1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2012, 2014 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc_interface/collectedHeap.inline.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc_implementation/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) // nothing
  48 #else
  49 #define BLOCK_COMMENT(str) block_comment(str)
  50 #endif
  51 
  52 int AbstractAssembler::code_fill_byte() {
  53   return 0x00;                  // illegal instruction 0x00000000
  54 }
  55 
  56 void Assembler::print_instruction(int inst) {
  57   Unimplemented();
  58 }
  59 
  60 // Patch instruction `inst' at offset `inst_pos' to refer to
  61 // `dest_pos' and return the resulting instruction.  We should have
  62 // pcs, not offsets, but since all is relative, it will work out fine.
  63 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
  64   int m = 0; // mask for displacement field
  65   int v = 0; // new value for displacement field
  66 
  67   switch (inv_op_ppc(inst)) {
  68   case b_op:  m = li(-1); v = li(disp(dest_pos, inst_pos)); break;
  69   case bc_op: m = bd(-1); v = bd(disp(dest_pos, inst_pos)); break;
  70     default: ShouldNotReachHere();
  71   }
  72   return inst & ~m | v;
  73 }
  74 
  75 // Return the offset, relative to _code_begin, of the destination of
  76 // the branch inst at offset pos.
  77 int Assembler::branch_destination(int inst, int pos) {
  78   int r = 0;
  79   switch (inv_op_ppc(inst)) {
  80     case b_op:  r = bxx_destination_offset(inst, pos); break;
  81     case bc_op: r = inv_bd_field(inst, pos); break;
  82     default: ShouldNotReachHere();
  83   }
  84   return r;
  85 }
  86 
  87 // Low-level andi-one-instruction-macro.
  88 void Assembler::andi(Register a, Register s, const int ui16) {
  89   assert(is_uimm(ui16, 16), "must be 16-bit unsigned immediate");
  90   if (is_power_of_2_long(((jlong) ui16)+1)) {
  91     // pow2minus1
  92     clrldi(a, s, 64-log2_long((((jlong) ui16)+1)));
  93   } else if (is_power_of_2_long((jlong) ui16)) {
  94     // pow2
  95     rlwinm(a, s, 0, 31-log2_long((jlong) ui16), 31-log2_long((jlong) ui16));
  96   } else if (is_power_of_2_long((jlong)-ui16)) {
  97     // negpow2
  98     clrrdi(a, s, log2_long((jlong)-ui16));
  99   } else {
 100     andi_(a, s, ui16);
 101   }
 102 }
 103 
 104 // RegisterOrConstant version.
 105 void Assembler::ld(Register d, RegisterOrConstant roc, Register s1) {
 106   if (roc.is_constant()) {
 107     if (s1 == noreg) {
 108       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
 109       Assembler::ld(d, simm16_rest, d);
 110     } else if (is_simm(roc.as_constant(), 16)) {
 111       Assembler::ld(d, roc.as_constant(), s1);
 112     } else {
 113       load_const_optimized(d, roc.as_constant());
 114       Assembler::ldx(d, d, s1);
 115     }
 116   } else {
 117     if (s1 == noreg)
 118       Assembler::ld(d, 0, roc.as_register());
 119     else
 120       Assembler::ldx(d, roc.as_register(), s1);
 121   }
 122 }
 123 
 124 void Assembler::lwa(Register d, RegisterOrConstant roc, Register s1) {
 125   if (roc.is_constant()) {
 126     if (s1 == noreg) {
 127       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
 128       Assembler::lwa(d, simm16_rest, d);
 129     } else if (is_simm(roc.as_constant(), 16)) {
 130       Assembler::lwa(d, roc.as_constant(), s1);
 131     } else {
 132       load_const_optimized(d, roc.as_constant());
 133       Assembler::lwax(d, d, s1);
 134     }
 135   } else {
 136     if (s1 == noreg)
 137       Assembler::lwa(d, 0, roc.as_register());
 138     else
 139       Assembler::lwax(d, roc.as_register(), s1);
 140   }
 141 }
 142 
 143 void Assembler::lwz(Register d, RegisterOrConstant roc, Register s1) {
 144   if (roc.is_constant()) {
 145     if (s1 == noreg) {
 146       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
 147       Assembler::lwz(d, simm16_rest, d);
 148     } else if (is_simm(roc.as_constant(), 16)) {
 149       Assembler::lwz(d, roc.as_constant(), s1);
 150     } else {
 151       load_const_optimized(d, roc.as_constant());
 152       Assembler::lwzx(d, d, s1);
 153     }
 154   } else {
 155     if (s1 == noreg)
 156       Assembler::lwz(d, 0, roc.as_register());
 157     else
 158       Assembler::lwzx(d, roc.as_register(), s1);
 159   }
 160 }
 161 
 162 void Assembler::lha(Register d, RegisterOrConstant roc, Register s1) {
 163   if (roc.is_constant()) {
 164     if (s1 == noreg) {
 165       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
 166       Assembler::lha(d, simm16_rest, d);
 167     } else if (is_simm(roc.as_constant(), 16)) {
 168       Assembler::lha(d, roc.as_constant(), s1);
 169     } else {
 170       load_const_optimized(d, roc.as_constant());
 171       Assembler::lhax(d, d, s1);
 172     }
 173   } else {
 174     if (s1 == noreg)
 175       Assembler::lha(d, 0, roc.as_register());
 176     else
 177       Assembler::lhax(d, roc.as_register(), s1);
 178   }
 179 }
 180 
 181 void Assembler::lhz(Register d, RegisterOrConstant roc, Register s1) {
 182   if (roc.is_constant()) {
 183     if (s1 == noreg) {
 184       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
 185       Assembler::lhz(d, simm16_rest, d);
 186     } else if (is_simm(roc.as_constant(), 16)) {
 187       Assembler::lhz(d, roc.as_constant(), s1);
 188     } else {
 189       load_const_optimized(d, roc.as_constant());
 190       Assembler::lhzx(d, d, s1);
 191     }
 192   } else {
 193     if (s1 == noreg)
 194       Assembler::lhz(d, 0, roc.as_register());
 195     else
 196       Assembler::lhzx(d, roc.as_register(), s1);
 197   }
 198 }
 199 
 200 void Assembler::lbz(Register d, RegisterOrConstant roc, Register s1) {
 201   if (roc.is_constant()) {
 202     if (s1 == noreg) {
 203       int simm16_rest = load_const_optimized(d, roc.as_constant(), noreg, true);
 204       Assembler::lbz(d, simm16_rest, d);
 205     } else if (is_simm(roc.as_constant(), 16)) {
 206       Assembler::lbz(d, roc.as_constant(), s1);
 207     } else {
 208       load_const_optimized(d, roc.as_constant());
 209       Assembler::lbzx(d, d, s1);
 210     }
 211   } else {
 212     if (s1 == noreg)
 213       Assembler::lbz(d, 0, roc.as_register());
 214     else
 215       Assembler::lbzx(d, roc.as_register(), s1);
 216   }
 217 }
 218 
 219 void Assembler::std(Register d, RegisterOrConstant roc, Register s1, Register tmp) {
 220   if (roc.is_constant()) {
 221     if (s1 == noreg) {
 222       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
 223       int simm16_rest = load_const_optimized(tmp, roc.as_constant(), noreg, true);
 224       Assembler::std(d, simm16_rest, tmp);
 225     } else if (is_simm(roc.as_constant(), 16)) {
 226       Assembler::std(d, roc.as_constant(), s1);
 227     } else {
 228       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
 229       load_const_optimized(tmp, roc.as_constant());
 230       Assembler::stdx(d, tmp, s1);
 231     }
 232   } else {
 233     if (s1 == noreg)
 234       Assembler::std(d, 0, roc.as_register());
 235     else
 236       Assembler::stdx(d, roc.as_register(), s1);
 237   }
 238 }
 239 
 240 void Assembler::stw(Register d, RegisterOrConstant roc, Register s1, Register tmp) {
 241   if (roc.is_constant()) {
 242     if (s1 == noreg) {
 243       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
 244       int simm16_rest = load_const_optimized(tmp, roc.as_constant(), noreg, true);
 245       Assembler::stw(d, simm16_rest, tmp);
 246     } else if (is_simm(roc.as_constant(), 16)) {
 247       Assembler::stw(d, roc.as_constant(), s1);
 248     } else {
 249       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
 250       load_const_optimized(tmp, roc.as_constant());
 251       Assembler::stwx(d, tmp, s1);
 252     }
 253   } else {
 254     if (s1 == noreg)
 255       Assembler::stw(d, 0, roc.as_register());
 256     else
 257       Assembler::stwx(d, roc.as_register(), s1);
 258   }
 259 }
 260 
 261 void Assembler::sth(Register d, RegisterOrConstant roc, Register s1, Register tmp) {
 262   if (roc.is_constant()) {
 263     if (s1 == noreg) {
 264       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
 265       int simm16_rest = load_const_optimized(tmp, roc.as_constant(), noreg, true);
 266       Assembler::sth(d, simm16_rest, tmp);
 267     } else if (is_simm(roc.as_constant(), 16)) {
 268       Assembler::sth(d, roc.as_constant(), s1);
 269     } else {
 270       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
 271       load_const_optimized(tmp, roc.as_constant());
 272       Assembler::sthx(d, tmp, s1);
 273     }
 274   } else {
 275     if (s1 == noreg)
 276       Assembler::sth(d, 0, roc.as_register());
 277     else
 278       Assembler::sthx(d, roc.as_register(), s1);
 279   }
 280 }
 281 
 282 void Assembler::stb(Register d, RegisterOrConstant roc, Register s1, Register tmp) {
 283   if (roc.is_constant()) {
 284     if (s1 == noreg) {
 285       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
 286       int simm16_rest = load_const_optimized(tmp, roc.as_constant(), noreg, true);
 287       Assembler::stb(d, simm16_rest, tmp);
 288     } else if (is_simm(roc.as_constant(), 16)) {
 289       Assembler::stb(d, roc.as_constant(), s1);
 290     } else {
 291       guarantee(tmp != noreg, "Need tmp reg to encode large constants");
 292       load_const_optimized(tmp, roc.as_constant());
 293       Assembler::stbx(d, tmp, s1);
 294     }
 295   } else {
 296     if (s1 == noreg)
 297       Assembler::stb(d, 0, roc.as_register());
 298     else
 299       Assembler::stbx(d, roc.as_register(), s1);
 300   }
 301 }
 302 
 303 void Assembler::add(Register d, RegisterOrConstant roc, Register s1) {
 304   if (roc.is_constant()) {
 305     intptr_t c = roc.as_constant();
 306     assert(is_simm(c, 16), "too big");
 307     addi(d, s1, (int)c);
 308   }
 309   else add(d, roc.as_register(), s1);
 310 }
 311 
 312 void Assembler::subf(Register d, RegisterOrConstant roc, Register s1) {
 313   if (roc.is_constant()) {
 314     intptr_t c = roc.as_constant();
 315     assert(is_simm(-c, 16), "too big");
 316     addi(d, s1, (int)-c);
 317   }
 318   else subf(d, roc.as_register(), s1);
 319 }
 320 
 321 void Assembler::cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1) {
 322   if (roc.is_constant()) {
 323     intptr_t c = roc.as_constant();
 324     assert(is_simm(c, 16), "too big");
 325     cmpdi(d, s1, (int)c);
 326   }
 327   else cmpd(d, roc.as_register(), s1);
 328 }
 329 
 330 // Load a 64 bit constant. Patchable.
 331 void Assembler::load_const(Register d, long x, Register tmp) {
 332   // 64-bit value: x = xa xb xc xd
 333   int xa = (x >> 48) & 0xffff;
 334   int xb = (x >> 32) & 0xffff;
 335   int xc = (x >> 16) & 0xffff;
 336   int xd = (x >>  0) & 0xffff;
 337   if (tmp == noreg) {
 338     Assembler::lis( d, (int)(short)xa);
 339     Assembler::ori( d, d, (unsigned int)xb);
 340     Assembler::sldi(d, d, 32);
 341     Assembler::oris(d, d, (unsigned int)xc);
 342     Assembler::ori( d, d, (unsigned int)xd);
 343   } else {
 344     // exploit instruction level parallelism if we have a tmp register
 345     assert_different_registers(d, tmp);
 346     Assembler::lis(tmp, (int)(short)xa);
 347     Assembler::lis(d, (int)(short)xc);
 348     Assembler::ori(tmp, tmp, (unsigned int)xb);
 349     Assembler::ori(d, d, (unsigned int)xd);
 350     Assembler::insrdi(d, tmp, 32, 0);
 351   }
 352 }
 353 
 354 // Load a 64 bit constant, optimized, not identifyable.
 355 // Tmp can be used to increase ILP. Set return_simm16_rest=true to get a
 356 // 16 bit immediate offset.
 357 int Assembler::load_const_optimized(Register d, long x, Register tmp, bool return_simm16_rest) {
 358   // Avoid accidentally trying to use R0 for indexed addressing.
 359   assert(d != R0, "R0 not allowed");
 360   assert_different_registers(d, tmp);
 361 
 362   short xa, xb, xc, xd; // Four 16-bit chunks of const.
 363   long rem = x;         // Remaining part of const.
 364 
 365   xd = rem & 0xFFFF;    // Lowest 16-bit chunk.
 366   rem = (rem >> 16) + ((unsigned short)xd >> 15); // Compensation for sign extend.
 367 
 368   if (rem == 0) { // opt 1: simm16
 369     li(d, xd);
 370     return 0;
 371   }
 372 
 373   xc = rem & 0xFFFF; // Next 16-bit chunk.
 374   rem = (rem >> 16) + ((unsigned short)xc >> 15); // Compensation for sign extend.
 375 
 376   if (rem == 0) { // opt 2: simm32
 377     lis(d, xc);
 378   } else { // High 32 bits needed.
 379 
 380     if (tmp != noreg) { // opt 3: We have a temp reg.
 381       // No carry propagation between xc and higher chunks here (use logical instructions).
 382       xa = (x >> 48) & 0xffff;
 383       xb = (x >> 32) & 0xffff; // No sign compensation, we use lis+ori or li to allow usage of R0.
 384       bool load_xa = (xa != 0) || (xb < 0);
 385       bool return_xd = false;
 386 
 387       if (load_xa) { lis(tmp, xa); }
 388       if (xc) { lis(d, xc); }
 389       if (load_xa) {
 390         if (xb) { ori(tmp, tmp, (unsigned short)xb); } // No addi, we support tmp == R0.
 391       } else {
 392         li(tmp, xb); // non-negative
 393       }
 394       if (xc) {
 395         if (return_simm16_rest && xd >= 0) { return_xd = true; } // >= 0 to avoid carry propagation after insrdi/rldimi.
 396         else if (xd) { addi(d, d, xd); }
 397       } else {
 398         li(d, xd);
 399       }
 400       insrdi(d, tmp, 32, 0);
 401       return return_xd ? xd : 0; // non-negative
 402     }
 403 
 404     xb = rem & 0xFFFF; // Next 16-bit chunk.
 405     rem = (rem >> 16) + ((unsigned short)xb >> 15); // Compensation for sign extend.
 406 
 407     xa = rem & 0xFFFF; // Highest 16-bit chunk.
 408 
 409     // opt 4: avoid adding 0
 410     if (xa) { // Highest 16-bit needed?
 411       lis(d, xa);
 412       if (xb) { addi(d, d, xb); }
 413     } else {
 414       li(d, xb);
 415     }
 416     sldi(d, d, 32);
 417     if (xc) { addis(d, d, xc); }
 418   }
 419 
 420   // opt 5: Return offset to be inserted into following instruction.
 421   if (return_simm16_rest) return xd;
 422 
 423   if (xd) { addi(d, d, xd); }
 424   return 0;
 425 }
 426 
 427 #ifndef PRODUCT
 428 // Test of ppc assembler.
 429 void Assembler::test_asm() {
 430   // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
 431   addi(   R0,  R1,  10);
 432   addis(  R5,  R2,  11);
 433   addic_( R3,  R31, 42);
 434   subfic( R21, R12, 2112);
 435   add(    R3,  R2,  R1);
 436   add_(   R11, R22, R30);
 437   subf(   R7,  R6,  R5);
 438   subf_(  R8,  R9,  R4);
 439   addc(   R11, R12, R13);
 440   addc_(  R14, R14, R14);
 441   subfc(  R15, R16, R17);
 442   subfc_( R18, R20, R19);
 443   adde(   R20, R22, R24);
 444   adde_(  R29, R27, R26);
 445   subfe(  R28, R1,  R0);
 446   subfe_( R21, R11, R29);
 447   neg(    R21, R22);
 448   neg_(   R13, R23);
 449   mulli(  R0,  R11, -31);
 450   mulld(  R1,  R18, R21);
 451   mulld_( R2,  R17, R22);
 452   mullw(  R3,  R16, R23);
 453   mullw_( R4,  R15, R24);
 454   divd(   R5,  R14, R25);
 455   divd_(  R6,  R13, R26);
 456   divw(   R7,  R12, R27);
 457   divw_(  R8,  R11, R28);
 458 
 459   li(     R3, -4711);
 460 
 461   // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
 462   cmpi(   CCR7,  0, R27, 4711);
 463   cmp(    CCR0, 1, R14, R11);
 464   cmpli(  CCR5,  1, R17, 45);
 465   cmpl(   CCR3, 0, R9,  R10);
 466 
 467   cmpwi(  CCR7,  R27, 4711);
 468   cmpw(   CCR0, R14, R11);
 469   cmplwi( CCR5,  R17, 45);
 470   cmplw(  CCR3, R9,  R10);
 471 
 472   cmpdi(  CCR7,  R27, 4711);
 473   cmpd(   CCR0, R14, R11);
 474   cmpldi( CCR5,  R17, 45);
 475   cmpld(  CCR3, R9,  R10);
 476 
 477   // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
 478   andi_(  R4,  R5,  0xff);
 479   andis_( R12, R13, 0x7b51);
 480   ori(    R1,  R4,  13);
 481   oris(   R3,  R5,  177);
 482   xori(   R7,  R6,  51);
 483   xoris(  R29, R0,  1);
 484   andr(   R17, R21, R16);
 485   and_(   R3,  R5,  R15);
 486   orr(    R2,  R1,  R9);
 487   or_(    R17, R15, R11);
 488   xorr(   R19, R18, R10);
 489   xor_(   R31, R21, R11);
 490   nand(   R5,  R7,  R3);
 491   nand_(  R3,  R1,  R0);
 492   nor(    R2,  R3,  R5);
 493   nor_(   R3,  R6,  R8);
 494   andc(   R25, R12, R11);
 495   andc_(  R24, R22, R21);
 496   orc(    R20, R10, R12);
 497   orc_(   R22, R2,  R13);
 498 
 499   nop();
 500 
 501   // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
 502   sld(    R5,  R6,  R8);
 503   sld_(   R3,  R5,  R9);
 504   slw(    R2,  R1,  R10);
 505   slw_(   R6,  R26, R16);
 506   srd(    R16, R24, R8);
 507   srd_(   R21, R14, R7);
 508   srw(    R22, R25, R29);
 509   srw_(   R5,  R18, R17);
 510   srad(   R7,  R11, R0);
 511   srad_(  R9,  R13, R1);
 512   sraw(   R7,  R15, R2);
 513   sraw_(  R4,  R17, R3);
 514   sldi(   R3,  R18, 63);
 515   sldi_(  R2,  R20, 30);
 516   slwi(   R1,  R21, 30);
 517   slwi_(  R7,  R23, 8);
 518   srdi(   R0,  R19, 2);
 519   srdi_(  R12, R24, 5);
 520   srwi(   R13, R27, 6);
 521   srwi_(  R14, R29, 7);
 522   sradi(  R15, R30, 9);
 523   sradi_( R16, R31, 19);
 524   srawi(  R17, R31, 15);
 525   srawi_( R18, R31, 12);
 526 
 527   clrrdi( R3, R30, 5);
 528   clrldi( R9, R10, 11);
 529 
 530   rldicr( R19, R20, 13, 15);
 531   rldicr_(R20, R20, 16, 14);
 532   rldicl( R21, R21, 30, 33);
 533   rldicl_(R22, R1,  20, 25);
 534   rlwinm( R23, R2,  25, 10, 11);
 535   rlwinm_(R24, R3,  12, 13, 14);
 536 
 537   // PPC 1, section 3.3.2 Fixed-Point Load Instructions
 538   lwzx(   R3,  R5, R7);
 539   lwz(    R11,  0, R1);
 540   lwzu(   R31, -4, R11);
 541 
 542   lwax(   R3,  R5, R7);
 543   lwa(    R31, -4, R11);
 544   lhzx(   R3,  R5, R7);
 545   lhz(    R31, -4, R11);
 546   lhzu(   R31, -4, R11);
 547 
 548 
 549   lhax(   R3,  R5, R7);
 550   lha(    R31, -4, R11);
 551   lhau(   R11,  0, R1);
 552 
 553   lbzx(   R3,  R5, R7);
 554   lbz(    R31, -4, R11);
 555   lbzu(   R11,  0, R1);
 556 
 557   ld(     R31, -4, R11);
 558   ldx(    R3,  R5, R7);
 559   ldu(    R31, -4, R11);
 560 
 561   //  PPC 1, section 3.3.3 Fixed-Point Store Instructions
 562   stwx(   R3,  R5, R7);
 563   stw(    R31, -4, R11);
 564   stwu(   R11,  0, R1);
 565 
 566   sthx(   R3,  R5, R7 );
 567   sth(    R31, -4, R11);
 568   sthu(   R31, -4, R11);
 569 
 570   stbx(   R3,  R5, R7);
 571   stb(    R31, -4, R11);
 572   stbu(   R31, -4, R11);
 573 
 574   std(    R31, -4, R11);
 575   stdx(   R3,  R5, R7);
 576   stdu(   R31, -4, R11);
 577 
 578  // PPC 1, section 3.3.13 Move To/From System Register Instructions
 579   mtlr(   R3);
 580   mflr(   R3);
 581   mtctr(  R3);
 582   mfctr(  R3);
 583   mtcrf(  0xff, R15);
 584   mtcr(   R15);
 585   mtcrf(  0x03, R15);
 586   mtcr(   R15);
 587   mfcr(   R15);
 588 
 589  // PPC 1, section 2.4.1 Branch Instructions
 590   Label lbl1, lbl2, lbl3;
 591   bind(lbl1);
 592 
 593   b(pc());
 594   b(pc() - 8);
 595   b(lbl1);
 596   b(lbl2);
 597   b(lbl3);
 598 
 599   bl(pc() - 8);
 600   bl(lbl1);
 601   bl(lbl2);
 602 
 603   bcl(4, 10, pc() - 8);
 604   bcl(4, 10, lbl1);
 605   bcl(4, 10, lbl2);
 606 
 607   bclr( 4, 6, 0);
 608   bclrl(4, 6, 0);
 609 
 610   bind(lbl2);
 611 
 612   bcctr( 4, 6, 0);
 613   bcctrl(4, 6, 0);
 614 
 615   blt(CCR0, lbl2);
 616   bgt(CCR1, lbl2);
 617   beq(CCR2, lbl2);
 618   bso(CCR3, lbl2);
 619   bge(CCR4, lbl2);
 620   ble(CCR5, lbl2);
 621   bne(CCR6, lbl2);
 622   bns(CCR7, lbl2);
 623 
 624   bltl(CCR0, lbl2);
 625   bgtl(CCR1, lbl2);
 626   beql(CCR2, lbl2);
 627   bsol(CCR3, lbl2);
 628   bgel(CCR4, lbl2);
 629   blel(CCR5, lbl2);
 630   bnel(CCR6, lbl2);
 631   bnsl(CCR7, lbl2);
 632   blr();
 633 
 634   sync();
 635   icbi( R1, R2);
 636   dcbst(R2, R3);
 637 
 638   // FLOATING POINT instructions ppc.
 639   // PPC 1, section 4.6.2 Floating-Point Load Instructions
 640   lfs( F1, -11, R3);
 641   lfsu(F2, 123, R4);
 642   lfsx(F3, R5,  R6);
 643   lfd( F4, 456, R7);
 644   lfdu(F5, 789, R8);
 645   lfdx(F6, R10, R11);
 646 
 647   // PPC 1, section 4.6.3 Floating-Point Store Instructions
 648   stfs(  F7,  876, R12);
 649   stfsu( F8,  543, R13);
 650   stfsx( F9,  R14, R15);
 651   stfd(  F10, 210, R16);
 652   stfdu( F11, 111, R17);
 653   stfdx( F12, R18, R19);
 654 
 655   // PPC 1, section 4.6.4 Floating-Point Move Instructions
 656   fmr(   F13, F14);
 657   fmr_(  F14, F15);
 658   fneg(  F16, F17);
 659   fneg_( F18, F19);
 660   fabs(  F20, F21);
 661   fabs_( F22, F23);
 662   fnabs( F24, F25);
 663   fnabs_(F26, F27);
 664 
 665   // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic
 666   // Instructions
 667   fadd(  F28, F29, F30);
 668   fadd_( F31, F0,  F1);
 669   fadds( F2,  F3,  F4);
 670   fadds_(F5,  F6,  F7);
 671   fsub(  F8,  F9,  F10);
 672   fsub_( F11, F12, F13);
 673   fsubs( F14, F15, F16);
 674   fsubs_(F17, F18, F19);
 675   fmul(  F20, F21, F22);
 676   fmul_( F23, F24, F25);
 677   fmuls( F26, F27, F28);
 678   fmuls_(F29, F30, F31);
 679   fdiv(  F0,  F1,  F2);
 680   fdiv_( F3,  F4,  F5);
 681   fdivs( F6,  F7,  F8);
 682   fdivs_(F9,  F10, F11);
 683 
 684   // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion
 685   // Instructions
 686   frsp(  F12, F13);
 687   fctid( F14, F15);
 688   fctidz(F16, F17);
 689   fctiw( F18, F19);
 690   fctiwz(F20, F21);
 691   fcfid( F22, F23);
 692 
 693   // PPC 1, section 4.6.7 Floating-Point Compare Instructions
 694   fcmpu( CCR7, F24, F25);
 695 
 696   tty->print_cr("\ntest_asm disassembly (0x%lx 0x%lx):", p2i(code()->insts_begin()), p2i(code()->insts_end()));
 697   code()->decode();
 698 }
 699 
 700 #endif // !PRODUCT