1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mathexactnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "prims/nativeLookup.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "trace/traceMacros.hpp"
  43 
  44 class LibraryIntrinsic : public InlineCallGenerator {
  45   // Extend the set of intrinsics known to the runtime:
  46  public:
  47  private:
  48   bool             _is_virtual;
  49   bool             _does_virtual_dispatch;
  50   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  51   int8_t           _last_predicate; // Last generated predicate
  52   vmIntrinsics::ID _intrinsic_id;
  53 
  54  public:
  55   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  56     : InlineCallGenerator(m),
  57       _is_virtual(is_virtual),
  58       _does_virtual_dispatch(does_virtual_dispatch),
  59       _predicates_count((int8_t)predicates_count),
  60       _last_predicate((int8_t)-1),
  61       _intrinsic_id(id)
  62   {
  63   }
  64   virtual bool is_intrinsic() const { return true; }
  65   virtual bool is_virtual()   const { return _is_virtual; }
  66   virtual bool is_predicated() const { return _predicates_count > 0; }
  67   virtual int  predicates_count() const { return _predicates_count; }
  68   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  69   virtual JVMState* generate(JVMState* jvms);
  70   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  71   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  72 };
  73 
  74 
  75 // Local helper class for LibraryIntrinsic:
  76 class LibraryCallKit : public GraphKit {
  77  private:
  78   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  79   Node*             _result;        // the result node, if any
  80   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  81 
  82   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  83 
  84  public:
  85   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  86     : GraphKit(jvms),
  87       _intrinsic(intrinsic),
  88       _result(NULL)
  89   {
  90     // Check if this is a root compile.  In that case we don't have a caller.
  91     if (!jvms->has_method()) {
  92       _reexecute_sp = sp();
  93     } else {
  94       // Find out how many arguments the interpreter needs when deoptimizing
  95       // and save the stack pointer value so it can used by uncommon_trap.
  96       // We find the argument count by looking at the declared signature.
  97       bool ignored_will_link;
  98       ciSignature* declared_signature = NULL;
  99       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 100       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 101       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 102     }
 103   }
 104 
 105   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 106 
 107   ciMethod*         caller()    const    { return jvms()->method(); }
 108   int               bci()       const    { return jvms()->bci(); }
 109   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 110   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 111   ciMethod*         callee()    const    { return _intrinsic->method(); }
 112 
 113   bool  try_to_inline(int predicate);
 114   Node* try_to_predicate(int predicate);
 115 
 116   void push_result() {
 117     // Push the result onto the stack.
 118     if (!stopped() && result() != NULL) {
 119       BasicType bt = result()->bottom_type()->basic_type();
 120       push_node(bt, result());
 121     }
 122   }
 123 
 124  private:
 125   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 126     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 127   }
 128 
 129   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 130   void  set_result(RegionNode* region, PhiNode* value);
 131   Node*     result() { return _result; }
 132 
 133   virtual int reexecute_sp() { return _reexecute_sp; }
 134 
 135   // Helper functions to inline natives
 136   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 137   Node* generate_slow_guard(Node* test, RegionNode* region);
 138   Node* generate_fair_guard(Node* test, RegionNode* region);
 139   Node* generate_negative_guard(Node* index, RegionNode* region,
 140                                 // resulting CastII of index:
 141                                 Node* *pos_index = NULL);
 142   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 143                                    // resulting CastII of index:
 144                                    Node* *pos_index = NULL);
 145   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 146                              Node* array_length,
 147                              RegionNode* region);
 148   Node* generate_current_thread(Node* &tls_output);
 149   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 150                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 151   Node* load_mirror_from_klass(Node* klass);
 152   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 153                                       RegionNode* region, int null_path,
 154                                       int offset);
 155   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 156                                RegionNode* region, int null_path) {
 157     int offset = java_lang_Class::klass_offset_in_bytes();
 158     return load_klass_from_mirror_common(mirror, never_see_null,
 159                                          region, null_path,
 160                                          offset);
 161   }
 162   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 163                                      RegionNode* region, int null_path) {
 164     int offset = java_lang_Class::array_klass_offset_in_bytes();
 165     return load_klass_from_mirror_common(mirror, never_see_null,
 166                                          region, null_path,
 167                                          offset);
 168   }
 169   Node* generate_access_flags_guard(Node* kls,
 170                                     int modifier_mask, int modifier_bits,
 171                                     RegionNode* region);
 172   Node* generate_interface_guard(Node* kls, RegionNode* region);
 173   Node* generate_array_guard(Node* kls, RegionNode* region) {
 174     return generate_array_guard_common(kls, region, false, false);
 175   }
 176   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, false, true);
 178   }
 179   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, true, false);
 181   }
 182   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 183     return generate_array_guard_common(kls, region, true, true);
 184   }
 185   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 186                                     bool obj_array, bool not_array);
 187   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 188   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 189                                      bool is_virtual = false, bool is_static = false);
 190   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 191     return generate_method_call(method_id, false, true);
 192   }
 193   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 194     return generate_method_call(method_id, true, false);
 195   }
 196   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 197 
 198   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 199   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 200   bool inline_string_compareTo();
 201   bool inline_string_indexOf();
 202   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 203   bool inline_string_equals();
 204   Node* round_double_node(Node* n);
 205   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 206   bool inline_math_native(vmIntrinsics::ID id);
 207   bool inline_trig(vmIntrinsics::ID id);
 208   bool inline_math(vmIntrinsics::ID id);
 209   template <typename OverflowOp>
 210   bool inline_math_overflow(Node* arg1, Node* arg2);
 211   void inline_math_mathExact(Node* math, Node* test);
 212   bool inline_math_addExactI(bool is_increment);
 213   bool inline_math_addExactL(bool is_increment);
 214   bool inline_math_multiplyExactI();
 215   bool inline_math_multiplyExactL();
 216   bool inline_math_negateExactI();
 217   bool inline_math_negateExactL();
 218   bool inline_math_subtractExactI(bool is_decrement);
 219   bool inline_math_subtractExactL(bool is_decrement);
 220   bool inline_exp();
 221   bool inline_pow();
 222   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 223   bool inline_min_max(vmIntrinsics::ID id);
 224   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 225   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 226   int classify_unsafe_addr(Node* &base, Node* &offset);
 227   Node* make_unsafe_address(Node* base, Node* offset);
 228   // Helper for inline_unsafe_access.
 229   // Generates the guards that check whether the result of
 230   // Unsafe.getObject should be recorded in an SATB log buffer.
 231   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 232   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 233   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 234   static bool klass_needs_init_guard(Node* kls);
 235   bool inline_unsafe_allocate();
 236   bool inline_unsafe_copyMemory();
 237   bool inline_native_currentThread();
 238 #ifdef TRACE_HAVE_INTRINSICS
 239   bool inline_native_classID();
 240   bool inline_native_threadID();
 241 #endif
 242   bool inline_native_time_funcs(address method, const char* funcName);
 243   bool inline_native_isInterrupted();
 244   bool inline_native_Class_query(vmIntrinsics::ID id);
 245   bool inline_native_subtype_check();
 246 
 247   bool inline_native_newArray();
 248   bool inline_native_getLength();
 249   bool inline_array_copyOf(bool is_copyOfRange);
 250   bool inline_array_equals();
 251   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 252   bool inline_native_clone(bool is_virtual);
 253   bool inline_native_Reflection_getCallerClass();
 254   // Helper function for inlining native object hash method
 255   bool inline_native_hashcode(bool is_virtual, bool is_static);
 256   bool inline_native_getClass();
 257 
 258   // Helper functions for inlining arraycopy
 259   bool inline_arraycopy();
 260   void generate_arraycopy(const TypePtr* adr_type,
 261                           BasicType basic_elem_type,
 262                           Node* src,  Node* src_offset,
 263                           Node* dest, Node* dest_offset,
 264                           Node* copy_length,
 265                           bool disjoint_bases = false,
 266                           bool length_never_negative = false,
 267                           RegionNode* slow_region = NULL);
 268   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 269                                                 RegionNode* slow_region);
 270   void generate_clear_array(const TypePtr* adr_type,
 271                             Node* dest,
 272                             BasicType basic_elem_type,
 273                             Node* slice_off,
 274                             Node* slice_len,
 275                             Node* slice_end);
 276   bool generate_block_arraycopy(const TypePtr* adr_type,
 277                                 BasicType basic_elem_type,
 278                                 AllocateNode* alloc,
 279                                 Node* src,  Node* src_offset,
 280                                 Node* dest, Node* dest_offset,
 281                                 Node* dest_size, bool dest_uninitialized);
 282   void generate_slow_arraycopy(const TypePtr* adr_type,
 283                                Node* src,  Node* src_offset,
 284                                Node* dest, Node* dest_offset,
 285                                Node* copy_length, bool dest_uninitialized);
 286   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 287                                      Node* dest_elem_klass,
 288                                      Node* src,  Node* src_offset,
 289                                      Node* dest, Node* dest_offset,
 290                                      Node* copy_length, bool dest_uninitialized);
 291   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 292                                    Node* src,  Node* src_offset,
 293                                    Node* dest, Node* dest_offset,
 294                                    Node* copy_length, bool dest_uninitialized);
 295   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 296                                     BasicType basic_elem_type,
 297                                     bool disjoint_bases,
 298                                     Node* src,  Node* src_offset,
 299                                     Node* dest, Node* dest_offset,
 300                                     Node* copy_length, bool dest_uninitialized);
 301   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 302   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 303   bool inline_unsafe_ordered_store(BasicType type);
 304   bool inline_unsafe_fence(vmIntrinsics::ID id);
 305   bool inline_fp_conversions(vmIntrinsics::ID id);
 306   bool inline_number_methods(vmIntrinsics::ID id);
 307   bool inline_reference_get();
 308   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 309   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 310   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 311   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 312   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 313   bool inline_sha_implCompress(vmIntrinsics::ID id);
 314   bool inline_digestBase_implCompressMB(int predicate);
 315   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 316                                  bool long_state, address stubAddr, const char *stubName,
 317                                  Node* src_start, Node* ofs, Node* limit);
 318   Node* get_state_from_sha_object(Node *sha_object);
 319   Node* get_state_from_sha5_object(Node *sha_object);
 320   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 321   bool inline_encodeISOArray();
 322   bool inline_updateCRC32();
 323   bool inline_updateBytesCRC32();
 324   bool inline_updateByteBufferCRC32();
 325   bool inline_multiplyToLen();
 326 };
 327 
 328 
 329 //---------------------------make_vm_intrinsic----------------------------
 330 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 331   vmIntrinsics::ID id = m->intrinsic_id();
 332   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 333 
 334   ccstr disable_intr = NULL;
 335 
 336   if ((DisableIntrinsic[0] != '\0'
 337        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 338       (method_has_option_value("DisableIntrinsic", disable_intr)
 339        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 340     // disabled by a user request on the command line:
 341     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 342     return NULL;
 343   }
 344 
 345   if (!m->is_loaded()) {
 346     // do not attempt to inline unloaded methods
 347     return NULL;
 348   }
 349 
 350   // Only a few intrinsics implement a virtual dispatch.
 351   // They are expensive calls which are also frequently overridden.
 352   if (is_virtual) {
 353     switch (id) {
 354     case vmIntrinsics::_hashCode:
 355     case vmIntrinsics::_clone:
 356       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 357       break;
 358     default:
 359       return NULL;
 360     }
 361   }
 362 
 363   // -XX:-InlineNatives disables nearly all intrinsics:
 364   if (!InlineNatives) {
 365     switch (id) {
 366     case vmIntrinsics::_indexOf:
 367     case vmIntrinsics::_compareTo:
 368     case vmIntrinsics::_equals:
 369     case vmIntrinsics::_equalsC:
 370     case vmIntrinsics::_getAndAddInt:
 371     case vmIntrinsics::_getAndAddLong:
 372     case vmIntrinsics::_getAndSetInt:
 373     case vmIntrinsics::_getAndSetLong:
 374     case vmIntrinsics::_getAndSetObject:
 375     case vmIntrinsics::_loadFence:
 376     case vmIntrinsics::_storeFence:
 377     case vmIntrinsics::_fullFence:
 378       break;  // InlineNatives does not control String.compareTo
 379     case vmIntrinsics::_Reference_get:
 380       break;  // InlineNatives does not control Reference.get
 381     default:
 382       return NULL;
 383     }
 384   }
 385 
 386   int predicates = 0;
 387   bool does_virtual_dispatch = false;
 388 
 389   switch (id) {
 390   case vmIntrinsics::_compareTo:
 391     if (!SpecialStringCompareTo)  return NULL;
 392     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 393     break;
 394   case vmIntrinsics::_indexOf:
 395     if (!SpecialStringIndexOf)  return NULL;
 396     break;
 397   case vmIntrinsics::_equals:
 398     if (!SpecialStringEquals)  return NULL;
 399     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 400     break;
 401   case vmIntrinsics::_equalsC:
 402     if (!SpecialArraysEquals)  return NULL;
 403     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 404     break;
 405   case vmIntrinsics::_arraycopy:
 406     if (!InlineArrayCopy)  return NULL;
 407     break;
 408   case vmIntrinsics::_copyMemory:
 409     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 410     if (!InlineArrayCopy)  return NULL;
 411     break;
 412   case vmIntrinsics::_hashCode:
 413     if (!InlineObjectHash)  return NULL;
 414     does_virtual_dispatch = true;
 415     break;
 416   case vmIntrinsics::_clone:
 417     does_virtual_dispatch = true;
 418   case vmIntrinsics::_copyOf:
 419   case vmIntrinsics::_copyOfRange:
 420     if (!InlineObjectCopy)  return NULL;
 421     // These also use the arraycopy intrinsic mechanism:
 422     if (!InlineArrayCopy)  return NULL;
 423     break;
 424   case vmIntrinsics::_encodeISOArray:
 425     if (!SpecialEncodeISOArray)  return NULL;
 426     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 427     break;
 428   case vmIntrinsics::_checkIndex:
 429     // We do not intrinsify this.  The optimizer does fine with it.
 430     return NULL;
 431 
 432   case vmIntrinsics::_getCallerClass:
 433     if (!UseNewReflection)  return NULL;
 434     if (!InlineReflectionGetCallerClass)  return NULL;
 435     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 436     break;
 437 
 438   case vmIntrinsics::_bitCount_i:
 439     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 440     break;
 441 
 442   case vmIntrinsics::_bitCount_l:
 443     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 444     break;
 445 
 446   case vmIntrinsics::_numberOfLeadingZeros_i:
 447     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 448     break;
 449 
 450   case vmIntrinsics::_numberOfLeadingZeros_l:
 451     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 452     break;
 453 
 454   case vmIntrinsics::_numberOfTrailingZeros_i:
 455     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 456     break;
 457 
 458   case vmIntrinsics::_numberOfTrailingZeros_l:
 459     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 460     break;
 461 
 462   case vmIntrinsics::_reverseBytes_c:
 463     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 464     break;
 465   case vmIntrinsics::_reverseBytes_s:
 466     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 467     break;
 468   case vmIntrinsics::_reverseBytes_i:
 469     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 470     break;
 471   case vmIntrinsics::_reverseBytes_l:
 472     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 473     break;
 474 
 475   case vmIntrinsics::_Reference_get:
 476     // Use the intrinsic version of Reference.get() so that the value in
 477     // the referent field can be registered by the G1 pre-barrier code.
 478     // Also add memory barrier to prevent commoning reads from this field
 479     // across safepoint since GC can change it value.
 480     break;
 481 
 482   case vmIntrinsics::_compareAndSwapObject:
 483 #ifdef _LP64
 484     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 485 #endif
 486     break;
 487 
 488   case vmIntrinsics::_compareAndSwapLong:
 489     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 490     break;
 491 
 492   case vmIntrinsics::_getAndAddInt:
 493     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 494     break;
 495 
 496   case vmIntrinsics::_getAndAddLong:
 497     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 498     break;
 499 
 500   case vmIntrinsics::_getAndSetInt:
 501     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 502     break;
 503 
 504   case vmIntrinsics::_getAndSetLong:
 505     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 506     break;
 507 
 508   case vmIntrinsics::_getAndSetObject:
 509 #ifdef _LP64
 510     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 511     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 512     break;
 513 #else
 514     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 515     break;
 516 #endif
 517 
 518   case vmIntrinsics::_aescrypt_encryptBlock:
 519   case vmIntrinsics::_aescrypt_decryptBlock:
 520     if (!UseAESIntrinsics) return NULL;
 521     break;
 522 
 523   case vmIntrinsics::_multiplyToLen:
 524     if (!UseMultiplyToLenIntrinsic) return NULL;
 525     break;
 526 
 527   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 528   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 529     if (!UseAESIntrinsics) return NULL;
 530     // these two require the predicated logic
 531     predicates = 1;
 532     break;
 533 
 534   case vmIntrinsics::_sha_implCompress:
 535     if (!UseSHA1Intrinsics) return NULL;
 536     break;
 537 
 538   case vmIntrinsics::_sha2_implCompress:
 539     if (!UseSHA256Intrinsics) return NULL;
 540     break;
 541 
 542   case vmIntrinsics::_sha5_implCompress:
 543     if (!UseSHA512Intrinsics) return NULL;
 544     break;
 545 
 546   case vmIntrinsics::_digestBase_implCompressMB:
 547     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 548     predicates = 3;
 549     break;
 550 
 551   case vmIntrinsics::_updateCRC32:
 552   case vmIntrinsics::_updateBytesCRC32:
 553   case vmIntrinsics::_updateByteBufferCRC32:
 554     if (!UseCRC32Intrinsics) return NULL;
 555     break;
 556 
 557   case vmIntrinsics::_incrementExactI:
 558   case vmIntrinsics::_addExactI:
 559     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 560     break;
 561   case vmIntrinsics::_incrementExactL:
 562   case vmIntrinsics::_addExactL:
 563     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 564     break;
 565   case vmIntrinsics::_decrementExactI:
 566   case vmIntrinsics::_subtractExactI:
 567     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 568     break;
 569   case vmIntrinsics::_decrementExactL:
 570   case vmIntrinsics::_subtractExactL:
 571     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 572     break;
 573   case vmIntrinsics::_negateExactI:
 574     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 575     break;
 576   case vmIntrinsics::_negateExactL:
 577     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 578     break;
 579   case vmIntrinsics::_multiplyExactI:
 580     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 581     break;
 582   case vmIntrinsics::_multiplyExactL:
 583     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 584     break;
 585 
 586  default:
 587     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 588     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 589     break;
 590   }
 591 
 592   // -XX:-InlineClassNatives disables natives from the Class class.
 593   // The flag applies to all reflective calls, notably Array.newArray
 594   // (visible to Java programmers as Array.newInstance).
 595   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 596       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 597     if (!InlineClassNatives)  return NULL;
 598   }
 599 
 600   // -XX:-InlineThreadNatives disables natives from the Thread class.
 601   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 602     if (!InlineThreadNatives)  return NULL;
 603   }
 604 
 605   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 606   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 607       m->holder()->name() == ciSymbol::java_lang_Float() ||
 608       m->holder()->name() == ciSymbol::java_lang_Double()) {
 609     if (!InlineMathNatives)  return NULL;
 610   }
 611 
 612   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 613   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 614     if (!InlineUnsafeOps)  return NULL;
 615   }
 616 
 617   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 618 }
 619 
 620 //----------------------register_library_intrinsics-----------------------
 621 // Initialize this file's data structures, for each Compile instance.
 622 void Compile::register_library_intrinsics() {
 623   // Nothing to do here.
 624 }
 625 
 626 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 627   LibraryCallKit kit(jvms, this);
 628   Compile* C = kit.C;
 629   int nodes = C->unique();
 630 #ifndef PRODUCT
 631   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 632     char buf[1000];
 633     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 634     tty->print_cr("Intrinsic %s", str);
 635   }
 636 #endif
 637   ciMethod* callee = kit.callee();
 638   const int bci    = kit.bci();
 639 
 640   // Try to inline the intrinsic.
 641   if (kit.try_to_inline(_last_predicate)) {
 642     if (C->print_intrinsics() || C->print_inlining()) {
 643       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 644     }
 645     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 646     if (C->log()) {
 647       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 648                      vmIntrinsics::name_at(intrinsic_id()),
 649                      (is_virtual() ? " virtual='1'" : ""),
 650                      C->unique() - nodes);
 651     }
 652     // Push the result from the inlined method onto the stack.
 653     kit.push_result();
 654     return kit.transfer_exceptions_into_jvms();
 655   }
 656 
 657   // The intrinsic bailed out
 658   if (C->print_intrinsics() || C->print_inlining()) {
 659     if (jvms->has_method()) {
 660       // Not a root compile.
 661       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 662       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 663     } else {
 664       // Root compile
 665       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 666                vmIntrinsics::name_at(intrinsic_id()),
 667                (is_virtual() ? " (virtual)" : ""), bci);
 668     }
 669   }
 670   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 671   return NULL;
 672 }
 673 
 674 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 675   LibraryCallKit kit(jvms, this);
 676   Compile* C = kit.C;
 677   int nodes = C->unique();
 678   _last_predicate = predicate;
 679 #ifndef PRODUCT
 680   assert(is_predicated() && predicate < predicates_count(), "sanity");
 681   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 682     char buf[1000];
 683     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 684     tty->print_cr("Predicate for intrinsic %s", str);
 685   }
 686 #endif
 687   ciMethod* callee = kit.callee();
 688   const int bci    = kit.bci();
 689 
 690   Node* slow_ctl = kit.try_to_predicate(predicate);
 691   if (!kit.failing()) {
 692     if (C->print_intrinsics() || C->print_inlining()) {
 693       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 694     }
 695     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 696     if (C->log()) {
 697       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 698                      vmIntrinsics::name_at(intrinsic_id()),
 699                      (is_virtual() ? " virtual='1'" : ""),
 700                      C->unique() - nodes);
 701     }
 702     return slow_ctl; // Could be NULL if the check folds.
 703   }
 704 
 705   // The intrinsic bailed out
 706   if (C->print_intrinsics() || C->print_inlining()) {
 707     if (jvms->has_method()) {
 708       // Not a root compile.
 709       const char* msg = "failed to generate predicate for intrinsic";
 710       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 711     } else {
 712       // Root compile
 713       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 714                                         vmIntrinsics::name_at(intrinsic_id()),
 715                                         (is_virtual() ? " (virtual)" : ""), bci);
 716     }
 717   }
 718   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 719   return NULL;
 720 }
 721 
 722 bool LibraryCallKit::try_to_inline(int predicate) {
 723   // Handle symbolic names for otherwise undistinguished boolean switches:
 724   const bool is_store       = true;
 725   const bool is_native_ptr  = true;
 726   const bool is_static      = true;
 727   const bool is_volatile    = true;
 728 
 729   if (!jvms()->has_method()) {
 730     // Root JVMState has a null method.
 731     assert(map()->memory()->Opcode() == Op_Parm, "");
 732     // Insert the memory aliasing node
 733     set_all_memory(reset_memory());
 734   }
 735   assert(merged_memory(), "");
 736 
 737 
 738   switch (intrinsic_id()) {
 739   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 740   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 741   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 742 
 743   case vmIntrinsics::_dsin:
 744   case vmIntrinsics::_dcos:
 745   case vmIntrinsics::_dtan:
 746   case vmIntrinsics::_dabs:
 747   case vmIntrinsics::_datan2:
 748   case vmIntrinsics::_dsqrt:
 749   case vmIntrinsics::_dexp:
 750   case vmIntrinsics::_dlog:
 751   case vmIntrinsics::_dlog10:
 752   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 753 
 754   case vmIntrinsics::_min:
 755   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 756 
 757   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 758   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 759   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 760   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 761   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 762   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 763   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 764   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 765   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 766   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 767   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 768   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 769 
 770   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 771 
 772   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 773   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 774   case vmIntrinsics::_equals:                   return inline_string_equals();
 775 
 776   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 777   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 778   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 779   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 780   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 781   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 782   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 783   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 784   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 785 
 786   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 787   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 788   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 789   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 790   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 791   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 792   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 793   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 794   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 795 
 796   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 797   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 798   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 799   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 800   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 801   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 802   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 803   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 804 
 805   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 806   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 807   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 808   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 809   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 810   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 811   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 812   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 813 
 814   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 815   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 816   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 817   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 818   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 819   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 820   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 821   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 822   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 823 
 824   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 825   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 826   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 827   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 828   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 829   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 830   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 831   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 832   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 833 
 834   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 835   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 836   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 837   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 838 
 839   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 840   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 841   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 842 
 843   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 844   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 845   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 846 
 847   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 848   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 849   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 850   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 851   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 852 
 853   case vmIntrinsics::_loadFence:
 854   case vmIntrinsics::_storeFence:
 855   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 856 
 857   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 858   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 859 
 860 #ifdef TRACE_HAVE_INTRINSICS
 861   case vmIntrinsics::_classID:                  return inline_native_classID();
 862   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 863   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 864 #endif
 865   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 866   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 867   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 868   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 869   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 870   case vmIntrinsics::_getLength:                return inline_native_getLength();
 871   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 872   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 873   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 874   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 875 
 876   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 877 
 878   case vmIntrinsics::_isInstance:
 879   case vmIntrinsics::_getModifiers:
 880   case vmIntrinsics::_isInterface:
 881   case vmIntrinsics::_isArray:
 882   case vmIntrinsics::_isPrimitive:
 883   case vmIntrinsics::_getSuperclass:
 884   case vmIntrinsics::_getComponentType:
 885   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 886 
 887   case vmIntrinsics::_floatToRawIntBits:
 888   case vmIntrinsics::_floatToIntBits:
 889   case vmIntrinsics::_intBitsToFloat:
 890   case vmIntrinsics::_doubleToRawLongBits:
 891   case vmIntrinsics::_doubleToLongBits:
 892   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 893 
 894   case vmIntrinsics::_numberOfLeadingZeros_i:
 895   case vmIntrinsics::_numberOfLeadingZeros_l:
 896   case vmIntrinsics::_numberOfTrailingZeros_i:
 897   case vmIntrinsics::_numberOfTrailingZeros_l:
 898   case vmIntrinsics::_bitCount_i:
 899   case vmIntrinsics::_bitCount_l:
 900   case vmIntrinsics::_reverseBytes_i:
 901   case vmIntrinsics::_reverseBytes_l:
 902   case vmIntrinsics::_reverseBytes_s:
 903   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 904 
 905   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 906 
 907   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 908 
 909   case vmIntrinsics::_aescrypt_encryptBlock:
 910   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 911 
 912   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 913   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 914     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 915 
 916   case vmIntrinsics::_sha_implCompress:
 917   case vmIntrinsics::_sha2_implCompress:
 918   case vmIntrinsics::_sha5_implCompress:
 919     return inline_sha_implCompress(intrinsic_id());
 920 
 921   case vmIntrinsics::_digestBase_implCompressMB:
 922     return inline_digestBase_implCompressMB(predicate);
 923 
 924   case vmIntrinsics::_multiplyToLen:
 925     return inline_multiplyToLen();
 926 
 927   case vmIntrinsics::_encodeISOArray:
 928     return inline_encodeISOArray();
 929 
 930   case vmIntrinsics::_updateCRC32:
 931     return inline_updateCRC32();
 932   case vmIntrinsics::_updateBytesCRC32:
 933     return inline_updateBytesCRC32();
 934   case vmIntrinsics::_updateByteBufferCRC32:
 935     return inline_updateByteBufferCRC32();
 936 
 937   default:
 938     // If you get here, it may be that someone has added a new intrinsic
 939     // to the list in vmSymbols.hpp without implementing it here.
 940 #ifndef PRODUCT
 941     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 942       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 943                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 944     }
 945 #endif
 946     return false;
 947   }
 948 }
 949 
 950 Node* LibraryCallKit::try_to_predicate(int predicate) {
 951   if (!jvms()->has_method()) {
 952     // Root JVMState has a null method.
 953     assert(map()->memory()->Opcode() == Op_Parm, "");
 954     // Insert the memory aliasing node
 955     set_all_memory(reset_memory());
 956   }
 957   assert(merged_memory(), "");
 958 
 959   switch (intrinsic_id()) {
 960   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 961     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 962   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 963     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 964   case vmIntrinsics::_digestBase_implCompressMB:
 965     return inline_digestBase_implCompressMB_predicate(predicate);
 966 
 967   default:
 968     // If you get here, it may be that someone has added a new intrinsic
 969     // to the list in vmSymbols.hpp without implementing it here.
 970 #ifndef PRODUCT
 971     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 972       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 973                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 974     }
 975 #endif
 976     Node* slow_ctl = control();
 977     set_control(top()); // No fast path instrinsic
 978     return slow_ctl;
 979   }
 980 }
 981 
 982 //------------------------------set_result-------------------------------
 983 // Helper function for finishing intrinsics.
 984 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 985   record_for_igvn(region);
 986   set_control(_gvn.transform(region));
 987   set_result( _gvn.transform(value));
 988   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 989 }
 990 
 991 //------------------------------generate_guard---------------------------
 992 // Helper function for generating guarded fast-slow graph structures.
 993 // The given 'test', if true, guards a slow path.  If the test fails
 994 // then a fast path can be taken.  (We generally hope it fails.)
 995 // In all cases, GraphKit::control() is updated to the fast path.
 996 // The returned value represents the control for the slow path.
 997 // The return value is never 'top'; it is either a valid control
 998 // or NULL if it is obvious that the slow path can never be taken.
 999 // Also, if region and the slow control are not NULL, the slow edge
1000 // is appended to the region.
1001 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
1002   if (stopped()) {
1003     // Already short circuited.
1004     return NULL;
1005   }
1006 
1007   // Build an if node and its projections.
1008   // If test is true we take the slow path, which we assume is uncommon.
1009   if (_gvn.type(test) == TypeInt::ZERO) {
1010     // The slow branch is never taken.  No need to build this guard.
1011     return NULL;
1012   }
1013 
1014   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1015 
1016   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
1017   if (if_slow == top()) {
1018     // The slow branch is never taken.  No need to build this guard.
1019     return NULL;
1020   }
1021 
1022   if (region != NULL)
1023     region->add_req(if_slow);
1024 
1025   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
1026   set_control(if_fast);
1027 
1028   return if_slow;
1029 }
1030 
1031 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1032   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1033 }
1034 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1035   return generate_guard(test, region, PROB_FAIR);
1036 }
1037 
1038 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1039                                                      Node* *pos_index) {
1040   if (stopped())
1041     return NULL;                // already stopped
1042   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1043     return NULL;                // index is already adequately typed
1044   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1045   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1046   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1047   if (is_neg != NULL && pos_index != NULL) {
1048     // Emulate effect of Parse::adjust_map_after_if.
1049     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1050     ccast->set_req(0, control());
1051     (*pos_index) = _gvn.transform(ccast);
1052   }
1053   return is_neg;
1054 }
1055 
1056 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1057                                                         Node* *pos_index) {
1058   if (stopped())
1059     return NULL;                // already stopped
1060   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1061     return NULL;                // index is already adequately typed
1062   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1063   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1064   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1065   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1066   if (is_notp != NULL && pos_index != NULL) {
1067     // Emulate effect of Parse::adjust_map_after_if.
1068     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1069     ccast->set_req(0, control());
1070     (*pos_index) = _gvn.transform(ccast);
1071   }
1072   return is_notp;
1073 }
1074 
1075 // Make sure that 'position' is a valid limit index, in [0..length].
1076 // There are two equivalent plans for checking this:
1077 //   A. (offset + copyLength)  unsigned<=  arrayLength
1078 //   B. offset  <=  (arrayLength - copyLength)
1079 // We require that all of the values above, except for the sum and
1080 // difference, are already known to be non-negative.
1081 // Plan A is robust in the face of overflow, if offset and copyLength
1082 // are both hugely positive.
1083 //
1084 // Plan B is less direct and intuitive, but it does not overflow at
1085 // all, since the difference of two non-negatives is always
1086 // representable.  Whenever Java methods must perform the equivalent
1087 // check they generally use Plan B instead of Plan A.
1088 // For the moment we use Plan A.
1089 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1090                                                   Node* subseq_length,
1091                                                   Node* array_length,
1092                                                   RegionNode* region) {
1093   if (stopped())
1094     return NULL;                // already stopped
1095   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1096   if (zero_offset && subseq_length->eqv_uncast(array_length))
1097     return NULL;                // common case of whole-array copy
1098   Node* last = subseq_length;
1099   if (!zero_offset)             // last += offset
1100     last = _gvn.transform(new (C) AddINode(last, offset));
1101   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1102   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1103   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1104   return is_over;
1105 }
1106 
1107 
1108 //--------------------------generate_current_thread--------------------
1109 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1110   ciKlass*    thread_klass = env()->Thread_klass();
1111   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1112   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1113   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1114   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1115   tls_output = thread;
1116   return threadObj;
1117 }
1118 
1119 
1120 //------------------------------make_string_method_node------------------------
1121 // Helper method for String intrinsic functions. This version is called
1122 // with str1 and str2 pointing to String object nodes.
1123 //
1124 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1125   Node* no_ctrl = NULL;
1126 
1127   // Get start addr of string
1128   Node* str1_value   = load_String_value(no_ctrl, str1);
1129   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1130   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1131 
1132   // Get length of string 1
1133   Node* str1_len  = load_String_length(no_ctrl, str1);
1134 
1135   Node* str2_value   = load_String_value(no_ctrl, str2);
1136   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1137   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1138 
1139   Node* str2_len = NULL;
1140   Node* result = NULL;
1141 
1142   switch (opcode) {
1143   case Op_StrIndexOf:
1144     // Get length of string 2
1145     str2_len = load_String_length(no_ctrl, str2);
1146 
1147     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1148                                  str1_start, str1_len, str2_start, str2_len);
1149     break;
1150   case Op_StrComp:
1151     // Get length of string 2
1152     str2_len = load_String_length(no_ctrl, str2);
1153 
1154     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1155                                  str1_start, str1_len, str2_start, str2_len);
1156     break;
1157   case Op_StrEquals:
1158     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1159                                str1_start, str2_start, str1_len);
1160     break;
1161   default:
1162     ShouldNotReachHere();
1163     return NULL;
1164   }
1165 
1166   // All these intrinsics have checks.
1167   C->set_has_split_ifs(true); // Has chance for split-if optimization
1168 
1169   return _gvn.transform(result);
1170 }
1171 
1172 // Helper method for String intrinsic functions. This version is called
1173 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1174 // to Int nodes containing the lenghts of str1 and str2.
1175 //
1176 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1177   Node* result = NULL;
1178   switch (opcode) {
1179   case Op_StrIndexOf:
1180     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1181                                  str1_start, cnt1, str2_start, cnt2);
1182     break;
1183   case Op_StrComp:
1184     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1185                                  str1_start, cnt1, str2_start, cnt2);
1186     break;
1187   case Op_StrEquals:
1188     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1189                                  str1_start, str2_start, cnt1);
1190     break;
1191   default:
1192     ShouldNotReachHere();
1193     return NULL;
1194   }
1195 
1196   // All these intrinsics have checks.
1197   C->set_has_split_ifs(true); // Has chance for split-if optimization
1198 
1199   return _gvn.transform(result);
1200 }
1201 
1202 //------------------------------inline_string_compareTo------------------------
1203 // public int java.lang.String.compareTo(String anotherString);
1204 bool LibraryCallKit::inline_string_compareTo() {
1205   Node* receiver = null_check(argument(0));
1206   Node* arg      = null_check(argument(1));
1207   if (stopped()) {
1208     return true;
1209   }
1210   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1211   return true;
1212 }
1213 
1214 //------------------------------inline_string_equals------------------------
1215 bool LibraryCallKit::inline_string_equals() {
1216   Node* receiver = null_check_receiver();
1217   // NOTE: Do not null check argument for String.equals() because spec
1218   // allows to specify NULL as argument.
1219   Node* argument = this->argument(1);
1220   if (stopped()) {
1221     return true;
1222   }
1223 
1224   // paths (plus control) merge
1225   RegionNode* region = new (C) RegionNode(5);
1226   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1227 
1228   // does source == target string?
1229   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1230   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1231 
1232   Node* if_eq = generate_slow_guard(bol, NULL);
1233   if (if_eq != NULL) {
1234     // receiver == argument
1235     phi->init_req(2, intcon(1));
1236     region->init_req(2, if_eq);
1237   }
1238 
1239   // get String klass for instanceOf
1240   ciInstanceKlass* klass = env()->String_klass();
1241 
1242   if (!stopped()) {
1243     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1244     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1245     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1246 
1247     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1248     //instanceOf == true, fallthrough
1249 
1250     if (inst_false != NULL) {
1251       phi->init_req(3, intcon(0));
1252       region->init_req(3, inst_false);
1253     }
1254   }
1255 
1256   if (!stopped()) {
1257     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1258 
1259     // Properly cast the argument to String
1260     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1261     // This path is taken only when argument's type is String:NotNull.
1262     argument = cast_not_null(argument, false);
1263 
1264     Node* no_ctrl = NULL;
1265 
1266     // Get start addr of receiver
1267     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1268     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1269     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1270 
1271     // Get length of receiver
1272     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1273 
1274     // Get start addr of argument
1275     Node* argument_val    = load_String_value(no_ctrl, argument);
1276     Node* argument_offset = load_String_offset(no_ctrl, argument);
1277     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1278 
1279     // Get length of argument
1280     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1281 
1282     // Check for receiver count != argument count
1283     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1284     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1285     Node* if_ne = generate_slow_guard(bol, NULL);
1286     if (if_ne != NULL) {
1287       phi->init_req(4, intcon(0));
1288       region->init_req(4, if_ne);
1289     }
1290 
1291     // Check for count == 0 is done by assembler code for StrEquals.
1292 
1293     if (!stopped()) {
1294       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1295       phi->init_req(1, equals);
1296       region->init_req(1, control());
1297     }
1298   }
1299 
1300   // post merge
1301   set_control(_gvn.transform(region));
1302   record_for_igvn(region);
1303 
1304   set_result(_gvn.transform(phi));
1305   return true;
1306 }
1307 
1308 //------------------------------inline_array_equals----------------------------
1309 bool LibraryCallKit::inline_array_equals() {
1310   Node* arg1 = argument(0);
1311   Node* arg2 = argument(1);
1312   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1313   return true;
1314 }
1315 
1316 // Java version of String.indexOf(constant string)
1317 // class StringDecl {
1318 //   StringDecl(char[] ca) {
1319 //     offset = 0;
1320 //     count = ca.length;
1321 //     value = ca;
1322 //   }
1323 //   int offset;
1324 //   int count;
1325 //   char[] value;
1326 // }
1327 //
1328 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1329 //                             int targetOffset, int cache_i, int md2) {
1330 //   int cache = cache_i;
1331 //   int sourceOffset = string_object.offset;
1332 //   int sourceCount = string_object.count;
1333 //   int targetCount = target_object.length;
1334 //
1335 //   int targetCountLess1 = targetCount - 1;
1336 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1337 //
1338 //   char[] source = string_object.value;
1339 //   char[] target = target_object;
1340 //   int lastChar = target[targetCountLess1];
1341 //
1342 //  outer_loop:
1343 //   for (int i = sourceOffset; i < sourceEnd; ) {
1344 //     int src = source[i + targetCountLess1];
1345 //     if (src == lastChar) {
1346 //       // With random strings and a 4-character alphabet,
1347 //       // reverse matching at this point sets up 0.8% fewer
1348 //       // frames, but (paradoxically) makes 0.3% more probes.
1349 //       // Since those probes are nearer the lastChar probe,
1350 //       // there is may be a net D$ win with reverse matching.
1351 //       // But, reversing loop inhibits unroll of inner loop
1352 //       // for unknown reason.  So, does running outer loop from
1353 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1354 //       for (int j = 0; j < targetCountLess1; j++) {
1355 //         if (target[targetOffset + j] != source[i+j]) {
1356 //           if ((cache & (1 << source[i+j])) == 0) {
1357 //             if (md2 < j+1) {
1358 //               i += j+1;
1359 //               continue outer_loop;
1360 //             }
1361 //           }
1362 //           i += md2;
1363 //           continue outer_loop;
1364 //         }
1365 //       }
1366 //       return i - sourceOffset;
1367 //     }
1368 //     if ((cache & (1 << src)) == 0) {
1369 //       i += targetCountLess1;
1370 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1371 //     i++;
1372 //   }
1373 //   return -1;
1374 // }
1375 
1376 //------------------------------string_indexOf------------------------
1377 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1378                                      jint cache_i, jint md2_i) {
1379 
1380   Node* no_ctrl  = NULL;
1381   float likely   = PROB_LIKELY(0.9);
1382   float unlikely = PROB_UNLIKELY(0.9);
1383 
1384   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1385 
1386   Node* source        = load_String_value(no_ctrl, string_object);
1387   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1388   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1389 
1390   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1391   jint target_length = target_array->length();
1392   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1393   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1394 
1395   // String.value field is known to be @Stable.
1396   if (UseImplicitStableValues) {
1397     target = cast_array_to_stable(target, target_type);
1398   }
1399 
1400   IdealKit kit(this, false, true);
1401 #define __ kit.
1402   Node* zero             = __ ConI(0);
1403   Node* one              = __ ConI(1);
1404   Node* cache            = __ ConI(cache_i);
1405   Node* md2              = __ ConI(md2_i);
1406   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1407   Node* targetCount      = __ ConI(target_length);
1408   Node* targetCountLess1 = __ ConI(target_length - 1);
1409   Node* targetOffset     = __ ConI(targetOffset_i);
1410   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1411 
1412   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1413   Node* outer_loop = __ make_label(2 /* goto */);
1414   Node* return_    = __ make_label(1);
1415 
1416   __ set(rtn,__ ConI(-1));
1417   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1418        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1419        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1420        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1421        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1422          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1423               Node* tpj = __ AddI(targetOffset, __ value(j));
1424               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1425               Node* ipj  = __ AddI(__ value(i), __ value(j));
1426               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1427               __ if_then(targ, BoolTest::ne, src2); {
1428                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1429                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1430                     __ increment(i, __ AddI(__ value(j), one));
1431                     __ goto_(outer_loop);
1432                   } __ end_if(); __ dead(j);
1433                 }__ end_if(); __ dead(j);
1434                 __ increment(i, md2);
1435                 __ goto_(outer_loop);
1436               }__ end_if();
1437               __ increment(j, one);
1438          }__ end_loop(); __ dead(j);
1439          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1440          __ goto_(return_);
1441        }__ end_if();
1442        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1443          __ increment(i, targetCountLess1);
1444        }__ end_if();
1445        __ increment(i, one);
1446        __ bind(outer_loop);
1447   }__ end_loop(); __ dead(i);
1448   __ bind(return_);
1449 
1450   // Final sync IdealKit and GraphKit.
1451   final_sync(kit);
1452   Node* result = __ value(rtn);
1453 #undef __
1454   C->set_has_loops(true);
1455   return result;
1456 }
1457 
1458 //------------------------------inline_string_indexOf------------------------
1459 bool LibraryCallKit::inline_string_indexOf() {
1460   Node* receiver = argument(0);
1461   Node* arg      = argument(1);
1462 
1463   Node* result;
1464   // Disable the use of pcmpestri until it can be guaranteed that
1465   // the load doesn't cross into the uncommited space.
1466   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1467       UseSSE42Intrinsics) {
1468     // Generate SSE4.2 version of indexOf
1469     // We currently only have match rules that use SSE4.2
1470 
1471     receiver = null_check(receiver);
1472     arg      = null_check(arg);
1473     if (stopped()) {
1474       return true;
1475     }
1476 
1477     ciInstanceKlass* str_klass = env()->String_klass();
1478     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1479 
1480     // Make the merge point
1481     RegionNode* result_rgn = new (C) RegionNode(4);
1482     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1483     Node* no_ctrl  = NULL;
1484 
1485     // Get start addr of source string
1486     Node* source = load_String_value(no_ctrl, receiver);
1487     Node* source_offset = load_String_offset(no_ctrl, receiver);
1488     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1489 
1490     // Get length of source string
1491     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1492 
1493     // Get start addr of substring
1494     Node* substr = load_String_value(no_ctrl, arg);
1495     Node* substr_offset = load_String_offset(no_ctrl, arg);
1496     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1497 
1498     // Get length of source string
1499     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1500 
1501     // Check for substr count > string count
1502     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1503     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1504     Node* if_gt = generate_slow_guard(bol, NULL);
1505     if (if_gt != NULL) {
1506       result_phi->init_req(2, intcon(-1));
1507       result_rgn->init_req(2, if_gt);
1508     }
1509 
1510     if (!stopped()) {
1511       // Check for substr count == 0
1512       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1513       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1514       Node* if_zero = generate_slow_guard(bol, NULL);
1515       if (if_zero != NULL) {
1516         result_phi->init_req(3, intcon(0));
1517         result_rgn->init_req(3, if_zero);
1518       }
1519     }
1520 
1521     if (!stopped()) {
1522       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1523       result_phi->init_req(1, result);
1524       result_rgn->init_req(1, control());
1525     }
1526     set_control(_gvn.transform(result_rgn));
1527     record_for_igvn(result_rgn);
1528     result = _gvn.transform(result_phi);
1529 
1530   } else { // Use LibraryCallKit::string_indexOf
1531     // don't intrinsify if argument isn't a constant string.
1532     if (!arg->is_Con()) {
1533      return false;
1534     }
1535     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1536     if (str_type == NULL) {
1537       return false;
1538     }
1539     ciInstanceKlass* klass = env()->String_klass();
1540     ciObject* str_const = str_type->const_oop();
1541     if (str_const == NULL || str_const->klass() != klass) {
1542       return false;
1543     }
1544     ciInstance* str = str_const->as_instance();
1545     assert(str != NULL, "must be instance");
1546 
1547     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1548     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1549 
1550     int o;
1551     int c;
1552     if (java_lang_String::has_offset_field()) {
1553       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1554       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1555     } else {
1556       o = 0;
1557       c = pat->length();
1558     }
1559 
1560     // constant strings have no offset and count == length which
1561     // simplifies the resulting code somewhat so lets optimize for that.
1562     if (o != 0 || c != pat->length()) {
1563      return false;
1564     }
1565 
1566     receiver = null_check(receiver, T_OBJECT);
1567     // NOTE: No null check on the argument is needed since it's a constant String oop.
1568     if (stopped()) {
1569       return true;
1570     }
1571 
1572     // The null string as a pattern always returns 0 (match at beginning of string)
1573     if (c == 0) {
1574       set_result(intcon(0));
1575       return true;
1576     }
1577 
1578     // Generate default indexOf
1579     jchar lastChar = pat->char_at(o + (c - 1));
1580     int cache = 0;
1581     int i;
1582     for (i = 0; i < c - 1; i++) {
1583       assert(i < pat->length(), "out of range");
1584       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1585     }
1586 
1587     int md2 = c;
1588     for (i = 0; i < c - 1; i++) {
1589       assert(i < pat->length(), "out of range");
1590       if (pat->char_at(o + i) == lastChar) {
1591         md2 = (c - 1) - i;
1592       }
1593     }
1594 
1595     result = string_indexOf(receiver, pat, o, cache, md2);
1596   }
1597   set_result(result);
1598   return true;
1599 }
1600 
1601 //--------------------------round_double_node--------------------------------
1602 // Round a double node if necessary.
1603 Node* LibraryCallKit::round_double_node(Node* n) {
1604   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1605     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1606   return n;
1607 }
1608 
1609 //------------------------------inline_math-----------------------------------
1610 // public static double Math.abs(double)
1611 // public static double Math.sqrt(double)
1612 // public static double Math.log(double)
1613 // public static double Math.log10(double)
1614 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1615   Node* arg = round_double_node(argument(0));
1616   Node* n;
1617   switch (id) {
1618   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1619   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1620   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1621   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1622   default:  fatal_unexpected_iid(id);  break;
1623   }
1624   set_result(_gvn.transform(n));
1625   return true;
1626 }
1627 
1628 //------------------------------inline_trig----------------------------------
1629 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1630 // argument reduction which will turn into a fast/slow diamond.
1631 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1632   Node* arg = round_double_node(argument(0));
1633   Node* n = NULL;
1634 
1635   switch (id) {
1636   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1637   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1638   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1639   default:  fatal_unexpected_iid(id);  break;
1640   }
1641   n = _gvn.transform(n);
1642 
1643   // Rounding required?  Check for argument reduction!
1644   if (Matcher::strict_fp_requires_explicit_rounding) {
1645     static const double     pi_4 =  0.7853981633974483;
1646     static const double neg_pi_4 = -0.7853981633974483;
1647     // pi/2 in 80-bit extended precision
1648     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1649     // -pi/2 in 80-bit extended precision
1650     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1651     // Cutoff value for using this argument reduction technique
1652     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1653     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1654 
1655     // Pseudocode for sin:
1656     // if (x <= Math.PI / 4.0) {
1657     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1658     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1659     // } else {
1660     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1661     // }
1662     // return StrictMath.sin(x);
1663 
1664     // Pseudocode for cos:
1665     // if (x <= Math.PI / 4.0) {
1666     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1667     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1668     // } else {
1669     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1670     // }
1671     // return StrictMath.cos(x);
1672 
1673     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1674     // requires a special machine instruction to load it.  Instead we'll try
1675     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1676     // probably do the math inside the SIN encoding.
1677 
1678     // Make the merge point
1679     RegionNode* r = new (C) RegionNode(3);
1680     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1681 
1682     // Flatten arg so we need only 1 test
1683     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1684     // Node for PI/4 constant
1685     Node *pi4 = makecon(TypeD::make(pi_4));
1686     // Check PI/4 : abs(arg)
1687     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1688     // Check: If PI/4 < abs(arg) then go slow
1689     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1690     // Branch either way
1691     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1692     set_control(opt_iff(r,iff));
1693 
1694     // Set fast path result
1695     phi->init_req(2, n);
1696 
1697     // Slow path - non-blocking leaf call
1698     Node* call = NULL;
1699     switch (id) {
1700     case vmIntrinsics::_dsin:
1701       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1702                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1703                                "Sin", NULL, arg, top());
1704       break;
1705     case vmIntrinsics::_dcos:
1706       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1707                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1708                                "Cos", NULL, arg, top());
1709       break;
1710     case vmIntrinsics::_dtan:
1711       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1712                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1713                                "Tan", NULL, arg, top());
1714       break;
1715     }
1716     assert(control()->in(0) == call, "");
1717     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1718     r->init_req(1, control());
1719     phi->init_req(1, slow_result);
1720 
1721     // Post-merge
1722     set_control(_gvn.transform(r));
1723     record_for_igvn(r);
1724     n = _gvn.transform(phi);
1725 
1726     C->set_has_split_ifs(true); // Has chance for split-if optimization
1727   }
1728   set_result(n);
1729   return true;
1730 }
1731 
1732 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1733   //-------------------
1734   //result=(result.isNaN())? funcAddr():result;
1735   // Check: If isNaN() by checking result!=result? then either trap
1736   // or go to runtime
1737   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1738   // Build the boolean node
1739   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1740 
1741   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1742     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1743       // The pow or exp intrinsic returned a NaN, which requires a call
1744       // to the runtime.  Recompile with the runtime call.
1745       uncommon_trap(Deoptimization::Reason_intrinsic,
1746                     Deoptimization::Action_make_not_entrant);
1747     }
1748     return result;
1749   } else {
1750     // If this inlining ever returned NaN in the past, we compile a call
1751     // to the runtime to properly handle corner cases
1752 
1753     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1754     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1755     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1756 
1757     if (!if_slow->is_top()) {
1758       RegionNode* result_region = new (C) RegionNode(3);
1759       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1760 
1761       result_region->init_req(1, if_fast);
1762       result_val->init_req(1, result);
1763 
1764       set_control(if_slow);
1765 
1766       const TypePtr* no_memory_effects = NULL;
1767       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1768                                    no_memory_effects,
1769                                    x, top(), y, y ? top() : NULL);
1770       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1771 #ifdef ASSERT
1772       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1773       assert(value_top == top(), "second value must be top");
1774 #endif
1775 
1776       result_region->init_req(2, control());
1777       result_val->init_req(2, value);
1778       set_control(_gvn.transform(result_region));
1779       return _gvn.transform(result_val);
1780     } else {
1781       return result;
1782     }
1783   }
1784 }
1785 
1786 //------------------------------inline_exp-------------------------------------
1787 // Inline exp instructions, if possible.  The Intel hardware only misses
1788 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1789 bool LibraryCallKit::inline_exp() {
1790   Node* arg = round_double_node(argument(0));
1791   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1792 
1793   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1794   set_result(n);
1795 
1796   C->set_has_split_ifs(true); // Has chance for split-if optimization
1797   return true;
1798 }
1799 
1800 //------------------------------inline_pow-------------------------------------
1801 // Inline power instructions, if possible.
1802 bool LibraryCallKit::inline_pow() {
1803   // Pseudocode for pow
1804   // if (y == 2) {
1805   //   return x * x;
1806   // } else {
1807   //   if (x <= 0.0) {
1808   //     long longy = (long)y;
1809   //     if ((double)longy == y) { // if y is long
1810   //       if (y + 1 == y) longy = 0; // huge number: even
1811   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1812   //     } else {
1813   //       result = NaN;
1814   //     }
1815   //   } else {
1816   //     result = DPow(x,y);
1817   //   }
1818   //   if (result != result)?  {
1819   //     result = uncommon_trap() or runtime_call();
1820   //   }
1821   //   return result;
1822   // }
1823 
1824   Node* x = round_double_node(argument(0));
1825   Node* y = round_double_node(argument(2));
1826 
1827   Node* result = NULL;
1828 
1829   Node*   const_two_node = makecon(TypeD::make(2.0));
1830   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
1831   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
1832   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1833   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
1834   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
1835 
1836   RegionNode* region_node = new (C) RegionNode(3);
1837   region_node->init_req(1, if_true);
1838 
1839   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
1840   // special case for x^y where y == 2, we can convert it to x * x
1841   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
1842 
1843   // set control to if_false since we will now process the false branch
1844   set_control(if_false);
1845 
1846   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1847     // Short form: skip the fancy tests and just check for NaN result.
1848     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1849   } else {
1850     // If this inlining ever returned NaN in the past, include all
1851     // checks + call to the runtime.
1852 
1853     // Set the merge point for If node with condition of (x <= 0.0)
1854     // There are four possible paths to region node and phi node
1855     RegionNode *r = new (C) RegionNode(4);
1856     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1857 
1858     // Build the first if node: if (x <= 0.0)
1859     // Node for 0 constant
1860     Node *zeronode = makecon(TypeD::ZERO);
1861     // Check x:0
1862     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1863     // Check: If (x<=0) then go complex path
1864     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1865     // Branch either way
1866     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1867     // Fast path taken; set region slot 3
1868     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1869     r->init_req(3,fast_taken); // Capture fast-control
1870 
1871     // Fast path not-taken, i.e. slow path
1872     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1873 
1874     // Set fast path result
1875     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1876     phi->init_req(3, fast_result);
1877 
1878     // Complex path
1879     // Build the second if node (if y is long)
1880     // Node for (long)y
1881     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1882     // Node for (double)((long) y)
1883     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1884     // Check (double)((long) y) : y
1885     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1886     // Check if (y isn't long) then go to slow path
1887 
1888     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1889     // Branch either way
1890     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1891     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1892 
1893     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1894 
1895     // Calculate DPow(abs(x), y)*(1 & (long)y)
1896     // Node for constant 1
1897     Node *conone = longcon(1);
1898     // 1& (long)y
1899     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1900 
1901     // A huge number is always even. Detect a huge number by checking
1902     // if y + 1 == y and set integer to be tested for parity to 0.
1903     // Required for corner case:
1904     // (long)9.223372036854776E18 = max_jlong
1905     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1906     // max_jlong is odd but 9.223372036854776E18 is even
1907     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1908     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1909     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1910     Node* correctedsign = NULL;
1911     if (ConditionalMoveLimit != 0) {
1912       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1913     } else {
1914       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1915       RegionNode *r = new (C) RegionNode(3);
1916       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1917       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1918       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1919       phi->init_req(1, signnode);
1920       phi->init_req(2, longcon(0));
1921       correctedsign = _gvn.transform(phi);
1922       ylong_path = _gvn.transform(r);
1923       record_for_igvn(r);
1924     }
1925 
1926     // zero node
1927     Node *conzero = longcon(0);
1928     // Check (1&(long)y)==0?
1929     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1930     // Check if (1&(long)y)!=0?, if so the result is negative
1931     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1932     // abs(x)
1933     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1934     // abs(x)^y
1935     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1936     // -abs(x)^y
1937     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1938     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1939     Node *signresult = NULL;
1940     if (ConditionalMoveLimit != 0) {
1941       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1942     } else {
1943       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1944       RegionNode *r = new (C) RegionNode(3);
1945       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1946       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1947       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1948       phi->init_req(1, absxpowy);
1949       phi->init_req(2, negabsxpowy);
1950       signresult = _gvn.transform(phi);
1951       ylong_path = _gvn.transform(r);
1952       record_for_igvn(r);
1953     }
1954     // Set complex path fast result
1955     r->init_req(2, ylong_path);
1956     phi->init_req(2, signresult);
1957 
1958     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1959     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1960     r->init_req(1,slow_path);
1961     phi->init_req(1,slow_result);
1962 
1963     // Post merge
1964     set_control(_gvn.transform(r));
1965     record_for_igvn(r);
1966     result = _gvn.transform(phi);
1967   }
1968 
1969   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1970 
1971   // control from finish_pow_exp is now input to the region node
1972   region_node->set_req(2, control());
1973   // the result from finish_pow_exp is now input to the phi node
1974   phi_node->init_req(2, result);
1975   set_control(_gvn.transform(region_node));
1976   record_for_igvn(region_node);
1977   set_result(_gvn.transform(phi_node));
1978 
1979   C->set_has_split_ifs(true); // Has chance for split-if optimization
1980   return true;
1981 }
1982 
1983 //------------------------------runtime_math-----------------------------
1984 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1985   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1986          "must be (DD)D or (D)D type");
1987 
1988   // Inputs
1989   Node* a = round_double_node(argument(0));
1990   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1991 
1992   const TypePtr* no_memory_effects = NULL;
1993   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1994                                  no_memory_effects,
1995                                  a, top(), b, b ? top() : NULL);
1996   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1997 #ifdef ASSERT
1998   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1999   assert(value_top == top(), "second value must be top");
2000 #endif
2001 
2002   set_result(value);
2003   return true;
2004 }
2005 
2006 //------------------------------inline_math_native-----------------------------
2007 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
2008 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
2009   switch (id) {
2010     // These intrinsics are not properly supported on all hardware
2011   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
2012     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
2013   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
2014     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
2015   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
2016     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
2017 
2018   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
2019     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
2020   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
2021     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
2022 
2023     // These intrinsics are supported on all hardware
2024   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
2025   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
2026 
2027   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
2028     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
2029   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
2030     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
2031 #undef FN_PTR
2032 
2033    // These intrinsics are not yet correctly implemented
2034   case vmIntrinsics::_datan2:
2035     return false;
2036 
2037   default:
2038     fatal_unexpected_iid(id);
2039     return false;
2040   }
2041 }
2042 
2043 static bool is_simple_name(Node* n) {
2044   return (n->req() == 1         // constant
2045           || (n->is_Type() && n->as_Type()->type()->singleton())
2046           || n->is_Proj()       // parameter or return value
2047           || n->is_Phi()        // local of some sort
2048           );
2049 }
2050 
2051 //----------------------------inline_min_max-----------------------------------
2052 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2053   set_result(generate_min_max(id, argument(0), argument(1)));
2054   return true;
2055 }
2056 
2057 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2058   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
2059   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2060   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
2061   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
2062 
2063   {
2064     PreserveJVMState pjvms(this);
2065     PreserveReexecuteState preexecs(this);
2066     jvms()->set_should_reexecute(true);
2067 
2068     set_control(slow_path);
2069     set_i_o(i_o());
2070 
2071     uncommon_trap(Deoptimization::Reason_intrinsic,
2072                   Deoptimization::Action_none);
2073   }
2074 
2075   set_control(fast_path);
2076   set_result(math);
2077 }
2078 
2079 template <typename OverflowOp>
2080 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2081   typedef typename OverflowOp::MathOp MathOp;
2082 
2083   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2084   Node* operation = _gvn.transform( mathOp );
2085   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2086   inline_math_mathExact(operation, ofcheck);
2087   return true;
2088 }
2089 
2090 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2091   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2092 }
2093 
2094 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2095   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2096 }
2097 
2098 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2099   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2100 }
2101 
2102 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2103   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2104 }
2105 
2106 bool LibraryCallKit::inline_math_negateExactI() {
2107   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2108 }
2109 
2110 bool LibraryCallKit::inline_math_negateExactL() {
2111   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2112 }
2113 
2114 bool LibraryCallKit::inline_math_multiplyExactI() {
2115   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2116 }
2117 
2118 bool LibraryCallKit::inline_math_multiplyExactL() {
2119   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2120 }
2121 
2122 Node*
2123 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2124   // These are the candidate return value:
2125   Node* xvalue = x0;
2126   Node* yvalue = y0;
2127 
2128   if (xvalue == yvalue) {
2129     return xvalue;
2130   }
2131 
2132   bool want_max = (id == vmIntrinsics::_max);
2133 
2134   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2135   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2136   if (txvalue == NULL || tyvalue == NULL)  return top();
2137   // This is not really necessary, but it is consistent with a
2138   // hypothetical MaxINode::Value method:
2139   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2140 
2141   // %%% This folding logic should (ideally) be in a different place.
2142   // Some should be inside IfNode, and there to be a more reliable
2143   // transformation of ?: style patterns into cmoves.  We also want
2144   // more powerful optimizations around cmove and min/max.
2145 
2146   // Try to find a dominating comparison of these guys.
2147   // It can simplify the index computation for Arrays.copyOf
2148   // and similar uses of System.arraycopy.
2149   // First, compute the normalized version of CmpI(x, y).
2150   int   cmp_op = Op_CmpI;
2151   Node* xkey = xvalue;
2152   Node* ykey = yvalue;
2153   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2154   if (ideal_cmpxy->is_Cmp()) {
2155     // E.g., if we have CmpI(length - offset, count),
2156     // it might idealize to CmpI(length, count + offset)
2157     cmp_op = ideal_cmpxy->Opcode();
2158     xkey = ideal_cmpxy->in(1);
2159     ykey = ideal_cmpxy->in(2);
2160   }
2161 
2162   // Start by locating any relevant comparisons.
2163   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2164   Node* cmpxy = NULL;
2165   Node* cmpyx = NULL;
2166   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2167     Node* cmp = start_from->fast_out(k);
2168     if (cmp->outcnt() > 0 &&            // must have prior uses
2169         cmp->in(0) == NULL &&           // must be context-independent
2170         cmp->Opcode() == cmp_op) {      // right kind of compare
2171       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2172       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2173     }
2174   }
2175 
2176   const int NCMPS = 2;
2177   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2178   int cmpn;
2179   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2180     if (cmps[cmpn] != NULL)  break;     // find a result
2181   }
2182   if (cmpn < NCMPS) {
2183     // Look for a dominating test that tells us the min and max.
2184     int depth = 0;                // Limit search depth for speed
2185     Node* dom = control();
2186     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2187       if (++depth >= 100)  break;
2188       Node* ifproj = dom;
2189       if (!ifproj->is_Proj())  continue;
2190       Node* iff = ifproj->in(0);
2191       if (!iff->is_If())  continue;
2192       Node* bol = iff->in(1);
2193       if (!bol->is_Bool())  continue;
2194       Node* cmp = bol->in(1);
2195       if (cmp == NULL)  continue;
2196       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2197         if (cmps[cmpn] == cmp)  break;
2198       if (cmpn == NCMPS)  continue;
2199       BoolTest::mask btest = bol->as_Bool()->_test._test;
2200       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2201       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2202       // At this point, we know that 'x btest y' is true.
2203       switch (btest) {
2204       case BoolTest::eq:
2205         // They are proven equal, so we can collapse the min/max.
2206         // Either value is the answer.  Choose the simpler.
2207         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2208           return yvalue;
2209         return xvalue;
2210       case BoolTest::lt:          // x < y
2211       case BoolTest::le:          // x <= y
2212         return (want_max ? yvalue : xvalue);
2213       case BoolTest::gt:          // x > y
2214       case BoolTest::ge:          // x >= y
2215         return (want_max ? xvalue : yvalue);
2216       }
2217     }
2218   }
2219 
2220   // We failed to find a dominating test.
2221   // Let's pick a test that might GVN with prior tests.
2222   Node*          best_bol   = NULL;
2223   BoolTest::mask best_btest = BoolTest::illegal;
2224   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2225     Node* cmp = cmps[cmpn];
2226     if (cmp == NULL)  continue;
2227     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2228       Node* bol = cmp->fast_out(j);
2229       if (!bol->is_Bool())  continue;
2230       BoolTest::mask btest = bol->as_Bool()->_test._test;
2231       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2232       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2233       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2234         best_bol   = bol->as_Bool();
2235         best_btest = btest;
2236       }
2237     }
2238   }
2239 
2240   Node* answer_if_true  = NULL;
2241   Node* answer_if_false = NULL;
2242   switch (best_btest) {
2243   default:
2244     if (cmpxy == NULL)
2245       cmpxy = ideal_cmpxy;
2246     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2247     // and fall through:
2248   case BoolTest::lt:          // x < y
2249   case BoolTest::le:          // x <= y
2250     answer_if_true  = (want_max ? yvalue : xvalue);
2251     answer_if_false = (want_max ? xvalue : yvalue);
2252     break;
2253   case BoolTest::gt:          // x > y
2254   case BoolTest::ge:          // x >= y
2255     answer_if_true  = (want_max ? xvalue : yvalue);
2256     answer_if_false = (want_max ? yvalue : xvalue);
2257     break;
2258   }
2259 
2260   jint hi, lo;
2261   if (want_max) {
2262     // We can sharpen the minimum.
2263     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2264     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2265   } else {
2266     // We can sharpen the maximum.
2267     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2268     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2269   }
2270 
2271   // Use a flow-free graph structure, to avoid creating excess control edges
2272   // which could hinder other optimizations.
2273   // Since Math.min/max is often used with arraycopy, we want
2274   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2275   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2276                                answer_if_false, answer_if_true,
2277                                TypeInt::make(lo, hi, widen));
2278 
2279   return _gvn.transform(cmov);
2280 
2281   /*
2282   // This is not as desirable as it may seem, since Min and Max
2283   // nodes do not have a full set of optimizations.
2284   // And they would interfere, anyway, with 'if' optimizations
2285   // and with CMoveI canonical forms.
2286   switch (id) {
2287   case vmIntrinsics::_min:
2288     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2289   case vmIntrinsics::_max:
2290     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2291   default:
2292     ShouldNotReachHere();
2293   }
2294   */
2295 }
2296 
2297 inline int
2298 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2299   const TypePtr* base_type = TypePtr::NULL_PTR;
2300   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2301   if (base_type == NULL) {
2302     // Unknown type.
2303     return Type::AnyPtr;
2304   } else if (base_type == TypePtr::NULL_PTR) {
2305     // Since this is a NULL+long form, we have to switch to a rawptr.
2306     base   = _gvn.transform(new (C) CastX2PNode(offset));
2307     offset = MakeConX(0);
2308     return Type::RawPtr;
2309   } else if (base_type->base() == Type::RawPtr) {
2310     return Type::RawPtr;
2311   } else if (base_type->isa_oopptr()) {
2312     // Base is never null => always a heap address.
2313     if (base_type->ptr() == TypePtr::NotNull) {
2314       return Type::OopPtr;
2315     }
2316     // Offset is small => always a heap address.
2317     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2318     if (offset_type != NULL &&
2319         base_type->offset() == 0 &&     // (should always be?)
2320         offset_type->_lo >= 0 &&
2321         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2322       return Type::OopPtr;
2323     }
2324     // Otherwise, it might either be oop+off or NULL+addr.
2325     return Type::AnyPtr;
2326   } else {
2327     // No information:
2328     return Type::AnyPtr;
2329   }
2330 }
2331 
2332 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2333   int kind = classify_unsafe_addr(base, offset);
2334   if (kind == Type::RawPtr) {
2335     return basic_plus_adr(top(), base, offset);
2336   } else {
2337     return basic_plus_adr(base, offset);
2338   }
2339 }
2340 
2341 //--------------------------inline_number_methods-----------------------------
2342 // inline int     Integer.numberOfLeadingZeros(int)
2343 // inline int        Long.numberOfLeadingZeros(long)
2344 //
2345 // inline int     Integer.numberOfTrailingZeros(int)
2346 // inline int        Long.numberOfTrailingZeros(long)
2347 //
2348 // inline int     Integer.bitCount(int)
2349 // inline int        Long.bitCount(long)
2350 //
2351 // inline char  Character.reverseBytes(char)
2352 // inline short     Short.reverseBytes(short)
2353 // inline int     Integer.reverseBytes(int)
2354 // inline long       Long.reverseBytes(long)
2355 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2356   Node* arg = argument(0);
2357   Node* n;
2358   switch (id) {
2359   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2360   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2361   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2362   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2363   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2364   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2365   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2366   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2367   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2368   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2369   default:  fatal_unexpected_iid(id);  break;
2370   }
2371   set_result(_gvn.transform(n));
2372   return true;
2373 }
2374 
2375 //----------------------------inline_unsafe_access----------------------------
2376 
2377 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2378 
2379 // Helper that guards and inserts a pre-barrier.
2380 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2381                                         Node* pre_val, bool need_mem_bar) {
2382   // We could be accessing the referent field of a reference object. If so, when G1
2383   // is enabled, we need to log the value in the referent field in an SATB buffer.
2384   // This routine performs some compile time filters and generates suitable
2385   // runtime filters that guard the pre-barrier code.
2386   // Also add memory barrier for non volatile load from the referent field
2387   // to prevent commoning of loads across safepoint.
2388   if (!UseG1GC && !need_mem_bar)
2389     return;
2390 
2391   // Some compile time checks.
2392 
2393   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2394   const TypeX* otype = offset->find_intptr_t_type();
2395   if (otype != NULL && otype->is_con() &&
2396       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2397     // Constant offset but not the reference_offset so just return
2398     return;
2399   }
2400 
2401   // We only need to generate the runtime guards for instances.
2402   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2403   if (btype != NULL) {
2404     if (btype->isa_aryptr()) {
2405       // Array type so nothing to do
2406       return;
2407     }
2408 
2409     const TypeInstPtr* itype = btype->isa_instptr();
2410     if (itype != NULL) {
2411       // Can the klass of base_oop be statically determined to be
2412       // _not_ a sub-class of Reference and _not_ Object?
2413       ciKlass* klass = itype->klass();
2414       if ( klass->is_loaded() &&
2415           !klass->is_subtype_of(env()->Reference_klass()) &&
2416           !env()->Object_klass()->is_subtype_of(klass)) {
2417         return;
2418       }
2419     }
2420   }
2421 
2422   // The compile time filters did not reject base_oop/offset so
2423   // we need to generate the following runtime filters
2424   //
2425   // if (offset == java_lang_ref_Reference::_reference_offset) {
2426   //   if (instance_of(base, java.lang.ref.Reference)) {
2427   //     pre_barrier(_, pre_val, ...);
2428   //   }
2429   // }
2430 
2431   float likely   = PROB_LIKELY(  0.999);
2432   float unlikely = PROB_UNLIKELY(0.999);
2433 
2434   IdealKit ideal(this);
2435 #define __ ideal.
2436 
2437   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2438 
2439   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2440       // Update graphKit memory and control from IdealKit.
2441       sync_kit(ideal);
2442 
2443       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2444       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2445 
2446       // Update IdealKit memory and control from graphKit.
2447       __ sync_kit(this);
2448 
2449       Node* one = __ ConI(1);
2450       // is_instof == 0 if base_oop == NULL
2451       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2452 
2453         // Update graphKit from IdeakKit.
2454         sync_kit(ideal);
2455 
2456         // Use the pre-barrier to record the value in the referent field
2457         pre_barrier(false /* do_load */,
2458                     __ ctrl(),
2459                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2460                     pre_val /* pre_val */,
2461                     T_OBJECT);
2462         if (need_mem_bar) {
2463           // Add memory barrier to prevent commoning reads from this field
2464           // across safepoint since GC can change its value.
2465           insert_mem_bar(Op_MemBarCPUOrder);
2466         }
2467         // Update IdealKit from graphKit.
2468         __ sync_kit(this);
2469 
2470       } __ end_if(); // _ref_type != ref_none
2471   } __ end_if(); // offset == referent_offset
2472 
2473   // Final sync IdealKit and GraphKit.
2474   final_sync(ideal);
2475 #undef __
2476 }
2477 
2478 
2479 // Interpret Unsafe.fieldOffset cookies correctly:
2480 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2481 
2482 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2483   // Attempt to infer a sharper value type from the offset and base type.
2484   ciKlass* sharpened_klass = NULL;
2485 
2486   // See if it is an instance field, with an object type.
2487   if (alias_type->field() != NULL) {
2488     assert(!is_native_ptr, "native pointer op cannot use a java address");
2489     if (alias_type->field()->type()->is_klass()) {
2490       sharpened_klass = alias_type->field()->type()->as_klass();
2491     }
2492   }
2493 
2494   // See if it is a narrow oop array.
2495   if (adr_type->isa_aryptr()) {
2496     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2497       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2498       if (elem_type != NULL) {
2499         sharpened_klass = elem_type->klass();
2500       }
2501     }
2502   }
2503 
2504   // The sharpened class might be unloaded if there is no class loader
2505   // contraint in place.
2506   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2507     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2508 
2509 #ifndef PRODUCT
2510     if (C->print_intrinsics() || C->print_inlining()) {
2511       tty->print("  from base type: ");  adr_type->dump();
2512       tty->print("  sharpened value: ");  tjp->dump();
2513     }
2514 #endif
2515     // Sharpen the value type.
2516     return tjp;
2517   }
2518   return NULL;
2519 }
2520 
2521 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2522   if (callee()->is_static())  return false;  // caller must have the capability!
2523 
2524 #ifndef PRODUCT
2525   {
2526     ResourceMark rm;
2527     // Check the signatures.
2528     ciSignature* sig = callee()->signature();
2529 #ifdef ASSERT
2530     if (!is_store) {
2531       // Object getObject(Object base, int/long offset), etc.
2532       BasicType rtype = sig->return_type()->basic_type();
2533       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2534           rtype = T_ADDRESS;  // it is really a C void*
2535       assert(rtype == type, "getter must return the expected value");
2536       if (!is_native_ptr) {
2537         assert(sig->count() == 2, "oop getter has 2 arguments");
2538         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2539         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2540       } else {
2541         assert(sig->count() == 1, "native getter has 1 argument");
2542         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2543       }
2544     } else {
2545       // void putObject(Object base, int/long offset, Object x), etc.
2546       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2547       if (!is_native_ptr) {
2548         assert(sig->count() == 3, "oop putter has 3 arguments");
2549         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2550         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2551       } else {
2552         assert(sig->count() == 2, "native putter has 2 arguments");
2553         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2554       }
2555       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2556       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2557         vtype = T_ADDRESS;  // it is really a C void*
2558       assert(vtype == type, "putter must accept the expected value");
2559     }
2560 #endif // ASSERT
2561  }
2562 #endif //PRODUCT
2563 
2564   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2565 
2566   Node* receiver = argument(0);  // type: oop
2567 
2568   // Build address expression.  See the code in inline_unsafe_prefetch.
2569   Node* adr;
2570   Node* heap_base_oop = top();
2571   Node* offset = top();
2572   Node* val;
2573 
2574   if (!is_native_ptr) {
2575     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2576     Node* base = argument(1);  // type: oop
2577     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2578     offset = argument(2);  // type: long
2579     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2580     // to be plain byte offsets, which are also the same as those accepted
2581     // by oopDesc::field_base.
2582     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2583            "fieldOffset must be byte-scaled");
2584     // 32-bit machines ignore the high half!
2585     offset = ConvL2X(offset);
2586     adr = make_unsafe_address(base, offset);
2587     heap_base_oop = base;
2588     val = is_store ? argument(4) : NULL;
2589   } else {
2590     Node* ptr = argument(1);  // type: long
2591     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2592     adr = make_unsafe_address(NULL, ptr);
2593     val = is_store ? argument(3) : NULL;
2594   }
2595 
2596   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2597 
2598   // First guess at the value type.
2599   const Type *value_type = Type::get_const_basic_type(type);
2600 
2601   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2602   // there was not enough information to nail it down.
2603   Compile::AliasType* alias_type = C->alias_type(adr_type);
2604   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2605 
2606   // We will need memory barriers unless we can determine a unique
2607   // alias category for this reference.  (Note:  If for some reason
2608   // the barriers get omitted and the unsafe reference begins to "pollute"
2609   // the alias analysis of the rest of the graph, either Compile::can_alias
2610   // or Compile::must_alias will throw a diagnostic assert.)
2611   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2612 
2613   // If we are reading the value of the referent field of a Reference
2614   // object (either by using Unsafe directly or through reflection)
2615   // then, if G1 is enabled, we need to record the referent in an
2616   // SATB log buffer using the pre-barrier mechanism.
2617   // Also we need to add memory barrier to prevent commoning reads
2618   // from this field across safepoint since GC can change its value.
2619   bool need_read_barrier = !is_native_ptr && !is_store &&
2620                            offset != top() && heap_base_oop != top();
2621 
2622   if (!is_store && type == T_OBJECT) {
2623     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2624     if (tjp != NULL) {
2625       value_type = tjp;
2626     }
2627   }
2628 
2629   receiver = null_check(receiver);
2630   if (stopped()) {
2631     return true;
2632   }
2633   // Heap pointers get a null-check from the interpreter,
2634   // as a courtesy.  However, this is not guaranteed by Unsafe,
2635   // and it is not possible to fully distinguish unintended nulls
2636   // from intended ones in this API.
2637 
2638   if (is_volatile) {
2639     // We need to emit leading and trailing CPU membars (see below) in
2640     // addition to memory membars when is_volatile. This is a little
2641     // too strong, but avoids the need to insert per-alias-type
2642     // volatile membars (for stores; compare Parse::do_put_xxx), which
2643     // we cannot do effectively here because we probably only have a
2644     // rough approximation of type.
2645     need_mem_bar = true;
2646     // For Stores, place a memory ordering barrier now.
2647     if (is_store) {
2648       insert_mem_bar(Op_MemBarRelease);
2649     } else {
2650       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2651         insert_mem_bar(Op_MemBarVolatile);
2652       }
2653     }
2654   }
2655 
2656   // Memory barrier to prevent normal and 'unsafe' accesses from
2657   // bypassing each other.  Happens after null checks, so the
2658   // exception paths do not take memory state from the memory barrier,
2659   // so there's no problems making a strong assert about mixing users
2660   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2661   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2662   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2663 
2664   if (!is_store) {
2665     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2666     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
2667     // load value
2668     switch (type) {
2669     case T_BOOLEAN:
2670     case T_CHAR:
2671     case T_BYTE:
2672     case T_SHORT:
2673     case T_INT:
2674     case T_LONG:
2675     case T_FLOAT:
2676     case T_DOUBLE:
2677       break;
2678     case T_OBJECT:
2679       if (need_read_barrier) {
2680         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2681       }
2682       break;
2683     case T_ADDRESS:
2684       // Cast to an int type.
2685       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2686       p = ConvX2UL(p);
2687       break;
2688     default:
2689       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2690       break;
2691     }
2692     // The load node has the control of the preceding MemBarCPUOrder.  All
2693     // following nodes will have the control of the MemBarCPUOrder inserted at
2694     // the end of this method.  So, pushing the load onto the stack at a later
2695     // point is fine.
2696     set_result(p);
2697   } else {
2698     // place effect of store into memory
2699     switch (type) {
2700     case T_DOUBLE:
2701       val = dstore_rounding(val);
2702       break;
2703     case T_ADDRESS:
2704       // Repackage the long as a pointer.
2705       val = ConvL2X(val);
2706       val = _gvn.transform(new (C) CastX2PNode(val));
2707       break;
2708     }
2709 
2710     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2711     if (type != T_OBJECT ) {
2712       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2713     } else {
2714       // Possibly an oop being stored to Java heap or native memory
2715       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2716         // oop to Java heap.
2717         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2718       } else {
2719         // We can't tell at compile time if we are storing in the Java heap or outside
2720         // of it. So we need to emit code to conditionally do the proper type of
2721         // store.
2722 
2723         IdealKit ideal(this);
2724 #define __ ideal.
2725         // QQQ who knows what probability is here??
2726         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2727           // Sync IdealKit and graphKit.
2728           sync_kit(ideal);
2729           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2730           // Update IdealKit memory.
2731           __ sync_kit(this);
2732         } __ else_(); {
2733           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2734         } __ end_if();
2735         // Final sync IdealKit and GraphKit.
2736         final_sync(ideal);
2737 #undef __
2738       }
2739     }
2740   }
2741 
2742   if (is_volatile) {
2743     if (!is_store) {
2744       insert_mem_bar(Op_MemBarAcquire);
2745     } else {
2746       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2747         insert_mem_bar(Op_MemBarVolatile);
2748       }
2749     }
2750   }
2751 
2752   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2753 
2754   return true;
2755 }
2756 
2757 //----------------------------inline_unsafe_prefetch----------------------------
2758 
2759 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2760 #ifndef PRODUCT
2761   {
2762     ResourceMark rm;
2763     // Check the signatures.
2764     ciSignature* sig = callee()->signature();
2765 #ifdef ASSERT
2766     // Object getObject(Object base, int/long offset), etc.
2767     BasicType rtype = sig->return_type()->basic_type();
2768     if (!is_native_ptr) {
2769       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2770       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2771       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2772     } else {
2773       assert(sig->count() == 1, "native prefetch has 1 argument");
2774       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2775     }
2776 #endif // ASSERT
2777   }
2778 #endif // !PRODUCT
2779 
2780   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2781 
2782   const int idx = is_static ? 0 : 1;
2783   if (!is_static) {
2784     null_check_receiver();
2785     if (stopped()) {
2786       return true;
2787     }
2788   }
2789 
2790   // Build address expression.  See the code in inline_unsafe_access.
2791   Node *adr;
2792   if (!is_native_ptr) {
2793     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2794     Node* base   = argument(idx + 0);  // type: oop
2795     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2796     Node* offset = argument(idx + 1);  // type: long
2797     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2798     // to be plain byte offsets, which are also the same as those accepted
2799     // by oopDesc::field_base.
2800     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2801            "fieldOffset must be byte-scaled");
2802     // 32-bit machines ignore the high half!
2803     offset = ConvL2X(offset);
2804     adr = make_unsafe_address(base, offset);
2805   } else {
2806     Node* ptr = argument(idx + 0);  // type: long
2807     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2808     adr = make_unsafe_address(NULL, ptr);
2809   }
2810 
2811   // Generate the read or write prefetch
2812   Node *prefetch;
2813   if (is_store) {
2814     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2815   } else {
2816     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2817   }
2818   prefetch->init_req(0, control());
2819   set_i_o(_gvn.transform(prefetch));
2820 
2821   return true;
2822 }
2823 
2824 //----------------------------inline_unsafe_load_store----------------------------
2825 // This method serves a couple of different customers (depending on LoadStoreKind):
2826 //
2827 // LS_cmpxchg:
2828 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2829 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2830 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2831 //
2832 // LS_xadd:
2833 //   public int  getAndAddInt( Object o, long offset, int  delta)
2834 //   public long getAndAddLong(Object o, long offset, long delta)
2835 //
2836 // LS_xchg:
2837 //   int    getAndSet(Object o, long offset, int    newValue)
2838 //   long   getAndSet(Object o, long offset, long   newValue)
2839 //   Object getAndSet(Object o, long offset, Object newValue)
2840 //
2841 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2842   // This basic scheme here is the same as inline_unsafe_access, but
2843   // differs in enough details that combining them would make the code
2844   // overly confusing.  (This is a true fact! I originally combined
2845   // them, but even I was confused by it!) As much code/comments as
2846   // possible are retained from inline_unsafe_access though to make
2847   // the correspondences clearer. - dl
2848 
2849   if (callee()->is_static())  return false;  // caller must have the capability!
2850 
2851 #ifndef PRODUCT
2852   BasicType rtype;
2853   {
2854     ResourceMark rm;
2855     // Check the signatures.
2856     ciSignature* sig = callee()->signature();
2857     rtype = sig->return_type()->basic_type();
2858     if (kind == LS_xadd || kind == LS_xchg) {
2859       // Check the signatures.
2860 #ifdef ASSERT
2861       assert(rtype == type, "get and set must return the expected type");
2862       assert(sig->count() == 3, "get and set has 3 arguments");
2863       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2864       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2865       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2866 #endif // ASSERT
2867     } else if (kind == LS_cmpxchg) {
2868       // Check the signatures.
2869 #ifdef ASSERT
2870       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2871       assert(sig->count() == 4, "CAS has 4 arguments");
2872       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2873       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2874 #endif // ASSERT
2875     } else {
2876       ShouldNotReachHere();
2877     }
2878   }
2879 #endif //PRODUCT
2880 
2881   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2882 
2883   // Get arguments:
2884   Node* receiver = NULL;
2885   Node* base     = NULL;
2886   Node* offset   = NULL;
2887   Node* oldval   = NULL;
2888   Node* newval   = NULL;
2889   if (kind == LS_cmpxchg) {
2890     const bool two_slot_type = type2size[type] == 2;
2891     receiver = argument(0);  // type: oop
2892     base     = argument(1);  // type: oop
2893     offset   = argument(2);  // type: long
2894     oldval   = argument(4);  // type: oop, int, or long
2895     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2896   } else if (kind == LS_xadd || kind == LS_xchg){
2897     receiver = argument(0);  // type: oop
2898     base     = argument(1);  // type: oop
2899     offset   = argument(2);  // type: long
2900     oldval   = NULL;
2901     newval   = argument(4);  // type: oop, int, or long
2902   }
2903 
2904   // Null check receiver.
2905   receiver = null_check(receiver);
2906   if (stopped()) {
2907     return true;
2908   }
2909 
2910   // Build field offset expression.
2911   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2912   // to be plain byte offsets, which are also the same as those accepted
2913   // by oopDesc::field_base.
2914   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2915   // 32-bit machines ignore the high half of long offsets
2916   offset = ConvL2X(offset);
2917   Node* adr = make_unsafe_address(base, offset);
2918   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2919 
2920   // For CAS, unlike inline_unsafe_access, there seems no point in
2921   // trying to refine types. Just use the coarse types here.
2922   const Type *value_type = Type::get_const_basic_type(type);
2923   Compile::AliasType* alias_type = C->alias_type(adr_type);
2924   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2925 
2926   if (kind == LS_xchg && type == T_OBJECT) {
2927     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2928     if (tjp != NULL) {
2929       value_type = tjp;
2930     }
2931   }
2932 
2933   int alias_idx = C->get_alias_index(adr_type);
2934 
2935   // Memory-model-wise, a LoadStore acts like a little synchronized
2936   // block, so needs barriers on each side.  These don't translate
2937   // into actual barriers on most machines, but we still need rest of
2938   // compiler to respect ordering.
2939 
2940   insert_mem_bar(Op_MemBarRelease);
2941   insert_mem_bar(Op_MemBarCPUOrder);
2942 
2943   // 4984716: MemBars must be inserted before this
2944   //          memory node in order to avoid a false
2945   //          dependency which will confuse the scheduler.
2946   Node *mem = memory(alias_idx);
2947 
2948   // For now, we handle only those cases that actually exist: ints,
2949   // longs, and Object. Adding others should be straightforward.
2950   Node* load_store;
2951   switch(type) {
2952   case T_INT:
2953     if (kind == LS_xadd) {
2954       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2955     } else if (kind == LS_xchg) {
2956       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2957     } else if (kind == LS_cmpxchg) {
2958       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2959     } else {
2960       ShouldNotReachHere();
2961     }
2962     break;
2963   case T_LONG:
2964     if (kind == LS_xadd) {
2965       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2966     } else if (kind == LS_xchg) {
2967       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2968     } else if (kind == LS_cmpxchg) {
2969       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2970     } else {
2971       ShouldNotReachHere();
2972     }
2973     break;
2974   case T_OBJECT:
2975     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2976     // could be delayed during Parse (for example, in adjust_map_after_if()).
2977     // Execute transformation here to avoid barrier generation in such case.
2978     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2979       newval = _gvn.makecon(TypePtr::NULL_PTR);
2980 
2981     // Reference stores need a store barrier.
2982     if (kind == LS_xchg) {
2983       // If pre-barrier must execute before the oop store, old value will require do_load here.
2984       if (!can_move_pre_barrier()) {
2985         pre_barrier(true /* do_load*/,
2986                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2987                     NULL /* pre_val*/,
2988                     T_OBJECT);
2989       } // Else move pre_barrier to use load_store value, see below.
2990     } else if (kind == LS_cmpxchg) {
2991       // Same as for newval above:
2992       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2993         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2994       }
2995       // The only known value which might get overwritten is oldval.
2996       pre_barrier(false /* do_load */,
2997                   control(), NULL, NULL, max_juint, NULL, NULL,
2998                   oldval /* pre_val */,
2999                   T_OBJECT);
3000     } else {
3001       ShouldNotReachHere();
3002     }
3003 
3004 #ifdef _LP64
3005     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3006       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3007       if (kind == LS_xchg) {
3008         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
3009                                                            newval_enc, adr_type, value_type->make_narrowoop()));
3010       } else {
3011         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3012         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3013         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
3014                                                                 newval_enc, oldval_enc));
3015       }
3016     } else
3017 #endif
3018     {
3019       if (kind == LS_xchg) {
3020         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3021       } else {
3022         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3023         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3024       }
3025     }
3026     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3027     break;
3028   default:
3029     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3030     break;
3031   }
3032 
3033   // SCMemProjNodes represent the memory state of a LoadStore. Their
3034   // main role is to prevent LoadStore nodes from being optimized away
3035   // when their results aren't used.
3036   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
3037   set_memory(proj, alias_idx);
3038 
3039   if (type == T_OBJECT && kind == LS_xchg) {
3040 #ifdef _LP64
3041     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3042       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3043     }
3044 #endif
3045     if (can_move_pre_barrier()) {
3046       // Don't need to load pre_val. The old value is returned by load_store.
3047       // The pre_barrier can execute after the xchg as long as no safepoint
3048       // gets inserted between them.
3049       pre_barrier(false /* do_load */,
3050                   control(), NULL, NULL, max_juint, NULL, NULL,
3051                   load_store /* pre_val */,
3052                   T_OBJECT);
3053     }
3054   }
3055 
3056   // Add the trailing membar surrounding the access
3057   insert_mem_bar(Op_MemBarCPUOrder);
3058   insert_mem_bar(Op_MemBarAcquire);
3059 
3060   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3061   set_result(load_store);
3062   return true;
3063 }
3064 
3065 //----------------------------inline_unsafe_ordered_store----------------------
3066 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3067 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3068 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3069 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3070   // This is another variant of inline_unsafe_access, differing in
3071   // that it always issues store-store ("release") barrier and ensures
3072   // store-atomicity (which only matters for "long").
3073 
3074   if (callee()->is_static())  return false;  // caller must have the capability!
3075 
3076 #ifndef PRODUCT
3077   {
3078     ResourceMark rm;
3079     // Check the signatures.
3080     ciSignature* sig = callee()->signature();
3081 #ifdef ASSERT
3082     BasicType rtype = sig->return_type()->basic_type();
3083     assert(rtype == T_VOID, "must return void");
3084     assert(sig->count() == 3, "has 3 arguments");
3085     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3086     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3087 #endif // ASSERT
3088   }
3089 #endif //PRODUCT
3090 
3091   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3092 
3093   // Get arguments:
3094   Node* receiver = argument(0);  // type: oop
3095   Node* base     = argument(1);  // type: oop
3096   Node* offset   = argument(2);  // type: long
3097   Node* val      = argument(4);  // type: oop, int, or long
3098 
3099   // Null check receiver.
3100   receiver = null_check(receiver);
3101   if (stopped()) {
3102     return true;
3103   }
3104 
3105   // Build field offset expression.
3106   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3107   // 32-bit machines ignore the high half of long offsets
3108   offset = ConvL2X(offset);
3109   Node* adr = make_unsafe_address(base, offset);
3110   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3111   const Type *value_type = Type::get_const_basic_type(type);
3112   Compile::AliasType* alias_type = C->alias_type(adr_type);
3113 
3114   insert_mem_bar(Op_MemBarRelease);
3115   insert_mem_bar(Op_MemBarCPUOrder);
3116   // Ensure that the store is atomic for longs:
3117   const bool require_atomic_access = true;
3118   Node* store;
3119   if (type == T_OBJECT) // reference stores need a store barrier.
3120     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3121   else {
3122     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3123   }
3124   insert_mem_bar(Op_MemBarCPUOrder);
3125   return true;
3126 }
3127 
3128 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3129   // Regardless of form, don't allow previous ld/st to move down,
3130   // then issue acquire, release, or volatile mem_bar.
3131   insert_mem_bar(Op_MemBarCPUOrder);
3132   switch(id) {
3133     case vmIntrinsics::_loadFence:
3134       insert_mem_bar(Op_LoadFence);
3135       return true;
3136     case vmIntrinsics::_storeFence:
3137       insert_mem_bar(Op_StoreFence);
3138       return true;
3139     case vmIntrinsics::_fullFence:
3140       insert_mem_bar(Op_MemBarVolatile);
3141       return true;
3142     default:
3143       fatal_unexpected_iid(id);
3144       return false;
3145   }
3146 }
3147 
3148 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3149   if (!kls->is_Con()) {
3150     return true;
3151   }
3152   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3153   if (klsptr == NULL) {
3154     return true;
3155   }
3156   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3157   // don't need a guard for a klass that is already initialized
3158   return !ik->is_initialized();
3159 }
3160 
3161 //----------------------------inline_unsafe_allocate---------------------------
3162 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3163 bool LibraryCallKit::inline_unsafe_allocate() {
3164   if (callee()->is_static())  return false;  // caller must have the capability!
3165 
3166   null_check_receiver();  // null-check, then ignore
3167   Node* cls = null_check(argument(1));
3168   if (stopped())  return true;
3169 
3170   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3171   kls = null_check(kls);
3172   if (stopped())  return true;  // argument was like int.class
3173 
3174   Node* test = NULL;
3175   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3176     // Note:  The argument might still be an illegal value like
3177     // Serializable.class or Object[].class.   The runtime will handle it.
3178     // But we must make an explicit check for initialization.
3179     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3180     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3181     // can generate code to load it as unsigned byte.
3182     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3183     Node* bits = intcon(InstanceKlass::fully_initialized);
3184     test = _gvn.transform(new (C) SubINode(inst, bits));
3185     // The 'test' is non-zero if we need to take a slow path.
3186   }
3187 
3188   Node* obj = new_instance(kls, test);
3189   set_result(obj);
3190   return true;
3191 }
3192 
3193 #ifdef TRACE_HAVE_INTRINSICS
3194 /*
3195  * oop -> myklass
3196  * myklass->trace_id |= USED
3197  * return myklass->trace_id & ~0x3
3198  */
3199 bool LibraryCallKit::inline_native_classID() {
3200   null_check_receiver();  // null-check, then ignore
3201   Node* cls = null_check(argument(1), T_OBJECT);
3202   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3203   kls = null_check(kls, T_OBJECT);
3204   ByteSize offset = TRACE_ID_OFFSET;
3205   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3206   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3207   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3208   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3209   Node* clsused = longcon(0x01l); // set the class bit
3210   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3211 
3212   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3213   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3214   set_result(andl);
3215   return true;
3216 }
3217 
3218 bool LibraryCallKit::inline_native_threadID() {
3219   Node* tls_ptr = NULL;
3220   Node* cur_thr = generate_current_thread(tls_ptr);
3221   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3222   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3223   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3224 
3225   Node* threadid = NULL;
3226   size_t thread_id_size = OSThread::thread_id_size();
3227   if (thread_id_size == (size_t) BytesPerLong) {
3228     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3229   } else if (thread_id_size == (size_t) BytesPerInt) {
3230     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3231   } else {
3232     ShouldNotReachHere();
3233   }
3234   set_result(threadid);
3235   return true;
3236 }
3237 #endif
3238 
3239 //------------------------inline_native_time_funcs--------------
3240 // inline code for System.currentTimeMillis() and System.nanoTime()
3241 // these have the same type and signature
3242 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3243   const TypeFunc* tf = OptoRuntime::void_long_Type();
3244   const TypePtr* no_memory_effects = NULL;
3245   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3246   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3247 #ifdef ASSERT
3248   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3249   assert(value_top == top(), "second value must be top");
3250 #endif
3251   set_result(value);
3252   return true;
3253 }
3254 
3255 //------------------------inline_native_currentThread------------------
3256 bool LibraryCallKit::inline_native_currentThread() {
3257   Node* junk = NULL;
3258   set_result(generate_current_thread(junk));
3259   return true;
3260 }
3261 
3262 //------------------------inline_native_isInterrupted------------------
3263 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3264 bool LibraryCallKit::inline_native_isInterrupted() {
3265   // Add a fast path to t.isInterrupted(clear_int):
3266   //   (t == Thread.current() &&
3267   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3268   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3269   // So, in the common case that the interrupt bit is false,
3270   // we avoid making a call into the VM.  Even if the interrupt bit
3271   // is true, if the clear_int argument is false, we avoid the VM call.
3272   // However, if the receiver is not currentThread, we must call the VM,
3273   // because there must be some locking done around the operation.
3274 
3275   // We only go to the fast case code if we pass two guards.
3276   // Paths which do not pass are accumulated in the slow_region.
3277 
3278   enum {
3279     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3280     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3281     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3282     PATH_LIMIT
3283   };
3284 
3285   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3286   // out of the function.
3287   insert_mem_bar(Op_MemBarCPUOrder);
3288 
3289   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3290   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3291 
3292   RegionNode* slow_region = new (C) RegionNode(1);
3293   record_for_igvn(slow_region);
3294 
3295   // (a) Receiving thread must be the current thread.
3296   Node* rec_thr = argument(0);
3297   Node* tls_ptr = NULL;
3298   Node* cur_thr = generate_current_thread(tls_ptr);
3299   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3300   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3301 
3302   generate_slow_guard(bol_thr, slow_region);
3303 
3304   // (b) Interrupt bit on TLS must be false.
3305   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3306   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3307   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3308 
3309   // Set the control input on the field _interrupted read to prevent it floating up.
3310   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3311   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3312   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3313 
3314   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3315 
3316   // First fast path:  if (!TLS._interrupted) return false;
3317   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3318   result_rgn->init_req(no_int_result_path, false_bit);
3319   result_val->init_req(no_int_result_path, intcon(0));
3320 
3321   // drop through to next case
3322   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3323 
3324 #ifndef TARGET_OS_FAMILY_windows
3325   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3326   Node* clr_arg = argument(1);
3327   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3328   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3329   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3330 
3331   // Second fast path:  ... else if (!clear_int) return true;
3332   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3333   result_rgn->init_req(no_clear_result_path, false_arg);
3334   result_val->init_req(no_clear_result_path, intcon(1));
3335 
3336   // drop through to next case
3337   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3338 #else
3339   // To return true on Windows you must read the _interrupted field
3340   // and check the the event state i.e. take the slow path.
3341 #endif // TARGET_OS_FAMILY_windows
3342 
3343   // (d) Otherwise, go to the slow path.
3344   slow_region->add_req(control());
3345   set_control( _gvn.transform(slow_region));
3346 
3347   if (stopped()) {
3348     // There is no slow path.
3349     result_rgn->init_req(slow_result_path, top());
3350     result_val->init_req(slow_result_path, top());
3351   } else {
3352     // non-virtual because it is a private non-static
3353     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3354 
3355     Node* slow_val = set_results_for_java_call(slow_call);
3356     // this->control() comes from set_results_for_java_call
3357 
3358     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3359     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3360 
3361     // These two phis are pre-filled with copies of of the fast IO and Memory
3362     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3363     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3364 
3365     result_rgn->init_req(slow_result_path, control());
3366     result_io ->init_req(slow_result_path, i_o());
3367     result_mem->init_req(slow_result_path, reset_memory());
3368     result_val->init_req(slow_result_path, slow_val);
3369 
3370     set_all_memory(_gvn.transform(result_mem));
3371     set_i_o(       _gvn.transform(result_io));
3372   }
3373 
3374   C->set_has_split_ifs(true); // Has chance for split-if optimization
3375   set_result(result_rgn, result_val);
3376   return true;
3377 }
3378 
3379 //---------------------------load_mirror_from_klass----------------------------
3380 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3381 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3382   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3383   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3384 }
3385 
3386 //-----------------------load_klass_from_mirror_common-------------------------
3387 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3388 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3389 // and branch to the given path on the region.
3390 // If never_see_null, take an uncommon trap on null, so we can optimistically
3391 // compile for the non-null case.
3392 // If the region is NULL, force never_see_null = true.
3393 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3394                                                     bool never_see_null,
3395                                                     RegionNode* region,
3396                                                     int null_path,
3397                                                     int offset) {
3398   if (region == NULL)  never_see_null = true;
3399   Node* p = basic_plus_adr(mirror, offset);
3400   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3401   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3402   Node* null_ctl = top();
3403   kls = null_check_oop(kls, &null_ctl, never_see_null);
3404   if (region != NULL) {
3405     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3406     region->init_req(null_path, null_ctl);
3407   } else {
3408     assert(null_ctl == top(), "no loose ends");
3409   }
3410   return kls;
3411 }
3412 
3413 //--------------------(inline_native_Class_query helpers)---------------------
3414 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3415 // Fall through if (mods & mask) == bits, take the guard otherwise.
3416 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3417   // Branch around if the given klass has the given modifier bit set.
3418   // Like generate_guard, adds a new path onto the region.
3419   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3420   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3421   Node* mask = intcon(modifier_mask);
3422   Node* bits = intcon(modifier_bits);
3423   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3424   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3425   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3426   return generate_fair_guard(bol, region);
3427 }
3428 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3429   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3430 }
3431 
3432 //-------------------------inline_native_Class_query-------------------
3433 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3434   const Type* return_type = TypeInt::BOOL;
3435   Node* prim_return_value = top();  // what happens if it's a primitive class?
3436   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3437   bool expect_prim = false;     // most of these guys expect to work on refs
3438 
3439   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3440 
3441   Node* mirror = argument(0);
3442   Node* obj    = top();
3443 
3444   switch (id) {
3445   case vmIntrinsics::_isInstance:
3446     // nothing is an instance of a primitive type
3447     prim_return_value = intcon(0);
3448     obj = argument(1);
3449     break;
3450   case vmIntrinsics::_getModifiers:
3451     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3452     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3453     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3454     break;
3455   case vmIntrinsics::_isInterface:
3456     prim_return_value = intcon(0);
3457     break;
3458   case vmIntrinsics::_isArray:
3459     prim_return_value = intcon(0);
3460     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3461     break;
3462   case vmIntrinsics::_isPrimitive:
3463     prim_return_value = intcon(1);
3464     expect_prim = true;  // obviously
3465     break;
3466   case vmIntrinsics::_getSuperclass:
3467     prim_return_value = null();
3468     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3469     break;
3470   case vmIntrinsics::_getComponentType:
3471     prim_return_value = null();
3472     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3473     break;
3474   case vmIntrinsics::_getClassAccessFlags:
3475     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3476     return_type = TypeInt::INT;  // not bool!  6297094
3477     break;
3478   default:
3479     fatal_unexpected_iid(id);
3480     break;
3481   }
3482 
3483   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3484   if (mirror_con == NULL)  return false;  // cannot happen?
3485 
3486 #ifndef PRODUCT
3487   if (C->print_intrinsics() || C->print_inlining()) {
3488     ciType* k = mirror_con->java_mirror_type();
3489     if (k) {
3490       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3491       k->print_name();
3492       tty->cr();
3493     }
3494   }
3495 #endif
3496 
3497   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3498   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3499   record_for_igvn(region);
3500   PhiNode* phi = new (C) PhiNode(region, return_type);
3501 
3502   // The mirror will never be null of Reflection.getClassAccessFlags, however
3503   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3504   // if it is. See bug 4774291.
3505 
3506   // For Reflection.getClassAccessFlags(), the null check occurs in
3507   // the wrong place; see inline_unsafe_access(), above, for a similar
3508   // situation.
3509   mirror = null_check(mirror);
3510   // If mirror or obj is dead, only null-path is taken.
3511   if (stopped())  return true;
3512 
3513   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3514 
3515   // Now load the mirror's klass metaobject, and null-check it.
3516   // Side-effects region with the control path if the klass is null.
3517   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3518   // If kls is null, we have a primitive mirror.
3519   phi->init_req(_prim_path, prim_return_value);
3520   if (stopped()) { set_result(region, phi); return true; }
3521   bool safe_for_replace = (region->in(_prim_path) == top());
3522 
3523   Node* p;  // handy temp
3524   Node* null_ctl;
3525 
3526   // Now that we have the non-null klass, we can perform the real query.
3527   // For constant classes, the query will constant-fold in LoadNode::Value.
3528   Node* query_value = top();
3529   switch (id) {
3530   case vmIntrinsics::_isInstance:
3531     // nothing is an instance of a primitive type
3532     query_value = gen_instanceof(obj, kls, safe_for_replace);
3533     break;
3534 
3535   case vmIntrinsics::_getModifiers:
3536     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3537     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3538     break;
3539 
3540   case vmIntrinsics::_isInterface:
3541     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3542     if (generate_interface_guard(kls, region) != NULL)
3543       // A guard was added.  If the guard is taken, it was an interface.
3544       phi->add_req(intcon(1));
3545     // If we fall through, it's a plain class.
3546     query_value = intcon(0);
3547     break;
3548 
3549   case vmIntrinsics::_isArray:
3550     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3551     if (generate_array_guard(kls, region) != NULL)
3552       // A guard was added.  If the guard is taken, it was an array.
3553       phi->add_req(intcon(1));
3554     // If we fall through, it's a plain class.
3555     query_value = intcon(0);
3556     break;
3557 
3558   case vmIntrinsics::_isPrimitive:
3559     query_value = intcon(0); // "normal" path produces false
3560     break;
3561 
3562   case vmIntrinsics::_getSuperclass:
3563     // The rules here are somewhat unfortunate, but we can still do better
3564     // with random logic than with a JNI call.
3565     // Interfaces store null or Object as _super, but must report null.
3566     // Arrays store an intermediate super as _super, but must report Object.
3567     // Other types can report the actual _super.
3568     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3569     if (generate_interface_guard(kls, region) != NULL)
3570       // A guard was added.  If the guard is taken, it was an interface.
3571       phi->add_req(null());
3572     if (generate_array_guard(kls, region) != NULL)
3573       // A guard was added.  If the guard is taken, it was an array.
3574       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3575     // If we fall through, it's a plain class.  Get its _super.
3576     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3577     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3578     null_ctl = top();
3579     kls = null_check_oop(kls, &null_ctl);
3580     if (null_ctl != top()) {
3581       // If the guard is taken, Object.superClass is null (both klass and mirror).
3582       region->add_req(null_ctl);
3583       phi   ->add_req(null());
3584     }
3585     if (!stopped()) {
3586       query_value = load_mirror_from_klass(kls);
3587     }
3588     break;
3589 
3590   case vmIntrinsics::_getComponentType:
3591     if (generate_array_guard(kls, region) != NULL) {
3592       // Be sure to pin the oop load to the guard edge just created:
3593       Node* is_array_ctrl = region->in(region->req()-1);
3594       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3595       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3596       phi->add_req(cmo);
3597     }
3598     query_value = null();  // non-array case is null
3599     break;
3600 
3601   case vmIntrinsics::_getClassAccessFlags:
3602     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3603     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3604     break;
3605 
3606   default:
3607     fatal_unexpected_iid(id);
3608     break;
3609   }
3610 
3611   // Fall-through is the normal case of a query to a real class.
3612   phi->init_req(1, query_value);
3613   region->init_req(1, control());
3614 
3615   C->set_has_split_ifs(true); // Has chance for split-if optimization
3616   set_result(region, phi);
3617   return true;
3618 }
3619 
3620 //--------------------------inline_native_subtype_check------------------------
3621 // This intrinsic takes the JNI calls out of the heart of
3622 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3623 bool LibraryCallKit::inline_native_subtype_check() {
3624   // Pull both arguments off the stack.
3625   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3626   args[0] = argument(0);
3627   args[1] = argument(1);
3628   Node* klasses[2];             // corresponding Klasses: superk, subk
3629   klasses[0] = klasses[1] = top();
3630 
3631   enum {
3632     // A full decision tree on {superc is prim, subc is prim}:
3633     _prim_0_path = 1,           // {P,N} => false
3634                                 // {P,P} & superc!=subc => false
3635     _prim_same_path,            // {P,P} & superc==subc => true
3636     _prim_1_path,               // {N,P} => false
3637     _ref_subtype_path,          // {N,N} & subtype check wins => true
3638     _both_ref_path,             // {N,N} & subtype check loses => false
3639     PATH_LIMIT
3640   };
3641 
3642   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3643   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3644   record_for_igvn(region);
3645 
3646   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3647   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3648   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3649 
3650   // First null-check both mirrors and load each mirror's klass metaobject.
3651   int which_arg;
3652   for (which_arg = 0; which_arg <= 1; which_arg++) {
3653     Node* arg = args[which_arg];
3654     arg = null_check(arg);
3655     if (stopped())  break;
3656     args[which_arg] = arg;
3657 
3658     Node* p = basic_plus_adr(arg, class_klass_offset);
3659     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3660     klasses[which_arg] = _gvn.transform(kls);
3661   }
3662 
3663   // Having loaded both klasses, test each for null.
3664   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3665   for (which_arg = 0; which_arg <= 1; which_arg++) {
3666     Node* kls = klasses[which_arg];
3667     Node* null_ctl = top();
3668     kls = null_check_oop(kls, &null_ctl, never_see_null);
3669     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3670     region->init_req(prim_path, null_ctl);
3671     if (stopped())  break;
3672     klasses[which_arg] = kls;
3673   }
3674 
3675   if (!stopped()) {
3676     // now we have two reference types, in klasses[0..1]
3677     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3678     Node* superk = klasses[0];  // the receiver
3679     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3680     // now we have a successful reference subtype check
3681     region->set_req(_ref_subtype_path, control());
3682   }
3683 
3684   // If both operands are primitive (both klasses null), then
3685   // we must return true when they are identical primitives.
3686   // It is convenient to test this after the first null klass check.
3687   set_control(region->in(_prim_0_path)); // go back to first null check
3688   if (!stopped()) {
3689     // Since superc is primitive, make a guard for the superc==subc case.
3690     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3691     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3692     generate_guard(bol_eq, region, PROB_FAIR);
3693     if (region->req() == PATH_LIMIT+1) {
3694       // A guard was added.  If the added guard is taken, superc==subc.
3695       region->swap_edges(PATH_LIMIT, _prim_same_path);
3696       region->del_req(PATH_LIMIT);
3697     }
3698     region->set_req(_prim_0_path, control()); // Not equal after all.
3699   }
3700 
3701   // these are the only paths that produce 'true':
3702   phi->set_req(_prim_same_path,   intcon(1));
3703   phi->set_req(_ref_subtype_path, intcon(1));
3704 
3705   // pull together the cases:
3706   assert(region->req() == PATH_LIMIT, "sane region");
3707   for (uint i = 1; i < region->req(); i++) {
3708     Node* ctl = region->in(i);
3709     if (ctl == NULL || ctl == top()) {
3710       region->set_req(i, top());
3711       phi   ->set_req(i, top());
3712     } else if (phi->in(i) == NULL) {
3713       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3714     }
3715   }
3716 
3717   set_control(_gvn.transform(region));
3718   set_result(_gvn.transform(phi));
3719   return true;
3720 }
3721 
3722 //---------------------generate_array_guard_common------------------------
3723 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3724                                                   bool obj_array, bool not_array) {
3725   // If obj_array/non_array==false/false:
3726   // Branch around if the given klass is in fact an array (either obj or prim).
3727   // If obj_array/non_array==false/true:
3728   // Branch around if the given klass is not an array klass of any kind.
3729   // If obj_array/non_array==true/true:
3730   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3731   // If obj_array/non_array==true/false:
3732   // Branch around if the kls is an oop array (Object[] or subtype)
3733   //
3734   // Like generate_guard, adds a new path onto the region.
3735   jint  layout_con = 0;
3736   Node* layout_val = get_layout_helper(kls, layout_con);
3737   if (layout_val == NULL) {
3738     bool query = (obj_array
3739                   ? Klass::layout_helper_is_objArray(layout_con)
3740                   : Klass::layout_helper_is_array(layout_con));
3741     if (query == not_array) {
3742       return NULL;                       // never a branch
3743     } else {                             // always a branch
3744       Node* always_branch = control();
3745       if (region != NULL)
3746         region->add_req(always_branch);
3747       set_control(top());
3748       return always_branch;
3749     }
3750   }
3751   // Now test the correct condition.
3752   jint  nval = (obj_array
3753                 ? ((jint)Klass::_lh_array_tag_type_value
3754                    <<    Klass::_lh_array_tag_shift)
3755                 : Klass::_lh_neutral_value);
3756   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3757   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3758   // invert the test if we are looking for a non-array
3759   if (not_array)  btest = BoolTest(btest).negate();
3760   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3761   return generate_fair_guard(bol, region);
3762 }
3763 
3764 
3765 //-----------------------inline_native_newArray--------------------------
3766 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3767 bool LibraryCallKit::inline_native_newArray() {
3768   Node* mirror    = argument(0);
3769   Node* count_val = argument(1);
3770 
3771   mirror = null_check(mirror);
3772   // If mirror or obj is dead, only null-path is taken.
3773   if (stopped())  return true;
3774 
3775   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3776   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3777   PhiNode*    result_val = new(C) PhiNode(result_reg,
3778                                           TypeInstPtr::NOTNULL);
3779   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3780   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3781                                           TypePtr::BOTTOM);
3782 
3783   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3784   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3785                                                   result_reg, _slow_path);
3786   Node* normal_ctl   = control();
3787   Node* no_array_ctl = result_reg->in(_slow_path);
3788 
3789   // Generate code for the slow case.  We make a call to newArray().
3790   set_control(no_array_ctl);
3791   if (!stopped()) {
3792     // Either the input type is void.class, or else the
3793     // array klass has not yet been cached.  Either the
3794     // ensuing call will throw an exception, or else it
3795     // will cache the array klass for next time.
3796     PreserveJVMState pjvms(this);
3797     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3798     Node* slow_result = set_results_for_java_call(slow_call);
3799     // this->control() comes from set_results_for_java_call
3800     result_reg->set_req(_slow_path, control());
3801     result_val->set_req(_slow_path, slow_result);
3802     result_io ->set_req(_slow_path, i_o());
3803     result_mem->set_req(_slow_path, reset_memory());
3804   }
3805 
3806   set_control(normal_ctl);
3807   if (!stopped()) {
3808     // Normal case:  The array type has been cached in the java.lang.Class.
3809     // The following call works fine even if the array type is polymorphic.
3810     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3811     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3812     result_reg->init_req(_normal_path, control());
3813     result_val->init_req(_normal_path, obj);
3814     result_io ->init_req(_normal_path, i_o());
3815     result_mem->init_req(_normal_path, reset_memory());
3816   }
3817 
3818   // Return the combined state.
3819   set_i_o(        _gvn.transform(result_io)  );
3820   set_all_memory( _gvn.transform(result_mem));
3821 
3822   C->set_has_split_ifs(true); // Has chance for split-if optimization
3823   set_result(result_reg, result_val);
3824   return true;
3825 }
3826 
3827 //----------------------inline_native_getLength--------------------------
3828 // public static native int java.lang.reflect.Array.getLength(Object array);
3829 bool LibraryCallKit::inline_native_getLength() {
3830   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3831 
3832   Node* array = null_check(argument(0));
3833   // If array is dead, only null-path is taken.
3834   if (stopped())  return true;
3835 
3836   // Deoptimize if it is a non-array.
3837   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3838 
3839   if (non_array != NULL) {
3840     PreserveJVMState pjvms(this);
3841     set_control(non_array);
3842     uncommon_trap(Deoptimization::Reason_intrinsic,
3843                   Deoptimization::Action_maybe_recompile);
3844   }
3845 
3846   // If control is dead, only non-array-path is taken.
3847   if (stopped())  return true;
3848 
3849   // The works fine even if the array type is polymorphic.
3850   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3851   Node* result = load_array_length(array);
3852 
3853   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3854   set_result(result);
3855   return true;
3856 }
3857 
3858 //------------------------inline_array_copyOf----------------------------
3859 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3860 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3861 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3862   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3863 
3864   // Get the arguments.
3865   Node* original          = argument(0);
3866   Node* start             = is_copyOfRange? argument(1): intcon(0);
3867   Node* end               = is_copyOfRange? argument(2): argument(1);
3868   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3869 
3870   Node* newcopy;
3871 
3872   // Set the original stack and the reexecute bit for the interpreter to reexecute
3873   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3874   { PreserveReexecuteState preexecs(this);
3875     jvms()->set_should_reexecute(true);
3876 
3877     array_type_mirror = null_check(array_type_mirror);
3878     original          = null_check(original);
3879 
3880     // Check if a null path was taken unconditionally.
3881     if (stopped())  return true;
3882 
3883     Node* orig_length = load_array_length(original);
3884 
3885     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3886     klass_node = null_check(klass_node);
3887 
3888     RegionNode* bailout = new (C) RegionNode(1);
3889     record_for_igvn(bailout);
3890 
3891     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3892     // Bail out if that is so.
3893     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3894     if (not_objArray != NULL) {
3895       // Improve the klass node's type from the new optimistic assumption:
3896       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3897       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3898       Node* cast = new (C) CastPPNode(klass_node, akls);
3899       cast->init_req(0, control());
3900       klass_node = _gvn.transform(cast);
3901     }
3902 
3903     // Bail out if either start or end is negative.
3904     generate_negative_guard(start, bailout, &start);
3905     generate_negative_guard(end,   bailout, &end);
3906 
3907     Node* length = end;
3908     if (_gvn.type(start) != TypeInt::ZERO) {
3909       length = _gvn.transform(new (C) SubINode(end, start));
3910     }
3911 
3912     // Bail out if length is negative.
3913     // Without this the new_array would throw
3914     // NegativeArraySizeException but IllegalArgumentException is what
3915     // should be thrown
3916     generate_negative_guard(length, bailout, &length);
3917 
3918     if (bailout->req() > 1) {
3919       PreserveJVMState pjvms(this);
3920       set_control(_gvn.transform(bailout));
3921       uncommon_trap(Deoptimization::Reason_intrinsic,
3922                     Deoptimization::Action_maybe_recompile);
3923     }
3924 
3925     if (!stopped()) {
3926       // How many elements will we copy from the original?
3927       // The answer is MinI(orig_length - start, length).
3928       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3929       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3930 
3931       newcopy = new_array(klass_node, length, 0);  // no argments to push
3932 
3933       // Generate a direct call to the right arraycopy function(s).
3934       // We know the copy is disjoint but we might not know if the
3935       // oop stores need checking.
3936       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3937       // This will fail a store-check if x contains any non-nulls.
3938       bool disjoint_bases = true;
3939       // if start > orig_length then the length of the copy may be
3940       // negative.
3941       bool length_never_negative = !is_copyOfRange;
3942       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3943                          original, start, newcopy, intcon(0), moved,
3944                          disjoint_bases, length_never_negative);
3945     }
3946   } // original reexecute is set back here
3947 
3948   C->set_has_split_ifs(true); // Has chance for split-if optimization
3949   if (!stopped()) {
3950     set_result(newcopy);
3951   }
3952   return true;
3953 }
3954 
3955 
3956 //----------------------generate_virtual_guard---------------------------
3957 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3958 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3959                                              RegionNode* slow_region) {
3960   ciMethod* method = callee();
3961   int vtable_index = method->vtable_index();
3962   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3963          err_msg_res("bad index %d", vtable_index));
3964   // Get the Method* out of the appropriate vtable entry.
3965   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3966                      vtable_index*vtableEntry::size()) * wordSize +
3967                      vtableEntry::method_offset_in_bytes();
3968   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3969   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3970 
3971   // Compare the target method with the expected method (e.g., Object.hashCode).
3972   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3973 
3974   Node* native_call = makecon(native_call_addr);
3975   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3976   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3977 
3978   return generate_slow_guard(test_native, slow_region);
3979 }
3980 
3981 //-----------------------generate_method_call----------------------------
3982 // Use generate_method_call to make a slow-call to the real
3983 // method if the fast path fails.  An alternative would be to
3984 // use a stub like OptoRuntime::slow_arraycopy_Java.
3985 // This only works for expanding the current library call,
3986 // not another intrinsic.  (E.g., don't use this for making an
3987 // arraycopy call inside of the copyOf intrinsic.)
3988 CallJavaNode*
3989 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3990   // When compiling the intrinsic method itself, do not use this technique.
3991   guarantee(callee() != C->method(), "cannot make slow-call to self");
3992 
3993   ciMethod* method = callee();
3994   // ensure the JVMS we have will be correct for this call
3995   guarantee(method_id == method->intrinsic_id(), "must match");
3996 
3997   const TypeFunc* tf = TypeFunc::make(method);
3998   CallJavaNode* slow_call;
3999   if (is_static) {
4000     assert(!is_virtual, "");
4001     slow_call = new(C) CallStaticJavaNode(C, tf,
4002                            SharedRuntime::get_resolve_static_call_stub(),
4003                            method, bci());
4004   } else if (is_virtual) {
4005     null_check_receiver();
4006     int vtable_index = Method::invalid_vtable_index;
4007     if (UseInlineCaches) {
4008       // Suppress the vtable call
4009     } else {
4010       // hashCode and clone are not a miranda methods,
4011       // so the vtable index is fixed.
4012       // No need to use the linkResolver to get it.
4013        vtable_index = method->vtable_index();
4014        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4015               err_msg_res("bad index %d", vtable_index));
4016     }
4017     slow_call = new(C) CallDynamicJavaNode(tf,
4018                           SharedRuntime::get_resolve_virtual_call_stub(),
4019                           method, vtable_index, bci());
4020   } else {  // neither virtual nor static:  opt_virtual
4021     null_check_receiver();
4022     slow_call = new(C) CallStaticJavaNode(C, tf,
4023                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4024                                 method, bci());
4025     slow_call->set_optimized_virtual(true);
4026   }
4027   set_arguments_for_java_call(slow_call);
4028   set_edges_for_java_call(slow_call);
4029   return slow_call;
4030 }
4031 
4032 
4033 /**
4034  * Build special case code for calls to hashCode on an object. This call may
4035  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4036  * slightly different code.
4037  */
4038 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4039   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4040   assert(!(is_virtual && is_static), "either virtual, special, or static");
4041 
4042   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4043 
4044   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4045   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
4046   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4047   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4048   Node* obj = NULL;
4049   if (!is_static) {
4050     // Check for hashing null object
4051     obj = null_check_receiver();
4052     if (stopped())  return true;        // unconditionally null
4053     result_reg->init_req(_null_path, top());
4054     result_val->init_req(_null_path, top());
4055   } else {
4056     // Do a null check, and return zero if null.
4057     // System.identityHashCode(null) == 0
4058     obj = argument(0);
4059     Node* null_ctl = top();
4060     obj = null_check_oop(obj, &null_ctl);
4061     result_reg->init_req(_null_path, null_ctl);
4062     result_val->init_req(_null_path, _gvn.intcon(0));
4063   }
4064 
4065   // Unconditionally null?  Then return right away.
4066   if (stopped()) {
4067     set_control( result_reg->in(_null_path));
4068     if (!stopped())
4069       set_result(result_val->in(_null_path));
4070     return true;
4071   }
4072 
4073   // We only go to the fast case code if we pass a number of guards.  The
4074   // paths which do not pass are accumulated in the slow_region.
4075   RegionNode* slow_region = new (C) RegionNode(1);
4076   record_for_igvn(slow_region);
4077 
4078   // If this is a virtual call, we generate a funny guard.  We pull out
4079   // the vtable entry corresponding to hashCode() from the target object.
4080   // If the target method which we are calling happens to be the native
4081   // Object hashCode() method, we pass the guard.  We do not need this
4082   // guard for non-virtual calls -- the caller is known to be the native
4083   // Object hashCode().
4084   if (is_virtual) {
4085     // After null check, get the object's klass.
4086     Node* obj_klass = load_object_klass(obj);
4087     generate_virtual_guard(obj_klass, slow_region);
4088   }
4089 
4090   // Get the header out of the object, use LoadMarkNode when available
4091   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4092   // The control of the load must be NULL. Otherwise, the load can move before
4093   // the null check after castPP removal.
4094   Node* no_ctrl = NULL;
4095   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4096 
4097   // Test the header to see if it is unlocked.
4098   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4099   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4100   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4101   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4102   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4103 
4104   generate_slow_guard(test_unlocked, slow_region);
4105 
4106   // Get the hash value and check to see that it has been properly assigned.
4107   // We depend on hash_mask being at most 32 bits and avoid the use of
4108   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4109   // vm: see markOop.hpp.
4110   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4111   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4112   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4113   // This hack lets the hash bits live anywhere in the mark object now, as long
4114   // as the shift drops the relevant bits into the low 32 bits.  Note that
4115   // Java spec says that HashCode is an int so there's no point in capturing
4116   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4117   hshifted_header      = ConvX2I(hshifted_header);
4118   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4119 
4120   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4121   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4122   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4123 
4124   generate_slow_guard(test_assigned, slow_region);
4125 
4126   Node* init_mem = reset_memory();
4127   // fill in the rest of the null path:
4128   result_io ->init_req(_null_path, i_o());
4129   result_mem->init_req(_null_path, init_mem);
4130 
4131   result_val->init_req(_fast_path, hash_val);
4132   result_reg->init_req(_fast_path, control());
4133   result_io ->init_req(_fast_path, i_o());
4134   result_mem->init_req(_fast_path, init_mem);
4135 
4136   // Generate code for the slow case.  We make a call to hashCode().
4137   set_control(_gvn.transform(slow_region));
4138   if (!stopped()) {
4139     // No need for PreserveJVMState, because we're using up the present state.
4140     set_all_memory(init_mem);
4141     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4142     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4143     Node* slow_result = set_results_for_java_call(slow_call);
4144     // this->control() comes from set_results_for_java_call
4145     result_reg->init_req(_slow_path, control());
4146     result_val->init_req(_slow_path, slow_result);
4147     result_io  ->set_req(_slow_path, i_o());
4148     result_mem ->set_req(_slow_path, reset_memory());
4149   }
4150 
4151   // Return the combined state.
4152   set_i_o(        _gvn.transform(result_io)  );
4153   set_all_memory( _gvn.transform(result_mem));
4154 
4155   set_result(result_reg, result_val);
4156   return true;
4157 }
4158 
4159 //---------------------------inline_native_getClass----------------------------
4160 // public final native Class<?> java.lang.Object.getClass();
4161 //
4162 // Build special case code for calls to getClass on an object.
4163 bool LibraryCallKit::inline_native_getClass() {
4164   Node* obj = null_check_receiver();
4165   if (stopped())  return true;
4166   set_result(load_mirror_from_klass(load_object_klass(obj)));
4167   return true;
4168 }
4169 
4170 //-----------------inline_native_Reflection_getCallerClass---------------------
4171 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4172 //
4173 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4174 //
4175 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4176 // in that it must skip particular security frames and checks for
4177 // caller sensitive methods.
4178 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4179 #ifndef PRODUCT
4180   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4181     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4182   }
4183 #endif
4184 
4185   if (!jvms()->has_method()) {
4186 #ifndef PRODUCT
4187     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4188       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4189     }
4190 #endif
4191     return false;
4192   }
4193 
4194   // Walk back up the JVM state to find the caller at the required
4195   // depth.
4196   JVMState* caller_jvms = jvms();
4197 
4198   // Cf. JVM_GetCallerClass
4199   // NOTE: Start the loop at depth 1 because the current JVM state does
4200   // not include the Reflection.getCallerClass() frame.
4201   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4202     ciMethod* m = caller_jvms->method();
4203     switch (n) {
4204     case 0:
4205       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4206       break;
4207     case 1:
4208       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4209       if (!m->caller_sensitive()) {
4210 #ifndef PRODUCT
4211         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4212           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4213         }
4214 #endif
4215         return false;  // bail-out; let JVM_GetCallerClass do the work
4216       }
4217       break;
4218     default:
4219       if (!m->is_ignored_by_security_stack_walk()) {
4220         // We have reached the desired frame; return the holder class.
4221         // Acquire method holder as java.lang.Class and push as constant.
4222         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4223         ciInstance* caller_mirror = caller_klass->java_mirror();
4224         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4225 
4226 #ifndef PRODUCT
4227         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4228           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4229           tty->print_cr("  JVM state at this point:");
4230           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4231             ciMethod* m = jvms()->of_depth(i)->method();
4232             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4233           }
4234         }
4235 #endif
4236         return true;
4237       }
4238       break;
4239     }
4240   }
4241 
4242 #ifndef PRODUCT
4243   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4244     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4245     tty->print_cr("  JVM state at this point:");
4246     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4247       ciMethod* m = jvms()->of_depth(i)->method();
4248       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4249     }
4250   }
4251 #endif
4252 
4253   return false;  // bail-out; let JVM_GetCallerClass do the work
4254 }
4255 
4256 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4257   Node* arg = argument(0);
4258   Node* result;
4259 
4260   switch (id) {
4261   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4262   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4263   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4264   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4265 
4266   case vmIntrinsics::_doubleToLongBits: {
4267     // two paths (plus control) merge in a wood
4268     RegionNode *r = new (C) RegionNode(3);
4269     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4270 
4271     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4272     // Build the boolean node
4273     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4274 
4275     // Branch either way.
4276     // NaN case is less traveled, which makes all the difference.
4277     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4278     Node *opt_isnan = _gvn.transform(ifisnan);
4279     assert( opt_isnan->is_If(), "Expect an IfNode");
4280     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4281     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4282 
4283     set_control(iftrue);
4284 
4285     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4286     Node *slow_result = longcon(nan_bits); // return NaN
4287     phi->init_req(1, _gvn.transform( slow_result ));
4288     r->init_req(1, iftrue);
4289 
4290     // Else fall through
4291     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4292     set_control(iffalse);
4293 
4294     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4295     r->init_req(2, iffalse);
4296 
4297     // Post merge
4298     set_control(_gvn.transform(r));
4299     record_for_igvn(r);
4300 
4301     C->set_has_split_ifs(true); // Has chance for split-if optimization
4302     result = phi;
4303     assert(result->bottom_type()->isa_long(), "must be");
4304     break;
4305   }
4306 
4307   case vmIntrinsics::_floatToIntBits: {
4308     // two paths (plus control) merge in a wood
4309     RegionNode *r = new (C) RegionNode(3);
4310     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4311 
4312     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4313     // Build the boolean node
4314     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4315 
4316     // Branch either way.
4317     // NaN case is less traveled, which makes all the difference.
4318     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4319     Node *opt_isnan = _gvn.transform(ifisnan);
4320     assert( opt_isnan->is_If(), "Expect an IfNode");
4321     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4322     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4323 
4324     set_control(iftrue);
4325 
4326     static const jint nan_bits = 0x7fc00000;
4327     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4328     phi->init_req(1, _gvn.transform( slow_result ));
4329     r->init_req(1, iftrue);
4330 
4331     // Else fall through
4332     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4333     set_control(iffalse);
4334 
4335     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4336     r->init_req(2, iffalse);
4337 
4338     // Post merge
4339     set_control(_gvn.transform(r));
4340     record_for_igvn(r);
4341 
4342     C->set_has_split_ifs(true); // Has chance for split-if optimization
4343     result = phi;
4344     assert(result->bottom_type()->isa_int(), "must be");
4345     break;
4346   }
4347 
4348   default:
4349     fatal_unexpected_iid(id);
4350     break;
4351   }
4352   set_result(_gvn.transform(result));
4353   return true;
4354 }
4355 
4356 #ifdef _LP64
4357 #define XTOP ,top() /*additional argument*/
4358 #else  //_LP64
4359 #define XTOP        /*no additional argument*/
4360 #endif //_LP64
4361 
4362 //----------------------inline_unsafe_copyMemory-------------------------
4363 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4364 bool LibraryCallKit::inline_unsafe_copyMemory() {
4365   if (callee()->is_static())  return false;  // caller must have the capability!
4366   null_check_receiver();  // null-check receiver
4367   if (stopped())  return true;
4368 
4369   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4370 
4371   Node* src_ptr =         argument(1);   // type: oop
4372   Node* src_off = ConvL2X(argument(2));  // type: long
4373   Node* dst_ptr =         argument(4);   // type: oop
4374   Node* dst_off = ConvL2X(argument(5));  // type: long
4375   Node* size    = ConvL2X(argument(7));  // type: long
4376 
4377   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4378          "fieldOffset must be byte-scaled");
4379 
4380   Node* src = make_unsafe_address(src_ptr, src_off);
4381   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4382 
4383   // Conservatively insert a memory barrier on all memory slices.
4384   // Do not let writes of the copy source or destination float below the copy.
4385   insert_mem_bar(Op_MemBarCPUOrder);
4386 
4387   // Call it.  Note that the length argument is not scaled.
4388   make_runtime_call(RC_LEAF|RC_NO_FP,
4389                     OptoRuntime::fast_arraycopy_Type(),
4390                     StubRoutines::unsafe_arraycopy(),
4391                     "unsafe_arraycopy",
4392                     TypeRawPtr::BOTTOM,
4393                     src, dst, size XTOP);
4394 
4395   // Do not let reads of the copy destination float above the copy.
4396   insert_mem_bar(Op_MemBarCPUOrder);
4397 
4398   return true;
4399 }
4400 
4401 //------------------------clone_coping-----------------------------------
4402 // Helper function for inline_native_clone.
4403 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4404   assert(obj_size != NULL, "");
4405   Node* raw_obj = alloc_obj->in(1);
4406   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4407 
4408   AllocateNode* alloc = NULL;
4409   if (ReduceBulkZeroing) {
4410     // We will be completely responsible for initializing this object -
4411     // mark Initialize node as complete.
4412     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4413     // The object was just allocated - there should be no any stores!
4414     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4415     // Mark as complete_with_arraycopy so that on AllocateNode
4416     // expansion, we know this AllocateNode is initialized by an array
4417     // copy and a StoreStore barrier exists after the array copy.
4418     alloc->initialization()->set_complete_with_arraycopy();
4419   }
4420 
4421   // Copy the fastest available way.
4422   // TODO: generate fields copies for small objects instead.
4423   Node* src  = obj;
4424   Node* dest = alloc_obj;
4425   Node* size = _gvn.transform(obj_size);
4426 
4427   // Exclude the header but include array length to copy by 8 bytes words.
4428   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4429   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4430                             instanceOopDesc::base_offset_in_bytes();
4431   // base_off:
4432   // 8  - 32-bit VM
4433   // 12 - 64-bit VM, compressed klass
4434   // 16 - 64-bit VM, normal klass
4435   if (base_off % BytesPerLong != 0) {
4436     assert(UseCompressedClassPointers, "");
4437     if (is_array) {
4438       // Exclude length to copy by 8 bytes words.
4439       base_off += sizeof(int);
4440     } else {
4441       // Include klass to copy by 8 bytes words.
4442       base_off = instanceOopDesc::klass_offset_in_bytes();
4443     }
4444     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4445   }
4446   src  = basic_plus_adr(src,  base_off);
4447   dest = basic_plus_adr(dest, base_off);
4448 
4449   // Compute the length also, if needed:
4450   Node* countx = size;
4451   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4452   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4453 
4454   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4455   bool disjoint_bases = true;
4456   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4457                                src, NULL, dest, NULL, countx,
4458                                /*dest_uninitialized*/true);
4459 
4460   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4461   if (card_mark) {
4462     assert(!is_array, "");
4463     // Put in store barrier for any and all oops we are sticking
4464     // into this object.  (We could avoid this if we could prove
4465     // that the object type contains no oop fields at all.)
4466     Node* no_particular_value = NULL;
4467     Node* no_particular_field = NULL;
4468     int raw_adr_idx = Compile::AliasIdxRaw;
4469     post_barrier(control(),
4470                  memory(raw_adr_type),
4471                  alloc_obj,
4472                  no_particular_field,
4473                  raw_adr_idx,
4474                  no_particular_value,
4475                  T_OBJECT,
4476                  false);
4477   }
4478 
4479   // Do not let reads from the cloned object float above the arraycopy.
4480   if (alloc != NULL) {
4481     // Do not let stores that initialize this object be reordered with
4482     // a subsequent store that would make this object accessible by
4483     // other threads.
4484     // Record what AllocateNode this StoreStore protects so that
4485     // escape analysis can go from the MemBarStoreStoreNode to the
4486     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4487     // based on the escape status of the AllocateNode.
4488     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4489   } else {
4490     insert_mem_bar(Op_MemBarCPUOrder);
4491   }
4492 }
4493 
4494 //------------------------inline_native_clone----------------------------
4495 // protected native Object java.lang.Object.clone();
4496 //
4497 // Here are the simple edge cases:
4498 //  null receiver => normal trap
4499 //  virtual and clone was overridden => slow path to out-of-line clone
4500 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4501 //
4502 // The general case has two steps, allocation and copying.
4503 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4504 //
4505 // Copying also has two cases, oop arrays and everything else.
4506 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4507 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4508 //
4509 // These steps fold up nicely if and when the cloned object's klass
4510 // can be sharply typed as an object array, a type array, or an instance.
4511 //
4512 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4513   PhiNode* result_val;
4514 
4515   // Set the reexecute bit for the interpreter to reexecute
4516   // the bytecode that invokes Object.clone if deoptimization happens.
4517   { PreserveReexecuteState preexecs(this);
4518     jvms()->set_should_reexecute(true);
4519 
4520     Node* obj = null_check_receiver();
4521     if (stopped())  return true;
4522 
4523     Node* obj_klass = load_object_klass(obj);
4524     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4525     const TypeOopPtr*   toop   = ((tklass != NULL)
4526                                 ? tklass->as_instance_type()
4527                                 : TypeInstPtr::NOTNULL);
4528 
4529     // Conservatively insert a memory barrier on all memory slices.
4530     // Do not let writes into the original float below the clone.
4531     insert_mem_bar(Op_MemBarCPUOrder);
4532 
4533     // paths into result_reg:
4534     enum {
4535       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4536       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4537       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4538       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4539       PATH_LIMIT
4540     };
4541     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4542     result_val             = new(C) PhiNode(result_reg,
4543                                             TypeInstPtr::NOTNULL);
4544     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4545     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4546                                             TypePtr::BOTTOM);
4547     record_for_igvn(result_reg);
4548 
4549     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4550     int raw_adr_idx = Compile::AliasIdxRaw;
4551 
4552     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4553     if (array_ctl != NULL) {
4554       // It's an array.
4555       PreserveJVMState pjvms(this);
4556       set_control(array_ctl);
4557       Node* obj_length = load_array_length(obj);
4558       Node* obj_size  = NULL;
4559       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4560 
4561       if (!use_ReduceInitialCardMarks()) {
4562         // If it is an oop array, it requires very special treatment,
4563         // because card marking is required on each card of the array.
4564         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4565         if (is_obja != NULL) {
4566           PreserveJVMState pjvms2(this);
4567           set_control(is_obja);
4568           // Generate a direct call to the right arraycopy function(s).
4569           bool disjoint_bases = true;
4570           bool length_never_negative = true;
4571           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4572                              obj, intcon(0), alloc_obj, intcon(0),
4573                              obj_length,
4574                              disjoint_bases, length_never_negative);
4575           result_reg->init_req(_objArray_path, control());
4576           result_val->init_req(_objArray_path, alloc_obj);
4577           result_i_o ->set_req(_objArray_path, i_o());
4578           result_mem ->set_req(_objArray_path, reset_memory());
4579         }
4580       }
4581       // Otherwise, there are no card marks to worry about.
4582       // (We can dispense with card marks if we know the allocation
4583       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4584       //  causes the non-eden paths to take compensating steps to
4585       //  simulate a fresh allocation, so that no further
4586       //  card marks are required in compiled code to initialize
4587       //  the object.)
4588 
4589       if (!stopped()) {
4590         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4591 
4592         // Present the results of the copy.
4593         result_reg->init_req(_array_path, control());
4594         result_val->init_req(_array_path, alloc_obj);
4595         result_i_o ->set_req(_array_path, i_o());
4596         result_mem ->set_req(_array_path, reset_memory());
4597       }
4598     }
4599 
4600     // We only go to the instance fast case code if we pass a number of guards.
4601     // The paths which do not pass are accumulated in the slow_region.
4602     RegionNode* slow_region = new (C) RegionNode(1);
4603     record_for_igvn(slow_region);
4604     if (!stopped()) {
4605       // It's an instance (we did array above).  Make the slow-path tests.
4606       // If this is a virtual call, we generate a funny guard.  We grab
4607       // the vtable entry corresponding to clone() from the target object.
4608       // If the target method which we are calling happens to be the
4609       // Object clone() method, we pass the guard.  We do not need this
4610       // guard for non-virtual calls; the caller is known to be the native
4611       // Object clone().
4612       if (is_virtual) {
4613         generate_virtual_guard(obj_klass, slow_region);
4614       }
4615 
4616       // The object must be cloneable and must not have a finalizer.
4617       // Both of these conditions may be checked in a single test.
4618       // We could optimize the cloneable test further, but we don't care.
4619       generate_access_flags_guard(obj_klass,
4620                                   // Test both conditions:
4621                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4622                                   // Must be cloneable but not finalizer:
4623                                   JVM_ACC_IS_CLONEABLE,
4624                                   slow_region);
4625     }
4626 
4627     if (!stopped()) {
4628       // It's an instance, and it passed the slow-path tests.
4629       PreserveJVMState pjvms(this);
4630       Node* obj_size  = NULL;
4631       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4632       // is reexecuted if deoptimization occurs and there could be problems when merging
4633       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4634       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4635 
4636       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4637 
4638       // Present the results of the slow call.
4639       result_reg->init_req(_instance_path, control());
4640       result_val->init_req(_instance_path, alloc_obj);
4641       result_i_o ->set_req(_instance_path, i_o());
4642       result_mem ->set_req(_instance_path, reset_memory());
4643     }
4644 
4645     // Generate code for the slow case.  We make a call to clone().
4646     set_control(_gvn.transform(slow_region));
4647     if (!stopped()) {
4648       PreserveJVMState pjvms(this);
4649       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4650       Node* slow_result = set_results_for_java_call(slow_call);
4651       // this->control() comes from set_results_for_java_call
4652       result_reg->init_req(_slow_path, control());
4653       result_val->init_req(_slow_path, slow_result);
4654       result_i_o ->set_req(_slow_path, i_o());
4655       result_mem ->set_req(_slow_path, reset_memory());
4656     }
4657 
4658     // Return the combined state.
4659     set_control(    _gvn.transform(result_reg));
4660     set_i_o(        _gvn.transform(result_i_o));
4661     set_all_memory( _gvn.transform(result_mem));
4662   } // original reexecute is set back here
4663 
4664   set_result(_gvn.transform(result_val));
4665   return true;
4666 }
4667 
4668 //------------------------------basictype2arraycopy----------------------------
4669 address LibraryCallKit::basictype2arraycopy(BasicType t,
4670                                             Node* src_offset,
4671                                             Node* dest_offset,
4672                                             bool disjoint_bases,
4673                                             const char* &name,
4674                                             bool dest_uninitialized) {
4675   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4676   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4677 
4678   bool aligned = false;
4679   bool disjoint = disjoint_bases;
4680 
4681   // if the offsets are the same, we can treat the memory regions as
4682   // disjoint, because either the memory regions are in different arrays,
4683   // or they are identical (which we can treat as disjoint.)  We can also
4684   // treat a copy with a destination index  less that the source index
4685   // as disjoint since a low->high copy will work correctly in this case.
4686   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4687       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4688     // both indices are constants
4689     int s_offs = src_offset_inttype->get_con();
4690     int d_offs = dest_offset_inttype->get_con();
4691     int element_size = type2aelembytes(t);
4692     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4693               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4694     if (s_offs >= d_offs)  disjoint = true;
4695   } else if (src_offset == dest_offset && src_offset != NULL) {
4696     // This can occur if the offsets are identical non-constants.
4697     disjoint = true;
4698   }
4699 
4700   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4701 }
4702 
4703 
4704 //------------------------------inline_arraycopy-----------------------
4705 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4706 //                                                      Object dest, int destPos,
4707 //                                                      int length);
4708 bool LibraryCallKit::inline_arraycopy() {
4709   // Get the arguments.
4710   Node* src         = argument(0);  // type: oop
4711   Node* src_offset  = argument(1);  // type: int
4712   Node* dest        = argument(2);  // type: oop
4713   Node* dest_offset = argument(3);  // type: int
4714   Node* length      = argument(4);  // type: int
4715 
4716   // Compile time checks.  If any of these checks cannot be verified at compile time,
4717   // we do not make a fast path for this call.  Instead, we let the call remain as it
4718   // is.  The checks we choose to mandate at compile time are:
4719   //
4720   // (1) src and dest are arrays.
4721   const Type* src_type  = src->Value(&_gvn);
4722   const Type* dest_type = dest->Value(&_gvn);
4723   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4724   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4725 
4726   // Do we have the type of src?
4727   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4728   // Do we have the type of dest?
4729   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4730   // Is the type for src from speculation?
4731   bool src_spec = false;
4732   // Is the type for dest from speculation?
4733   bool dest_spec = false;
4734 
4735   if (!has_src || !has_dest) {
4736     // We don't have sufficient type information, let's see if
4737     // speculative types can help. We need to have types for both src
4738     // and dest so that it pays off.
4739 
4740     // Do we already have or could we have type information for src
4741     bool could_have_src = has_src;
4742     // Do we already have or could we have type information for dest
4743     bool could_have_dest = has_dest;
4744 
4745     ciKlass* src_k = NULL;
4746     if (!has_src) {
4747       src_k = src_type->speculative_type();
4748       if (src_k != NULL && src_k->is_array_klass()) {
4749         could_have_src = true;
4750       }
4751     }
4752 
4753     ciKlass* dest_k = NULL;
4754     if (!has_dest) {
4755       dest_k = dest_type->speculative_type();
4756       if (dest_k != NULL && dest_k->is_array_klass()) {
4757         could_have_dest = true;
4758       }
4759     }
4760 
4761     if (could_have_src && could_have_dest) {
4762       // This is going to pay off so emit the required guards
4763       if (!has_src) {
4764         src = maybe_cast_profiled_obj(src, src_k);
4765         src_type  = _gvn.type(src);
4766         top_src  = src_type->isa_aryptr();
4767         has_src = (top_src != NULL && top_src->klass() != NULL);
4768         src_spec = true;
4769       }
4770       if (!has_dest) {
4771         dest = maybe_cast_profiled_obj(dest, dest_k);
4772         dest_type  = _gvn.type(dest);
4773         top_dest  = dest_type->isa_aryptr();
4774         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4775         dest_spec = true;
4776       }
4777     }
4778   }
4779 
4780   if (!has_src || !has_dest) {
4781     // Conservatively insert a memory barrier on all memory slices.
4782     // Do not let writes into the source float below the arraycopy.
4783     insert_mem_bar(Op_MemBarCPUOrder);
4784 
4785     // Call StubRoutines::generic_arraycopy stub.
4786     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4787                        src, src_offset, dest, dest_offset, length);
4788 
4789     // Do not let reads from the destination float above the arraycopy.
4790     // Since we cannot type the arrays, we don't know which slices
4791     // might be affected.  We could restrict this barrier only to those
4792     // memory slices which pertain to array elements--but don't bother.
4793     if (!InsertMemBarAfterArraycopy)
4794       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4795       insert_mem_bar(Op_MemBarCPUOrder);
4796     return true;
4797   }
4798 
4799   // (2) src and dest arrays must have elements of the same BasicType
4800   // Figure out the size and type of the elements we will be copying.
4801   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4802   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4803   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4804   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4805 
4806   if (src_elem != dest_elem || dest_elem == T_VOID) {
4807     // The component types are not the same or are not recognized.  Punt.
4808     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4809     generate_slow_arraycopy(TypePtr::BOTTOM,
4810                             src, src_offset, dest, dest_offset, length,
4811                             /*dest_uninitialized*/false);
4812     return true;
4813   }
4814 
4815   if (src_elem == T_OBJECT) {
4816     // If both arrays are object arrays then having the exact types
4817     // for both will remove the need for a subtype check at runtime
4818     // before the call and may make it possible to pick a faster copy
4819     // routine (without a subtype check on every element)
4820     // Do we have the exact type of src?
4821     bool could_have_src = src_spec;
4822     // Do we have the exact type of dest?
4823     bool could_have_dest = dest_spec;
4824     ciKlass* src_k = top_src->klass();
4825     ciKlass* dest_k = top_dest->klass();
4826     if (!src_spec) {
4827       src_k = src_type->speculative_type();
4828       if (src_k != NULL && src_k->is_array_klass()) {
4829           could_have_src = true;
4830       }
4831     }
4832     if (!dest_spec) {
4833       dest_k = dest_type->speculative_type();
4834       if (dest_k != NULL && dest_k->is_array_klass()) {
4835         could_have_dest = true;
4836       }
4837     }
4838     if (could_have_src && could_have_dest) {
4839       // If we can have both exact types, emit the missing guards
4840       if (could_have_src && !src_spec) {
4841         src = maybe_cast_profiled_obj(src, src_k);
4842       }
4843       if (could_have_dest && !dest_spec) {
4844         dest = maybe_cast_profiled_obj(dest, dest_k);
4845       }
4846     }
4847   }
4848 
4849   //---------------------------------------------------------------------------
4850   // We will make a fast path for this call to arraycopy.
4851 
4852   // We have the following tests left to perform:
4853   //
4854   // (3) src and dest must not be null.
4855   // (4) src_offset must not be negative.
4856   // (5) dest_offset must not be negative.
4857   // (6) length must not be negative.
4858   // (7) src_offset + length must not exceed length of src.
4859   // (8) dest_offset + length must not exceed length of dest.
4860   // (9) each element of an oop array must be assignable
4861 
4862   RegionNode* slow_region = new (C) RegionNode(1);
4863   record_for_igvn(slow_region);
4864 
4865   // (3) operands must not be null
4866   // We currently perform our null checks with the null_check routine.
4867   // This means that the null exceptions will be reported in the caller
4868   // rather than (correctly) reported inside of the native arraycopy call.
4869   // This should be corrected, given time.  We do our null check with the
4870   // stack pointer restored.
4871   src  = null_check(src,  T_ARRAY);
4872   dest = null_check(dest, T_ARRAY);
4873 
4874   // (4) src_offset must not be negative.
4875   generate_negative_guard(src_offset, slow_region);
4876 
4877   // (5) dest_offset must not be negative.
4878   generate_negative_guard(dest_offset, slow_region);
4879 
4880   // (6) length must not be negative (moved to generate_arraycopy()).
4881   // generate_negative_guard(length, slow_region);
4882 
4883   // (7) src_offset + length must not exceed length of src.
4884   generate_limit_guard(src_offset, length,
4885                        load_array_length(src),
4886                        slow_region);
4887 
4888   // (8) dest_offset + length must not exceed length of dest.
4889   generate_limit_guard(dest_offset, length,
4890                        load_array_length(dest),
4891                        slow_region);
4892 
4893   // (9) each element of an oop array must be assignable
4894   // The generate_arraycopy subroutine checks this.
4895 
4896   // This is where the memory effects are placed:
4897   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4898   generate_arraycopy(adr_type, dest_elem,
4899                      src, src_offset, dest, dest_offset, length,
4900                      false, false, slow_region);
4901 
4902   return true;
4903 }
4904 
4905 //-----------------------------generate_arraycopy----------------------
4906 // Generate an optimized call to arraycopy.
4907 // Caller must guard against non-arrays.
4908 // Caller must determine a common array basic-type for both arrays.
4909 // Caller must validate offsets against array bounds.
4910 // The slow_region has already collected guard failure paths
4911 // (such as out of bounds length or non-conformable array types).
4912 // The generated code has this shape, in general:
4913 //
4914 //     if (length == 0)  return   // via zero_path
4915 //     slowval = -1
4916 //     if (types unknown) {
4917 //       slowval = call generic copy loop
4918 //       if (slowval == 0)  return  // via checked_path
4919 //     } else if (indexes in bounds) {
4920 //       if ((is object array) && !(array type check)) {
4921 //         slowval = call checked copy loop
4922 //         if (slowval == 0)  return  // via checked_path
4923 //       } else {
4924 //         call bulk copy loop
4925 //         return  // via fast_path
4926 //       }
4927 //     }
4928 //     // adjust params for remaining work:
4929 //     if (slowval != -1) {
4930 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4931 //     }
4932 //   slow_region:
4933 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4934 //     return  // via slow_call_path
4935 //
4936 // This routine is used from several intrinsics:  System.arraycopy,
4937 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4938 //
4939 void
4940 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4941                                    BasicType basic_elem_type,
4942                                    Node* src,  Node* src_offset,
4943                                    Node* dest, Node* dest_offset,
4944                                    Node* copy_length,
4945                                    bool disjoint_bases,
4946                                    bool length_never_negative,
4947                                    RegionNode* slow_region) {
4948 
4949   if (slow_region == NULL) {
4950     slow_region = new(C) RegionNode(1);
4951     record_for_igvn(slow_region);
4952   }
4953 
4954   Node* original_dest      = dest;
4955   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4956   bool  dest_uninitialized = false;
4957 
4958   // See if this is the initialization of a newly-allocated array.
4959   // If so, we will take responsibility here for initializing it to zero.
4960   // (Note:  Because tightly_coupled_allocation performs checks on the
4961   // out-edges of the dest, we need to avoid making derived pointers
4962   // from it until we have checked its uses.)
4963   if (ReduceBulkZeroing
4964       && !ZeroTLAB              // pointless if already zeroed
4965       && basic_elem_type != T_CONFLICT // avoid corner case
4966       && !src->eqv_uncast(dest)
4967       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4968           != NULL)
4969       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4970       && alloc->maybe_set_complete(&_gvn)) {
4971     // "You break it, you buy it."
4972     InitializeNode* init = alloc->initialization();
4973     assert(init->is_complete(), "we just did this");
4974     init->set_complete_with_arraycopy();
4975     assert(dest->is_CheckCastPP(), "sanity");
4976     assert(dest->in(0)->in(0) == init, "dest pinned");
4977     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4978     // From this point on, every exit path is responsible for
4979     // initializing any non-copied parts of the object to zero.
4980     // Also, if this flag is set we make sure that arraycopy interacts properly
4981     // with G1, eliding pre-barriers. See CR 6627983.
4982     dest_uninitialized = true;
4983   } else {
4984     // No zeroing elimination here.
4985     alloc             = NULL;
4986     //original_dest   = dest;
4987     //dest_uninitialized = false;
4988   }
4989 
4990   // Results are placed here:
4991   enum { fast_path        = 1,  // normal void-returning assembly stub
4992          checked_path     = 2,  // special assembly stub with cleanup
4993          slow_call_path   = 3,  // something went wrong; call the VM
4994          zero_path        = 4,  // bypass when length of copy is zero
4995          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4996          PATH_LIMIT       = 6
4997   };
4998   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4999   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
5000   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
5001   record_for_igvn(result_region);
5002   _gvn.set_type_bottom(result_i_o);
5003   _gvn.set_type_bottom(result_memory);
5004   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
5005 
5006   // The slow_control path:
5007   Node* slow_control;
5008   Node* slow_i_o = i_o();
5009   Node* slow_mem = memory(adr_type);
5010   debug_only(slow_control = (Node*) badAddress);
5011 
5012   // Checked control path:
5013   Node* checked_control = top();
5014   Node* checked_mem     = NULL;
5015   Node* checked_i_o     = NULL;
5016   Node* checked_value   = NULL;
5017 
5018   if (basic_elem_type == T_CONFLICT) {
5019     assert(!dest_uninitialized, "");
5020     Node* cv = generate_generic_arraycopy(adr_type,
5021                                           src, src_offset, dest, dest_offset,
5022                                           copy_length, dest_uninitialized);
5023     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5024     checked_control = control();
5025     checked_i_o     = i_o();
5026     checked_mem     = memory(adr_type);
5027     checked_value   = cv;
5028     set_control(top());         // no fast path
5029   }
5030 
5031   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
5032   if (not_pos != NULL) {
5033     PreserveJVMState pjvms(this);
5034     set_control(not_pos);
5035 
5036     // (6) length must not be negative.
5037     if (!length_never_negative) {
5038       generate_negative_guard(copy_length, slow_region);
5039     }
5040 
5041     // copy_length is 0.
5042     if (!stopped() && dest_uninitialized) {
5043       Node* dest_length = alloc->in(AllocateNode::ALength);
5044       if (copy_length->eqv_uncast(dest_length)
5045           || _gvn.find_int_con(dest_length, 1) <= 0) {
5046         // There is no zeroing to do. No need for a secondary raw memory barrier.
5047       } else {
5048         // Clear the whole thing since there are no source elements to copy.
5049         generate_clear_array(adr_type, dest, basic_elem_type,
5050                              intcon(0), NULL,
5051                              alloc->in(AllocateNode::AllocSize));
5052         // Use a secondary InitializeNode as raw memory barrier.
5053         // Currently it is needed only on this path since other
5054         // paths have stub or runtime calls as raw memory barriers.
5055         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5056                                                        Compile::AliasIdxRaw,
5057                                                        top())->as_Initialize();
5058         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5059       }
5060     }
5061 
5062     // Present the results of the fast call.
5063     result_region->init_req(zero_path, control());
5064     result_i_o   ->init_req(zero_path, i_o());
5065     result_memory->init_req(zero_path, memory(adr_type));
5066   }
5067 
5068   if (!stopped() && dest_uninitialized) {
5069     // We have to initialize the *uncopied* part of the array to zero.
5070     // The copy destination is the slice dest[off..off+len].  The other slices
5071     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5072     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5073     Node* dest_length = alloc->in(AllocateNode::ALength);
5074     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5075                                                           copy_length));
5076 
5077     // If there is a head section that needs zeroing, do it now.
5078     if (find_int_con(dest_offset, -1) != 0) {
5079       generate_clear_array(adr_type, dest, basic_elem_type,
5080                            intcon(0), dest_offset,
5081                            NULL);
5082     }
5083 
5084     // Next, perform a dynamic check on the tail length.
5085     // It is often zero, and we can win big if we prove this.
5086     // There are two wins:  Avoid generating the ClearArray
5087     // with its attendant messy index arithmetic, and upgrade
5088     // the copy to a more hardware-friendly word size of 64 bits.
5089     Node* tail_ctl = NULL;
5090     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5091       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5092       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5093       tail_ctl = generate_slow_guard(bol_lt, NULL);
5094       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5095     }
5096 
5097     // At this point, let's assume there is no tail.
5098     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5099       // There is no tail.  Try an upgrade to a 64-bit copy.
5100       bool didit = false;
5101       { PreserveJVMState pjvms(this);
5102         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5103                                          src, src_offset, dest, dest_offset,
5104                                          dest_size, dest_uninitialized);
5105         if (didit) {
5106           // Present the results of the block-copying fast call.
5107           result_region->init_req(bcopy_path, control());
5108           result_i_o   ->init_req(bcopy_path, i_o());
5109           result_memory->init_req(bcopy_path, memory(adr_type));
5110         }
5111       }
5112       if (didit)
5113         set_control(top());     // no regular fast path
5114     }
5115 
5116     // Clear the tail, if any.
5117     if (tail_ctl != NULL) {
5118       Node* notail_ctl = stopped() ? NULL : control();
5119       set_control(tail_ctl);
5120       if (notail_ctl == NULL) {
5121         generate_clear_array(adr_type, dest, basic_elem_type,
5122                              dest_tail, NULL,
5123                              dest_size);
5124       } else {
5125         // Make a local merge.
5126         Node* done_ctl = new(C) RegionNode(3);
5127         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5128         done_ctl->init_req(1, notail_ctl);
5129         done_mem->init_req(1, memory(adr_type));
5130         generate_clear_array(adr_type, dest, basic_elem_type,
5131                              dest_tail, NULL,
5132                              dest_size);
5133         done_ctl->init_req(2, control());
5134         done_mem->init_req(2, memory(adr_type));
5135         set_control( _gvn.transform(done_ctl));
5136         set_memory(  _gvn.transform(done_mem), adr_type );
5137       }
5138     }
5139   }
5140 
5141   BasicType copy_type = basic_elem_type;
5142   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5143   if (!stopped() && copy_type == T_OBJECT) {
5144     // If src and dest have compatible element types, we can copy bits.
5145     // Types S[] and D[] are compatible if D is a supertype of S.
5146     //
5147     // If they are not, we will use checked_oop_disjoint_arraycopy,
5148     // which performs a fast optimistic per-oop check, and backs off
5149     // further to JVM_ArrayCopy on the first per-oop check that fails.
5150     // (Actually, we don't move raw bits only; the GC requires card marks.)
5151 
5152     // Get the Klass* for both src and dest
5153     Node* src_klass  = load_object_klass(src);
5154     Node* dest_klass = load_object_klass(dest);
5155 
5156     // Generate the subtype check.
5157     // This might fold up statically, or then again it might not.
5158     //
5159     // Non-static example:  Copying List<String>.elements to a new String[].
5160     // The backing store for a List<String> is always an Object[],
5161     // but its elements are always type String, if the generic types
5162     // are correct at the source level.
5163     //
5164     // Test S[] against D[], not S against D, because (probably)
5165     // the secondary supertype cache is less busy for S[] than S.
5166     // This usually only matters when D is an interface.
5167     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5168     // Plug failing path into checked_oop_disjoint_arraycopy
5169     if (not_subtype_ctrl != top()) {
5170       PreserveJVMState pjvms(this);
5171       set_control(not_subtype_ctrl);
5172       // (At this point we can assume disjoint_bases, since types differ.)
5173       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5174       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5175       Node* n1 = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5176       Node* dest_elem_klass = _gvn.transform(n1);
5177       Node* cv = generate_checkcast_arraycopy(adr_type,
5178                                               dest_elem_klass,
5179                                               src, src_offset, dest, dest_offset,
5180                                               ConvI2X(copy_length), dest_uninitialized);
5181       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5182       checked_control = control();
5183       checked_i_o     = i_o();
5184       checked_mem     = memory(adr_type);
5185       checked_value   = cv;
5186     }
5187     // At this point we know we do not need type checks on oop stores.
5188 
5189     // Let's see if we need card marks:
5190     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5191       // If we do not need card marks, copy using the jint or jlong stub.
5192       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5193       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5194              "sizes agree");
5195     }
5196   }
5197 
5198   if (!stopped()) {
5199     // Generate the fast path, if possible.
5200     PreserveJVMState pjvms(this);
5201     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5202                                  src, src_offset, dest, dest_offset,
5203                                  ConvI2X(copy_length), dest_uninitialized);
5204 
5205     // Present the results of the fast call.
5206     result_region->init_req(fast_path, control());
5207     result_i_o   ->init_req(fast_path, i_o());
5208     result_memory->init_req(fast_path, memory(adr_type));
5209   }
5210 
5211   // Here are all the slow paths up to this point, in one bundle:
5212   slow_control = top();
5213   if (slow_region != NULL)
5214     slow_control = _gvn.transform(slow_region);
5215   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5216 
5217   set_control(checked_control);
5218   if (!stopped()) {
5219     // Clean up after the checked call.
5220     // The returned value is either 0 or -1^K,
5221     // where K = number of partially transferred array elements.
5222     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5223     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5224     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5225 
5226     // If it is 0, we are done, so transfer to the end.
5227     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5228     result_region->init_req(checked_path, checks_done);
5229     result_i_o   ->init_req(checked_path, checked_i_o);
5230     result_memory->init_req(checked_path, checked_mem);
5231 
5232     // If it is not zero, merge into the slow call.
5233     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5234     RegionNode* slow_reg2 = new(C) RegionNode(3);
5235     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5236     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5237     record_for_igvn(slow_reg2);
5238     slow_reg2  ->init_req(1, slow_control);
5239     slow_i_o2  ->init_req(1, slow_i_o);
5240     slow_mem2  ->init_req(1, slow_mem);
5241     slow_reg2  ->init_req(2, control());
5242     slow_i_o2  ->init_req(2, checked_i_o);
5243     slow_mem2  ->init_req(2, checked_mem);
5244 
5245     slow_control = _gvn.transform(slow_reg2);
5246     slow_i_o     = _gvn.transform(slow_i_o2);
5247     slow_mem     = _gvn.transform(slow_mem2);
5248 
5249     if (alloc != NULL) {
5250       // We'll restart from the very beginning, after zeroing the whole thing.
5251       // This can cause double writes, but that's OK since dest is brand new.
5252       // So we ignore the low 31 bits of the value returned from the stub.
5253     } else {
5254       // We must continue the copy exactly where it failed, or else
5255       // another thread might see the wrong number of writes to dest.
5256       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5257       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5258       slow_offset->init_req(1, intcon(0));
5259       slow_offset->init_req(2, checked_offset);
5260       slow_offset  = _gvn.transform(slow_offset);
5261 
5262       // Adjust the arguments by the conditionally incoming offset.
5263       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5264       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5265       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5266 
5267       // Tweak the node variables to adjust the code produced below:
5268       src_offset  = src_off_plus;
5269       dest_offset = dest_off_plus;
5270       copy_length = length_minus;
5271     }
5272   }
5273 
5274   set_control(slow_control);
5275   if (!stopped()) {
5276     // Generate the slow path, if needed.
5277     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5278 
5279     set_memory(slow_mem, adr_type);
5280     set_i_o(slow_i_o);
5281 
5282     if (dest_uninitialized) {
5283       generate_clear_array(adr_type, dest, basic_elem_type,
5284                            intcon(0), NULL,
5285                            alloc->in(AllocateNode::AllocSize));
5286     }
5287 
5288     generate_slow_arraycopy(adr_type,
5289                             src, src_offset, dest, dest_offset,
5290                             copy_length, /*dest_uninitialized*/false);
5291 
5292     result_region->init_req(slow_call_path, control());
5293     result_i_o   ->init_req(slow_call_path, i_o());
5294     result_memory->init_req(slow_call_path, memory(adr_type));
5295   }
5296 
5297   // Remove unused edges.
5298   for (uint i = 1; i < result_region->req(); i++) {
5299     if (result_region->in(i) == NULL)
5300       result_region->init_req(i, top());
5301   }
5302 
5303   // Finished; return the combined state.
5304   set_control( _gvn.transform(result_region));
5305   set_i_o(     _gvn.transform(result_i_o)    );
5306   set_memory(  _gvn.transform(result_memory), adr_type );
5307 
5308   // The memory edges above are precise in order to model effects around
5309   // array copies accurately to allow value numbering of field loads around
5310   // arraycopy.  Such field loads, both before and after, are common in Java
5311   // collections and similar classes involving header/array data structures.
5312   //
5313   // But with low number of register or when some registers are used or killed
5314   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5315   // The next memory barrier is added to avoid it. If the arraycopy can be
5316   // optimized away (which it can, sometimes) then we can manually remove
5317   // the membar also.
5318   //
5319   // Do not let reads from the cloned object float above the arraycopy.
5320   if (alloc != NULL) {
5321     // Do not let stores that initialize this object be reordered with
5322     // a subsequent store that would make this object accessible by
5323     // other threads.
5324     // Record what AllocateNode this StoreStore protects so that
5325     // escape analysis can go from the MemBarStoreStoreNode to the
5326     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5327     // based on the escape status of the AllocateNode.
5328     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5329   } else if (InsertMemBarAfterArraycopy)
5330     insert_mem_bar(Op_MemBarCPUOrder);
5331 }
5332 
5333 
5334 // Helper function which determines if an arraycopy immediately follows
5335 // an allocation, with no intervening tests or other escapes for the object.
5336 AllocateArrayNode*
5337 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5338                                            RegionNode* slow_region) {
5339   if (stopped())             return NULL;  // no fast path
5340   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5341 
5342   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5343   if (alloc == NULL)  return NULL;
5344 
5345   Node* rawmem = memory(Compile::AliasIdxRaw);
5346   // Is the allocation's memory state untouched?
5347   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5348     // Bail out if there have been raw-memory effects since the allocation.
5349     // (Example:  There might have been a call or safepoint.)
5350     return NULL;
5351   }
5352   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5353   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5354     return NULL;
5355   }
5356 
5357   // There must be no unexpected observers of this allocation.
5358   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5359     Node* obs = ptr->fast_out(i);
5360     if (obs != this->map()) {
5361       return NULL;
5362     }
5363   }
5364 
5365   // This arraycopy must unconditionally follow the allocation of the ptr.
5366   Node* alloc_ctl = ptr->in(0);
5367   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5368 
5369   Node* ctl = control();
5370   while (ctl != alloc_ctl) {
5371     // There may be guards which feed into the slow_region.
5372     // Any other control flow means that we might not get a chance
5373     // to finish initializing the allocated object.
5374     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5375       IfNode* iff = ctl->in(0)->as_If();
5376       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5377       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5378       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5379         ctl = iff->in(0);       // This test feeds the known slow_region.
5380         continue;
5381       }
5382       // One more try:  Various low-level checks bottom out in
5383       // uncommon traps.  If the debug-info of the trap omits
5384       // any reference to the allocation, as we've already
5385       // observed, then there can be no objection to the trap.
5386       bool found_trap = false;
5387       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5388         Node* obs = not_ctl->fast_out(j);
5389         if (obs->in(0) == not_ctl && obs->is_Call() &&
5390             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5391           found_trap = true; break;
5392         }
5393       }
5394       if (found_trap) {
5395         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5396         continue;
5397       }
5398     }
5399     return NULL;
5400   }
5401 
5402   // If we get this far, we have an allocation which immediately
5403   // precedes the arraycopy, and we can take over zeroing the new object.
5404   // The arraycopy will finish the initialization, and provide
5405   // a new control state to which we will anchor the destination pointer.
5406 
5407   return alloc;
5408 }
5409 
5410 // Helper for initialization of arrays, creating a ClearArray.
5411 // It writes zero bits in [start..end), within the body of an array object.
5412 // The memory effects are all chained onto the 'adr_type' alias category.
5413 //
5414 // Since the object is otherwise uninitialized, we are free
5415 // to put a little "slop" around the edges of the cleared area,
5416 // as long as it does not go back into the array's header,
5417 // or beyond the array end within the heap.
5418 //
5419 // The lower edge can be rounded down to the nearest jint and the
5420 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5421 //
5422 // Arguments:
5423 //   adr_type           memory slice where writes are generated
5424 //   dest               oop of the destination array
5425 //   basic_elem_type    element type of the destination
5426 //   slice_idx          array index of first element to store
5427 //   slice_len          number of elements to store (or NULL)
5428 //   dest_size          total size in bytes of the array object
5429 //
5430 // Exactly one of slice_len or dest_size must be non-NULL.
5431 // If dest_size is non-NULL, zeroing extends to the end of the object.
5432 // If slice_len is non-NULL, the slice_idx value must be a constant.
5433 void
5434 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5435                                      Node* dest,
5436                                      BasicType basic_elem_type,
5437                                      Node* slice_idx,
5438                                      Node* slice_len,
5439                                      Node* dest_size) {
5440   // one or the other but not both of slice_len and dest_size:
5441   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5442   if (slice_len == NULL)  slice_len = top();
5443   if (dest_size == NULL)  dest_size = top();
5444 
5445   // operate on this memory slice:
5446   Node* mem = memory(adr_type); // memory slice to operate on
5447 
5448   // scaling and rounding of indexes:
5449   int scale = exact_log2(type2aelembytes(basic_elem_type));
5450   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5451   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5452   int bump_bit  = (-1 << scale) & BytesPerInt;
5453 
5454   // determine constant starts and ends
5455   const intptr_t BIG_NEG = -128;
5456   assert(BIG_NEG + 2*abase < 0, "neg enough");
5457   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5458   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5459   if (slice_len_con == 0) {
5460     return;                     // nothing to do here
5461   }
5462   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5463   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5464   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5465     assert(end_con < 0, "not two cons");
5466     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5467                        BytesPerLong);
5468   }
5469 
5470   if (start_con >= 0 && end_con >= 0) {
5471     // Constant start and end.  Simple.
5472     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5473                                        start_con, end_con, &_gvn);
5474   } else if (start_con >= 0 && dest_size != top()) {
5475     // Constant start, pre-rounded end after the tail of the array.
5476     Node* end = dest_size;
5477     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5478                                        start_con, end, &_gvn);
5479   } else if (start_con >= 0 && slice_len != top()) {
5480     // Constant start, non-constant end.  End needs rounding up.
5481     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5482     intptr_t end_base  = abase + (slice_idx_con << scale);
5483     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5484     Node*    end       = ConvI2X(slice_len);
5485     if (scale != 0)
5486       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5487     end_base += end_round;
5488     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5489     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5490     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5491                                        start_con, end, &_gvn);
5492   } else if (start_con < 0 && dest_size != top()) {
5493     // Non-constant start, pre-rounded end after the tail of the array.
5494     // This is almost certainly a "round-to-end" operation.
5495     Node* start = slice_idx;
5496     start = ConvI2X(start);
5497     if (scale != 0)
5498       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5499     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5500     if ((bump_bit | clear_low) != 0) {
5501       int to_clear = (bump_bit | clear_low);
5502       // Align up mod 8, then store a jint zero unconditionally
5503       // just before the mod-8 boundary.
5504       if (((abase + bump_bit) & ~to_clear) - bump_bit
5505           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5506         bump_bit = 0;
5507         assert((abase & to_clear) == 0, "array base must be long-aligned");
5508       } else {
5509         // Bump 'start' up to (or past) the next jint boundary:
5510         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5511         assert((abase & clear_low) == 0, "array base must be int-aligned");
5512       }
5513       // Round bumped 'start' down to jlong boundary in body of array.
5514       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5515       if (bump_bit != 0) {
5516         // Store a zero to the immediately preceding jint:
5517         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5518         Node* p1 = basic_plus_adr(dest, x1);
5519         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5520         mem = _gvn.transform(mem);
5521       }
5522     }
5523     Node* end = dest_size; // pre-rounded
5524     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5525                                        start, end, &_gvn);
5526   } else {
5527     // Non-constant start, unrounded non-constant end.
5528     // (Nobody zeroes a random midsection of an array using this routine.)
5529     ShouldNotReachHere();       // fix caller
5530   }
5531 
5532   // Done.
5533   set_memory(mem, adr_type);
5534 }
5535 
5536 
5537 bool
5538 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5539                                          BasicType basic_elem_type,
5540                                          AllocateNode* alloc,
5541                                          Node* src,  Node* src_offset,
5542                                          Node* dest, Node* dest_offset,
5543                                          Node* dest_size, bool dest_uninitialized) {
5544   // See if there is an advantage from block transfer.
5545   int scale = exact_log2(type2aelembytes(basic_elem_type));
5546   if (scale >= LogBytesPerLong)
5547     return false;               // it is already a block transfer
5548 
5549   // Look at the alignment of the starting offsets.
5550   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5551 
5552   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5553   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5554   if (src_off_con < 0 || dest_off_con < 0)
5555     // At present, we can only understand constants.
5556     return false;
5557 
5558   intptr_t src_off  = abase + (src_off_con  << scale);
5559   intptr_t dest_off = abase + (dest_off_con << scale);
5560 
5561   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5562     // Non-aligned; too bad.
5563     // One more chance:  Pick off an initial 32-bit word.
5564     // This is a common case, since abase can be odd mod 8.
5565     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5566         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5567       Node* sptr = basic_plus_adr(src,  src_off);
5568       Node* dptr = basic_plus_adr(dest, dest_off);
5569       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5570       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5571       src_off += BytesPerInt;
5572       dest_off += BytesPerInt;
5573     } else {
5574       return false;
5575     }
5576   }
5577   assert(src_off % BytesPerLong == 0, "");
5578   assert(dest_off % BytesPerLong == 0, "");
5579 
5580   // Do this copy by giant steps.
5581   Node* sptr  = basic_plus_adr(src,  src_off);
5582   Node* dptr  = basic_plus_adr(dest, dest_off);
5583   Node* countx = dest_size;
5584   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5585   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5586 
5587   bool disjoint_bases = true;   // since alloc != NULL
5588   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5589                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5590 
5591   return true;
5592 }
5593 
5594 
5595 // Helper function; generates code for the slow case.
5596 // We make a call to a runtime method which emulates the native method,
5597 // but without the native wrapper overhead.
5598 void
5599 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5600                                         Node* src,  Node* src_offset,
5601                                         Node* dest, Node* dest_offset,
5602                                         Node* copy_length, bool dest_uninitialized) {
5603   assert(!dest_uninitialized, "Invariant");
5604   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5605                                  OptoRuntime::slow_arraycopy_Type(),
5606                                  OptoRuntime::slow_arraycopy_Java(),
5607                                  "slow_arraycopy", adr_type,
5608                                  src, src_offset, dest, dest_offset,
5609                                  copy_length);
5610 
5611   // Handle exceptions thrown by this fellow:
5612   make_slow_call_ex(call, env()->Throwable_klass(), false);
5613 }
5614 
5615 // Helper function; generates code for cases requiring runtime checks.
5616 Node*
5617 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5618                                              Node* dest_elem_klass,
5619                                              Node* src,  Node* src_offset,
5620                                              Node* dest, Node* dest_offset,
5621                                              Node* copy_length, bool dest_uninitialized) {
5622   if (stopped())  return NULL;
5623 
5624   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5625   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5626     return NULL;
5627   }
5628 
5629   // Pick out the parameters required to perform a store-check
5630   // for the target array.  This is an optimistic check.  It will
5631   // look in each non-null element's class, at the desired klass's
5632   // super_check_offset, for the desired klass.
5633   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5634   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5635   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5636   Node* check_offset = ConvI2X(_gvn.transform(n3));
5637   Node* check_value  = dest_elem_klass;
5638 
5639   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5640   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5641 
5642   // (We know the arrays are never conjoint, because their types differ.)
5643   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5644                                  OptoRuntime::checkcast_arraycopy_Type(),
5645                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5646                                  // five arguments, of which two are
5647                                  // intptr_t (jlong in LP64)
5648                                  src_start, dest_start,
5649                                  copy_length XTOP,
5650                                  check_offset XTOP,
5651                                  check_value);
5652 
5653   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5654 }
5655 
5656 
5657 // Helper function; generates code for cases requiring runtime checks.
5658 Node*
5659 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5660                                            Node* src,  Node* src_offset,
5661                                            Node* dest, Node* dest_offset,
5662                                            Node* copy_length, bool dest_uninitialized) {
5663   assert(!dest_uninitialized, "Invariant");
5664   if (stopped())  return NULL;
5665   address copyfunc_addr = StubRoutines::generic_arraycopy();
5666   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5667     return NULL;
5668   }
5669 
5670   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5671                     OptoRuntime::generic_arraycopy_Type(),
5672                     copyfunc_addr, "generic_arraycopy", adr_type,
5673                     src, src_offset, dest, dest_offset, copy_length);
5674 
5675   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5676 }
5677 
5678 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5679 void
5680 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5681                                              BasicType basic_elem_type,
5682                                              bool disjoint_bases,
5683                                              Node* src,  Node* src_offset,
5684                                              Node* dest, Node* dest_offset,
5685                                              Node* copy_length, bool dest_uninitialized) {
5686   if (stopped())  return;               // nothing to do
5687 
5688   Node* src_start  = src;
5689   Node* dest_start = dest;
5690   if (src_offset != NULL || dest_offset != NULL) {
5691     assert(src_offset != NULL && dest_offset != NULL, "");
5692     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5693     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5694   }
5695 
5696   // Figure out which arraycopy runtime method to call.
5697   const char* copyfunc_name = "arraycopy";
5698   address     copyfunc_addr =
5699       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5700                           disjoint_bases, copyfunc_name, dest_uninitialized);
5701 
5702   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5703   make_runtime_call(RC_LEAF|RC_NO_FP,
5704                     OptoRuntime::fast_arraycopy_Type(),
5705                     copyfunc_addr, copyfunc_name, adr_type,
5706                     src_start, dest_start, copy_length XTOP);
5707 }
5708 
5709 //-------------inline_encodeISOArray-----------------------------------
5710 // encode char[] to byte[] in ISO_8859_1
5711 bool LibraryCallKit::inline_encodeISOArray() {
5712   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5713   // no receiver since it is static method
5714   Node *src         = argument(0);
5715   Node *src_offset  = argument(1);
5716   Node *dst         = argument(2);
5717   Node *dst_offset  = argument(3);
5718   Node *length      = argument(4);
5719 
5720   const Type* src_type = src->Value(&_gvn);
5721   const Type* dst_type = dst->Value(&_gvn);
5722   const TypeAryPtr* top_src = src_type->isa_aryptr();
5723   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5724   if (top_src  == NULL || top_src->klass()  == NULL ||
5725       top_dest == NULL || top_dest->klass() == NULL) {
5726     // failed array check
5727     return false;
5728   }
5729 
5730   // Figure out the size and type of the elements we will be copying.
5731   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5732   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5733   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5734     return false;
5735   }
5736   Node* src_start = array_element_address(src, src_offset, src_elem);
5737   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5738   // 'src_start' points to src array + scaled offset
5739   // 'dst_start' points to dst array + scaled offset
5740 
5741   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5742   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5743   enc = _gvn.transform(enc);
5744   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5745   set_memory(res_mem, mtype);
5746   set_result(enc);
5747   return true;
5748 }
5749 
5750 //-------------inline_multiplyToLen-----------------------------------
5751 bool LibraryCallKit::inline_multiplyToLen() {
5752   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5753 
5754   address stubAddr = StubRoutines::multiplyToLen();
5755   if (stubAddr == NULL) {
5756     return false; // Intrinsic's stub is not implemented on this platform
5757   }
5758   const char* stubName = "multiplyToLen";
5759 
5760   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5761 
5762   Node* x    = argument(1);
5763   Node* xlen = argument(2);
5764   Node* y    = argument(3);
5765   Node* ylen = argument(4);
5766   Node* z    = argument(5);
5767 
5768   const Type* x_type = x->Value(&_gvn);
5769   const Type* y_type = y->Value(&_gvn);
5770   const TypeAryPtr* top_x = x_type->isa_aryptr();
5771   const TypeAryPtr* top_y = y_type->isa_aryptr();
5772   if (top_x  == NULL || top_x->klass()  == NULL ||
5773       top_y == NULL || top_y->klass() == NULL) {
5774     // failed array check
5775     return false;
5776   }
5777 
5778   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5779   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5780   if (x_elem != T_INT || y_elem != T_INT) {
5781     return false;
5782   }
5783 
5784   // Set the original stack and the reexecute bit for the interpreter to reexecute
5785   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5786   // on the return from z array allocation in runtime.
5787   { PreserveReexecuteState preexecs(this);
5788     jvms()->set_should_reexecute(true);
5789 
5790     Node* x_start = array_element_address(x, intcon(0), x_elem);
5791     Node* y_start = array_element_address(y, intcon(0), y_elem);
5792     // 'x_start' points to x array + scaled xlen
5793     // 'y_start' points to y array + scaled ylen
5794 
5795     // Allocate the result array
5796     Node* zlen = _gvn.transform(new(C) AddINode(xlen, ylen));
5797     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5798     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5799 
5800     IdealKit ideal(this);
5801 
5802 #define __ ideal.
5803      Node* one = __ ConI(1);
5804      Node* zero = __ ConI(0);
5805      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5806      __ set(need_alloc, zero);
5807      __ set(z_alloc, z);
5808      __ if_then(z, BoolTest::eq, null()); {
5809        __ increment (need_alloc, one);
5810      } __ else_(); {
5811        // Update graphKit memory and control from IdealKit.
5812        sync_kit(ideal);
5813        Node* zlen_arg = load_array_length(z);
5814        // Update IdealKit memory and control from graphKit.
5815        __ sync_kit(this);
5816        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5817          __ increment (need_alloc, one);
5818        } __ end_if();
5819      } __ end_if();
5820 
5821      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5822        // Update graphKit memory and control from IdealKit.
5823        sync_kit(ideal);
5824        Node * narr = new_array(klass_node, zlen, 1);
5825        // Update IdealKit memory and control from graphKit.
5826        __ sync_kit(this);
5827        __ set(z_alloc, narr);
5828      } __ end_if();
5829 
5830      sync_kit(ideal);
5831      z = __ value(z_alloc);
5832      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5833      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5834      // Final sync IdealKit and GraphKit.
5835      final_sync(ideal);
5836 #undef __
5837 
5838     Node* z_start = array_element_address(z, intcon(0), T_INT);
5839 
5840     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5841                                    OptoRuntime::multiplyToLen_Type(),
5842                                    stubAddr, stubName, TypePtr::BOTTOM,
5843                                    x_start, xlen, y_start, ylen, z_start, zlen);
5844   } // original reexecute is set back here
5845 
5846   C->set_has_split_ifs(true); // Has chance for split-if optimization
5847   set_result(z);
5848   return true;
5849 }
5850 
5851 
5852 /**
5853  * Calculate CRC32 for byte.
5854  * int java.util.zip.CRC32.update(int crc, int b)
5855  */
5856 bool LibraryCallKit::inline_updateCRC32() {
5857   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5858   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5859   // no receiver since it is static method
5860   Node* crc  = argument(0); // type: int
5861   Node* b    = argument(1); // type: int
5862 
5863   /*
5864    *    int c = ~ crc;
5865    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5866    *    b = b ^ (c >>> 8);
5867    *    crc = ~b;
5868    */
5869 
5870   Node* M1 = intcon(-1);
5871   crc = _gvn.transform(new (C) XorINode(crc, M1));
5872   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5873   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5874 
5875   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5876   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5877   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5878   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5879 
5880   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5881   result = _gvn.transform(new (C) XorINode(crc, result));
5882   result = _gvn.transform(new (C) XorINode(result, M1));
5883   set_result(result);
5884   return true;
5885 }
5886 
5887 /**
5888  * Calculate CRC32 for byte[] array.
5889  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5890  */
5891 bool LibraryCallKit::inline_updateBytesCRC32() {
5892   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5893   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5894   // no receiver since it is static method
5895   Node* crc     = argument(0); // type: int
5896   Node* src     = argument(1); // type: oop
5897   Node* offset  = argument(2); // type: int
5898   Node* length  = argument(3); // type: int
5899 
5900   const Type* src_type = src->Value(&_gvn);
5901   const TypeAryPtr* top_src = src_type->isa_aryptr();
5902   if (top_src  == NULL || top_src->klass()  == NULL) {
5903     // failed array check
5904     return false;
5905   }
5906 
5907   // Figure out the size and type of the elements we will be copying.
5908   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5909   if (src_elem != T_BYTE) {
5910     return false;
5911   }
5912 
5913   // 'src_start' points to src array + scaled offset
5914   Node* src_start = array_element_address(src, offset, src_elem);
5915 
5916   // We assume that range check is done by caller.
5917   // TODO: generate range check (offset+length < src.length) in debug VM.
5918 
5919   // Call the stub.
5920   address stubAddr = StubRoutines::updateBytesCRC32();
5921   const char *stubName = "updateBytesCRC32";
5922 
5923   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5924                                  stubAddr, stubName, TypePtr::BOTTOM,
5925                                  crc, src_start, length);
5926   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5927   set_result(result);
5928   return true;
5929 }
5930 
5931 /**
5932  * Calculate CRC32 for ByteBuffer.
5933  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5934  */
5935 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5936   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5937   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5938   // no receiver since it is static method
5939   Node* crc     = argument(0); // type: int
5940   Node* src     = argument(1); // type: long
5941   Node* offset  = argument(3); // type: int
5942   Node* length  = argument(4); // type: int
5943 
5944   src = ConvL2X(src);  // adjust Java long to machine word
5945   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5946   offset = ConvI2X(offset);
5947 
5948   // 'src_start' points to src array + scaled offset
5949   Node* src_start = basic_plus_adr(top(), base, offset);
5950 
5951   // Call the stub.
5952   address stubAddr = StubRoutines::updateBytesCRC32();
5953   const char *stubName = "updateBytesCRC32";
5954 
5955   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5956                                  stubAddr, stubName, TypePtr::BOTTOM,
5957                                  crc, src_start, length);
5958   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5959   set_result(result);
5960   return true;
5961 }
5962 
5963 //----------------------------inline_reference_get----------------------------
5964 // public T java.lang.ref.Reference.get();
5965 bool LibraryCallKit::inline_reference_get() {
5966   const int referent_offset = java_lang_ref_Reference::referent_offset;
5967   guarantee(referent_offset > 0, "should have already been set");
5968 
5969   // Get the argument:
5970   Node* reference_obj = null_check_receiver();
5971   if (stopped()) return true;
5972 
5973   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5974 
5975   ciInstanceKlass* klass = env()->Object_klass();
5976   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5977 
5978   Node* no_ctrl = NULL;
5979   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5980 
5981   // Use the pre-barrier to record the value in the referent field
5982   pre_barrier(false /* do_load */,
5983               control(),
5984               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5985               result /* pre_val */,
5986               T_OBJECT);
5987 
5988   // Add memory barrier to prevent commoning reads from this field
5989   // across safepoint since GC can change its value.
5990   insert_mem_bar(Op_MemBarCPUOrder);
5991 
5992   set_result(result);
5993   return true;
5994 }
5995 
5996 
5997 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5998                                               bool is_exact=true, bool is_static=false) {
5999 
6000   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6001   assert(tinst != NULL, "obj is null");
6002   assert(tinst->klass()->is_loaded(), "obj is not loaded");
6003   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6004 
6005   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
6006                                                                           ciSymbol::make(fieldTypeString),
6007                                                                           is_static);
6008   if (field == NULL) return (Node *) NULL;
6009   assert (field != NULL, "undefined field");
6010 
6011   // Next code  copied from Parse::do_get_xxx():
6012 
6013   // Compute address and memory type.
6014   int offset  = field->offset_in_bytes();
6015   bool is_vol = field->is_volatile();
6016   ciType* field_klass = field->type();
6017   assert(field_klass->is_loaded(), "should be loaded");
6018   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6019   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6020   BasicType bt = field->layout_type();
6021 
6022   // Build the resultant type of the load
6023   const Type *type;
6024   if (bt == T_OBJECT) {
6025     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6026   } else {
6027     type = Type::get_const_basic_type(bt);
6028   }
6029 
6030   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6031     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6032   }
6033   // Build the load.
6034   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6035   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
6036   // If reference is volatile, prevent following memory ops from
6037   // floating up past the volatile read.  Also prevents commoning
6038   // another volatile read.
6039   if (is_vol) {
6040     // Memory barrier includes bogus read of value to force load BEFORE membar
6041     insert_mem_bar(Op_MemBarAcquire, loadedField);
6042   }
6043   return loadedField;
6044 }
6045 
6046 
6047 //------------------------------inline_aescrypt_Block-----------------------
6048 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6049   address stubAddr;
6050   const char *stubName;
6051   assert(UseAES, "need AES instruction support");
6052 
6053   switch(id) {
6054   case vmIntrinsics::_aescrypt_encryptBlock:
6055     stubAddr = StubRoutines::aescrypt_encryptBlock();
6056     stubName = "aescrypt_encryptBlock";
6057     break;
6058   case vmIntrinsics::_aescrypt_decryptBlock:
6059     stubAddr = StubRoutines::aescrypt_decryptBlock();
6060     stubName = "aescrypt_decryptBlock";
6061     break;
6062   }
6063   if (stubAddr == NULL) return false;
6064 
6065   Node* aescrypt_object = argument(0);
6066   Node* src             = argument(1);
6067   Node* src_offset      = argument(2);
6068   Node* dest            = argument(3);
6069   Node* dest_offset     = argument(4);
6070 
6071   // (1) src and dest are arrays.
6072   const Type* src_type = src->Value(&_gvn);
6073   const Type* dest_type = dest->Value(&_gvn);
6074   const TypeAryPtr* top_src = src_type->isa_aryptr();
6075   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6076   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6077 
6078   // for the quick and dirty code we will skip all the checks.
6079   // we are just trying to get the call to be generated.
6080   Node* src_start  = src;
6081   Node* dest_start = dest;
6082   if (src_offset != NULL || dest_offset != NULL) {
6083     assert(src_offset != NULL && dest_offset != NULL, "");
6084     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6085     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6086   }
6087 
6088   // now need to get the start of its expanded key array
6089   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6090   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6091   if (k_start == NULL) return false;
6092 
6093   if (Matcher::pass_original_key_for_aes()) {
6094     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6095     // compatibility issues between Java key expansion and SPARC crypto instructions
6096     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6097     if (original_k_start == NULL) return false;
6098 
6099     // Call the stub.
6100     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6101                       stubAddr, stubName, TypePtr::BOTTOM,
6102                       src_start, dest_start, k_start, original_k_start);
6103   } else {
6104     // Call the stub.
6105     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6106                       stubAddr, stubName, TypePtr::BOTTOM,
6107                       src_start, dest_start, k_start);
6108   }
6109 
6110   return true;
6111 }
6112 
6113 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6114 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6115   address stubAddr;
6116   const char *stubName;
6117 
6118   assert(UseAES, "need AES instruction support");
6119 
6120   switch(id) {
6121   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6122     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6123     stubName = "cipherBlockChaining_encryptAESCrypt";
6124     break;
6125   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6126     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6127     stubName = "cipherBlockChaining_decryptAESCrypt";
6128     break;
6129   }
6130   if (stubAddr == NULL) return false;
6131 
6132   Node* cipherBlockChaining_object = argument(0);
6133   Node* src                        = argument(1);
6134   Node* src_offset                 = argument(2);
6135   Node* len                        = argument(3);
6136   Node* dest                       = argument(4);
6137   Node* dest_offset                = argument(5);
6138 
6139   // (1) src and dest are arrays.
6140   const Type* src_type = src->Value(&_gvn);
6141   const Type* dest_type = dest->Value(&_gvn);
6142   const TypeAryPtr* top_src = src_type->isa_aryptr();
6143   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6144   assert (top_src  != NULL && top_src->klass()  != NULL
6145           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6146 
6147   // checks are the responsibility of the caller
6148   Node* src_start  = src;
6149   Node* dest_start = dest;
6150   if (src_offset != NULL || dest_offset != NULL) {
6151     assert(src_offset != NULL && dest_offset != NULL, "");
6152     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6153     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6154   }
6155 
6156   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6157   // (because of the predicated logic executed earlier).
6158   // so we cast it here safely.
6159   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6160 
6161   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6162   if (embeddedCipherObj == NULL) return false;
6163 
6164   // cast it to what we know it will be at runtime
6165   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6166   assert(tinst != NULL, "CBC obj is null");
6167   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6168   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6169   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6170 
6171   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6172   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6173   const TypeOopPtr* xtype = aklass->as_instance_type();
6174   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6175   aescrypt_object = _gvn.transform(aescrypt_object);
6176 
6177   // we need to get the start of the aescrypt_object's expanded key array
6178   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6179   if (k_start == NULL) return false;
6180 
6181   // similarly, get the start address of the r vector
6182   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6183   if (objRvec == NULL) return false;
6184   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6185 
6186   Node* cbcCrypt;
6187   if (Matcher::pass_original_key_for_aes()) {
6188     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6189     // compatibility issues between Java key expansion and SPARC crypto instructions
6190     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6191     if (original_k_start == NULL) return false;
6192 
6193     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6194     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6195                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6196                                  stubAddr, stubName, TypePtr::BOTTOM,
6197                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6198   } else {
6199     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6200     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6201                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6202                                  stubAddr, stubName, TypePtr::BOTTOM,
6203                                  src_start, dest_start, k_start, r_start, len);
6204   }
6205 
6206   // return cipher length (int)
6207   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6208   set_result(retvalue);
6209   return true;
6210 }
6211 
6212 //------------------------------get_key_start_from_aescrypt_object-----------------------
6213 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6214   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6215   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6216   if (objAESCryptKey == NULL) return (Node *) NULL;
6217 
6218   // now have the array, need to get the start address of the K array
6219   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6220   return k_start;
6221 }
6222 
6223 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6224 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6225   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6226   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6227   if (objAESCryptKey == NULL) return (Node *) NULL;
6228 
6229   // now have the array, need to get the start address of the lastKey array
6230   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6231   return original_k_start;
6232 }
6233 
6234 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6235 // Return node representing slow path of predicate check.
6236 // the pseudo code we want to emulate with this predicate is:
6237 // for encryption:
6238 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6239 // for decryption:
6240 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6241 //    note cipher==plain is more conservative than the original java code but that's OK
6242 //
6243 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6244   // The receiver was checked for NULL already.
6245   Node* objCBC = argument(0);
6246 
6247   // Load embeddedCipher field of CipherBlockChaining object.
6248   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6249 
6250   // get AESCrypt klass for instanceOf check
6251   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6252   // will have same classloader as CipherBlockChaining object
6253   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6254   assert(tinst != NULL, "CBCobj is null");
6255   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6256 
6257   // we want to do an instanceof comparison against the AESCrypt class
6258   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6259   if (!klass_AESCrypt->is_loaded()) {
6260     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6261     Node* ctrl = control();
6262     set_control(top()); // no regular fast path
6263     return ctrl;
6264   }
6265   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6266 
6267   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6268   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6269   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6270 
6271   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6272 
6273   // for encryption, we are done
6274   if (!decrypting)
6275     return instof_false;  // even if it is NULL
6276 
6277   // for decryption, we need to add a further check to avoid
6278   // taking the intrinsic path when cipher and plain are the same
6279   // see the original java code for why.
6280   RegionNode* region = new(C) RegionNode(3);
6281   region->init_req(1, instof_false);
6282   Node* src = argument(1);
6283   Node* dest = argument(4);
6284   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6285   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6286   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6287   region->init_req(2, src_dest_conjoint);
6288 
6289   record_for_igvn(region);
6290   return _gvn.transform(region);
6291 }
6292 
6293 //------------------------------inline_sha_implCompress-----------------------
6294 //
6295 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6296 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6297 //
6298 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6299 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6300 //
6301 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6302 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6303 //
6304 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6305   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6306 
6307   Node* sha_obj = argument(0);
6308   Node* src     = argument(1); // type oop
6309   Node* ofs     = argument(2); // type int
6310 
6311   const Type* src_type = src->Value(&_gvn);
6312   const TypeAryPtr* top_src = src_type->isa_aryptr();
6313   if (top_src  == NULL || top_src->klass()  == NULL) {
6314     // failed array check
6315     return false;
6316   }
6317   // Figure out the size and type of the elements we will be copying.
6318   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6319   if (src_elem != T_BYTE) {
6320     return false;
6321   }
6322   // 'src_start' points to src array + offset
6323   Node* src_start = array_element_address(src, ofs, src_elem);
6324   Node* state = NULL;
6325   address stubAddr;
6326   const char *stubName;
6327 
6328   switch(id) {
6329   case vmIntrinsics::_sha_implCompress:
6330     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6331     state = get_state_from_sha_object(sha_obj);
6332     stubAddr = StubRoutines::sha1_implCompress();
6333     stubName = "sha1_implCompress";
6334     break;
6335   case vmIntrinsics::_sha2_implCompress:
6336     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6337     state = get_state_from_sha_object(sha_obj);
6338     stubAddr = StubRoutines::sha256_implCompress();
6339     stubName = "sha256_implCompress";
6340     break;
6341   case vmIntrinsics::_sha5_implCompress:
6342     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6343     state = get_state_from_sha5_object(sha_obj);
6344     stubAddr = StubRoutines::sha512_implCompress();
6345     stubName = "sha512_implCompress";
6346     break;
6347   default:
6348     fatal_unexpected_iid(id);
6349     return false;
6350   }
6351   if (state == NULL) return false;
6352 
6353   // Call the stub.
6354   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6355                                  stubAddr, stubName, TypePtr::BOTTOM,
6356                                  src_start, state);
6357 
6358   return true;
6359 }
6360 
6361 //------------------------------inline_digestBase_implCompressMB-----------------------
6362 //
6363 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6364 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6365 //
6366 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6367   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6368          "need SHA1/SHA256/SHA512 instruction support");
6369   assert((uint)predicate < 3, "sanity");
6370   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6371 
6372   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6373   Node* src            = argument(1); // byte[] array
6374   Node* ofs            = argument(2); // type int
6375   Node* limit          = argument(3); // type int
6376 
6377   const Type* src_type = src->Value(&_gvn);
6378   const TypeAryPtr* top_src = src_type->isa_aryptr();
6379   if (top_src  == NULL || top_src->klass()  == NULL) {
6380     // failed array check
6381     return false;
6382   }
6383   // Figure out the size and type of the elements we will be copying.
6384   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6385   if (src_elem != T_BYTE) {
6386     return false;
6387   }
6388   // 'src_start' points to src array + offset
6389   Node* src_start = array_element_address(src, ofs, src_elem);
6390 
6391   const char* klass_SHA_name = NULL;
6392   const char* stub_name = NULL;
6393   address     stub_addr = NULL;
6394   bool        long_state = false;
6395 
6396   switch (predicate) {
6397   case 0:
6398     if (UseSHA1Intrinsics) {
6399       klass_SHA_name = "sun/security/provider/SHA";
6400       stub_name = "sha1_implCompressMB";
6401       stub_addr = StubRoutines::sha1_implCompressMB();
6402     }
6403     break;
6404   case 1:
6405     if (UseSHA256Intrinsics) {
6406       klass_SHA_name = "sun/security/provider/SHA2";
6407       stub_name = "sha256_implCompressMB";
6408       stub_addr = StubRoutines::sha256_implCompressMB();
6409     }
6410     break;
6411   case 2:
6412     if (UseSHA512Intrinsics) {
6413       klass_SHA_name = "sun/security/provider/SHA5";
6414       stub_name = "sha512_implCompressMB";
6415       stub_addr = StubRoutines::sha512_implCompressMB();
6416       long_state = true;
6417     }
6418     break;
6419   default:
6420     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6421   }
6422   if (klass_SHA_name != NULL) {
6423     // get DigestBase klass to lookup for SHA klass
6424     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6425     assert(tinst != NULL, "digestBase_obj is not instance???");
6426     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6427 
6428     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6429     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6430     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6431     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6432   }
6433   return false;
6434 }
6435 //------------------------------inline_sha_implCompressMB-----------------------
6436 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6437                                                bool long_state, address stubAddr, const char *stubName,
6438                                                Node* src_start, Node* ofs, Node* limit) {
6439   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6440   const TypeOopPtr* xtype = aklass->as_instance_type();
6441   Node* sha_obj = new (C) CheckCastPPNode(control(), digestBase_obj, xtype);
6442   sha_obj = _gvn.transform(sha_obj);
6443 
6444   Node* state;
6445   if (long_state) {
6446     state = get_state_from_sha5_object(sha_obj);
6447   } else {
6448     state = get_state_from_sha_object(sha_obj);
6449   }
6450   if (state == NULL) return false;
6451 
6452   // Call the stub.
6453   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6454                                  OptoRuntime::digestBase_implCompressMB_Type(),
6455                                  stubAddr, stubName, TypePtr::BOTTOM,
6456                                  src_start, state, ofs, limit);
6457   // return ofs (int)
6458   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
6459   set_result(result);
6460 
6461   return true;
6462 }
6463 
6464 //------------------------------get_state_from_sha_object-----------------------
6465 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6466   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6467   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6468   if (sha_state == NULL) return (Node *) NULL;
6469 
6470   // now have the array, need to get the start address of the state array
6471   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6472   return state;
6473 }
6474 
6475 //------------------------------get_state_from_sha5_object-----------------------
6476 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6477   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6478   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6479   if (sha_state == NULL) return (Node *) NULL;
6480 
6481   // now have the array, need to get the start address of the state array
6482   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6483   return state;
6484 }
6485 
6486 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6487 // Return node representing slow path of predicate check.
6488 // the pseudo code we want to emulate with this predicate is:
6489 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6490 //
6491 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6492   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6493          "need SHA1/SHA256/SHA512 instruction support");
6494   assert((uint)predicate < 3, "sanity");
6495 
6496   // The receiver was checked for NULL already.
6497   Node* digestBaseObj = argument(0);
6498 
6499   // get DigestBase klass for instanceOf check
6500   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6501   assert(tinst != NULL, "digestBaseObj is null");
6502   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6503 
6504   const char* klass_SHA_name = NULL;
6505   switch (predicate) {
6506   case 0:
6507     if (UseSHA1Intrinsics) {
6508       // we want to do an instanceof comparison against the SHA class
6509       klass_SHA_name = "sun/security/provider/SHA";
6510     }
6511     break;
6512   case 1:
6513     if (UseSHA256Intrinsics) {
6514       // we want to do an instanceof comparison against the SHA2 class
6515       klass_SHA_name = "sun/security/provider/SHA2";
6516     }
6517     break;
6518   case 2:
6519     if (UseSHA512Intrinsics) {
6520       // we want to do an instanceof comparison against the SHA5 class
6521       klass_SHA_name = "sun/security/provider/SHA5";
6522     }
6523     break;
6524   default:
6525     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6526   }
6527 
6528   ciKlass* klass_SHA = NULL;
6529   if (klass_SHA_name != NULL) {
6530     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6531   }
6532   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6533     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6534     Node* ctrl = control();
6535     set_control(top()); // no intrinsic path
6536     return ctrl;
6537   }
6538   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6539 
6540   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6541   Node* cmp_instof = _gvn.transform(new (C) CmpINode(instofSHA, intcon(1)));
6542   Node* bool_instof = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6543   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6544 
6545   return instof_false;  // even if it is NULL
6546 }