1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
  26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "memory/universe.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/orderAccess.hpp"
  33 
  34 class BytecodeStream;
  35 class KlassSizeStats;
  36 
  37 // The MethodData object collects counts and other profile information
  38 // during zeroth-tier (interpretive) and first-tier execution.
  39 // The profile is used later by compilation heuristics.  Some heuristics
  40 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  41 // optimization often has a down-side, a corner case that it handles
  42 // poorly, but which is thought to be rare.  The profile provides
  43 // evidence of this rarity for a given method or even BCI.  It allows
  44 // the compiler to back out of the optimization at places where it
  45 // has historically been a poor choice.  Other heuristics try to use
  46 // specific information gathered about types observed at a given site.
  47 //
  48 // All data in the profile is approximate.  It is expected to be accurate
  49 // on the whole, but the system expects occasional inaccuraces, due to
  50 // counter overflow, multiprocessor races during data collection, space
  51 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  52 // optimization quality but will not affect correctness.  Also, each MDO
  53 // is marked with its birth-date ("creation_mileage") which can be used
  54 // to assess the quality ("maturity") of its data.
  55 //
  56 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  57 // state.  Also, certain recorded per-BCI events are given one-bit counters
  58 // which overflow to a saturated state which applied to all counters at
  59 // that BCI.  In other words, there is a small lattice which approximates
  60 // the ideal of an infinite-precision counter for each event at each BCI,
  61 // and the lattice quickly "bottoms out" in a state where all counters
  62 // are taken to be indefinitely large.
  63 //
  64 // The reader will find many data races in profile gathering code, starting
  65 // with invocation counter incrementation.  None of these races harm correct
  66 // execution of the compiled code.
  67 
  68 // forward decl
  69 class ProfileData;
  70 
  71 // DataLayout
  72 //
  73 // Overlay for generic profiling data.
  74 class DataLayout VALUE_OBJ_CLASS_SPEC {
  75   friend class VMStructs;
  76 
  77 private:
  78   // Every data layout begins with a header.  This header
  79   // contains a tag, which is used to indicate the size/layout
  80   // of the data, 4 bits of flags, which can be used in any way,
  81   // 4 bits of trap history (none/one reason/many reasons),
  82   // and a bci, which is used to tie this piece of data to a
  83   // specific bci in the bytecodes.
  84   union {
  85     intptr_t _bits;
  86     struct {
  87       u1 _tag;
  88       u1 _flags;
  89       u2 _bci;
  90     } _struct;
  91   } _header;
  92 
  93   // The data layout has an arbitrary number of cells, each sized
  94   // to accomodate a pointer or an integer.
  95   intptr_t _cells[1];
  96 
  97   // Some types of data layouts need a length field.
  98   static bool needs_array_len(u1 tag);
  99 
 100 public:
 101   enum {
 102     counter_increment = 1
 103   };
 104 
 105   enum {
 106     cell_size = sizeof(intptr_t)
 107   };
 108 
 109   // Tag values
 110   enum {
 111     no_tag,
 112     bit_data_tag,
 113     counter_data_tag,
 114     jump_data_tag,
 115     receiver_type_data_tag,
 116     virtual_call_data_tag,
 117     ret_data_tag,
 118     branch_data_tag,
 119     multi_branch_data_tag,
 120     arg_info_data_tag,
 121     call_type_data_tag,
 122     virtual_call_type_data_tag,
 123     parameters_type_data_tag,
 124     speculative_trap_data_tag
 125   };
 126 
 127   enum {
 128     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
 129     // The trap state breaks down further as [recompile:1 | reason:3].
 130     // This further breakdown is defined in deoptimization.cpp.
 131     // See Deoptimization::trap_state_reason for an assert that
 132     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 133     //
 134     // The trap_state is collected only if ProfileTraps is true.
 135     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
 136     trap_shift = BitsPerByte - trap_bits,
 137     trap_mask = right_n_bits(trap_bits),
 138     trap_mask_in_place = (trap_mask << trap_shift),
 139     flag_limit = trap_shift,
 140     flag_mask = right_n_bits(flag_limit),
 141     first_flag = 0
 142   };
 143 
 144   // Size computation
 145   static int header_size_in_bytes() {
 146     return cell_size;
 147   }
 148   static int header_size_in_cells() {
 149     return 1;
 150   }
 151 
 152   static int compute_size_in_bytes(int cell_count) {
 153     return header_size_in_bytes() + cell_count * cell_size;
 154   }
 155 
 156   // Initialization
 157   void initialize(u1 tag, u2 bci, int cell_count);
 158 
 159   // Accessors
 160   u1 tag() {
 161     return _header._struct._tag;
 162   }
 163 
 164   // Return a few bits of trap state.  Range is [0..trap_mask].
 165   // The state tells if traps with zero, one, or many reasons have occurred.
 166   // It also tells whether zero or many recompilations have occurred.
 167   // The associated trap histogram in the MDO itself tells whether
 168   // traps are common or not.  If a BCI shows that a trap X has
 169   // occurred, and the MDO shows N occurrences of X, we make the
 170   // simplifying assumption that all N occurrences can be blamed
 171   // on that BCI.
 172   int trap_state() const {
 173     return ((_header._struct._flags >> trap_shift) & trap_mask);
 174   }
 175 
 176   void set_trap_state(int new_state) {
 177     assert(ProfileTraps, "used only under +ProfileTraps");
 178     uint old_flags = (_header._struct._flags & flag_mask);
 179     _header._struct._flags = (new_state << trap_shift) | old_flags;
 180   }
 181 
 182   u1 flags() const {
 183     return _header._struct._flags;
 184   }
 185 
 186   u2 bci() const {
 187     return _header._struct._bci;
 188   }
 189 
 190   void set_header(intptr_t value) {
 191     _header._bits = value;
 192   }
 193   intptr_t header() {
 194     return _header._bits;
 195   }
 196   void set_cell_at(int index, intptr_t value) {
 197     _cells[index] = value;
 198   }
 199   void release_set_cell_at(int index, intptr_t value) {
 200     OrderAccess::release_store_ptr(&_cells[index], value);
 201   }
 202   intptr_t cell_at(int index) const {
 203     return _cells[index];
 204   }
 205 
 206   void set_flag_at(int flag_number) {
 207     assert(flag_number < flag_limit, "oob");
 208     _header._struct._flags |= (0x1 << flag_number);
 209   }
 210   bool flag_at(int flag_number) const {
 211     assert(flag_number < flag_limit, "oob");
 212     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 213   }
 214 
 215   // Low-level support for code generation.
 216   static ByteSize header_offset() {
 217     return byte_offset_of(DataLayout, _header);
 218   }
 219   static ByteSize tag_offset() {
 220     return byte_offset_of(DataLayout, _header._struct._tag);
 221   }
 222   static ByteSize flags_offset() {
 223     return byte_offset_of(DataLayout, _header._struct._flags);
 224   }
 225   static ByteSize bci_offset() {
 226     return byte_offset_of(DataLayout, _header._struct._bci);
 227   }
 228   static ByteSize cell_offset(int index) {
 229     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 230   }
 231 #ifdef CC_INTERP
 232   static int cell_offset_in_bytes(int index) {
 233     return (int)offset_of(DataLayout, _cells[index]);
 234   }
 235 #endif // CC_INTERP
 236   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 237   static int flag_number_to_byte_constant(int flag_number) {
 238     assert(0 <= flag_number && flag_number < flag_limit, "oob");
 239     DataLayout temp; temp.set_header(0);
 240     temp.set_flag_at(flag_number);
 241     return temp._header._struct._flags;
 242   }
 243   // Return a value which, when or-ed as a word into _header, sets the flag.
 244   static intptr_t flag_mask_to_header_mask(int byte_constant) {
 245     DataLayout temp; temp.set_header(0);
 246     temp._header._struct._flags = byte_constant;
 247     return temp._header._bits;
 248   }
 249 
 250   ProfileData* data_in();
 251 
 252   // GC support
 253   void clean_weak_klass_links(BoolObjectClosure* cl);
 254 };
 255 
 256 
 257 // ProfileData class hierarchy
 258 class ProfileData;
 259 class   BitData;
 260 class     CounterData;
 261 class       ReceiverTypeData;
 262 class         VirtualCallData;
 263 class           VirtualCallTypeData;
 264 class       RetData;
 265 class       CallTypeData;
 266 class   JumpData;
 267 class     BranchData;
 268 class   ArrayData;
 269 class     MultiBranchData;
 270 class     ArgInfoData;
 271 class     ParametersTypeData;
 272 class   SpeculativeTrapData;
 273 
 274 // ProfileData
 275 //
 276 // A ProfileData object is created to refer to a section of profiling
 277 // data in a structured way.
 278 class ProfileData : public ResourceObj {
 279   friend class TypeEntries;
 280   friend class ReturnTypeEntry;
 281   friend class TypeStackSlotEntries;
 282 private:
 283 #ifndef PRODUCT
 284   enum {
 285     tab_width_one = 16,
 286     tab_width_two = 36
 287   };
 288 #endif // !PRODUCT
 289 
 290   // This is a pointer to a section of profiling data.
 291   DataLayout* _data;
 292 
 293   char* print_data_on_helper(const MethodData* md) const;
 294 
 295 protected:
 296   DataLayout* data() { return _data; }
 297   const DataLayout* data() const { return _data; }
 298 
 299   enum {
 300     cell_size = DataLayout::cell_size
 301   };
 302 
 303 public:
 304   // How many cells are in this?
 305   virtual int cell_count() const {
 306     ShouldNotReachHere();
 307     return -1;
 308   }
 309 
 310   // Return the size of this data.
 311   int size_in_bytes() {
 312     return DataLayout::compute_size_in_bytes(cell_count());
 313   }
 314 
 315 protected:
 316   // Low-level accessors for underlying data
 317   void set_intptr_at(int index, intptr_t value) {
 318     assert(0 <= index && index < cell_count(), "oob");
 319     data()->set_cell_at(index, value);
 320   }
 321   void release_set_intptr_at(int index, intptr_t value) {
 322     assert(0 <= index && index < cell_count(), "oob");
 323     data()->release_set_cell_at(index, value);
 324   }
 325   intptr_t intptr_at(int index) const {
 326     assert(0 <= index && index < cell_count(), "oob");
 327     return data()->cell_at(index);
 328   }
 329   void set_uint_at(int index, uint value) {
 330     set_intptr_at(index, (intptr_t) value);
 331   }
 332   void release_set_uint_at(int index, uint value) {
 333     release_set_intptr_at(index, (intptr_t) value);
 334   }
 335   uint uint_at(int index) const {
 336     return (uint)intptr_at(index);
 337   }
 338   void set_int_at(int index, int value) {
 339     set_intptr_at(index, (intptr_t) value);
 340   }
 341   void release_set_int_at(int index, int value) {
 342     release_set_intptr_at(index, (intptr_t) value);
 343   }
 344   int int_at(int index) const {
 345     return (int)intptr_at(index);
 346   }
 347   int int_at_unchecked(int index) const {
 348     return (int)data()->cell_at(index);
 349   }
 350   void set_oop_at(int index, oop value) {
 351     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 352   }
 353   oop oop_at(int index) const {
 354     return cast_to_oop(intptr_at(index));
 355   }
 356 
 357   void set_flag_at(int flag_number) {
 358     data()->set_flag_at(flag_number);
 359   }
 360   bool flag_at(int flag_number) const {
 361     return data()->flag_at(flag_number);
 362   }
 363 
 364   // two convenient imports for use by subclasses:
 365   static ByteSize cell_offset(int index) {
 366     return DataLayout::cell_offset(index);
 367   }
 368   static int flag_number_to_byte_constant(int flag_number) {
 369     return DataLayout::flag_number_to_byte_constant(flag_number);
 370   }
 371 
 372   ProfileData(DataLayout* data) {
 373     _data = data;
 374   }
 375 
 376 #ifdef CC_INTERP
 377   // Static low level accessors for DataLayout with ProfileData's semantics.
 378 
 379   static int cell_offset_in_bytes(int index) {
 380     return DataLayout::cell_offset_in_bytes(index);
 381   }
 382 
 383   static void increment_uint_at_no_overflow(DataLayout* layout, int index,
 384                                             int inc = DataLayout::counter_increment) {
 385     uint count = ((uint)layout->cell_at(index)) + inc;
 386     if (count == 0) return;
 387     layout->set_cell_at(index, (intptr_t) count);
 388   }
 389 
 390   static int int_at(DataLayout* layout, int index) {
 391     return (int)layout->cell_at(index);
 392   }
 393 
 394   static int uint_at(DataLayout* layout, int index) {
 395     return (uint)layout->cell_at(index);
 396   }
 397 
 398   static oop oop_at(DataLayout* layout, int index) {
 399     return cast_to_oop(layout->cell_at(index));
 400   }
 401 
 402   static void set_intptr_at(DataLayout* layout, int index, intptr_t value) {
 403     layout->set_cell_at(index, (intptr_t) value);
 404   }
 405 
 406   static void set_flag_at(DataLayout* layout, int flag_number) {
 407     layout->set_flag_at(flag_number);
 408   }
 409 #endif // CC_INTERP
 410 
 411 public:
 412   // Constructor for invalid ProfileData.
 413   ProfileData();
 414 
 415   u2 bci() const {
 416     return data()->bci();
 417   }
 418 
 419   address dp() {
 420     return (address)_data;
 421   }
 422 
 423   int trap_state() const {
 424     return data()->trap_state();
 425   }
 426   void set_trap_state(int new_state) {
 427     data()->set_trap_state(new_state);
 428   }
 429 
 430   // Type checking
 431   virtual bool is_BitData()         const { return false; }
 432   virtual bool is_CounterData()     const { return false; }
 433   virtual bool is_JumpData()        const { return false; }
 434   virtual bool is_ReceiverTypeData()const { return false; }
 435   virtual bool is_VirtualCallData() const { return false; }
 436   virtual bool is_RetData()         const { return false; }
 437   virtual bool is_BranchData()      const { return false; }
 438   virtual bool is_ArrayData()       const { return false; }
 439   virtual bool is_MultiBranchData() const { return false; }
 440   virtual bool is_ArgInfoData()     const { return false; }
 441   virtual bool is_CallTypeData()    const { return false; }
 442   virtual bool is_VirtualCallTypeData()const { return false; }
 443   virtual bool is_ParametersTypeData() const { return false; }
 444   virtual bool is_SpeculativeTrapData()const { return false; }
 445 
 446 
 447   BitData* as_BitData() const {
 448     assert(is_BitData(), "wrong type");
 449     return is_BitData()         ? (BitData*)        this : NULL;
 450   }
 451   CounterData* as_CounterData() const {
 452     assert(is_CounterData(), "wrong type");
 453     return is_CounterData()     ? (CounterData*)    this : NULL;
 454   }
 455   JumpData* as_JumpData() const {
 456     assert(is_JumpData(), "wrong type");
 457     return is_JumpData()        ? (JumpData*)       this : NULL;
 458   }
 459   ReceiverTypeData* as_ReceiverTypeData() const {
 460     assert(is_ReceiverTypeData(), "wrong type");
 461     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 462   }
 463   VirtualCallData* as_VirtualCallData() const {
 464     assert(is_VirtualCallData(), "wrong type");
 465     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 466   }
 467   RetData* as_RetData() const {
 468     assert(is_RetData(), "wrong type");
 469     return is_RetData()         ? (RetData*)        this : NULL;
 470   }
 471   BranchData* as_BranchData() const {
 472     assert(is_BranchData(), "wrong type");
 473     return is_BranchData()      ? (BranchData*)     this : NULL;
 474   }
 475   ArrayData* as_ArrayData() const {
 476     assert(is_ArrayData(), "wrong type");
 477     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 478   }
 479   MultiBranchData* as_MultiBranchData() const {
 480     assert(is_MultiBranchData(), "wrong type");
 481     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 482   }
 483   ArgInfoData* as_ArgInfoData() const {
 484     assert(is_ArgInfoData(), "wrong type");
 485     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 486   }
 487   CallTypeData* as_CallTypeData() const {
 488     assert(is_CallTypeData(), "wrong type");
 489     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 490   }
 491   VirtualCallTypeData* as_VirtualCallTypeData() const {
 492     assert(is_VirtualCallTypeData(), "wrong type");
 493     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 494   }
 495   ParametersTypeData* as_ParametersTypeData() const {
 496     assert(is_ParametersTypeData(), "wrong type");
 497     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
 498   }
 499   SpeculativeTrapData* as_SpeculativeTrapData() const {
 500     assert(is_SpeculativeTrapData(), "wrong type");
 501     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
 502   }
 503 
 504 
 505   // Subclass specific initialization
 506   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 507 
 508   // GC support
 509   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {}
 510 
 511   // CI translation: ProfileData can represent both MethodDataOop data
 512   // as well as CIMethodData data. This function is provided for translating
 513   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 514   // most ProfileData don't require any translation, so we provide the null
 515   // translation here, and the required translators are in the ci subclasses.
 516   virtual void translate_from(const ProfileData* data) {}
 517 
 518   virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
 519     ShouldNotReachHere();
 520   }
 521 
 522   void print_data_on(outputStream* st, const MethodData* md) const;
 523 
 524 #ifndef PRODUCT
 525   void print_shared(outputStream* st, const char* name, const char* extra) const;
 526   void tab(outputStream* st, bool first = false) const;
 527 #endif
 528 };
 529 
 530 // BitData
 531 //
 532 // A BitData holds a flag or two in its header.
 533 class BitData : public ProfileData {
 534 protected:
 535   enum {
 536     // null_seen:
 537     //  saw a null operand (cast/aastore/instanceof)
 538     null_seen_flag              = DataLayout::first_flag + 0
 539   };
 540   enum { bit_cell_count = 0 };  // no additional data fields needed.
 541 public:
 542   BitData(DataLayout* layout) : ProfileData(layout) {
 543   }
 544 
 545   virtual bool is_BitData() const { return true; }
 546 
 547   static int static_cell_count() {
 548     return bit_cell_count;
 549   }
 550 
 551   virtual int cell_count() const {
 552     return static_cell_count();
 553   }
 554 
 555   // Accessor
 556 
 557   // The null_seen flag bit is specially known to the interpreter.
 558   // Consulting it allows the compiler to avoid setting up null_check traps.
 559   bool null_seen()     { return flag_at(null_seen_flag); }
 560   void set_null_seen()    { set_flag_at(null_seen_flag); }
 561 
 562 
 563   // Code generation support
 564   static int null_seen_byte_constant() {
 565     return flag_number_to_byte_constant(null_seen_flag);
 566   }
 567 
 568   static ByteSize bit_data_size() {
 569     return cell_offset(bit_cell_count);
 570   }
 571 
 572 #ifdef CC_INTERP
 573   static int bit_data_size_in_bytes() {
 574     return cell_offset_in_bytes(bit_cell_count);
 575   }
 576 
 577   static void set_null_seen(DataLayout* layout) {
 578     set_flag_at(layout, null_seen_flag);
 579   }
 580 
 581   static DataLayout* advance(DataLayout* layout) {
 582     return (DataLayout*) (((address)layout) + (ssize_t)BitData::bit_data_size_in_bytes());
 583   }
 584 #endif // CC_INTERP
 585 
 586 #ifndef PRODUCT
 587   void print_data_on(outputStream* st, const char* extra = NULL) const;
 588 #endif
 589 };
 590 
 591 // CounterData
 592 //
 593 // A CounterData corresponds to a simple counter.
 594 class CounterData : public BitData {
 595 protected:
 596   enum {
 597     count_off,
 598     counter_cell_count
 599   };
 600 public:
 601   CounterData(DataLayout* layout) : BitData(layout) {}
 602 
 603   virtual bool is_CounterData() const { return true; }
 604 
 605   static int static_cell_count() {
 606     return counter_cell_count;
 607   }
 608 
 609   virtual int cell_count() const {
 610     return static_cell_count();
 611   }
 612 
 613   // Direct accessor
 614   uint count() const {
 615     return uint_at(count_off);
 616   }
 617 
 618   // Code generation support
 619   static ByteSize count_offset() {
 620     return cell_offset(count_off);
 621   }
 622   static ByteSize counter_data_size() {
 623     return cell_offset(counter_cell_count);
 624   }
 625 
 626   void set_count(uint count) {
 627     set_uint_at(count_off, count);
 628   }
 629 
 630 #ifdef CC_INTERP
 631   static int counter_data_size_in_bytes() {
 632     return cell_offset_in_bytes(counter_cell_count);
 633   }
 634 
 635   static void increment_count_no_overflow(DataLayout* layout) {
 636     increment_uint_at_no_overflow(layout, count_off);
 637   }
 638 
 639   // Support counter decrementation at checkcast / subtype check failed.
 640   static void decrement_count(DataLayout* layout) {
 641     increment_uint_at_no_overflow(layout, count_off, -1);
 642   }
 643 
 644   static DataLayout* advance(DataLayout* layout) {
 645     return (DataLayout*) (((address)layout) + (ssize_t)CounterData::counter_data_size_in_bytes());
 646   }
 647 #endif // CC_INTERP
 648 
 649 #ifndef PRODUCT
 650   void print_data_on(outputStream* st, const char* extra = NULL) const;
 651 #endif
 652 };
 653 
 654 // JumpData
 655 //
 656 // A JumpData is used to access profiling information for a direct
 657 // branch.  It is a counter, used for counting the number of branches,
 658 // plus a data displacement, used for realigning the data pointer to
 659 // the corresponding target bci.
 660 class JumpData : public ProfileData {
 661 protected:
 662   enum {
 663     taken_off_set,
 664     displacement_off_set,
 665     jump_cell_count
 666   };
 667 
 668   void set_displacement(int displacement) {
 669     set_int_at(displacement_off_set, displacement);
 670   }
 671 
 672 public:
 673   JumpData(DataLayout* layout) : ProfileData(layout) {
 674     assert(layout->tag() == DataLayout::jump_data_tag ||
 675       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 676   }
 677 
 678   virtual bool is_JumpData() const { return true; }
 679 
 680   static int static_cell_count() {
 681     return jump_cell_count;
 682   }
 683 
 684   virtual int cell_count() const {
 685     return static_cell_count();
 686   }
 687 
 688   // Direct accessor
 689   uint taken() const {
 690     return uint_at(taken_off_set);
 691   }
 692 
 693   void set_taken(uint cnt) {
 694     set_uint_at(taken_off_set, cnt);
 695   }
 696 
 697   // Saturating counter
 698   uint inc_taken() {
 699     uint cnt = taken() + 1;
 700     // Did we wrap? Will compiler screw us??
 701     if (cnt == 0) cnt--;
 702     set_uint_at(taken_off_set, cnt);
 703     return cnt;
 704   }
 705 
 706   int displacement() const {
 707     return int_at(displacement_off_set);
 708   }
 709 
 710   // Code generation support
 711   static ByteSize taken_offset() {
 712     return cell_offset(taken_off_set);
 713   }
 714 
 715   static ByteSize displacement_offset() {
 716     return cell_offset(displacement_off_set);
 717   }
 718 
 719 #ifdef CC_INTERP
 720   static void increment_taken_count_no_overflow(DataLayout* layout) {
 721     increment_uint_at_no_overflow(layout, taken_off_set);
 722   }
 723 
 724   static DataLayout* advance_taken(DataLayout* layout) {
 725     return (DataLayout*) (((address)layout) + (ssize_t)int_at(layout, displacement_off_set));
 726   }
 727 
 728   static uint taken_count(DataLayout* layout) {
 729     return (uint) uint_at(layout, taken_off_set);
 730   }
 731 #endif // CC_INTERP
 732 
 733   // Specific initialization.
 734   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 735 
 736 #ifndef PRODUCT
 737   void print_data_on(outputStream* st, const char* extra = NULL) const;
 738 #endif
 739 };
 740 
 741 // Entries in a ProfileData object to record types: it can either be
 742 // none (no profile), unknown (conflicting profile data) or a klass if
 743 // a single one is seen. Whether a null reference was seen is also
 744 // recorded. No counter is associated with the type and a single type
 745 // is tracked (unlike VirtualCallData).
 746 class TypeEntries {
 747 
 748 public:
 749 
 750   // A single cell is used to record information for a type:
 751   // - the cell is initialized to 0
 752   // - when a type is discovered it is stored in the cell
 753   // - bit zero of the cell is used to record whether a null reference
 754   // was encountered or not
 755   // - bit 1 is set to record a conflict in the type information
 756 
 757   enum {
 758     null_seen = 1,
 759     type_mask = ~null_seen,
 760     type_unknown = 2,
 761     status_bits = null_seen | type_unknown,
 762     type_klass_mask = ~status_bits
 763   };
 764 
 765   // what to initialize a cell to
 766   static intptr_t type_none() {
 767     return 0;
 768   }
 769 
 770   // null seen = bit 0 set?
 771   static bool was_null_seen(intptr_t v) {
 772     return (v & null_seen) != 0;
 773   }
 774 
 775   // conflicting type information = bit 1 set?
 776   static bool is_type_unknown(intptr_t v) {
 777     return (v & type_unknown) != 0;
 778   }
 779 
 780   // not type information yet = all bits cleared, ignoring bit 0?
 781   static bool is_type_none(intptr_t v) {
 782     return (v & type_mask) == 0;
 783   }
 784 
 785   // recorded type: cell without bit 0 and 1
 786   static intptr_t klass_part(intptr_t v) {
 787     intptr_t r = v & type_klass_mask;
 788     return r;
 789   }
 790 
 791   // type recorded
 792   static Klass* valid_klass(intptr_t k) {
 793     if (!is_type_none(k) &&
 794         !is_type_unknown(k)) {
 795       Klass* res = (Klass*)klass_part(k);
 796       assert(res != NULL, "invalid");
 797       return res;
 798     } else {
 799       return NULL;
 800     }
 801   }
 802 
 803   static intptr_t with_status(intptr_t k, intptr_t in) {
 804     return k | (in & status_bits);
 805   }
 806 
 807   static intptr_t with_status(Klass* k, intptr_t in) {
 808     return with_status((intptr_t)k, in);
 809   }
 810 
 811 #ifndef PRODUCT
 812   static void print_klass(outputStream* st, intptr_t k);
 813 #endif
 814 
 815   // GC support
 816   static bool is_loader_alive(BoolObjectClosure* is_alive_cl, intptr_t p);
 817 
 818 protected:
 819   // ProfileData object these entries are part of
 820   ProfileData* _pd;
 821   // offset within the ProfileData object where the entries start
 822   const int _base_off;
 823 
 824   TypeEntries(int base_off)
 825     : _base_off(base_off), _pd(NULL) {}
 826 
 827   void set_intptr_at(int index, intptr_t value) {
 828     _pd->set_intptr_at(index, value);
 829   }
 830 
 831   intptr_t intptr_at(int index) const {
 832     return _pd->intptr_at(index);
 833   }
 834 
 835 public:
 836   void set_profile_data(ProfileData* pd) {
 837     _pd = pd;
 838   }
 839 };
 840 
 841 // Type entries used for arguments passed at a call and parameters on
 842 // method entry. 2 cells per entry: one for the type encoded as in
 843 // TypeEntries and one initialized with the stack slot where the
 844 // profiled object is to be found so that the interpreter can locate
 845 // it quickly.
 846 class TypeStackSlotEntries : public TypeEntries {
 847 
 848 private:
 849   enum {
 850     stack_slot_entry,
 851     type_entry,
 852     per_arg_cell_count
 853   };
 854 
 855   // offset of cell for stack slot for entry i within ProfileData object
 856   int stack_slot_offset(int i) const {
 857     return _base_off + stack_slot_local_offset(i);
 858   }
 859 
 860 protected:
 861   const int _number_of_entries;
 862 
 863   // offset of cell for type for entry i within ProfileData object
 864   int type_offset(int i) const {
 865     return _base_off + type_local_offset(i);
 866   }
 867 
 868 public:
 869 
 870   TypeStackSlotEntries(int base_off, int nb_entries)
 871     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 872 
 873   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 874 
 875   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 876 
 877   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 878   static int stack_slot_local_offset(int i) {
 879     return i * per_arg_cell_count + stack_slot_entry;
 880   }
 881 
 882   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 883   static int type_local_offset(int i) {
 884     return i * per_arg_cell_count + type_entry;
 885   }
 886 
 887   // stack slot for entry i
 888   uint stack_slot(int i) const {
 889     assert(i >= 0 && i < _number_of_entries, "oob");
 890     return _pd->uint_at(stack_slot_offset(i));
 891   }
 892 
 893   // set stack slot for entry i
 894   void set_stack_slot(int i, uint num) {
 895     assert(i >= 0 && i < _number_of_entries, "oob");
 896     _pd->set_uint_at(stack_slot_offset(i), num);
 897   }
 898 
 899   // type for entry i
 900   intptr_t type(int i) const {
 901     assert(i >= 0 && i < _number_of_entries, "oob");
 902     return _pd->intptr_at(type_offset(i));
 903   }
 904 
 905   // set type for entry i
 906   void set_type(int i, intptr_t k) {
 907     assert(i >= 0 && i < _number_of_entries, "oob");
 908     _pd->set_intptr_at(type_offset(i), k);
 909   }
 910 
 911   static ByteSize per_arg_size() {
 912     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 913   }
 914 
 915   static int per_arg_count() {
 916     return per_arg_cell_count ;
 917   }
 918 
 919   // GC support
 920   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 921 
 922 #ifndef PRODUCT
 923   void print_data_on(outputStream* st) const;
 924 #endif
 925 };
 926 
 927 // Type entry used for return from a call. A single cell to record the
 928 // type.
 929 class ReturnTypeEntry : public TypeEntries {
 930 
 931 private:
 932   enum {
 933     cell_count = 1
 934   };
 935 
 936 public:
 937   ReturnTypeEntry(int base_off)
 938     : TypeEntries(base_off) {}
 939 
 940   void post_initialize() {
 941     set_type(type_none());
 942   }
 943 
 944   intptr_t type() const {
 945     return _pd->intptr_at(_base_off);
 946   }
 947 
 948   void set_type(intptr_t k) {
 949     _pd->set_intptr_at(_base_off, k);
 950   }
 951 
 952   static int static_cell_count() {
 953     return cell_count;
 954   }
 955 
 956   static ByteSize size() {
 957     return in_ByteSize(cell_count * DataLayout::cell_size);
 958   }
 959 
 960   ByteSize type_offset() {
 961     return DataLayout::cell_offset(_base_off);
 962   }
 963 
 964   // GC support
 965   void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
 966 
 967 #ifndef PRODUCT
 968   void print_data_on(outputStream* st) const;
 969 #endif
 970 };
 971 
 972 // Entries to collect type information at a call: contains arguments
 973 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 974 // number of cells. Because the number of cells for the return type is
 975 // smaller than the number of cells for the type of an arguments, the
 976 // number of cells is used to tell how many arguments are profiled and
 977 // whether a return value is profiled. See has_arguments() and
 978 // has_return().
 979 class TypeEntriesAtCall {
 980 private:
 981   static int stack_slot_local_offset(int i) {
 982     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 983   }
 984 
 985   static int argument_type_local_offset(int i) {
 986     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);;
 987   }
 988 
 989 public:
 990 
 991   static int header_cell_count() {
 992     return 1;
 993   }
 994 
 995   static int cell_count_local_offset() {
 996     return 0;
 997   }
 998 
 999   static int compute_cell_count(BytecodeStream* stream);
1000 
1001   static void initialize(DataLayout* dl, int base, int cell_count) {
1002     int off = base + cell_count_local_offset();
1003     dl->set_cell_at(off, cell_count - base - header_cell_count());
1004   }
1005 
1006   static bool arguments_profiling_enabled();
1007   static bool return_profiling_enabled();
1008 
1009   // Code generation support
1010   static ByteSize cell_count_offset() {
1011     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
1012   }
1013 
1014   static ByteSize args_data_offset() {
1015     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
1016   }
1017 
1018   static ByteSize stack_slot_offset(int i) {
1019     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
1020   }
1021 
1022   static ByteSize argument_type_offset(int i) {
1023     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
1024   }
1025 
1026   static ByteSize return_only_size() {
1027     return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
1028   }
1029 
1030 };
1031 
1032 // CallTypeData
1033 //
1034 // A CallTypeData is used to access profiling information about a non
1035 // virtual call for which we collect type information about arguments
1036 // and return value.
1037 class CallTypeData : public CounterData {
1038 private:
1039   // entries for arguments if any
1040   TypeStackSlotEntries _args;
1041   // entry for return type if any
1042   ReturnTypeEntry _ret;
1043 
1044   int cell_count_global_offset() const {
1045     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1046   }
1047 
1048   // number of cells not counting the header
1049   int cell_count_no_header() const {
1050     return uint_at(cell_count_global_offset());
1051   }
1052 
1053   void check_number_of_arguments(int total) {
1054     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1055   }
1056 
1057 public:
1058   CallTypeData(DataLayout* layout) :
1059     CounterData(layout),
1060     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1061     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1062   {
1063     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
1064     // Some compilers (VC++) don't want this passed in member initialization list
1065     _args.set_profile_data(this);
1066     _ret.set_profile_data(this);
1067   }
1068 
1069   const TypeStackSlotEntries* args() const {
1070     assert(has_arguments(), "no profiling of arguments");
1071     return &_args;
1072   }
1073 
1074   const ReturnTypeEntry* ret() const {
1075     assert(has_return(), "no profiling of return value");
1076     return &_ret;
1077   }
1078 
1079   virtual bool is_CallTypeData() const { return true; }
1080 
1081   static int static_cell_count() {
1082     return -1;
1083   }
1084 
1085   static int compute_cell_count(BytecodeStream* stream) {
1086     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1087   }
1088 
1089   static void initialize(DataLayout* dl, int cell_count) {
1090     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1091   }
1092 
1093   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1094 
1095   virtual int cell_count() const {
1096     return CounterData::static_cell_count() +
1097       TypeEntriesAtCall::header_cell_count() +
1098       int_at_unchecked(cell_count_global_offset());
1099   }
1100 
1101   int number_of_arguments() const {
1102     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1103   }
1104 
1105   void set_argument_type(int i, Klass* k) {
1106     assert(has_arguments(), "no arguments!");
1107     intptr_t current = _args.type(i);
1108     _args.set_type(i, TypeEntries::with_status(k, current));
1109   }
1110 
1111   void set_return_type(Klass* k) {
1112     assert(has_return(), "no return!");
1113     intptr_t current = _ret.type();
1114     _ret.set_type(TypeEntries::with_status(k, current));
1115   }
1116 
1117   // An entry for a return value takes less space than an entry for an
1118   // argument so if the number of cells exceeds the number of cells
1119   // needed for an argument, this object contains type information for
1120   // at least one argument.
1121   bool has_arguments() const {
1122     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1123     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1124     return res;
1125   }
1126 
1127   // An entry for a return value takes less space than an entry for an
1128   // argument, so if the remainder of the number of cells divided by
1129   // the number of cells for an argument is not null, a return value
1130   // is profiled in this object.
1131   bool has_return() const {
1132     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1133     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1134     return res;
1135   }
1136 
1137   // Code generation support
1138   static ByteSize args_data_offset() {
1139     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1140   }
1141 
1142   // GC support
1143   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1144     if (has_arguments()) {
1145       _args.clean_weak_klass_links(is_alive_closure);
1146     }
1147     if (has_return()) {
1148       _ret.clean_weak_klass_links(is_alive_closure);
1149     }
1150   }
1151 
1152 #ifndef PRODUCT
1153   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1154 #endif
1155 };
1156 
1157 // ReceiverTypeData
1158 //
1159 // A ReceiverTypeData is used to access profiling information about a
1160 // dynamic type check.  It consists of a counter which counts the total times
1161 // that the check is reached, and a series of (Klass*, count) pairs
1162 // which are used to store a type profile for the receiver of the check.
1163 class ReceiverTypeData : public CounterData {
1164 protected:
1165   enum {
1166     receiver0_offset = counter_cell_count,
1167     count0_offset,
1168     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1169   };
1170 
1171 public:
1172   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1173     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1174            layout->tag() == DataLayout::virtual_call_data_tag ||
1175            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1176   }
1177 
1178   virtual bool is_ReceiverTypeData() const { return true; }
1179 
1180   static int static_cell_count() {
1181     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
1182   }
1183 
1184   virtual int cell_count() const {
1185     return static_cell_count();
1186   }
1187 
1188   // Direct accessors
1189   static uint row_limit() {
1190     return TypeProfileWidth;
1191   }
1192   static int receiver_cell_index(uint row) {
1193     return receiver0_offset + row * receiver_type_row_cell_count;
1194   }
1195   static int receiver_count_cell_index(uint row) {
1196     return count0_offset + row * receiver_type_row_cell_count;
1197   }
1198 
1199   Klass* receiver(uint row) const {
1200     assert(row < row_limit(), "oob");
1201 
1202     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1203     assert(recv == NULL || recv->is_klass(), "wrong type");
1204     return recv;
1205   }
1206 
1207   void set_receiver(uint row, Klass* k) {
1208     assert((uint)row < row_limit(), "oob");
1209     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1210   }
1211 
1212   uint receiver_count(uint row) const {
1213     assert(row < row_limit(), "oob");
1214     return uint_at(receiver_count_cell_index(row));
1215   }
1216 
1217   void set_receiver_count(uint row, uint count) {
1218     assert(row < row_limit(), "oob");
1219     set_uint_at(receiver_count_cell_index(row), count);
1220   }
1221 
1222   void clear_row(uint row) {
1223     assert(row < row_limit(), "oob");
1224     // Clear total count - indicator of polymorphic call site.
1225     // The site may look like as monomorphic after that but
1226     // it allow to have more accurate profiling information because
1227     // there was execution phase change since klasses were unloaded.
1228     // If the site is still polymorphic then MDO will be updated
1229     // to reflect it. But it could be the case that the site becomes
1230     // only bimorphic. Then keeping total count not 0 will be wrong.
1231     // Even if we use monomorphic (when it is not) for compilation
1232     // we will only have trap, deoptimization and recompile again
1233     // with updated MDO after executing method in Interpreter.
1234     // An additional receiver will be recorded in the cleaned row
1235     // during next call execution.
1236     //
1237     // Note: our profiling logic works with empty rows in any slot.
1238     // We do sorting a profiling info (ciCallProfile) for compilation.
1239     //
1240     set_count(0);
1241     set_receiver(row, NULL);
1242     set_receiver_count(row, 0);
1243   }
1244 
1245   // Code generation support
1246   static ByteSize receiver_offset(uint row) {
1247     return cell_offset(receiver_cell_index(row));
1248   }
1249   static ByteSize receiver_count_offset(uint row) {
1250     return cell_offset(receiver_count_cell_index(row));
1251   }
1252   static ByteSize receiver_type_data_size() {
1253     return cell_offset(static_cell_count());
1254   }
1255 
1256   // GC support
1257   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure);
1258 
1259 #ifdef CC_INTERP
1260   static int receiver_type_data_size_in_bytes() {
1261     return cell_offset_in_bytes(static_cell_count());
1262   }
1263 
1264   static Klass *receiver_unchecked(DataLayout* layout, uint row) {
1265     Klass* recv = (Klass*)layout->cell_at(receiver_cell_index(row));
1266     return recv;
1267   }
1268 
1269   static void increment_receiver_count_no_overflow(DataLayout* layout, Klass *rcvr) {
1270     const int num_rows = row_limit();
1271     // Receiver already exists?
1272     for (int row = 0; row < num_rows; row++) {
1273       if (receiver_unchecked(layout, row) == rcvr) {
1274         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1275         return;
1276       }
1277     }
1278     // New receiver, find a free slot.
1279     for (int row = 0; row < num_rows; row++) {
1280       if (receiver_unchecked(layout, row) == NULL) {
1281         set_intptr_at(layout, receiver_cell_index(row), (intptr_t)rcvr);
1282         increment_uint_at_no_overflow(layout, receiver_count_cell_index(row));
1283         return;
1284       }
1285     }
1286     // Receiver did not match any saved receiver and there is no empty row for it.
1287     // Increment total counter to indicate polymorphic case.
1288     increment_count_no_overflow(layout);
1289   }
1290 
1291   static DataLayout* advance(DataLayout* layout) {
1292     return (DataLayout*) (((address)layout) + (ssize_t)ReceiverTypeData::receiver_type_data_size_in_bytes());
1293   }
1294 #endif // CC_INTERP
1295 
1296 #ifndef PRODUCT
1297   void print_receiver_data_on(outputStream* st) const;
1298   void print_data_on(outputStream* st, const char* extra = NULL) const;
1299 #endif
1300 };
1301 
1302 // VirtualCallData
1303 //
1304 // A VirtualCallData is used to access profiling information about a
1305 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1306 class VirtualCallData : public ReceiverTypeData {
1307 public:
1308   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1309     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1310            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1311   }
1312 
1313   virtual bool is_VirtualCallData() const { return true; }
1314 
1315   static int static_cell_count() {
1316     // At this point we could add more profile state, e.g., for arguments.
1317     // But for now it's the same size as the base record type.
1318     return ReceiverTypeData::static_cell_count();
1319   }
1320 
1321   virtual int cell_count() const {
1322     return static_cell_count();
1323   }
1324 
1325   // Direct accessors
1326   static ByteSize virtual_call_data_size() {
1327     return cell_offset(static_cell_count());
1328   }
1329 
1330 #ifdef CC_INTERP
1331   static int virtual_call_data_size_in_bytes() {
1332     return cell_offset_in_bytes(static_cell_count());
1333   }
1334 
1335   static DataLayout* advance(DataLayout* layout) {
1336     return (DataLayout*) (((address)layout) + (ssize_t)VirtualCallData::virtual_call_data_size_in_bytes());
1337   }
1338 #endif // CC_INTERP
1339 
1340 #ifndef PRODUCT
1341   void print_data_on(outputStream* st, const char* extra = NULL) const;
1342 #endif
1343 };
1344 
1345 // VirtualCallTypeData
1346 //
1347 // A VirtualCallTypeData is used to access profiling information about
1348 // a virtual call for which we collect type information about
1349 // arguments and return value.
1350 class VirtualCallTypeData : public VirtualCallData {
1351 private:
1352   // entries for arguments if any
1353   TypeStackSlotEntries _args;
1354   // entry for return type if any
1355   ReturnTypeEntry _ret;
1356 
1357   int cell_count_global_offset() const {
1358     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1359   }
1360 
1361   // number of cells not counting the header
1362   int cell_count_no_header() const {
1363     return uint_at(cell_count_global_offset());
1364   }
1365 
1366   void check_number_of_arguments(int total) {
1367     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1368   }
1369 
1370 public:
1371   VirtualCallTypeData(DataLayout* layout) :
1372     VirtualCallData(layout),
1373     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1374     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1375   {
1376     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1377     // Some compilers (VC++) don't want this passed in member initialization list
1378     _args.set_profile_data(this);
1379     _ret.set_profile_data(this);
1380   }
1381 
1382   const TypeStackSlotEntries* args() const {
1383     assert(has_arguments(), "no profiling of arguments");
1384     return &_args;
1385   }
1386 
1387   const ReturnTypeEntry* ret() const {
1388     assert(has_return(), "no profiling of return value");
1389     return &_ret;
1390   }
1391 
1392   virtual bool is_VirtualCallTypeData() const { return true; }
1393 
1394   static int static_cell_count() {
1395     return -1;
1396   }
1397 
1398   static int compute_cell_count(BytecodeStream* stream) {
1399     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1400   }
1401 
1402   static void initialize(DataLayout* dl, int cell_count) {
1403     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1404   }
1405 
1406   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1407 
1408   virtual int cell_count() const {
1409     return VirtualCallData::static_cell_count() +
1410       TypeEntriesAtCall::header_cell_count() +
1411       int_at_unchecked(cell_count_global_offset());
1412   }
1413 
1414   int number_of_arguments() const {
1415     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1416   }
1417 
1418   void set_argument_type(int i, Klass* k) {
1419     assert(has_arguments(), "no arguments!");
1420     intptr_t current = _args.type(i);
1421     _args.set_type(i, TypeEntries::with_status(k, current));
1422   }
1423 
1424   void set_return_type(Klass* k) {
1425     assert(has_return(), "no return!");
1426     intptr_t current = _ret.type();
1427     _ret.set_type(TypeEntries::with_status(k, current));
1428   }
1429 
1430   // An entry for a return value takes less space than an entry for an
1431   // argument, so if the remainder of the number of cells divided by
1432   // the number of cells for an argument is not null, a return value
1433   // is profiled in this object.
1434   bool has_return() const {
1435     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1436     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1437     return res;
1438   }
1439 
1440   // An entry for a return value takes less space than an entry for an
1441   // argument so if the number of cells exceeds the number of cells
1442   // needed for an argument, this object contains type information for
1443   // at least one argument.
1444   bool has_arguments() const {
1445     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1446     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1447     return res;
1448   }
1449 
1450   // Code generation support
1451   static ByteSize args_data_offset() {
1452     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1453   }
1454 
1455   // GC support
1456   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1457     ReceiverTypeData::clean_weak_klass_links(is_alive_closure);
1458     if (has_arguments()) {
1459       _args.clean_weak_klass_links(is_alive_closure);
1460     }
1461     if (has_return()) {
1462       _ret.clean_weak_klass_links(is_alive_closure);
1463     }
1464   }
1465 
1466 #ifndef PRODUCT
1467   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1468 #endif
1469 };
1470 
1471 // RetData
1472 //
1473 // A RetData is used to access profiling information for a ret bytecode.
1474 // It is composed of a count of the number of times that the ret has
1475 // been executed, followed by a series of triples of the form
1476 // (bci, count, di) which count the number of times that some bci was the
1477 // target of the ret and cache a corresponding data displacement.
1478 class RetData : public CounterData {
1479 protected:
1480   enum {
1481     bci0_offset = counter_cell_count,
1482     count0_offset,
1483     displacement0_offset,
1484     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1485   };
1486 
1487   void set_bci(uint row, int bci) {
1488     assert((uint)row < row_limit(), "oob");
1489     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1490   }
1491   void release_set_bci(uint row, int bci) {
1492     assert((uint)row < row_limit(), "oob");
1493     // 'release' when setting the bci acts as a valid flag for other
1494     // threads wrt bci_count and bci_displacement.
1495     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1496   }
1497   void set_bci_count(uint row, uint count) {
1498     assert((uint)row < row_limit(), "oob");
1499     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1500   }
1501   void set_bci_displacement(uint row, int disp) {
1502     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1503   }
1504 
1505 public:
1506   RetData(DataLayout* layout) : CounterData(layout) {
1507     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1508   }
1509 
1510   virtual bool is_RetData() const { return true; }
1511 
1512   enum {
1513     no_bci = -1 // value of bci when bci1/2 are not in use.
1514   };
1515 
1516   static int static_cell_count() {
1517     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1518   }
1519 
1520   virtual int cell_count() const {
1521     return static_cell_count();
1522   }
1523 
1524   static uint row_limit() {
1525     return BciProfileWidth;
1526   }
1527   static int bci_cell_index(uint row) {
1528     return bci0_offset + row * ret_row_cell_count;
1529   }
1530   static int bci_count_cell_index(uint row) {
1531     return count0_offset + row * ret_row_cell_count;
1532   }
1533   static int bci_displacement_cell_index(uint row) {
1534     return displacement0_offset + row * ret_row_cell_count;
1535   }
1536 
1537   // Direct accessors
1538   int bci(uint row) const {
1539     return int_at(bci_cell_index(row));
1540   }
1541   uint bci_count(uint row) const {
1542     return uint_at(bci_count_cell_index(row));
1543   }
1544   int bci_displacement(uint row) const {
1545     return int_at(bci_displacement_cell_index(row));
1546   }
1547 
1548   // Interpreter Runtime support
1549   address fixup_ret(int return_bci, MethodData* mdo);
1550 
1551   // Code generation support
1552   static ByteSize bci_offset(uint row) {
1553     return cell_offset(bci_cell_index(row));
1554   }
1555   static ByteSize bci_count_offset(uint row) {
1556     return cell_offset(bci_count_cell_index(row));
1557   }
1558   static ByteSize bci_displacement_offset(uint row) {
1559     return cell_offset(bci_displacement_cell_index(row));
1560   }
1561 
1562 #ifdef CC_INTERP
1563   static DataLayout* advance(MethodData *md, int bci);
1564 #endif // CC_INTERP
1565 
1566   // Specific initialization.
1567   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1568 
1569 #ifndef PRODUCT
1570   void print_data_on(outputStream* st, const char* extra = NULL) const;
1571 #endif
1572 };
1573 
1574 // BranchData
1575 //
1576 // A BranchData is used to access profiling data for a two-way branch.
1577 // It consists of taken and not_taken counts as well as a data displacement
1578 // for the taken case.
1579 class BranchData : public JumpData {
1580 protected:
1581   enum {
1582     not_taken_off_set = jump_cell_count,
1583     branch_cell_count
1584   };
1585 
1586   void set_displacement(int displacement) {
1587     set_int_at(displacement_off_set, displacement);
1588   }
1589 
1590 public:
1591   BranchData(DataLayout* layout) : JumpData(layout) {
1592     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1593   }
1594 
1595   virtual bool is_BranchData() const { return true; }
1596 
1597   static int static_cell_count() {
1598     return branch_cell_count;
1599   }
1600 
1601   virtual int cell_count() const {
1602     return static_cell_count();
1603   }
1604 
1605   // Direct accessor
1606   uint not_taken() const {
1607     return uint_at(not_taken_off_set);
1608   }
1609 
1610   void set_not_taken(uint cnt) {
1611     set_uint_at(not_taken_off_set, cnt);
1612   }
1613 
1614   uint inc_not_taken() {
1615     uint cnt = not_taken() + 1;
1616     // Did we wrap? Will compiler screw us??
1617     if (cnt == 0) cnt--;
1618     set_uint_at(not_taken_off_set, cnt);
1619     return cnt;
1620   }
1621 
1622   // Code generation support
1623   static ByteSize not_taken_offset() {
1624     return cell_offset(not_taken_off_set);
1625   }
1626   static ByteSize branch_data_size() {
1627     return cell_offset(branch_cell_count);
1628   }
1629 
1630 #ifdef CC_INTERP
1631   static int branch_data_size_in_bytes() {
1632     return cell_offset_in_bytes(branch_cell_count);
1633   }
1634 
1635   static void increment_not_taken_count_no_overflow(DataLayout* layout) {
1636     increment_uint_at_no_overflow(layout, not_taken_off_set);
1637   }
1638 
1639   static DataLayout* advance_not_taken(DataLayout* layout) {
1640     return (DataLayout*) (((address)layout) + (ssize_t)BranchData::branch_data_size_in_bytes());
1641   }
1642 #endif // CC_INTERP
1643 
1644   // Specific initialization.
1645   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1646 
1647 #ifndef PRODUCT
1648   void print_data_on(outputStream* st, const char* extra = NULL) const;
1649 #endif
1650 };
1651 
1652 // ArrayData
1653 //
1654 // A ArrayData is a base class for accessing profiling data which does
1655 // not have a statically known size.  It consists of an array length
1656 // and an array start.
1657 class ArrayData : public ProfileData {
1658 protected:
1659   friend class DataLayout;
1660 
1661   enum {
1662     array_len_off_set,
1663     array_start_off_set
1664   };
1665 
1666   uint array_uint_at(int index) const {
1667     int aindex = index + array_start_off_set;
1668     return uint_at(aindex);
1669   }
1670   int array_int_at(int index) const {
1671     int aindex = index + array_start_off_set;
1672     return int_at(aindex);
1673   }
1674   oop array_oop_at(int index) const {
1675     int aindex = index + array_start_off_set;
1676     return oop_at(aindex);
1677   }
1678   void array_set_int_at(int index, int value) {
1679     int aindex = index + array_start_off_set;
1680     set_int_at(aindex, value);
1681   }
1682 
1683 #ifdef CC_INTERP
1684   // Static low level accessors for DataLayout with ArrayData's semantics.
1685 
1686   static void increment_array_uint_at_no_overflow(DataLayout* layout, int index) {
1687     int aindex = index + array_start_off_set;
1688     increment_uint_at_no_overflow(layout, aindex);
1689   }
1690 
1691   static int array_int_at(DataLayout* layout, int index) {
1692     int aindex = index + array_start_off_set;
1693     return int_at(layout, aindex);
1694   }
1695 #endif // CC_INTERP
1696 
1697   // Code generation support for subclasses.
1698   static ByteSize array_element_offset(int index) {
1699     return cell_offset(array_start_off_set + index);
1700   }
1701 
1702 public:
1703   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1704 
1705   virtual bool is_ArrayData() const { return true; }
1706 
1707   static int static_cell_count() {
1708     return -1;
1709   }
1710 
1711   int array_len() const {
1712     return int_at_unchecked(array_len_off_set);
1713   }
1714 
1715   virtual int cell_count() const {
1716     return array_len() + 1;
1717   }
1718 
1719   // Code generation support
1720   static ByteSize array_len_offset() {
1721     return cell_offset(array_len_off_set);
1722   }
1723   static ByteSize array_start_offset() {
1724     return cell_offset(array_start_off_set);
1725   }
1726 };
1727 
1728 // MultiBranchData
1729 //
1730 // A MultiBranchData is used to access profiling information for
1731 // a multi-way branch (*switch bytecodes).  It consists of a series
1732 // of (count, displacement) pairs, which count the number of times each
1733 // case was taken and specify the data displacment for each branch target.
1734 class MultiBranchData : public ArrayData {
1735 protected:
1736   enum {
1737     default_count_off_set,
1738     default_disaplacement_off_set,
1739     case_array_start
1740   };
1741   enum {
1742     relative_count_off_set,
1743     relative_displacement_off_set,
1744     per_case_cell_count
1745   };
1746 
1747   void set_default_displacement(int displacement) {
1748     array_set_int_at(default_disaplacement_off_set, displacement);
1749   }
1750   void set_displacement_at(int index, int displacement) {
1751     array_set_int_at(case_array_start +
1752                      index * per_case_cell_count +
1753                      relative_displacement_off_set,
1754                      displacement);
1755   }
1756 
1757 public:
1758   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1759     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1760   }
1761 
1762   virtual bool is_MultiBranchData() const { return true; }
1763 
1764   static int compute_cell_count(BytecodeStream* stream);
1765 
1766   int number_of_cases() const {
1767     int alen = array_len() - 2; // get rid of default case here.
1768     assert(alen % per_case_cell_count == 0, "must be even");
1769     return (alen / per_case_cell_count);
1770   }
1771 
1772   uint default_count() const {
1773     return array_uint_at(default_count_off_set);
1774   }
1775   int default_displacement() const {
1776     return array_int_at(default_disaplacement_off_set);
1777   }
1778 
1779   uint count_at(int index) const {
1780     return array_uint_at(case_array_start +
1781                          index * per_case_cell_count +
1782                          relative_count_off_set);
1783   }
1784   int displacement_at(int index) const {
1785     return array_int_at(case_array_start +
1786                         index * per_case_cell_count +
1787                         relative_displacement_off_set);
1788   }
1789 
1790   // Code generation support
1791   static ByteSize default_count_offset() {
1792     return array_element_offset(default_count_off_set);
1793   }
1794   static ByteSize default_displacement_offset() {
1795     return array_element_offset(default_disaplacement_off_set);
1796   }
1797   static ByteSize case_count_offset(int index) {
1798     return case_array_offset() +
1799            (per_case_size() * index) +
1800            relative_count_offset();
1801   }
1802   static ByteSize case_array_offset() {
1803     return array_element_offset(case_array_start);
1804   }
1805   static ByteSize per_case_size() {
1806     return in_ByteSize(per_case_cell_count) * cell_size;
1807   }
1808   static ByteSize relative_count_offset() {
1809     return in_ByteSize(relative_count_off_set) * cell_size;
1810   }
1811   static ByteSize relative_displacement_offset() {
1812     return in_ByteSize(relative_displacement_off_set) * cell_size;
1813   }
1814 
1815 #ifdef CC_INTERP
1816   static void increment_count_no_overflow(DataLayout* layout, int index) {
1817     if (index == -1) {
1818       increment_array_uint_at_no_overflow(layout, default_count_off_set);
1819     } else {
1820       increment_array_uint_at_no_overflow(layout, case_array_start +
1821                                                   index * per_case_cell_count +
1822                                                   relative_count_off_set);
1823     }
1824   }
1825 
1826   static DataLayout* advance(DataLayout* layout, int index) {
1827     if (index == -1) {
1828       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, default_disaplacement_off_set));
1829     } else {
1830       return (DataLayout*) (((address)layout) + (ssize_t)array_int_at(layout, case_array_start +
1831                                                                               index * per_case_cell_count +
1832                                                                               relative_displacement_off_set));
1833     }
1834   }
1835 #endif // CC_INTERP
1836 
1837   // Specific initialization.
1838   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1839 
1840 #ifndef PRODUCT
1841   void print_data_on(outputStream* st, const char* extra = NULL) const;
1842 #endif
1843 };
1844 
1845 class ArgInfoData : public ArrayData {
1846 
1847 public:
1848   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1849     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1850   }
1851 
1852   virtual bool is_ArgInfoData() const { return true; }
1853 
1854 
1855   int number_of_args() const {
1856     return array_len();
1857   }
1858 
1859   uint arg_modified(int arg) const {
1860     return array_uint_at(arg);
1861   }
1862 
1863   void set_arg_modified(int arg, uint val) {
1864     array_set_int_at(arg, val);
1865   }
1866 
1867 #ifndef PRODUCT
1868   void print_data_on(outputStream* st, const char* extra = NULL) const;
1869 #endif
1870 };
1871 
1872 // ParametersTypeData
1873 //
1874 // A ParametersTypeData is used to access profiling information about
1875 // types of parameters to a method
1876 class ParametersTypeData : public ArrayData {
1877 
1878 private:
1879   TypeStackSlotEntries _parameters;
1880 
1881   static int stack_slot_local_offset(int i) {
1882     assert_profiling_enabled();
1883     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1884   }
1885 
1886   static int type_local_offset(int i) {
1887     assert_profiling_enabled();
1888     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1889   }
1890 
1891   static bool profiling_enabled();
1892   static void assert_profiling_enabled() {
1893     assert(profiling_enabled(), "method parameters profiling should be on");
1894   }
1895 
1896 public:
1897   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1898     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1899     // Some compilers (VC++) don't want this passed in member initialization list
1900     _parameters.set_profile_data(this);
1901   }
1902 
1903   static int compute_cell_count(Method* m);
1904 
1905   virtual bool is_ParametersTypeData() const { return true; }
1906 
1907   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1908 
1909   int number_of_parameters() const {
1910     return array_len() / TypeStackSlotEntries::per_arg_count();
1911   }
1912 
1913   const TypeStackSlotEntries* parameters() const { return &_parameters; }
1914 
1915   uint stack_slot(int i) const {
1916     return _parameters.stack_slot(i);
1917   }
1918 
1919   void set_type(int i, Klass* k) {
1920     intptr_t current = _parameters.type(i);
1921     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1922   }
1923 
1924   virtual void clean_weak_klass_links(BoolObjectClosure* is_alive_closure) {
1925     _parameters.clean_weak_klass_links(is_alive_closure);
1926   }
1927 
1928 #ifndef PRODUCT
1929   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1930 #endif
1931 
1932   static ByteSize stack_slot_offset(int i) {
1933     return cell_offset(stack_slot_local_offset(i));
1934   }
1935 
1936   static ByteSize type_offset(int i) {
1937     return cell_offset(type_local_offset(i));
1938   }
1939 };
1940 
1941 // SpeculativeTrapData
1942 //
1943 // A SpeculativeTrapData is used to record traps due to type
1944 // speculation. It records the root of the compilation: that type
1945 // speculation is wrong in the context of one compilation (for
1946 // method1) doesn't mean it's wrong in the context of another one (for
1947 // method2). Type speculation could have more/different data in the
1948 // context of the compilation of method2 and it's worthwhile to try an
1949 // optimization that failed for compilation of method1 in the context
1950 // of compilation of method2.
1951 // Space for SpeculativeTrapData entries is allocated from the extra
1952 // data space in the MDO. If we run out of space, the trap data for
1953 // the ProfileData at that bci is updated.
1954 class SpeculativeTrapData : public ProfileData {
1955 protected:
1956   enum {
1957     method_offset,
1958     speculative_trap_cell_count
1959   };
1960 public:
1961   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1962     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1963   }
1964 
1965   virtual bool is_SpeculativeTrapData() const { return true; }
1966 
1967   static int static_cell_count() {
1968     return speculative_trap_cell_count;
1969   }
1970 
1971   virtual int cell_count() const {
1972     return static_cell_count();
1973   }
1974 
1975   // Direct accessor
1976   Method* method() const {
1977     return (Method*)intptr_at(method_offset);
1978   }
1979 
1980   void set_method(Method* m) {
1981     set_intptr_at(method_offset, (intptr_t)m);
1982   }
1983 
1984 #ifndef PRODUCT
1985   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1986 #endif
1987 };
1988 
1989 // MethodData*
1990 //
1991 // A MethodData* holds information which has been collected about
1992 // a method.  Its layout looks like this:
1993 //
1994 // -----------------------------
1995 // | header                    |
1996 // | klass                     |
1997 // -----------------------------
1998 // | method                    |
1999 // | size of the MethodData* |
2000 // -----------------------------
2001 // | Data entries...           |
2002 // |   (variable size)         |
2003 // |                           |
2004 // .                           .
2005 // .                           .
2006 // .                           .
2007 // |                           |
2008 // -----------------------------
2009 //
2010 // The data entry area is a heterogeneous array of DataLayouts. Each
2011 // DataLayout in the array corresponds to a specific bytecode in the
2012 // method.  The entries in the array are sorted by the corresponding
2013 // bytecode.  Access to the data is via resource-allocated ProfileData,
2014 // which point to the underlying blocks of DataLayout structures.
2015 //
2016 // During interpretation, if profiling in enabled, the interpreter
2017 // maintains a method data pointer (mdp), which points at the entry
2018 // in the array corresponding to the current bci.  In the course of
2019 // intepretation, when a bytecode is encountered that has profile data
2020 // associated with it, the entry pointed to by mdp is updated, then the
2021 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
2022 // is NULL to begin with, the interpreter assumes that the current method
2023 // is not (yet) being profiled.
2024 //
2025 // In MethodData* parlance, "dp" is a "data pointer", the actual address
2026 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
2027 // from the base of the data entry array.  A "displacement" is the byte offset
2028 // in certain ProfileData objects that indicate the amount the mdp must be
2029 // adjusted in the event of a change in control flow.
2030 //
2031 
2032 CC_INTERP_ONLY(class BytecodeInterpreter;)
2033 
2034 class MethodData : public Metadata {
2035   friend class VMStructs;
2036   CC_INTERP_ONLY(friend class BytecodeInterpreter;)
2037 private:
2038   friend class ProfileData;
2039 
2040   // Back pointer to the Method*
2041   Method* _method;
2042 
2043   // Size of this oop in bytes
2044   int _size;
2045 
2046   // Cached hint for bci_to_dp and bci_to_data
2047   int _hint_di;
2048 
2049   Mutex _extra_data_lock;
2050 
2051   MethodData(methodHandle method, int size, TRAPS);
2052 public:
2053   static MethodData* allocate(ClassLoaderData* loader_data, methodHandle method, TRAPS);
2054   MethodData() : _extra_data_lock(Monitor::leaf, "MDO extra data lock") {}; // For ciMethodData
2055 
2056   bool is_methodData() const volatile { return true; }
2057 
2058   // Whole-method sticky bits and flags
2059   enum {
2060     _trap_hist_limit    = 20,   // decoupled from Deoptimization::Reason_LIMIT
2061     _trap_hist_mask     = max_jubyte,
2062     _extra_data_count   = 4     // extra DataLayout headers, for trap history
2063   }; // Public flag values
2064 private:
2065   uint _nof_decompiles;             // count of all nmethod removals
2066   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
2067   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
2068   union {
2069     intptr_t _align;
2070     u1 _array[_trap_hist_limit];
2071   } _trap_hist;
2072 
2073   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2074   intx              _eflags;          // flags on escape information
2075   intx              _arg_local;       // bit set of non-escaping arguments
2076   intx              _arg_stack;       // bit set of stack-allocatable arguments
2077   intx              _arg_returned;    // bit set of returned arguments
2078 
2079   int _creation_mileage;              // method mileage at MDO creation
2080 
2081   // How many invocations has this MDO seen?
2082   // These counters are used to determine the exact age of MDO.
2083   // We need those because in tiered a method can be concurrently
2084   // executed at different levels.
2085   InvocationCounter _invocation_counter;
2086   // Same for backedges.
2087   InvocationCounter _backedge_counter;
2088   // Counter values at the time profiling started.
2089   int               _invocation_counter_start;
2090   int               _backedge_counter_start;
2091 
2092 #if INCLUDE_RTM_OPT
2093   // State of RTM code generation during compilation of the method
2094   int               _rtm_state;
2095 #endif
2096 
2097   // Number of loops and blocks is computed when compiling the first
2098   // time with C1. It is used to determine if method is trivial.
2099   short             _num_loops;
2100   short             _num_blocks;
2101   // Does this method contain anything worth profiling?
2102   bool              _would_profile;
2103 
2104   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
2105   int _data_size;
2106 
2107   // data index for the area dedicated to parameters. -1 if no
2108   // parameter profiling.
2109   int _parameters_type_data_di;
2110 
2111   // Beginning of the data entries
2112   intptr_t _data[1];
2113 
2114   // Helper for size computation
2115   static int compute_data_size(BytecodeStream* stream);
2116   static int bytecode_cell_count(Bytecodes::Code code);
2117   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2118   enum { no_profile_data = -1, variable_cell_count = -2 };
2119 
2120   // Helper for initialization
2121   DataLayout* data_layout_at(int data_index) const {
2122     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2123     return (DataLayout*) (((address)_data) + data_index);
2124   }
2125 
2126   // Initialize an individual data segment.  Returns the size of
2127   // the segment in bytes.
2128   int initialize_data(BytecodeStream* stream, int data_index);
2129 
2130   // Helper for data_at
2131   DataLayout* limit_data_position() const {
2132     return (DataLayout*)((address)data_base() + _data_size);
2133   }
2134   bool out_of_bounds(int data_index) const {
2135     return data_index >= data_size();
2136   }
2137 
2138   // Give each of the data entries a chance to perform specific
2139   // data initialization.
2140   void post_initialize(BytecodeStream* stream);
2141 
2142   // hint accessors
2143   int      hint_di() const  { return _hint_di; }
2144   void set_hint_di(int di)  {
2145     assert(!out_of_bounds(di), "hint_di out of bounds");
2146     _hint_di = di;
2147   }
2148   ProfileData* data_before(int bci) {
2149     // avoid SEGV on this edge case
2150     if (data_size() == 0)
2151       return NULL;
2152     int hint = hint_di();
2153     if (data_layout_at(hint)->bci() <= bci)
2154       return data_at(hint);
2155     return first_data();
2156   }
2157 
2158   // What is the index of the first data entry?
2159   int first_di() const { return 0; }
2160 
2161   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2162   // Find or create an extra ProfileData:
2163   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2164 
2165   // return the argument info cell
2166   ArgInfoData *arg_info();
2167 
2168   enum {
2169     no_type_profile = 0,
2170     type_profile_jsr292 = 1,
2171     type_profile_all = 2
2172   };
2173 
2174   static bool profile_jsr292(methodHandle m, int bci);
2175   static int profile_arguments_flag();
2176   static bool profile_all_arguments();
2177   static bool profile_arguments_for_invoke(methodHandle m, int bci);
2178   static int profile_return_flag();
2179   static bool profile_all_return();
2180   static bool profile_return_for_invoke(methodHandle m, int bci);
2181   static int profile_parameters_flag();
2182   static bool profile_parameters_jsr292_only();
2183   static bool profile_all_parameters();
2184 
2185   void clean_extra_data(BoolObjectClosure* is_alive);
2186   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2187   void verify_extra_data_clean(BoolObjectClosure* is_alive);
2188 
2189 public:
2190   static int header_size() {
2191     return sizeof(MethodData)/wordSize;
2192   }
2193 
2194   // Compute the size of a MethodData* before it is created.
2195   static int compute_allocation_size_in_bytes(methodHandle method);
2196   static int compute_allocation_size_in_words(methodHandle method);
2197   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2198 
2199   // Determine if a given bytecode can have profile information.
2200   static bool bytecode_has_profile(Bytecodes::Code code) {
2201     return bytecode_cell_count(code) != no_profile_data;
2202   }
2203 
2204   // reset into original state
2205   void init();
2206 
2207   // My size
2208   int size_in_bytes() const { return _size; }
2209   int size() const    { return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord); }
2210 #if INCLUDE_SERVICES
2211   void collect_statistics(KlassSizeStats *sz) const;
2212 #endif
2213 
2214   int      creation_mileage() const  { return _creation_mileage; }
2215   void set_creation_mileage(int x)   { _creation_mileage = x; }
2216 
2217   int invocation_count() {
2218     if (invocation_counter()->carry()) {
2219       return InvocationCounter::count_limit;
2220     }
2221     return invocation_counter()->count();
2222   }
2223   int backedge_count() {
2224     if (backedge_counter()->carry()) {
2225       return InvocationCounter::count_limit;
2226     }
2227     return backedge_counter()->count();
2228   }
2229 
2230   int invocation_count_start() {
2231     if (invocation_counter()->carry()) {
2232       return 0;
2233     }
2234     return _invocation_counter_start;
2235   }
2236 
2237   int backedge_count_start() {
2238     if (backedge_counter()->carry()) {
2239       return 0;
2240     }
2241     return _backedge_counter_start;
2242   }
2243 
2244   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2245   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2246 
2247   void reset_start_counters() {
2248     _invocation_counter_start = invocation_count();
2249     _backedge_counter_start = backedge_count();
2250   }
2251 
2252   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2253   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2254 
2255 #if INCLUDE_RTM_OPT
2256   int rtm_state() const {
2257     return _rtm_state;
2258   }
2259   void set_rtm_state(RTMState rstate) {
2260     _rtm_state = (int)rstate;
2261   }
2262   void atomic_set_rtm_state(RTMState rstate) {
2263     Atomic::store((int)rstate, &_rtm_state);
2264   }
2265 
2266   static int rtm_state_offset_in_bytes() {
2267     return offset_of(MethodData, _rtm_state);
2268   }
2269 #endif
2270 
2271   void set_would_profile(bool p)              { _would_profile = p;    }
2272   bool would_profile() const                  { return _would_profile; }
2273 
2274   int num_loops() const                       { return _num_loops;  }
2275   void set_num_loops(int n)                   { _num_loops = n;     }
2276   int num_blocks() const                      { return _num_blocks; }
2277   void set_num_blocks(int n)                  { _num_blocks = n;    }
2278 
2279   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2280   static int mileage_of(Method* m);
2281 
2282   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2283   enum EscapeFlag {
2284     estimated    = 1 << 0,
2285     return_local = 1 << 1,
2286     return_allocated = 1 << 2,
2287     allocated_escapes = 1 << 3,
2288     unknown_modified = 1 << 4
2289   };
2290 
2291   intx eflags()                                  { return _eflags; }
2292   intx arg_local()                               { return _arg_local; }
2293   intx arg_stack()                               { return _arg_stack; }
2294   intx arg_returned()                            { return _arg_returned; }
2295   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2296                                                    assert(aid != NULL, "arg_info must be not null");
2297                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2298                                                    return aid->arg_modified(a); }
2299 
2300   void set_eflags(intx v)                        { _eflags = v; }
2301   void set_arg_local(intx v)                     { _arg_local = v; }
2302   void set_arg_stack(intx v)                     { _arg_stack = v; }
2303   void set_arg_returned(intx v)                  { _arg_returned = v; }
2304   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2305                                                    assert(aid != NULL, "arg_info must be not null");
2306                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2307                                                    aid->set_arg_modified(a, v); }
2308 
2309   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2310 
2311   // Location and size of data area
2312   address data_base() const {
2313     return (address) _data;
2314   }
2315   int data_size() const {
2316     return _data_size;
2317   }
2318 
2319   // Accessors
2320   Method* method() const { return _method; }
2321 
2322   // Get the data at an arbitrary (sort of) data index.
2323   ProfileData* data_at(int data_index) const;
2324 
2325   // Walk through the data in order.
2326   ProfileData* first_data() const { return data_at(first_di()); }
2327   ProfileData* next_data(ProfileData* current) const;
2328   bool is_valid(ProfileData* current) const { return current != NULL; }
2329 
2330   // Convert a dp (data pointer) to a di (data index).
2331   int dp_to_di(address dp) const {
2332     return dp - ((address)_data);
2333   }
2334 
2335   address di_to_dp(int di) {
2336     return (address)data_layout_at(di);
2337   }
2338 
2339   // bci to di/dp conversion.
2340   address bci_to_dp(int bci);
2341   int bci_to_di(int bci) {
2342     return dp_to_di(bci_to_dp(bci));
2343   }
2344 
2345   // Get the data at an arbitrary bci, or NULL if there is none.
2346   ProfileData* bci_to_data(int bci);
2347 
2348   // Same, but try to create an extra_data record if one is needed:
2349   ProfileData* allocate_bci_to_data(int bci, Method* m) {
2350     ProfileData* data = NULL;
2351     // If m not NULL, try to allocate a SpeculativeTrapData entry
2352     if (m == NULL) {
2353       data = bci_to_data(bci);
2354     }
2355     if (data != NULL) {
2356       return data;
2357     }
2358     data = bci_to_extra_data(bci, m, true);
2359     if (data != NULL) {
2360       return data;
2361     }
2362     // If SpeculativeTrapData allocation fails try to allocate a
2363     // regular entry
2364     data = bci_to_data(bci);
2365     if (data != NULL) {
2366       return data;
2367     }
2368     return bci_to_extra_data(bci, NULL, true);
2369   }
2370 
2371   // Add a handful of extra data records, for trap tracking.
2372   DataLayout* extra_data_base() const { return limit_data_position(); }
2373   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2374   int extra_data_size() const { return (address)extra_data_limit()
2375                                - (address)extra_data_base(); }
2376   static DataLayout* next_extra(DataLayout* dp);
2377 
2378   // Return (uint)-1 for overflow.
2379   uint trap_count(int reason) const {
2380     assert((uint)reason < _trap_hist_limit, "oob");
2381     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2382   }
2383   // For loops:
2384   static uint trap_reason_limit() { return _trap_hist_limit; }
2385   static uint trap_count_limit()  { return _trap_hist_mask; }
2386   uint inc_trap_count(int reason) {
2387     // Count another trap, anywhere in this method.
2388     assert(reason >= 0, "must be single trap");
2389     if ((uint)reason < _trap_hist_limit) {
2390       uint cnt1 = 1 + _trap_hist._array[reason];
2391       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2392         _trap_hist._array[reason] = cnt1;
2393         return cnt1;
2394       } else {
2395         return _trap_hist_mask + (++_nof_overflow_traps);
2396       }
2397     } else {
2398       // Could not represent the count in the histogram.
2399       return (++_nof_overflow_traps);
2400     }
2401   }
2402 
2403   uint overflow_trap_count() const {
2404     return _nof_overflow_traps;
2405   }
2406   uint overflow_recompile_count() const {
2407     return _nof_overflow_recompiles;
2408   }
2409   void inc_overflow_recompile_count() {
2410     _nof_overflow_recompiles += 1;
2411   }
2412   uint decompile_count() const {
2413     return _nof_decompiles;
2414   }
2415   void inc_decompile_count() {
2416     _nof_decompiles += 1;
2417     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2418       method()->set_not_compilable(CompLevel_full_optimization, true, "decompile_count > PerMethodRecompilationCutoff");
2419     }
2420   }
2421 
2422   // Return pointer to area dedicated to parameters in MDO
2423   ParametersTypeData* parameters_type_data() const {
2424     return _parameters_type_data_di != -1 ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2425   }
2426 
2427   int parameters_type_data_di() const {
2428     assert(_parameters_type_data_di != -1, "no args type data");
2429     return _parameters_type_data_di;
2430   }
2431 
2432   // Support for code generation
2433   static ByteSize data_offset() {
2434     return byte_offset_of(MethodData, _data[0]);
2435   }
2436 
2437   static ByteSize invocation_counter_offset() {
2438     return byte_offset_of(MethodData, _invocation_counter);
2439   }
2440   static ByteSize backedge_counter_offset() {
2441     return byte_offset_of(MethodData, _backedge_counter);
2442   }
2443 
2444   static ByteSize parameters_type_data_di_offset() {
2445     return byte_offset_of(MethodData, _parameters_type_data_di);
2446   }
2447 
2448   // Deallocation support - no pointer fields to deallocate
2449   void deallocate_contents(ClassLoaderData* loader_data) {}
2450 
2451   // GC support
2452   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2453 
2454   // Printing
2455 #ifndef PRODUCT
2456   void print_on      (outputStream* st) const;
2457 #endif
2458   void print_value_on(outputStream* st) const;
2459 
2460 #ifndef PRODUCT
2461   // printing support for method data
2462   void print_data_on(outputStream* st) const;
2463 #endif
2464 
2465   const char* internal_name() const { return "{method data}"; }
2466 
2467   // verification
2468   void verify_on(outputStream* st);
2469   void verify_data_on(outputStream* st);
2470 
2471   static bool profile_parameters_for_method(methodHandle m);
2472   static bool profile_arguments();
2473   static bool profile_arguments_jsr292_only();
2474   static bool profile_return();
2475   static bool profile_parameters();
2476   static bool profile_return_jsr292_only();
2477 
2478   void clean_method_data(BoolObjectClosure* is_alive);
2479 };
2480 
2481 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP