_copy().
1677   //
1678   address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) {
1679     __ align(CodeEntryAlignment);
1680     StubCodeMark mark(this, "StubRoutines", name);
1681     address start = __ pc();
1682 
1683     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
1684     const Register from        = rdi;  // source array address
1685     const Register to          = rsi;  // destination array address
1686     const Register count       = rdx;  // elements count
1687     const Register word_count  = rcx;
1688     const Register qword_count = count;
1689     const Register end_from    = from; // source array end address
1690     const Register end_to      = to;   // destination array end address
1691     // End pointers are inclusive, and if count is not zero they point
1692     // to the last unit copied:  end_to[0] := end_from[0]
1693 
1694     __ enter(); // required for proper stackwalking of RuntimeStub frame
1695     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1696 
1697     if (entry != NULL) {
1698       *entry = __ pc();
1699       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1700       BLOCK_COMMENT("Entry:");
1701     }
1702 
1703     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1704                       // r9 and r10 may be used to save non-volatile registers
1705 
1706     // 'from', 'to' and 'count' are now valid
1707     __ movptr(word_count, count);
1708     __ shrptr(count, 2); // count => qword_count
1709 
1710     // Copy from low to high addresses.  Use 'to' as scratch.
1711     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1712     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1713     __ negptr(qword_count);
1714     __ jmp(L_copy_bytes);
1715 
1716     // Copy trailing qwords
1717   __ BIND(L_copy_8_bytes);
1718     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1719     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1720     __ increment(qword_count);
1721     __ jcc(Assembler::notZero, L_copy_8_bytes);
1722 
1723     // Original 'dest' is trashed, so we can't use it as a
1724     // base register for a possible trailing word copy
1725 
1726     // Check for and copy trailing dword
1727   __ BIND(L_copy_4_bytes);
1728     __ testl(word_count, 2);
1729     __ jccb(Assembler::zero, L_copy_2_bytes);
1730     __ movl(rax, Address(end_from, 8));
1731     __ movl(Address(end_to, 8), rax);
1732 
1733     __ addptr(end_from, 4);
1734     __ addptr(end_to, 4);
1735 
1736     // Check for and copy trailing word
1737   __ BIND(L_copy_2_bytes);
1738     __ testl(word_count, 1);
1739     __ jccb(Assembler::zero, L_exit);
1740     __ movw(rax, Address(end_from, 8));
1741     __ movw(Address(end_to, 8), rax);
1742 
1743   __ BIND(L_exit);
1744     restore_arg_regs();
1745     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1746     __ xorptr(rax, rax); // return 0
1747     __ leave(); // required for proper stackwalking of RuntimeStub frame
1748     __ ret(0);
1749 
1750     // Copy in multi-bytes chunks
1751     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1752     __ jmp(L_copy_4_bytes);
1753 
1754     return start;
1755   }
1756 
1757   address generate_fill(BasicType t, bool aligned, const char *name) {
1758     __ align(CodeEntryAlignment);
1759     StubCodeMark mark(this, "StubRoutines", name);
1760     address start = __ pc();
1761 
1762     BLOCK_COMMENT("Entry:");
1763 
1764     const Register to       = c_rarg0;  // source array address
1765     const Register value    = c_rarg1;  // value
1766     const Register count    = c_rarg2;  // elements count
1767 
1768     __ enter(); // required for proper stackwalking of RuntimeStub frame
1769 
1770     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1771 
1772     __ leave(); // required for proper stackwalking of RuntimeStub frame
1773     __ ret(0);
1774     return start;
1775   }
1776 
1777   // Arguments:
1778   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1779   //             ignored
1780   //   name    - stub name string
1781   //
1782   // Inputs:
1783   //   c_rarg0   - source array address
1784   //   c_rarg1   - destination array address
1785   //   c_rarg2   - element count, treated as ssize_t, can be zero
1786   //
1787   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
1788   // let the hardware handle it.  The two or four words within dwords
1789   // or qwords that span cache line boundaries will still be loaded
1790   // and stored atomically.
1791   //
1792   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
1793                                        address *entry, const char *name) {
1794     __ align(CodeEntryAlignment);
1795     StubCodeMark mark(this, "StubRoutines", name);
1796     address start = __ pc();
1797 
1798     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes;
1799     const Register from        = rdi;  // source array address
1800     const Register to          = rsi;  // destination array address
1801     const Register count       = rdx;  // elements count
1802     const Register word_count  = rcx;
1803     const Register qword_count = count;
1804 
1805     __ enter(); // required for proper stackwalking of RuntimeStub frame
1806     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1807 
1808     if (entry != NULL) {
1809       *entry = __ pc();
1810       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1811       BLOCK_COMMENT("Entry:");
1812     }
1813 
1814     array_overlap_test(nooverlap_target, Address::times_2);
1815     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1816                       // r9 and r10 may be used to save non-volatile registers
1817 
1818     // 'from', 'to' and 'count' are now valid
1819     __ movptr(word_count, count);
1820     __ shrptr(count, 2); // count => qword_count
1821 
1822     // Copy from high to low addresses.  Use 'to' as scratch.
1823 
1824     // Check for and copy trailing word
1825     __ testl(word_count, 1);
1826     __ jccb(Assembler::zero, L_copy_4_bytes);
1827     __ movw(rax, Address(from, word_count, Address::times_2, -2));
1828     __ movw(Address(to, word_count, Address::times_2, -2), rax);
1829 
1830     // Check for and copy trailing dword
1831   __ BIND(L_copy_4_bytes);
1832     __ testl(word_count, 2);
1833     __ jcc(Assembler::zero, L_copy_bytes);
1834     __ movl(rax, Address(from, qword_count, Address::times_8));
1835     __ movl(Address(to, qword_count, Address::times_8), rax);
1836     __ jmp(L_copy_bytes);
1837 
1838     // Copy trailing qwords
1839   __ BIND(L_copy_8_bytes);
1840     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
1841     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
1842     __ decrement(qword_count);
1843     __ jcc(Assembler::notZero, L_copy_8_bytes);
1844 
1845     restore_arg_regs();
1846     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1847     __ xorptr(rax, rax); // return 0
1848     __ leave(); // required for proper stackwalking of RuntimeStub frame
1849     __ ret(0);
1850 
1851     // Copy in multi-bytes chunks
1852     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1853 
1854     restore_arg_regs();
1855     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free
1856     __ xorptr(rax, rax); // return 0
1857     __ leave(); // required for proper stackwalking of RuntimeStub frame
1858     __ ret(0);
1859 
1860     return start;
1861   }
1862 
1863   // Arguments:
1864   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1865   //             ignored
1866   //   is_oop  - true => oop array, so generate store check code
1867   //   name    - stub name string
1868   //
1869   // Inputs:
1870   //   c_rarg0   - source array address
1871   //   c_rarg1   - destination array address
1872   //   c_rarg2   - element count, treated as ssize_t, can be zero
1873   //
1874   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1875   // the hardware handle it.  The two dwords within qwords that span
1876   // cache line boundaries will still be loaded and stored atomicly.
1877   //
1878   // Side Effects:
1879   //   disjoint_int_copy_entry is set to the no-overlap entry point
1880   //   used by generate_conjoint_int_oop_copy().
1881   //
1882   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry,
1883                                          const char *name, bool dest_uninitialized = false) {
1884     __ align(CodeEntryAlignment);
1885     StubCodeMark mark(this, "StubRoutines", name);
1886     address start = __ pc();
1887 
1888     Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
1889     const Register from        = rdi;  // source array address
1890     const Register to          = rsi;  // destination array address
1891     const Register count       = rdx;  // elements count
1892     const Register dword_count = rcx;
1893     const Register qword_count = count;
1894     const Register end_from    = from; // source array end address
1895     const Register end_to      = to;   // destination array end address
1896     const Register saved_to    = r11;  // saved destination array address
1897     // End pointers are inclusive, and if count is not zero they point
1898     // to the last unit copied:  end_to[0] := end_from[0]
1899 
1900     __ enter(); // required for proper stackwalking of RuntimeStub frame
1901     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1902 
1903     if (entry != NULL) {
1904       *entry = __ pc();
1905       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1906       BLOCK_COMMENT("Entry:");
1907     }
1908 
1909     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1910                       // r9 and r10 may be used to save non-volatile registers
1911     if (is_oop) {
1912       __ movq(saved_to, to);
1913       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1914     }
1915 
1916     // 'from', 'to' and 'count' are now valid
1917     __ movptr(dword_count, count);
1918     __ shrptr(count, 1); // count => qword_count
1919 
1920     // Copy from low to high addresses.  Use 'to' as scratch.
1921     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
1922     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
1923     __ negptr(qword_count);
1924     __ jmp(L_copy_bytes);
1925 
1926     // Copy trailing qwords
1927   __ BIND(L_copy_8_bytes);
1928     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
1929     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
1930     __ increment(qword_count);
1931     __ jcc(Assembler::notZero, L_copy_8_bytes);
1932 
1933     // Check for and copy trailing dword
1934   __ BIND(L_copy_4_bytes);
1935     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
1936     __ jccb(Assembler::zero, L_exit);
1937     __ movl(rax, Address(end_from, 8));
1938     __ movl(Address(end_to, 8), rax);
1939 
1940   __ BIND(L_exit);
1941     if (is_oop) {
1942       gen_write_ref_array_post_barrier(saved_to, dword_count, rax);
1943     }
1944     restore_arg_regs();
1945     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
1946     __ xorptr(rax, rax); // return 0
1947     __ leave(); // required for proper stackwalking of RuntimeStub frame
1948     __ ret(0);
1949 
1950     // Copy in multi-bytes chunks
1951     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
1952     __ jmp(L_copy_4_bytes);
1953 
1954     return start;
1955   }
1956 
1957   // Arguments:
1958   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
1959   //             ignored
1960   //   is_oop  - true => oop array, so generate store check code
1961   //   name    - stub name string
1962   //
1963   // Inputs:
1964   //   c_rarg0   - source array address
1965   //   c_rarg1   - destination array address
1966   //   c_rarg2   - element count, treated as ssize_t, can be zero
1967   //
1968   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
1969   // the hardware handle it.  The two dwords within qwords that span
1970   // cache line boundaries will still be loaded and stored atomicly.
1971   //
1972   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target,
1973                                          address *entry, const char *name,
1974                                          bool dest_uninitialized = false) {
1975     __ align(CodeEntryAlignment);
1976     StubCodeMark mark(this, "StubRoutines", name);
1977     address start = __ pc();
1978 
1979     Label L_copy_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
1980     const Register from        = rdi;  // source array address
1981     const Register to          = rsi;  // destination array address
1982     const Register count       = rdx;  // elements count
1983     const Register dword_count = rcx;
1984     const Register qword_count = count;
1985 
1986     __ enter(); // required for proper stackwalking of RuntimeStub frame
1987     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
1988 
1989     if (entry != NULL) {
1990       *entry = __ pc();
1991        // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1992       BLOCK_COMMENT("Entry:");
1993     }
1994 
1995     array_overlap_test(nooverlap_target, Address::times_4);
1996     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
1997                       // r9 and r10 may be used to save non-volatile registers
1998 
1999     if (is_oop) {
2000       // no registers are destroyed by this call
2001       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
2002     }
2003 
2004     assert_clean_int(count, rax); // Make sure 'count' is clean int.
2005     // 'from', 'to' and 'count' are now valid
2006     __ movptr(dword_count, count);
2007     __ shrptr(count, 1); // count => qword_count
2008 
2009     // Copy from high to low addresses.  Use 'to' as scratch.
2010 
2011     // Check for and copy trailing dword
2012     __ testl(dword_count, 1);
2013     __ jcc(Assembler::zero, L_copy_bytes);
2014     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
2015     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
2016     __ jmp(L_copy_bytes);
2017 
2018     // Copy trailing qwords
2019   __ BIND(L_copy_8_bytes);
2020     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2021     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2022     __ decrement(qword_count);
2023     __ jcc(Assembler::notZero, L_copy_8_bytes);
2024 
2025     if (is_oop) {
2026       __ jmp(L_exit);
2027     }
2028     restore_arg_regs();
2029     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
2030     __ xorptr(rax, rax); // return 0
2031     __ leave(); // required for proper stackwalking of RuntimeStub frame
2032     __ ret(0);
2033 
2034     // Copy in multi-bytes chunks
2035     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2036 
2037   __ BIND(L_exit);
2038     if (is_oop) {
2039       gen_write_ref_array_post_barrier(to, dword_count, rax);
2040     }
2041     restore_arg_regs();
2042     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free
2043     __ xorptr(rax, rax); // return 0
2044     __ leave(); // required for proper stackwalking of RuntimeStub frame
2045     __ ret(0);
2046 
2047     return start;
2048   }
2049 
2050   // Arguments:
2051   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
2052   //             ignored
2053   //   is_oop  - true => oop array, so generate store check code
2054   //   name    - stub name string
2055   //
2056   // Inputs:
2057   //   c_rarg0   - source array address
2058   //   c_rarg1   - destination array address
2059   //   c_rarg2   - element count, treated as ssize_t, can be zero
2060   //
2061  // Side Effects:
2062   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
2063   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
2064   //
2065   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry,
2066                                           const char *name, bool dest_uninitialized = false) {
2067     __ align(CodeEntryAlignment);
2068     StubCodeMark mark(this, "StubRoutines", name);
2069     address start = __ pc();
2070 
2071     Label L_copy_bytes, L_copy_8_bytes, L_exit;
2072     const Register from        = rdi;  // source array address
2073     const Register to          = rsi;  // destination array address
2074     const Register qword_count = rdx;  // elements count
2075     const Register end_from    = from; // source array end address
2076     const Register end_to      = rcx;  // destination array end address
2077     const Register saved_to    = to;
2078     const Register saved_count = r11;
2079     // End pointers are inclusive, and if count is not zero they point
2080     // to the last unit copied:  end_to[0] := end_from[0]
2081 
2082     __ enter(); // required for proper stackwalking of RuntimeStub frame
2083     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
2084     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2085 
2086     if (entry != NULL) {
2087       *entry = __ pc();
2088       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2089       BLOCK_COMMENT("Entry:");
2090     }
2091 
2092     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2093                       // r9 and r10 may be used to save non-volatile registers
2094     // 'from', 'to' and 'qword_count' are now valid
2095     if (is_oop) {
2096       // Save to and count for store barrier
2097       __ movptr(saved_count, qword_count);
2098       // no registers are destroyed by this call
2099       gen_write_ref_array_pre_barrier(to, qword_count, dest_uninitialized);
2100     }
2101 
2102     // Copy from low to high addresses.  Use 'to' as scratch.
2103     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
2104     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
2105     __ negptr(qword_count);
2106     __ jmp(L_copy_bytes);
2107 
2108     // Copy trailing qwords
2109   __ BIND(L_copy_8_bytes);
2110     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
2111     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
2112     __ increment(qword_count);
2113     __ jcc(Assembler::notZero, L_copy_8_bytes);
2114 
2115     if (is_oop) {
2116       __ jmp(L_exit);
2117     } else {
2118       restore_arg_regs();
2119       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2120       __ xorptr(rax, rax); // return 0
2121       __ leave(); // required for proper stackwalking of RuntimeStub frame
2122       __ ret(0);
2123     }
2124 
2125     // Copy in multi-bytes chunks
2126     copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2127 
2128     if (is_oop) {
2129     __ BIND(L_exit);
2130       gen_write_ref_array_post_barrier(saved_to, saved_count, rax);
2131     }
2132     restore_arg_regs();
2133     if (is_oop) {
2134       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2135     } else {
2136       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2137     }
2138     __ xorptr(rax, rax); // return 0
2139     __ leave(); // required for proper stackwalking of RuntimeStub frame
2140     __ ret(0);
2141 
2142     return start;
2143   }
2144 
2145   // Arguments:
2146   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
2147   //             ignored
2148   //   is_oop  - true => oop array, so generate store check code
2149   //   name    - stub name string
2150   //
2151   // Inputs:
2152   //   c_rarg0   - source array address
2153   //   c_rarg1   - destination array address
2154   //   c_rarg2   - element count, treated as ssize_t, can be zero
2155   //
2156   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop,
2157                                           address nooverlap_target, address *entry,
2158                                           const char *name, bool dest_uninitialized = false) {
2159     __ align(CodeEntryAlignment);
2160     StubCodeMark mark(this, "StubRoutines", name);
2161     address start = __ pc();
2162 
2163     Label L_copy_bytes, L_copy_8_bytes, L_exit;
2164     const Register from        = rdi;  // source array address
2165     const Register to          = rsi;  // destination array address
2166     const Register qword_count = rdx;  // elements count
2167     const Register saved_count = rcx;
2168 
2169     __ enter(); // required for proper stackwalking of RuntimeStub frame
2170     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
2171 
2172     if (entry != NULL) {
2173       *entry = __ pc();
2174       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2175       BLOCK_COMMENT("Entry:");
2176     }
2177 
2178     array_overlap_test(nooverlap_target, Address::times_8);
2179     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
2180                       // r9 and r10 may be used to save non-volatile registers
2181     // 'from', 'to' and 'qword_count' are now valid
2182     if (is_oop) {
2183       // Save to and count for store barrier
2184       __ movptr(saved_count, qword_count);
2185       // No registers are destroyed by this call
2186       gen_write_ref_array_pre_barrier(to, saved_count, dest_uninitialized);
2187     }
2188 
2189     __ jmp(L_copy_bytes);
2190 
2191     // Copy trailing qwords
2192   __ BIND(L_copy_8_bytes);
2193     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
2194     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
2195     __ decrement(qword_count);
2196     __ jcc(Assembler::notZero, L_copy_8_bytes);
2197 
2198     if (is_oop) {
2199       __ jmp(L_exit);
2200     } else {
2201       restore_arg_regs();
2202       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2203       __ xorptr(rax, rax); // return 0
2204       __ leave(); // required for proper stackwalking of RuntimeStub frame
2205       __ ret(0);
2206     }
2207 
2208     // Copy in multi-bytes chunks
2209     copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes);
2210 
2211     if (is_oop) {
2212     __ BIND(L_exit);
2213       gen_write_ref_array_post_barrier(to, saved_count, rax);
2214     }
2215     restore_arg_regs();
2216     if (is_oop) {
2217       inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free
2218     } else {
2219       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free
2220     }
2221     __ xorptr(rax, rax); // return 0
2222     __ leave(); // required for proper stackwalking of RuntimeStub frame
2223     __ ret(0);
2224 
2225     return start;
2226   }
2227 
2228 
2229   // Helper for generating a dynamic type check.
2230   // Smashes no registers.
2231   void generate_type_check(Register sub_klass,
2232                            Register super_check_offset,
2233                            Register super_klass,
2234                            Label& L_success) {
2235     assert_different_registers(sub_klass, super_check_offset, super_klass);
2236 
2237     BLOCK_COMMENT("type_check:");
2238 
2239     Label L_miss;
2240 
2241     __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg,        &L_success, &L_miss, NULL,
2242                                      super_check_offset);
2243     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
2244 
2245     // Fall through on failure!
2246     __ BIND(L_miss);
2247   }
2248 
2249   //
2250   //  Generate checkcasting array copy stub
2251   //
2252   //  Input:
2253   //    c_rarg0   - source array address
2254   //    c_rarg1   - destination array address
2255   //    c_rarg2   - element count, treated as ssize_t, can be zero
2256   //    c_rarg3   - size_t ckoff (super_check_offset)
2257   // not Win64
2258   //    c_rarg4   - oop ckval (super_klass)
2259   // Win64
2260   //    rsp+40    - oop ckval (super_klass)
2261   //
2262   //  Output:
2263   //    rax ==  0  -  success
2264   //    rax == -1^K - failure, where K is partial transfer count
2265   //
2266   address generate_checkcast_copy(const char *name, address *entry,
2267                                   bool dest_uninitialized = false) {
2268 
2269     Label L_load_element, L_store_element, L_do_card_marks, L_done;
2270 
2271     // Input registers (after setup_arg_regs)
2272     const Register from        = rdi;   // source array address
2273     const Register to          = rsi;   // destination array address
2274     const Register length      = rdx;   // elements count
2275     const Register ckoff       = rcx;   // super_check_offset
2276     const Register ckval       = r8;    // super_klass
2277 
2278     // Registers used as temps (r13, r14 are save-on-entry)
2279     const Register end_from    = from;  // source array end address
2280     const Register end_to      = r13;   // destination array end address
2281     const Register count       = rdx;   // -(count_remaining)
2282     const Register r14_length  = r14;   // saved copy of length
2283     // End pointers are inclusive, and if length is not zero they point
2284     // to the last unit copied:  end_to[0] := end_from[0]
2285 
2286     const Register rax_oop    = rax;    // actual oop copied
2287     const Register r11_klass  = r11;    // oop._klass
2288 
2289     //---------------------------------------------------------------
2290     // Assembler stub will be used for this call to arraycopy
2291     // if the two arrays are subtypes of Object[] but the
2292     // destination array type is not equal to or a supertype
2293     // of the source type.  Each element must be separately
2294     // checked.
2295 
2296     __ align(CodeEntryAlignment);
2297     StubCodeMark mark(this, "StubRoutines", name);
2298     address start = __ pc();
2299 
2300     __ enter(); // required for proper stackwalking of RuntimeStub frame
2301 
2302 #ifdef ASSERT
2303     // caller guarantees that the arrays really are different
2304     // otherwise, we would have to make conjoint checks
2305     { Label L;
2306       array_overlap_test(L, TIMES_OOP);
2307       __ stop("checkcast_copy within a single array");
2308       __ bind(L);
2309     }
2310 #endif //ASSERT
2311 
2312     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
2313                        // ckoff => rcx, ckval => r8
2314                        // r9 and r10 may be used to save non-volatile registers
2315 #ifdef _WIN64
2316     // last argument (#4) is on stack on Win64
2317     __ movptr(ckval, Address(rsp, 6 * wordSize));
2318 #endif
2319 
2320     // Caller of this entry point must set up the argument registers.
2321     if (entry != NULL) {
2322       *entry = __ pc();
2323       BLOCK_COMMENT("Entry:");
2324     }
2325 
2326     // allocate spill slots for r13, r14
2327     enum {
2328       saved_r13_offset,
2329       saved_r14_offset,
2330       saved_rbp_offset
2331     };
2332     __ subptr(rsp, saved_rbp_offset * wordSize);
2333     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
2334     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
2335 
2336     // check that int operands are properly extended to size_t
2337     assert_clean_int(length, rax);
2338     assert_clean_int(ckoff, rax);
2339 
2340 #ifdef ASSERT
2341     BLOCK_COMMENT("assert consistent ckoff/ckval");
2342     // The ckoff and ckval must be mutually consistent,
2343     // even though caller generates both.
2344     { Label L;
2345       int sco_offset = in_bytes(Klass::super_check_offset_offset());
2346       __ cmpl(ckoff, Address(ckval, sco_offset));
2347       __ jcc(Assembler::equal, L);
2348       __ stop("super_check_offset inconsistent");
2349       __ bind(L);
2350     }
2351 #endif //ASSERT
2352 
2353     // Loop-invariant addresses.  They are exclusive end pointers.
2354     Address end_from_addr(from, length, TIMES_OOP, 0);
2355     Address   end_to_addr(to,   length, TIMES_OOP, 0);
2356     // Loop-variant addresses.  They assume post-incremented count < 0.
2357     Address from_element_addr(end_from, count, TIMES_OOP, 0);
2358     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
2359 
2360     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
2361 
2362     // Copy from low to high addresses, indexed from the end of each array.
2363     __ lea(end_from, end_from_addr);
2364     __ lea(end_to,   end_to_addr);
2365     __ movptr(r14_length, length);        // save a copy of the length
2366     assert(length == count, "");          // else fix next line:
2367     __ negptr(count);                     // negate and test the length
2368     __ jcc(Assembler::notZero, L_load_element);
2369 
2370     // Empty array:  Nothing to do.
2371     __ xorptr(rax, rax);                  // return 0 on (trivial) success
2372     __ jmp(L_done);
2373 
2374     // ======== begin loop ========
2375     // (Loop is rotated; its entry is L_load_element.)
2376     // Loop control:
2377     //   for (count = -count; count != 0; count++)
2378     // Base pointers src, dst are biased by 8*(count-1),to last element.
2379     __ align(OptoLoopAlignment);
2380 
2381     __ BIND(L_store_element);
2382     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
2383     __ increment(count);               // increment the count toward zero
2384     __ jcc(Assembler::zero, L_do_card_marks);
2385 
2386     // ======== loop entry is here ========
2387     __ BIND(L_load_element);
2388     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
2389     __ testptr(rax_oop, rax_oop);
2390     __ jcc(Assembler::zero, L_store_element);
2391 
2392     __ load_klass(r11_klass, rax_oop);// query the object klass
2393     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
2394     // ======== end loop ========
2395 
2396     // It was a real error; we must depend on the caller to finish the job.
2397     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
2398     // Emit GC store barriers for the oops we have copied (r14 + rdx),
2399     // and report their number to the caller.
2400     assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1);
2401     Label L_post_barrier;
2402     __ addptr(r14_length, count);     // K = (original - remaining) oops
2403     __ movptr(rax, r14_length);       // save the value
2404     __ notptr(rax);                   // report (-1^K) to caller (does not affect flags)
2405     __ jccb(Assembler::notZero, L_post_barrier);
2406     __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
2407 
2408     // Come here on success only.
2409     __ BIND(L_do_card_marks);
2410     __ xorptr(rax, rax);              // return 0 on success
2411 
2412     __ BIND(L_post_barrier);
2413     gen_write_ref_array_post_barrier(to, r14_length, rscratch1);
2414 
2415     // Common exit point (success or failure).
2416     __ BIND(L_done);
2417     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
2418     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
2419     restore_arg_regs();
2420     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free
2421     __ leave(); // required for proper stackwalking of RuntimeStub frame
2422     __ ret(0);
2423 
2424     return start;
2425   }
2426 
2427   //
2428   //  Generate 'unsafe' array copy stub
2429   //  Though just as safe as the other stubs, it takes an unscaled
2430   //  size_t argument instead of an element count.
2431   //
2432   //  Input:
2433   //    c_rarg0   - source array address
2434   //    c_rarg1   - destination array address
2435   //    c_rarg2   - byte count, treated as ssize_t, can be zero
2436   //
2437   // Examines the alignment of the operands and dispatches
2438   // to a long, int, short, or byte copy loop.
2439   //
2440   address generate_unsafe_copy(const char *name,
2441                                address byte_copy_entry, address short_copy_entry,
2442                                address int_copy_entry, address long_copy_entry) {
2443 
2444     Label L_long_aligned, L_int_aligned, L_short_aligned;
2445 
2446     // Input registers (before setup_arg_regs)
2447     const Register from        = c_rarg0;  // source array address
2448     const Register to          = c_rarg1;  // destination array address
2449     const Register size        = c_rarg2;  // byte count (size_t)
2450 
2451     // Register used as a temp
2452     const Register bits        = rax;      // test copy of low bits
2453 
2454     __ align(CodeEntryAlignment);
2455     StubCodeMark mark(this, "StubRoutines", name);
2456     address start = __ pc();
2457 
2458     __ enter(); // required for proper stackwalking of RuntimeStub frame
2459 
2460     // bump this on entry, not on exit:
2461     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
2462 
2463     __ mov(bits, from);
2464     __ orptr(bits, to);
2465     __ orptr(bits, size);
2466 
2467     __ testb(bits, BytesPerLong-1);
2468     __ jccb(Assembler::zero, L_long_aligned);
2469 
2470     __ testb(bits, BytesPerInt-1);
2471     __ jccb(Assembler::zero, L_int_aligned);
2472 
2473     __ testb(bits, BytesPerShort-1);
2474     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
2475 
2476     __ BIND(L_short_aligned);
2477     __ shrptr(size, LogBytesPerShort); // size => short_count
2478     __ jump(RuntimeAddress(short_copy_entry));
2479 
2480     __ BIND(L_int_aligned);
2481     __ shrptr(size, LogBytesPerInt); // size => int_count
2482     __ jump(RuntimeAddress(int_copy_entry));
2483 
2484     __ BIND(L_long_aligned);
2485     __ shrptr(size, LogBytesPerLong); // size => qword_count
2486     __ jump(RuntimeAddress(long_copy_entry));
2487 
2488     return start;
2489   }
2490 
2491   // Perform range checks on the proposed arraycopy.
2492   // Kills temp, but nothing else.
2493   // Also, clean the sign bits of src_pos and dst_pos.
2494   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
2495                               Register src_pos, // source position (c_rarg1)
2496                               Register dst,     // destination array oo (c_rarg2)
2497                               Register dst_pos, // destination position (c_rarg3)
2498                               Register length,
2499                               Register temp,
2500                               Label& L_failed) {
2501     BLOCK_COMMENT("arraycopy_range_checks:");
2502 
2503     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
2504     __ movl(temp, length);
2505     __ addl(temp, src_pos);             // src_pos + length
2506     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
2507     __ jcc(Assembler::above, L_failed);
2508 
2509     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
2510     __ movl(temp, length);
2511     __ addl(temp, dst_pos);             // dst_pos + length
2512     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
2513     __ jcc(Assembler::above, L_failed);
2514 
2515     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2516     // Move with sign extension can be used since they are positive.
2517     __ movslq(src_pos, src_pos);
2518     __ movslq(dst_pos, dst_pos);
2519 
2520     BLOCK_COMMENT("arraycopy_range_checks done");
2521   }
2522 
2523   //
2524   //  Generate generic array copy stubs
2525   //
2526   //  Input:
2527   //    c_rarg0    -  src oop
2528   //    c_rarg1    -  src_pos (32-bits)
2529   //    c_rarg2    -  dst oop
2530   //    c_rarg3    -  dst_pos (32-bits)
2531   // not Win64
2532   //    c_rarg4    -  element count (32-bits)
2533   // Win64
2534   //    rsp+40     -  element count (32-bits)
2535   //
2536   //  Output:
2537   //    rax ==  0  -  success
2538   //    rax == -1^K - failure, where K is partial transfer count
2539   //
2540   address generate_generic_copy(const char *name,
2541                                 address byte_copy_entry, address short_copy_entry,
2542                                 address int_copy_entry, address oop_copy_entry,
2543                                 address long_copy_entry, address checkcast_copy_entry) {
2544 
2545     Label L_failed, L_failed_0, L_objArray;
2546     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
2547 
2548     // Input registers
2549     const Register src        = c_rarg0;  // source array oop
2550     const Register src_pos    = c_rarg1;  // source position
2551     const Register dst        = c_rarg2;  // destination array oop
2552     const Register dst_pos    = c_rarg3;  // destination position
2553 #ifndef _WIN64
2554     const Register length     = c_rarg4;
2555 #else
2556     const Address  length(rsp, 6 * wordSize);  // elements count is on stack on Win64
2557 #endif
2558 
2559     { int modulus = CodeEntryAlignment;
2560       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
2561       int advance = target - (__ offset() % modulus);
2562       if (advance < 0)  advance += modulus;
2563       if (advance > 0)  __ nop(advance);
2564     }
2565     StubCodeMark mark(this, "StubRoutines", name);
2566 
2567     // Short-hop target to L_failed.  Makes for denser prologue code.
2568     __ BIND(L_failed_0);
2569     __ jmp(L_failed);
2570     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
2571 
2572     __ align(CodeEntryAlignment);
2573     address start = __ pc();
2574 
2575     __ enter(); // required for proper stackwalking of RuntimeStub frame
2576 
2577     // bump this on entry, not on exit:
2578     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
2579 
2580     //-----------------------------------------------------------------------
2581     // Assembler stub will be used for this call to arraycopy
2582     // if the following conditions are met:
2583     //
2584     // (1) src and dst must not be null.
2585     // (2) src_pos must not be negative.
2586     // (3) dst_pos must not be negative.
2587     // (4) length  must not be negative.
2588     // (5) src klass and dst klass should be the same and not NULL.
2589     // (6) src and dst should be arrays.
2590     // (7) src_pos + length must not exceed length of src.
2591     // (8) dst_pos + length must not exceed length of dst.
2592     //
2593 
2594     //  if (src == NULL) return -1;
2595     __ testptr(src, src);         // src oop
2596     size_t j1off = __ offset();
2597     __ jccb(Assembler::zero, L_failed_0);
2598 
2599     //  if (src_pos < 0) return -1;
2600     __ testl(src_pos, src_pos); // src_pos (32-bits)
2601     __ jccb(Assembler::negative, L_failed_0);
2602 
2603     //  if (dst == NULL) return -1;
2604     __ testptr(dst, dst);         // dst oop
2605     __ jccb(Assembler::zero, L_failed_0);
2606 
2607     //  if (dst_pos < 0) return -1;
2608     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
2609     size_t j4off = __ offset();
2610     __ jccb(Assembler::negative, L_failed_0);
2611 
2612     // The first four tests are very dense code,
2613     // but not quite dense enough to put four
2614     // jumps in a 16-byte instruction fetch buffer.
2615     // That's good, because some branch predicters
2616     // do not like jumps so close together.
2617     // Make sure of this.
2618     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
2619 
2620     // registers used as temp
2621     const Register r11_length    = r11; // elements count to copy
2622     const Register r10_src_klass = r10; // array klass
2623 
2624     //  if (length < 0) return -1;
2625     __ movl(r11_length, length);        // length (elements count, 32-bits value)
2626     __ testl(r11_length, r11_length);
2627     __ jccb(Assembler::negative, L_failed_0);
2628 
2629     __ load_klass(r10_src_klass, src);
2630 #ifdef ASSERT
2631     //  assert(src->klass() != NULL);
2632     {
2633       BLOCK_COMMENT("assert klasses not null {");
2634       Label L1, L2;
2635       __ testptr(r10_src_klass, r10_src_klass);
2636       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
2637       __ bind(L1);
2638       __ stop("broken null klass");
2639       __ bind(L2);
2640       __ load_klass(rax, dst);
2641       __ cmpq(rax, 0);
2642       __ jcc(Assembler::equal, L1);     // this would be broken also
2643       BLOCK_COMMENT("} assert klasses not null done");
2644     }
2645 #endif
2646 
2647     // Load layout helper (32-bits)
2648     //
2649     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2650     // 32        30    24            16              8     2                 0
2651     //
2652     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2653     //
2654 
2655     const int lh_offset = in_bytes(Klass::layout_helper_offset());
2656 
2657     // Handle objArrays completely differently...
2658     const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2659     __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh);
2660     __ jcc(Assembler::equal, L_objArray);
2661 
2662     //  if (src->klass() != dst->klass()) return -1;
2663     __ load_klass(rax, dst);
2664     __ cmpq(r10_src_klass, rax);
2665     __ jcc(Assembler::notEqual, L_failed);
2666 
2667     const Register rax_lh = rax;  // layout helper
2668     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
2669 
2670     //  if (!src->is_Array()) return -1;
2671     __ cmpl(rax_lh, Klass::_lh_neutral_value);
2672     __ jcc(Assembler::greaterEqual, L_failed);
2673 
2674     // At this point, it is known to be a typeArray (array_tag 0x3).
2675 #ifdef ASSERT
2676     {
2677       BLOCK_COMMENT("assert primitive array {");
2678       Label L;
2679       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
2680       __ jcc(Assembler::greaterEqual, L);
2681       __ stop("must be a primitive array");
2682       __ bind(L);
2683       BLOCK_COMMENT("} assert primitive array done");
2684     }
2685 #endif
2686 
2687     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2688                            r10, L_failed);
2689 
2690     // typeArrayKlass
2691     //
2692     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2693     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2694     //
2695 
2696     const Register r10_offset = r10;    // array offset
2697     const Register rax_elsize = rax_lh; // element size
2698 
2699     __ movl(r10_offset, rax_lh);
2700     __ shrl(r10_offset, Klass::_lh_header_size_shift);
2701     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
2702     __ addptr(src, r10_offset);           // src array offset
2703     __ addptr(dst, r10_offset);           // dst array offset
2704     BLOCK_COMMENT("choose copy loop based on element size");
2705     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
2706 
2707     // next registers should be set before the jump to corresponding stub
2708     const Register from     = c_rarg0;  // source array address
2709     const Register to       = c_rarg1;  // destination array address
2710     const Register count    = c_rarg2;  // elements count
2711 
2712     // 'from', 'to', 'count' registers should be set in such order
2713     // since they are the same as 'src', 'src_pos', 'dst'.
2714 
2715   __ BIND(L_copy_bytes);
2716     __ cmpl(rax_elsize, 0);
2717     __ jccb(Assembler::notEqual, L_copy_shorts);
2718     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
2719     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
2720     __ movl2ptr(count, r11_length); // length
2721     __ jump(RuntimeAddress(byte_copy_entry));
2722 
2723   __ BIND(L_copy_shorts);
2724     __ cmpl(rax_elsize, LogBytesPerShort);
2725     __ jccb(Assembler::notEqual, L_copy_ints);
2726     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
2727     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
2728     __ movl2ptr(count, r11_length); // length
2729     __ jump(RuntimeAddress(short_copy_entry));
2730 
2731   __ BIND(L_copy_ints);
2732     __ cmpl(rax_elsize, LogBytesPerInt);
2733     __ jccb(Assembler::notEqual, L_copy_longs);
2734     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
2735     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
2736     __ movl2ptr(count, r11_length); // length
2737     __ jump(RuntimeAddress(int_copy_entry));
2738 
2739   __ BIND(L_copy_longs);
2740 #ifdef ASSERT
2741     {
2742       BLOCK_COMMENT("assert long copy {");
2743       Label L;
2744       __ cmpl(rax_elsize, LogBytesPerLong);
2745       __ jcc(Assembler::equal, L);
2746       __ stop("must be long copy, but elsize is wrong");
2747       __ bind(L);
2748       BLOCK_COMMENT("} assert long copy done");
2749     }
2750 #endif
2751     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
2752     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
2753     __ movl2ptr(count, r11_length); // length
2754     __ jump(RuntimeAddress(long_copy_entry));
2755 
2756     // objArrayKlass
2757   __ BIND(L_objArray);
2758     // live at this point:  r10_src_klass, r11_length, src[_pos], dst[_pos]
2759 
2760     Label L_plain_copy, L_checkcast_copy;
2761     //  test array classes for subtyping
2762     __ load_klass(rax, dst);
2763     __ cmpq(r10_src_klass, rax); // usual case is exact equality
2764     __ jcc(Assembler::notEqual, L_checkcast_copy);
2765 
2766     // Identically typed arrays can be copied without element-wise checks.
2767     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2768                            r10, L_failed);
2769 
2770     __ lea(from, Address(src, src_pos, TIMES_OOP,
2771                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
2772     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2773                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
2774     __ movl2ptr(count, r11_length); // length
2775   __ BIND(L_plain_copy);
2776     __ jump(RuntimeAddress(oop_copy_entry));
2777 
2778   __ BIND(L_checkcast_copy);
2779     // live at this point:  r10_src_klass, r11_length, rax (dst_klass)
2780     {
2781       // Before looking at dst.length, make sure dst is also an objArray.
2782       __ cmpl(Address(rax, lh_offset), objArray_lh);
2783       __ jcc(Assembler::notEqual, L_failed);
2784 
2785       // It is safe to examine both src.length and dst.length.
2786       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
2787                              rax, L_failed);
2788 
2789       const Register r11_dst_klass = r11;
2790       __ load_klass(r11_dst_klass, dst); // reload
2791 
2792       // Marshal the base address arguments now, freeing registers.
2793       __ lea(from, Address(src, src_pos, TIMES_OOP,
2794                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2795       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
2796                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
2797       __ movl(count, length);           // length (reloaded)
2798       Register sco_temp = c_rarg3;      // this register is free now
2799       assert_different_registers(from, to, count, sco_temp,
2800                                  r11_dst_klass, r10_src_klass);
2801       assert_clean_int(count, sco_temp);
2802 
2803       // Generate the type check.
2804       const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2805       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
2806       assert_clean_int(sco_temp, rax);
2807       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
2808 
2809       // Fetch destination element klass from the objArrayKlass header.
2810       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
2811       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
2812       __ movl(  sco_temp,      Address(r11_dst_klass, sco_offset));
2813       assert_clean_int(sco_temp, rax);
2814 
2815       // the checkcast_copy loop needs two extra arguments:
2816       assert(c_rarg3 == sco_temp, "#3 already in place");
2817       // Set up arguments for checkcast_copy_entry.
2818       setup_arg_regs(4);
2819       __ movptr(r8, r11_dst_klass);  // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris
2820       __ jump(RuntimeAddress(checkcast_copy_entry));
2821     }
2822 
2823   __ BIND(L_failed);
2824     __ xorptr(rax, rax);
2825     __ notptr(rax); // return -1
2826     __ leave();   // required for proper stackwalking of RuntimeStub frame
2827     __ ret(0);
2828 
2829     return start;
2830   }
2831 
2832   void generate_arraycopy_stubs() {
2833     address entry;
2834     address entry_jbyte_arraycopy;
2835     address entry_jshort_arraycopy;
2836     address entry_jint_arraycopy;
2837     address entry_oop_arraycopy;
2838     address entry_jlong_arraycopy;
2839     address entry_checkcast_arraycopy;
2840 
2841     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, &entry,
2842                                                                            "jbyte_disjoint_arraycopy");
2843     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
2844                                                                            "jbyte_arraycopy");
2845 
2846     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
2847                                                                             "jshort_disjoint_arraycopy");
2848     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
2849                                                                             "jshort_arraycopy");
2850 
2851     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, &entry,
2852                                                                               "jint_disjoint_arraycopy");
2853     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, entry,
2854                                                                               &entry_jint_arraycopy, "jint_arraycopy");
2855 
2856     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, &entry,
2857                                                                                "jlong_disjoint_arraycopy");
2858     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, entry,
2859                                                                                &entry_jlong_arraycopy, "jlong_arraycopy");
2860 
2861 
2862     if (UseCompressedOops) {
2863       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, &entry,
2864                                                                               "oop_disjoint_arraycopy");
2865       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, entry,
2866                                                                               &entry_oop_arraycopy, "oop_arraycopy");
2867       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_int_oop_copy(false, true, &entry,
2868                                                                                      "oop_disjoint_arraycopy_uninit",
2869                                                                                      /*dest_uninitialized*/true);
2870       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_int_oop_copy(false, true, entry,
2871                                                                                      NULL, "oop_arraycopy_uninit",
2872                                                                                      /*dest_uninitialized*/true);
2873     } else {
2874       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, &entry,
2875                                                                                "oop_disjoint_arraycopy");
2876       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, entry,
2877                                                                                &entry_oop_arraycopy, "oop_arraycopy");
2878       StubRoutines::_oop_disjoint_arraycopy_uninit  = generate_disjoint_long_oop_copy(false, true, &entry,
2879                                                                                       "oop_disjoint_arraycopy_uninit",
2880                                                                                       /*dest_uninitialized*/true);
2881       StubRoutines::_oop_arraycopy_uninit           = generate_conjoint_long_oop_copy(false, true, entry,
2882                                                                                       NULL, "oop_arraycopy_uninit",
2883                                                                                       /*dest_uninitialized*/true);
2884     }
2885 
2886     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2887     StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
2888                                                                         /*dest_uninitialized*/true);
2889 
2890     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
2891                                                               entry_jbyte_arraycopy,
2892                                                               entry_jshort_arraycopy,
2893                                                               entry_jint_arraycopy,
2894                                                               entry_jlong_arraycopy);
2895     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
2896                                                                entry_jbyte_arraycopy,
2897                                                                entry_jshort_arraycopy,
2898                                                                entry_jint_arraycopy,
2899                                                                entry_oop_arraycopy,
2900                                                                entry_jlong_arraycopy,
2901                                                                entry_checkcast_arraycopy);
2902 
2903     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2904     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2905     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2906     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2907     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2908     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2909 
2910     // We don't generate specialized code for HeapWord-aligned source
2911     // arrays, so just use the code we've already generated
2912     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
2913     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
2914 
2915     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
2916     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
2917 
2918     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
2919     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
2920 
2921     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
2922     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
2923 
2924     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
2925     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
2926 
2927     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit    = StubRoutines::_oop_disjoint_arraycopy_uninit;
2928     StubRoutines::_arrayof_oop_arraycopy_uninit             = StubRoutines::_oop_arraycopy_uninit;
2929   }
2930 
2931   void generate_math_stubs() {
2932     {
2933       StubCodeMark mark(this, "StubRoutines", "log");
2934       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2935 
2936       __ subq(rsp, 8);
2937       __ movdbl(Address(rsp, 0), xmm0);
2938       __ fld_d(Address(rsp, 0));
2939       __ flog();
2940       __ fstp_d(Address(rsp, 0));
2941       __ movdbl(xmm0, Address(rsp, 0));
2942       __ addq(rsp, 8);
2943       __ ret(0);
2944     }
2945     {
2946       StubCodeMark mark(this, "StubRoutines", "log10");
2947       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2948 
2949       __ subq(rsp, 8);
2950       __ movdbl(Address(rsp, 0), xmm0);
2951       __ fld_d(Address(rsp, 0));
2952       __ flog10();
2953       __ fstp_d(Address(rsp, 0));
2954       __ movdbl(xmm0, Address(rsp, 0));
2955       __ addq(rsp, 8);
2956       __ ret(0);
2957     }
2958     {
2959       StubCodeMark mark(this, "StubRoutines", "sin");
2960       StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
2961 
2962       __ subq(rsp, 8);
2963       __ movdbl(Address(rsp, 0), xmm0);
2964       __ fld_d(Address(rsp, 0));
2965       __ trigfunc('s');
2966       __ fstp_d(Address(rsp, 0));
2967       __ movdbl(xmm0, Address(rsp, 0));
2968       __ addq(rsp, 8);
2969       __ ret(0);
2970     }
2971     {
2972       StubCodeMark mark(this, "StubRoutines", "cos");
2973       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2974 
2975       __ subq(rsp, 8);
2976       __ movdbl(Address(rsp, 0), xmm0);
2977       __ fld_d(Address(rsp, 0));
2978       __ trigfunc('c');
2979       __ fstp_d(Address(rsp, 0));
2980       __ movdbl(xmm0, Address(rsp, 0));
2981       __ addq(rsp, 8);
2982       __ ret(0);
2983     }
2984     {
2985       StubCodeMark mark(this, "StubRoutines", "tan");
2986       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2987 
2988       __ subq(rsp, 8);
2989       __ movdbl(Address(rsp, 0), xmm0);
2990       __ fld_d(Address(rsp, 0));
2991       __ trigfunc('t');
2992       __ fstp_d(Address(rsp, 0));
2993       __ movdbl(xmm0, Address(rsp, 0));
2994       __ addq(rsp, 8);
2995       __ ret(0);
2996     }
2997     {
2998       StubCodeMark mark(this, "StubRoutines", "exp");
2999       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
3000 
3001       __ subq(rsp, 8);
3002       __ movdbl(Address(rsp, 0), xmm0);
3003       __ fld_d(Address(rsp, 0));
3004       __ exp_with_fallback(0);
3005       __ fstp_d(Address(rsp, 0));
3006       __ movdbl(xmm0, Address(rsp, 0));
3007       __ addq(rsp, 8);
3008       __ ret(0);
3009     }
3010     {
3011       StubCodeMark mark(this, "StubRoutines", "pow");
3012       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
3013 
3014       __ subq(rsp, 8);
3015       __ movdbl(Address(rsp, 0), xmm1);
3016       __ fld_d(Address(rsp, 0));
3017       __ movdbl(Address(rsp, 0), xmm0);
3018       __ fld_d(Address(rsp, 0));
3019       __ pow_with_fallback(0);
3020       __ fstp_d(Address(rsp, 0));
3021       __ movdbl(xmm0, Address(rsp, 0));
3022       __ addq(rsp, 8);
3023       __ ret(0);
3024     }
3025   }
3026 
3027   // AES intrinsic stubs
3028   enum {AESBlockSize = 16};
3029 
3030   address generate_key_shuffle_mask() {
3031     __ align(16);
3032     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
3033     address start = __ pc();
3034     __ emit_data64( 0x0405060700010203, relocInfo::none );
3035     __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none );
3036     return start;
3037   }
3038 
3039   // Utility routine for loading a 128-bit key word in little endian format
3040   // can optionally specify that the shuffle mask is already in an xmmregister
3041   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
3042     __ movdqu(xmmdst, Address(key, offset));
3043     if (xmm_shuf_mask != NULL) {
3044       __ pshufb(xmmdst, xmm_shuf_mask);
3045     } else {
3046       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3047     }
3048   }
3049 
3050   // Arguments:
3051   //
3052   // Inputs:
3053   //   c_rarg0   - source byte array address
3054   //   c_rarg1   - destination byte array address
3055   //   c_rarg2   - K (key) in little endian int array
3056   //
3057   address generate_aescrypt_encryptBlock() {
3058     assert(UseAES, "need AES instructions and misaligned SSE support");
3059     __ align(CodeEntryAlignment);
3060     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
3061     Label L_doLast;
3062     address start = __ pc();
3063 
3064     const Register from        = c_rarg0;  // source array address
3065     const Register to          = c_rarg1;  // destination array address
3066     const Register key         = c_rarg2;  // key array address
3067     const Register keylen      = rax;
3068 
3069     const XMMRegister xmm_result = xmm0;
3070     const XMMRegister xmm_key_shuf_mask = xmm1;
3071     // On win64 xmm6-xmm15 must be preserved so don't use them.
3072     const XMMRegister xmm_temp1  = xmm2;
3073     const XMMRegister xmm_temp2  = xmm3;
3074     const XMMRegister xmm_temp3  = xmm4;
3075     const XMMRegister xmm_temp4  = xmm5;
3076 
3077     __ enter(); // required for proper stackwalking of RuntimeStub frame
3078 
3079     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
3080     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3081 
3082     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3083     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
3084 
3085     // For encryption, the java expanded key ordering is just what we need
3086     // we don't know if the key is aligned, hence not using load-execute form
3087 
3088     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
3089     __ pxor(xmm_result, xmm_temp1);
3090 
3091     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
3092     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
3093     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
3094     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
3095 
3096     __ aesenc(xmm_result, xmm_temp1);
3097     __ aesenc(xmm_result, xmm_temp2);
3098     __ aesenc(xmm_result, xmm_temp3);
3099     __ aesenc(xmm_result, xmm_temp4);
3100 
3101     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
3102     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
3103     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
3104     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
3105 
3106     __ aesenc(xmm_result, xmm_temp1);
3107     __ aesenc(xmm_result, xmm_temp2);
3108     __ aesenc(xmm_result, xmm_temp3);
3109     __ aesenc(xmm_result, xmm_temp4);
3110 
3111     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
3112     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
3113 
3114     __ cmpl(keylen, 44);
3115     __ jccb(Assembler::equal, L_doLast);
3116 
3117     __ aesenc(xmm_result, xmm_temp1);
3118     __ aesenc(xmm_result, xmm_temp2);
3119 
3120     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
3121     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
3122 
3123     __ cmpl(keylen, 52);
3124     __ jccb(Assembler::equal, L_doLast);
3125 
3126     __ aesenc(xmm_result, xmm_temp1);
3127     __ aesenc(xmm_result, xmm_temp2);
3128 
3129     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
3130     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
3131 
3132     __ BIND(L_doLast);
3133     __ aesenc(xmm_result, xmm_temp1);
3134     __ aesenclast(xmm_result, xmm_temp2);
3135     __ movdqu(Address(to, 0), xmm_result);        // store the result
3136     __ xorptr(rax, rax); // return 0
3137     __ leave(); // required for proper stackwalking of RuntimeStub frame
3138     __ ret(0);
3139 
3140     return start;
3141   }
3142 
3143 
3144   // Arguments:
3145   //
3146   // Inputs:
3147   //   c_rarg0   - source byte array address
3148   //   c_rarg1   - destination byte array address
3149   //   c_rarg2   - K (key) in little endian int array
3150   //
3151   address generate_aescrypt_decryptBlock() {
3152     assert(UseAES, "need AES instructions and misaligned SSE support");
3153     __ align(CodeEntryAlignment);
3154     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
3155     Label L_doLast;
3156     address start = __ pc();
3157 
3158     const Register from        = c_rarg0;  // source array address
3159     const Register to          = c_rarg1;  // destination array address
3160     const Register key         = c_rarg2;  // key array address
3161     const Register keylen      = rax;
3162 
3163     const XMMRegister xmm_result = xmm0;
3164     const XMMRegister xmm_key_shuf_mask = xmm1;
3165     // On win64 xmm6-xmm15 must be preserved so don't use them.
3166     const XMMRegister xmm_temp1  = xmm2;
3167     const XMMRegister xmm_temp2  = xmm3;
3168     const XMMRegister xmm_temp3  = xmm4;
3169     const XMMRegister xmm_temp4  = xmm5;
3170 
3171     __ enter(); // required for proper stackwalking of RuntimeStub frame
3172 
3173     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
3174     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3175 
3176     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3177     __ movdqu(xmm_result, Address(from, 0));
3178 
3179     // for decryption java expanded key ordering is rotated one position from what we want
3180     // so we start from 0x10 here and hit 0x00 last
3181     // we don't know if the key is aligned, hence not using load-execute form
3182     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
3183     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
3184     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
3185     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
3186 
3187     __ pxor  (xmm_result, xmm_temp1);
3188     __ aesdec(xmm_result, xmm_temp2);
3189     __ aesdec(xmm_result, xmm_temp3);
3190     __ aesdec(xmm_result, xmm_temp4);
3191 
3192     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
3193     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
3194     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
3195     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
3196 
3197     __ aesdec(xmm_result, xmm_temp1);
3198     __ aesdec(xmm_result, xmm_temp2);
3199     __ aesdec(xmm_result, xmm_temp3);
3200     __ aesdec(xmm_result, xmm_temp4);
3201 
3202     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
3203     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
3204     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
3205 
3206     __ cmpl(keylen, 44);
3207     __ jccb(Assembler::equal, L_doLast);
3208 
3209     __ aesdec(xmm_result, xmm_temp1);
3210     __ aesdec(xmm_result, xmm_temp2);
3211 
3212     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
3213     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
3214 
3215     __ cmpl(keylen, 52);
3216     __ jccb(Assembler::equal, L_doLast);
3217 
3218     __ aesdec(xmm_result, xmm_temp1);
3219     __ aesdec(xmm_result, xmm_temp2);
3220 
3221     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
3222     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
3223 
3224     __ BIND(L_doLast);
3225     __ aesdec(xmm_result, xmm_temp1);
3226     __ aesdec(xmm_result, xmm_temp2);
3227 
3228     // for decryption the aesdeclast operation is always on key+0x00
3229     __ aesdeclast(xmm_result, xmm_temp3);
3230     __ movdqu(Address(to, 0), xmm_result);  // store the result
3231     __ xorptr(rax, rax); // return 0
3232     __ leave(); // required for proper stackwalking of RuntimeStub frame
3233     __ ret(0);
3234 
3235     return start;
3236   }
3237 
3238 
3239   // Arguments:
3240   //
3241   // Inputs:
3242   //   c_rarg0   - source byte array address
3243   //   c_rarg1   - destination byte array address
3244   //   c_rarg2   - K (key) in little endian int array
3245   //   c_rarg3   - r vector byte array address
3246   //   c_rarg4   - input length
3247   //
3248   address generate_cipherBlockChaining_encryptAESCrypt() {
3249     assert(UseAES, "need AES instructions and misaligned SSE support");
3250     __ align(CodeEntryAlignment);
3251     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
3252     address start = __ pc();
3253 
3254     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
3255     const Register from        = c_rarg0;  // source array address
3256     const Register to          = c_rarg1;  // destination array address
3257     const Register key         = c_rarg2;  // key array address
3258     const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
3259                                            // and left with the results of the last encryption block
3260 #ifndef _WIN64
3261     const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
3262 #else
3263     const Address  len_mem(rsp, 6 * wordSize);  // length is on stack on Win64
3264     const Register len_reg     = r10;      // pick the first volatile windows register
3265 #endif
3266     const Register pos         = rax;
3267 
3268     // xmm register assignments for the loops below
3269     const XMMRegister xmm_result = xmm0;
3270     const XMMRegister xmm_temp   = xmm1;
3271     // keys 0-10 preloaded into xmm2-xmm12
3272     const int XMM_REG_NUM_KEY_FIRST = 2;
3273     const int XMM_REG_NUM_KEY_LAST  = 15;
3274     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
3275     const XMMRegister xmm_key10  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10);
3276     const XMMRegister xmm_key11  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11);
3277     const XMMRegister xmm_key12  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12);
3278     const XMMRegister xmm_key13  = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13);
3279 
3280     __ enter(); // required for proper stackwalking of RuntimeStub frame
3281 
3282 #ifdef _WIN64
3283     // on win64, fill len_reg from stack position
3284     __ movl(len_reg, len_mem);
3285     // save the xmm registers which must be preserved 6-15
3286     __ subptr(rsp, -rsp_after_call_off * wordSize);
3287     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3288       __ movdqu(xmm_save(i), as_XMMRegister(i));
3289     }
3290 #endif
3291 
3292     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
3293     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3294     // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0
3295     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) {
3296       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
3297       offset += 0x10;
3298     }
3299     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
3300 
3301     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
3302     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3303     __ cmpl(rax, 44);
3304     __ jcc(Assembler::notEqual, L_key_192_256);
3305 
3306     // 128 bit code follows here
3307     __ movptr(pos, 0);
3308     __ align(OptoLoopAlignment);
3309 
3310     __ BIND(L_loopTop_128);
3311     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3312     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3313     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3314     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) {
3315       __ aesenc(xmm_result, as_XMMRegister(rnum));
3316     }
3317     __ aesenclast(xmm_result, xmm_key10);
3318     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3319     // no need to store r to memory until we exit
3320     __ addptr(pos, AESBlockSize);
3321     __ subptr(len_reg, AESBlockSize);
3322     __ jcc(Assembler::notEqual, L_loopTop_128);
3323 
3324     __ BIND(L_exit);
3325     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
3326 
3327 #ifdef _WIN64
3328     // restore xmm regs belonging to calling function
3329     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3330       __ movdqu(as_XMMRegister(i), xmm_save(i));
3331     }
3332 #endif
3333     __ movl(rax, 0); // return 0 (why?)
3334     __ leave(); // required for proper stackwalking of RuntimeStub frame
3335     __ ret(0);
3336 
3337     __ BIND(L_key_192_256);
3338     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
3339     load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask);
3340     load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask);
3341     __ cmpl(rax, 52);
3342     __ jcc(Assembler::notEqual, L_key_256);
3343 
3344     // 192-bit code follows here (could be changed to use more xmm registers)
3345     __ movptr(pos, 0);
3346     __ align(OptoLoopAlignment);
3347 
3348     __ BIND(L_loopTop_192);
3349     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3350     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3351     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3352     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) {
3353       __ aesenc(xmm_result, as_XMMRegister(rnum));
3354     }
3355     __ aesenclast(xmm_result, xmm_key12);
3356     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3357     // no need to store r to memory until we exit
3358     __ addptr(pos, AESBlockSize);
3359     __ subptr(len_reg, AESBlockSize);
3360     __ jcc(Assembler::notEqual, L_loopTop_192);
3361     __ jmp(L_exit);
3362 
3363     __ BIND(L_key_256);
3364     // 256-bit code follows here (could be changed to use more xmm registers)
3365     load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask);
3366     __ movptr(pos, 0);
3367     __ align(OptoLoopAlignment);
3368 
3369     __ BIND(L_loopTop_256);
3370     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
3371     __ pxor  (xmm_result, xmm_temp);               // xor with the current r vector
3372     __ pxor  (xmm_result, xmm_key0);               // do the aes rounds
3373     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) {
3374       __ aesenc(xmm_result, as_XMMRegister(rnum));
3375     }
3376     load_key(xmm_temp, key, 0xe0);
3377     __ aesenclast(xmm_result, xmm_temp);
3378     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3379     // no need to store r to memory until we exit
3380     __ addptr(pos, AESBlockSize);
3381     __ subptr(len_reg, AESBlockSize);
3382     __ jcc(Assembler::notEqual, L_loopTop_256);
3383     __ jmp(L_exit);
3384 
3385     return start;
3386   }
3387 
3388 
3389 
3390   // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time
3391   // to hide instruction latency
3392   //
3393   // Arguments:
3394   //
3395   // Inputs:
3396   //   c_rarg0   - source byte array address
3397   //   c_rarg1   - destination byte array address
3398   //   c_rarg2   - K (key) in little endian int array
3399   //   c_rarg3   - r vector byte array address
3400   //   c_rarg4   - input length
3401   //
3402 
3403   address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
3404     assert(UseAES, "need AES instructions and misaligned SSE support");
3405     __ align(CodeEntryAlignment);
3406     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
3407     address start = __ pc();
3408 
3409     Label L_exit, L_key_192_256, L_key_256;
3410     Label L_singleBlock_loopTop_128, L_multiBlock_loopTop_128;
3411     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
3412     const Register from        = c_rarg0;  // source array address
3413     const Register to          = c_rarg1;  // destination array address
3414     const Register key         = c_rarg2;  // key array address
3415     const Register rvec        = c_rarg3;  // r byte array initialized from initvector array address
3416                                            // and left with the results of the last encryption block
3417 #ifndef _WIN64
3418     const Register len_reg     = c_rarg4;  // src len (must be multiple of blocksize 16)
3419 #else
3420     const Address  len_mem(rsp, 6 * wordSize);  // length is on stack on Win64
3421     const Register len_reg     = r10;      // pick the first volatile windows register
3422 #endif
3423     const Register pos         = rax;
3424 
3425     // keys 0-10 preloaded into xmm2-xmm12
3426     const int XMM_REG_NUM_KEY_FIRST = 5;
3427     const int XMM_REG_NUM_KEY_LAST  = 15;
3428     const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
3429     const XMMRegister xmm_key_last  = as_XMMRegister(XMM_REG_NUM_KEY_LAST);
3430 
3431     __ enter(); // required for proper stackwalking of RuntimeStub frame
3432 
3433 #ifdef _WIN64
3434     // on win64, fill len_reg from stack position
3435     __ movl(len_reg, len_mem);
3436     // save the xmm registers which must be preserved 6-15
3437     __ subptr(rsp, -rsp_after_call_off * wordSize);
3438     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3439       __ movdqu(xmm_save(i), as_XMMRegister(i));
3440     }
3441 #endif
3442     // the java expanded key ordering is rotated one position from what we want
3443     // so we start from 0x10 here and hit 0x00 last
3444     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
3445     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
3446     // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00
3447     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) {
3448       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
3449       offset += 0x10;
3450     }
3451     load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask);
3452 
3453     const XMMRegister xmm_prev_block_cipher = xmm1;  // holds cipher of previous block
3454 
3455     // registers holding the four results in the parallelized loop
3456     const XMMRegister xmm_result0 = xmm0;
3457     const XMMRegister xmm_result1 = xmm2;
3458     const XMMRegister xmm_result2 = xmm3;
3459     const XMMRegister xmm_result3 = xmm4;
3460 
3461     __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00));   // initialize with initial rvec
3462 
3463     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
3464     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
3465     __ cmpl(rax, 44);
3466     __ jcc(Assembler::notEqual, L_key_192_256);
3467 
3468 
3469     // 128-bit code follows here, parallelized
3470     __ movptr(pos, 0);
3471     __ align(OptoLoopAlignment);
3472     __ BIND(L_multiBlock_loopTop_128);
3473     __ cmpptr(len_reg, 4*AESBlockSize);           // see if at least 4 blocks left
3474     __ jcc(Assembler::less, L_singleBlock_loopTop_128);
3475 
3476     __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0*AESBlockSize));   // get next 4 blocks into xmmresult registers
3477     __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1*AESBlockSize));
3478     __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2*AESBlockSize));
3479     __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3*AESBlockSize));
3480 
3481 #define DoFour(opc, src_reg)                    \
3482     __ opc(xmm_result0, src_reg);               \
3483     __ opc(xmm_result1, src_reg);               \
3484     __ opc(xmm_result2, src_reg);               \
3485     __ opc(xmm_result3, src_reg);
3486 
3487     DoFour(pxor, xmm_key_first);
3488     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3489       DoFour(aesdec, as_XMMRegister(rnum));
3490     }
3491     DoFour(aesdeclast, xmm_key_last);
3492     // for each result, xor with the r vector of previous cipher block
3493     __ pxor(xmm_result0, xmm_prev_block_cipher);
3494     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0*AESBlockSize));
3495     __ pxor(xmm_result1, xmm_prev_block_cipher);
3496     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1*AESBlockSize));
3497     __ pxor(xmm_result2, xmm_prev_block_cipher);
3498     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2*AESBlockSize));
3499     __ pxor(xmm_result3, xmm_prev_block_cipher);
3500     __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3*AESBlockSize));   // this will carry over to next set of blocks
3501 
3502     __ movdqu(Address(to, pos, Address::times_1, 0*AESBlockSize), xmm_result0);     // store 4 results into the next 64 bytes of output
3503     __ movdqu(Address(to, pos, Address::times_1, 1*AESBlockSize), xmm_result1);
3504     __ movdqu(Address(to, pos, Address::times_1, 2*AESBlockSize), xmm_result2);
3505     __ movdqu(Address(to, pos, Address::times_1, 3*AESBlockSize), xmm_result3);
3506 
3507     __ addptr(pos, 4*AESBlockSize);
3508     __ subptr(len_reg, 4*AESBlockSize);
3509     __ jmp(L_multiBlock_loopTop_128);
3510 
3511     // registers used in the non-parallelized loops
3512     // xmm register assignments for the loops below
3513     const XMMRegister xmm_result = xmm0;
3514     const XMMRegister xmm_prev_block_cipher_save = xmm2;
3515     const XMMRegister xmm_key11 = xmm3;
3516     const XMMRegister xmm_key12 = xmm4;
3517     const XMMRegister xmm_temp  = xmm4;
3518 
3519     __ align(OptoLoopAlignment);
3520     __ BIND(L_singleBlock_loopTop_128);
3521     __ cmpptr(len_reg, 0);           // any blocks left??
3522     __ jcc(Assembler::equal, L_exit);
3523     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
3524     __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
3525     __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
3526     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3527       __ aesdec(xmm_result, as_XMMRegister(rnum));
3528     }
3529     __ aesdeclast(xmm_result, xmm_key_last);
3530     __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
3531     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
3532     // no need to store r to memory until we exit
3533     __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);              // set up next r vector with cipher input from this block
3534 
3535     __ addptr(pos, AESBlockSize);
3536     __ subptr(len_reg, AESBlockSize);
3537     __ jmp(L_singleBlock_loopTop_128);
3538 
3539 
3540     __ BIND(L_exit);
3541     __ movdqu(Address(rvec, 0), xmm_prev_block_cipher);     // final value of r stored in rvec of CipherBlockChaining object
3542 #ifdef _WIN64
3543     // restore regs belonging to calling function
3544     for (int i = 6; i <= XMM_REG_NUM_KEY_LAST; i++) {
3545       __ movdqu(as_XMMRegister(i), xmm_save(i));
3546     }
3547 #endif
3548     __ movl(rax, 0); // return 0 (why?)
3549     __ leave(); // required for proper stackwalking of RuntimeStub frame
3550     __ ret(0);
3551 
3552 
3553     __ BIND(L_key_192_256);
3554     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
3555     load_key(xmm_key11, key, 0xb0);
3556     __ cmpl(rax, 52);
3557     __ jcc(Assembler::notEqual, L_key_256);
3558 
3559     // 192-bit code follows here (could be optimized to use parallelism)
3560     load_key(xmm_key12, key, 0xc0);     // 192-bit key goes up to c0
3561     __ movptr(pos, 0);
3562     __ align(OptoLoopAlignment);
3563 
3564     __ BIND(L_singleBlock_loopTop_192);
3565     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
3566     __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
3567     __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
3568     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3569       __ aesdec(xmm_result, as_XMMRegister(rnum));
3570     }
3571     __ aesdec(xmm_result, xmm_key11);
3572     __ aesdec(xmm_result, xmm_key12);
3573     __ aesdeclast(xmm_result, xmm_key_last);                    // xmm15 always came from key+0
3574     __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
3575     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);  // store into the next 16 bytes of output
3576     // no need to store r to memory until we exit
3577     __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);  // set up next r vector with cipher input from this block
3578     __ addptr(pos, AESBlockSize);
3579     __ subptr(len_reg, AESBlockSize);
3580     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
3581     __ jmp(L_exit);
3582 
3583     __ BIND(L_key_256);
3584     // 256-bit code follows here (could be optimized to use parallelism)
3585     __ movptr(pos, 0);
3586     __ align(OptoLoopAlignment);
3587 
3588     __ BIND(L_singleBlock_loopTop_256);
3589     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
3590     __ movdqa(xmm_prev_block_cipher_save, xmm_result);              // save for next r vector
3591     __ pxor  (xmm_result, xmm_key_first);               // do the aes dec rounds
3592     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST - 1; rnum++) {
3593       __ aesdec(xmm_result, as_XMMRegister(rnum));
3594     }
3595     __ aesdec(xmm_result, xmm_key11);
3596     load_key(xmm_temp, key, 0xc0);
3597     __ aesdec(xmm_result, xmm_temp);
3598     load_key(xmm_temp, key, 0xd0);
3599     __ aesdec(xmm_result, xmm_temp);
3600     load_key(xmm_temp, key, 0xe0);     // 256-bit key goes up to e0
3601     __ aesdec(xmm_result, xmm_temp);
3602     __ aesdeclast(xmm_result, xmm_key_last);          // xmm15 came from key+0
3603     __ pxor  (xmm_result, xmm_prev_block_cipher);               // xor with the current r vector
3604     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);  // store into the next 16 bytes of output
3605     // no need to store r to memory until we exit
3606     __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save);  // set up next r vector with cipher input from this block
3607     __ addptr(pos, AESBlockSize);
3608     __ subptr(len_reg, AESBlockSize);
3609     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
3610     __ jmp(L_exit);
3611 
3612     return start;
3613   }
3614 
3615 
3616 
3617 #undef __
3618 #define __ masm->
3619 
3620   // Continuation point for throwing of implicit exceptions that are
3621   // not handled in the current activation. Fabricates an exception
3622   // oop and initiates normal exception dispatching in this
3623   // frame. Since we need to preserve callee-saved values (currently
3624   // only for C2, but done for C1 as well) we need a callee-saved oop
3625   // map and therefore have to make these stubs into RuntimeStubs
3626   // rather than BufferBlobs.  If the compiler needs all registers to
3627   // be preserved between the fault point and the exception handler
3628   // then it must assume responsibility for that in
3629   // AbstractCompiler::continuation_for_implicit_null_exception or
3630   // continuation_for_implicit_division_by_zero_exception. All other
3631   // implicit exceptions (e.g., NullPointerException or
3632   // AbstractMethodError on entry) are either at call sites or
3633   // otherwise assume that stack unwinding will be initiated, so
3634   // caller saved registers were assumed volatile in the compiler.
3635   address generate_throw_exception(const char* name,
3636                                    address runtime_entry,
3637                                    Register arg1 = noreg,
3638                                    Register arg2 = noreg) {
3639     // Information about frame layout at time of blocking runtime call.
3640     // Note that we only have to preserve callee-saved registers since
3641     // the compilers are responsible for supplying a continuation point
3642     // if they expect all registers to be preserved.
3643     enum layout {
3644       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
3645       rbp_off2,
3646       return_off,
3647       return_off2,
3648       framesize // inclusive of return address
3649     };
3650 
3651     int insts_size = 512;
3652     int locs_size  = 64;
3653 
3654     CodeBuffer code(name, insts_size, locs_size);
3655     OopMapSet* oop_maps  = new OopMapSet();
3656     MacroAssembler* masm = new MacroAssembler(&code);
3657 
3658     address start = __ pc();
3659 
3660     // This is an inlined and slightly modified version of call_VM
3661     // which has the ability to fetch the return PC out of
3662     // thread-local storage and also sets up last_Java_sp slightly
3663     // differently than the real call_VM
3664 
3665     __ enter(); // required for proper stackwalking of RuntimeStub frame
3666 
3667     assert(is_even(framesize/2), "sp not 16-byte aligned");
3668 
3669     // return address and rbp are already in place
3670     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
3671 
3672     int frame_complete = __ pc() - start;
3673 
3674     // Set up last_Java_sp and last_Java_fp
3675     address the_pc = __ pc();
3676     __ set_last_Java_frame(rsp, rbp, the_pc);
3677     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3678 
3679     // Call runtime
3680     if (arg1 != noreg) {
3681       assert(arg2 != c_rarg1, "clobbered");
3682       __ movptr(c_rarg1, arg1);
3683     }
3684     if (arg2 != noreg) {
3685       __ movptr(c_rarg2, arg2);
3686     }
3687     __ movptr(c_rarg0, r15_thread);
3688     BLOCK_COMMENT("call runtime_entry");
3689     __ call(RuntimeAddress(runtime_entry));
3690 
3691     // Generate oop map
3692     OopMap* map = new OopMap(framesize, 0);
3693 
3694     oop_maps->add_gc_map(the_pc - start, map);
3695 
3696     __ reset_last_Java_frame(true, true);
3697 
3698     __ leave(); // required for proper stackwalking of RuntimeStub frame
3699 
3700     // check for pending exceptions
3701 #ifdef ASSERT
3702     Label L;
3703     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
3704             (int32_t) NULL_WORD);
3705     __ jcc(Assembler::notEqual, L);
3706     __ should_not_reach_here();
3707     __ bind(L);
3708 #endif // ASSERT
3709     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3710 
3711 
3712     // codeBlob framesize is in words (not VMRegImpl::slot_size)
3713     RuntimeStub* stub =
3714       RuntimeStub::new_runtime_stub(name,
3715                                     &code,
3716                                     frame_complete,
3717                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3718                                     oop_maps, false);
3719     return stub->entry_point();
3720   }
3721 
3722   // Initialization
3723   void generate_initial() {
3724     // Generates all stubs and initializes the entry points
3725 
3726     // This platform-specific stub is needed by generate_call_stub()
3727     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
3728 
3729     // entry points that exist in all platforms Note: This is code
3730     // that could be shared among different platforms - however the
3731     // benefit seems to be smaller than the disadvantage of having a
3732     // much more complicated generator structure. See also comment in
3733     // stubRoutines.hpp.
3734 
3735     StubRoutines::_forward_exception_entry = generate_forward_exception();
3736 
3737     StubRoutines::_call_stub_entry =
3738       generate_call_stub(StubRoutines::_call_stub_return_address);
3739 
3740     // is referenced by megamorphic call
3741     StubRoutines::_catch_exception_entry = generate_catch_exception();
3742 
3743     // atomic calls
3744     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
3745     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
3746     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
3747     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
3748     StubRoutines::_atomic_add_entry          = generate_atomic_add();
3749     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
3750     StubRoutines::_fence_entry               = generate_orderaccess_fence();
3751 
3752     StubRoutines::_handler_for_unsafe_access_entry =
3753       generate_handler_for_unsafe_access();
3754 
3755     // platform dependent
3756     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
3757     StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp();
3758 
3759     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
3760 
3761     // Build this early so it's available for the interpreter.
3762     StubRoutines::_throw_StackOverflowError_entry =
3763       generate_throw_exception("StackOverflowError throw_exception",
3764                                CAST_FROM_FN_PTR(address,
3765                                                 SharedRuntime::
3766                                                 throw_StackOverflowError));
3767   }
3768 
3769   void generate_all() {
3770     // Generates all stubs and initializes the entry points
3771 
3772     // These entry points require SharedInfo::stack0 to be set up in
3773     // non-core builds and need to be relocatable, so they each
3774     // fabricate a RuntimeStub internally.
3775     StubRoutines::_throw_AbstractMethodError_entry =
3776       generate_throw_exception("AbstractMethodError throw_exception",
3777                                CAST_FROM_FN_PTR(address,
3778                                                 SharedRuntime::
3779                                                 throw_AbstractMethodError));
3780 
3781     StubRoutines::_throw_IncompatibleClassChangeError_entry =
3782       generate_throw_exception("IncompatibleClassChangeError throw_exception",
3783                                CAST_FROM_FN_PTR(address,
3784                                                 SharedRuntime::
3785                                                 throw_IncompatibleClassChangeError));
3786 
3787     StubRoutines::_throw_NullPointerException_at_call_entry =
3788       generate_throw_exception("NullPointerException at call throw_exception",
3789                                CAST_FROM_FN_PTR(address,
3790                                                 SharedRuntime::
3791                                                 throw_NullPointerException_at_call));
3792 
3793     // entry points that are platform specific
3794     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
3795     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
3796     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
3797     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
3798 
3799     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
3800     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
3801     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
3802     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
3803 
3804     // support for verify_oop (must happen after universe_init)
3805     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
3806 
3807     // arraycopy stubs used by compilers
3808     generate_arraycopy_stubs();
3809 
3810     generate_math_stubs();
3811 
3812     // don't bother generating these AES intrinsic stubs unless global flag is set
3813     if (UseAESIntrinsics) {
3814       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // needed by the others
3815 
3816       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3817       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
3818       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
3819       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
3820     }
3821   }
3822 
3823  public:
3824   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3825     if (all) {
3826       generate_all();
3827     } else {
3828       generate_initial();
3829     }
3830   }
3831 }; // end class declaration
3832 
3833 void StubGenerator_generate(CodeBuffer* code, bool all) {
3834   StubGenerator g(code, all);
3835 }