1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  34 #include "gc_implementation/shared/liveRange.hpp"
  35 #include "memory/genOopClosures.inline.hpp"
  36 #include "memory/iterator.hpp"
  37 #include "memory/space.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/orderAccess.inline.hpp"
  40 
  41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  42 
  43 int    HeapRegion::LogOfHRGrainBytes = 0;
  44 int    HeapRegion::LogOfHRGrainWords = 0;
  45 size_t HeapRegion::GrainBytes        = 0;
  46 size_t HeapRegion::GrainWords        = 0;
  47 size_t HeapRegion::CardsPerRegion    = 0;
  48 
  49 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  50                                  HeapRegion* hr, ExtendedOopClosure* cl,
  51                                  CardTableModRefBS::PrecisionStyle precision,
  52                                  FilterKind fk) :
  53   DirtyCardToOopClosure(hr, cl, precision, NULL),
  54   _hr(hr), _fk(fk), _g1(g1) { }
  55 
  56 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  57                                                    OopClosure* oc) :
  58   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  59 
  60 template<class ClosureType>
  61 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  62                                HeapRegion* hr,
  63                                HeapWord* cur, HeapWord* top) {
  64   oop cur_oop = oop(cur);
  65   size_t oop_size = hr->block_size(cur);
  66   HeapWord* next_obj = cur + oop_size;
  67   while (next_obj < top) {
  68     // Keep filtering the remembered set.
  69     if (!g1h->is_obj_dead(cur_oop, hr)) {
  70       // Bottom lies entirely below top, so we can call the
  71       // non-memRegion version of oop_iterate below.
  72       cur_oop->oop_iterate(cl);
  73     }
  74     cur = next_obj;
  75     cur_oop = oop(cur);
  76     oop_size = hr->block_size(cur);
  77     next_obj = cur + oop_size;
  78   }
  79   return cur;
  80 }
  81 
  82 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  83                                       HeapWord* bottom,
  84                                       HeapWord* top) {
  85   G1CollectedHeap* g1h = _g1;
  86   size_t oop_size;
  87   ExtendedOopClosure* cl2 = NULL;
  88 
  89   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
  90   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
  91 
  92   switch (_fk) {
  93   case NoFilterKind:          cl2 = _cl; break;
  94   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  95   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  96   default:                    ShouldNotReachHere();
  97   }
  98 
  99   // Start filtering what we add to the remembered set. If the object is
 100   // not considered dead, either because it is marked (in the mark bitmap)
 101   // or it was allocated after marking finished, then we add it. Otherwise
 102   // we can safely ignore the object.
 103   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 104     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 105   } else {
 106     oop_size = _hr->block_size(bottom);
 107   }
 108 
 109   bottom += oop_size;
 110 
 111   if (bottom < top) {
 112     // We replicate the loop below for several kinds of possible filters.
 113     switch (_fk) {
 114     case NoFilterKind:
 115       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
 116       break;
 117 
 118     case IntoCSFilterKind: {
 119       FilterIntoCSClosure filt(this, g1h, _cl);
 120       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 121       break;
 122     }
 123 
 124     case OutOfRegionFilterKind: {
 125       FilterOutOfRegionClosure filt(_hr, _cl);
 126       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 127       break;
 128     }
 129 
 130     default:
 131       ShouldNotReachHere();
 132     }
 133 
 134     // Last object. Need to do dead-obj filtering here too.
 135     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 136       oop(bottom)->oop_iterate(cl2, mr);
 137     }
 138   }
 139 }
 140 
 141 size_t HeapRegion::max_region_size() {
 142   return HeapRegionBounds::max_size();
 143 }
 144 
 145 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 146   uintx region_size = G1HeapRegionSize;
 147   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 148     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 149     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 150                        (uintx) HeapRegionBounds::min_size());
 151   }
 152 
 153   int region_size_log = log2_long((jlong) region_size);
 154   // Recalculate the region size to make sure it's a power of
 155   // 2. This means that region_size is the largest power of 2 that's
 156   // <= what we've calculated so far.
 157   region_size = ((uintx)1 << region_size_log);
 158 
 159   // Now make sure that we don't go over or under our limits.
 160   if (region_size < HeapRegionBounds::min_size()) {
 161     region_size = HeapRegionBounds::min_size();
 162   } else if (region_size > HeapRegionBounds::max_size()) {
 163     region_size = HeapRegionBounds::max_size();
 164   }
 165 
 166   // And recalculate the log.
 167   region_size_log = log2_long((jlong) region_size);
 168 
 169   // Now, set up the globals.
 170   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 171   LogOfHRGrainBytes = region_size_log;
 172 
 173   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 174   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 175 
 176   guarantee(GrainBytes == 0, "we should only set it once");
 177   // The cast to int is safe, given that we've bounded region_size by
 178   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 179   GrainBytes = (size_t)region_size;
 180 
 181   guarantee(GrainWords == 0, "we should only set it once");
 182   GrainWords = GrainBytes >> LogHeapWordSize;
 183   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 184 
 185   guarantee(CardsPerRegion == 0, "we should only set it once");
 186   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 187 }
 188 
 189 void HeapRegion::reset_after_compaction() {
 190   G1OffsetTableContigSpace::reset_after_compaction();
 191   // After a compaction the mark bitmap is invalid, so we must
 192   // treat all objects as being inside the unmarked area.
 193   zero_marked_bytes();
 194   init_top_at_mark_start();
 195 }
 196 
 197 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 198   assert(_humongous_start_region == NULL,
 199          "we should have already filtered out humongous regions");
 200   assert(_end == _orig_end,
 201          "we should have already filtered out humongous regions");
 202 
 203   _in_collection_set = false;
 204 
 205   set_allocation_context(AllocationContext::system());
 206   set_young_index_in_cset(-1);
 207   uninstall_surv_rate_group();
 208   set_free();
 209   reset_pre_dummy_top();
 210 
 211   if (!par) {
 212     // If this is parallel, this will be done later.
 213     HeapRegionRemSet* hrrs = rem_set();
 214     if (locked) {
 215       hrrs->clear_locked();
 216     } else {
 217       hrrs->clear();
 218     }
 219     _claimed = InitialClaimValue;
 220   }
 221   zero_marked_bytes();
 222 
 223   _offsets.resize(HeapRegion::GrainWords);
 224   init_top_at_mark_start();
 225   if (clear_space) clear(SpaceDecorator::Mangle);
 226 }
 227 
 228 void HeapRegion::par_clear() {
 229   assert(used() == 0, "the region should have been already cleared");
 230   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 231   HeapRegionRemSet* hrrs = rem_set();
 232   hrrs->clear();
 233   CardTableModRefBS* ct_bs =
 234                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 235   ct_bs->clear(MemRegion(bottom(), end()));
 236 }
 237 
 238 void HeapRegion::calc_gc_efficiency() {
 239   // GC efficiency is the ratio of how much space would be
 240   // reclaimed over how long we predict it would take to reclaim it.
 241   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 242   G1CollectorPolicy* g1p = g1h->g1_policy();
 243 
 244   // Retrieve a prediction of the elapsed time for this region for
 245   // a mixed gc because the region will only be evacuated during a
 246   // mixed gc.
 247   double region_elapsed_time_ms =
 248     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 249   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 250 }
 251 
 252 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 253   assert(!isHumongous(), "sanity / pre-condition");
 254   assert(end() == _orig_end,
 255          "Should be normal before the humongous object allocation");
 256   assert(top() == bottom(), "should be empty");
 257   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 258 
 259   _type.set_starts_humongous();
 260   _humongous_start_region = this;
 261 
 262   set_end(new_end);
 263   _offsets.set_for_starts_humongous(new_top);
 264 }
 265 
 266 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 267   assert(!isHumongous(), "sanity / pre-condition");
 268   assert(end() == _orig_end,
 269          "Should be normal before the humongous object allocation");
 270   assert(top() == bottom(), "should be empty");
 271   assert(first_hr->startsHumongous(), "pre-condition");
 272 
 273   _type.set_continues_humongous();
 274   _humongous_start_region = first_hr;
 275 }
 276 
 277 void HeapRegion::clear_humongous() {
 278   assert(isHumongous(), "pre-condition");
 279 
 280   if (startsHumongous()) {
 281     assert(top() <= end(), "pre-condition");
 282     set_end(_orig_end);
 283     if (top() > end()) {
 284       // at least one "continues humongous" region after it
 285       set_top(end());
 286     }
 287   } else {
 288     // continues humongous
 289     assert(end() == _orig_end, "sanity");
 290   }
 291 
 292   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 293   _humongous_start_region = NULL;
 294 }
 295 
 296 bool HeapRegion::claimHeapRegion(jint claimValue) {
 297   jint current = _claimed;
 298   if (current != claimValue) {
 299     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 300     if (res == current) {
 301       return true;
 302     }
 303   }
 304   return false;
 305 }
 306 
 307 HeapRegion::HeapRegion(uint hrm_index,
 308                        G1BlockOffsetSharedArray* sharedOffsetArray,
 309                        MemRegion mr) :
 310     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 311     _hrm_index(hrm_index),
 312     _allocation_context(AllocationContext::system()),
 313     _humongous_start_region(NULL),
 314     _in_collection_set(false),
 315     _next_in_special_set(NULL), _orig_end(NULL),
 316     _claimed(InitialClaimValue), _evacuation_failed(false),
 317     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 318     _next_young_region(NULL),
 319     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 320 #ifdef ASSERT
 321     _containing_set(NULL),
 322 #endif // ASSERT
 323      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 324     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 325     _predicted_bytes_to_copy(0)
 326 {
 327   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 328   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 329 
 330   initialize(mr);
 331 }
 332 
 333 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 334   assert(_rem_set->is_empty(), "Remembered set must be empty");
 335 
 336   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 337 
 338   _orig_end = mr.end();
 339   hr_clear(false /*par*/, false /*clear_space*/);
 340   set_top(bottom());
 341   record_top_and_timestamp();
 342 }
 343 
 344 CompactibleSpace* HeapRegion::next_compaction_space() const {
 345   return G1CollectedHeap::heap()->next_compaction_region(this);
 346 }
 347 
 348 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 349                                                     bool during_conc_mark) {
 350   // We always recreate the prev marking info and we'll explicitly
 351   // mark all objects we find to be self-forwarded on the prev
 352   // bitmap. So all objects need to be below PTAMS.
 353   _prev_marked_bytes = 0;
 354 
 355   if (during_initial_mark) {
 356     // During initial-mark, we'll also explicitly mark all objects
 357     // we find to be self-forwarded on the next bitmap. So all
 358     // objects need to be below NTAMS.
 359     _next_top_at_mark_start = top();
 360     _next_marked_bytes = 0;
 361   } else if (during_conc_mark) {
 362     // During concurrent mark, all objects in the CSet (including
 363     // the ones we find to be self-forwarded) are implicitly live.
 364     // So all objects need to be above NTAMS.
 365     _next_top_at_mark_start = bottom();
 366     _next_marked_bytes = 0;
 367   }
 368 }
 369 
 370 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 371                                                   bool during_conc_mark,
 372                                                   size_t marked_bytes) {
 373   assert(0 <= marked_bytes && marked_bytes <= used(),
 374          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 375                  marked_bytes, used()));
 376   _prev_top_at_mark_start = top();
 377   _prev_marked_bytes = marked_bytes;
 378 }
 379 
 380 HeapWord*
 381 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 382                                                  ObjectClosure* cl) {
 383   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 384   // We used to use "block_start_careful" here.  But we're actually happy
 385   // to update the BOT while we do this...
 386   HeapWord* cur = block_start(mr.start());
 387   mr = mr.intersection(used_region());
 388   if (mr.is_empty()) return NULL;
 389   // Otherwise, find the obj that extends onto mr.start().
 390 
 391   assert(cur <= mr.start()
 392          && (oop(cur)->klass_or_null() == NULL ||
 393              cur + oop(cur)->size() > mr.start()),
 394          "postcondition of block_start");
 395   oop obj;
 396   while (cur < mr.end()) {
 397     obj = oop(cur);
 398     if (obj->klass_or_null() == NULL) {
 399       // Ran into an unparseable point.
 400       return cur;
 401     } else if (!g1h->is_obj_dead(obj)) {
 402       cl->do_object(obj);
 403     }
 404     if (cl->abort()) return cur;
 405     // The check above must occur before the operation below, since an
 406     // abort might invalidate the "size" operation.
 407     cur += block_size(cur);
 408   }
 409   return NULL;
 410 }
 411 
 412 HeapWord*
 413 HeapRegion::
 414 oops_on_card_seq_iterate_careful(MemRegion mr,
 415                                  FilterOutOfRegionClosure* cl,
 416                                  bool filter_young,
 417                                  jbyte* card_ptr) {
 418   // Currently, we should only have to clean the card if filter_young
 419   // is true and vice versa.
 420   if (filter_young) {
 421     assert(card_ptr != NULL, "pre-condition");
 422   } else {
 423     assert(card_ptr == NULL, "pre-condition");
 424   }
 425   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 426 
 427   // If we're within a stop-world GC, then we might look at a card in a
 428   // GC alloc region that extends onto a GC LAB, which may not be
 429   // parseable.  Stop such at the "saved_mark" of the region.
 430   if (g1h->is_gc_active()) {
 431     mr = mr.intersection(used_region_at_save_marks());
 432   } else {
 433     mr = mr.intersection(used_region());
 434   }
 435   if (mr.is_empty()) return NULL;
 436   // Otherwise, find the obj that extends onto mr.start().
 437 
 438   // The intersection of the incoming mr (for the card) and the
 439   // allocated part of the region is non-empty. This implies that
 440   // we have actually allocated into this region. The code in
 441   // G1CollectedHeap.cpp that allocates a new region sets the
 442   // is_young tag on the region before allocating. Thus we
 443   // safely know if this region is young.
 444   if (is_young() && filter_young) {
 445     return NULL;
 446   }
 447 
 448   assert(!is_young(), "check value of filter_young");
 449 
 450   // We can only clean the card here, after we make the decision that
 451   // the card is not young. And we only clean the card if we have been
 452   // asked to (i.e., card_ptr != NULL).
 453   if (card_ptr != NULL) {
 454     *card_ptr = CardTableModRefBS::clean_card_val();
 455     // We must complete this write before we do any of the reads below.
 456     OrderAccess::storeload();
 457   }
 458 
 459   // Cache the boundaries of the memory region in some const locals
 460   HeapWord* const start = mr.start();
 461   HeapWord* const end = mr.end();
 462 
 463   // We used to use "block_start_careful" here.  But we're actually happy
 464   // to update the BOT while we do this...
 465   HeapWord* cur = block_start(start);
 466   assert(cur <= start, "Postcondition");
 467 
 468   oop obj;
 469 
 470   HeapWord* next = cur;
 471   while (next <= start) {
 472     cur = next;
 473     obj = oop(cur);
 474     if (obj->klass_or_null() == NULL) {
 475       // Ran into an unparseable point.
 476       return cur;
 477     }
 478     // Otherwise...
 479     next = cur + block_size(cur);
 480   }
 481 
 482   // If we finish the above loop...We have a parseable object that
 483   // begins on or before the start of the memory region, and ends
 484   // inside or spans the entire region.
 485 
 486   assert(obj == oop(cur), "sanity");
 487   assert(cur <= start, "Loop postcondition");
 488   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 489   assert((cur + block_size(cur)) > start, "Loop postcondition");
 490 
 491   if (!g1h->is_obj_dead(obj)) {
 492     obj->oop_iterate(cl, mr);
 493   }
 494 
 495   while (cur < end) {
 496     obj = oop(cur);
 497     if (obj->klass_or_null() == NULL) {
 498       // Ran into an unparseable point.
 499       return cur;
 500     };
 501 
 502     // Otherwise:
 503     next = cur + block_size(cur);
 504 
 505     if (!g1h->is_obj_dead(obj)) {
 506       if (next < end || !obj->is_objArray()) {
 507         // This object either does not span the MemRegion
 508         // boundary, or if it does it's not an array.
 509         // Apply closure to whole object.
 510         obj->oop_iterate(cl);
 511       } else {
 512         // This obj is an array that spans the boundary.
 513         // Stop at the boundary.
 514         obj->oop_iterate(cl, mr);
 515       }
 516     }
 517     cur = next;
 518   }
 519   return NULL;
 520 }
 521 
 522 // Code roots support
 523 
 524 void HeapRegion::add_strong_code_root(nmethod* nm) {
 525   HeapRegionRemSet* hrrs = rem_set();
 526   hrrs->add_strong_code_root(nm);
 527 }
 528 
 529 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 530   assert_locked_or_safepoint(CodeCache_lock);
 531   HeapRegionRemSet* hrrs = rem_set();
 532   hrrs->add_strong_code_root_locked(nm);
 533 }
 534 
 535 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 536   HeapRegionRemSet* hrrs = rem_set();
 537   hrrs->remove_strong_code_root(nm);
 538 }
 539 
 540 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 541   HeapRegionRemSet* hrrs = rem_set();
 542   hrrs->strong_code_roots_do(blk);
 543 }
 544 
 545 class VerifyStrongCodeRootOopClosure: public OopClosure {
 546   const HeapRegion* _hr;
 547   nmethod* _nm;
 548   bool _failures;
 549   bool _has_oops_in_region;
 550 
 551   template <class T> void do_oop_work(T* p) {
 552     T heap_oop = oopDesc::load_heap_oop(p);
 553     if (!oopDesc::is_null(heap_oop)) {
 554       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 555 
 556       // Note: not all the oops embedded in the nmethod are in the
 557       // current region. We only look at those which are.
 558       if (_hr->is_in(obj)) {
 559         // Object is in the region. Check that its less than top
 560         if (_hr->top() <= (HeapWord*)obj) {
 561           // Object is above top
 562           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 563                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 564                                  "top "PTR_FORMAT,
 565                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 566           _failures = true;
 567           return;
 568         }
 569         // Nmethod has at least one oop in the current region
 570         _has_oops_in_region = true;
 571       }
 572     }
 573   }
 574 
 575 public:
 576   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 577     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 578 
 579   void do_oop(narrowOop* p) { do_oop_work(p); }
 580   void do_oop(oop* p)       { do_oop_work(p); }
 581 
 582   bool failures()           { return _failures; }
 583   bool has_oops_in_region() { return _has_oops_in_region; }
 584 };
 585 
 586 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 587   const HeapRegion* _hr;
 588   bool _failures;
 589 public:
 590   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 591     _hr(hr), _failures(false) {}
 592 
 593   void do_code_blob(CodeBlob* cb) {
 594     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 595     if (nm != NULL) {
 596       // Verify that the nemthod is live
 597       if (!nm->is_alive()) {
 598         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 599                                PTR_FORMAT" in its strong code roots",
 600                                _hr->bottom(), _hr->end(), nm);
 601         _failures = true;
 602       } else {
 603         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 604         nm->oops_do(&oop_cl);
 605         if (!oop_cl.has_oops_in_region()) {
 606           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 607                                  PTR_FORMAT" in its strong code roots "
 608                                  "with no pointers into region",
 609                                  _hr->bottom(), _hr->end(), nm);
 610           _failures = true;
 611         } else if (oop_cl.failures()) {
 612           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 613                                  "failures for nmethod "PTR_FORMAT,
 614                                  _hr->bottom(), _hr->end(), nm);
 615           _failures = true;
 616         }
 617       }
 618     }
 619   }
 620 
 621   bool failures()       { return _failures; }
 622 };
 623 
 624 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 625   if (!G1VerifyHeapRegionCodeRoots) {
 626     // We're not verifying code roots.
 627     return;
 628   }
 629   if (vo == VerifyOption_G1UseMarkWord) {
 630     // Marking verification during a full GC is performed after class
 631     // unloading, code cache unloading, etc so the strong code roots
 632     // attached to each heap region are in an inconsistent state. They won't
 633     // be consistent until the strong code roots are rebuilt after the
 634     // actual GC. Skip verifying the strong code roots in this particular
 635     // time.
 636     assert(VerifyDuringGC, "only way to get here");
 637     return;
 638   }
 639 
 640   HeapRegionRemSet* hrrs = rem_set();
 641   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 642 
 643   // if this region is empty then there should be no entries
 644   // on its strong code root list
 645   if (is_empty()) {
 646     if (strong_code_roots_length > 0) {
 647       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 648                              "but has "SIZE_FORMAT" code root entries",
 649                              bottom(), end(), strong_code_roots_length);
 650       *failures = true;
 651     }
 652     return;
 653   }
 654 
 655   if (continuesHumongous()) {
 656     if (strong_code_roots_length > 0) {
 657       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
 658                              "region but has "SIZE_FORMAT" code root entries",
 659                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 660       *failures = true;
 661     }
 662     return;
 663   }
 664 
 665   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 666   strong_code_roots_do(&cb_cl);
 667 
 668   if (cb_cl.failures()) {
 669     *failures = true;
 670   }
 671 }
 672 
 673 void HeapRegion::print() const { print_on(gclog_or_tty); }
 674 void HeapRegion::print_on(outputStream* st) const {
 675   st->print("AC%4u", allocation_context());
 676   st->print(" %2s", get_short_type_str());
 677   if (in_collection_set())
 678     st->print(" CS");
 679   else
 680     st->print("   ");
 681   st->print(" TS %5d", _gc_time_stamp);
 682   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 683             prev_top_at_mark_start(), next_top_at_mark_start());
 684   G1OffsetTableContigSpace::print_on(st);
 685 }
 686 
 687 class VerifyLiveClosure: public OopClosure {
 688 private:
 689   G1CollectedHeap* _g1h;
 690   CardTableModRefBS* _bs;
 691   oop _containing_obj;
 692   bool _failures;
 693   int _n_failures;
 694   VerifyOption _vo;
 695 public:
 696   // _vo == UsePrevMarking -> use "prev" marking information,
 697   // _vo == UseNextMarking -> use "next" marking information,
 698   // _vo == UseMarkWord    -> use mark word from object header.
 699   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 700     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 701     _failures(false), _n_failures(0), _vo(vo)
 702   {
 703     BarrierSet* bs = _g1h->barrier_set();
 704     if (bs->is_a(BarrierSet::CardTableModRef))
 705       _bs = (CardTableModRefBS*)bs;
 706   }
 707 
 708   void set_containing_obj(oop obj) {
 709     _containing_obj = obj;
 710   }
 711 
 712   bool failures() { return _failures; }
 713   int n_failures() { return _n_failures; }
 714 
 715   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 716   virtual void do_oop(      oop* p) { do_oop_work(p); }
 717 
 718   void print_object(outputStream* out, oop obj) {
 719 #ifdef PRODUCT
 720     Klass* k = obj->klass();
 721     const char* class_name = InstanceKlass::cast(k)->external_name();
 722     out->print_cr("class name %s", class_name);
 723 #else // PRODUCT
 724     obj->print_on(out);
 725 #endif // PRODUCT
 726   }
 727 
 728   template <class T>
 729   void do_oop_work(T* p) {
 730     assert(_containing_obj != NULL, "Precondition");
 731     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 732            "Precondition");
 733     T heap_oop = oopDesc::load_heap_oop(p);
 734     if (!oopDesc::is_null(heap_oop)) {
 735       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 736       bool failed = false;
 737       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 738         MutexLockerEx x(ParGCRareEvent_lock,
 739                         Mutex::_no_safepoint_check_flag);
 740 
 741         if (!_failures) {
 742           gclog_or_tty->cr();
 743           gclog_or_tty->print_cr("----------");
 744         }
 745         if (!_g1h->is_in_closed_subset(obj)) {
 746           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 747           gclog_or_tty->print_cr("Field "PTR_FORMAT
 748                                  " of live obj "PTR_FORMAT" in region "
 749                                  "["PTR_FORMAT", "PTR_FORMAT")",
 750                                  p, (void*) _containing_obj,
 751                                  from->bottom(), from->end());
 752           print_object(gclog_or_tty, _containing_obj);
 753           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 754                                  (void*) obj);
 755         } else {
 756           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 757           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 758           gclog_or_tty->print_cr("Field "PTR_FORMAT
 759                                  " of live obj "PTR_FORMAT" in region "
 760                                  "["PTR_FORMAT", "PTR_FORMAT")",
 761                                  p, (void*) _containing_obj,
 762                                  from->bottom(), from->end());
 763           print_object(gclog_or_tty, _containing_obj);
 764           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 765                                  "["PTR_FORMAT", "PTR_FORMAT")",
 766                                  (void*) obj, to->bottom(), to->end());
 767           print_object(gclog_or_tty, obj);
 768         }
 769         gclog_or_tty->print_cr("----------");
 770         gclog_or_tty->flush();
 771         _failures = true;
 772         failed = true;
 773         _n_failures++;
 774       }
 775 
 776       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 777         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 778         HeapRegion* to   = _g1h->heap_region_containing(obj);
 779         if (from != NULL && to != NULL &&
 780             from != to &&
 781             !to->isHumongous()) {
 782           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 783           jbyte cv_field = *_bs->byte_for_const(p);
 784           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 785 
 786           bool is_bad = !(from->is_young()
 787                           || to->rem_set()->contains_reference(p)
 788                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 789                               (_containing_obj->is_objArray() ?
 790                                   cv_field == dirty
 791                                : cv_obj == dirty || cv_field == dirty));
 792           if (is_bad) {
 793             MutexLockerEx x(ParGCRareEvent_lock,
 794                             Mutex::_no_safepoint_check_flag);
 795 
 796             if (!_failures) {
 797               gclog_or_tty->cr();
 798               gclog_or_tty->print_cr("----------");
 799             }
 800             gclog_or_tty->print_cr("Missing rem set entry:");
 801             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 802                                    "of obj "PTR_FORMAT", "
 803                                    "in region "HR_FORMAT,
 804                                    p, (void*) _containing_obj,
 805                                    HR_FORMAT_PARAMS(from));
 806             _containing_obj->print_on(gclog_or_tty);
 807             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 808                                    "in region "HR_FORMAT,
 809                                    (void*) obj,
 810                                    HR_FORMAT_PARAMS(to));
 811             obj->print_on(gclog_or_tty);
 812             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 813                           cv_obj, cv_field);
 814             gclog_or_tty->print_cr("----------");
 815             gclog_or_tty->flush();
 816             _failures = true;
 817             if (!failed) _n_failures++;
 818           }
 819         }
 820       }
 821     }
 822   }
 823 };
 824 
 825 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 826 // We would need a mechanism to make that code skip dead objects.
 827 
 828 void HeapRegion::verify(VerifyOption vo,
 829                         bool* failures) const {
 830   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 831   *failures = false;
 832   HeapWord* p = bottom();
 833   HeapWord* prev_p = NULL;
 834   VerifyLiveClosure vl_cl(g1, vo);
 835   bool is_humongous = isHumongous();
 836   bool do_bot_verify = !is_young();
 837   size_t object_num = 0;
 838   while (p < top()) {
 839     oop obj = oop(p);
 840     size_t obj_size = block_size(p);
 841     object_num += 1;
 842 
 843     if (is_humongous != g1->isHumongous(obj_size) &&
 844         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 845       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 846                              SIZE_FORMAT" words) in a %shumongous region",
 847                              p, g1->isHumongous(obj_size) ? "" : "non-",
 848                              obj_size, is_humongous ? "" : "non-");
 849        *failures = true;
 850        return;
 851     }
 852 
 853     // If it returns false, verify_for_object() will output the
 854     // appropriate message.
 855     if (do_bot_verify &&
 856         !g1->is_obj_dead(obj, this) &&
 857         !_offsets.verify_for_object(p, obj_size)) {
 858       *failures = true;
 859       return;
 860     }
 861 
 862     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 863       if (obj->is_oop()) {
 864         Klass* klass = obj->klass();
 865         bool is_metaspace_object = Metaspace::contains(klass) ||
 866                                    (vo == VerifyOption_G1UsePrevMarking &&
 867                                    ClassLoaderDataGraph::unload_list_contains(klass));
 868         if (!is_metaspace_object) {
 869           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 870                                  "not metadata", klass, (void *)obj);
 871           *failures = true;
 872           return;
 873         } else if (!klass->is_klass()) {
 874           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 875                                  "not a klass", klass, (void *)obj);
 876           *failures = true;
 877           return;
 878         } else {
 879           vl_cl.set_containing_obj(obj);
 880           obj->oop_iterate_no_header(&vl_cl);
 881           if (vl_cl.failures()) {
 882             *failures = true;
 883           }
 884           if (G1MaxVerifyFailures >= 0 &&
 885               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 886             return;
 887           }
 888         }
 889       } else {
 890         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
 891         *failures = true;
 892         return;
 893       }
 894     }
 895     prev_p = p;
 896     p += obj_size;
 897   }
 898 
 899   if (p != top()) {
 900     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 901                            "does not match top "PTR_FORMAT, p, top());
 902     *failures = true;
 903     return;
 904   }
 905 
 906   HeapWord* the_end = end();
 907   assert(p == top(), "it should still hold");
 908   // Do some extra BOT consistency checking for addresses in the
 909   // range [top, end). BOT look-ups in this range should yield
 910   // top. No point in doing that if top == end (there's nothing there).
 911   if (p < the_end) {
 912     // Look up top
 913     HeapWord* addr_1 = p;
 914     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 915     if (b_start_1 != p) {
 916       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 917                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 918                              addr_1, b_start_1, p);
 919       *failures = true;
 920       return;
 921     }
 922 
 923     // Look up top + 1
 924     HeapWord* addr_2 = p + 1;
 925     if (addr_2 < the_end) {
 926       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 927       if (b_start_2 != p) {
 928         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 929                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 930                                addr_2, b_start_2, p);
 931         *failures = true;
 932         return;
 933       }
 934     }
 935 
 936     // Look up an address between top and end
 937     size_t diff = pointer_delta(the_end, p) / 2;
 938     HeapWord* addr_3 = p + diff;
 939     if (addr_3 < the_end) {
 940       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 941       if (b_start_3 != p) {
 942         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 943                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 944                                addr_3, b_start_3, p);
 945         *failures = true;
 946         return;
 947       }
 948     }
 949 
 950     // Loook up end - 1
 951     HeapWord* addr_4 = the_end - 1;
 952     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 953     if (b_start_4 != p) {
 954       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
 955                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 956                              addr_4, b_start_4, p);
 957       *failures = true;
 958       return;
 959     }
 960   }
 961 
 962   if (is_humongous && object_num > 1) {
 963     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 964                            "but has "SIZE_FORMAT", objects",
 965                            bottom(), end(), object_num);
 966     *failures = true;
 967     return;
 968   }
 969 
 970   verify_strong_code_roots(vo, failures);
 971 }
 972 
 973 void HeapRegion::verify() const {
 974   bool dummy = false;
 975   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 976 }
 977 
 978 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 979 // away eventually.
 980 
 981 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 982   set_top(bottom());
 983   set_saved_mark_word(bottom());
 984   CompactibleSpace::clear(mangle_space);
 985   reset_bot();
 986 }
 987 
 988 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 989   Space::set_bottom(new_bottom);
 990   _offsets.set_bottom(new_bottom);
 991 }
 992 
 993 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 994   Space::set_end(new_end);
 995   _offsets.resize(new_end - bottom());
 996 }
 997 
 998 void G1OffsetTableContigSpace::print() const {
 999   print_short();
1000   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1001                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1002                 bottom(), top(), _offsets.threshold(), end());
1003 }
1004 
1005 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1006   return _offsets.initialize_threshold();
1007 }
1008 
1009 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1010                                                     HeapWord* end) {
1011   _offsets.alloc_block(start, end);
1012   return _offsets.threshold();
1013 }
1014 
1015 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
1016   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1017   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
1018   HeapWord* local_top = top();
1019   OrderAccess::loadload();
1020   if (_gc_time_stamp < g1h->get_gc_time_stamp()) {
1021     return local_top;
1022   } else {
1023     return Space::saved_mark_word();
1024   }
1025 }
1026 
1027 void G1OffsetTableContigSpace::record_top_and_timestamp() {
1028   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1029   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1030 
1031   if (_gc_time_stamp < curr_gc_time_stamp) {
1032     // The order of these is important, as another thread might be
1033     // about to start scanning this region. If it does so after
1034     // set_saved_mark and before _gc_time_stamp = ..., then the latter
1035     // will be false, and it will pick up top() as the high water mark
1036     // of region. If it does so after _gc_time_stamp = ..., then it
1037     // will pick up the right saved_mark_word() as the high water mark
1038     // of the region. Either way, the behaviour will be correct.
1039     Space::set_saved_mark_word(top());
1040     OrderAccess::storestore();
1041     _gc_time_stamp = curr_gc_time_stamp;
1042     // No need to do another barrier to flush the writes above. If
1043     // this is called in parallel with other threads trying to
1044     // allocate into the region, the caller should call this while
1045     // holding a lock and when the lock is released the writes will be
1046     // flushed.
1047   }
1048 }
1049 
1050 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1051   object_iterate(blk);
1052 }
1053 
1054 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1055   HeapWord* p = bottom();
1056   while (p < top()) {
1057     if (block_is_obj(p)) {
1058       blk->do_object(oop(p));
1059     }
1060     p += block_size(p);
1061   }
1062 }
1063 
1064 #define block_is_always_obj(q) true
1065 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
1066   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
1067 }
1068 #undef block_is_always_obj
1069 
1070 G1OffsetTableContigSpace::
1071 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1072                          MemRegion mr) :
1073   _offsets(sharedOffsetArray, mr),
1074   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1075   _gc_time_stamp(0)
1076 {
1077   _offsets.set_space(this);
1078 }
1079 
1080 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1081   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1082   _top = bottom();
1083   reset_bot();
1084 }
1085