1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/orderAccess.inline.hpp"
  62 #include "runtime/osThread.hpp"
  63 #include "runtime/safepoint.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/statSampler.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/task.hpp"
  68 #include "runtime/thread.inline.hpp"
  69 #include "runtime/threadCritical.hpp"
  70 #include "runtime/threadLocalStorage.hpp"
  71 #include "runtime/vframe.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vframe_hp.hpp"
  74 #include "runtime/vmThread.hpp"
  75 #include "runtime/vm_operations.hpp"
  76 #include "services/attachListener.hpp"
  77 #include "services/management.hpp"
  78 #include "services/memTracker.hpp"
  79 #include "services/threadService.hpp"
  80 #include "trace/tracing.hpp"
  81 #include "trace/traceMacros.hpp"
  82 #include "utilities/defaultStream.hpp"
  83 #include "utilities/dtrace.hpp"
  84 #include "utilities/events.hpp"
  85 #include "utilities/preserveException.hpp"
  86 #include "utilities/macros.hpp"
  87 #ifdef TARGET_OS_FAMILY_linux
  88 # include "os_linux.inline.hpp"
  89 #endif
  90 #ifdef TARGET_OS_FAMILY_solaris
  91 # include "os_solaris.inline.hpp"
  92 #endif
  93 #ifdef TARGET_OS_FAMILY_windows
  94 # include "os_windows.inline.hpp"
  95 #endif
  96 #ifdef TARGET_OS_FAMILY_bsd
  97 # include "os_bsd.inline.hpp"
  98 #endif
  99 #if INCLUDE_ALL_GCS
 100 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 101 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 102 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 103 #endif // INCLUDE_ALL_GCS
 104 #ifdef COMPILER1
 105 #include "c1/c1_Compiler.hpp"
 106 #endif
 107 #ifdef COMPILER2
 108 #include "opto/c2compiler.hpp"
 109 #include "opto/idealGraphPrinter.hpp"
 110 #endif
 111 #if INCLUDE_RTM_OPT
 112 #include "runtime/rtmLocking.hpp"
 113 #endif
 114 
 115 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 116 
 117 #ifdef DTRACE_ENABLED
 118 
 119 // Only bother with this argument setup if dtrace is available
 120 
 121 #ifndef USDT2
 122 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 123 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 124 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 125   intptr_t, intptr_t, bool);
 126 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 127   intptr_t, intptr_t, bool);
 128 
 129 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 130   {                                                                        \
 131     ResourceMark rm(this);                                                 \
 132     int len = 0;                                                           \
 133     const char* name = (javathread)->get_thread_name();                    \
 134     len = strlen(name);                                                    \
 135     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 136       name, len,                                                           \
 137       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 138       (javathread)->osthread()->thread_id(),                               \
 139       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 140   }
 141 
 142 #else /* USDT2 */
 143 
 144 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 145 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 146 
 147 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 148   {                                                                        \
 149     ResourceMark rm(this);                                                 \
 150     int len = 0;                                                           \
 151     const char* name = (javathread)->get_thread_name();                    \
 152     len = strlen(name);                                                    \
 153     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 154       (char *) name, len,                                                           \
 155       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 156       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 157       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 158   }
 159 
 160 #endif /* USDT2 */
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164 #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 
 169 // Class hierarchy
 170 // - Thread
 171 //   - VMThread
 172 //   - WatcherThread
 173 //   - ConcurrentMarkSweepThread
 174 //   - JavaThread
 175 //     - CompilerThread
 176 
 177 // ======= Thread ========
 178 // Support for forcing alignment of thread objects for biased locking
 179 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 180   if (UseBiasedLocking) {
 181     const int alignment = markOopDesc::biased_lock_alignment;
 182     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 183     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 184                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 185                                               AllocFailStrategy::RETURN_NULL);
 186     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 187     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 188            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 189            "JavaThread alignment code overflowed allocated storage");
 190     if (TraceBiasedLocking) {
 191       if (aligned_addr != real_malloc_addr)
 192         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 193                       real_malloc_addr, aligned_addr);
 194     }
 195     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 196     return aligned_addr;
 197   } else {
 198     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 199                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 200   }
 201 }
 202 
 203 void Thread::operator delete(void* p) {
 204   if (UseBiasedLocking) {
 205     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 206     FreeHeap(real_malloc_addr, mtThread);
 207   } else {
 208     FreeHeap(p, mtThread);
 209   }
 210 }
 211 
 212 
 213 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 214 // JavaThread
 215 
 216 
 217 Thread::Thread() {
 218   // stack and get_thread
 219   set_stack_base(NULL);
 220   set_stack_size(0);
 221   set_self_raw_id(0);
 222   set_lgrp_id(-1);
 223 
 224   // allocated data structures
 225   set_osthread(NULL);
 226   set_resource_area(new (mtThread)ResourceArea());
 227   DEBUG_ONLY(_current_resource_mark = NULL;)
 228   set_handle_area(new (mtThread) HandleArea(NULL));
 229   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 230   set_active_handles(NULL);
 231   set_free_handle_block(NULL);
 232   set_last_handle_mark(NULL);
 233 
 234   // This initial value ==> never claimed.
 235   _oops_do_parity = 0;
 236 
 237   // the handle mark links itself to last_handle_mark
 238   new HandleMark(this);
 239 
 240   // plain initialization
 241   debug_only(_owned_locks = NULL;)
 242   debug_only(_allow_allocation_count = 0;)
 243   NOT_PRODUCT(_allow_safepoint_count = 0;)
 244   NOT_PRODUCT(_skip_gcalot = false;)
 245   _jvmti_env_iteration_count = 0;
 246   set_allocated_bytes(0);
 247   _vm_operation_started_count = 0;
 248   _vm_operation_completed_count = 0;
 249   _current_pending_monitor = NULL;
 250   _current_pending_monitor_is_from_java = true;
 251   _current_waiting_monitor = NULL;
 252   _num_nested_signal = 0;
 253   omFreeList = NULL ;
 254   omFreeCount = 0 ;
 255   omFreeProvision = 32 ;
 256   omInUseList = NULL ;
 257   omInUseCount = 0 ;
 258 
 259 #ifdef ASSERT
 260   _visited_for_critical_count = false;
 261 #endif
 262 
 263   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 264   _suspend_flags = 0;
 265 
 266   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 267   _hashStateX = os::random() ;
 268   _hashStateY = 842502087 ;
 269   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 270   _hashStateW = 273326509 ;
 271 
 272   _OnTrap   = 0 ;
 273   _schedctl = NULL ;
 274   _Stalled  = 0 ;
 275   _TypeTag  = 0x2BAD ;
 276 
 277   // Many of the following fields are effectively final - immutable
 278   // Note that nascent threads can't use the Native Monitor-Mutex
 279   // construct until the _MutexEvent is initialized ...
 280   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 281   // we might instead use a stack of ParkEvents that we could provision on-demand.
 282   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 283   // and ::Release()
 284   _ParkEvent   = ParkEvent::Allocate (this) ;
 285   _SleepEvent  = ParkEvent::Allocate (this) ;
 286   _MutexEvent  = ParkEvent::Allocate (this) ;
 287   _MuxEvent    = ParkEvent::Allocate (this) ;
 288 
 289 #ifdef CHECK_UNHANDLED_OOPS
 290   if (CheckUnhandledOops) {
 291     _unhandled_oops = new UnhandledOops(this);
 292   }
 293 #endif // CHECK_UNHANDLED_OOPS
 294 #ifdef ASSERT
 295   if (UseBiasedLocking) {
 296     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 297     assert(this == _real_malloc_address ||
 298            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 299            "bug in forced alignment of thread objects");
 300   }
 301 #endif /* ASSERT */
 302 }
 303 
 304 void Thread::initialize_thread_local_storage() {
 305   // Note: Make sure this method only calls
 306   // non-blocking operations. Otherwise, it might not work
 307   // with the thread-startup/safepoint interaction.
 308 
 309   // During Java thread startup, safepoint code should allow this
 310   // method to complete because it may need to allocate memory to
 311   // store information for the new thread.
 312 
 313   // initialize structure dependent on thread local storage
 314   ThreadLocalStorage::set_thread(this);
 315 }
 316 
 317 void Thread::record_stack_base_and_size() {
 318   set_stack_base(os::current_stack_base());
 319   set_stack_size(os::current_stack_size());
 320   if (is_Java_thread()) {
 321     ((JavaThread*) this)->set_stack_overflow_limit();
 322   }
 323   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 324   // in initialize_thread(). Without the adjustment, stack size is
 325   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 326   // So far, only Solaris has real implementation of initialize_thread().
 327   //
 328   // set up any platform-specific state.
 329   os::initialize_thread(this);
 330 
 331 #if INCLUDE_NMT
 332   // record thread's native stack, stack grows downward
 333   address stack_low_addr = stack_base() - stack_size();
 334   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 335 #endif // INCLUDE_NMT
 336 }
 337 
 338 
 339 Thread::~Thread() {
 340   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 341   ObjectSynchronizer::omFlush (this) ;
 342 
 343   EVENT_THREAD_DESTRUCT(this);
 344 
 345   // stack_base can be NULL if the thread is never started or exited before
 346   // record_stack_base_and_size called. Although, we would like to ensure
 347   // that all started threads do call record_stack_base_and_size(), there is
 348   // not proper way to enforce that.
 349 #if INCLUDE_NMT
 350   if (_stack_base != NULL) {
 351     address low_stack_addr = stack_base() - stack_size();
 352     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 353 #ifdef ASSERT
 354     set_stack_base(NULL);
 355 #endif
 356   }
 357 #endif // INCLUDE_NMT
 358 
 359   // deallocate data structures
 360   delete resource_area();
 361   // since the handle marks are using the handle area, we have to deallocated the root
 362   // handle mark before deallocating the thread's handle area,
 363   assert(last_handle_mark() != NULL, "check we have an element");
 364   delete last_handle_mark();
 365   assert(last_handle_mark() == NULL, "check we have reached the end");
 366 
 367   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 368   // We NULL out the fields for good hygiene.
 369   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 370   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 371   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 372   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 373 
 374   delete handle_area();
 375   delete metadata_handles();
 376 
 377   // osthread() can be NULL, if creation of thread failed.
 378   if (osthread() != NULL) os::free_thread(osthread());
 379 
 380   delete _SR_lock;
 381 
 382   // clear thread local storage if the Thread is deleting itself
 383   if (this == Thread::current()) {
 384     ThreadLocalStorage::set_thread(NULL);
 385   } else {
 386     // In the case where we're not the current thread, invalidate all the
 387     // caches in case some code tries to get the current thread or the
 388     // thread that was destroyed, and gets stale information.
 389     ThreadLocalStorage::invalidate_all();
 390   }
 391   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 392 }
 393 
 394 // NOTE: dummy function for assertion purpose.
 395 void Thread::run() {
 396   ShouldNotReachHere();
 397 }
 398 
 399 #ifdef ASSERT
 400 // Private method to check for dangling thread pointer
 401 void check_for_dangling_thread_pointer(Thread *thread) {
 402  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 403          "possibility of dangling Thread pointer");
 404 }
 405 #endif
 406 
 407 
 408 #ifndef PRODUCT
 409 // Tracing method for basic thread operations
 410 void Thread::trace(const char* msg, const Thread* const thread) {
 411   if (!TraceThreadEvents) return;
 412   ResourceMark rm;
 413   ThreadCritical tc;
 414   const char *name = "non-Java thread";
 415   int prio = -1;
 416   if (thread->is_Java_thread()
 417       && !thread->is_Compiler_thread()) {
 418     // The Threads_lock must be held to get information about
 419     // this thread but may not be in some situations when
 420     // tracing  thread events.
 421     bool release_Threads_lock = false;
 422     if (!Threads_lock->owned_by_self()) {
 423       Threads_lock->lock();
 424       release_Threads_lock = true;
 425     }
 426     JavaThread* jt = (JavaThread *)thread;
 427     name = (char *)jt->get_thread_name();
 428     oop thread_oop = jt->threadObj();
 429     if (thread_oop != NULL) {
 430       prio = java_lang_Thread::priority(thread_oop);
 431     }
 432     if (release_Threads_lock) {
 433       Threads_lock->unlock();
 434     }
 435   }
 436   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 437 }
 438 #endif
 439 
 440 
 441 ThreadPriority Thread::get_priority(const Thread* const thread) {
 442   trace("get priority", thread);
 443   ThreadPriority priority;
 444   // Can return an error!
 445   (void)os::get_priority(thread, priority);
 446   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 447   return priority;
 448 }
 449 
 450 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 451   trace("set priority", thread);
 452   debug_only(check_for_dangling_thread_pointer(thread);)
 453   // Can return an error!
 454   (void)os::set_priority(thread, priority);
 455 }
 456 
 457 
 458 void Thread::start(Thread* thread) {
 459   trace("start", thread);
 460   // Start is different from resume in that its safety is guaranteed by context or
 461   // being called from a Java method synchronized on the Thread object.
 462   if (!DisableStartThread) {
 463     if (thread->is_Java_thread()) {
 464       // Initialize the thread state to RUNNABLE before starting this thread.
 465       // Can not set it after the thread started because we do not know the
 466       // exact thread state at that time. It could be in MONITOR_WAIT or
 467       // in SLEEPING or some other state.
 468       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 469                                           java_lang_Thread::RUNNABLE);
 470     }
 471     os::start_thread(thread);
 472   }
 473 }
 474 
 475 // Enqueue a VM_Operation to do the job for us - sometime later
 476 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 477   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 478   VMThread::execute(vm_stop);
 479 }
 480 
 481 
 482 //
 483 // Check if an external suspend request has completed (or has been
 484 // cancelled). Returns true if the thread is externally suspended and
 485 // false otherwise.
 486 //
 487 // The bits parameter returns information about the code path through
 488 // the routine. Useful for debugging:
 489 //
 490 // set in is_ext_suspend_completed():
 491 // 0x00000001 - routine was entered
 492 // 0x00000010 - routine return false at end
 493 // 0x00000100 - thread exited (return false)
 494 // 0x00000200 - suspend request cancelled (return false)
 495 // 0x00000400 - thread suspended (return true)
 496 // 0x00001000 - thread is in a suspend equivalent state (return true)
 497 // 0x00002000 - thread is native and walkable (return true)
 498 // 0x00004000 - thread is native_trans and walkable (needed retry)
 499 //
 500 // set in wait_for_ext_suspend_completion():
 501 // 0x00010000 - routine was entered
 502 // 0x00020000 - suspend request cancelled before loop (return false)
 503 // 0x00040000 - thread suspended before loop (return true)
 504 // 0x00080000 - suspend request cancelled in loop (return false)
 505 // 0x00100000 - thread suspended in loop (return true)
 506 // 0x00200000 - suspend not completed during retry loop (return false)
 507 //
 508 
 509 // Helper class for tracing suspend wait debug bits.
 510 //
 511 // 0x00000100 indicates that the target thread exited before it could
 512 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 513 // 0x00080000 each indicate a cancelled suspend request so they don't
 514 // count as wait failures either.
 515 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 516 
 517 class TraceSuspendDebugBits : public StackObj {
 518  private:
 519   JavaThread * jt;
 520   bool         is_wait;
 521   bool         called_by_wait;  // meaningful when !is_wait
 522   uint32_t *   bits;
 523 
 524  public:
 525   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 526                         uint32_t *_bits) {
 527     jt             = _jt;
 528     is_wait        = _is_wait;
 529     called_by_wait = _called_by_wait;
 530     bits           = _bits;
 531   }
 532 
 533   ~TraceSuspendDebugBits() {
 534     if (!is_wait) {
 535 #if 1
 536       // By default, don't trace bits for is_ext_suspend_completed() calls.
 537       // That trace is very chatty.
 538       return;
 539 #else
 540       if (!called_by_wait) {
 541         // If tracing for is_ext_suspend_completed() is enabled, then only
 542         // trace calls to it from wait_for_ext_suspend_completion()
 543         return;
 544       }
 545 #endif
 546     }
 547 
 548     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 549       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 550         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 551         ResourceMark rm;
 552 
 553         tty->print_cr(
 554             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 555             jt->get_thread_name(), *bits);
 556 
 557         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 558       }
 559     }
 560   }
 561 };
 562 #undef DEBUG_FALSE_BITS
 563 
 564 
 565 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 566   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 567 
 568   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 569   bool do_trans_retry;           // flag to force the retry
 570 
 571   *bits |= 0x00000001;
 572 
 573   do {
 574     do_trans_retry = false;
 575 
 576     if (is_exiting()) {
 577       // Thread is in the process of exiting. This is always checked
 578       // first to reduce the risk of dereferencing a freed JavaThread.
 579       *bits |= 0x00000100;
 580       return false;
 581     }
 582 
 583     if (!is_external_suspend()) {
 584       // Suspend request is cancelled. This is always checked before
 585       // is_ext_suspended() to reduce the risk of a rogue resume
 586       // confusing the thread that made the suspend request.
 587       *bits |= 0x00000200;
 588       return false;
 589     }
 590 
 591     if (is_ext_suspended()) {
 592       // thread is suspended
 593       *bits |= 0x00000400;
 594       return true;
 595     }
 596 
 597     // Now that we no longer do hard suspends of threads running
 598     // native code, the target thread can be changing thread state
 599     // while we are in this routine:
 600     //
 601     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 602     //
 603     // We save a copy of the thread state as observed at this moment
 604     // and make our decision about suspend completeness based on the
 605     // copy. This closes the race where the thread state is seen as
 606     // _thread_in_native_trans in the if-thread_blocked check, but is
 607     // seen as _thread_blocked in if-thread_in_native_trans check.
 608     JavaThreadState save_state = thread_state();
 609 
 610     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 611       // If the thread's state is _thread_blocked and this blocking
 612       // condition is known to be equivalent to a suspend, then we can
 613       // consider the thread to be externally suspended. This means that
 614       // the code that sets _thread_blocked has been modified to do
 615       // self-suspension if the blocking condition releases. We also
 616       // used to check for CONDVAR_WAIT here, but that is now covered by
 617       // the _thread_blocked with self-suspension check.
 618       //
 619       // Return true since we wouldn't be here unless there was still an
 620       // external suspend request.
 621       *bits |= 0x00001000;
 622       return true;
 623     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 624       // Threads running native code will self-suspend on native==>VM/Java
 625       // transitions. If its stack is walkable (should always be the case
 626       // unless this function is called before the actual java_suspend()
 627       // call), then the wait is done.
 628       *bits |= 0x00002000;
 629       return true;
 630     } else if (!called_by_wait && !did_trans_retry &&
 631                save_state == _thread_in_native_trans &&
 632                frame_anchor()->walkable()) {
 633       // The thread is transitioning from thread_in_native to another
 634       // thread state. check_safepoint_and_suspend_for_native_trans()
 635       // will force the thread to self-suspend. If it hasn't gotten
 636       // there yet we may have caught the thread in-between the native
 637       // code check above and the self-suspend. Lucky us. If we were
 638       // called by wait_for_ext_suspend_completion(), then it
 639       // will be doing the retries so we don't have to.
 640       //
 641       // Since we use the saved thread state in the if-statement above,
 642       // there is a chance that the thread has already transitioned to
 643       // _thread_blocked by the time we get here. In that case, we will
 644       // make a single unnecessary pass through the logic below. This
 645       // doesn't hurt anything since we still do the trans retry.
 646 
 647       *bits |= 0x00004000;
 648 
 649       // Once the thread leaves thread_in_native_trans for another
 650       // thread state, we break out of this retry loop. We shouldn't
 651       // need this flag to prevent us from getting back here, but
 652       // sometimes paranoia is good.
 653       did_trans_retry = true;
 654 
 655       // We wait for the thread to transition to a more usable state.
 656       for (int i = 1; i <= SuspendRetryCount; i++) {
 657         // We used to do an "os::yield_all(i)" call here with the intention
 658         // that yielding would increase on each retry. However, the parameter
 659         // is ignored on Linux which means the yield didn't scale up. Waiting
 660         // on the SR_lock below provides a much more predictable scale up for
 661         // the delay. It also provides a simple/direct point to check for any
 662         // safepoint requests from the VMThread
 663 
 664         // temporarily drops SR_lock while doing wait with safepoint check
 665         // (if we're a JavaThread - the WatcherThread can also call this)
 666         // and increase delay with each retry
 667         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 668 
 669         // check the actual thread state instead of what we saved above
 670         if (thread_state() != _thread_in_native_trans) {
 671           // the thread has transitioned to another thread state so
 672           // try all the checks (except this one) one more time.
 673           do_trans_retry = true;
 674           break;
 675         }
 676       } // end retry loop
 677 
 678 
 679     }
 680   } while (do_trans_retry);
 681 
 682   *bits |= 0x00000010;
 683   return false;
 684 }
 685 
 686 //
 687 // Wait for an external suspend request to complete (or be cancelled).
 688 // Returns true if the thread is externally suspended and false otherwise.
 689 //
 690 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 691        uint32_t *bits) {
 692   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 693                              false /* !called_by_wait */, bits);
 694 
 695   // local flag copies to minimize SR_lock hold time
 696   bool is_suspended;
 697   bool pending;
 698   uint32_t reset_bits;
 699 
 700   // set a marker so is_ext_suspend_completed() knows we are the caller
 701   *bits |= 0x00010000;
 702 
 703   // We use reset_bits to reinitialize the bits value at the top of
 704   // each retry loop. This allows the caller to make use of any
 705   // unused bits for their own marking purposes.
 706   reset_bits = *bits;
 707 
 708   {
 709     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 710     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 711                                             delay, bits);
 712     pending = is_external_suspend();
 713   }
 714   // must release SR_lock to allow suspension to complete
 715 
 716   if (!pending) {
 717     // A cancelled suspend request is the only false return from
 718     // is_ext_suspend_completed() that keeps us from entering the
 719     // retry loop.
 720     *bits |= 0x00020000;
 721     return false;
 722   }
 723 
 724   if (is_suspended) {
 725     *bits |= 0x00040000;
 726     return true;
 727   }
 728 
 729   for (int i = 1; i <= retries; i++) {
 730     *bits = reset_bits;  // reinit to only track last retry
 731 
 732     // We used to do an "os::yield_all(i)" call here with the intention
 733     // that yielding would increase on each retry. However, the parameter
 734     // is ignored on Linux which means the yield didn't scale up. Waiting
 735     // on the SR_lock below provides a much more predictable scale up for
 736     // the delay. It also provides a simple/direct point to check for any
 737     // safepoint requests from the VMThread
 738 
 739     {
 740       MutexLocker ml(SR_lock());
 741       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 742       // can also call this)  and increase delay with each retry
 743       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 744 
 745       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 746                                               delay, bits);
 747 
 748       // It is possible for the external suspend request to be cancelled
 749       // (by a resume) before the actual suspend operation is completed.
 750       // Refresh our local copy to see if we still need to wait.
 751       pending = is_external_suspend();
 752     }
 753 
 754     if (!pending) {
 755       // A cancelled suspend request is the only false return from
 756       // is_ext_suspend_completed() that keeps us from staying in the
 757       // retry loop.
 758       *bits |= 0x00080000;
 759       return false;
 760     }
 761 
 762     if (is_suspended) {
 763       *bits |= 0x00100000;
 764       return true;
 765     }
 766   } // end retry loop
 767 
 768   // thread did not suspend after all our retries
 769   *bits |= 0x00200000;
 770   return false;
 771 }
 772 
 773 #ifndef PRODUCT
 774 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 775 
 776   // This should not need to be atomic as the only way for simultaneous
 777   // updates is via interrupts. Even then this should be rare or non-existant
 778   // and we don't care that much anyway.
 779 
 780   int index = _jmp_ring_index;
 781   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 782   _jmp_ring[index]._target = (intptr_t) target;
 783   _jmp_ring[index]._instruction = (intptr_t) instr;
 784   _jmp_ring[index]._file = file;
 785   _jmp_ring[index]._line = line;
 786 }
 787 #endif /* PRODUCT */
 788 
 789 // Called by flat profiler
 790 // Callers have already called wait_for_ext_suspend_completion
 791 // The assertion for that is currently too complex to put here:
 792 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 793   bool gotframe = false;
 794   // self suspension saves needed state.
 795   if (has_last_Java_frame() && _anchor.walkable()) {
 796      *_fr = pd_last_frame();
 797      gotframe = true;
 798   }
 799   return gotframe;
 800 }
 801 
 802 void Thread::interrupt(Thread* thread) {
 803   trace("interrupt", thread);
 804   debug_only(check_for_dangling_thread_pointer(thread);)
 805   os::interrupt(thread);
 806 }
 807 
 808 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 809   trace("is_interrupted", thread);
 810   debug_only(check_for_dangling_thread_pointer(thread);)
 811   // Note:  If clear_interrupted==false, this simply fetches and
 812   // returns the value of the field osthread()->interrupted().
 813   return os::is_interrupted(thread, clear_interrupted);
 814 }
 815 
 816 
 817 // GC Support
 818 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 819   jint thread_parity = _oops_do_parity;
 820   if (thread_parity != strong_roots_parity) {
 821     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 822     if (res == thread_parity) {
 823       return true;
 824     } else {
 825       guarantee(res == strong_roots_parity, "Or else what?");
 826       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 827          "Should only fail when parallel.");
 828       return false;
 829     }
 830   }
 831   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 832          "Should only fail when parallel.");
 833   return false;
 834 }
 835 
 836 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 837   active_handles()->oops_do(f);
 838   // Do oop for ThreadShadow
 839   f->do_oop((oop*)&_pending_exception);
 840   handle_area()->oops_do(f);
 841 }
 842 
 843 void Thread::nmethods_do(CodeBlobClosure* cf) {
 844   // no nmethods in a generic thread...
 845 }
 846 
 847 void Thread::metadata_do(void f(Metadata*)) {
 848   if (metadata_handles() != NULL) {
 849     for (int i = 0; i< metadata_handles()->length(); i++) {
 850       f(metadata_handles()->at(i));
 851     }
 852   }
 853 }
 854 
 855 void Thread::print_on(outputStream* st) const {
 856   // get_priority assumes osthread initialized
 857   if (osthread() != NULL) {
 858     int os_prio;
 859     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 860       st->print("os_prio=%d ", os_prio);
 861     }
 862     st->print("tid=" INTPTR_FORMAT " ", this);
 863     ext().print_on(st);
 864     osthread()->print_on(st);
 865   }
 866   debug_only(if (WizardMode) print_owned_locks_on(st);)
 867 }
 868 
 869 // Thread::print_on_error() is called by fatal error handler. Don't use
 870 // any lock or allocate memory.
 871 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 872   if      (is_VM_thread())                  st->print("VMThread");
 873   else if (is_Compiler_thread())            st->print("CompilerThread");
 874   else if (is_Java_thread())                st->print("JavaThread");
 875   else if (is_GC_task_thread())             st->print("GCTaskThread");
 876   else if (is_Watcher_thread())             st->print("WatcherThread");
 877   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 878   else st->print("Thread");
 879 
 880   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 881             _stack_base - _stack_size, _stack_base);
 882 
 883   if (osthread()) {
 884     st->print(" [id=%d]", osthread()->thread_id());
 885   }
 886 }
 887 
 888 #ifdef ASSERT
 889 void Thread::print_owned_locks_on(outputStream* st) const {
 890   Monitor *cur = _owned_locks;
 891   if (cur == NULL) {
 892     st->print(" (no locks) ");
 893   } else {
 894     st->print_cr(" Locks owned:");
 895     while(cur) {
 896       cur->print_on(st);
 897       cur = cur->next();
 898     }
 899   }
 900 }
 901 
 902 static int ref_use_count  = 0;
 903 
 904 bool Thread::owns_locks_but_compiled_lock() const {
 905   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 906     if (cur != Compile_lock) return true;
 907   }
 908   return false;
 909 }
 910 
 911 
 912 #endif
 913 
 914 #ifndef PRODUCT
 915 
 916 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 917 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 918 // no threads which allow_vm_block's are held
 919 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 920     // Check if current thread is allowed to block at a safepoint
 921     if (!(_allow_safepoint_count == 0))
 922       fatal("Possible safepoint reached by thread that does not allow it");
 923     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 924       fatal("LEAF method calling lock?");
 925     }
 926 
 927 #ifdef ASSERT
 928     if (potential_vm_operation && is_Java_thread()
 929         && !Universe::is_bootstrapping()) {
 930       // Make sure we do not hold any locks that the VM thread also uses.
 931       // This could potentially lead to deadlocks
 932       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 933         // Threads_lock is special, since the safepoint synchronization will not start before this is
 934         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 935         // since it is used to transfer control between JavaThreads and the VMThread
 936         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 937         if ( (cur->allow_vm_block() &&
 938               cur != Threads_lock &&
 939               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 940               cur != VMOperationRequest_lock &&
 941               cur != VMOperationQueue_lock) ||
 942               cur->rank() == Mutex::special) {
 943           fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 944         }
 945       }
 946     }
 947 
 948     if (GCALotAtAllSafepoints) {
 949       // We could enter a safepoint here and thus have a gc
 950       InterfaceSupport::check_gc_alot();
 951     }
 952 #endif
 953 }
 954 #endif
 955 
 956 bool Thread::is_in_stack(address adr) const {
 957   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 958   address end = os::current_stack_pointer();
 959   // Allow non Java threads to call this without stack_base
 960   if (_stack_base == NULL) return true;
 961   if (stack_base() >= adr && adr >= end) return true;
 962 
 963   return false;
 964 }
 965 
 966 
 967 bool Thread::is_in_usable_stack(address adr) const {
 968   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 969   size_t usable_stack_size = _stack_size - stack_guard_size;
 970 
 971   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 972 }
 973 
 974 
 975 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 976 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 977 // used for compilation in the future. If that change is made, the need for these methods
 978 // should be revisited, and they should be removed if possible.
 979 
 980 bool Thread::is_lock_owned(address adr) const {
 981   return on_local_stack(adr);
 982 }
 983 
 984 bool Thread::set_as_starting_thread() {
 985  // NOTE: this must be called inside the main thread.
 986   return os::create_main_thread((JavaThread*)this);
 987 }
 988 
 989 static void initialize_class(Symbol* class_name, TRAPS) {
 990   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 991   InstanceKlass::cast(klass)->initialize(CHECK);
 992 }
 993 
 994 
 995 // Creates the initial ThreadGroup
 996 static Handle create_initial_thread_group(TRAPS) {
 997   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 998   instanceKlassHandle klass (THREAD, k);
 999 
1000   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
1001   {
1002     JavaValue result(T_VOID);
1003     JavaCalls::call_special(&result,
1004                             system_instance,
1005                             klass,
1006                             vmSymbols::object_initializer_name(),
1007                             vmSymbols::void_method_signature(),
1008                             CHECK_NH);
1009   }
1010   Universe::set_system_thread_group(system_instance());
1011 
1012   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1013   {
1014     JavaValue result(T_VOID);
1015     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1016     JavaCalls::call_special(&result,
1017                             main_instance,
1018                             klass,
1019                             vmSymbols::object_initializer_name(),
1020                             vmSymbols::threadgroup_string_void_signature(),
1021                             system_instance,
1022                             string,
1023                             CHECK_NH);
1024   }
1025   return main_instance;
1026 }
1027 
1028 // Creates the initial Thread
1029 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1030   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1031   instanceKlassHandle klass (THREAD, k);
1032   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1033 
1034   java_lang_Thread::set_thread(thread_oop(), thread);
1035   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1036   thread->set_threadObj(thread_oop());
1037 
1038   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1039 
1040   JavaValue result(T_VOID);
1041   JavaCalls::call_special(&result, thread_oop,
1042                                    klass,
1043                                    vmSymbols::object_initializer_name(),
1044                                    vmSymbols::threadgroup_string_void_signature(),
1045                                    thread_group,
1046                                    string,
1047                                    CHECK_NULL);
1048   return thread_oop();
1049 }
1050 
1051 static void call_initializeSystemClass(TRAPS) {
1052   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1053   instanceKlassHandle klass (THREAD, k);
1054 
1055   JavaValue result(T_VOID);
1056   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1057                                          vmSymbols::void_method_signature(), CHECK);
1058 }
1059 
1060 char java_runtime_name[128] = "";
1061 char java_runtime_version[128] = "";
1062 
1063 // extract the JRE name from sun.misc.Version.java_runtime_name
1064 static const char* get_java_runtime_name(TRAPS) {
1065   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1066                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1067   fieldDescriptor fd;
1068   bool found = k != NULL &&
1069                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1070                                                         vmSymbols::string_signature(), &fd);
1071   if (found) {
1072     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1073     if (name_oop == NULL)
1074       return NULL;
1075     const char* name = java_lang_String::as_utf8_string(name_oop,
1076                                                         java_runtime_name,
1077                                                         sizeof(java_runtime_name));
1078     return name;
1079   } else {
1080     return NULL;
1081   }
1082 }
1083 
1084 // extract the JRE version from sun.misc.Version.java_runtime_version
1085 static const char* get_java_runtime_version(TRAPS) {
1086   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1087                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1088   fieldDescriptor fd;
1089   bool found = k != NULL &&
1090                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1091                                                         vmSymbols::string_signature(), &fd);
1092   if (found) {
1093     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1094     if (name_oop == NULL)
1095       return NULL;
1096     const char* name = java_lang_String::as_utf8_string(name_oop,
1097                                                         java_runtime_version,
1098                                                         sizeof(java_runtime_version));
1099     return name;
1100   } else {
1101     return NULL;
1102   }
1103 }
1104 
1105 // General purpose hook into Java code, run once when the VM is initialized.
1106 // The Java library method itself may be changed independently from the VM.
1107 static void call_postVMInitHook(TRAPS) {
1108   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1109   instanceKlassHandle klass (THREAD, k);
1110   if (klass.not_null()) {
1111     JavaValue result(T_VOID);
1112     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1113                                            vmSymbols::void_method_signature(),
1114                                            CHECK);
1115   }
1116 }
1117 
1118 static void reset_vm_info_property(TRAPS) {
1119   // the vm info string
1120   ResourceMark rm(THREAD);
1121   const char *vm_info = VM_Version::vm_info_string();
1122 
1123   // java.lang.System class
1124   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1125   instanceKlassHandle klass (THREAD, k);
1126 
1127   // setProperty arguments
1128   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1129   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1130 
1131   // return value
1132   JavaValue r(T_OBJECT);
1133 
1134   // public static String setProperty(String key, String value);
1135   JavaCalls::call_static(&r,
1136                          klass,
1137                          vmSymbols::setProperty_name(),
1138                          vmSymbols::string_string_string_signature(),
1139                          key_str,
1140                          value_str,
1141                          CHECK);
1142 }
1143 
1144 
1145 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1146   assert(thread_group.not_null(), "thread group should be specified");
1147   assert(threadObj() == NULL, "should only create Java thread object once");
1148 
1149   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1150   instanceKlassHandle klass (THREAD, k);
1151   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1152 
1153   java_lang_Thread::set_thread(thread_oop(), this);
1154   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1155   set_threadObj(thread_oop());
1156 
1157   JavaValue result(T_VOID);
1158   if (thread_name != NULL) {
1159     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1160     // Thread gets assigned specified name and null target
1161     JavaCalls::call_special(&result,
1162                             thread_oop,
1163                             klass,
1164                             vmSymbols::object_initializer_name(),
1165                             vmSymbols::threadgroup_string_void_signature(),
1166                             thread_group, // Argument 1
1167                             name,         // Argument 2
1168                             THREAD);
1169   } else {
1170     // Thread gets assigned name "Thread-nnn" and null target
1171     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1172     JavaCalls::call_special(&result,
1173                             thread_oop,
1174                             klass,
1175                             vmSymbols::object_initializer_name(),
1176                             vmSymbols::threadgroup_runnable_void_signature(),
1177                             thread_group, // Argument 1
1178                             Handle(),     // Argument 2
1179                             THREAD);
1180   }
1181 
1182 
1183   if (daemon) {
1184       java_lang_Thread::set_daemon(thread_oop());
1185   }
1186 
1187   if (HAS_PENDING_EXCEPTION) {
1188     return;
1189   }
1190 
1191   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1192   Handle threadObj(this, this->threadObj());
1193 
1194   JavaCalls::call_special(&result,
1195                          thread_group,
1196                          group,
1197                          vmSymbols::add_method_name(),
1198                          vmSymbols::thread_void_signature(),
1199                          threadObj,          // Arg 1
1200                          THREAD);
1201 
1202 
1203 }
1204 
1205 // NamedThread --  non-JavaThread subclasses with multiple
1206 // uniquely named instances should derive from this.
1207 NamedThread::NamedThread() : Thread() {
1208   _name = NULL;
1209   _processed_thread = NULL;
1210 }
1211 
1212 NamedThread::~NamedThread() {
1213   if (_name != NULL) {
1214     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1215     _name = NULL;
1216   }
1217 }
1218 
1219 void NamedThread::set_name(const char* format, ...) {
1220   guarantee(_name == NULL, "Only get to set name once.");
1221   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1222   guarantee(_name != NULL, "alloc failure");
1223   va_list ap;
1224   va_start(ap, format);
1225   jio_vsnprintf(_name, max_name_len, format, ap);
1226   va_end(ap);
1227 }
1228 
1229 // ======= WatcherThread ========
1230 
1231 // The watcher thread exists to simulate timer interrupts.  It should
1232 // be replaced by an abstraction over whatever native support for
1233 // timer interrupts exists on the platform.
1234 
1235 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1236 bool WatcherThread::_startable = false;
1237 volatile bool  WatcherThread::_should_terminate = false;
1238 
1239 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1240   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1241   if (os::create_thread(this, os::watcher_thread)) {
1242     _watcher_thread = this;
1243 
1244     // Set the watcher thread to the highest OS priority which should not be
1245     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1246     // is created. The only normal thread using this priority is the reference
1247     // handler thread, which runs for very short intervals only.
1248     // If the VMThread's priority is not lower than the WatcherThread profiling
1249     // will be inaccurate.
1250     os::set_priority(this, MaxPriority);
1251     if (!DisableStartThread) {
1252       os::start_thread(this);
1253     }
1254   }
1255 }
1256 
1257 int WatcherThread::sleep() const {
1258   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1259 
1260   // remaining will be zero if there are no tasks,
1261   // causing the WatcherThread to sleep until a task is
1262   // enrolled
1263   int remaining = PeriodicTask::time_to_wait();
1264   int time_slept = 0;
1265 
1266   // we expect this to timeout - we only ever get unparked when
1267   // we should terminate or when a new task has been enrolled
1268   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1269 
1270   jlong time_before_loop = os::javaTimeNanos();
1271 
1272   for (;;) {
1273     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1274     jlong now = os::javaTimeNanos();
1275 
1276     if (remaining == 0) {
1277         // if we didn't have any tasks we could have waited for a long time
1278         // consider the time_slept zero and reset time_before_loop
1279         time_slept = 0;
1280         time_before_loop = now;
1281     } else {
1282         // need to recalulate since we might have new tasks in _tasks
1283         time_slept = (int) ((now - time_before_loop) / 1000000);
1284     }
1285 
1286     // Change to task list or spurious wakeup of some kind
1287     if (timedout || _should_terminate) {
1288         break;
1289     }
1290 
1291     remaining = PeriodicTask::time_to_wait();
1292     if (remaining == 0) {
1293         // Last task was just disenrolled so loop around and wait until
1294         // another task gets enrolled
1295         continue;
1296     }
1297 
1298     remaining -= time_slept;
1299     if (remaining <= 0)
1300       break;
1301   }
1302 
1303   return time_slept;
1304 }
1305 
1306 void WatcherThread::run() {
1307   assert(this == watcher_thread(), "just checking");
1308 
1309   this->record_stack_base_and_size();
1310   this->initialize_thread_local_storage();
1311   this->set_active_handles(JNIHandleBlock::allocate_block());
1312   while(!_should_terminate) {
1313     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1314     assert(watcher_thread() == this,  "thread consistency check");
1315 
1316     // Calculate how long it'll be until the next PeriodicTask work
1317     // should be done, and sleep that amount of time.
1318     int time_waited = sleep();
1319 
1320     if (is_error_reported()) {
1321       // A fatal error has happened, the error handler(VMError::report_and_die)
1322       // should abort JVM after creating an error log file. However in some
1323       // rare cases, the error handler itself might deadlock. Here we try to
1324       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1325       //
1326       // This code is in WatcherThread because WatcherThread wakes up
1327       // periodically so the fatal error handler doesn't need to do anything;
1328       // also because the WatcherThread is less likely to crash than other
1329       // threads.
1330 
1331       for (;;) {
1332         if (!ShowMessageBoxOnError
1333          && (OnError == NULL || OnError[0] == '\0')
1334          && Arguments::abort_hook() == NULL) {
1335              os::sleep(this, 2 * 60 * 1000, false);
1336              fdStream err(defaultStream::output_fd());
1337              err.print_raw_cr("# [ timer expired, abort... ]");
1338              // skip atexit/vm_exit/vm_abort hooks
1339              os::die();
1340         }
1341 
1342         // Wake up 5 seconds later, the fatal handler may reset OnError or
1343         // ShowMessageBoxOnError when it is ready to abort.
1344         os::sleep(this, 5 * 1000, false);
1345       }
1346     }
1347 
1348     PeriodicTask::real_time_tick(time_waited);
1349   }
1350 
1351   // Signal that it is terminated
1352   {
1353     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1354     _watcher_thread = NULL;
1355     Terminator_lock->notify();
1356   }
1357 
1358   // Thread destructor usually does this..
1359   ThreadLocalStorage::set_thread(NULL);
1360 }
1361 
1362 void WatcherThread::start() {
1363   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1364 
1365   if (watcher_thread() == NULL && _startable) {
1366     _should_terminate = false;
1367     // Create the single instance of WatcherThread
1368     new WatcherThread();
1369   }
1370 }
1371 
1372 void WatcherThread::make_startable() {
1373   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1374   _startable = true;
1375 }
1376 
1377 void WatcherThread::stop() {
1378   {
1379     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1380     _should_terminate = true;
1381     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1382 
1383     WatcherThread* watcher = watcher_thread();
1384     if (watcher != NULL)
1385       watcher->unpark();
1386   }
1387 
1388   // it is ok to take late safepoints here, if needed
1389   MutexLocker mu(Terminator_lock);
1390 
1391   while(watcher_thread() != NULL) {
1392     // This wait should make safepoint checks, wait without a timeout,
1393     // and wait as a suspend-equivalent condition.
1394     //
1395     // Note: If the FlatProfiler is running, then this thread is waiting
1396     // for the WatcherThread to terminate and the WatcherThread, via the
1397     // FlatProfiler task, is waiting for the external suspend request on
1398     // this thread to complete. wait_for_ext_suspend_completion() will
1399     // eventually timeout, but that takes time. Making this wait a
1400     // suspend-equivalent condition solves that timeout problem.
1401     //
1402     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1403                           Mutex::_as_suspend_equivalent_flag);
1404   }
1405 }
1406 
1407 void WatcherThread::unpark() {
1408   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1409   PeriodicTask_lock->notify();
1410 }
1411 
1412 void WatcherThread::print_on(outputStream* st) const {
1413   st->print("\"%s\" ", name());
1414   Thread::print_on(st);
1415   st->cr();
1416 }
1417 
1418 // ======= JavaThread ========
1419 
1420 // A JavaThread is a normal Java thread
1421 
1422 void JavaThread::initialize() {
1423   // Initialize fields
1424 
1425   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1426   set_claimed_par_id(UINT_MAX);
1427 
1428   set_saved_exception_pc(NULL);
1429   set_threadObj(NULL);
1430   _anchor.clear();
1431   set_entry_point(NULL);
1432   set_jni_functions(jni_functions());
1433   set_callee_target(NULL);
1434   set_vm_result(NULL);
1435   set_vm_result_2(NULL);
1436   set_vframe_array_head(NULL);
1437   set_vframe_array_last(NULL);
1438   set_deferred_locals(NULL);
1439   set_deopt_mark(NULL);
1440   set_deopt_nmethod(NULL);
1441   clear_must_deopt_id();
1442   set_monitor_chunks(NULL);
1443   set_next(NULL);
1444   set_thread_state(_thread_new);
1445   _terminated = _not_terminated;
1446   _privileged_stack_top = NULL;
1447   _array_for_gc = NULL;
1448   _suspend_equivalent = false;
1449   _in_deopt_handler = 0;
1450   _doing_unsafe_access = false;
1451   _stack_guard_state = stack_guard_unused;
1452   (void)const_cast<oop&>(_exception_oop = NULL);
1453   _exception_pc  = 0;
1454   _exception_handler_pc = 0;
1455   _is_method_handle_return = 0;
1456   _jvmti_thread_state= NULL;
1457   _should_post_on_exceptions_flag = JNI_FALSE;
1458   _jvmti_get_loaded_classes_closure = NULL;
1459   _interp_only_mode    = 0;
1460   _special_runtime_exit_condition = _no_async_condition;
1461   _pending_async_exception = NULL;
1462   _thread_stat = NULL;
1463   _thread_stat = new ThreadStatistics();
1464   _blocked_on_compilation = false;
1465   _jni_active_critical = 0;
1466   _do_not_unlock_if_synchronized = false;
1467   _cached_monitor_info = NULL;
1468   _parker = Parker::Allocate(this) ;
1469 
1470 #ifndef PRODUCT
1471   _jmp_ring_index = 0;
1472   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1473     record_jump(NULL, NULL, NULL, 0);
1474   }
1475 #endif /* PRODUCT */
1476 
1477   set_thread_profiler(NULL);
1478   if (FlatProfiler::is_active()) {
1479     // This is where we would decide to either give each thread it's own profiler
1480     // or use one global one from FlatProfiler,
1481     // or up to some count of the number of profiled threads, etc.
1482     ThreadProfiler* pp = new ThreadProfiler();
1483     pp->engage();
1484     set_thread_profiler(pp);
1485   }
1486 
1487   // Setup safepoint state info for this thread
1488   ThreadSafepointState::create(this);
1489 
1490   debug_only(_java_call_counter = 0);
1491 
1492   // JVMTI PopFrame support
1493   _popframe_condition = popframe_inactive;
1494   _popframe_preserved_args = NULL;
1495   _popframe_preserved_args_size = 0;
1496 
1497   pd_initialize();
1498 }
1499 
1500 #if INCLUDE_ALL_GCS
1501 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1502 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1503 #endif // INCLUDE_ALL_GCS
1504 
1505 JavaThread::JavaThread(bool is_attaching_via_jni) :
1506   Thread()
1507 #if INCLUDE_ALL_GCS
1508   , _satb_mark_queue(&_satb_mark_queue_set),
1509   _dirty_card_queue(&_dirty_card_queue_set)
1510 #endif // INCLUDE_ALL_GCS
1511 {
1512   initialize();
1513   if (is_attaching_via_jni) {
1514     _jni_attach_state = _attaching_via_jni;
1515   } else {
1516     _jni_attach_state = _not_attaching_via_jni;
1517   }
1518   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1519 }
1520 
1521 bool JavaThread::reguard_stack(address cur_sp) {
1522   if (_stack_guard_state != stack_guard_yellow_disabled) {
1523     return true; // Stack already guarded or guard pages not needed.
1524   }
1525 
1526   if (register_stack_overflow()) {
1527     // For those architectures which have separate register and
1528     // memory stacks, we must check the register stack to see if
1529     // it has overflowed.
1530     return false;
1531   }
1532 
1533   // Java code never executes within the yellow zone: the latter is only
1534   // there to provoke an exception during stack banging.  If java code
1535   // is executing there, either StackShadowPages should be larger, or
1536   // some exception code in c1, c2 or the interpreter isn't unwinding
1537   // when it should.
1538   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1539 
1540   enable_stack_yellow_zone();
1541   return true;
1542 }
1543 
1544 bool JavaThread::reguard_stack(void) {
1545   return reguard_stack(os::current_stack_pointer());
1546 }
1547 
1548 
1549 void JavaThread::block_if_vm_exited() {
1550   if (_terminated == _vm_exited) {
1551     // _vm_exited is set at safepoint, and Threads_lock is never released
1552     // we will block here forever
1553     Threads_lock->lock_without_safepoint_check();
1554     ShouldNotReachHere();
1555   }
1556 }
1557 
1558 
1559 // Remove this ifdef when C1 is ported to the compiler interface.
1560 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1561 
1562 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1563   Thread()
1564 #if INCLUDE_ALL_GCS
1565   , _satb_mark_queue(&_satb_mark_queue_set),
1566   _dirty_card_queue(&_dirty_card_queue_set)
1567 #endif // INCLUDE_ALL_GCS
1568 {
1569   if (TraceThreadEvents) {
1570     tty->print_cr("creating thread %p", this);
1571   }
1572   initialize();
1573   _jni_attach_state = _not_attaching_via_jni;
1574   set_entry_point(entry_point);
1575   // Create the native thread itself.
1576   // %note runtime_23
1577   os::ThreadType thr_type = os::java_thread;
1578   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1579                                                      os::java_thread;
1580   os::create_thread(this, thr_type, stack_sz);
1581   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1582   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1583   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1584   // the exception consists of creating the exception object & initializing it, initialization
1585   // will leave the VM via a JavaCall and then all locks must be unlocked).
1586   //
1587   // The thread is still suspended when we reach here. Thread must be explicit started
1588   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1589   // by calling Threads:add. The reason why this is not done here, is because the thread
1590   // object must be fully initialized (take a look at JVM_Start)
1591 }
1592 
1593 JavaThread::~JavaThread() {
1594   if (TraceThreadEvents) {
1595       tty->print_cr("terminate thread %p", this);
1596   }
1597 
1598   // JSR166 -- return the parker to the free list
1599   Parker::Release(_parker);
1600   _parker = NULL ;
1601 
1602   // Free any remaining  previous UnrollBlock
1603   vframeArray* old_array = vframe_array_last();
1604 
1605   if (old_array != NULL) {
1606     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1607     old_array->set_unroll_block(NULL);
1608     delete old_info;
1609     delete old_array;
1610   }
1611 
1612   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1613   if (deferred != NULL) {
1614     // This can only happen if thread is destroyed before deoptimization occurs.
1615     assert(deferred->length() != 0, "empty array!");
1616     do {
1617       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1618       deferred->remove_at(0);
1619       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1620       delete dlv;
1621     } while (deferred->length() != 0);
1622     delete deferred;
1623   }
1624 
1625   // All Java related clean up happens in exit
1626   ThreadSafepointState::destroy(this);
1627   if (_thread_profiler != NULL) delete _thread_profiler;
1628   if (_thread_stat != NULL) delete _thread_stat;
1629 }
1630 
1631 
1632 // The first routine called by a new Java thread
1633 void JavaThread::run() {
1634   // initialize thread-local alloc buffer related fields
1635   this->initialize_tlab();
1636 
1637   // used to test validitity of stack trace backs
1638   this->record_base_of_stack_pointer();
1639 
1640   // Record real stack base and size.
1641   this->record_stack_base_and_size();
1642 
1643   // Initialize thread local storage; set before calling MutexLocker
1644   this->initialize_thread_local_storage();
1645 
1646   this->create_stack_guard_pages();
1647 
1648   this->cache_global_variables();
1649 
1650   // Thread is now sufficient initialized to be handled by the safepoint code as being
1651   // in the VM. Change thread state from _thread_new to _thread_in_vm
1652   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1653 
1654   assert(JavaThread::current() == this, "sanity check");
1655   assert(!Thread::current()->owns_locks(), "sanity check");
1656 
1657   DTRACE_THREAD_PROBE(start, this);
1658 
1659   // This operation might block. We call that after all safepoint checks for a new thread has
1660   // been completed.
1661   this->set_active_handles(JNIHandleBlock::allocate_block());
1662 
1663   if (JvmtiExport::should_post_thread_life()) {
1664     JvmtiExport::post_thread_start(this);
1665   }
1666 
1667   EventThreadStart event;
1668   if (event.should_commit()) {
1669      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1670      event.commit();
1671   }
1672 
1673   // We call another function to do the rest so we are sure that the stack addresses used
1674   // from there will be lower than the stack base just computed
1675   thread_main_inner();
1676 
1677   // Note, thread is no longer valid at this point!
1678 }
1679 
1680 
1681 void JavaThread::thread_main_inner() {
1682   assert(JavaThread::current() == this, "sanity check");
1683   assert(this->threadObj() != NULL, "just checking");
1684 
1685   // Execute thread entry point unless this thread has a pending exception
1686   // or has been stopped before starting.
1687   // Note: Due to JVM_StopThread we can have pending exceptions already!
1688   if (!this->has_pending_exception() &&
1689       !java_lang_Thread::is_stillborn(this->threadObj())) {
1690     {
1691       ResourceMark rm(this);
1692       this->set_native_thread_name(this->get_thread_name());
1693     }
1694     HandleMark hm(this);
1695     this->entry_point()(this, this);
1696   }
1697 
1698   DTRACE_THREAD_PROBE(stop, this);
1699 
1700   this->exit(false);
1701   delete this;
1702 }
1703 
1704 
1705 static void ensure_join(JavaThread* thread) {
1706   // We do not need to grap the Threads_lock, since we are operating on ourself.
1707   Handle threadObj(thread, thread->threadObj());
1708   assert(threadObj.not_null(), "java thread object must exist");
1709   ObjectLocker lock(threadObj, thread);
1710   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1711   thread->clear_pending_exception();
1712   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1713   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1714   // Clear the native thread instance - this makes isAlive return false and allows the join()
1715   // to complete once we've done the notify_all below
1716   java_lang_Thread::set_thread(threadObj(), NULL);
1717   lock.notify_all(thread);
1718   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1719   thread->clear_pending_exception();
1720 }
1721 
1722 
1723 // For any new cleanup additions, please check to see if they need to be applied to
1724 // cleanup_failed_attach_current_thread as well.
1725 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1726   assert(this == JavaThread::current(),  "thread consistency check");
1727 
1728   HandleMark hm(this);
1729   Handle uncaught_exception(this, this->pending_exception());
1730   this->clear_pending_exception();
1731   Handle threadObj(this, this->threadObj());
1732   assert(threadObj.not_null(), "Java thread object should be created");
1733 
1734   if (get_thread_profiler() != NULL) {
1735     get_thread_profiler()->disengage();
1736     ResourceMark rm;
1737     get_thread_profiler()->print(get_thread_name());
1738   }
1739 
1740 
1741   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1742   {
1743     EXCEPTION_MARK;
1744 
1745     CLEAR_PENDING_EXCEPTION;
1746   }
1747   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1748   // has to be fixed by a runtime query method
1749   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1750     // JSR-166: change call from from ThreadGroup.uncaughtException to
1751     // java.lang.Thread.dispatchUncaughtException
1752     if (uncaught_exception.not_null()) {
1753       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1754       {
1755         EXCEPTION_MARK;
1756         // Check if the method Thread.dispatchUncaughtException() exists. If so
1757         // call it.  Otherwise we have an older library without the JSR-166 changes,
1758         // so call ThreadGroup.uncaughtException()
1759         KlassHandle recvrKlass(THREAD, threadObj->klass());
1760         CallInfo callinfo;
1761         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1762         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1763                                            vmSymbols::dispatchUncaughtException_name(),
1764                                            vmSymbols::throwable_void_signature(),
1765                                            KlassHandle(), false, false, THREAD);
1766         CLEAR_PENDING_EXCEPTION;
1767         methodHandle method = callinfo.selected_method();
1768         if (method.not_null()) {
1769           JavaValue result(T_VOID);
1770           JavaCalls::call_virtual(&result,
1771                                   threadObj, thread_klass,
1772                                   vmSymbols::dispatchUncaughtException_name(),
1773                                   vmSymbols::throwable_void_signature(),
1774                                   uncaught_exception,
1775                                   THREAD);
1776         } else {
1777           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1778           JavaValue result(T_VOID);
1779           JavaCalls::call_virtual(&result,
1780                                   group, thread_group,
1781                                   vmSymbols::uncaughtException_name(),
1782                                   vmSymbols::thread_throwable_void_signature(),
1783                                   threadObj,           // Arg 1
1784                                   uncaught_exception,  // Arg 2
1785                                   THREAD);
1786         }
1787         if (HAS_PENDING_EXCEPTION) {
1788           ResourceMark rm(this);
1789           jio_fprintf(defaultStream::error_stream(),
1790                 "\nException: %s thrown from the UncaughtExceptionHandler"
1791                 " in thread \"%s\"\n",
1792                 pending_exception()->klass()->external_name(),
1793                 get_thread_name());
1794           CLEAR_PENDING_EXCEPTION;
1795         }
1796       }
1797     }
1798 
1799     // Called before the java thread exit since we want to read info
1800     // from java_lang_Thread object
1801     EventThreadEnd event;
1802     if (event.should_commit()) {
1803         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1804         event.commit();
1805     }
1806 
1807     // Call after last event on thread
1808     EVENT_THREAD_EXIT(this);
1809 
1810     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1811     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1812     // is deprecated anyhow.
1813     if (!is_Compiler_thread()) {
1814       int count = 3;
1815       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1816         EXCEPTION_MARK;
1817         JavaValue result(T_VOID);
1818         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1819         JavaCalls::call_virtual(&result,
1820                               threadObj, thread_klass,
1821                               vmSymbols::exit_method_name(),
1822                               vmSymbols::void_method_signature(),
1823                               THREAD);
1824         CLEAR_PENDING_EXCEPTION;
1825       }
1826     }
1827     // notify JVMTI
1828     if (JvmtiExport::should_post_thread_life()) {
1829       JvmtiExport::post_thread_end(this);
1830     }
1831 
1832     // We have notified the agents that we are exiting, before we go on,
1833     // we must check for a pending external suspend request and honor it
1834     // in order to not surprise the thread that made the suspend request.
1835     while (true) {
1836       {
1837         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1838         if (!is_external_suspend()) {
1839           set_terminated(_thread_exiting);
1840           ThreadService::current_thread_exiting(this);
1841           break;
1842         }
1843         // Implied else:
1844         // Things get a little tricky here. We have a pending external
1845         // suspend request, but we are holding the SR_lock so we
1846         // can't just self-suspend. So we temporarily drop the lock
1847         // and then self-suspend.
1848       }
1849 
1850       ThreadBlockInVM tbivm(this);
1851       java_suspend_self();
1852 
1853       // We're done with this suspend request, but we have to loop around
1854       // and check again. Eventually we will get SR_lock without a pending
1855       // external suspend request and will be able to mark ourselves as
1856       // exiting.
1857     }
1858     // no more external suspends are allowed at this point
1859   } else {
1860     // before_exit() has already posted JVMTI THREAD_END events
1861   }
1862 
1863   // Notify waiters on thread object. This has to be done after exit() is called
1864   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1865   // group should have the destroyed bit set before waiters are notified).
1866   ensure_join(this);
1867   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1868 
1869   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1870   // held by this thread must be released.  A detach operation must only
1871   // get here if there are no Java frames on the stack.  Therefore, any
1872   // owned monitors at this point MUST be JNI-acquired monitors which are
1873   // pre-inflated and in the monitor cache.
1874   //
1875   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1876   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1877     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1878     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1879     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1880   }
1881 
1882   // These things needs to be done while we are still a Java Thread. Make sure that thread
1883   // is in a consistent state, in case GC happens
1884   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1885 
1886   if (active_handles() != NULL) {
1887     JNIHandleBlock* block = active_handles();
1888     set_active_handles(NULL);
1889     JNIHandleBlock::release_block(block);
1890   }
1891 
1892   if (free_handle_block() != NULL) {
1893     JNIHandleBlock* block = free_handle_block();
1894     set_free_handle_block(NULL);
1895     JNIHandleBlock::release_block(block);
1896   }
1897 
1898   // These have to be removed while this is still a valid thread.
1899   remove_stack_guard_pages();
1900 
1901   if (UseTLAB) {
1902     tlab().make_parsable(true);  // retire TLAB
1903   }
1904 
1905   if (JvmtiEnv::environments_might_exist()) {
1906     JvmtiExport::cleanup_thread(this);
1907   }
1908 
1909   // We must flush any deferred card marks before removing a thread from
1910   // the list of active threads.
1911   Universe::heap()->flush_deferred_store_barrier(this);
1912   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1913 
1914 #if INCLUDE_ALL_GCS
1915   // We must flush the G1-related buffers before removing a thread
1916   // from the list of active threads. We must do this after any deferred
1917   // card marks have been flushed (above) so that any entries that are
1918   // added to the thread's dirty card queue as a result are not lost.
1919   if (UseG1GC) {
1920     flush_barrier_queues();
1921   }
1922 #endif // INCLUDE_ALL_GCS
1923 
1924   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1925   Threads::remove(this);
1926 }
1927 
1928 #if INCLUDE_ALL_GCS
1929 // Flush G1-related queues.
1930 void JavaThread::flush_barrier_queues() {
1931   satb_mark_queue().flush();
1932   dirty_card_queue().flush();
1933 }
1934 
1935 void JavaThread::initialize_queues() {
1936   assert(!SafepointSynchronize::is_at_safepoint(),
1937          "we should not be at a safepoint");
1938 
1939   ObjPtrQueue& satb_queue = satb_mark_queue();
1940   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1941   // The SATB queue should have been constructed with its active
1942   // field set to false.
1943   assert(!satb_queue.is_active(), "SATB queue should not be active");
1944   assert(satb_queue.is_empty(), "SATB queue should be empty");
1945   // If we are creating the thread during a marking cycle, we should
1946   // set the active field of the SATB queue to true.
1947   if (satb_queue_set.is_active()) {
1948     satb_queue.set_active(true);
1949   }
1950 
1951   DirtyCardQueue& dirty_queue = dirty_card_queue();
1952   // The dirty card queue should have been constructed with its
1953   // active field set to true.
1954   assert(dirty_queue.is_active(), "dirty card queue should be active");
1955 }
1956 #endif // INCLUDE_ALL_GCS
1957 
1958 void JavaThread::cleanup_failed_attach_current_thread() {
1959   if (get_thread_profiler() != NULL) {
1960     get_thread_profiler()->disengage();
1961     ResourceMark rm;
1962     get_thread_profiler()->print(get_thread_name());
1963   }
1964 
1965   if (active_handles() != NULL) {
1966     JNIHandleBlock* block = active_handles();
1967     set_active_handles(NULL);
1968     JNIHandleBlock::release_block(block);
1969   }
1970 
1971   if (free_handle_block() != NULL) {
1972     JNIHandleBlock* block = free_handle_block();
1973     set_free_handle_block(NULL);
1974     JNIHandleBlock::release_block(block);
1975   }
1976 
1977   // These have to be removed while this is still a valid thread.
1978   remove_stack_guard_pages();
1979 
1980   if (UseTLAB) {
1981     tlab().make_parsable(true);  // retire TLAB, if any
1982   }
1983 
1984 #if INCLUDE_ALL_GCS
1985   if (UseG1GC) {
1986     flush_barrier_queues();
1987   }
1988 #endif // INCLUDE_ALL_GCS
1989 
1990   Threads::remove(this);
1991   delete this;
1992 }
1993 
1994 
1995 
1996 
1997 JavaThread* JavaThread::active() {
1998   Thread* thread = ThreadLocalStorage::thread();
1999   assert(thread != NULL, "just checking");
2000   if (thread->is_Java_thread()) {
2001     return (JavaThread*) thread;
2002   } else {
2003     assert(thread->is_VM_thread(), "this must be a vm thread");
2004     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2005     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2006     assert(ret->is_Java_thread(), "must be a Java thread");
2007     return ret;
2008   }
2009 }
2010 
2011 bool JavaThread::is_lock_owned(address adr) const {
2012   if (Thread::is_lock_owned(adr)) return true;
2013 
2014   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2015     if (chunk->contains(adr)) return true;
2016   }
2017 
2018   return false;
2019 }
2020 
2021 
2022 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2023   chunk->set_next(monitor_chunks());
2024   set_monitor_chunks(chunk);
2025 }
2026 
2027 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2028   guarantee(monitor_chunks() != NULL, "must be non empty");
2029   if (monitor_chunks() == chunk) {
2030     set_monitor_chunks(chunk->next());
2031   } else {
2032     MonitorChunk* prev = monitor_chunks();
2033     while (prev->next() != chunk) prev = prev->next();
2034     prev->set_next(chunk->next());
2035   }
2036 }
2037 
2038 // JVM support.
2039 
2040 // Note: this function shouldn't block if it's called in
2041 // _thread_in_native_trans state (such as from
2042 // check_special_condition_for_native_trans()).
2043 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2044 
2045   if (has_last_Java_frame() && has_async_condition()) {
2046     // If we are at a polling page safepoint (not a poll return)
2047     // then we must defer async exception because live registers
2048     // will be clobbered by the exception path. Poll return is
2049     // ok because the call we a returning from already collides
2050     // with exception handling registers and so there is no issue.
2051     // (The exception handling path kills call result registers but
2052     //  this is ok since the exception kills the result anyway).
2053 
2054     if (is_at_poll_safepoint()) {
2055       // if the code we are returning to has deoptimized we must defer
2056       // the exception otherwise live registers get clobbered on the
2057       // exception path before deoptimization is able to retrieve them.
2058       //
2059       RegisterMap map(this, false);
2060       frame caller_fr = last_frame().sender(&map);
2061       assert(caller_fr.is_compiled_frame(), "what?");
2062       if (caller_fr.is_deoptimized_frame()) {
2063         if (TraceExceptions) {
2064           ResourceMark rm;
2065           tty->print_cr("deferred async exception at compiled safepoint");
2066         }
2067         return;
2068       }
2069     }
2070   }
2071 
2072   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2073   if (condition == _no_async_condition) {
2074     // Conditions have changed since has_special_runtime_exit_condition()
2075     // was called:
2076     // - if we were here only because of an external suspend request,
2077     //   then that was taken care of above (or cancelled) so we are done
2078     // - if we were here because of another async request, then it has
2079     //   been cleared between the has_special_runtime_exit_condition()
2080     //   and now so again we are done
2081     return;
2082   }
2083 
2084   // Check for pending async. exception
2085   if (_pending_async_exception != NULL) {
2086     // Only overwrite an already pending exception, if it is not a threadDeath.
2087     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2088 
2089       // We cannot call Exceptions::_throw(...) here because we cannot block
2090       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2091 
2092       if (TraceExceptions) {
2093         ResourceMark rm;
2094         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2095         if (has_last_Java_frame() ) {
2096           frame f = last_frame();
2097           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2098         }
2099         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2100       }
2101       _pending_async_exception = NULL;
2102       clear_has_async_exception();
2103     }
2104   }
2105 
2106   if (check_unsafe_error &&
2107       condition == _async_unsafe_access_error && !has_pending_exception()) {
2108     condition = _no_async_condition;  // done
2109     switch (thread_state()) {
2110     case _thread_in_vm:
2111       {
2112         JavaThread* THREAD = this;
2113         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2114       }
2115     case _thread_in_native:
2116       {
2117         ThreadInVMfromNative tiv(this);
2118         JavaThread* THREAD = this;
2119         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2120       }
2121     case _thread_in_Java:
2122       {
2123         ThreadInVMfromJava tiv(this);
2124         JavaThread* THREAD = this;
2125         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2126       }
2127     default:
2128       ShouldNotReachHere();
2129     }
2130   }
2131 
2132   assert(condition == _no_async_condition || has_pending_exception() ||
2133          (!check_unsafe_error && condition == _async_unsafe_access_error),
2134          "must have handled the async condition, if no exception");
2135 }
2136 
2137 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2138   //
2139   // Check for pending external suspend. Internal suspend requests do
2140   // not use handle_special_runtime_exit_condition().
2141   // If JNIEnv proxies are allowed, don't self-suspend if the target
2142   // thread is not the current thread. In older versions of jdbx, jdbx
2143   // threads could call into the VM with another thread's JNIEnv so we
2144   // can be here operating on behalf of a suspended thread (4432884).
2145   bool do_self_suspend = is_external_suspend_with_lock();
2146   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2147     //
2148     // Because thread is external suspended the safepoint code will count
2149     // thread as at a safepoint. This can be odd because we can be here
2150     // as _thread_in_Java which would normally transition to _thread_blocked
2151     // at a safepoint. We would like to mark the thread as _thread_blocked
2152     // before calling java_suspend_self like all other callers of it but
2153     // we must then observe proper safepoint protocol. (We can't leave
2154     // _thread_blocked with a safepoint in progress). However we can be
2155     // here as _thread_in_native_trans so we can't use a normal transition
2156     // constructor/destructor pair because they assert on that type of
2157     // transition. We could do something like:
2158     //
2159     // JavaThreadState state = thread_state();
2160     // set_thread_state(_thread_in_vm);
2161     // {
2162     //   ThreadBlockInVM tbivm(this);
2163     //   java_suspend_self()
2164     // }
2165     // set_thread_state(_thread_in_vm_trans);
2166     // if (safepoint) block;
2167     // set_thread_state(state);
2168     //
2169     // but that is pretty messy. Instead we just go with the way the
2170     // code has worked before and note that this is the only path to
2171     // java_suspend_self that doesn't put the thread in _thread_blocked
2172     // mode.
2173 
2174     frame_anchor()->make_walkable(this);
2175     java_suspend_self();
2176 
2177     // We might be here for reasons in addition to the self-suspend request
2178     // so check for other async requests.
2179   }
2180 
2181   if (check_asyncs) {
2182     check_and_handle_async_exceptions();
2183   }
2184 }
2185 
2186 void JavaThread::send_thread_stop(oop java_throwable)  {
2187   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2188   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2189   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2190 
2191   // Do not throw asynchronous exceptions against the compiler thread
2192   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2193   if (is_Compiler_thread()) return;
2194 
2195   {
2196     // Actually throw the Throwable against the target Thread - however
2197     // only if there is no thread death exception installed already.
2198     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2199       // If the topmost frame is a runtime stub, then we are calling into
2200       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2201       // must deoptimize the caller before continuing, as the compiled  exception handler table
2202       // may not be valid
2203       if (has_last_Java_frame()) {
2204         frame f = last_frame();
2205         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2206           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2207           RegisterMap reg_map(this, UseBiasedLocking);
2208           frame compiled_frame = f.sender(&reg_map);
2209           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2210             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2211           }
2212         }
2213       }
2214 
2215       // Set async. pending exception in thread.
2216       set_pending_async_exception(java_throwable);
2217 
2218       if (TraceExceptions) {
2219        ResourceMark rm;
2220        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2221       }
2222       // for AbortVMOnException flag
2223       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2224     }
2225   }
2226 
2227 
2228   // Interrupt thread so it will wake up from a potential wait()
2229   Thread::interrupt(this);
2230 }
2231 
2232 // External suspension mechanism.
2233 //
2234 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2235 // to any VM_locks and it is at a transition
2236 // Self-suspension will happen on the transition out of the vm.
2237 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2238 //
2239 // Guarantees on return:
2240 //   + Target thread will not execute any new bytecode (that's why we need to
2241 //     force a safepoint)
2242 //   + Target thread will not enter any new monitors
2243 //
2244 void JavaThread::java_suspend() {
2245   { MutexLocker mu(Threads_lock);
2246     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2247        return;
2248     }
2249   }
2250 
2251   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2252     if (!is_external_suspend()) {
2253       // a racing resume has cancelled us; bail out now
2254       return;
2255     }
2256 
2257     // suspend is done
2258     uint32_t debug_bits = 0;
2259     // Warning: is_ext_suspend_completed() may temporarily drop the
2260     // SR_lock to allow the thread to reach a stable thread state if
2261     // it is currently in a transient thread state.
2262     if (is_ext_suspend_completed(false /* !called_by_wait */,
2263                                  SuspendRetryDelay, &debug_bits) ) {
2264       return;
2265     }
2266   }
2267 
2268   VM_ForceSafepoint vm_suspend;
2269   VMThread::execute(&vm_suspend);
2270 }
2271 
2272 // Part II of external suspension.
2273 // A JavaThread self suspends when it detects a pending external suspend
2274 // request. This is usually on transitions. It is also done in places
2275 // where continuing to the next transition would surprise the caller,
2276 // e.g., monitor entry.
2277 //
2278 // Returns the number of times that the thread self-suspended.
2279 //
2280 // Note: DO NOT call java_suspend_self() when you just want to block current
2281 //       thread. java_suspend_self() is the second stage of cooperative
2282 //       suspension for external suspend requests and should only be used
2283 //       to complete an external suspend request.
2284 //
2285 int JavaThread::java_suspend_self() {
2286   int ret = 0;
2287 
2288   // we are in the process of exiting so don't suspend
2289   if (is_exiting()) {
2290      clear_external_suspend();
2291      return ret;
2292   }
2293 
2294   assert(_anchor.walkable() ||
2295     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2296     "must have walkable stack");
2297 
2298   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2299 
2300   assert(!this->is_ext_suspended(),
2301     "a thread trying to self-suspend should not already be suspended");
2302 
2303   if (this->is_suspend_equivalent()) {
2304     // If we are self-suspending as a result of the lifting of a
2305     // suspend equivalent condition, then the suspend_equivalent
2306     // flag is not cleared until we set the ext_suspended flag so
2307     // that wait_for_ext_suspend_completion() returns consistent
2308     // results.
2309     this->clear_suspend_equivalent();
2310   }
2311 
2312   // A racing resume may have cancelled us before we grabbed SR_lock
2313   // above. Or another external suspend request could be waiting for us
2314   // by the time we return from SR_lock()->wait(). The thread
2315   // that requested the suspension may already be trying to walk our
2316   // stack and if we return now, we can change the stack out from under
2317   // it. This would be a "bad thing (TM)" and cause the stack walker
2318   // to crash. We stay self-suspended until there are no more pending
2319   // external suspend requests.
2320   while (is_external_suspend()) {
2321     ret++;
2322     this->set_ext_suspended();
2323 
2324     // _ext_suspended flag is cleared by java_resume()
2325     while (is_ext_suspended()) {
2326       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2327     }
2328   }
2329 
2330   return ret;
2331 }
2332 
2333 #ifdef ASSERT
2334 // verify the JavaThread has not yet been published in the Threads::list, and
2335 // hence doesn't need protection from concurrent access at this stage
2336 void JavaThread::verify_not_published() {
2337   if (!Threads_lock->owned_by_self()) {
2338    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2339    assert( !Threads::includes(this),
2340            "java thread shouldn't have been published yet!");
2341   }
2342   else {
2343    assert( !Threads::includes(this),
2344            "java thread shouldn't have been published yet!");
2345   }
2346 }
2347 #endif
2348 
2349 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2350 // progress or when _suspend_flags is non-zero.
2351 // Current thread needs to self-suspend if there is a suspend request and/or
2352 // block if a safepoint is in progress.
2353 // Async exception ISN'T checked.
2354 // Note only the ThreadInVMfromNative transition can call this function
2355 // directly and when thread state is _thread_in_native_trans
2356 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2357   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2358 
2359   JavaThread *curJT = JavaThread::current();
2360   bool do_self_suspend = thread->is_external_suspend();
2361 
2362   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2363 
2364   // If JNIEnv proxies are allowed, don't self-suspend if the target
2365   // thread is not the current thread. In older versions of jdbx, jdbx
2366   // threads could call into the VM with another thread's JNIEnv so we
2367   // can be here operating on behalf of a suspended thread (4432884).
2368   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2369     JavaThreadState state = thread->thread_state();
2370 
2371     // We mark this thread_blocked state as a suspend-equivalent so
2372     // that a caller to is_ext_suspend_completed() won't be confused.
2373     // The suspend-equivalent state is cleared by java_suspend_self().
2374     thread->set_suspend_equivalent();
2375 
2376     // If the safepoint code sees the _thread_in_native_trans state, it will
2377     // wait until the thread changes to other thread state. There is no
2378     // guarantee on how soon we can obtain the SR_lock and complete the
2379     // self-suspend request. It would be a bad idea to let safepoint wait for
2380     // too long. Temporarily change the state to _thread_blocked to
2381     // let the VM thread know that this thread is ready for GC. The problem
2382     // of changing thread state is that safepoint could happen just after
2383     // java_suspend_self() returns after being resumed, and VM thread will
2384     // see the _thread_blocked state. We must check for safepoint
2385     // after restoring the state and make sure we won't leave while a safepoint
2386     // is in progress.
2387     thread->set_thread_state(_thread_blocked);
2388     thread->java_suspend_self();
2389     thread->set_thread_state(state);
2390     // Make sure new state is seen by VM thread
2391     if (os::is_MP()) {
2392       if (UseMembar) {
2393         // Force a fence between the write above and read below
2394         OrderAccess::fence();
2395       } else {
2396         // Must use this rather than serialization page in particular on Windows
2397         InterfaceSupport::serialize_memory(thread);
2398       }
2399     }
2400   }
2401 
2402   if (SafepointSynchronize::do_call_back()) {
2403     // If we are safepointing, then block the caller which may not be
2404     // the same as the target thread (see above).
2405     SafepointSynchronize::block(curJT);
2406   }
2407 
2408   if (thread->is_deopt_suspend()) {
2409     thread->clear_deopt_suspend();
2410     RegisterMap map(thread, false);
2411     frame f = thread->last_frame();
2412     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2413       f = f.sender(&map);
2414     }
2415     if (f.id() == thread->must_deopt_id()) {
2416       thread->clear_must_deopt_id();
2417       f.deoptimize(thread);
2418     } else {
2419       fatal("missed deoptimization!");
2420     }
2421   }
2422 }
2423 
2424 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2425 // progress or when _suspend_flags is non-zero.
2426 // Current thread needs to self-suspend if there is a suspend request and/or
2427 // block if a safepoint is in progress.
2428 // Also check for pending async exception (not including unsafe access error).
2429 // Note only the native==>VM/Java barriers can call this function and when
2430 // thread state is _thread_in_native_trans.
2431 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2432   check_safepoint_and_suspend_for_native_trans(thread);
2433 
2434   if (thread->has_async_exception()) {
2435     // We are in _thread_in_native_trans state, don't handle unsafe
2436     // access error since that may block.
2437     thread->check_and_handle_async_exceptions(false);
2438   }
2439 }
2440 
2441 // This is a variant of the normal
2442 // check_special_condition_for_native_trans with slightly different
2443 // semantics for use by critical native wrappers.  It does all the
2444 // normal checks but also performs the transition back into
2445 // thread_in_Java state.  This is required so that critical natives
2446 // can potentially block and perform a GC if they are the last thread
2447 // exiting the GC_locker.
2448 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2449   check_special_condition_for_native_trans(thread);
2450 
2451   // Finish the transition
2452   thread->set_thread_state(_thread_in_Java);
2453 
2454   if (thread->do_critical_native_unlock()) {
2455     ThreadInVMfromJavaNoAsyncException tiv(thread);
2456     GC_locker::unlock_critical(thread);
2457     thread->clear_critical_native_unlock();
2458   }
2459 }
2460 
2461 // We need to guarantee the Threads_lock here, since resumes are not
2462 // allowed during safepoint synchronization
2463 // Can only resume from an external suspension
2464 void JavaThread::java_resume() {
2465   assert_locked_or_safepoint(Threads_lock);
2466 
2467   // Sanity check: thread is gone, has started exiting or the thread
2468   // was not externally suspended.
2469   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2470     return;
2471   }
2472 
2473   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2474 
2475   clear_external_suspend();
2476 
2477   if (is_ext_suspended()) {
2478     clear_ext_suspended();
2479     SR_lock()->notify_all();
2480   }
2481 }
2482 
2483 void JavaThread::create_stack_guard_pages() {
2484   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2485   address low_addr = stack_base() - stack_size();
2486   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2487 
2488   int allocate = os::allocate_stack_guard_pages();
2489   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2490 
2491   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2492     warning("Attempt to allocate stack guard pages failed.");
2493     return;
2494   }
2495 
2496   if (os::guard_memory((char *) low_addr, len)) {
2497     _stack_guard_state = stack_guard_enabled;
2498   } else {
2499     warning("Attempt to protect stack guard pages failed.");
2500     if (os::uncommit_memory((char *) low_addr, len)) {
2501       warning("Attempt to deallocate stack guard pages failed.");
2502     }
2503   }
2504 }
2505 
2506 void JavaThread::remove_stack_guard_pages() {
2507   assert(Thread::current() == this, "from different thread");
2508   if (_stack_guard_state == stack_guard_unused) return;
2509   address low_addr = stack_base() - stack_size();
2510   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2511 
2512   if (os::allocate_stack_guard_pages()) {
2513     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2514       _stack_guard_state = stack_guard_unused;
2515     } else {
2516       warning("Attempt to deallocate stack guard pages failed.");
2517     }
2518   } else {
2519     if (_stack_guard_state == stack_guard_unused) return;
2520     if (os::unguard_memory((char *) low_addr, len)) {
2521       _stack_guard_state = stack_guard_unused;
2522     } else {
2523         warning("Attempt to unprotect stack guard pages failed.");
2524     }
2525   }
2526 }
2527 
2528 void JavaThread::enable_stack_yellow_zone() {
2529   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2530   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2531 
2532   // The base notation is from the stacks point of view, growing downward.
2533   // We need to adjust it to work correctly with guard_memory()
2534   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2535 
2536   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2537   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2538 
2539   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2540     _stack_guard_state = stack_guard_enabled;
2541   } else {
2542     warning("Attempt to guard stack yellow zone failed.");
2543   }
2544   enable_register_stack_guard();
2545 }
2546 
2547 void JavaThread::disable_stack_yellow_zone() {
2548   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2549   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2550 
2551   // Simply return if called for a thread that does not use guard pages.
2552   if (_stack_guard_state == stack_guard_unused) return;
2553 
2554   // The base notation is from the stacks point of view, growing downward.
2555   // We need to adjust it to work correctly with guard_memory()
2556   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2557 
2558   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2559     _stack_guard_state = stack_guard_yellow_disabled;
2560   } else {
2561     warning("Attempt to unguard stack yellow zone failed.");
2562   }
2563   disable_register_stack_guard();
2564 }
2565 
2566 void JavaThread::enable_stack_red_zone() {
2567   // The base notation is from the stacks point of view, growing downward.
2568   // We need to adjust it to work correctly with guard_memory()
2569   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2570   address base = stack_red_zone_base() - stack_red_zone_size();
2571 
2572   guarantee(base < stack_base(),"Error calculating stack red zone");
2573   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2574 
2575   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2576     warning("Attempt to guard stack red zone failed.");
2577   }
2578 }
2579 
2580 void JavaThread::disable_stack_red_zone() {
2581   // The base notation is from the stacks point of view, growing downward.
2582   // We need to adjust it to work correctly with guard_memory()
2583   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2584   address base = stack_red_zone_base() - stack_red_zone_size();
2585   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2586     warning("Attempt to unguard stack red zone failed.");
2587   }
2588 }
2589 
2590 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2591   // ignore is there is no stack
2592   if (!has_last_Java_frame()) return;
2593   // traverse the stack frames. Starts from top frame.
2594   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2595     frame* fr = fst.current();
2596     f(fr, fst.register_map());
2597   }
2598 }
2599 
2600 
2601 #ifndef PRODUCT
2602 // Deoptimization
2603 // Function for testing deoptimization
2604 void JavaThread::deoptimize() {
2605   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2606   StackFrameStream fst(this, UseBiasedLocking);
2607   bool deopt = false;           // Dump stack only if a deopt actually happens.
2608   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2609   // Iterate over all frames in the thread and deoptimize
2610   for(; !fst.is_done(); fst.next()) {
2611     if(fst.current()->can_be_deoptimized()) {
2612 
2613       if (only_at) {
2614         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2615         // consists of comma or carriage return separated numbers so
2616         // search for the current bci in that string.
2617         address pc = fst.current()->pc();
2618         nmethod* nm =  (nmethod*) fst.current()->cb();
2619         ScopeDesc* sd = nm->scope_desc_at( pc);
2620         char buffer[8];
2621         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2622         size_t len = strlen(buffer);
2623         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2624         while (found != NULL) {
2625           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2626               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2627             // Check that the bci found is bracketed by terminators.
2628             break;
2629           }
2630           found = strstr(found + 1, buffer);
2631         }
2632         if (!found) {
2633           continue;
2634         }
2635       }
2636 
2637       if (DebugDeoptimization && !deopt) {
2638         deopt = true; // One-time only print before deopt
2639         tty->print_cr("[BEFORE Deoptimization]");
2640         trace_frames();
2641         trace_stack();
2642       }
2643       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2644     }
2645   }
2646 
2647   if (DebugDeoptimization && deopt) {
2648     tty->print_cr("[AFTER Deoptimization]");
2649     trace_frames();
2650   }
2651 }
2652 
2653 
2654 // Make zombies
2655 void JavaThread::make_zombies() {
2656   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2657     if (fst.current()->can_be_deoptimized()) {
2658       // it is a Java nmethod
2659       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2660       nm->make_not_entrant();
2661     }
2662   }
2663 }
2664 #endif // PRODUCT
2665 
2666 
2667 void JavaThread::deoptimized_wrt_marked_nmethods() {
2668   if (!has_last_Java_frame()) return;
2669   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2670   StackFrameStream fst(this, UseBiasedLocking);
2671   for(; !fst.is_done(); fst.next()) {
2672     if (fst.current()->should_be_deoptimized()) {
2673       if (LogCompilation && xtty != NULL) {
2674         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2675         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2676                    this->name(), nm != NULL ? nm->compile_id() : -1);
2677       }
2678 
2679       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2680     }
2681   }
2682 }
2683 
2684 
2685 // GC support
2686 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2687 
2688 void JavaThread::gc_epilogue() {
2689   frames_do(frame_gc_epilogue);
2690 }
2691 
2692 
2693 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2694 
2695 void JavaThread::gc_prologue() {
2696   frames_do(frame_gc_prologue);
2697 }
2698 
2699 // If the caller is a NamedThread, then remember, in the current scope,
2700 // the given JavaThread in its _processed_thread field.
2701 class RememberProcessedThread: public StackObj {
2702   NamedThread* _cur_thr;
2703 public:
2704   RememberProcessedThread(JavaThread* jthr) {
2705     Thread* thread = Thread::current();
2706     if (thread->is_Named_thread()) {
2707       _cur_thr = (NamedThread *)thread;
2708       _cur_thr->set_processed_thread(jthr);
2709     } else {
2710       _cur_thr = NULL;
2711     }
2712   }
2713 
2714   ~RememberProcessedThread() {
2715     if (_cur_thr) {
2716       _cur_thr->set_processed_thread(NULL);
2717     }
2718   }
2719 };
2720 
2721 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2722   // Verify that the deferred card marks have been flushed.
2723   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2724 
2725   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2726   // since there may be more than one thread using each ThreadProfiler.
2727 
2728   // Traverse the GCHandles
2729   Thread::oops_do(f, cld_f, cf);
2730 
2731   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2732           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2733 
2734   if (has_last_Java_frame()) {
2735     // Record JavaThread to GC thread
2736     RememberProcessedThread rpt(this);
2737 
2738     // Traverse the privileged stack
2739     if (_privileged_stack_top != NULL) {
2740       _privileged_stack_top->oops_do(f);
2741     }
2742 
2743     // traverse the registered growable array
2744     if (_array_for_gc != NULL) {
2745       for (int index = 0; index < _array_for_gc->length(); index++) {
2746         f->do_oop(_array_for_gc->adr_at(index));
2747       }
2748     }
2749 
2750     // Traverse the monitor chunks
2751     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2752       chunk->oops_do(f);
2753     }
2754 
2755     // Traverse the execution stack
2756     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2757       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2758     }
2759   }
2760 
2761   // callee_target is never live across a gc point so NULL it here should
2762   // it still contain a methdOop.
2763 
2764   set_callee_target(NULL);
2765 
2766   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2767   // If we have deferred set_locals there might be oops waiting to be
2768   // written
2769   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2770   if (list != NULL) {
2771     for (int i = 0; i < list->length(); i++) {
2772       list->at(i)->oops_do(f);
2773     }
2774   }
2775 
2776   // Traverse instance variables at the end since the GC may be moving things
2777   // around using this function
2778   f->do_oop((oop*) &_threadObj);
2779   f->do_oop((oop*) &_vm_result);
2780   f->do_oop((oop*) &_exception_oop);
2781   f->do_oop((oop*) &_pending_async_exception);
2782 
2783   if (jvmti_thread_state() != NULL) {
2784     jvmti_thread_state()->oops_do(f);
2785   }
2786 }
2787 
2788 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2789   Thread::nmethods_do(cf);  // (super method is a no-op)
2790 
2791   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2792           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2793 
2794   if (has_last_Java_frame()) {
2795     // Traverse the execution stack
2796     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2797       fst.current()->nmethods_do(cf);
2798     }
2799   }
2800 }
2801 
2802 void JavaThread::metadata_do(void f(Metadata*)) {
2803   Thread::metadata_do(f);
2804   if (has_last_Java_frame()) {
2805     // Traverse the execution stack to call f() on the methods in the stack
2806     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2807       fst.current()->metadata_do(f);
2808     }
2809   } else if (is_Compiler_thread()) {
2810     // need to walk ciMetadata in current compile tasks to keep alive.
2811     CompilerThread* ct = (CompilerThread*)this;
2812     if (ct->env() != NULL) {
2813       ct->env()->metadata_do(f);
2814     }
2815   }
2816 }
2817 
2818 // Printing
2819 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2820   switch (_thread_state) {
2821   case _thread_uninitialized:     return "_thread_uninitialized";
2822   case _thread_new:               return "_thread_new";
2823   case _thread_new_trans:         return "_thread_new_trans";
2824   case _thread_in_native:         return "_thread_in_native";
2825   case _thread_in_native_trans:   return "_thread_in_native_trans";
2826   case _thread_in_vm:             return "_thread_in_vm";
2827   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2828   case _thread_in_Java:           return "_thread_in_Java";
2829   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2830   case _thread_blocked:           return "_thread_blocked";
2831   case _thread_blocked_trans:     return "_thread_blocked_trans";
2832   default:                        return "unknown thread state";
2833   }
2834 }
2835 
2836 #ifndef PRODUCT
2837 void JavaThread::print_thread_state_on(outputStream *st) const {
2838   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2839 };
2840 void JavaThread::print_thread_state() const {
2841   print_thread_state_on(tty);
2842 };
2843 #endif // PRODUCT
2844 
2845 // Called by Threads::print() for VM_PrintThreads operation
2846 void JavaThread::print_on(outputStream *st) const {
2847   st->print("\"%s\" ", get_thread_name());
2848   oop thread_oop = threadObj();
2849   if (thread_oop != NULL) {
2850     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2851     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2852     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2853   }
2854   Thread::print_on(st);
2855   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2856   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2857   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2858     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2859   }
2860 #ifndef PRODUCT
2861   print_thread_state_on(st);
2862   _safepoint_state->print_on(st);
2863 #endif // PRODUCT
2864 }
2865 
2866 // Called by fatal error handler. The difference between this and
2867 // JavaThread::print() is that we can't grab lock or allocate memory.
2868 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2869   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2870   oop thread_obj = threadObj();
2871   if (thread_obj != NULL) {
2872      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2873   }
2874   st->print(" [");
2875   st->print("%s", _get_thread_state_name(_thread_state));
2876   if (osthread()) {
2877     st->print(", id=%d", osthread()->thread_id());
2878   }
2879   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2880             _stack_base - _stack_size, _stack_base);
2881   st->print("]");
2882   return;
2883 }
2884 
2885 // Verification
2886 
2887 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2888 
2889 void JavaThread::verify() {
2890   // Verify oops in the thread.
2891   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2892 
2893   // Verify the stack frames.
2894   frames_do(frame_verify);
2895 }
2896 
2897 // CR 6300358 (sub-CR 2137150)
2898 // Most callers of this method assume that it can't return NULL but a
2899 // thread may not have a name whilst it is in the process of attaching to
2900 // the VM - see CR 6412693, and there are places where a JavaThread can be
2901 // seen prior to having it's threadObj set (eg JNI attaching threads and
2902 // if vm exit occurs during initialization). These cases can all be accounted
2903 // for such that this method never returns NULL.
2904 const char* JavaThread::get_thread_name() const {
2905 #ifdef ASSERT
2906   // early safepoints can hit while current thread does not yet have TLS
2907   if (!SafepointSynchronize::is_at_safepoint()) {
2908     Thread *cur = Thread::current();
2909     if (!(cur->is_Java_thread() && cur == this)) {
2910       // Current JavaThreads are allowed to get their own name without
2911       // the Threads_lock.
2912       assert_locked_or_safepoint(Threads_lock);
2913     }
2914   }
2915 #endif // ASSERT
2916     return get_thread_name_string();
2917 }
2918 
2919 // Returns a non-NULL representation of this thread's name, or a suitable
2920 // descriptive string if there is no set name
2921 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2922   const char* name_str;
2923   oop thread_obj = threadObj();
2924   if (thread_obj != NULL) {
2925     typeArrayOop name = java_lang_Thread::name(thread_obj);
2926     if (name != NULL) {
2927       if (buf == NULL) {
2928         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2929       }
2930       else {
2931         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2932       }
2933     }
2934     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2935       name_str = "<no-name - thread is attaching>";
2936     }
2937     else {
2938       name_str = Thread::name();
2939     }
2940   }
2941   else {
2942     name_str = Thread::name();
2943   }
2944   assert(name_str != NULL, "unexpected NULL thread name");
2945   return name_str;
2946 }
2947 
2948 
2949 const char* JavaThread::get_threadgroup_name() const {
2950   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2951   oop thread_obj = threadObj();
2952   if (thread_obj != NULL) {
2953     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2954     if (thread_group != NULL) {
2955       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2956       // ThreadGroup.name can be null
2957       if (name != NULL) {
2958         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2959         return str;
2960       }
2961     }
2962   }
2963   return NULL;
2964 }
2965 
2966 const char* JavaThread::get_parent_name() const {
2967   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2968   oop thread_obj = threadObj();
2969   if (thread_obj != NULL) {
2970     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2971     if (thread_group != NULL) {
2972       oop parent = java_lang_ThreadGroup::parent(thread_group);
2973       if (parent != NULL) {
2974         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2975         // ThreadGroup.name can be null
2976         if (name != NULL) {
2977           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2978           return str;
2979         }
2980       }
2981     }
2982   }
2983   return NULL;
2984 }
2985 
2986 ThreadPriority JavaThread::java_priority() const {
2987   oop thr_oop = threadObj();
2988   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2989   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2990   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2991   return priority;
2992 }
2993 
2994 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2995 
2996   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2997   // Link Java Thread object <-> C++ Thread
2998 
2999   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3000   // and put it into a new Handle.  The Handle "thread_oop" can then
3001   // be used to pass the C++ thread object to other methods.
3002 
3003   // Set the Java level thread object (jthread) field of the
3004   // new thread (a JavaThread *) to C++ thread object using the
3005   // "thread_oop" handle.
3006 
3007   // Set the thread field (a JavaThread *) of the
3008   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3009 
3010   Handle thread_oop(Thread::current(),
3011                     JNIHandles::resolve_non_null(jni_thread));
3012   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3013     "must be initialized");
3014   set_threadObj(thread_oop());
3015   java_lang_Thread::set_thread(thread_oop(), this);
3016 
3017   if (prio == NoPriority) {
3018     prio = java_lang_Thread::priority(thread_oop());
3019     assert(prio != NoPriority, "A valid priority should be present");
3020   }
3021 
3022   // Push the Java priority down to the native thread; needs Threads_lock
3023   Thread::set_priority(this, prio);
3024 
3025   prepare_ext();
3026 
3027   // Add the new thread to the Threads list and set it in motion.
3028   // We must have threads lock in order to call Threads::add.
3029   // It is crucial that we do not block before the thread is
3030   // added to the Threads list for if a GC happens, then the java_thread oop
3031   // will not be visited by GC.
3032   Threads::add(this);
3033 }
3034 
3035 oop JavaThread::current_park_blocker() {
3036   // Support for JSR-166 locks
3037   oop thread_oop = threadObj();
3038   if (thread_oop != NULL &&
3039       JDK_Version::current().supports_thread_park_blocker()) {
3040     return java_lang_Thread::park_blocker(thread_oop);
3041   }
3042   return NULL;
3043 }
3044 
3045 
3046 void JavaThread::print_stack_on(outputStream* st) {
3047   if (!has_last_Java_frame()) return;
3048   ResourceMark rm;
3049   HandleMark   hm;
3050 
3051   RegisterMap reg_map(this);
3052   vframe* start_vf = last_java_vframe(&reg_map);
3053   int count = 0;
3054   for (vframe* f = start_vf; f; f = f->sender() ) {
3055     if (f->is_java_frame()) {
3056       javaVFrame* jvf = javaVFrame::cast(f);
3057       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3058 
3059       // Print out lock information
3060       if (JavaMonitorsInStackTrace) {
3061         jvf->print_lock_info_on(st, count);
3062       }
3063     } else {
3064       // Ignore non-Java frames
3065     }
3066 
3067     // Bail-out case for too deep stacks
3068     count++;
3069     if (MaxJavaStackTraceDepth == count) return;
3070   }
3071 }
3072 
3073 
3074 // JVMTI PopFrame support
3075 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3076   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3077   if (in_bytes(size_in_bytes) != 0) {
3078     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3079     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3080     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3081   }
3082 }
3083 
3084 void* JavaThread::popframe_preserved_args() {
3085   return _popframe_preserved_args;
3086 }
3087 
3088 ByteSize JavaThread::popframe_preserved_args_size() {
3089   return in_ByteSize(_popframe_preserved_args_size);
3090 }
3091 
3092 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3093   int sz = in_bytes(popframe_preserved_args_size());
3094   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3095   return in_WordSize(sz / wordSize);
3096 }
3097 
3098 void JavaThread::popframe_free_preserved_args() {
3099   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3100   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3101   _popframe_preserved_args = NULL;
3102   _popframe_preserved_args_size = 0;
3103 }
3104 
3105 #ifndef PRODUCT
3106 
3107 void JavaThread::trace_frames() {
3108   tty->print_cr("[Describe stack]");
3109   int frame_no = 1;
3110   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3111     tty->print("  %d. ", frame_no++);
3112     fst.current()->print_value_on(tty,this);
3113     tty->cr();
3114   }
3115 }
3116 
3117 class PrintAndVerifyOopClosure: public OopClosure {
3118  protected:
3119   template <class T> inline void do_oop_work(T* p) {
3120     oop obj = oopDesc::load_decode_heap_oop(p);
3121     if (obj == NULL) return;
3122     tty->print(INTPTR_FORMAT ": ", p);
3123     if (obj->is_oop_or_null()) {
3124       if (obj->is_objArray()) {
3125         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3126       } else {
3127         obj->print();
3128       }
3129     } else {
3130       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3131     }
3132     tty->cr();
3133   }
3134  public:
3135   virtual void do_oop(oop* p) { do_oop_work(p); }
3136   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3137 };
3138 
3139 
3140 static void oops_print(frame* f, const RegisterMap *map) {
3141   PrintAndVerifyOopClosure print;
3142   f->print_value();
3143   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3144 }
3145 
3146 // Print our all the locations that contain oops and whether they are
3147 // valid or not.  This useful when trying to find the oldest frame
3148 // where an oop has gone bad since the frame walk is from youngest to
3149 // oldest.
3150 void JavaThread::trace_oops() {
3151   tty->print_cr("[Trace oops]");
3152   frames_do(oops_print);
3153 }
3154 
3155 
3156 #ifdef ASSERT
3157 // Print or validate the layout of stack frames
3158 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3159   ResourceMark rm;
3160   PRESERVE_EXCEPTION_MARK;
3161   FrameValues values;
3162   int frame_no = 0;
3163   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3164     fst.current()->describe(values, ++frame_no);
3165     if (depth == frame_no) break;
3166   }
3167   if (validate_only) {
3168     values.validate();
3169   } else {
3170     tty->print_cr("[Describe stack layout]");
3171     values.print(this);
3172   }
3173 }
3174 #endif
3175 
3176 void JavaThread::trace_stack_from(vframe* start_vf) {
3177   ResourceMark rm;
3178   int vframe_no = 1;
3179   for (vframe* f = start_vf; f; f = f->sender() ) {
3180     if (f->is_java_frame()) {
3181       javaVFrame::cast(f)->print_activation(vframe_no++);
3182     } else {
3183       f->print();
3184     }
3185     if (vframe_no > StackPrintLimit) {
3186       tty->print_cr("...<more frames>...");
3187       return;
3188     }
3189   }
3190 }
3191 
3192 
3193 void JavaThread::trace_stack() {
3194   if (!has_last_Java_frame()) return;
3195   ResourceMark rm;
3196   HandleMark   hm;
3197   RegisterMap reg_map(this);
3198   trace_stack_from(last_java_vframe(&reg_map));
3199 }
3200 
3201 
3202 #endif // PRODUCT
3203 
3204 
3205 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3206   assert(reg_map != NULL, "a map must be given");
3207   frame f = last_frame();
3208   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3209     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3210   }
3211   return NULL;
3212 }
3213 
3214 
3215 Klass* JavaThread::security_get_caller_class(int depth) {
3216   vframeStream vfst(this);
3217   vfst.security_get_caller_frame(depth);
3218   if (!vfst.at_end()) {
3219     return vfst.method()->method_holder();
3220   }
3221   return NULL;
3222 }
3223 
3224 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3225   assert(thread->is_Compiler_thread(), "must be compiler thread");
3226   CompileBroker::compiler_thread_loop();
3227 }
3228 
3229 // Create a CompilerThread
3230 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3231 : JavaThread(&compiler_thread_entry) {
3232   _env   = NULL;
3233   _log   = NULL;
3234   _task  = NULL;
3235   _queue = queue;
3236   _counters = counters;
3237   _buffer_blob = NULL;
3238   _scanned_nmethod = NULL;
3239   _compiler = NULL;
3240 
3241 #ifndef PRODUCT
3242   _ideal_graph_printer = NULL;
3243 #endif
3244 }
3245 
3246 void CompilerThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3247   JavaThread::oops_do(f, cld_f, cf);
3248   if (_scanned_nmethod != NULL && cf != NULL) {
3249     // Safepoints can occur when the sweeper is scanning an nmethod so
3250     // process it here to make sure it isn't unloaded in the middle of
3251     // a scan.
3252     cf->do_code_blob(_scanned_nmethod);
3253   }
3254 }
3255 
3256 
3257 // ======= Threads ========
3258 
3259 // The Threads class links together all active threads, and provides
3260 // operations over all threads.  It is protected by its own Mutex
3261 // lock, which is also used in other contexts to protect thread
3262 // operations from having the thread being operated on from exiting
3263 // and going away unexpectedly (e.g., safepoint synchronization)
3264 
3265 JavaThread* Threads::_thread_list = NULL;
3266 int         Threads::_number_of_threads = 0;
3267 int         Threads::_number_of_non_daemon_threads = 0;
3268 int         Threads::_return_code = 0;
3269 size_t      JavaThread::_stack_size_at_create = 0;
3270 #ifdef ASSERT
3271 bool        Threads::_vm_complete = false;
3272 #endif
3273 
3274 // All JavaThreads
3275 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3276 
3277 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3278 void Threads::threads_do(ThreadClosure* tc) {
3279   assert_locked_or_safepoint(Threads_lock);
3280   // ALL_JAVA_THREADS iterates through all JavaThreads
3281   ALL_JAVA_THREADS(p) {
3282     tc->do_thread(p);
3283   }
3284   // Someday we could have a table or list of all non-JavaThreads.
3285   // For now, just manually iterate through them.
3286   tc->do_thread(VMThread::vm_thread());
3287   Universe::heap()->gc_threads_do(tc);
3288   WatcherThread *wt = WatcherThread::watcher_thread();
3289   // Strictly speaking, the following NULL check isn't sufficient to make sure
3290   // the data for WatcherThread is still valid upon being examined. However,
3291   // considering that WatchThread terminates when the VM is on the way to
3292   // exit at safepoint, the chance of the above is extremely small. The right
3293   // way to prevent termination of WatcherThread would be to acquire
3294   // Terminator_lock, but we can't do that without violating the lock rank
3295   // checking in some cases.
3296   if (wt != NULL)
3297     tc->do_thread(wt);
3298 
3299   // If CompilerThreads ever become non-JavaThreads, add them here
3300 }
3301 
3302 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3303 
3304   extern void JDK_Version_init();
3305 
3306   // Check version
3307   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3308 
3309   // Initialize the output stream module
3310   ostream_init();
3311 
3312   // Process java launcher properties.
3313   Arguments::process_sun_java_launcher_properties(args);
3314 
3315   // Initialize the os module before using TLS
3316   os::init();
3317 
3318   // Initialize system properties.
3319   Arguments::init_system_properties();
3320 
3321   // So that JDK version can be used as a discrimintor when parsing arguments
3322   JDK_Version_init();
3323 
3324   // Update/Initialize System properties after JDK version number is known
3325   Arguments::init_version_specific_system_properties();
3326 
3327   // Parse arguments
3328   jint parse_result = Arguments::parse(args);
3329   if (parse_result != JNI_OK) return parse_result;
3330 
3331   os::init_before_ergo();
3332 
3333   jint ergo_result = Arguments::apply_ergo();
3334   if (ergo_result != JNI_OK) return ergo_result;
3335 
3336   if (PauseAtStartup) {
3337     os::pause();
3338   }
3339 
3340 #ifndef USDT2
3341   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3342 #else /* USDT2 */
3343   HOTSPOT_VM_INIT_BEGIN();
3344 #endif /* USDT2 */
3345 
3346   // Record VM creation timing statistics
3347   TraceVmCreationTime create_vm_timer;
3348   create_vm_timer.start();
3349 
3350   // Timing (must come after argument parsing)
3351   TraceTime timer("Create VM", TraceStartupTime);
3352 
3353   // Initialize the os module after parsing the args
3354   jint os_init_2_result = os::init_2();
3355   if (os_init_2_result != JNI_OK) return os_init_2_result;
3356 
3357   jint adjust_after_os_result = Arguments::adjust_after_os();
3358   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3359 
3360   // intialize TLS
3361   ThreadLocalStorage::init();
3362 
3363   // Initialize output stream logging
3364   ostream_init_log();
3365 
3366   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3367   // Must be before create_vm_init_agents()
3368   if (Arguments::init_libraries_at_startup()) {
3369     convert_vm_init_libraries_to_agents();
3370   }
3371 
3372   // Launch -agentlib/-agentpath and converted -Xrun agents
3373   if (Arguments::init_agents_at_startup()) {
3374     create_vm_init_agents();
3375   }
3376 
3377   // Initialize Threads state
3378   _thread_list = NULL;
3379   _number_of_threads = 0;
3380   _number_of_non_daemon_threads = 0;
3381 
3382   // Initialize global data structures and create system classes in heap
3383   vm_init_globals();
3384 
3385   // Attach the main thread to this os thread
3386   JavaThread* main_thread = new JavaThread();
3387   main_thread->set_thread_state(_thread_in_vm);
3388   // must do this before set_active_handles and initialize_thread_local_storage
3389   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3390   // change the stack size recorded here to one based on the java thread
3391   // stacksize. This adjusted size is what is used to figure the placement
3392   // of the guard pages.
3393   main_thread->record_stack_base_and_size();
3394   main_thread->initialize_thread_local_storage();
3395 
3396   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3397 
3398   if (!main_thread->set_as_starting_thread()) {
3399     vm_shutdown_during_initialization(
3400       "Failed necessary internal allocation. Out of swap space");
3401     delete main_thread;
3402     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3403     return JNI_ENOMEM;
3404   }
3405 
3406   // Enable guard page *after* os::create_main_thread(), otherwise it would
3407   // crash Linux VM, see notes in os_linux.cpp.
3408   main_thread->create_stack_guard_pages();
3409 
3410   // Initialize Java-Level synchronization subsystem
3411   ObjectMonitor::Initialize() ;
3412 
3413   // Initialize global modules
3414   jint status = init_globals();
3415   if (status != JNI_OK) {
3416     delete main_thread;
3417     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3418     return status;
3419   }
3420 
3421   // Should be done after the heap is fully created
3422   main_thread->cache_global_variables();
3423 
3424   HandleMark hm;
3425 
3426   { MutexLocker mu(Threads_lock);
3427     Threads::add(main_thread);
3428   }
3429 
3430   // Any JVMTI raw monitors entered in onload will transition into
3431   // real raw monitor. VM is setup enough here for raw monitor enter.
3432   JvmtiExport::transition_pending_onload_raw_monitors();
3433 
3434   // Create the VMThread
3435   { TraceTime timer("Start VMThread", TraceStartupTime);
3436     VMThread::create();
3437     Thread* vmthread = VMThread::vm_thread();
3438 
3439     if (!os::create_thread(vmthread, os::vm_thread))
3440       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3441 
3442     // Wait for the VM thread to become ready, and VMThread::run to initialize
3443     // Monitors can have spurious returns, must always check another state flag
3444     {
3445       MutexLocker ml(Notify_lock);
3446       os::start_thread(vmthread);
3447       while (vmthread->active_handles() == NULL) {
3448         Notify_lock->wait();
3449       }
3450     }
3451   }
3452 
3453   assert (Universe::is_fully_initialized(), "not initialized");
3454   if (VerifyDuringStartup) {
3455     // Make sure we're starting with a clean slate.
3456     VM_Verify verify_op;
3457     VMThread::execute(&verify_op);
3458   }
3459 
3460   EXCEPTION_MARK;
3461 
3462   // At this point, the Universe is initialized, but we have not executed
3463   // any byte code.  Now is a good time (the only time) to dump out the
3464   // internal state of the JVM for sharing.
3465   if (DumpSharedSpaces) {
3466     MetaspaceShared::preload_and_dump(CHECK_0);
3467     ShouldNotReachHere();
3468   }
3469 
3470   // Always call even when there are not JVMTI environments yet, since environments
3471   // may be attached late and JVMTI must track phases of VM execution
3472   JvmtiExport::enter_start_phase();
3473 
3474   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3475   JvmtiExport::post_vm_start();
3476 
3477   {
3478     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3479 
3480     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3481       create_vm_init_libraries();
3482     }
3483 
3484     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3485 
3486     // Initialize java_lang.System (needed before creating the thread)
3487     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3488     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3489     Handle thread_group = create_initial_thread_group(CHECK_0);
3490     Universe::set_main_thread_group(thread_group());
3491     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3492     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3493     main_thread->set_threadObj(thread_object);
3494     // Set thread status to running since main thread has
3495     // been started and running.
3496     java_lang_Thread::set_thread_status(thread_object,
3497                                         java_lang_Thread::RUNNABLE);
3498 
3499     // The VM creates & returns objects of this class. Make sure it's initialized.
3500     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3501 
3502     // The VM preresolves methods to these classes. Make sure that they get initialized
3503     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3504     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3505     call_initializeSystemClass(CHECK_0);
3506 
3507     // get the Java runtime name after java.lang.System is initialized
3508     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3509     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3510 
3511     // an instance of OutOfMemory exception has been allocated earlier
3512     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3513     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3514     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3515     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3516     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3517     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3518     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3519     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3520   }
3521 
3522   // See        : bugid 4211085.
3523   // Background : the static initializer of java.lang.Compiler tries to read
3524   //              property"java.compiler" and read & write property "java.vm.info".
3525   //              When a security manager is installed through the command line
3526   //              option "-Djava.security.manager", the above properties are not
3527   //              readable and the static initializer for java.lang.Compiler fails
3528   //              resulting in a NoClassDefFoundError.  This can happen in any
3529   //              user code which calls methods in java.lang.Compiler.
3530   // Hack :       the hack is to pre-load and initialize this class, so that only
3531   //              system domains are on the stack when the properties are read.
3532   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3533   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3534   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3535   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3536   //              Once that is done, we should remove this hack.
3537   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3538 
3539   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3540   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3541   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3542   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3543   // This should also be taken out as soon as 4211383 gets fixed.
3544   reset_vm_info_property(CHECK_0);
3545 
3546   quicken_jni_functions();
3547 
3548   // Must be run after init_ft which initializes ft_enabled
3549   if (TRACE_INITIALIZE() != JNI_OK) {
3550     vm_exit_during_initialization("Failed to initialize tracing backend");
3551   }
3552 
3553   // Set flag that basic initialization has completed. Used by exceptions and various
3554   // debug stuff, that does not work until all basic classes have been initialized.
3555   set_init_completed();
3556 
3557   Metaspace::post_initialize();
3558 
3559 #ifndef USDT2
3560   HS_DTRACE_PROBE(hotspot, vm__init__end);
3561 #else /* USDT2 */
3562   HOTSPOT_VM_INIT_END();
3563 #endif /* USDT2 */
3564 
3565   // record VM initialization completion time
3566 #if INCLUDE_MANAGEMENT
3567   Management::record_vm_init_completed();
3568 #endif // INCLUDE_MANAGEMENT
3569 
3570   // Compute system loader. Note that this has to occur after set_init_completed, since
3571   // valid exceptions may be thrown in the process.
3572   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3573   // set_init_completed has just been called, causing exceptions not to be shortcut
3574   // anymore. We call vm_exit_during_initialization directly instead.
3575   SystemDictionary::compute_java_system_loader(THREAD);
3576   if (HAS_PENDING_EXCEPTION) {
3577     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3578   }
3579 
3580 #if INCLUDE_ALL_GCS
3581   // Support for ConcurrentMarkSweep. This should be cleaned up
3582   // and better encapsulated. The ugly nested if test would go away
3583   // once things are properly refactored. XXX YSR
3584   if (UseConcMarkSweepGC || UseG1GC) {
3585     if (UseConcMarkSweepGC) {
3586       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3587     } else {
3588       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3589     }
3590     if (HAS_PENDING_EXCEPTION) {
3591       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3592     }
3593   }
3594 #endif // INCLUDE_ALL_GCS
3595 
3596   // Always call even when there are not JVMTI environments yet, since environments
3597   // may be attached late and JVMTI must track phases of VM execution
3598   JvmtiExport::enter_live_phase();
3599 
3600   // Signal Dispatcher needs to be started before VMInit event is posted
3601   os::signal_init();
3602 
3603   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3604   if (!DisableAttachMechanism) {
3605     AttachListener::vm_start();
3606     if (StartAttachListener || AttachListener::init_at_startup()) {
3607       AttachListener::init();
3608     }
3609   }
3610 
3611   // Launch -Xrun agents
3612   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3613   // back-end can launch with -Xdebug -Xrunjdwp.
3614   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3615     create_vm_init_libraries();
3616   }
3617 
3618   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3619   JvmtiExport::post_vm_initialized();
3620 
3621   if (TRACE_START() != JNI_OK) {
3622     vm_exit_during_initialization("Failed to start tracing backend.");
3623   }
3624 
3625   if (CleanChunkPoolAsync) {
3626     Chunk::start_chunk_pool_cleaner_task();
3627   }
3628 
3629   // initialize compiler(s)
3630 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3631   CompileBroker::compilation_init();
3632 #endif
3633 
3634   if (EnableInvokeDynamic) {
3635     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3636     // It is done after compilers are initialized, because otherwise compilations of
3637     // signature polymorphic MH intrinsics can be missed
3638     // (see SystemDictionary::find_method_handle_intrinsic).
3639     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3640     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3641     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3642   }
3643 
3644 #if INCLUDE_MANAGEMENT
3645   Management::initialize(THREAD);
3646 #endif // INCLUDE_MANAGEMENT
3647 
3648   if (HAS_PENDING_EXCEPTION) {
3649     // management agent fails to start possibly due to
3650     // configuration problem and is responsible for printing
3651     // stack trace if appropriate. Simply exit VM.
3652     vm_exit(1);
3653   }
3654 
3655   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3656   if (MemProfiling)                   MemProfiler::engage();
3657   StatSampler::engage();
3658   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3659 
3660   BiasedLocking::init();
3661 
3662 #if INCLUDE_RTM_OPT
3663   RTMLockingCounters::init();
3664 #endif
3665 
3666   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3667     call_postVMInitHook(THREAD);
3668     // The Java side of PostVMInitHook.run must deal with all
3669     // exceptions and provide means of diagnosis.
3670     if (HAS_PENDING_EXCEPTION) {
3671       CLEAR_PENDING_EXCEPTION;
3672     }
3673   }
3674 
3675   {
3676       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3677       // Make sure the watcher thread can be started by WatcherThread::start()
3678       // or by dynamic enrollment.
3679       WatcherThread::make_startable();
3680       // Start up the WatcherThread if there are any periodic tasks
3681       // NOTE:  All PeriodicTasks should be registered by now. If they
3682       //   aren't, late joiners might appear to start slowly (we might
3683       //   take a while to process their first tick).
3684       if (PeriodicTask::num_tasks() > 0) {
3685           WatcherThread::start();
3686       }
3687   }
3688 
3689   // Give os specific code one last chance to start
3690   os::init_3();
3691 
3692   create_vm_timer.end();
3693 #ifdef ASSERT
3694   _vm_complete = true;
3695 #endif
3696   return JNI_OK;
3697 }
3698 
3699 // type for the Agent_OnLoad and JVM_OnLoad entry points
3700 extern "C" {
3701   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3702 }
3703 // Find a command line agent library and return its entry point for
3704 //         -agentlib:  -agentpath:   -Xrun
3705 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3706 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3707   OnLoadEntry_t on_load_entry = NULL;
3708   void *library = NULL;
3709 
3710   if (!agent->valid()) {
3711     char buffer[JVM_MAXPATHLEN];
3712     char ebuf[1024];
3713     const char *name = agent->name();
3714     const char *msg = "Could not find agent library ";
3715 
3716     // First check to see if agent is statically linked into executable
3717     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3718       library = agent->os_lib();
3719     } else if (agent->is_absolute_path()) {
3720       library = os::dll_load(name, ebuf, sizeof ebuf);
3721       if (library == NULL) {
3722         const char *sub_msg = " in absolute path, with error: ";
3723         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3724         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3725         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3726         // If we can't find the agent, exit.
3727         vm_exit_during_initialization(buf, NULL);
3728         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3729       }
3730     } else {
3731       // Try to load the agent from the standard dll directory
3732       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3733                              name)) {
3734         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3735       }
3736       if (library == NULL) { // Try the local directory
3737         char ns[1] = {0};
3738         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3739           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3740         }
3741         if (library == NULL) {
3742           const char *sub_msg = " on the library path, with error: ";
3743           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3744           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3745           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3746           // If we can't find the agent, exit.
3747           vm_exit_during_initialization(buf, NULL);
3748           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3749         }
3750       }
3751     }
3752     agent->set_os_lib(library);
3753     agent->set_valid();
3754   }
3755 
3756   // Find the OnLoad function.
3757   on_load_entry =
3758     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3759                                                           false,
3760                                                           on_load_symbols,
3761                                                           num_symbol_entries));
3762   return on_load_entry;
3763 }
3764 
3765 // Find the JVM_OnLoad entry point
3766 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3767   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3768   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3769 }
3770 
3771 // Find the Agent_OnLoad entry point
3772 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3773   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3774   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3775 }
3776 
3777 // For backwards compatibility with -Xrun
3778 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3779 // treated like -agentpath:
3780 // Must be called before agent libraries are created
3781 void Threads::convert_vm_init_libraries_to_agents() {
3782   AgentLibrary* agent;
3783   AgentLibrary* next;
3784 
3785   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3786     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3787     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3788 
3789     // If there is an JVM_OnLoad function it will get called later,
3790     // otherwise see if there is an Agent_OnLoad
3791     if (on_load_entry == NULL) {
3792       on_load_entry = lookup_agent_on_load(agent);
3793       if (on_load_entry != NULL) {
3794         // switch it to the agent list -- so that Agent_OnLoad will be called,
3795         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3796         Arguments::convert_library_to_agent(agent);
3797       } else {
3798         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3799       }
3800     }
3801   }
3802 }
3803 
3804 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3805 // Invokes Agent_OnLoad
3806 // Called very early -- before JavaThreads exist
3807 void Threads::create_vm_init_agents() {
3808   extern struct JavaVM_ main_vm;
3809   AgentLibrary* agent;
3810 
3811   JvmtiExport::enter_onload_phase();
3812 
3813   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3814     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3815 
3816     if (on_load_entry != NULL) {
3817       // Invoke the Agent_OnLoad function
3818       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3819       if (err != JNI_OK) {
3820         vm_exit_during_initialization("agent library failed to init", agent->name());
3821       }
3822     } else {
3823       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3824     }
3825   }
3826   JvmtiExport::enter_primordial_phase();
3827 }
3828 
3829 extern "C" {
3830   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3831 }
3832 
3833 void Threads::shutdown_vm_agents() {
3834   // Send any Agent_OnUnload notifications
3835   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3836   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3837   extern struct JavaVM_ main_vm;
3838   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3839 
3840     // Find the Agent_OnUnload function.
3841     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3842       os::find_agent_function(agent,
3843       false,
3844       on_unload_symbols,
3845       num_symbol_entries));
3846 
3847     // Invoke the Agent_OnUnload function
3848     if (unload_entry != NULL) {
3849       JavaThread* thread = JavaThread::current();
3850       ThreadToNativeFromVM ttn(thread);
3851       HandleMark hm(thread);
3852       (*unload_entry)(&main_vm);
3853     }
3854   }
3855 }
3856 
3857 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3858 // Invokes JVM_OnLoad
3859 void Threads::create_vm_init_libraries() {
3860   extern struct JavaVM_ main_vm;
3861   AgentLibrary* agent;
3862 
3863   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3864     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3865 
3866     if (on_load_entry != NULL) {
3867       // Invoke the JVM_OnLoad function
3868       JavaThread* thread = JavaThread::current();
3869       ThreadToNativeFromVM ttn(thread);
3870       HandleMark hm(thread);
3871       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3872       if (err != JNI_OK) {
3873         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3874       }
3875     } else {
3876       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3877     }
3878   }
3879 }
3880 
3881 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3882   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3883 
3884   JavaThread* java_thread = NULL;
3885   // Sequential search for now.  Need to do better optimization later.
3886   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3887     oop tobj = thread->threadObj();
3888     if (!thread->is_exiting() &&
3889         tobj != NULL &&
3890         java_tid == java_lang_Thread::thread_id(tobj)) {
3891       java_thread = thread;
3892       break;
3893     }
3894   }
3895   return java_thread;
3896 }
3897 
3898 
3899 // Last thread running calls java.lang.Shutdown.shutdown()
3900 void JavaThread::invoke_shutdown_hooks() {
3901   HandleMark hm(this);
3902 
3903   // We could get here with a pending exception, if so clear it now.
3904   if (this->has_pending_exception()) {
3905     this->clear_pending_exception();
3906   }
3907 
3908   EXCEPTION_MARK;
3909   Klass* k =
3910     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3911                                       THREAD);
3912   if (k != NULL) {
3913     // SystemDictionary::resolve_or_null will return null if there was
3914     // an exception.  If we cannot load the Shutdown class, just don't
3915     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3916     // and finalizers (if runFinalizersOnExit is set) won't be run.
3917     // Note that if a shutdown hook was registered or runFinalizersOnExit
3918     // was called, the Shutdown class would have already been loaded
3919     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3920     instanceKlassHandle shutdown_klass (THREAD, k);
3921     JavaValue result(T_VOID);
3922     JavaCalls::call_static(&result,
3923                            shutdown_klass,
3924                            vmSymbols::shutdown_method_name(),
3925                            vmSymbols::void_method_signature(),
3926                            THREAD);
3927   }
3928   CLEAR_PENDING_EXCEPTION;
3929 }
3930 
3931 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3932 // the program falls off the end of main(). Another VM exit path is through
3933 // vm_exit() when the program calls System.exit() to return a value or when
3934 // there is a serious error in VM. The two shutdown paths are not exactly
3935 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3936 // and VM_Exit op at VM level.
3937 //
3938 // Shutdown sequence:
3939 //   + Shutdown native memory tracking if it is on
3940 //   + Wait until we are the last non-daemon thread to execute
3941 //     <-- every thing is still working at this moment -->
3942 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3943 //        shutdown hooks, run finalizers if finalization-on-exit
3944 //   + Call before_exit(), prepare for VM exit
3945 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3946 //        currently the only user of this mechanism is File.deleteOnExit())
3947 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3948 //        post thread end and vm death events to JVMTI,
3949 //        stop signal thread
3950 //   + Call JavaThread::exit(), it will:
3951 //      > release JNI handle blocks, remove stack guard pages
3952 //      > remove this thread from Threads list
3953 //     <-- no more Java code from this thread after this point -->
3954 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3955 //     the compiler threads at safepoint
3956 //     <-- do not use anything that could get blocked by Safepoint -->
3957 //   + Disable tracing at JNI/JVM barriers
3958 //   + Set _vm_exited flag for threads that are still running native code
3959 //   + Delete this thread
3960 //   + Call exit_globals()
3961 //      > deletes tty
3962 //      > deletes PerfMemory resources
3963 //   + Return to caller
3964 
3965 bool Threads::destroy_vm() {
3966   JavaThread* thread = JavaThread::current();
3967 
3968 #ifdef ASSERT
3969   _vm_complete = false;
3970 #endif
3971   // Wait until we are the last non-daemon thread to execute
3972   { MutexLocker nu(Threads_lock);
3973     while (Threads::number_of_non_daemon_threads() > 1 )
3974       // This wait should make safepoint checks, wait without a timeout,
3975       // and wait as a suspend-equivalent condition.
3976       //
3977       // Note: If the FlatProfiler is running and this thread is waiting
3978       // for another non-daemon thread to finish, then the FlatProfiler
3979       // is waiting for the external suspend request on this thread to
3980       // complete. wait_for_ext_suspend_completion() will eventually
3981       // timeout, but that takes time. Making this wait a suspend-
3982       // equivalent condition solves that timeout problem.
3983       //
3984       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3985                          Mutex::_as_suspend_equivalent_flag);
3986   }
3987 
3988   // Hang forever on exit if we are reporting an error.
3989   if (ShowMessageBoxOnError && is_error_reported()) {
3990     os::infinite_sleep();
3991   }
3992   os::wait_for_keypress_at_exit();
3993 
3994   if (JDK_Version::is_jdk12x_version()) {
3995     // We are the last thread running, so check if finalizers should be run.
3996     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3997     HandleMark rm(thread);
3998     Universe::run_finalizers_on_exit();
3999   } else {
4000     // run Java level shutdown hooks
4001     thread->invoke_shutdown_hooks();
4002   }
4003 
4004   before_exit(thread);
4005 
4006   thread->exit(true);
4007 
4008   // Stop VM thread.
4009   {
4010     // 4945125 The vm thread comes to a safepoint during exit.
4011     // GC vm_operations can get caught at the safepoint, and the
4012     // heap is unparseable if they are caught. Grab the Heap_lock
4013     // to prevent this. The GC vm_operations will not be able to
4014     // queue until after the vm thread is dead. After this point,
4015     // we'll never emerge out of the safepoint before the VM exits.
4016 
4017     MutexLocker ml(Heap_lock);
4018 
4019     VMThread::wait_for_vm_thread_exit();
4020     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4021     VMThread::destroy();
4022   }
4023 
4024   // clean up ideal graph printers
4025 #if defined(COMPILER2) && !defined(PRODUCT)
4026   IdealGraphPrinter::clean_up();
4027 #endif
4028 
4029   // Now, all Java threads are gone except daemon threads. Daemon threads
4030   // running Java code or in VM are stopped by the Safepoint. However,
4031   // daemon threads executing native code are still running.  But they
4032   // will be stopped at native=>Java/VM barriers. Note that we can't
4033   // simply kill or suspend them, as it is inherently deadlock-prone.
4034 
4035 #ifndef PRODUCT
4036   // disable function tracing at JNI/JVM barriers
4037   TraceJNICalls = false;
4038   TraceJVMCalls = false;
4039   TraceRuntimeCalls = false;
4040 #endif
4041 
4042   VM_Exit::set_vm_exited();
4043 
4044   notify_vm_shutdown();
4045 
4046   delete thread;
4047 
4048   // exit_globals() will delete tty
4049   exit_globals();
4050 
4051   return true;
4052 }
4053 
4054 
4055 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4056   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4057   return is_supported_jni_version(version);
4058 }
4059 
4060 
4061 jboolean Threads::is_supported_jni_version(jint version) {
4062   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4063   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4064   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4065   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4066   return JNI_FALSE;
4067 }
4068 
4069 
4070 void Threads::add(JavaThread* p, bool force_daemon) {
4071   // The threads lock must be owned at this point
4072   assert_locked_or_safepoint(Threads_lock);
4073 
4074   // See the comment for this method in thread.hpp for its purpose and
4075   // why it is called here.
4076   p->initialize_queues();
4077   p->set_next(_thread_list);
4078   _thread_list = p;
4079   _number_of_threads++;
4080   oop threadObj = p->threadObj();
4081   bool daemon = true;
4082   // Bootstrapping problem: threadObj can be null for initial
4083   // JavaThread (or for threads attached via JNI)
4084   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4085     _number_of_non_daemon_threads++;
4086     daemon = false;
4087   }
4088 
4089   ThreadService::add_thread(p, daemon);
4090 
4091   // Possible GC point.
4092   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4093 }
4094 
4095 void Threads::remove(JavaThread* p) {
4096   // Extra scope needed for Thread_lock, so we can check
4097   // that we do not remove thread without safepoint code notice
4098   { MutexLocker ml(Threads_lock);
4099 
4100     assert(includes(p), "p must be present");
4101 
4102     JavaThread* current = _thread_list;
4103     JavaThread* prev    = NULL;
4104 
4105     while (current != p) {
4106       prev    = current;
4107       current = current->next();
4108     }
4109 
4110     if (prev) {
4111       prev->set_next(current->next());
4112     } else {
4113       _thread_list = p->next();
4114     }
4115     _number_of_threads--;
4116     oop threadObj = p->threadObj();
4117     bool daemon = true;
4118     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4119       _number_of_non_daemon_threads--;
4120       daemon = false;
4121 
4122       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4123       // on destroy_vm will wake up.
4124       if (number_of_non_daemon_threads() == 1)
4125         Threads_lock->notify_all();
4126     }
4127     ThreadService::remove_thread(p, daemon);
4128 
4129     // Make sure that safepoint code disregard this thread. This is needed since
4130     // the thread might mess around with locks after this point. This can cause it
4131     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4132     // of this thread since it is removed from the queue.
4133     p->set_terminated_value();
4134   } // unlock Threads_lock
4135 
4136   // Since Events::log uses a lock, we grab it outside the Threads_lock
4137   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4138 }
4139 
4140 // Threads_lock must be held when this is called (or must be called during a safepoint)
4141 bool Threads::includes(JavaThread* p) {
4142   assert(Threads_lock->is_locked(), "sanity check");
4143   ALL_JAVA_THREADS(q) {
4144     if (q == p ) {
4145       return true;
4146     }
4147   }
4148   return false;
4149 }
4150 
4151 // Operations on the Threads list for GC.  These are not explicitly locked,
4152 // but the garbage collector must provide a safe context for them to run.
4153 // In particular, these things should never be called when the Threads_lock
4154 // is held by some other thread. (Note: the Safepoint abstraction also
4155 // uses the Threads_lock to gurantee this property. It also makes sure that
4156 // all threads gets blocked when exiting or starting).
4157 
4158 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4159   ALL_JAVA_THREADS(p) {
4160     p->oops_do(f, cld_f, cf);
4161   }
4162   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4163 }
4164 
4165 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4166   // Introduce a mechanism allowing parallel threads to claim threads as
4167   // root groups.  Overhead should be small enough to use all the time,
4168   // even in sequential code.
4169   SharedHeap* sh = SharedHeap::heap();
4170   // Cannot yet substitute active_workers for n_par_threads
4171   // because of G1CollectedHeap::verify() use of
4172   // SharedHeap::process_roots().  n_par_threads == 0 will
4173   // turn off parallelism in process_roots while active_workers
4174   // is being used for parallelism elsewhere.
4175   bool is_par = sh->n_par_threads() > 0;
4176   assert(!is_par ||
4177          (SharedHeap::heap()->n_par_threads() ==
4178           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4179   int cp = SharedHeap::heap()->strong_roots_parity();
4180   ALL_JAVA_THREADS(p) {
4181     if (p->claim_oops_do(is_par, cp)) {
4182       p->oops_do(f, cld_f, cf);
4183     }
4184   }
4185   VMThread* vmt = VMThread::vm_thread();
4186   if (vmt->claim_oops_do(is_par, cp)) {
4187     vmt->oops_do(f, cld_f, cf);
4188   }
4189 }
4190 
4191 #if INCLUDE_ALL_GCS
4192 // Used by ParallelScavenge
4193 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4194   ALL_JAVA_THREADS(p) {
4195     q->enqueue(new ThreadRootsTask(p));
4196   }
4197   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4198 }
4199 
4200 // Used by Parallel Old
4201 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4202   ALL_JAVA_THREADS(p) {
4203     q->enqueue(new ThreadRootsMarkingTask(p));
4204   }
4205   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4206 }
4207 #endif // INCLUDE_ALL_GCS
4208 
4209 void Threads::nmethods_do(CodeBlobClosure* cf) {
4210   ALL_JAVA_THREADS(p) {
4211     p->nmethods_do(cf);
4212   }
4213   VMThread::vm_thread()->nmethods_do(cf);
4214 }
4215 
4216 void Threads::metadata_do(void f(Metadata*)) {
4217   ALL_JAVA_THREADS(p) {
4218     p->metadata_do(f);
4219   }
4220 }
4221 
4222 void Threads::gc_epilogue() {
4223   ALL_JAVA_THREADS(p) {
4224     p->gc_epilogue();
4225   }
4226 }
4227 
4228 void Threads::gc_prologue() {
4229   ALL_JAVA_THREADS(p) {
4230     p->gc_prologue();
4231   }
4232 }
4233 
4234 void Threads::deoptimized_wrt_marked_nmethods() {
4235   ALL_JAVA_THREADS(p) {
4236     p->deoptimized_wrt_marked_nmethods();
4237   }
4238 }
4239 
4240 
4241 // Get count Java threads that are waiting to enter the specified monitor.
4242 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4243   address monitor, bool doLock) {
4244   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4245     "must grab Threads_lock or be at safepoint");
4246   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4247 
4248   int i = 0;
4249   {
4250     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4251     ALL_JAVA_THREADS(p) {
4252       if (p->is_Compiler_thread()) continue;
4253 
4254       address pending = (address)p->current_pending_monitor();
4255       if (pending == monitor) {             // found a match
4256         if (i < count) result->append(p);   // save the first count matches
4257         i++;
4258       }
4259     }
4260   }
4261   return result;
4262 }
4263 
4264 
4265 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4266   assert(doLock ||
4267          Threads_lock->owned_by_self() ||
4268          SafepointSynchronize::is_at_safepoint(),
4269          "must grab Threads_lock or be at safepoint");
4270 
4271   // NULL owner means not locked so we can skip the search
4272   if (owner == NULL) return NULL;
4273 
4274   {
4275     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4276     ALL_JAVA_THREADS(p) {
4277       // first, see if owner is the address of a Java thread
4278       if (owner == (address)p) return p;
4279     }
4280   }
4281   // Cannot assert on lack of success here since this function may be
4282   // used by code that is trying to report useful problem information
4283   // like deadlock detection.
4284   if (UseHeavyMonitors) return NULL;
4285 
4286   //
4287   // If we didn't find a matching Java thread and we didn't force use of
4288   // heavyweight monitors, then the owner is the stack address of the
4289   // Lock Word in the owning Java thread's stack.
4290   //
4291   JavaThread* the_owner = NULL;
4292   {
4293     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4294     ALL_JAVA_THREADS(q) {
4295       if (q->is_lock_owned(owner)) {
4296         the_owner = q;
4297         break;
4298       }
4299     }
4300   }
4301   // cannot assert on lack of success here; see above comment
4302   return the_owner;
4303 }
4304 
4305 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4306 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4307   char buf[32];
4308   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4309 
4310   st->print_cr("Full thread dump %s (%s %s):",
4311                 Abstract_VM_Version::vm_name(),
4312                 Abstract_VM_Version::vm_release(),
4313                 Abstract_VM_Version::vm_info_string()
4314                );
4315   st->cr();
4316 
4317 #if INCLUDE_ALL_GCS
4318   // Dump concurrent locks
4319   ConcurrentLocksDump concurrent_locks;
4320   if (print_concurrent_locks) {
4321     concurrent_locks.dump_at_safepoint();
4322   }
4323 #endif // INCLUDE_ALL_GCS
4324 
4325   ALL_JAVA_THREADS(p) {
4326     ResourceMark rm;
4327     p->print_on(st);
4328     if (print_stacks) {
4329       if (internal_format) {
4330         p->trace_stack();
4331       } else {
4332         p->print_stack_on(st);
4333       }
4334     }
4335     st->cr();
4336 #if INCLUDE_ALL_GCS
4337     if (print_concurrent_locks) {
4338       concurrent_locks.print_locks_on(p, st);
4339     }
4340 #endif // INCLUDE_ALL_GCS
4341   }
4342 
4343   VMThread::vm_thread()->print_on(st);
4344   st->cr();
4345   Universe::heap()->print_gc_threads_on(st);
4346   WatcherThread* wt = WatcherThread::watcher_thread();
4347   if (wt != NULL) {
4348     wt->print_on(st);
4349     st->cr();
4350   }
4351   CompileBroker::print_compiler_threads_on(st);
4352   st->flush();
4353 }
4354 
4355 // Threads::print_on_error() is called by fatal error handler. It's possible
4356 // that VM is not at safepoint and/or current thread is inside signal handler.
4357 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4358 // memory (even in resource area), it might deadlock the error handler.
4359 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4360   bool found_current = false;
4361   st->print_cr("Java Threads: ( => current thread )");
4362   ALL_JAVA_THREADS(thread) {
4363     bool is_current = (current == thread);
4364     found_current = found_current || is_current;
4365 
4366     st->print("%s", is_current ? "=>" : "  ");
4367 
4368     st->print(PTR_FORMAT, thread);
4369     st->print(" ");
4370     thread->print_on_error(st, buf, buflen);
4371     st->cr();
4372   }
4373   st->cr();
4374 
4375   st->print_cr("Other Threads:");
4376   if (VMThread::vm_thread()) {
4377     bool is_current = (current == VMThread::vm_thread());
4378     found_current = found_current || is_current;
4379     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4380 
4381     st->print(PTR_FORMAT, VMThread::vm_thread());
4382     st->print(" ");
4383     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4384     st->cr();
4385   }
4386   WatcherThread* wt = WatcherThread::watcher_thread();
4387   if (wt != NULL) {
4388     bool is_current = (current == wt);
4389     found_current = found_current || is_current;
4390     st->print("%s", is_current ? "=>" : "  ");
4391 
4392     st->print(PTR_FORMAT, wt);
4393     st->print(" ");
4394     wt->print_on_error(st, buf, buflen);
4395     st->cr();
4396   }
4397   if (!found_current) {
4398     st->cr();
4399     st->print("=>" PTR_FORMAT " (exited) ", current);
4400     current->print_on_error(st, buf, buflen);
4401     st->cr();
4402   }
4403 }
4404 
4405 // Internal SpinLock and Mutex
4406 // Based on ParkEvent
4407 
4408 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4409 //
4410 // We employ SpinLocks _only for low-contention, fixed-length
4411 // short-duration critical sections where we're concerned
4412 // about native mutex_t or HotSpot Mutex:: latency.
4413 // The mux construct provides a spin-then-block mutual exclusion
4414 // mechanism.
4415 //
4416 // Testing has shown that contention on the ListLock guarding gFreeList
4417 // is common.  If we implement ListLock as a simple SpinLock it's common
4418 // for the JVM to devolve to yielding with little progress.  This is true
4419 // despite the fact that the critical sections protected by ListLock are
4420 // extremely short.
4421 //
4422 // TODO-FIXME: ListLock should be of type SpinLock.
4423 // We should make this a 1st-class type, integrated into the lock
4424 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4425 // should have sufficient padding to avoid false-sharing and excessive
4426 // cache-coherency traffic.
4427 
4428 
4429 typedef volatile int SpinLockT ;
4430 
4431 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4432   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4433      return ;   // normal fast-path return
4434   }
4435 
4436   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4437   TEVENT (SpinAcquire - ctx) ;
4438   int ctr = 0 ;
4439   int Yields = 0 ;
4440   for (;;) {
4441      while (*adr != 0) {
4442         ++ctr ;
4443         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4444            if (Yields > 5) {
4445              os::naked_short_sleep(1);
4446            } else {
4447              os::NakedYield() ;
4448              ++Yields ;
4449            }
4450         } else {
4451            SpinPause() ;
4452         }
4453      }
4454      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4455   }
4456 }
4457 
4458 void Thread::SpinRelease (volatile int * adr) {
4459   assert (*adr != 0, "invariant") ;
4460   OrderAccess::fence() ;      // guarantee at least release consistency.
4461   // Roach-motel semantics.
4462   // It's safe if subsequent LDs and STs float "up" into the critical section,
4463   // but prior LDs and STs within the critical section can't be allowed
4464   // to reorder or float past the ST that releases the lock.
4465   *adr = 0 ;
4466 }
4467 
4468 // muxAcquire and muxRelease:
4469 //
4470 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4471 //    The LSB of the word is set IFF the lock is held.
4472 //    The remainder of the word points to the head of a singly-linked list
4473 //    of threads blocked on the lock.
4474 //
4475 // *  The current implementation of muxAcquire-muxRelease uses its own
4476 //    dedicated Thread._MuxEvent instance.  If we're interested in
4477 //    minimizing the peak number of extant ParkEvent instances then
4478 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4479 //    as certain invariants were satisfied.  Specifically, care would need
4480 //    to be taken with regards to consuming unpark() "permits".
4481 //    A safe rule of thumb is that a thread would never call muxAcquire()
4482 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4483 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4484 //    consume an unpark() permit intended for monitorenter, for instance.
4485 //    One way around this would be to widen the restricted-range semaphore
4486 //    implemented in park().  Another alternative would be to provide
4487 //    multiple instances of the PlatformEvent() for each thread.  One
4488 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4489 //
4490 // *  Usage:
4491 //    -- Only as leaf locks
4492 //    -- for short-term locking only as muxAcquire does not perform
4493 //       thread state transitions.
4494 //
4495 // Alternatives:
4496 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4497 //    but with parking or spin-then-park instead of pure spinning.
4498 // *  Use Taura-Oyama-Yonenzawa locks.
4499 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4500 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4501 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4502 //    acquiring threads use timers (ParkTimed) to detect and recover from
4503 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4504 //    boundaries by using placement-new.
4505 // *  Augment MCS with advisory back-link fields maintained with CAS().
4506 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4507 //    The validity of the backlinks must be ratified before we trust the value.
4508 //    If the backlinks are invalid the exiting thread must back-track through the
4509 //    the forward links, which are always trustworthy.
4510 // *  Add a successor indication.  The LockWord is currently encoded as
4511 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4512 //    to provide the usual futile-wakeup optimization.
4513 //    See RTStt for details.
4514 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4515 //
4516 
4517 
4518 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4519 enum MuxBits { LOCKBIT = 1 } ;
4520 
4521 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4522   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4523   if (w == 0) return ;
4524   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4525      return ;
4526   }
4527 
4528   TEVENT (muxAcquire - Contention) ;
4529   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4530   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4531   for (;;) {
4532      int its = (os::is_MP() ? 100 : 0) + 1 ;
4533 
4534      // Optional spin phase: spin-then-park strategy
4535      while (--its >= 0) {
4536        w = *Lock ;
4537        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4538           return ;
4539        }
4540      }
4541 
4542      Self->reset() ;
4543      Self->OnList = intptr_t(Lock) ;
4544      // The following fence() isn't _strictly necessary as the subsequent
4545      // CAS() both serializes execution and ratifies the fetched *Lock value.
4546      OrderAccess::fence();
4547      for (;;) {
4548         w = *Lock ;
4549         if ((w & LOCKBIT) == 0) {
4550             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4551                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4552                 return ;
4553             }
4554             continue ;      // Interference -- *Lock changed -- Just retry
4555         }
4556         assert (w & LOCKBIT, "invariant") ;
4557         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4558         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4559      }
4560 
4561      while (Self->OnList != 0) {
4562         Self->park() ;
4563      }
4564   }
4565 }
4566 
4567 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4568   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4569   if (w == 0) return ;
4570   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4571     return ;
4572   }
4573 
4574   TEVENT (muxAcquire - Contention) ;
4575   ParkEvent * ReleaseAfter = NULL ;
4576   if (ev == NULL) {
4577     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4578   }
4579   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4580   for (;;) {
4581     guarantee (ev->OnList == 0, "invariant") ;
4582     int its = (os::is_MP() ? 100 : 0) + 1 ;
4583 
4584     // Optional spin phase: spin-then-park strategy
4585     while (--its >= 0) {
4586       w = *Lock ;
4587       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4588         if (ReleaseAfter != NULL) {
4589           ParkEvent::Release (ReleaseAfter) ;
4590         }
4591         return ;
4592       }
4593     }
4594 
4595     ev->reset() ;
4596     ev->OnList = intptr_t(Lock) ;
4597     // The following fence() isn't _strictly necessary as the subsequent
4598     // CAS() both serializes execution and ratifies the fetched *Lock value.
4599     OrderAccess::fence();
4600     for (;;) {
4601       w = *Lock ;
4602       if ((w & LOCKBIT) == 0) {
4603         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4604           ev->OnList = 0 ;
4605           // We call ::Release while holding the outer lock, thus
4606           // artificially lengthening the critical section.
4607           // Consider deferring the ::Release() until the subsequent unlock(),
4608           // after we've dropped the outer lock.
4609           if (ReleaseAfter != NULL) {
4610             ParkEvent::Release (ReleaseAfter) ;
4611           }
4612           return ;
4613         }
4614         continue ;      // Interference -- *Lock changed -- Just retry
4615       }
4616       assert (w & LOCKBIT, "invariant") ;
4617       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4618       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4619     }
4620 
4621     while (ev->OnList != 0) {
4622       ev->park() ;
4623     }
4624   }
4625 }
4626 
4627 // Release() must extract a successor from the list and then wake that thread.
4628 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4629 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4630 // Release() would :
4631 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4632 // (B) Extract a successor from the private list "in-hand"
4633 // (C) attempt to CAS() the residual back into *Lock over null.
4634 //     If there were any newly arrived threads and the CAS() would fail.
4635 //     In that case Release() would detach the RATs, re-merge the list in-hand
4636 //     with the RATs and repeat as needed.  Alternately, Release() might
4637 //     detach and extract a successor, but then pass the residual list to the wakee.
4638 //     The wakee would be responsible for reattaching and remerging before it
4639 //     competed for the lock.
4640 //
4641 // Both "pop" and DMR are immune from ABA corruption -- there can be
4642 // multiple concurrent pushers, but only one popper or detacher.
4643 // This implementation pops from the head of the list.  This is unfair,
4644 // but tends to provide excellent throughput as hot threads remain hot.
4645 // (We wake recently run threads first).
4646 
4647 void Thread::muxRelease (volatile intptr_t * Lock)  {
4648   for (;;) {
4649     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4650     assert (w & LOCKBIT, "invariant") ;
4651     if (w == LOCKBIT) return ;
4652     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4653     assert (List != NULL, "invariant") ;
4654     assert (List->OnList == intptr_t(Lock), "invariant") ;
4655     ParkEvent * nxt = List->ListNext ;
4656 
4657     // The following CAS() releases the lock and pops the head element.
4658     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4659       continue ;
4660     }
4661     List->OnList = 0 ;
4662     OrderAccess::fence() ;
4663     List->unpark () ;
4664     return ;
4665   }
4666 }
4667 
4668 
4669 void Threads::verify() {
4670   ALL_JAVA_THREADS(p) {
4671     p->verify();
4672   }
4673   VMThread* thread = VMThread::vm_thread();
4674   if (thread != NULL) thread->verify();
4675 }