1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/regmask.hpp"
  41 
  42 // Portions of code courtesy of Clifford Click
  43 
  44 // Optimization - Graph Style
  45 
  46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  47 
  48 //=============================================================================
  49 uint MemNode::size_of() const { return sizeof(*this); }
  50 
  51 const TypePtr *MemNode::adr_type() const {
  52   Node* adr = in(Address);
  53   const TypePtr* cross_check = NULL;
  54   DEBUG_ONLY(cross_check = _adr_type);
  55   return calculate_adr_type(adr->bottom_type(), cross_check);
  56 }
  57 
  58 #ifndef PRODUCT
  59 void MemNode::dump_spec(outputStream *st) const {
  60   if (in(Address) == NULL)  return; // node is dead
  61 #ifndef ASSERT
  62   // fake the missing field
  63   const TypePtr* _adr_type = NULL;
  64   if (in(Address) != NULL)
  65     _adr_type = in(Address)->bottom_type()->isa_ptr();
  66 #endif
  67   dump_adr_type(this, _adr_type, st);
  68 
  69   Compile* C = Compile::current();
  70   if( C->alias_type(_adr_type)->is_volatile() )
  71     st->print(" Volatile!");
  72 }
  73 
  74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  75   st->print(" @");
  76   if (adr_type == NULL) {
  77     st->print("NULL");
  78   } else {
  79     adr_type->dump_on(st);
  80     Compile* C = Compile::current();
  81     Compile::AliasType* atp = NULL;
  82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  83     if (atp == NULL)
  84       st->print(", idx=?\?;");
  85     else if (atp->index() == Compile::AliasIdxBot)
  86       st->print(", idx=Bot;");
  87     else if (atp->index() == Compile::AliasIdxTop)
  88       st->print(", idx=Top;");
  89     else if (atp->index() == Compile::AliasIdxRaw)
  90       st->print(", idx=Raw;");
  91     else {
  92       ciField* field = atp->field();
  93       if (field) {
  94         st->print(", name=");
  95         field->print_name_on(st);
  96       }
  97       st->print(", idx=%d;", atp->index());
  98     }
  99   }
 100 }
 101 
 102 extern void print_alias_types();
 103 
 104 #endif
 105 
 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 107   assert((t_oop != NULL), "sanity");
 108   bool is_instance = t_oop->is_known_instance_field();
 109   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 110                              (load != NULL) && load->is_Load() &&
 111                              (phase->is_IterGVN() != NULL);
 112   if (!(is_instance || is_boxed_value_load))
 113     return mchain;  // don't try to optimize non-instance types
 114   uint instance_id = t_oop->instance_id();
 115   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 116   Node *prev = NULL;
 117   Node *result = mchain;
 118   while (prev != result) {
 119     prev = result;
 120     if (result == start_mem)
 121       break;  // hit one of our sentinels
 122     // skip over a call which does not affect this memory slice
 123     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 124       Node *proj_in = result->in(0);
 125       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 126         break;  // hit one of our sentinels
 127       } else if (proj_in->is_Call()) {
 128         CallNode *call = proj_in->as_Call();
 129         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 130           result = call->in(TypeFunc::Memory);
 131         }
 132       } else if (proj_in->is_Initialize()) {
 133         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 134         // Stop if this is the initialization for the object instance which
 135         // which contains this memory slice, otherwise skip over it.
 136         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 137           break;
 138         }
 139         if (is_instance) {
 140           result = proj_in->in(TypeFunc::Memory);
 141         } else if (is_boxed_value_load) {
 142           Node* klass = alloc->in(AllocateNode::KlassNode);
 143           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 144           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 145             result = proj_in->in(TypeFunc::Memory); // not related allocation
 146           }
 147         }
 148       } else if (proj_in->is_MemBar()) {
 149         result = proj_in->in(TypeFunc::Memory);
 150       } else {
 151         assert(false, "unexpected projection");
 152       }
 153     } else if (result->is_ClearArray()) {
 154       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 155         // Can not bypass initialization of the instance
 156         // we are looking for.
 157         break;
 158       }
 159       // Otherwise skip it (the call updated 'result' value).
 160     } else if (result->is_MergeMem()) {
 161       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 162     }
 163   }
 164   return result;
 165 }
 166 
 167 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 168   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 169   if (t_oop == NULL)
 170     return mchain;  // don't try to optimize non-oop types
 171   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 172   bool is_instance = t_oop->is_known_instance_field();
 173   PhaseIterGVN *igvn = phase->is_IterGVN();
 174   if (is_instance && igvn != NULL  && result->is_Phi()) {
 175     PhiNode *mphi = result->as_Phi();
 176     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 177     const TypePtr *t = mphi->adr_type();
 178     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 179         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 180         t->is_oopptr()->cast_to_exactness(true)
 181          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 182          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 183       // clone the Phi with our address type
 184       result = mphi->split_out_instance(t_adr, igvn);
 185     } else {
 186       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 187     }
 188   }
 189   return result;
 190 }
 191 
 192 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 193   uint alias_idx = phase->C->get_alias_index(tp);
 194   Node *mem = mmem;
 195 #ifdef ASSERT
 196   {
 197     // Check that current type is consistent with the alias index used during graph construction
 198     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 199     bool consistent =  adr_check == NULL || adr_check->empty() ||
 200                        phase->C->must_alias(adr_check, alias_idx );
 201     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 202     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 203                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 204         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 205         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 206           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 207           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 208       // don't assert if it is dead code.
 209       consistent = true;
 210     }
 211     if( !consistent ) {
 212       st->print("alias_idx==%d, adr_check==", alias_idx);
 213       if( adr_check == NULL ) {
 214         st->print("NULL");
 215       } else {
 216         adr_check->dump();
 217       }
 218       st->cr();
 219       print_alias_types();
 220       assert(consistent, "adr_check must match alias idx");
 221     }
 222   }
 223 #endif
 224   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 225   // means an array I have not precisely typed yet.  Do not do any
 226   // alias stuff with it any time soon.
 227   const TypeOopPtr *toop = tp->isa_oopptr();
 228   if( tp->base() != Type::AnyPtr &&
 229       !(toop &&
 230         toop->klass() != NULL &&
 231         toop->klass()->is_java_lang_Object() &&
 232         toop->offset() == Type::OffsetBot) ) {
 233     // compress paths and change unreachable cycles to TOP
 234     // If not, we can update the input infinitely along a MergeMem cycle
 235     // Equivalent code in PhiNode::Ideal
 236     Node* m  = phase->transform(mmem);
 237     // If transformed to a MergeMem, get the desired slice
 238     // Otherwise the returned node represents memory for every slice
 239     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 240     // Update input if it is progress over what we have now
 241   }
 242   return mem;
 243 }
 244 
 245 //--------------------------Ideal_common---------------------------------------
 246 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 247 // Unhook non-raw memories from complete (macro-expanded) initializations.
 248 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 249   // If our control input is a dead region, kill all below the region
 250   Node *ctl = in(MemNode::Control);
 251   if (ctl && remove_dead_region(phase, can_reshape))
 252     return this;
 253   ctl = in(MemNode::Control);
 254   // Don't bother trying to transform a dead node
 255   if (ctl && ctl->is_top())  return NodeSentinel;
 256 
 257   PhaseIterGVN *igvn = phase->is_IterGVN();
 258   // Wait if control on the worklist.
 259   if (ctl && can_reshape && igvn != NULL) {
 260     Node* bol = NULL;
 261     Node* cmp = NULL;
 262     if (ctl->in(0)->is_If()) {
 263       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 264       bol = ctl->in(0)->in(1);
 265       if (bol->is_Bool())
 266         cmp = ctl->in(0)->in(1)->in(1);
 267     }
 268     if (igvn->_worklist.member(ctl) ||
 269         (bol != NULL && igvn->_worklist.member(bol)) ||
 270         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 271       // This control path may be dead.
 272       // Delay this memory node transformation until the control is processed.
 273       phase->is_IterGVN()->_worklist.push(this);
 274       return NodeSentinel; // caller will return NULL
 275     }
 276   }
 277   // Ignore if memory is dead, or self-loop
 278   Node *mem = in(MemNode::Memory);
 279   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 280   assert(mem != this, "dead loop in MemNode::Ideal");
 281 
 282   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 283     // This memory slice may be dead.
 284     // Delay this mem node transformation until the memory is processed.
 285     phase->is_IterGVN()->_worklist.push(this);
 286     return NodeSentinel; // caller will return NULL
 287   }
 288 
 289   Node *address = in(MemNode::Address);
 290   const Type *t_adr = phase->type(address);
 291   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 292 
 293   if (can_reshape && igvn != NULL &&
 294       (igvn->_worklist.member(address) ||
 295        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 296     // The address's base and type may change when the address is processed.
 297     // Delay this mem node transformation until the address is processed.
 298     phase->is_IterGVN()->_worklist.push(this);
 299     return NodeSentinel; // caller will return NULL
 300   }
 301 
 302   // Do NOT remove or optimize the next lines: ensure a new alias index
 303   // is allocated for an oop pointer type before Escape Analysis.
 304   // Note: C++ will not remove it since the call has side effect.
 305   if (t_adr->isa_oopptr()) {
 306     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 307   }
 308 
 309   Node* base = NULL;
 310   if (address->is_AddP()) {
 311     base = address->in(AddPNode::Base);
 312   }
 313   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 314       !t_adr->isa_rawptr()) {
 315     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 316     // Skip this node optimization if its address has TOP base.
 317     return NodeSentinel; // caller will return NULL
 318   }
 319 
 320   // Avoid independent memory operations
 321   Node* old_mem = mem;
 322 
 323   // The code which unhooks non-raw memories from complete (macro-expanded)
 324   // initializations was removed. After macro-expansion all stores catched
 325   // by Initialize node became raw stores and there is no information
 326   // which memory slices they modify. So it is unsafe to move any memory
 327   // operation above these stores. Also in most cases hooked non-raw memories
 328   // were already unhooked by using information from detect_ptr_independence()
 329   // and find_previous_store().
 330 
 331   if (mem->is_MergeMem()) {
 332     MergeMemNode* mmem = mem->as_MergeMem();
 333     const TypePtr *tp = t_adr->is_ptr();
 334 
 335     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 336   }
 337 
 338   if (mem != old_mem) {
 339     set_req(MemNode::Memory, mem);
 340     if (can_reshape && old_mem->outcnt() == 0) {
 341         igvn->_worklist.push(old_mem);
 342     }
 343     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 344     return this;
 345   }
 346 
 347   // let the subclass continue analyzing...
 348   return NULL;
 349 }
 350 
 351 // Helper function for proving some simple control dominations.
 352 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 353 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 354 // is not a constant (dominated by the method's StartNode).
 355 // Used by MemNode::find_previous_store to prove that the
 356 // control input of a memory operation predates (dominates)
 357 // an allocation it wants to look past.
 358 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 359   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 360     return false; // Conservative answer for dead code
 361 
 362   // Check 'dom'. Skip Proj and CatchProj nodes.
 363   dom = dom->find_exact_control(dom);
 364   if (dom == NULL || dom->is_top())
 365     return false; // Conservative answer for dead code
 366 
 367   if (dom == sub) {
 368     // For the case when, for example, 'sub' is Initialize and the original
 369     // 'dom' is Proj node of the 'sub'.
 370     return false;
 371   }
 372 
 373   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 374     return true;
 375 
 376   // 'dom' dominates 'sub' if its control edge and control edges
 377   // of all its inputs dominate or equal to sub's control edge.
 378 
 379   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 380   // Or Region for the check in LoadNode::Ideal();
 381   // 'sub' should have sub->in(0) != NULL.
 382   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 383          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 384 
 385   // Get control edge of 'sub'.
 386   Node* orig_sub = sub;
 387   sub = sub->find_exact_control(sub->in(0));
 388   if (sub == NULL || sub->is_top())
 389     return false; // Conservative answer for dead code
 390 
 391   assert(sub->is_CFG(), "expecting control");
 392 
 393   if (sub == dom)
 394     return true;
 395 
 396   if (sub->is_Start() || sub->is_Root())
 397     return false;
 398 
 399   {
 400     // Check all control edges of 'dom'.
 401 
 402     ResourceMark rm;
 403     Arena* arena = Thread::current()->resource_area();
 404     Node_List nlist(arena);
 405     Unique_Node_List dom_list(arena);
 406 
 407     dom_list.push(dom);
 408     bool only_dominating_controls = false;
 409 
 410     for (uint next = 0; next < dom_list.size(); next++) {
 411       Node* n = dom_list.at(next);
 412       if (n == orig_sub)
 413         return false; // One of dom's inputs dominated by sub.
 414       if (!n->is_CFG() && n->pinned()) {
 415         // Check only own control edge for pinned non-control nodes.
 416         n = n->find_exact_control(n->in(0));
 417         if (n == NULL || n->is_top())
 418           return false; // Conservative answer for dead code
 419         assert(n->is_CFG(), "expecting control");
 420         dom_list.push(n);
 421       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 422         only_dominating_controls = true;
 423       } else if (n->is_CFG()) {
 424         if (n->dominates(sub, nlist))
 425           only_dominating_controls = true;
 426         else
 427           return false;
 428       } else {
 429         // First, own control edge.
 430         Node* m = n->find_exact_control(n->in(0));
 431         if (m != NULL) {
 432           if (m->is_top())
 433             return false; // Conservative answer for dead code
 434           dom_list.push(m);
 435         }
 436         // Now, the rest of edges.
 437         uint cnt = n->req();
 438         for (uint i = 1; i < cnt; i++) {
 439           m = n->find_exact_control(n->in(i));
 440           if (m == NULL || m->is_top())
 441             continue;
 442           dom_list.push(m);
 443         }
 444       }
 445     }
 446     return only_dominating_controls;
 447   }
 448 }
 449 
 450 //---------------------detect_ptr_independence---------------------------------
 451 // Used by MemNode::find_previous_store to prove that two base
 452 // pointers are never equal.
 453 // The pointers are accompanied by their associated allocations,
 454 // if any, which have been previously discovered by the caller.
 455 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 456                                       Node* p2, AllocateNode* a2,
 457                                       PhaseTransform* phase) {
 458   // Attempt to prove that these two pointers cannot be aliased.
 459   // They may both manifestly be allocations, and they should differ.
 460   // Or, if they are not both allocations, they can be distinct constants.
 461   // Otherwise, one is an allocation and the other a pre-existing value.
 462   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 463     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 464   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 465     return (a1 != a2);
 466   } else if (a1 != NULL) {                  // one allocation a1
 467     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 468     return all_controls_dominate(p2, a1);
 469   } else { //(a2 != NULL)                   // one allocation a2
 470     return all_controls_dominate(p1, a2);
 471   }
 472   return false;
 473 }
 474 
 475 
 476 // The logic for reordering loads and stores uses four steps:
 477 // (a) Walk carefully past stores and initializations which we
 478 //     can prove are independent of this load.
 479 // (b) Observe that the next memory state makes an exact match
 480 //     with self (load or store), and locate the relevant store.
 481 // (c) Ensure that, if we were to wire self directly to the store,
 482 //     the optimizer would fold it up somehow.
 483 // (d) Do the rewiring, and return, depending on some other part of
 484 //     the optimizer to fold up the load.
 485 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 486 // specific to loads and stores, so they are handled by the callers.
 487 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 488 //
 489 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 490   Node*         ctrl   = in(MemNode::Control);
 491   Node*         adr    = in(MemNode::Address);
 492   intptr_t      offset = 0;
 493   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 494   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 495 
 496   if (offset == Type::OffsetBot)
 497     return NULL;            // cannot unalias unless there are precise offsets
 498 
 499   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 500 
 501   intptr_t size_in_bytes = memory_size();
 502 
 503   Node* mem = in(MemNode::Memory);   // start searching here...
 504 
 505   int cnt = 50;             // Cycle limiter
 506   for (;;) {                // While we can dance past unrelated stores...
 507     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 508 
 509     if (mem->is_Store()) {
 510       Node* st_adr = mem->in(MemNode::Address);
 511       intptr_t st_offset = 0;
 512       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 513       if (st_base == NULL)
 514         break;              // inscrutable pointer
 515       if (st_offset != offset && st_offset != Type::OffsetBot) {
 516         const int MAX_STORE = BytesPerLong;
 517         if (st_offset >= offset + size_in_bytes ||
 518             st_offset <= offset - MAX_STORE ||
 519             st_offset <= offset - mem->as_Store()->memory_size()) {
 520           // Success:  The offsets are provably independent.
 521           // (You may ask, why not just test st_offset != offset and be done?
 522           // The answer is that stores of different sizes can co-exist
 523           // in the same sequence of RawMem effects.  We sometimes initialize
 524           // a whole 'tile' of array elements with a single jint or jlong.)
 525           mem = mem->in(MemNode::Memory);
 526           continue;           // (a) advance through independent store memory
 527         }
 528       }
 529       if (st_base != base &&
 530           detect_ptr_independence(base, alloc,
 531                                   st_base,
 532                                   AllocateNode::Ideal_allocation(st_base, phase),
 533                                   phase)) {
 534         // Success:  The bases are provably independent.
 535         mem = mem->in(MemNode::Memory);
 536         continue;           // (a) advance through independent store memory
 537       }
 538 
 539       // (b) At this point, if the bases or offsets do not agree, we lose,
 540       // since we have not managed to prove 'this' and 'mem' independent.
 541       if (st_base == base && st_offset == offset) {
 542         return mem;         // let caller handle steps (c), (d)
 543       }
 544 
 545     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 546       InitializeNode* st_init = mem->in(0)->as_Initialize();
 547       AllocateNode*  st_alloc = st_init->allocation();
 548       if (st_alloc == NULL)
 549         break;              // something degenerated
 550       bool known_identical = false;
 551       bool known_independent = false;
 552       if (alloc == st_alloc)
 553         known_identical = true;
 554       else if (alloc != NULL)
 555         known_independent = true;
 556       else if (all_controls_dominate(this, st_alloc))
 557         known_independent = true;
 558 
 559       if (known_independent) {
 560         // The bases are provably independent: Either they are
 561         // manifestly distinct allocations, or else the control
 562         // of this load dominates the store's allocation.
 563         int alias_idx = phase->C->get_alias_index(adr_type());
 564         if (alias_idx == Compile::AliasIdxRaw) {
 565           mem = st_alloc->in(TypeFunc::Memory);
 566         } else {
 567           mem = st_init->memory(alias_idx);
 568         }
 569         continue;           // (a) advance through independent store memory
 570       }
 571 
 572       // (b) at this point, if we are not looking at a store initializing
 573       // the same allocation we are loading from, we lose.
 574       if (known_identical) {
 575         // From caller, can_see_stored_value will consult find_captured_store.
 576         return mem;         // let caller handle steps (c), (d)
 577       }
 578 
 579     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 580       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 581       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 582         CallNode *call = mem->in(0)->as_Call();
 583         if (!call->may_modify(addr_t, phase)) {
 584           mem = call->in(TypeFunc::Memory);
 585           continue;         // (a) advance through independent call memory
 586         }
 587       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 588         mem = mem->in(0)->in(TypeFunc::Memory);
 589         continue;           // (a) advance through independent MemBar memory
 590       } else if (mem->is_ClearArray()) {
 591         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 592           // (the call updated 'mem' value)
 593           continue;         // (a) advance through independent allocation memory
 594         } else {
 595           // Can not bypass initialization of the instance
 596           // we are looking for.
 597           return mem;
 598         }
 599       } else if (mem->is_MergeMem()) {
 600         int alias_idx = phase->C->get_alias_index(adr_type());
 601         mem = mem->as_MergeMem()->memory_at(alias_idx);
 602         continue;           // (a) advance through independent MergeMem memory
 603       }
 604     }
 605 
 606     // Unless there is an explicit 'continue', we must bail out here,
 607     // because 'mem' is an inscrutable memory state (e.g., a call).
 608     break;
 609   }
 610 
 611   return NULL;              // bail out
 612 }
 613 
 614 //----------------------calculate_adr_type-------------------------------------
 615 // Helper function.  Notices when the given type of address hits top or bottom.
 616 // Also, asserts a cross-check of the type against the expected address type.
 617 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 618   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 619   #ifdef PRODUCT
 620   cross_check = NULL;
 621   #else
 622   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 623   #endif
 624   const TypePtr* tp = t->isa_ptr();
 625   if (tp == NULL) {
 626     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 627     return TypePtr::BOTTOM;           // touches lots of memory
 628   } else {
 629     #ifdef ASSERT
 630     // %%%% [phh] We don't check the alias index if cross_check is
 631     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 632     if (cross_check != NULL &&
 633         cross_check != TypePtr::BOTTOM &&
 634         cross_check != TypeRawPtr::BOTTOM) {
 635       // Recheck the alias index, to see if it has changed (due to a bug).
 636       Compile* C = Compile::current();
 637       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 638              "must stay in the original alias category");
 639       // The type of the address must be contained in the adr_type,
 640       // disregarding "null"-ness.
 641       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 642       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 643       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 644              "real address must not escape from expected memory type");
 645     }
 646     #endif
 647     return tp;
 648   }
 649 }
 650 
 651 //------------------------adr_phi_is_loop_invariant----------------------------
 652 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 653 // loop is loop invariant. Make a quick traversal of Phi and associated
 654 // CastPP nodes, looking to see if they are a closed group within the loop.
 655 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 656   // The idea is that the phi-nest must boil down to only CastPP nodes
 657   // with the same data. This implies that any path into the loop already
 658   // includes such a CastPP, and so the original cast, whatever its input,
 659   // must be covered by an equivalent cast, with an earlier control input.
 660   ResourceMark rm;
 661 
 662   // The loop entry input of the phi should be the unique dominating
 663   // node for every Phi/CastPP in the loop.
 664   Unique_Node_List closure;
 665   closure.push(adr_phi->in(LoopNode::EntryControl));
 666 
 667   // Add the phi node and the cast to the worklist.
 668   Unique_Node_List worklist;
 669   worklist.push(adr_phi);
 670   if( cast != NULL ){
 671     if( !cast->is_ConstraintCast() ) return false;
 672     worklist.push(cast);
 673   }
 674 
 675   // Begin recursive walk of phi nodes.
 676   while( worklist.size() ){
 677     // Take a node off the worklist
 678     Node *n = worklist.pop();
 679     if( !closure.member(n) ){
 680       // Add it to the closure.
 681       closure.push(n);
 682       // Make a sanity check to ensure we don't waste too much time here.
 683       if( closure.size() > 20) return false;
 684       // This node is OK if:
 685       //  - it is a cast of an identical value
 686       //  - or it is a phi node (then we add its inputs to the worklist)
 687       // Otherwise, the node is not OK, and we presume the cast is not invariant
 688       if( n->is_ConstraintCast() ){
 689         worklist.push(n->in(1));
 690       } else if( n->is_Phi() ) {
 691         for( uint i = 1; i < n->req(); i++ ) {
 692           worklist.push(n->in(i));
 693         }
 694       } else {
 695         return false;
 696       }
 697     }
 698   }
 699 
 700   // Quit when the worklist is empty, and we've found no offending nodes.
 701   return true;
 702 }
 703 
 704 //------------------------------Ideal_DU_postCCP-------------------------------
 705 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 706 // going away in this pass and we need to make this memory op depend on the
 707 // gating null check.
 708 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 709   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 710 }
 711 
 712 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 713 // some sense; we get to keep around the knowledge that an oop is not-null
 714 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 715 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 716 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 717 // some of the more trivial cases in the optimizer.  Removing more useless
 718 // Phi's started allowing Loads to illegally float above null checks.  I gave
 719 // up on this approach.  CNC 10/20/2000
 720 // This static method may be called not from MemNode (EncodePNode calls it).
 721 // Only the control edge of the node 'n' might be updated.
 722 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 723   Node *skipped_cast = NULL;
 724   // Need a null check?  Regular static accesses do not because they are
 725   // from constant addresses.  Array ops are gated by the range check (which
 726   // always includes a NULL check).  Just check field ops.
 727   if( n->in(MemNode::Control) == NULL ) {
 728     // Scan upwards for the highest location we can place this memory op.
 729     while( true ) {
 730       switch( adr->Opcode() ) {
 731 
 732       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 733         adr = adr->in(AddPNode::Base);
 734         continue;
 735 
 736       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 737       case Op_DecodeNKlass:
 738         adr = adr->in(1);
 739         continue;
 740 
 741       case Op_EncodeP:
 742       case Op_EncodePKlass:
 743         // EncodeP node's control edge could be set by this method
 744         // when EncodeP node depends on CastPP node.
 745         //
 746         // Use its control edge for memory op because EncodeP may go away
 747         // later when it is folded with following or preceding DecodeN node.
 748         if (adr->in(0) == NULL) {
 749           // Keep looking for cast nodes.
 750           adr = adr->in(1);
 751           continue;
 752         }
 753         ccp->hash_delete(n);
 754         n->set_req(MemNode::Control, adr->in(0));
 755         ccp->hash_insert(n);
 756         return n;
 757 
 758       case Op_CastPP:
 759         // If the CastPP is useless, just peek on through it.
 760         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 761           // Remember the cast that we've peeked though. If we peek
 762           // through more than one, then we end up remembering the highest
 763           // one, that is, if in a loop, the one closest to the top.
 764           skipped_cast = adr;
 765           adr = adr->in(1);
 766           continue;
 767         }
 768         // CastPP is going away in this pass!  We need this memory op to be
 769         // control-dependent on the test that is guarding the CastPP.
 770         ccp->hash_delete(n);
 771         n->set_req(MemNode::Control, adr->in(0));
 772         ccp->hash_insert(n);
 773         return n;
 774 
 775       case Op_Phi:
 776         // Attempt to float above a Phi to some dominating point.
 777         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 778           // If we've already peeked through a Cast (which could have set the
 779           // control), we can't float above a Phi, because the skipped Cast
 780           // may not be loop invariant.
 781           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 782             adr = adr->in(1);
 783             continue;
 784           }
 785         }
 786 
 787         // Intentional fallthrough!
 788 
 789         // No obvious dominating point.  The mem op is pinned below the Phi
 790         // by the Phi itself.  If the Phi goes away (no true value is merged)
 791         // then the mem op can float, but not indefinitely.  It must be pinned
 792         // behind the controls leading to the Phi.
 793       case Op_CheckCastPP:
 794         // These usually stick around to change address type, however a
 795         // useless one can be elided and we still need to pick up a control edge
 796         if (adr->in(0) == NULL) {
 797           // This CheckCastPP node has NO control and is likely useless. But we
 798           // need check further up the ancestor chain for a control input to keep
 799           // the node in place. 4959717.
 800           skipped_cast = adr;
 801           adr = adr->in(1);
 802           continue;
 803         }
 804         ccp->hash_delete(n);
 805         n->set_req(MemNode::Control, adr->in(0));
 806         ccp->hash_insert(n);
 807         return n;
 808 
 809         // List of "safe" opcodes; those that implicitly block the memory
 810         // op below any null check.
 811       case Op_CastX2P:          // no null checks on native pointers
 812       case Op_Parm:             // 'this' pointer is not null
 813       case Op_LoadP:            // Loading from within a klass
 814       case Op_LoadN:            // Loading from within a klass
 815       case Op_LoadKlass:        // Loading from within a klass
 816       case Op_LoadNKlass:       // Loading from within a klass
 817       case Op_ConP:             // Loading from a klass
 818       case Op_ConN:             // Loading from a klass
 819       case Op_ConNKlass:        // Loading from a klass
 820       case Op_CreateEx:         // Sucking up the guts of an exception oop
 821       case Op_Con:              // Reading from TLS
 822       case Op_CMoveP:           // CMoveP is pinned
 823       case Op_CMoveN:           // CMoveN is pinned
 824         break;                  // No progress
 825 
 826       case Op_Proj:             // Direct call to an allocation routine
 827       case Op_SCMemProj:        // Memory state from store conditional ops
 828 #ifdef ASSERT
 829         {
 830           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 831           const Node* call = adr->in(0);
 832           if (call->is_CallJava()) {
 833             const CallJavaNode* call_java = call->as_CallJava();
 834             const TypeTuple *r = call_java->tf()->range();
 835             assert(r->cnt() > TypeFunc::Parms, "must return value");
 836             const Type* ret_type = r->field_at(TypeFunc::Parms);
 837             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 838             // We further presume that this is one of
 839             // new_instance_Java, new_array_Java, or
 840             // the like, but do not assert for this.
 841           } else if (call->is_Allocate()) {
 842             // similar case to new_instance_Java, etc.
 843           } else if (!call->is_CallLeaf()) {
 844             // Projections from fetch_oop (OSR) are allowed as well.
 845             ShouldNotReachHere();
 846           }
 847         }
 848 #endif
 849         break;
 850       default:
 851         ShouldNotReachHere();
 852       }
 853       break;
 854     }
 855   }
 856 
 857   return  NULL;               // No progress
 858 }
 859 
 860 
 861 //=============================================================================
 862 // Should LoadNode::Ideal() attempt to remove control edges?
 863 bool LoadNode::can_remove_control() const {
 864   return true;
 865 }
 866 uint LoadNode::size_of() const { return sizeof(*this); }
 867 uint LoadNode::cmp( const Node &n ) const
 868 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 869 const Type *LoadNode::bottom_type() const { return _type; }
 870 uint LoadNode::ideal_reg() const {
 871   return _type->ideal_reg();
 872 }
 873 
 874 #ifndef PRODUCT
 875 void LoadNode::dump_spec(outputStream *st) const {
 876   MemNode::dump_spec(st);
 877   if( !Verbose && !WizardMode ) {
 878     // standard dump does this in Verbose and WizardMode
 879     st->print(" #"); _type->dump_on(st);
 880   }
 881 }
 882 #endif
 883 
 884 #ifdef ASSERT
 885 //----------------------------is_immutable_value-------------------------------
 886 // Helper function to allow a raw load without control edge for some cases
 887 bool LoadNode::is_immutable_value(Node* adr) {
 888   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 889           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 890           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 891            in_bytes(JavaThread::osthread_offset())));
 892 }
 893 #endif
 894 
 895 //----------------------------LoadNode::make-----------------------------------
 896 // Polymorphic factory method:
 897 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo) {
 898   Compile* C = gvn.C;
 899 
 900   // sanity check the alias category against the created node type
 901   assert(!(adr_type->isa_oopptr() &&
 902            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 903          "use LoadKlassNode instead");
 904   assert(!(adr_type->isa_aryptr() &&
 905            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 906          "use LoadRangeNode instead");
 907   // Check control edge of raw loads
 908   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 909           // oop will be recorded in oop map if load crosses safepoint
 910           rt->isa_oopptr() || is_immutable_value(adr),
 911           "raw memory operations should have control edge");
 912   switch (bt) {
 913   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
 914   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 915   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 916   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
 917   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 918   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo);
 919   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt,            mo);
 920   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt,            mo);
 921   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo);
 922   case T_OBJECT:
 923 #ifdef _LP64
 924     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 925       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo));
 926       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
 927     } else
 928 #endif
 929     {
 930       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 931       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo);
 932     }
 933   }
 934   ShouldNotReachHere();
 935   return (LoadNode*)NULL;
 936 }
 937 
 938 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
 939   bool require_atomic = true;
 940   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, require_atomic);
 941 }
 942 
 943 
 944 
 945 
 946 //------------------------------hash-------------------------------------------
 947 uint LoadNode::hash() const {
 948   // unroll addition of interesting fields
 949   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 950 }
 951 
 952 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 953   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 954     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 955     bool is_stable_ary = FoldStableValues &&
 956                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 957                          tp->isa_aryptr()->is_stable();
 958 
 959     return (eliminate_boxing && non_volatile) || is_stable_ary;
 960   }
 961 
 962   return false;
 963 }
 964 
 965 //---------------------------can_see_stored_value------------------------------
 966 // This routine exists to make sure this set of tests is done the same
 967 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 968 // will change the graph shape in a way which makes memory alive twice at the
 969 // same time (uses the Oracle model of aliasing), then some
 970 // LoadXNode::Identity will fold things back to the equivalence-class model
 971 // of aliasing.
 972 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 973   Node* ld_adr = in(MemNode::Address);
 974   intptr_t ld_off = 0;
 975   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 976   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 977   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 978   // This is more general than load from boxing objects.
 979   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 980     uint alias_idx = atp->index();
 981     bool final = !atp->is_rewritable();
 982     Node* result = NULL;
 983     Node* current = st;
 984     // Skip through chains of MemBarNodes checking the MergeMems for
 985     // new states for the slice of this load.  Stop once any other
 986     // kind of node is encountered.  Loads from final memory can skip
 987     // through any kind of MemBar but normal loads shouldn't skip
 988     // through MemBarAcquire since the could allow them to move out of
 989     // a synchronized region.
 990     while (current->is_Proj()) {
 991       int opc = current->in(0)->Opcode();
 992       if ((final && (opc == Op_MemBarAcquire ||
 993                      opc == Op_MemBarAcquireLock ||
 994                      opc == Op_LoadFence)) ||
 995           opc == Op_MemBarRelease ||
 996           opc == Op_StoreFence ||
 997           opc == Op_MemBarReleaseLock ||
 998           opc == Op_MemBarCPUOrder) {
 999         Node* mem = current->in(0)->in(TypeFunc::Memory);
1000         if (mem->is_MergeMem()) {
1001           MergeMemNode* merge = mem->as_MergeMem();
1002           Node* new_st = merge->memory_at(alias_idx);
1003           if (new_st == merge->base_memory()) {
1004             // Keep searching
1005             current = new_st;
1006             continue;
1007           }
1008           // Save the new memory state for the slice and fall through
1009           // to exit.
1010           result = new_st;
1011         }
1012       }
1013       break;
1014     }
1015     if (result != NULL) {
1016       st = result;
1017     }
1018   }
1019 
1020   // Loop around twice in the case Load -> Initialize -> Store.
1021   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1022   for (int trip = 0; trip <= 1; trip++) {
1023 
1024     if (st->is_Store()) {
1025       Node* st_adr = st->in(MemNode::Address);
1026       if (!phase->eqv(st_adr, ld_adr)) {
1027         // Try harder before giving up...  Match raw and non-raw pointers.
1028         intptr_t st_off = 0;
1029         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1030         if (alloc == NULL)       return NULL;
1031         if (alloc != ld_alloc)   return NULL;
1032         if (ld_off != st_off)    return NULL;
1033         // At this point we have proven something like this setup:
1034         //  A = Allocate(...)
1035         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1036         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1037         // (Actually, we haven't yet proven the Q's are the same.)
1038         // In other words, we are loading from a casted version of
1039         // the same pointer-and-offset that we stored to.
1040         // Thus, we are able to replace L by V.
1041       }
1042       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1043       if (store_Opcode() != st->Opcode())
1044         return NULL;
1045       return st->in(MemNode::ValueIn);
1046     }
1047 
1048     // A load from a freshly-created object always returns zero.
1049     // (This can happen after LoadNode::Ideal resets the load's memory input
1050     // to find_captured_store, which returned InitializeNode::zero_memory.)
1051     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1052         (st->in(0) == ld_alloc) &&
1053         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1054       // return a zero value for the load's basic type
1055       // (This is one of the few places where a generic PhaseTransform
1056       // can create new nodes.  Think of it as lazily manifesting
1057       // virtually pre-existing constants.)
1058       return phase->zerocon(memory_type());
1059     }
1060 
1061     // A load from an initialization barrier can match a captured store.
1062     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1063       InitializeNode* init = st->in(0)->as_Initialize();
1064       AllocateNode* alloc = init->allocation();
1065       if ((alloc != NULL) && (alloc == ld_alloc)) {
1066         // examine a captured store value
1067         st = init->find_captured_store(ld_off, memory_size(), phase);
1068         if (st != NULL)
1069           continue;             // take one more trip around
1070       }
1071     }
1072 
1073     // Load boxed value from result of valueOf() call is input parameter.
1074     if (this->is_Load() && ld_adr->is_AddP() &&
1075         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1076       intptr_t ignore = 0;
1077       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1078       if (base != NULL && base->is_Proj() &&
1079           base->as_Proj()->_con == TypeFunc::Parms &&
1080           base->in(0)->is_CallStaticJava() &&
1081           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1082         return base->in(0)->in(TypeFunc::Parms);
1083       }
1084     }
1085 
1086     break;
1087   }
1088 
1089   return NULL;
1090 }
1091 
1092 //----------------------is_instance_field_load_with_local_phi------------------
1093 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1094   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1095       in(Address)->is_AddP() ) {
1096     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1097     // Only instances and boxed values.
1098     if( t_oop != NULL &&
1099         (t_oop->is_ptr_to_boxed_value() ||
1100          t_oop->is_known_instance_field()) &&
1101         t_oop->offset() != Type::OffsetBot &&
1102         t_oop->offset() != Type::OffsetTop) {
1103       return true;
1104     }
1105   }
1106   return false;
1107 }
1108 
1109 //------------------------------Identity---------------------------------------
1110 // Loads are identity if previous store is to same address
1111 Node *LoadNode::Identity( PhaseTransform *phase ) {
1112   // If the previous store-maker is the right kind of Store, and the store is
1113   // to the same address, then we are equal to the value stored.
1114   Node* mem = in(Memory);
1115   Node* value = can_see_stored_value(mem, phase);
1116   if( value ) {
1117     // byte, short & char stores truncate naturally.
1118     // A load has to load the truncated value which requires
1119     // some sort of masking operation and that requires an
1120     // Ideal call instead of an Identity call.
1121     if (memory_size() < BytesPerInt) {
1122       // If the input to the store does not fit with the load's result type,
1123       // it must be truncated via an Ideal call.
1124       if (!phase->type(value)->higher_equal(phase->type(this)))
1125         return this;
1126     }
1127     // (This works even when value is a Con, but LoadNode::Value
1128     // usually runs first, producing the singleton type of the Con.)
1129     return value;
1130   }
1131 
1132   // Search for an existing data phi which was generated before for the same
1133   // instance's field to avoid infinite generation of phis in a loop.
1134   Node *region = mem->in(0);
1135   if (is_instance_field_load_with_local_phi(region)) {
1136     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1137     int this_index  = phase->C->get_alias_index(addr_t);
1138     int this_offset = addr_t->offset();
1139     int this_iid    = addr_t->instance_id();
1140     if (!addr_t->is_known_instance() &&
1141          addr_t->is_ptr_to_boxed_value()) {
1142       // Use _idx of address base (could be Phi node) for boxed values.
1143       intptr_t   ignore = 0;
1144       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1145       this_iid = base->_idx;
1146     }
1147     const Type* this_type = bottom_type();
1148     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1149       Node* phi = region->fast_out(i);
1150       if (phi->is_Phi() && phi != mem &&
1151           phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1152         return phi;
1153       }
1154     }
1155   }
1156 
1157   return this;
1158 }
1159 
1160 // We're loading from an object which has autobox behaviour.
1161 // If this object is result of a valueOf call we'll have a phi
1162 // merging a newly allocated object and a load from the cache.
1163 // We want to replace this load with the original incoming
1164 // argument to the valueOf call.
1165 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1166   assert(phase->C->eliminate_boxing(), "sanity");
1167   intptr_t ignore = 0;
1168   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1169   if ((base == NULL) || base->is_Phi()) {
1170     // Push the loads from the phi that comes from valueOf up
1171     // through it to allow elimination of the loads and the recovery
1172     // of the original value. It is done in split_through_phi().
1173     return NULL;
1174   } else if (base->is_Load() ||
1175              base->is_DecodeN() && base->in(1)->is_Load()) {
1176     // Eliminate the load of boxed value for integer types from the cache
1177     // array by deriving the value from the index into the array.
1178     // Capture the offset of the load and then reverse the computation.
1179 
1180     // Get LoadN node which loads a boxing object from 'cache' array.
1181     if (base->is_DecodeN()) {
1182       base = base->in(1);
1183     }
1184     if (!base->in(Address)->is_AddP()) {
1185       return NULL; // Complex address
1186     }
1187     AddPNode* address = base->in(Address)->as_AddP();
1188     Node* cache_base = address->in(AddPNode::Base);
1189     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1190       // Get ConP node which is static 'cache' field.
1191       cache_base = cache_base->in(1);
1192     }
1193     if ((cache_base != NULL) && cache_base->is_Con()) {
1194       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1195       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1196         Node* elements[4];
1197         int shift = exact_log2(type2aelembytes(T_OBJECT));
1198         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1199         if ((count >  0) && elements[0]->is_Con() &&
1200             ((count == 1) ||
1201              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1202                              elements[1]->in(2) == phase->intcon(shift))) {
1203           ciObjArray* array = base_type->const_oop()->as_obj_array();
1204           // Fetch the box object cache[0] at the base of the array and get its value
1205           ciInstance* box = array->obj_at(0)->as_instance();
1206           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1207           assert(ik->is_box_klass(), "sanity");
1208           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1209           if (ik->nof_nonstatic_fields() == 1) {
1210             // This should be true nonstatic_field_at requires calling
1211             // nof_nonstatic_fields so check it anyway
1212             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1213             BasicType bt = c.basic_type();
1214             // Only integer types have boxing cache.
1215             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1216                    bt == T_BYTE    || bt == T_SHORT ||
1217                    bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1218             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1219             if (cache_low != (int)cache_low) {
1220               return NULL; // should not happen since cache is array indexed by value
1221             }
1222             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1223             if (offset != (int)offset) {
1224               return NULL; // should not happen since cache is array indexed by value
1225             }
1226            // Add up all the offsets making of the address of the load
1227             Node* result = elements[0];
1228             for (int i = 1; i < count; i++) {
1229               result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1230             }
1231             // Remove the constant offset from the address and then
1232             result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
1233             // remove the scaling of the offset to recover the original index.
1234             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1235               // Peel the shift off directly but wrap it in a dummy node
1236               // since Ideal can't return existing nodes
1237               result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1238             } else if (result->is_Add() && result->in(2)->is_Con() &&
1239                        result->in(1)->Opcode() == Op_LShiftX &&
1240                        result->in(1)->in(2) == phase->intcon(shift)) {
1241               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1242               // but for boxing cache access we know that X<<Z will not overflow
1243               // (there is range check) so we do this optimizatrion by hand here.
1244               Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
1245               result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
1246             } else {
1247               result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1248             }
1249 #ifdef _LP64
1250             if (bt != T_LONG) {
1251               result = new (phase->C) ConvL2INode(phase->transform(result));
1252             }
1253 #else
1254             if (bt == T_LONG) {
1255               result = new (phase->C) ConvI2LNode(phase->transform(result));
1256             }
1257 #endif
1258             return result;
1259           }
1260         }
1261       }
1262     }
1263   }
1264   return NULL;
1265 }
1266 
1267 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1268   Node* region = phi->in(0);
1269   if (region == NULL) {
1270     return false; // Wait stable graph
1271   }
1272   uint cnt = phi->req();
1273   for (uint i = 1; i < cnt; i++) {
1274     Node* rc = region->in(i);
1275     if (rc == NULL || phase->type(rc) == Type::TOP)
1276       return false; // Wait stable graph
1277     Node* in = phi->in(i);
1278     if (in == NULL || phase->type(in) == Type::TOP)
1279       return false; // Wait stable graph
1280   }
1281   return true;
1282 }
1283 //------------------------------split_through_phi------------------------------
1284 // Split instance or boxed field load through Phi.
1285 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1286   Node* mem     = in(Memory);
1287   Node* address = in(Address);
1288   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1289 
1290   assert((t_oop != NULL) &&
1291          (t_oop->is_known_instance_field() ||
1292           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1293 
1294   Compile* C = phase->C;
1295   intptr_t ignore = 0;
1296   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1297   bool base_is_phi = (base != NULL) && base->is_Phi();
1298   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1299                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1300                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1301 
1302   if (!((mem->is_Phi() || base_is_phi) &&
1303         (load_boxed_values || t_oop->is_known_instance_field()))) {
1304     return NULL; // memory is not Phi
1305   }
1306 
1307   if (mem->is_Phi()) {
1308     if (!stable_phi(mem->as_Phi(), phase)) {
1309       return NULL; // Wait stable graph
1310     }
1311     uint cnt = mem->req();
1312     // Check for loop invariant memory.
1313     if (cnt == 3) {
1314       for (uint i = 1; i < cnt; i++) {
1315         Node* in = mem->in(i);
1316         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1317         if (m == mem) {
1318           set_req(Memory, mem->in(cnt - i));
1319           return this; // made change
1320         }
1321       }
1322     }
1323   }
1324   if (base_is_phi) {
1325     if (!stable_phi(base->as_Phi(), phase)) {
1326       return NULL; // Wait stable graph
1327     }
1328     uint cnt = base->req();
1329     // Check for loop invariant memory.
1330     if (cnt == 3) {
1331       for (uint i = 1; i < cnt; i++) {
1332         if (base->in(i) == base) {
1333           return NULL; // Wait stable graph
1334         }
1335       }
1336     }
1337   }
1338 
1339   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1340 
1341   // Split through Phi (see original code in loopopts.cpp).
1342   assert(C->have_alias_type(t_oop), "instance should have alias type");
1343 
1344   // Do nothing here if Identity will find a value
1345   // (to avoid infinite chain of value phis generation).
1346   if (!phase->eqv(this, this->Identity(phase)))
1347     return NULL;
1348 
1349   // Select Region to split through.
1350   Node* region;
1351   if (!base_is_phi) {
1352     assert(mem->is_Phi(), "sanity");
1353     region = mem->in(0);
1354     // Skip if the region dominates some control edge of the address.
1355     if (!MemNode::all_controls_dominate(address, region))
1356       return NULL;
1357   } else if (!mem->is_Phi()) {
1358     assert(base_is_phi, "sanity");
1359     region = base->in(0);
1360     // Skip if the region dominates some control edge of the memory.
1361     if (!MemNode::all_controls_dominate(mem, region))
1362       return NULL;
1363   } else if (base->in(0) != mem->in(0)) {
1364     assert(base_is_phi && mem->is_Phi(), "sanity");
1365     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1366       region = base->in(0);
1367     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1368       region = mem->in(0);
1369     } else {
1370       return NULL; // complex graph
1371     }
1372   } else {
1373     assert(base->in(0) == mem->in(0), "sanity");
1374     region = mem->in(0);
1375   }
1376 
1377   const Type* this_type = this->bottom_type();
1378   int this_index  = C->get_alias_index(t_oop);
1379   int this_offset = t_oop->offset();
1380   int this_iid    = t_oop->instance_id();
1381   if (!t_oop->is_known_instance() && load_boxed_values) {
1382     // Use _idx of address base for boxed values.
1383     this_iid = base->_idx;
1384   }
1385   PhaseIterGVN* igvn = phase->is_IterGVN();
1386   Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1387   for (uint i = 1; i < region->req(); i++) {
1388     Node* x;
1389     Node* the_clone = NULL;
1390     if (region->in(i) == C->top()) {
1391       x = C->top();      // Dead path?  Use a dead data op
1392     } else {
1393       x = this->clone();        // Else clone up the data op
1394       the_clone = x;            // Remember for possible deletion.
1395       // Alter data node to use pre-phi inputs
1396       if (this->in(0) == region) {
1397         x->set_req(0, region->in(i));
1398       } else {
1399         x->set_req(0, NULL);
1400       }
1401       if (mem->is_Phi() && (mem->in(0) == region)) {
1402         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1403       }
1404       if (address->is_Phi() && address->in(0) == region) {
1405         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1406       }
1407       if (base_is_phi && (base->in(0) == region)) {
1408         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1409         Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1410         x->set_req(Address, adr_x);
1411       }
1412     }
1413     // Check for a 'win' on some paths
1414     const Type *t = x->Value(igvn);
1415 
1416     bool singleton = t->singleton();
1417 
1418     // See comments in PhaseIdealLoop::split_thru_phi().
1419     if (singleton && t == Type::TOP) {
1420       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1421     }
1422 
1423     if (singleton) {
1424       x = igvn->makecon(t);
1425     } else {
1426       // We now call Identity to try to simplify the cloned node.
1427       // Note that some Identity methods call phase->type(this).
1428       // Make sure that the type array is big enough for
1429       // our new node, even though we may throw the node away.
1430       // (This tweaking with igvn only works because x is a new node.)
1431       igvn->set_type(x, t);
1432       // If x is a TypeNode, capture any more-precise type permanently into Node
1433       // otherwise it will be not updated during igvn->transform since
1434       // igvn->type(x) is set to x->Value() already.
1435       x->raise_bottom_type(t);
1436       Node *y = x->Identity(igvn);
1437       if (y != x) {
1438         x = y;
1439       } else {
1440         y = igvn->hash_find_insert(x);
1441         if (y) {
1442           x = y;
1443         } else {
1444           // Else x is a new node we are keeping
1445           // We do not need register_new_node_with_optimizer
1446           // because set_type has already been called.
1447           igvn->_worklist.push(x);
1448         }
1449       }
1450     }
1451     if (x != the_clone && the_clone != NULL) {
1452       igvn->remove_dead_node(the_clone);
1453     }
1454     phi->set_req(i, x);
1455   }
1456   // Record Phi
1457   igvn->register_new_node_with_optimizer(phi);
1458   return phi;
1459 }
1460 
1461 //------------------------------Ideal------------------------------------------
1462 // If the load is from Field memory and the pointer is non-null, it might be possible to
1463 // zero out the control input.
1464 // If the offset is constant and the base is an object allocation,
1465 // try to hook me up to the exact initializing store.
1466 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1467   Node* p = MemNode::Ideal_common(phase, can_reshape);
1468   if (p)  return (p == NodeSentinel) ? NULL : p;
1469 
1470   Node* ctrl    = in(MemNode::Control);
1471   Node* address = in(MemNode::Address);
1472 
1473   // Skip up past a SafePoint control.  Cannot do this for Stores because
1474   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1475   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1476       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1477     ctrl = ctrl->in(0);
1478     set_req(MemNode::Control,ctrl);
1479   }
1480 
1481   intptr_t ignore = 0;
1482   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1483   if (base != NULL
1484       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1485     // Check for useless control edge in some common special cases
1486     if (in(MemNode::Control) != NULL
1487         && can_remove_control()
1488         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1489         && all_controls_dominate(base, phase->C->start())) {
1490       // A method-invariant, non-null address (constant or 'this' argument).
1491       set_req(MemNode::Control, NULL);
1492     }
1493   }
1494 
1495   Node* mem = in(MemNode::Memory);
1496   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1497 
1498   if (can_reshape && (addr_t != NULL)) {
1499     // try to optimize our memory input
1500     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1501     if (opt_mem != mem) {
1502       set_req(MemNode::Memory, opt_mem);
1503       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1504       return this;
1505     }
1506     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1507     if ((t_oop != NULL) &&
1508         (t_oop->is_known_instance_field() ||
1509          t_oop->is_ptr_to_boxed_value())) {
1510       PhaseIterGVN *igvn = phase->is_IterGVN();
1511       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1512         // Delay this transformation until memory Phi is processed.
1513         phase->is_IterGVN()->_worklist.push(this);
1514         return NULL;
1515       }
1516       // Split instance field load through Phi.
1517       Node* result = split_through_phi(phase);
1518       if (result != NULL) return result;
1519 
1520       if (t_oop->is_ptr_to_boxed_value()) {
1521         Node* result = eliminate_autobox(phase);
1522         if (result != NULL) return result;
1523       }
1524     }
1525   }
1526 
1527   // Check for prior store with a different base or offset; make Load
1528   // independent.  Skip through any number of them.  Bail out if the stores
1529   // are in an endless dead cycle and report no progress.  This is a key
1530   // transform for Reflection.  However, if after skipping through the Stores
1531   // we can't then fold up against a prior store do NOT do the transform as
1532   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1533   // array memory alive twice: once for the hoisted Load and again after the
1534   // bypassed Store.  This situation only works if EVERYBODY who does
1535   // anti-dependence work knows how to bypass.  I.e. we need all
1536   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1537   // the alias index stuff.  So instead, peek through Stores and IFF we can
1538   // fold up, do so.
1539   Node* prev_mem = find_previous_store(phase);
1540   // Steps (a), (b):  Walk past independent stores to find an exact match.
1541   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1542     // (c) See if we can fold up on the spot, but don't fold up here.
1543     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1544     // just return a prior value, which is done by Identity calls.
1545     if (can_see_stored_value(prev_mem, phase)) {
1546       // Make ready for step (d):
1547       set_req(MemNode::Memory, prev_mem);
1548       return this;
1549     }
1550   }
1551 
1552   return NULL;                  // No further progress
1553 }
1554 
1555 // Helper to recognize certain Klass fields which are invariant across
1556 // some group of array types (e.g., int[] or all T[] where T < Object).
1557 const Type*
1558 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1559                                  ciKlass* klass) const {
1560   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1561     // The field is Klass::_modifier_flags.  Return its (constant) value.
1562     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1563     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1564     return TypeInt::make(klass->modifier_flags());
1565   }
1566   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1567     // The field is Klass::_access_flags.  Return its (constant) value.
1568     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1569     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1570     return TypeInt::make(klass->access_flags());
1571   }
1572   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1573     // The field is Klass::_layout_helper.  Return its constant value if known.
1574     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1575     return TypeInt::make(klass->layout_helper());
1576   }
1577 
1578   // No match.
1579   return NULL;
1580 }
1581 
1582 // Try to constant-fold a stable array element.
1583 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
1584   assert(ary->const_oop(), "array should be constant");
1585   assert(ary->is_stable(), "array should be stable");
1586 
1587   // Decode the results of GraphKit::array_element_address.
1588   ciArray* aobj = ary->const_oop()->as_array();
1589   ciConstant con = aobj->element_value_by_offset(off);
1590 
1591   if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1592     const Type* con_type = Type::make_from_constant(con);
1593     if (con_type != NULL) {
1594       if (con_type->isa_aryptr()) {
1595         // Join with the array element type, in case it is also stable.
1596         int dim = ary->stable_dimension();
1597         con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1598       }
1599       if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1600         con_type = con_type->make_narrowoop();
1601       }
1602 #ifndef PRODUCT
1603       if (TraceIterativeGVN) {
1604         tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1605         con_type->dump(); tty->cr();
1606       }
1607 #endif //PRODUCT
1608       return con_type;
1609     }
1610   }
1611   return NULL;
1612 }
1613 
1614 //------------------------------Value-----------------------------------------
1615 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1616   // Either input is TOP ==> the result is TOP
1617   Node* mem = in(MemNode::Memory);
1618   const Type *t1 = phase->type(mem);
1619   if (t1 == Type::TOP)  return Type::TOP;
1620   Node* adr = in(MemNode::Address);
1621   const TypePtr* tp = phase->type(adr)->isa_ptr();
1622   if (tp == NULL || tp->empty())  return Type::TOP;
1623   int off = tp->offset();
1624   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1625   Compile* C = phase->C;
1626 
1627   // Try to guess loaded type from pointer type
1628   if (tp->isa_aryptr()) {
1629     const TypeAryPtr* ary = tp->is_aryptr();
1630     const Type* t = ary->elem();
1631 
1632     // Determine whether the reference is beyond the header or not, by comparing
1633     // the offset against the offset of the start of the array's data.
1634     // Different array types begin at slightly different offsets (12 vs. 16).
1635     // We choose T_BYTE as an example base type that is least restrictive
1636     // as to alignment, which will therefore produce the smallest
1637     // possible base offset.
1638     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1639     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1640 
1641     // Try to constant-fold a stable array element.
1642     if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
1643       // Make sure the reference is not into the header and the offset is constant
1644       if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1645         const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
1646         if (con_type != NULL) {
1647           return con_type;
1648         }
1649       }
1650     }
1651 
1652     // Don't do this for integer types. There is only potential profit if
1653     // the element type t is lower than _type; that is, for int types, if _type is
1654     // more restrictive than t.  This only happens here if one is short and the other
1655     // char (both 16 bits), and in those cases we've made an intentional decision
1656     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1657     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1658     //
1659     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1660     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1661     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1662     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1663     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1664     // In fact, that could have been the original type of p1, and p1 could have
1665     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1666     // expression (LShiftL quux 3) independently optimized to the constant 8.
1667     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1668         && (_type->isa_vect() == NULL)
1669         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1670       // t might actually be lower than _type, if _type is a unique
1671       // concrete subclass of abstract class t.
1672       if (off_beyond_header) {  // is the offset beyond the header?
1673         const Type* jt = t->join_speculative(_type);
1674         // In any case, do not allow the join, per se, to empty out the type.
1675         if (jt->empty() && !t->empty()) {
1676           // This can happen if a interface-typed array narrows to a class type.
1677           jt = _type;
1678         }
1679 #ifdef ASSERT
1680         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1681           // The pointers in the autobox arrays are always non-null
1682           Node* base = adr->in(AddPNode::Base);
1683           if ((base != NULL) && base->is_DecodeN()) {
1684             // Get LoadN node which loads IntegerCache.cache field
1685             base = base->in(1);
1686           }
1687           if ((base != NULL) && base->is_Con()) {
1688             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1689             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1690               // It could be narrow oop
1691               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1692             }
1693           }
1694         }
1695 #endif
1696         return jt;
1697       }
1698     }
1699   } else if (tp->base() == Type::InstPtr) {
1700     ciEnv* env = C->env();
1701     const TypeInstPtr* tinst = tp->is_instptr();
1702     ciKlass* klass = tinst->klass();
1703     assert( off != Type::OffsetBot ||
1704             // arrays can be cast to Objects
1705             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1706             // unsafe field access may not have a constant offset
1707             C->has_unsafe_access(),
1708             "Field accesses must be precise" );
1709     // For oop loads, we expect the _type to be precise
1710     if (klass == env->String_klass() &&
1711         adr->is_AddP() && off != Type::OffsetBot) {
1712       // For constant Strings treat the final fields as compile time constants.
1713       Node* base = adr->in(AddPNode::Base);
1714       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1715       if (t != NULL && t->singleton()) {
1716         ciField* field = env->String_klass()->get_field_by_offset(off, false);
1717         if (field != NULL && field->is_final()) {
1718           ciObject* string = t->const_oop();
1719           ciConstant constant = string->as_instance()->field_value(field);
1720           if (constant.basic_type() == T_INT) {
1721             return TypeInt::make(constant.as_int());
1722           } else if (constant.basic_type() == T_ARRAY) {
1723             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1724               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1725             } else {
1726               return TypeOopPtr::make_from_constant(constant.as_object(), true);
1727             }
1728           }
1729         }
1730       }
1731     }
1732     // Optimizations for constant objects
1733     ciObject* const_oop = tinst->const_oop();
1734     if (const_oop != NULL) {
1735       // For constant Boxed value treat the target field as a compile time constant.
1736       if (tinst->is_ptr_to_boxed_value()) {
1737         return tinst->get_const_boxed_value();
1738       } else
1739       // For constant CallSites treat the target field as a compile time constant.
1740       if (const_oop->is_call_site()) {
1741         ciCallSite* call_site = const_oop->as_call_site();
1742         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1743         if (field != NULL && field->is_call_site_target()) {
1744           ciMethodHandle* target = call_site->get_target();
1745           if (target != NULL) {  // just in case
1746             ciConstant constant(T_OBJECT, target);
1747             const Type* t;
1748             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1749               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1750             } else {
1751               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1752             }
1753             // Add a dependence for invalidation of the optimization.
1754             if (!call_site->is_constant_call_site()) {
1755               C->dependencies()->assert_call_site_target_value(call_site, target);
1756             }
1757             return t;
1758           }
1759         }
1760       }
1761     }
1762   } else if (tp->base() == Type::KlassPtr) {
1763     assert( off != Type::OffsetBot ||
1764             // arrays can be cast to Objects
1765             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1766             // also allow array-loading from the primary supertype
1767             // array during subtype checks
1768             Opcode() == Op_LoadKlass,
1769             "Field accesses must be precise" );
1770     // For klass/static loads, we expect the _type to be precise
1771   }
1772 
1773   const TypeKlassPtr *tkls = tp->isa_klassptr();
1774   if (tkls != NULL && !StressReflectiveCode) {
1775     ciKlass* klass = tkls->klass();
1776     if (klass->is_loaded() && tkls->klass_is_exact()) {
1777       // We are loading a field from a Klass metaobject whose identity
1778       // is known at compile time (the type is "exact" or "precise").
1779       // Check for fields we know are maintained as constants by the VM.
1780       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1781         // The field is Klass::_super_check_offset.  Return its (constant) value.
1782         // (Folds up type checking code.)
1783         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1784         return TypeInt::make(klass->super_check_offset());
1785       }
1786       // Compute index into primary_supers array
1787       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1788       // Check for overflowing; use unsigned compare to handle the negative case.
1789       if( depth < ciKlass::primary_super_limit() ) {
1790         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1791         // (Folds up type checking code.)
1792         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1793         ciKlass *ss = klass->super_of_depth(depth);
1794         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1795       }
1796       const Type* aift = load_array_final_field(tkls, klass);
1797       if (aift != NULL)  return aift;
1798       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1799           && klass->is_array_klass()) {
1800         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1801         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1802         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1803         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1804       }
1805       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1806         // The field is Klass::_java_mirror.  Return its (constant) value.
1807         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1808         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1809         return TypeInstPtr::make(klass->java_mirror());
1810       }
1811     }
1812 
1813     // We can still check if we are loading from the primary_supers array at a
1814     // shallow enough depth.  Even though the klass is not exact, entries less
1815     // than or equal to its super depth are correct.
1816     if (klass->is_loaded() ) {
1817       ciType *inner = klass;
1818       while( inner->is_obj_array_klass() )
1819         inner = inner->as_obj_array_klass()->base_element_type();
1820       if( inner->is_instance_klass() &&
1821           !inner->as_instance_klass()->flags().is_interface() ) {
1822         // Compute index into primary_supers array
1823         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1824         // Check for overflowing; use unsigned compare to handle the negative case.
1825         if( depth < ciKlass::primary_super_limit() &&
1826             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1827           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1828           // (Folds up type checking code.)
1829           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1830           ciKlass *ss = klass->super_of_depth(depth);
1831           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1832         }
1833       }
1834     }
1835 
1836     // If the type is enough to determine that the thing is not an array,
1837     // we can give the layout_helper a positive interval type.
1838     // This will help short-circuit some reflective code.
1839     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1840         && !klass->is_array_klass() // not directly typed as an array
1841         && !klass->is_interface()  // specifically not Serializable & Cloneable
1842         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1843         ) {
1844       // Note:  When interfaces are reliable, we can narrow the interface
1845       // test to (klass != Serializable && klass != Cloneable).
1846       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1847       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1848       // The key property of this type is that it folds up tests
1849       // for array-ness, since it proves that the layout_helper is positive.
1850       // Thus, a generic value like the basic object layout helper works fine.
1851       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1852     }
1853   }
1854 
1855   // If we are loading from a freshly-allocated object, produce a zero,
1856   // if the load is provably beyond the header of the object.
1857   // (Also allow a variable load from a fresh array to produce zero.)
1858   const TypeOopPtr *tinst = tp->isa_oopptr();
1859   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1860   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1861   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1862     Node* value = can_see_stored_value(mem,phase);
1863     if (value != NULL && value->is_Con()) {
1864       assert(value->bottom_type()->higher_equal(_type),"sanity");
1865       return value->bottom_type();
1866     }
1867   }
1868 
1869   if (is_instance) {
1870     // If we have an instance type and our memory input is the
1871     // programs's initial memory state, there is no matching store,
1872     // so just return a zero of the appropriate type
1873     Node *mem = in(MemNode::Memory);
1874     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1875       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1876       return Type::get_zero_type(_type->basic_type());
1877     }
1878   }
1879   return _type;
1880 }
1881 
1882 //------------------------------match_edge-------------------------------------
1883 // Do we Match on this edge index or not?  Match only the address.
1884 uint LoadNode::match_edge(uint idx) const {
1885   return idx == MemNode::Address;
1886 }
1887 
1888 //--------------------------LoadBNode::Ideal--------------------------------------
1889 //
1890 //  If the previous store is to the same address as this load,
1891 //  and the value stored was larger than a byte, replace this load
1892 //  with the value stored truncated to a byte.  If no truncation is
1893 //  needed, the replacement is done in LoadNode::Identity().
1894 //
1895 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1896   Node* mem = in(MemNode::Memory);
1897   Node* value = can_see_stored_value(mem,phase);
1898   if( value && !phase->type(value)->higher_equal( _type ) ) {
1899     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1900     return new (phase->C) RShiftINode(result, phase->intcon(24));
1901   }
1902   // Identity call will handle the case where truncation is not needed.
1903   return LoadNode::Ideal(phase, can_reshape);
1904 }
1905 
1906 const Type* LoadBNode::Value(PhaseTransform *phase) const {
1907   Node* mem = in(MemNode::Memory);
1908   Node* value = can_see_stored_value(mem,phase);
1909   if (value != NULL && value->is_Con() &&
1910       !value->bottom_type()->higher_equal(_type)) {
1911     // If the input to the store does not fit with the load's result type,
1912     // it must be truncated. We can't delay until Ideal call since
1913     // a singleton Value is needed for split_thru_phi optimization.
1914     int con = value->get_int();
1915     return TypeInt::make((con << 24) >> 24);
1916   }
1917   return LoadNode::Value(phase);
1918 }
1919 
1920 //--------------------------LoadUBNode::Ideal-------------------------------------
1921 //
1922 //  If the previous store is to the same address as this load,
1923 //  and the value stored was larger than a byte, replace this load
1924 //  with the value stored truncated to a byte.  If no truncation is
1925 //  needed, the replacement is done in LoadNode::Identity().
1926 //
1927 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1928   Node* mem = in(MemNode::Memory);
1929   Node* value = can_see_stored_value(mem, phase);
1930   if (value && !phase->type(value)->higher_equal(_type))
1931     return new (phase->C) AndINode(value, phase->intcon(0xFF));
1932   // Identity call will handle the case where truncation is not needed.
1933   return LoadNode::Ideal(phase, can_reshape);
1934 }
1935 
1936 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1937   Node* mem = in(MemNode::Memory);
1938   Node* value = can_see_stored_value(mem,phase);
1939   if (value != NULL && value->is_Con() &&
1940       !value->bottom_type()->higher_equal(_type)) {
1941     // If the input to the store does not fit with the load's result type,
1942     // it must be truncated. We can't delay until Ideal call since
1943     // a singleton Value is needed for split_thru_phi optimization.
1944     int con = value->get_int();
1945     return TypeInt::make(con & 0xFF);
1946   }
1947   return LoadNode::Value(phase);
1948 }
1949 
1950 //--------------------------LoadUSNode::Ideal-------------------------------------
1951 //
1952 //  If the previous store is to the same address as this load,
1953 //  and the value stored was larger than a char, replace this load
1954 //  with the value stored truncated to a char.  If no truncation is
1955 //  needed, the replacement is done in LoadNode::Identity().
1956 //
1957 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1958   Node* mem = in(MemNode::Memory);
1959   Node* value = can_see_stored_value(mem,phase);
1960   if( value && !phase->type(value)->higher_equal( _type ) )
1961     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1962   // Identity call will handle the case where truncation is not needed.
1963   return LoadNode::Ideal(phase, can_reshape);
1964 }
1965 
1966 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1967   Node* mem = in(MemNode::Memory);
1968   Node* value = can_see_stored_value(mem,phase);
1969   if (value != NULL && value->is_Con() &&
1970       !value->bottom_type()->higher_equal(_type)) {
1971     // If the input to the store does not fit with the load's result type,
1972     // it must be truncated. We can't delay until Ideal call since
1973     // a singleton Value is needed for split_thru_phi optimization.
1974     int con = value->get_int();
1975     return TypeInt::make(con & 0xFFFF);
1976   }
1977   return LoadNode::Value(phase);
1978 }
1979 
1980 //--------------------------LoadSNode::Ideal--------------------------------------
1981 //
1982 //  If the previous store is to the same address as this load,
1983 //  and the value stored was larger than a short, replace this load
1984 //  with the value stored truncated to a short.  If no truncation is
1985 //  needed, the replacement is done in LoadNode::Identity().
1986 //
1987 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1988   Node* mem = in(MemNode::Memory);
1989   Node* value = can_see_stored_value(mem,phase);
1990   if( value && !phase->type(value)->higher_equal( _type ) ) {
1991     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
1992     return new (phase->C) RShiftINode(result, phase->intcon(16));
1993   }
1994   // Identity call will handle the case where truncation is not needed.
1995   return LoadNode::Ideal(phase, can_reshape);
1996 }
1997 
1998 const Type* LoadSNode::Value(PhaseTransform *phase) const {
1999   Node* mem = in(MemNode::Memory);
2000   Node* value = can_see_stored_value(mem,phase);
2001   if (value != NULL && value->is_Con() &&
2002       !value->bottom_type()->higher_equal(_type)) {
2003     // If the input to the store does not fit with the load's result type,
2004     // it must be truncated. We can't delay until Ideal call since
2005     // a singleton Value is needed for split_thru_phi optimization.
2006     int con = value->get_int();
2007     return TypeInt::make((con << 16) >> 16);
2008   }
2009   return LoadNode::Value(phase);
2010 }
2011 
2012 //=============================================================================
2013 //----------------------------LoadKlassNode::make------------------------------
2014 // Polymorphic factory method:
2015 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk) {
2016   Compile* C = gvn.C;
2017   // sanity check the alias category against the created node type
2018   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2019   assert(adr_type != NULL, "expecting TypeKlassPtr");
2020 #ifdef _LP64
2021   if (adr_type->is_ptr_to_narrowklass()) {
2022     assert(UseCompressedClassPointers, "no compressed klasses");
2023     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2024     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2025   }
2026 #endif
2027   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2028   return new (C) LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2029 }
2030 
2031 //------------------------------Value------------------------------------------
2032 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
2033   return klass_value_common(phase);
2034 }
2035 
2036 // In most cases, LoadKlassNode does not have the control input set. If the control
2037 // input is set, it must not be removed (by LoadNode::Ideal()).
2038 bool LoadKlassNode::can_remove_control() const {
2039   return false;
2040 }
2041 
2042 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
2043   // Either input is TOP ==> the result is TOP
2044   const Type *t1 = phase->type( in(MemNode::Memory) );
2045   if (t1 == Type::TOP)  return Type::TOP;
2046   Node *adr = in(MemNode::Address);
2047   const Type *t2 = phase->type( adr );
2048   if (t2 == Type::TOP)  return Type::TOP;
2049   const TypePtr *tp = t2->is_ptr();
2050   if (TypePtr::above_centerline(tp->ptr()) ||
2051       tp->ptr() == TypePtr::Null)  return Type::TOP;
2052 
2053   // Return a more precise klass, if possible
2054   const TypeInstPtr *tinst = tp->isa_instptr();
2055   if (tinst != NULL) {
2056     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2057     int offset = tinst->offset();
2058     if (ik == phase->C->env()->Class_klass()
2059         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2060             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2061       // We are loading a special hidden field from a Class mirror object,
2062       // the field which points to the VM's Klass metaobject.
2063       ciType* t = tinst->java_mirror_type();
2064       // java_mirror_type returns non-null for compile-time Class constants.
2065       if (t != NULL) {
2066         // constant oop => constant klass
2067         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2068           if (t->is_void()) {
2069             // We cannot create a void array.  Since void is a primitive type return null
2070             // klass.  Users of this result need to do a null check on the returned klass.
2071             return TypePtr::NULL_PTR;
2072           }
2073           return TypeKlassPtr::make(ciArrayKlass::make(t));
2074         }
2075         if (!t->is_klass()) {
2076           // a primitive Class (e.g., int.class) has NULL for a klass field
2077           return TypePtr::NULL_PTR;
2078         }
2079         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2080         return TypeKlassPtr::make(t->as_klass());
2081       }
2082       // non-constant mirror, so we can't tell what's going on
2083     }
2084     if( !ik->is_loaded() )
2085       return _type;             // Bail out if not loaded
2086     if (offset == oopDesc::klass_offset_in_bytes()) {
2087       if (tinst->klass_is_exact()) {
2088         return TypeKlassPtr::make(ik);
2089       }
2090       // See if we can become precise: no subklasses and no interface
2091       // (Note:  We need to support verified interfaces.)
2092       if (!ik->is_interface() && !ik->has_subklass()) {
2093         //assert(!UseExactTypes, "this code should be useless with exact types");
2094         // Add a dependence; if any subclass added we need to recompile
2095         if (!ik->is_final()) {
2096           // %%% should use stronger assert_unique_concrete_subtype instead
2097           phase->C->dependencies()->assert_leaf_type(ik);
2098         }
2099         // Return precise klass
2100         return TypeKlassPtr::make(ik);
2101       }
2102 
2103       // Return root of possible klass
2104       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2105     }
2106   }
2107 
2108   // Check for loading klass from an array
2109   const TypeAryPtr *tary = tp->isa_aryptr();
2110   if( tary != NULL ) {
2111     ciKlass *tary_klass = tary->klass();
2112     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2113         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2114       if (tary->klass_is_exact()) {
2115         return TypeKlassPtr::make(tary_klass);
2116       }
2117       ciArrayKlass *ak = tary->klass()->as_array_klass();
2118       // If the klass is an object array, we defer the question to the
2119       // array component klass.
2120       if( ak->is_obj_array_klass() ) {
2121         assert( ak->is_loaded(), "" );
2122         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2123         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2124           ciInstanceKlass* ik = base_k->as_instance_klass();
2125           // See if we can become precise: no subklasses and no interface
2126           if (!ik->is_interface() && !ik->has_subklass()) {
2127             //assert(!UseExactTypes, "this code should be useless with exact types");
2128             // Add a dependence; if any subclass added we need to recompile
2129             if (!ik->is_final()) {
2130               phase->C->dependencies()->assert_leaf_type(ik);
2131             }
2132             // Return precise array klass
2133             return TypeKlassPtr::make(ak);
2134           }
2135         }
2136         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2137       } else {                  // Found a type-array?
2138         //assert(!UseExactTypes, "this code should be useless with exact types");
2139         assert( ak->is_type_array_klass(), "" );
2140         return TypeKlassPtr::make(ak); // These are always precise
2141       }
2142     }
2143   }
2144 
2145   // Check for loading klass from an array klass
2146   const TypeKlassPtr *tkls = tp->isa_klassptr();
2147   if (tkls != NULL && !StressReflectiveCode) {
2148     ciKlass* klass = tkls->klass();
2149     if( !klass->is_loaded() )
2150       return _type;             // Bail out if not loaded
2151     if( klass->is_obj_array_klass() &&
2152         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2153       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2154       // // Always returning precise element type is incorrect,
2155       // // e.g., element type could be object and array may contain strings
2156       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2157 
2158       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2159       // according to the element type's subclassing.
2160       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2161     }
2162     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2163         tkls->offset() == in_bytes(Klass::super_offset())) {
2164       ciKlass* sup = klass->as_instance_klass()->super();
2165       // The field is Klass::_super.  Return its (constant) value.
2166       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2167       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2168     }
2169   }
2170 
2171   // Bailout case
2172   return LoadNode::Value(phase);
2173 }
2174 
2175 //------------------------------Identity---------------------------------------
2176 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2177 // Also feed through the klass in Allocate(...klass...)._klass.
2178 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2179   return klass_identity_common(phase);
2180 }
2181 
2182 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2183   Node* x = LoadNode::Identity(phase);
2184   if (x != this)  return x;
2185 
2186   // Take apart the address into an oop and and offset.
2187   // Return 'this' if we cannot.
2188   Node*    adr    = in(MemNode::Address);
2189   intptr_t offset = 0;
2190   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2191   if (base == NULL)     return this;
2192   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2193   if (toop == NULL)     return this;
2194 
2195   // We can fetch the klass directly through an AllocateNode.
2196   // This works even if the klass is not constant (clone or newArray).
2197   if (offset == oopDesc::klass_offset_in_bytes()) {
2198     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2199     if (allocated_klass != NULL) {
2200       return allocated_klass;
2201     }
2202   }
2203 
2204   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2205   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2206   // See inline_native_Class_query for occurrences of these patterns.
2207   // Java Example:  x.getClass().isAssignableFrom(y)
2208   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2209   //
2210   // This improves reflective code, often making the Class
2211   // mirror go completely dead.  (Current exception:  Class
2212   // mirrors may appear in debug info, but we could clean them out by
2213   // introducing a new debug info operator for Klass*.java_mirror).
2214   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2215       && (offset == java_lang_Class::klass_offset_in_bytes() ||
2216           offset == java_lang_Class::array_klass_offset_in_bytes())) {
2217     // We are loading a special hidden field from a Class mirror,
2218     // the field which points to its Klass or ArrayKlass metaobject.
2219     if (base->is_Load()) {
2220       Node* adr2 = base->in(MemNode::Address);
2221       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2222       if (tkls != NULL && !tkls->empty()
2223           && (tkls->klass()->is_instance_klass() ||
2224               tkls->klass()->is_array_klass())
2225           && adr2->is_AddP()
2226           ) {
2227         int mirror_field = in_bytes(Klass::java_mirror_offset());
2228         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2229           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2230         }
2231         if (tkls->offset() == mirror_field) {
2232           return adr2->in(AddPNode::Base);
2233         }
2234       }
2235     }
2236   }
2237 
2238   return this;
2239 }
2240 
2241 
2242 //------------------------------Value------------------------------------------
2243 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2244   const Type *t = klass_value_common(phase);
2245   if (t == Type::TOP)
2246     return t;
2247 
2248   return t->make_narrowklass();
2249 }
2250 
2251 //------------------------------Identity---------------------------------------
2252 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2253 // Also feed through the klass in Allocate(...klass...)._klass.
2254 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2255   Node *x = klass_identity_common(phase);
2256 
2257   const Type *t = phase->type( x );
2258   if( t == Type::TOP ) return x;
2259   if( t->isa_narrowklass()) return x;
2260   assert (!t->isa_narrowoop(), "no narrow oop here");
2261 
2262   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2263 }
2264 
2265 //------------------------------Value-----------------------------------------
2266 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2267   // Either input is TOP ==> the result is TOP
2268   const Type *t1 = phase->type( in(MemNode::Memory) );
2269   if( t1 == Type::TOP ) return Type::TOP;
2270   Node *adr = in(MemNode::Address);
2271   const Type *t2 = phase->type( adr );
2272   if( t2 == Type::TOP ) return Type::TOP;
2273   const TypePtr *tp = t2->is_ptr();
2274   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2275   const TypeAryPtr *tap = tp->isa_aryptr();
2276   if( !tap ) return _type;
2277   return tap->size();
2278 }
2279 
2280 //-------------------------------Ideal---------------------------------------
2281 // Feed through the length in AllocateArray(...length...)._length.
2282 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2283   Node* p = MemNode::Ideal_common(phase, can_reshape);
2284   if (p)  return (p == NodeSentinel) ? NULL : p;
2285 
2286   // Take apart the address into an oop and and offset.
2287   // Return 'this' if we cannot.
2288   Node*    adr    = in(MemNode::Address);
2289   intptr_t offset = 0;
2290   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2291   if (base == NULL)     return NULL;
2292   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2293   if (tary == NULL)     return NULL;
2294 
2295   // We can fetch the length directly through an AllocateArrayNode.
2296   // This works even if the length is not constant (clone or newArray).
2297   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2298     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2299     if (alloc != NULL) {
2300       Node* allocated_length = alloc->Ideal_length();
2301       Node* len = alloc->make_ideal_length(tary, phase);
2302       if (allocated_length != len) {
2303         // New CastII improves on this.
2304         return len;
2305       }
2306     }
2307   }
2308 
2309   return NULL;
2310 }
2311 
2312 //------------------------------Identity---------------------------------------
2313 // Feed through the length in AllocateArray(...length...)._length.
2314 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2315   Node* x = LoadINode::Identity(phase);
2316   if (x != this)  return x;
2317 
2318   // Take apart the address into an oop and and offset.
2319   // Return 'this' if we cannot.
2320   Node*    adr    = in(MemNode::Address);
2321   intptr_t offset = 0;
2322   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2323   if (base == NULL)     return this;
2324   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2325   if (tary == NULL)     return this;
2326 
2327   // We can fetch the length directly through an AllocateArrayNode.
2328   // This works even if the length is not constant (clone or newArray).
2329   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2330     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2331     if (alloc != NULL) {
2332       Node* allocated_length = alloc->Ideal_length();
2333       // Do not allow make_ideal_length to allocate a CastII node.
2334       Node* len = alloc->make_ideal_length(tary, phase, false);
2335       if (allocated_length == len) {
2336         // Return allocated_length only if it would not be improved by a CastII.
2337         return allocated_length;
2338       }
2339     }
2340   }
2341 
2342   return this;
2343 
2344 }
2345 
2346 //=============================================================================
2347 //---------------------------StoreNode::make-----------------------------------
2348 // Polymorphic factory method:
2349 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2350   assert((mo == unordered || mo == release), "unexpected");
2351   Compile* C = gvn.C;
2352   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2353          ctl != NULL, "raw memory operations should have control edge");
2354 
2355   switch (bt) {
2356   case T_BOOLEAN:
2357   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val, mo);
2358   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val, mo);
2359   case T_CHAR:
2360   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val, mo);
2361   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo);
2362   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val, mo);
2363   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo);
2364   case T_METADATA:
2365   case T_ADDRESS:
2366   case T_OBJECT:
2367 #ifdef _LP64
2368     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2369       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2370       return new (C) StoreNNode(ctl, mem, adr, adr_type, val, mo);
2371     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2372                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2373                 adr->bottom_type()->isa_rawptr())) {
2374       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2375       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2376     }
2377 #endif
2378     {
2379       return new (C) StorePNode(ctl, mem, adr, adr_type, val, mo);
2380     }
2381   }
2382   ShouldNotReachHere();
2383   return (StoreNode*)NULL;
2384 }
2385 
2386 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2387   bool require_atomic = true;
2388   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2389 }
2390 
2391 
2392 //--------------------------bottom_type----------------------------------------
2393 const Type *StoreNode::bottom_type() const {
2394   return Type::MEMORY;
2395 }
2396 
2397 //------------------------------hash-------------------------------------------
2398 uint StoreNode::hash() const {
2399   // unroll addition of interesting fields
2400   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2401 
2402   // Since they are not commoned, do not hash them:
2403   return NO_HASH;
2404 }
2405 
2406 //------------------------------Ideal------------------------------------------
2407 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2408 // When a store immediately follows a relevant allocation/initialization,
2409 // try to capture it into the initialization, or hoist it above.
2410 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2411   Node* p = MemNode::Ideal_common(phase, can_reshape);
2412   if (p)  return (p == NodeSentinel) ? NULL : p;
2413 
2414   Node* mem     = in(MemNode::Memory);
2415   Node* address = in(MemNode::Address);
2416 
2417   // Back-to-back stores to same address?  Fold em up.  Generally
2418   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2419   // since they must follow each StoreP operation.  Redundant StoreCMs
2420   // are eliminated just before matching in final_graph_reshape.
2421   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2422       mem->Opcode() != Op_StoreCM) {
2423     // Looking at a dead closed cycle of memory?
2424     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2425 
2426     assert(Opcode() == mem->Opcode() ||
2427            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2428            "no mismatched stores, except on raw memory");
2429 
2430     if (mem->outcnt() == 1 &&           // check for intervening uses
2431         mem->as_Store()->memory_size() <= this->memory_size()) {
2432       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2433       // For example, 'mem' might be the final state at a conditional return.
2434       // Or, 'mem' might be used by some node which is live at the same time
2435       // 'this' is live, which might be unschedulable.  So, require exactly
2436       // ONE user, the 'this' store, until such time as we clone 'mem' for
2437       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2438       if (can_reshape) {  // (%%% is this an anachronism?)
2439         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2440                   phase->is_IterGVN());
2441       } else {
2442         // It's OK to do this in the parser, since DU info is always accurate,
2443         // and the parser always refers to nodes via SafePointNode maps.
2444         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2445       }
2446       return this;
2447     }
2448   }
2449 
2450   // Capture an unaliased, unconditional, simple store into an initializer.
2451   // Or, if it is independent of the allocation, hoist it above the allocation.
2452   if (ReduceFieldZeroing && /*can_reshape &&*/
2453       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2454     InitializeNode* init = mem->in(0)->as_Initialize();
2455     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2456     if (offset > 0) {
2457       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2458       // If the InitializeNode captured me, it made a raw copy of me,
2459       // and I need to disappear.
2460       if (moved != NULL) {
2461         // %%% hack to ensure that Ideal returns a new node:
2462         mem = MergeMemNode::make(phase->C, mem);
2463         return mem;             // fold me away
2464       }
2465     }
2466   }
2467 
2468   return NULL;                  // No further progress
2469 }
2470 
2471 //------------------------------Value-----------------------------------------
2472 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2473   // Either input is TOP ==> the result is TOP
2474   const Type *t1 = phase->type( in(MemNode::Memory) );
2475   if( t1 == Type::TOP ) return Type::TOP;
2476   const Type *t2 = phase->type( in(MemNode::Address) );
2477   if( t2 == Type::TOP ) return Type::TOP;
2478   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2479   if( t3 == Type::TOP ) return Type::TOP;
2480   return Type::MEMORY;
2481 }
2482 
2483 //------------------------------Identity---------------------------------------
2484 // Remove redundant stores:
2485 //   Store(m, p, Load(m, p)) changes to m.
2486 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2487 Node *StoreNode::Identity( PhaseTransform *phase ) {
2488   Node* mem = in(MemNode::Memory);
2489   Node* adr = in(MemNode::Address);
2490   Node* val = in(MemNode::ValueIn);
2491 
2492   // Load then Store?  Then the Store is useless
2493   if (val->is_Load() &&
2494       val->in(MemNode::Address)->eqv_uncast(adr) &&
2495       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2496       val->as_Load()->store_Opcode() == Opcode()) {
2497     return mem;
2498   }
2499 
2500   // Two stores in a row of the same value?
2501   if (mem->is_Store() &&
2502       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2503       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2504       mem->Opcode() == Opcode()) {
2505     return mem;
2506   }
2507 
2508   // Store of zero anywhere into a freshly-allocated object?
2509   // Then the store is useless.
2510   // (It must already have been captured by the InitializeNode.)
2511   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2512     // a newly allocated object is already all-zeroes everywhere
2513     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2514       return mem;
2515     }
2516 
2517     // the store may also apply to zero-bits in an earlier object
2518     Node* prev_mem = find_previous_store(phase);
2519     // Steps (a), (b):  Walk past independent stores to find an exact match.
2520     if (prev_mem != NULL) {
2521       Node* prev_val = can_see_stored_value(prev_mem, phase);
2522       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2523         // prev_val and val might differ by a cast; it would be good
2524         // to keep the more informative of the two.
2525         return mem;
2526       }
2527     }
2528   }
2529 
2530   return this;
2531 }
2532 
2533 //------------------------------match_edge-------------------------------------
2534 // Do we Match on this edge index or not?  Match only memory & value
2535 uint StoreNode::match_edge(uint idx) const {
2536   return idx == MemNode::Address || idx == MemNode::ValueIn;
2537 }
2538 
2539 //------------------------------cmp--------------------------------------------
2540 // Do not common stores up together.  They generally have to be split
2541 // back up anyways, so do not bother.
2542 uint StoreNode::cmp( const Node &n ) const {
2543   return (&n == this);          // Always fail except on self
2544 }
2545 
2546 //------------------------------Ideal_masked_input-----------------------------
2547 // Check for a useless mask before a partial-word store
2548 // (StoreB ... (AndI valIn conIa) )
2549 // If (conIa & mask == mask) this simplifies to
2550 // (StoreB ... (valIn) )
2551 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2552   Node *val = in(MemNode::ValueIn);
2553   if( val->Opcode() == Op_AndI ) {
2554     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2555     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2556       set_req(MemNode::ValueIn, val->in(1));
2557       return this;
2558     }
2559   }
2560   return NULL;
2561 }
2562 
2563 
2564 //------------------------------Ideal_sign_extended_input----------------------
2565 // Check for useless sign-extension before a partial-word store
2566 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2567 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2568 // (StoreB ... (valIn) )
2569 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2570   Node *val = in(MemNode::ValueIn);
2571   if( val->Opcode() == Op_RShiftI ) {
2572     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2573     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2574       Node *shl = val->in(1);
2575       if( shl->Opcode() == Op_LShiftI ) {
2576         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2577         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2578           set_req(MemNode::ValueIn, shl->in(1));
2579           return this;
2580         }
2581       }
2582     }
2583   }
2584   return NULL;
2585 }
2586 
2587 //------------------------------value_never_loaded-----------------------------------
2588 // Determine whether there are any possible loads of the value stored.
2589 // For simplicity, we actually check if there are any loads from the
2590 // address stored to, not just for loads of the value stored by this node.
2591 //
2592 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2593   Node *adr = in(Address);
2594   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2595   if (adr_oop == NULL)
2596     return false;
2597   if (!adr_oop->is_known_instance_field())
2598     return false; // if not a distinct instance, there may be aliases of the address
2599   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2600     Node *use = adr->fast_out(i);
2601     int opc = use->Opcode();
2602     if (use->is_Load() || use->is_LoadStore()) {
2603       return false;
2604     }
2605   }
2606   return true;
2607 }
2608 
2609 //=============================================================================
2610 //------------------------------Ideal------------------------------------------
2611 // If the store is from an AND mask that leaves the low bits untouched, then
2612 // we can skip the AND operation.  If the store is from a sign-extension
2613 // (a left shift, then right shift) we can skip both.
2614 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2615   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2616   if( progress != NULL ) return progress;
2617 
2618   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2619   if( progress != NULL ) return progress;
2620 
2621   // Finally check the default case
2622   return StoreNode::Ideal(phase, can_reshape);
2623 }
2624 
2625 //=============================================================================
2626 //------------------------------Ideal------------------------------------------
2627 // If the store is from an AND mask that leaves the low bits untouched, then
2628 // we can skip the AND operation
2629 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2630   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2631   if( progress != NULL ) return progress;
2632 
2633   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2634   if( progress != NULL ) return progress;
2635 
2636   // Finally check the default case
2637   return StoreNode::Ideal(phase, can_reshape);
2638 }
2639 
2640 //=============================================================================
2641 //------------------------------Identity---------------------------------------
2642 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2643   // No need to card mark when storing a null ptr
2644   Node* my_store = in(MemNode::OopStore);
2645   if (my_store->is_Store()) {
2646     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2647     if( t1 == TypePtr::NULL_PTR ) {
2648       return in(MemNode::Memory);
2649     }
2650   }
2651   return this;
2652 }
2653 
2654 //=============================================================================
2655 //------------------------------Ideal---------------------------------------
2656 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2657   Node* progress = StoreNode::Ideal(phase, can_reshape);
2658   if (progress != NULL) return progress;
2659 
2660   Node* my_store = in(MemNode::OopStore);
2661   if (my_store->is_MergeMem()) {
2662     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2663     set_req(MemNode::OopStore, mem);
2664     return this;
2665   }
2666 
2667   return NULL;
2668 }
2669 
2670 //------------------------------Value-----------------------------------------
2671 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2672   // Either input is TOP ==> the result is TOP
2673   const Type *t = phase->type( in(MemNode::Memory) );
2674   if( t == Type::TOP ) return Type::TOP;
2675   t = phase->type( in(MemNode::Address) );
2676   if( t == Type::TOP ) return Type::TOP;
2677   t = phase->type( in(MemNode::ValueIn) );
2678   if( t == Type::TOP ) return Type::TOP;
2679   // If extra input is TOP ==> the result is TOP
2680   t = phase->type( in(MemNode::OopStore) );
2681   if( t == Type::TOP ) return Type::TOP;
2682 
2683   return StoreNode::Value( phase );
2684 }
2685 
2686 
2687 //=============================================================================
2688 //----------------------------------SCMemProjNode------------------------------
2689 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2690 {
2691   return bottom_type();
2692 }
2693 
2694 //=============================================================================
2695 //----------------------------------LoadStoreNode------------------------------
2696 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2697   : Node(required),
2698     _type(rt),
2699     _adr_type(at)
2700 {
2701   init_req(MemNode::Control, c  );
2702   init_req(MemNode::Memory , mem);
2703   init_req(MemNode::Address, adr);
2704   init_req(MemNode::ValueIn, val);
2705   init_class_id(Class_LoadStore);
2706 }
2707 
2708 uint LoadStoreNode::ideal_reg() const {
2709   return _type->ideal_reg();
2710 }
2711 
2712 bool LoadStoreNode::result_not_used() const {
2713   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2714     Node *x = fast_out(i);
2715     if (x->Opcode() == Op_SCMemProj) continue;
2716     return false;
2717   }
2718   return true;
2719 }
2720 
2721 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2722 
2723 //=============================================================================
2724 //----------------------------------LoadStoreConditionalNode--------------------
2725 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2726   init_req(ExpectedIn, ex );
2727 }
2728 
2729 //=============================================================================
2730 //-------------------------------adr_type--------------------------------------
2731 // Do we Match on this edge index or not?  Do not match memory
2732 const TypePtr* ClearArrayNode::adr_type() const {
2733   Node *adr = in(3);
2734   return MemNode::calculate_adr_type(adr->bottom_type());
2735 }
2736 
2737 //------------------------------match_edge-------------------------------------
2738 // Do we Match on this edge index or not?  Do not match memory
2739 uint ClearArrayNode::match_edge(uint idx) const {
2740   return idx > 1;
2741 }
2742 
2743 //------------------------------Identity---------------------------------------
2744 // Clearing a zero length array does nothing
2745 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2746   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2747 }
2748 
2749 //------------------------------Idealize---------------------------------------
2750 // Clearing a short array is faster with stores
2751 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2752   const int unit = BytesPerLong;
2753   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2754   if (!t)  return NULL;
2755   if (!t->is_con())  return NULL;
2756   intptr_t raw_count = t->get_con();
2757   intptr_t size = raw_count;
2758   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2759   // Clearing nothing uses the Identity call.
2760   // Negative clears are possible on dead ClearArrays
2761   // (see jck test stmt114.stmt11402.val).
2762   if (size <= 0 || size % unit != 0)  return NULL;
2763   intptr_t count = size / unit;
2764   // Length too long; use fast hardware clear
2765   if (size > Matcher::init_array_short_size)  return NULL;
2766   Node *mem = in(1);
2767   if( phase->type(mem)==Type::TOP ) return NULL;
2768   Node *adr = in(3);
2769   const Type* at = phase->type(adr);
2770   if( at==Type::TOP ) return NULL;
2771   const TypePtr* atp = at->isa_ptr();
2772   // adjust atp to be the correct array element address type
2773   if (atp == NULL)  atp = TypePtr::BOTTOM;
2774   else              atp = atp->add_offset(Type::OffsetBot);
2775   // Get base for derived pointer purposes
2776   if( adr->Opcode() != Op_AddP ) Unimplemented();
2777   Node *base = adr->in(1);
2778 
2779   Node *zero = phase->makecon(TypeLong::ZERO);
2780   Node *off  = phase->MakeConX(BytesPerLong);
2781   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2782   count--;
2783   while( count-- ) {
2784     mem = phase->transform(mem);
2785     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2786     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2787   }
2788   return mem;
2789 }
2790 
2791 //----------------------------step_through----------------------------------
2792 // Return allocation input memory edge if it is different instance
2793 // or itself if it is the one we are looking for.
2794 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2795   Node* n = *np;
2796   assert(n->is_ClearArray(), "sanity");
2797   intptr_t offset;
2798   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2799   // This method is called only before Allocate nodes are expanded during
2800   // macro nodes expansion. Before that ClearArray nodes are only generated
2801   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2802   assert(alloc != NULL, "should have allocation");
2803   if (alloc->_idx == instance_id) {
2804     // Can not bypass initialization of the instance we are looking for.
2805     return false;
2806   }
2807   // Otherwise skip it.
2808   InitializeNode* init = alloc->initialization();
2809   if (init != NULL)
2810     *np = init->in(TypeFunc::Memory);
2811   else
2812     *np = alloc->in(TypeFunc::Memory);
2813   return true;
2814 }
2815 
2816 //----------------------------clear_memory-------------------------------------
2817 // Generate code to initialize object storage to zero.
2818 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2819                                    intptr_t start_offset,
2820                                    Node* end_offset,
2821                                    PhaseGVN* phase) {
2822   Compile* C = phase->C;
2823   intptr_t offset = start_offset;
2824 
2825   int unit = BytesPerLong;
2826   if ((offset % unit) != 0) {
2827     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2828     adr = phase->transform(adr);
2829     const TypePtr* atp = TypeRawPtr::BOTTOM;
2830     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2831     mem = phase->transform(mem);
2832     offset += BytesPerInt;
2833   }
2834   assert((offset % unit) == 0, "");
2835 
2836   // Initialize the remaining stuff, if any, with a ClearArray.
2837   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2838 }
2839 
2840 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2841                                    Node* start_offset,
2842                                    Node* end_offset,
2843                                    PhaseGVN* phase) {
2844   if (start_offset == end_offset) {
2845     // nothing to do
2846     return mem;
2847   }
2848 
2849   Compile* C = phase->C;
2850   int unit = BytesPerLong;
2851   Node* zbase = start_offset;
2852   Node* zend  = end_offset;
2853 
2854   // Scale to the unit required by the CPU:
2855   if (!Matcher::init_array_count_is_in_bytes) {
2856     Node* shift = phase->intcon(exact_log2(unit));
2857     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2858     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2859   }
2860 
2861   // Bulk clear double-words
2862   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2863   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2864   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2865   return phase->transform(mem);
2866 }
2867 
2868 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2869                                    intptr_t start_offset,
2870                                    intptr_t end_offset,
2871                                    PhaseGVN* phase) {
2872   if (start_offset == end_offset) {
2873     // nothing to do
2874     return mem;
2875   }
2876 
2877   Compile* C = phase->C;
2878   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2879   intptr_t done_offset = end_offset;
2880   if ((done_offset % BytesPerLong) != 0) {
2881     done_offset -= BytesPerInt;
2882   }
2883   if (done_offset > start_offset) {
2884     mem = clear_memory(ctl, mem, dest,
2885                        start_offset, phase->MakeConX(done_offset), phase);
2886   }
2887   if (done_offset < end_offset) { // emit the final 32-bit store
2888     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2889     adr = phase->transform(adr);
2890     const TypePtr* atp = TypeRawPtr::BOTTOM;
2891     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2892     mem = phase->transform(mem);
2893     done_offset += BytesPerInt;
2894   }
2895   assert(done_offset == end_offset, "");
2896   return mem;
2897 }
2898 
2899 //=============================================================================
2900 // Do not match memory edge.
2901 uint StrIntrinsicNode::match_edge(uint idx) const {
2902   return idx == 2 || idx == 3;
2903 }
2904 
2905 //------------------------------Ideal------------------------------------------
2906 // Return a node which is more "ideal" than the current node.  Strip out
2907 // control copies
2908 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2909   if (remove_dead_region(phase, can_reshape)) return this;
2910   // Don't bother trying to transform a dead node
2911   if (in(0) && in(0)->is_top())  return NULL;
2912 
2913   if (can_reshape) {
2914     Node* mem = phase->transform(in(MemNode::Memory));
2915     // If transformed to a MergeMem, get the desired slice
2916     uint alias_idx = phase->C->get_alias_index(adr_type());
2917     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2918     if (mem != in(MemNode::Memory)) {
2919       set_req(MemNode::Memory, mem);
2920       return this;
2921     }
2922   }
2923   return NULL;
2924 }
2925 
2926 //------------------------------Value------------------------------------------
2927 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2928   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2929   return bottom_type();
2930 }
2931 
2932 //=============================================================================
2933 //------------------------------match_edge-------------------------------------
2934 // Do not match memory edge
2935 uint EncodeISOArrayNode::match_edge(uint idx) const {
2936   return idx == 2 || idx == 3; // EncodeISOArray src (Binary dst len)
2937 }
2938 
2939 //------------------------------Ideal------------------------------------------
2940 // Return a node which is more "ideal" than the current node.  Strip out
2941 // control copies
2942 Node *EncodeISOArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2943   return remove_dead_region(phase, can_reshape) ? this : NULL;
2944 }
2945 
2946 //------------------------------Value------------------------------------------
2947 const Type *EncodeISOArrayNode::Value(PhaseTransform *phase) const {
2948   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2949   return bottom_type();
2950 }
2951 
2952 //=============================================================================
2953 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2954   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2955     _adr_type(C->get_adr_type(alias_idx))
2956 {
2957   init_class_id(Class_MemBar);
2958   Node* top = C->top();
2959   init_req(TypeFunc::I_O,top);
2960   init_req(TypeFunc::FramePtr,top);
2961   init_req(TypeFunc::ReturnAdr,top);
2962   if (precedent != NULL)
2963     init_req(TypeFunc::Parms, precedent);
2964 }
2965 
2966 //------------------------------cmp--------------------------------------------
2967 uint MemBarNode::hash() const { return NO_HASH; }
2968 uint MemBarNode::cmp( const Node &n ) const {
2969   return (&n == this);          // Always fail except on self
2970 }
2971 
2972 //------------------------------make-------------------------------------------
2973 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2974   switch (opcode) {
2975   case Op_MemBarAcquire:     return new(C) MemBarAcquireNode(C, atp, pn);
2976   case Op_LoadFence:         return new(C) LoadFenceNode(C, atp, pn);
2977   case Op_MemBarRelease:     return new(C) MemBarReleaseNode(C, atp, pn);
2978   case Op_StoreFence:        return new(C) StoreFenceNode(C, atp, pn);
2979   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
2980   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
2981   case Op_MemBarVolatile:    return new(C) MemBarVolatileNode(C, atp, pn);
2982   case Op_MemBarCPUOrder:    return new(C) MemBarCPUOrderNode(C, atp, pn);
2983   case Op_Initialize:        return new(C) InitializeNode(C, atp, pn);
2984   case Op_MemBarStoreStore:  return new(C) MemBarStoreStoreNode(C, atp, pn);
2985   default: ShouldNotReachHere(); return NULL;
2986   }
2987 }
2988 
2989 //------------------------------Ideal------------------------------------------
2990 // Return a node which is more "ideal" than the current node.  Strip out
2991 // control copies
2992 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2993   if (remove_dead_region(phase, can_reshape)) return this;
2994   // Don't bother trying to transform a dead node
2995   if (in(0) && in(0)->is_top()) {
2996     return NULL;
2997   }
2998 
2999   // Eliminate volatile MemBars for scalar replaced objects.
3000   if (can_reshape && req() == (Precedent+1)) {
3001     bool eliminate = false;
3002     int opc = Opcode();
3003     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
3004       // Volatile field loads and stores.
3005       Node* my_mem = in(MemBarNode::Precedent);
3006       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
3007       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
3008         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
3009         // replace this Precedent (decodeN) with the Load instead.
3010         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
3011           Node* load_node = my_mem->in(1);
3012           set_req(MemBarNode::Precedent, load_node);
3013           phase->is_IterGVN()->_worklist.push(my_mem);
3014           my_mem = load_node;
3015         } else {
3016           assert(my_mem->unique_out() == this, "sanity");
3017           del_req(Precedent);
3018           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
3019           my_mem = NULL;
3020         }
3021       }
3022       if (my_mem != NULL && my_mem->is_Mem()) {
3023         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
3024         // Check for scalar replaced object reference.
3025         if( t_oop != NULL && t_oop->is_known_instance_field() &&
3026             t_oop->offset() != Type::OffsetBot &&
3027             t_oop->offset() != Type::OffsetTop) {
3028           eliminate = true;
3029         }
3030       }
3031     } else if (opc == Op_MemBarRelease) {
3032       // Final field stores.
3033       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
3034       if ((alloc != NULL) && alloc->is_Allocate() &&
3035           alloc->as_Allocate()->_is_non_escaping) {
3036         // The allocated object does not escape.
3037         eliminate = true;
3038       }
3039     }
3040     if (eliminate) {
3041       // Replace MemBar projections by its inputs.
3042       PhaseIterGVN* igvn = phase->is_IterGVN();
3043       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
3044       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
3045       // Must return either the original node (now dead) or a new node
3046       // (Do not return a top here, since that would break the uniqueness of top.)
3047       return new (phase->C) ConINode(TypeInt::ZERO);
3048     }
3049   }
3050   return NULL;
3051 }
3052 
3053 //------------------------------Value------------------------------------------
3054 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
3055   if( !in(0) ) return Type::TOP;
3056   if( phase->type(in(0)) == Type::TOP )
3057     return Type::TOP;
3058   return TypeTuple::MEMBAR;
3059 }
3060 
3061 //------------------------------match------------------------------------------
3062 // Construct projections for memory.
3063 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3064   switch (proj->_con) {
3065   case TypeFunc::Control:
3066   case TypeFunc::Memory:
3067     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3068   }
3069   ShouldNotReachHere();
3070   return NULL;
3071 }
3072 
3073 //===========================InitializeNode====================================
3074 // SUMMARY:
3075 // This node acts as a memory barrier on raw memory, after some raw stores.
3076 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3077 // The Initialize can 'capture' suitably constrained stores as raw inits.
3078 // It can coalesce related raw stores into larger units (called 'tiles').
3079 // It can avoid zeroing new storage for memory units which have raw inits.
3080 // At macro-expansion, it is marked 'complete', and does not optimize further.
3081 //
3082 // EXAMPLE:
3083 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3084 //   ctl = incoming control; mem* = incoming memory
3085 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3086 // First allocate uninitialized memory and fill in the header:
3087 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3088 //   ctl := alloc.Control; mem* := alloc.Memory*
3089 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3090 // Then initialize to zero the non-header parts of the raw memory block:
3091 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3092 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3093 // After the initialize node executes, the object is ready for service:
3094 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3095 // Suppose its body is immediately initialized as {1,2}:
3096 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3097 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3098 //   mem.SLICE(#short[*]) := store2
3099 //
3100 // DETAILS:
3101 // An InitializeNode collects and isolates object initialization after
3102 // an AllocateNode and before the next possible safepoint.  As a
3103 // memory barrier (MemBarNode), it keeps critical stores from drifting
3104 // down past any safepoint or any publication of the allocation.
3105 // Before this barrier, a newly-allocated object may have uninitialized bits.
3106 // After this barrier, it may be treated as a real oop, and GC is allowed.
3107 //
3108 // The semantics of the InitializeNode include an implicit zeroing of
3109 // the new object from object header to the end of the object.
3110 // (The object header and end are determined by the AllocateNode.)
3111 //
3112 // Certain stores may be added as direct inputs to the InitializeNode.
3113 // These stores must update raw memory, and they must be to addresses
3114 // derived from the raw address produced by AllocateNode, and with
3115 // a constant offset.  They must be ordered by increasing offset.
3116 // The first one is at in(RawStores), the last at in(req()-1).
3117 // Unlike most memory operations, they are not linked in a chain,
3118 // but are displayed in parallel as users of the rawmem output of
3119 // the allocation.
3120 //
3121 // (See comments in InitializeNode::capture_store, which continue
3122 // the example given above.)
3123 //
3124 // When the associated Allocate is macro-expanded, the InitializeNode
3125 // may be rewritten to optimize collected stores.  A ClearArrayNode
3126 // may also be created at that point to represent any required zeroing.
3127 // The InitializeNode is then marked 'complete', prohibiting further
3128 // capturing of nearby memory operations.
3129 //
3130 // During macro-expansion, all captured initializations which store
3131 // constant values of 32 bits or smaller are coalesced (if advantageous)
3132 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3133 // initialized in fewer memory operations.  Memory words which are
3134 // covered by neither tiles nor non-constant stores are pre-zeroed
3135 // by explicit stores of zero.  (The code shape happens to do all
3136 // zeroing first, then all other stores, with both sequences occurring
3137 // in order of ascending offsets.)
3138 //
3139 // Alternatively, code may be inserted between an AllocateNode and its
3140 // InitializeNode, to perform arbitrary initialization of the new object.
3141 // E.g., the object copying intrinsics insert complex data transfers here.
3142 // The initialization must then be marked as 'complete' disable the
3143 // built-in zeroing semantics and the collection of initializing stores.
3144 //
3145 // While an InitializeNode is incomplete, reads from the memory state
3146 // produced by it are optimizable if they match the control edge and
3147 // new oop address associated with the allocation/initialization.
3148 // They return a stored value (if the offset matches) or else zero.
3149 // A write to the memory state, if it matches control and address,
3150 // and if it is to a constant offset, may be 'captured' by the
3151 // InitializeNode.  It is cloned as a raw memory operation and rewired
3152 // inside the initialization, to the raw oop produced by the allocation.
3153 // Operations on addresses which are provably distinct (e.g., to
3154 // other AllocateNodes) are allowed to bypass the initialization.
3155 //
3156 // The effect of all this is to consolidate object initialization
3157 // (both arrays and non-arrays, both piecewise and bulk) into a
3158 // single location, where it can be optimized as a unit.
3159 //
3160 // Only stores with an offset less than TrackedInitializationLimit words
3161 // will be considered for capture by an InitializeNode.  This puts a
3162 // reasonable limit on the complexity of optimized initializations.
3163 
3164 //---------------------------InitializeNode------------------------------------
3165 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3166   : _is_complete(Incomplete), _does_not_escape(false),
3167     MemBarNode(C, adr_type, rawoop)
3168 {
3169   init_class_id(Class_Initialize);
3170 
3171   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3172   assert(in(RawAddress) == rawoop, "proper init");
3173   // Note:  allocation() can be NULL, for secondary initialization barriers
3174 }
3175 
3176 // Since this node is not matched, it will be processed by the
3177 // register allocator.  Declare that there are no constraints
3178 // on the allocation of the RawAddress edge.
3179 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3180   // This edge should be set to top, by the set_complete.  But be conservative.
3181   if (idx == InitializeNode::RawAddress)
3182     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3183   return RegMask::Empty;
3184 }
3185 
3186 Node* InitializeNode::memory(uint alias_idx) {
3187   Node* mem = in(Memory);
3188   if (mem->is_MergeMem()) {
3189     return mem->as_MergeMem()->memory_at(alias_idx);
3190   } else {
3191     // incoming raw memory is not split
3192     return mem;
3193   }
3194 }
3195 
3196 bool InitializeNode::is_non_zero() {
3197   if (is_complete())  return false;
3198   remove_extra_zeroes();
3199   return (req() > RawStores);
3200 }
3201 
3202 void InitializeNode::set_complete(PhaseGVN* phase) {
3203   assert(!is_complete(), "caller responsibility");
3204   _is_complete = Complete;
3205 
3206   // After this node is complete, it contains a bunch of
3207   // raw-memory initializations.  There is no need for
3208   // it to have anything to do with non-raw memory effects.
3209   // Therefore, tell all non-raw users to re-optimize themselves,
3210   // after skipping the memory effects of this initialization.
3211   PhaseIterGVN* igvn = phase->is_IterGVN();
3212   if (igvn)  igvn->add_users_to_worklist(this);
3213 }
3214 
3215 // convenience function
3216 // return false if the init contains any stores already
3217 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3218   InitializeNode* init = initialization();
3219   if (init == NULL || init->is_complete())  return false;
3220   init->remove_extra_zeroes();
3221   // for now, if this allocation has already collected any inits, bail:
3222   if (init->is_non_zero())  return false;
3223   init->set_complete(phase);
3224   return true;
3225 }
3226 
3227 void InitializeNode::remove_extra_zeroes() {
3228   if (req() == RawStores)  return;
3229   Node* zmem = zero_memory();
3230   uint fill = RawStores;
3231   for (uint i = fill; i < req(); i++) {
3232     Node* n = in(i);
3233     if (n->is_top() || n == zmem)  continue;  // skip
3234     if (fill < i)  set_req(fill, n);          // compact
3235     ++fill;
3236   }
3237   // delete any empty spaces created:
3238   while (fill < req()) {
3239     del_req(fill);
3240   }
3241 }
3242 
3243 // Helper for remembering which stores go with which offsets.
3244 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3245   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3246   intptr_t offset = -1;
3247   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3248                                                phase, offset);
3249   if (base == NULL)     return -1;  // something is dead,
3250   if (offset < 0)       return -1;  //        dead, dead
3251   return offset;
3252 }
3253 
3254 // Helper for proving that an initialization expression is
3255 // "simple enough" to be folded into an object initialization.
3256 // Attempts to prove that a store's initial value 'n' can be captured
3257 // within the initialization without creating a vicious cycle, such as:
3258 //     { Foo p = new Foo(); p.next = p; }
3259 // True for constants and parameters and small combinations thereof.
3260 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3261   if (n == NULL)      return true;   // (can this really happen?)
3262   if (n->is_Proj())   n = n->in(0);
3263   if (n == this)      return false;  // found a cycle
3264   if (n->is_Con())    return true;
3265   if (n->is_Start())  return true;   // params, etc., are OK
3266   if (n->is_Root())   return true;   // even better
3267 
3268   Node* ctl = n->in(0);
3269   if (ctl != NULL && !ctl->is_top()) {
3270     if (ctl->is_Proj())  ctl = ctl->in(0);
3271     if (ctl == this)  return false;
3272 
3273     // If we already know that the enclosing memory op is pinned right after
3274     // the init, then any control flow that the store has picked up
3275     // must have preceded the init, or else be equal to the init.
3276     // Even after loop optimizations (which might change control edges)
3277     // a store is never pinned *before* the availability of its inputs.
3278     if (!MemNode::all_controls_dominate(n, this))
3279       return false;                  // failed to prove a good control
3280   }
3281 
3282   // Check data edges for possible dependencies on 'this'.
3283   if ((count += 1) > 20)  return false;  // complexity limit
3284   for (uint i = 1; i < n->req(); i++) {
3285     Node* m = n->in(i);
3286     if (m == NULL || m == n || m->is_top())  continue;
3287     uint first_i = n->find_edge(m);
3288     if (i != first_i)  continue;  // process duplicate edge just once
3289     if (!detect_init_independence(m, count)) {
3290       return false;
3291     }
3292   }
3293 
3294   return true;
3295 }
3296 
3297 // Here are all the checks a Store must pass before it can be moved into
3298 // an initialization.  Returns zero if a check fails.
3299 // On success, returns the (constant) offset to which the store applies,
3300 // within the initialized memory.
3301 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3302   const int FAIL = 0;
3303   if (st->req() != MemNode::ValueIn + 1)
3304     return FAIL;                // an inscrutable StoreNode (card mark?)
3305   Node* ctl = st->in(MemNode::Control);
3306   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3307     return FAIL;                // must be unconditional after the initialization
3308   Node* mem = st->in(MemNode::Memory);
3309   if (!(mem->is_Proj() && mem->in(0) == this))
3310     return FAIL;                // must not be preceded by other stores
3311   Node* adr = st->in(MemNode::Address);
3312   intptr_t offset;
3313   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3314   if (alloc == NULL)
3315     return FAIL;                // inscrutable address
3316   if (alloc != allocation())
3317     return FAIL;                // wrong allocation!  (store needs to float up)
3318   Node* val = st->in(MemNode::ValueIn);
3319   int complexity_count = 0;
3320   if (!detect_init_independence(val, complexity_count))
3321     return FAIL;                // stored value must be 'simple enough'
3322 
3323   // The Store can be captured only if nothing after the allocation
3324   // and before the Store is using the memory location that the store
3325   // overwrites.
3326   bool failed = false;
3327   // If is_complete_with_arraycopy() is true the shape of the graph is
3328   // well defined and is safe so no need for extra checks.
3329   if (!is_complete_with_arraycopy()) {
3330     // We are going to look at each use of the memory state following
3331     // the allocation to make sure nothing reads the memory that the
3332     // Store writes.
3333     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3334     int alias_idx = phase->C->get_alias_index(t_adr);
3335     ResourceMark rm;
3336     Unique_Node_List mems;
3337     mems.push(mem);
3338     Node* unique_merge = NULL;
3339     for (uint next = 0; next < mems.size(); ++next) {
3340       Node *m  = mems.at(next);
3341       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3342         Node *n = m->fast_out(j);
3343         if (n->outcnt() == 0) {
3344           continue;
3345         }
3346         if (n == st) {
3347           continue;
3348         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3349           // If the control of this use is different from the control
3350           // of the Store which is right after the InitializeNode then
3351           // this node cannot be between the InitializeNode and the
3352           // Store.
3353           continue;
3354         } else if (n->is_MergeMem()) {
3355           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3356             // We can hit a MergeMemNode (that will likely go away
3357             // later) that is a direct use of the memory state
3358             // following the InitializeNode on the same slice as the
3359             // store node that we'd like to capture. We need to check
3360             // the uses of the MergeMemNode.
3361             mems.push(n);
3362           }
3363         } else if (n->is_Mem()) {
3364           Node* other_adr = n->in(MemNode::Address);
3365           if (other_adr == adr) {
3366             failed = true;
3367             break;
3368           } else {
3369             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3370             if (other_t_adr != NULL) {
3371               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3372               if (other_alias_idx == alias_idx) {
3373                 // A load from the same memory slice as the store right
3374                 // after the InitializeNode. We check the control of the
3375                 // object/array that is loaded from. If it's the same as
3376                 // the store control then we cannot capture the store.
3377                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3378                 Node* base = other_adr;
3379                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3380                 base = base->in(AddPNode::Base);
3381                 if (base != NULL) {
3382                   base = base->uncast();
3383                   if (base->is_Proj() && base->in(0) == alloc) {
3384                     failed = true;
3385                     break;
3386                   }
3387                 }
3388               }
3389             }
3390           }
3391         } else {
3392           failed = true;
3393           break;
3394         }
3395       }
3396     }
3397   }
3398   if (failed) {
3399     if (!can_reshape) {
3400       // We decided we couldn't capture the store during parsing. We
3401       // should try again during the next IGVN once the graph is
3402       // cleaner.
3403       phase->C->record_for_igvn(st);
3404     }
3405     return FAIL;
3406   }
3407 
3408   return offset;                // success
3409 }
3410 
3411 // Find the captured store in(i) which corresponds to the range
3412 // [start..start+size) in the initialized object.
3413 // If there is one, return its index i.  If there isn't, return the
3414 // negative of the index where it should be inserted.
3415 // Return 0 if the queried range overlaps an initialization boundary
3416 // or if dead code is encountered.
3417 // If size_in_bytes is zero, do not bother with overlap checks.
3418 int InitializeNode::captured_store_insertion_point(intptr_t start,
3419                                                    int size_in_bytes,
3420                                                    PhaseTransform* phase) {
3421   const int FAIL = 0, MAX_STORE = BytesPerLong;
3422 
3423   if (is_complete())
3424     return FAIL;                // arraycopy got here first; punt
3425 
3426   assert(allocation() != NULL, "must be present");
3427 
3428   // no negatives, no header fields:
3429   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3430 
3431   // after a certain size, we bail out on tracking all the stores:
3432   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3433   if (start >= ti_limit)  return FAIL;
3434 
3435   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3436     if (i >= limit)  return -(int)i; // not found; here is where to put it
3437 
3438     Node*    st     = in(i);
3439     intptr_t st_off = get_store_offset(st, phase);
3440     if (st_off < 0) {
3441       if (st != zero_memory()) {
3442         return FAIL;            // bail out if there is dead garbage
3443       }
3444     } else if (st_off > start) {
3445       // ...we are done, since stores are ordered
3446       if (st_off < start + size_in_bytes) {
3447         return FAIL;            // the next store overlaps
3448       }
3449       return -(int)i;           // not found; here is where to put it
3450     } else if (st_off < start) {
3451       if (size_in_bytes != 0 &&
3452           start < st_off + MAX_STORE &&
3453           start < st_off + st->as_Store()->memory_size()) {
3454         return FAIL;            // the previous store overlaps
3455       }
3456     } else {
3457       if (size_in_bytes != 0 &&
3458           st->as_Store()->memory_size() != size_in_bytes) {
3459         return FAIL;            // mismatched store size
3460       }
3461       return i;
3462     }
3463 
3464     ++i;
3465   }
3466 }
3467 
3468 // Look for a captured store which initializes at the offset 'start'
3469 // with the given size.  If there is no such store, and no other
3470 // initialization interferes, then return zero_memory (the memory
3471 // projection of the AllocateNode).
3472 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3473                                           PhaseTransform* phase) {
3474   assert(stores_are_sane(phase), "");
3475   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3476   if (i == 0) {
3477     return NULL;                // something is dead
3478   } else if (i < 0) {
3479     return zero_memory();       // just primordial zero bits here
3480   } else {
3481     Node* st = in(i);           // here is the store at this position
3482     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3483     return st;
3484   }
3485 }
3486 
3487 // Create, as a raw pointer, an address within my new object at 'offset'.
3488 Node* InitializeNode::make_raw_address(intptr_t offset,
3489                                        PhaseTransform* phase) {
3490   Node* addr = in(RawAddress);
3491   if (offset != 0) {
3492     Compile* C = phase->C;
3493     addr = phase->transform( new (C) AddPNode(C->top(), addr,
3494                                                  phase->MakeConX(offset)) );
3495   }
3496   return addr;
3497 }
3498 
3499 // Clone the given store, converting it into a raw store
3500 // initializing a field or element of my new object.
3501 // Caller is responsible for retiring the original store,
3502 // with subsume_node or the like.
3503 //
3504 // From the example above InitializeNode::InitializeNode,
3505 // here are the old stores to be captured:
3506 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3507 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3508 //
3509 // Here is the changed code; note the extra edges on init:
3510 //   alloc = (Allocate ...)
3511 //   rawoop = alloc.RawAddress
3512 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3513 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3514 //   init = (Initialize alloc.Control alloc.Memory rawoop
3515 //                      rawstore1 rawstore2)
3516 //
3517 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3518                                     PhaseTransform* phase, bool can_reshape) {
3519   assert(stores_are_sane(phase), "");
3520 
3521   if (start < 0)  return NULL;
3522   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3523 
3524   Compile* C = phase->C;
3525   int size_in_bytes = st->memory_size();
3526   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3527   if (i == 0)  return NULL;     // bail out
3528   Node* prev_mem = NULL;        // raw memory for the captured store
3529   if (i > 0) {
3530     prev_mem = in(i);           // there is a pre-existing store under this one
3531     set_req(i, C->top());       // temporarily disconnect it
3532     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3533   } else {
3534     i = -i;                     // no pre-existing store
3535     prev_mem = zero_memory();   // a slice of the newly allocated object
3536     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3537       set_req(--i, C->top());   // reuse this edge; it has been folded away
3538     else
3539       ins_req(i, C->top());     // build a new edge
3540   }
3541   Node* new_st = st->clone();
3542   new_st->set_req(MemNode::Control, in(Control));
3543   new_st->set_req(MemNode::Memory,  prev_mem);
3544   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3545   new_st = phase->transform(new_st);
3546 
3547   // At this point, new_st might have swallowed a pre-existing store
3548   // at the same offset, or perhaps new_st might have disappeared,
3549   // if it redundantly stored the same value (or zero to fresh memory).
3550 
3551   // In any case, wire it in:
3552   set_req(i, new_st);
3553 
3554   // The caller may now kill the old guy.
3555   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3556   assert(check_st == new_st || check_st == NULL, "must be findable");
3557   assert(!is_complete(), "");
3558   return new_st;
3559 }
3560 
3561 static bool store_constant(jlong* tiles, int num_tiles,
3562                            intptr_t st_off, int st_size,
3563                            jlong con) {
3564   if ((st_off & (st_size-1)) != 0)
3565     return false;               // strange store offset (assume size==2**N)
3566   address addr = (address)tiles + st_off;
3567   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3568   switch (st_size) {
3569   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3570   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3571   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3572   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3573   default: return false;        // strange store size (detect size!=2**N here)
3574   }
3575   return true;                  // return success to caller
3576 }
3577 
3578 // Coalesce subword constants into int constants and possibly
3579 // into long constants.  The goal, if the CPU permits,
3580 // is to initialize the object with a small number of 64-bit tiles.
3581 // Also, convert floating-point constants to bit patterns.
3582 // Non-constants are not relevant to this pass.
3583 //
3584 // In terms of the running example on InitializeNode::InitializeNode
3585 // and InitializeNode::capture_store, here is the transformation
3586 // of rawstore1 and rawstore2 into rawstore12:
3587 //   alloc = (Allocate ...)
3588 //   rawoop = alloc.RawAddress
3589 //   tile12 = 0x00010002
3590 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3591 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3592 //
3593 void
3594 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3595                                         Node* size_in_bytes,
3596                                         PhaseGVN* phase) {
3597   Compile* C = phase->C;
3598 
3599   assert(stores_are_sane(phase), "");
3600   // Note:  After this pass, they are not completely sane,
3601   // since there may be some overlaps.
3602 
3603   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3604 
3605   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3606   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3607   size_limit = MIN2(size_limit, ti_limit);
3608   size_limit = align_size_up(size_limit, BytesPerLong);
3609   int num_tiles = size_limit / BytesPerLong;
3610 
3611   // allocate space for the tile map:
3612   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3613   jlong  tiles_buf[small_len];
3614   Node*  nodes_buf[small_len];
3615   jlong  inits_buf[small_len];
3616   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3617                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3618   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3619                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3620   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3621                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3622   // tiles: exact bitwise model of all primitive constants
3623   // nodes: last constant-storing node subsumed into the tiles model
3624   // inits: which bytes (in each tile) are touched by any initializations
3625 
3626   //// Pass A: Fill in the tile model with any relevant stores.
3627 
3628   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3629   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3630   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3631   Node* zmem = zero_memory(); // initially zero memory state
3632   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3633     Node* st = in(i);
3634     intptr_t st_off = get_store_offset(st, phase);
3635 
3636     // Figure out the store's offset and constant value:
3637     if (st_off < header_size)             continue; //skip (ignore header)
3638     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3639     int st_size = st->as_Store()->memory_size();
3640     if (st_off + st_size > size_limit)    break;
3641 
3642     // Record which bytes are touched, whether by constant or not.
3643     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3644       continue;                 // skip (strange store size)
3645 
3646     const Type* val = phase->type(st->in(MemNode::ValueIn));
3647     if (!val->singleton())                continue; //skip (non-con store)
3648     BasicType type = val->basic_type();
3649 
3650     jlong con = 0;
3651     switch (type) {
3652     case T_INT:    con = val->is_int()->get_con();  break;
3653     case T_LONG:   con = val->is_long()->get_con(); break;
3654     case T_FLOAT:  con = jint_cast(val->getf());    break;
3655     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3656     default:                              continue; //skip (odd store type)
3657     }
3658 
3659     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3660         st->Opcode() == Op_StoreL) {
3661       continue;                 // This StoreL is already optimal.
3662     }
3663 
3664     // Store down the constant.
3665     store_constant(tiles, num_tiles, st_off, st_size, con);
3666 
3667     intptr_t j = st_off >> LogBytesPerLong;
3668 
3669     if (type == T_INT && st_size == BytesPerInt
3670         && (st_off & BytesPerInt) == BytesPerInt) {
3671       jlong lcon = tiles[j];
3672       if (!Matcher::isSimpleConstant64(lcon) &&
3673           st->Opcode() == Op_StoreI) {
3674         // This StoreI is already optimal by itself.
3675         jint* intcon = (jint*) &tiles[j];
3676         intcon[1] = 0;  // undo the store_constant()
3677 
3678         // If the previous store is also optimal by itself, back up and
3679         // undo the action of the previous loop iteration... if we can.
3680         // But if we can't, just let the previous half take care of itself.
3681         st = nodes[j];
3682         st_off -= BytesPerInt;
3683         con = intcon[0];
3684         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3685           assert(st_off >= header_size, "still ignoring header");
3686           assert(get_store_offset(st, phase) == st_off, "must be");
3687           assert(in(i-1) == zmem, "must be");
3688           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3689           assert(con == tcon->is_int()->get_con(), "must be");
3690           // Undo the effects of the previous loop trip, which swallowed st:
3691           intcon[0] = 0;        // undo store_constant()
3692           set_req(i-1, st);     // undo set_req(i, zmem)
3693           nodes[j] = NULL;      // undo nodes[j] = st
3694           --old_subword;        // undo ++old_subword
3695         }
3696         continue;               // This StoreI is already optimal.
3697       }
3698     }
3699 
3700     // This store is not needed.
3701     set_req(i, zmem);
3702     nodes[j] = st;              // record for the moment
3703     if (st_size < BytesPerLong) // something has changed
3704           ++old_subword;        // includes int/float, but who's counting...
3705     else  ++old_long;
3706   }
3707 
3708   if ((old_subword + old_long) == 0)
3709     return;                     // nothing more to do
3710 
3711   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3712   // Be sure to insert them before overlapping non-constant stores.
3713   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3714   for (int j = 0; j < num_tiles; j++) {
3715     jlong con  = tiles[j];
3716     jlong init = inits[j];
3717     if (con == 0)  continue;
3718     jint con0,  con1;           // split the constant, address-wise
3719     jint init0, init1;          // split the init map, address-wise
3720     { union { jlong con; jint intcon[2]; } u;
3721       u.con = con;
3722       con0  = u.intcon[0];
3723       con1  = u.intcon[1];
3724       u.con = init;
3725       init0 = u.intcon[0];
3726       init1 = u.intcon[1];
3727     }
3728 
3729     Node* old = nodes[j];
3730     assert(old != NULL, "need the prior store");
3731     intptr_t offset = (j * BytesPerLong);
3732 
3733     bool split = !Matcher::isSimpleConstant64(con);
3734 
3735     if (offset < header_size) {
3736       assert(offset + BytesPerInt >= header_size, "second int counts");
3737       assert(*(jint*)&tiles[j] == 0, "junk in header");
3738       split = true;             // only the second word counts
3739       // Example:  int a[] = { 42 ... }
3740     } else if (con0 == 0 && init0 == -1) {
3741       split = true;             // first word is covered by full inits
3742       // Example:  int a[] = { ... foo(), 42 ... }
3743     } else if (con1 == 0 && init1 == -1) {
3744       split = true;             // second word is covered by full inits
3745       // Example:  int a[] = { ... 42, foo() ... }
3746     }
3747 
3748     // Here's a case where init0 is neither 0 nor -1:
3749     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3750     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3751     // In this case the tile is not split; it is (jlong)42.
3752     // The big tile is stored down, and then the foo() value is inserted.
3753     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3754 
3755     Node* ctl = old->in(MemNode::Control);
3756     Node* adr = make_raw_address(offset, phase);
3757     const TypePtr* atp = TypeRawPtr::BOTTOM;
3758 
3759     // One or two coalesced stores to plop down.
3760     Node*    st[2];
3761     intptr_t off[2];
3762     int  nst = 0;
3763     if (!split) {
3764       ++new_long;
3765       off[nst] = offset;
3766       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3767                                   phase->longcon(con), T_LONG, MemNode::unordered);
3768     } else {
3769       // Omit either if it is a zero.
3770       if (con0 != 0) {
3771         ++new_int;
3772         off[nst]  = offset;
3773         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3774                                     phase->intcon(con0), T_INT, MemNode::unordered);
3775       }
3776       if (con1 != 0) {
3777         ++new_int;
3778         offset += BytesPerInt;
3779         adr = make_raw_address(offset, phase);
3780         off[nst]  = offset;
3781         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3782                                     phase->intcon(con1), T_INT, MemNode::unordered);
3783       }
3784     }
3785 
3786     // Insert second store first, then the first before the second.
3787     // Insert each one just before any overlapping non-constant stores.
3788     while (nst > 0) {
3789       Node* st1 = st[--nst];
3790       C->copy_node_notes_to(st1, old);
3791       st1 = phase->transform(st1);
3792       offset = off[nst];
3793       assert(offset >= header_size, "do not smash header");
3794       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3795       guarantee(ins_idx != 0, "must re-insert constant store");
3796       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3797       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3798         set_req(--ins_idx, st1);
3799       else
3800         ins_req(ins_idx, st1);
3801     }
3802   }
3803 
3804   if (PrintCompilation && WizardMode)
3805     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3806                   old_subword, old_long, new_int, new_long);
3807   if (C->log() != NULL)
3808     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3809                    old_subword, old_long, new_int, new_long);
3810 
3811   // Clean up any remaining occurrences of zmem:
3812   remove_extra_zeroes();
3813 }
3814 
3815 // Explore forward from in(start) to find the first fully initialized
3816 // word, and return its offset.  Skip groups of subword stores which
3817 // together initialize full words.  If in(start) is itself part of a
3818 // fully initialized word, return the offset of in(start).  If there
3819 // are no following full-word stores, or if something is fishy, return
3820 // a negative value.
3821 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3822   int       int_map = 0;
3823   intptr_t  int_map_off = 0;
3824   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3825 
3826   for (uint i = start, limit = req(); i < limit; i++) {
3827     Node* st = in(i);
3828 
3829     intptr_t st_off = get_store_offset(st, phase);
3830     if (st_off < 0)  break;  // return conservative answer
3831 
3832     int st_size = st->as_Store()->memory_size();
3833     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3834       return st_off;            // we found a complete word init
3835     }
3836 
3837     // update the map:
3838 
3839     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3840     if (this_int_off != int_map_off) {
3841       // reset the map:
3842       int_map = 0;
3843       int_map_off = this_int_off;
3844     }
3845 
3846     int subword_off = st_off - this_int_off;
3847     int_map |= right_n_bits(st_size) << subword_off;
3848     if ((int_map & FULL_MAP) == FULL_MAP) {
3849       return this_int_off;      // we found a complete word init
3850     }
3851 
3852     // Did this store hit or cross the word boundary?
3853     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3854     if (next_int_off == this_int_off + BytesPerInt) {
3855       // We passed the current int, without fully initializing it.
3856       int_map_off = next_int_off;
3857       int_map >>= BytesPerInt;
3858     } else if (next_int_off > this_int_off + BytesPerInt) {
3859       // We passed the current and next int.
3860       return this_int_off + BytesPerInt;
3861     }
3862   }
3863 
3864   return -1;
3865 }
3866 
3867 
3868 // Called when the associated AllocateNode is expanded into CFG.
3869 // At this point, we may perform additional optimizations.
3870 // Linearize the stores by ascending offset, to make memory
3871 // activity as coherent as possible.
3872 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3873                                       intptr_t header_size,
3874                                       Node* size_in_bytes,
3875                                       PhaseGVN* phase) {
3876   assert(!is_complete(), "not already complete");
3877   assert(stores_are_sane(phase), "");
3878   assert(allocation() != NULL, "must be present");
3879 
3880   remove_extra_zeroes();
3881 
3882   if (ReduceFieldZeroing || ReduceBulkZeroing)
3883     // reduce instruction count for common initialization patterns
3884     coalesce_subword_stores(header_size, size_in_bytes, phase);
3885 
3886   Node* zmem = zero_memory();   // initially zero memory state
3887   Node* inits = zmem;           // accumulating a linearized chain of inits
3888   #ifdef ASSERT
3889   intptr_t first_offset = allocation()->minimum_header_size();
3890   intptr_t last_init_off = first_offset;  // previous init offset
3891   intptr_t last_init_end = first_offset;  // previous init offset+size
3892   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3893   #endif
3894   intptr_t zeroes_done = header_size;
3895 
3896   bool do_zeroing = true;       // we might give up if inits are very sparse
3897   int  big_init_gaps = 0;       // how many large gaps have we seen?
3898 
3899   if (ZeroTLAB)  do_zeroing = false;
3900   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3901 
3902   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3903     Node* st = in(i);
3904     intptr_t st_off = get_store_offset(st, phase);
3905     if (st_off < 0)
3906       break;                    // unknown junk in the inits
3907     if (st->in(MemNode::Memory) != zmem)
3908       break;                    // complicated store chains somehow in list
3909 
3910     int st_size = st->as_Store()->memory_size();
3911     intptr_t next_init_off = st_off + st_size;
3912 
3913     if (do_zeroing && zeroes_done < next_init_off) {
3914       // See if this store needs a zero before it or under it.
3915       intptr_t zeroes_needed = st_off;
3916 
3917       if (st_size < BytesPerInt) {
3918         // Look for subword stores which only partially initialize words.
3919         // If we find some, we must lay down some word-level zeroes first,
3920         // underneath the subword stores.
3921         //
3922         // Examples:
3923         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3924         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3925         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3926         //
3927         // Note:  coalesce_subword_stores may have already done this,
3928         // if it was prompted by constant non-zero subword initializers.
3929         // But this case can still arise with non-constant stores.
3930 
3931         intptr_t next_full_store = find_next_fullword_store(i, phase);
3932 
3933         // In the examples above:
3934         //   in(i)          p   q   r   s     x   y     z
3935         //   st_off        12  13  14  15    12  13    14
3936         //   st_size        1   1   1   1     1   1     1
3937         //   next_full_s.  12  16  16  16    16  16    16
3938         //   z's_done      12  16  16  16    12  16    12
3939         //   z's_needed    12  16  16  16    16  16    16
3940         //   zsize          0   0   0   0     4   0     4
3941         if (next_full_store < 0) {
3942           // Conservative tack:  Zero to end of current word.
3943           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3944         } else {
3945           // Zero to beginning of next fully initialized word.
3946           // Or, don't zero at all, if we are already in that word.
3947           assert(next_full_store >= zeroes_needed, "must go forward");
3948           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3949           zeroes_needed = next_full_store;
3950         }
3951       }
3952 
3953       if (zeroes_needed > zeroes_done) {
3954         intptr_t zsize = zeroes_needed - zeroes_done;
3955         // Do some incremental zeroing on rawmem, in parallel with inits.
3956         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3957         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3958                                               zeroes_done, zeroes_needed,
3959                                               phase);
3960         zeroes_done = zeroes_needed;
3961         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3962           do_zeroing = false;   // leave the hole, next time
3963       }
3964     }
3965 
3966     // Collect the store and move on:
3967     st->set_req(MemNode::Memory, inits);
3968     inits = st;                 // put it on the linearized chain
3969     set_req(i, zmem);           // unhook from previous position
3970 
3971     if (zeroes_done == st_off)
3972       zeroes_done = next_init_off;
3973 
3974     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3975 
3976     #ifdef ASSERT
3977     // Various order invariants.  Weaker than stores_are_sane because
3978     // a large constant tile can be filled in by smaller non-constant stores.
3979     assert(st_off >= last_init_off, "inits do not reverse");
3980     last_init_off = st_off;
3981     const Type* val = NULL;
3982     if (st_size >= BytesPerInt &&
3983         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3984         (int)val->basic_type() < (int)T_OBJECT) {
3985       assert(st_off >= last_tile_end, "tiles do not overlap");
3986       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3987       last_tile_end = MAX2(last_tile_end, next_init_off);
3988     } else {
3989       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3990       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3991       assert(st_off      >= last_init_end, "inits do not overlap");
3992       last_init_end = next_init_off;  // it's a non-tile
3993     }
3994     #endif //ASSERT
3995   }
3996 
3997   remove_extra_zeroes();        // clear out all the zmems left over
3998   add_req(inits);
3999 
4000   if (!ZeroTLAB) {
4001     // If anything remains to be zeroed, zero it all now.
4002     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
4003     // if it is the last unused 4 bytes of an instance, forget about it
4004     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
4005     if (zeroes_done + BytesPerLong >= size_limit) {
4006       assert(allocation() != NULL, "");
4007       if (allocation()->Opcode() == Op_Allocate) {
4008         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
4009         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
4010         if (zeroes_done == k->layout_helper())
4011           zeroes_done = size_limit;
4012       }
4013     }
4014     if (zeroes_done < size_limit) {
4015       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
4016                                             zeroes_done, size_in_bytes, phase);
4017     }
4018   }
4019 
4020   set_complete(phase);
4021   return rawmem;
4022 }
4023 
4024 
4025 #ifdef ASSERT
4026 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
4027   if (is_complete())
4028     return true;                // stores could be anything at this point
4029   assert(allocation() != NULL, "must be present");
4030   intptr_t last_off = allocation()->minimum_header_size();
4031   for (uint i = InitializeNode::RawStores; i < req(); i++) {
4032     Node* st = in(i);
4033     intptr_t st_off = get_store_offset(st, phase);
4034     if (st_off < 0)  continue;  // ignore dead garbage
4035     if (last_off > st_off) {
4036       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
4037       this->dump(2);
4038       assert(false, "ascending store offsets");
4039       return false;
4040     }
4041     last_off = st_off + st->as_Store()->memory_size();
4042   }
4043   return true;
4044 }
4045 #endif //ASSERT
4046 
4047 
4048 
4049 
4050 //============================MergeMemNode=====================================
4051 //
4052 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4053 // contributing store or call operations.  Each contributor provides the memory
4054 // state for a particular "alias type" (see Compile::alias_type).  For example,
4055 // if a MergeMem has an input X for alias category #6, then any memory reference
4056 // to alias category #6 may use X as its memory state input, as an exact equivalent
4057 // to using the MergeMem as a whole.
4058 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4059 //
4060 // (Here, the <N> notation gives the index of the relevant adr_type.)
4061 //
4062 // In one special case (and more cases in the future), alias categories overlap.
4063 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4064 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4065 // it is exactly equivalent to that state W:
4066 //   MergeMem(<Bot>: W) <==> W
4067 //
4068 // Usually, the merge has more than one input.  In that case, where inputs
4069 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4070 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4071 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4072 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4073 //
4074 // A merge can take a "wide" memory state as one of its narrow inputs.
4075 // This simply means that the merge observes out only the relevant parts of
4076 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4077 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4078 //
4079 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4080 // and that memory slices "leak through":
4081 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4082 //
4083 // But, in such a cascade, repeated memory slices can "block the leak":
4084 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4085 //
4086 // In the last example, Y is not part of the combined memory state of the
4087 // outermost MergeMem.  The system must, of course, prevent unschedulable
4088 // memory states from arising, so you can be sure that the state Y is somehow
4089 // a precursor to state Y'.
4090 //
4091 //
4092 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4093 // of each MergeMemNode array are exactly the numerical alias indexes, including
4094 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4095 // Compile::alias_type (and kin) produce and manage these indexes.
4096 //
4097 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4098 // (Note that this provides quick access to the top node inside MergeMem methods,
4099 // without the need to reach out via TLS to Compile::current.)
4100 //
4101 // As a consequence of what was just described, a MergeMem that represents a full
4102 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4103 // containing all alias categories.
4104 //
4105 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4106 //
4107 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4108 // a memory state for the alias type <N>, or else the top node, meaning that
4109 // there is no particular input for that alias type.  Note that the length of
4110 // a MergeMem is variable, and may be extended at any time to accommodate new
4111 // memory states at larger alias indexes.  When merges grow, they are of course
4112 // filled with "top" in the unused in() positions.
4113 //
4114 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4115 // (Top was chosen because it works smoothly with passes like GCM.)
4116 //
4117 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4118 // the type of random VM bits like TLS references.)  Since it is always the
4119 // first non-Bot memory slice, some low-level loops use it to initialize an
4120 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4121 //
4122 //
4123 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4124 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4125 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4126 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4127 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4128 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4129 //
4130 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4131 // really that different from the other memory inputs.  An abbreviation called
4132 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4133 //
4134 //
4135 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4136 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4137 // that "emerges though" the base memory will be marked as excluding the alias types
4138 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4139 //
4140 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4141 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4142 //
4143 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4144 // (It is currently unimplemented.)  As you can see, the resulting merge is
4145 // actually a disjoint union of memory states, rather than an overlay.
4146 //
4147 
4148 //------------------------------MergeMemNode-----------------------------------
4149 Node* MergeMemNode::make_empty_memory() {
4150   Node* empty_memory = (Node*) Compile::current()->top();
4151   assert(empty_memory->is_top(), "correct sentinel identity");
4152   return empty_memory;
4153 }
4154 
4155 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4156   init_class_id(Class_MergeMem);
4157   // all inputs are nullified in Node::Node(int)
4158   // set_input(0, NULL);  // no control input
4159 
4160   // Initialize the edges uniformly to top, for starters.
4161   Node* empty_mem = make_empty_memory();
4162   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4163     init_req(i,empty_mem);
4164   }
4165   assert(empty_memory() == empty_mem, "");
4166 
4167   if( new_base != NULL && new_base->is_MergeMem() ) {
4168     MergeMemNode* mdef = new_base->as_MergeMem();
4169     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4170     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4171       mms.set_memory(mms.memory2());
4172     }
4173     assert(base_memory() == mdef->base_memory(), "");
4174   } else {
4175     set_base_memory(new_base);
4176   }
4177 }
4178 
4179 // Make a new, untransformed MergeMem with the same base as 'mem'.
4180 // If mem is itself a MergeMem, populate the result with the same edges.
4181 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4182   return new(C) MergeMemNode(mem);
4183 }
4184 
4185 //------------------------------cmp--------------------------------------------
4186 uint MergeMemNode::hash() const { return NO_HASH; }
4187 uint MergeMemNode::cmp( const Node &n ) const {
4188   return (&n == this);          // Always fail except on self
4189 }
4190 
4191 //------------------------------Identity---------------------------------------
4192 Node* MergeMemNode::Identity(PhaseTransform *phase) {
4193   // Identity if this merge point does not record any interesting memory
4194   // disambiguations.
4195   Node* base_mem = base_memory();
4196   Node* empty_mem = empty_memory();
4197   if (base_mem != empty_mem) {  // Memory path is not dead?
4198     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4199       Node* mem = in(i);
4200       if (mem != empty_mem && mem != base_mem) {
4201         return this;            // Many memory splits; no change
4202       }
4203     }
4204   }
4205   return base_mem;              // No memory splits; ID on the one true input
4206 }
4207 
4208 //------------------------------Ideal------------------------------------------
4209 // This method is invoked recursively on chains of MergeMem nodes
4210 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4211   // Remove chain'd MergeMems
4212   //
4213   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4214   // relative to the "in(Bot)".  Since we are patching both at the same time,
4215   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4216   // but rewrite each "in(i)" relative to the new "in(Bot)".
4217   Node *progress = NULL;
4218 
4219 
4220   Node* old_base = base_memory();
4221   Node* empty_mem = empty_memory();
4222   if (old_base == empty_mem)
4223     return NULL; // Dead memory path.
4224 
4225   MergeMemNode* old_mbase;
4226   if (old_base != NULL && old_base->is_MergeMem())
4227     old_mbase = old_base->as_MergeMem();
4228   else
4229     old_mbase = NULL;
4230   Node* new_base = old_base;
4231 
4232   // simplify stacked MergeMems in base memory
4233   if (old_mbase)  new_base = old_mbase->base_memory();
4234 
4235   // the base memory might contribute new slices beyond my req()
4236   if (old_mbase)  grow_to_match(old_mbase);
4237 
4238   // Look carefully at the base node if it is a phi.
4239   PhiNode* phi_base;
4240   if (new_base != NULL && new_base->is_Phi())
4241     phi_base = new_base->as_Phi();
4242   else
4243     phi_base = NULL;
4244 
4245   Node*    phi_reg = NULL;
4246   uint     phi_len = (uint)-1;
4247   if (phi_base != NULL && !phi_base->is_copy()) {
4248     // do not examine phi if degraded to a copy
4249     phi_reg = phi_base->region();
4250     phi_len = phi_base->req();
4251     // see if the phi is unfinished
4252     for (uint i = 1; i < phi_len; i++) {
4253       if (phi_base->in(i) == NULL) {
4254         // incomplete phi; do not look at it yet!
4255         phi_reg = NULL;
4256         phi_len = (uint)-1;
4257         break;
4258       }
4259     }
4260   }
4261 
4262   // Note:  We do not call verify_sparse on entry, because inputs
4263   // can normalize to the base_memory via subsume_node or similar
4264   // mechanisms.  This method repairs that damage.
4265 
4266   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4267 
4268   // Look at each slice.
4269   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4270     Node* old_in = in(i);
4271     // calculate the old memory value
4272     Node* old_mem = old_in;
4273     if (old_mem == empty_mem)  old_mem = old_base;
4274     assert(old_mem == memory_at(i), "");
4275 
4276     // maybe update (reslice) the old memory value
4277 
4278     // simplify stacked MergeMems
4279     Node* new_mem = old_mem;
4280     MergeMemNode* old_mmem;
4281     if (old_mem != NULL && old_mem->is_MergeMem())
4282       old_mmem = old_mem->as_MergeMem();
4283     else
4284       old_mmem = NULL;
4285     if (old_mmem == this) {
4286       // This can happen if loops break up and safepoints disappear.
4287       // A merge of BotPtr (default) with a RawPtr memory derived from a
4288       // safepoint can be rewritten to a merge of the same BotPtr with
4289       // the BotPtr phi coming into the loop.  If that phi disappears
4290       // also, we can end up with a self-loop of the mergemem.
4291       // In general, if loops degenerate and memory effects disappear,
4292       // a mergemem can be left looking at itself.  This simply means
4293       // that the mergemem's default should be used, since there is
4294       // no longer any apparent effect on this slice.
4295       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4296       //       from start.  Update the input to TOP.
4297       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4298     }
4299     else if (old_mmem != NULL) {
4300       new_mem = old_mmem->memory_at(i);
4301     }
4302     // else preceding memory was not a MergeMem
4303 
4304     // replace equivalent phis (unfortunately, they do not GVN together)
4305     if (new_mem != NULL && new_mem != new_base &&
4306         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4307       if (new_mem->is_Phi()) {
4308         PhiNode* phi_mem = new_mem->as_Phi();
4309         for (uint i = 1; i < phi_len; i++) {
4310           if (phi_base->in(i) != phi_mem->in(i)) {
4311             phi_mem = NULL;
4312             break;
4313           }
4314         }
4315         if (phi_mem != NULL) {
4316           // equivalent phi nodes; revert to the def
4317           new_mem = new_base;
4318         }
4319       }
4320     }
4321 
4322     // maybe store down a new value
4323     Node* new_in = new_mem;
4324     if (new_in == new_base)  new_in = empty_mem;
4325 
4326     if (new_in != old_in) {
4327       // Warning:  Do not combine this "if" with the previous "if"
4328       // A memory slice might have be be rewritten even if it is semantically
4329       // unchanged, if the base_memory value has changed.
4330       set_req(i, new_in);
4331       progress = this;          // Report progress
4332     }
4333   }
4334 
4335   if (new_base != old_base) {
4336     set_req(Compile::AliasIdxBot, new_base);
4337     // Don't use set_base_memory(new_base), because we need to update du.
4338     assert(base_memory() == new_base, "");
4339     progress = this;
4340   }
4341 
4342   if( base_memory() == this ) {
4343     // a self cycle indicates this memory path is dead
4344     set_req(Compile::AliasIdxBot, empty_mem);
4345   }
4346 
4347   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4348   // Recursion must occur after the self cycle check above
4349   if( base_memory()->is_MergeMem() ) {
4350     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4351     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4352     if( m != NULL && (m->is_top() ||
4353         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4354       // propagate rollup of dead cycle to self
4355       set_req(Compile::AliasIdxBot, empty_mem);
4356     }
4357   }
4358 
4359   if( base_memory() == empty_mem ) {
4360     progress = this;
4361     // Cut inputs during Parse phase only.
4362     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4363     if( !can_reshape ) {
4364       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4365         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4366       }
4367     }
4368   }
4369 
4370   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4371     // Check if PhiNode::Ideal's "Split phis through memory merges"
4372     // transform should be attempted. Look for this->phi->this cycle.
4373     uint merge_width = req();
4374     if (merge_width > Compile::AliasIdxRaw) {
4375       PhiNode* phi = base_memory()->as_Phi();
4376       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4377         if (phi->in(i) == this) {
4378           phase->is_IterGVN()->_worklist.push(phi);
4379           break;
4380         }
4381       }
4382     }
4383   }
4384 
4385   assert(progress || verify_sparse(), "please, no dups of base");
4386   return progress;
4387 }
4388 
4389 //-------------------------set_base_memory-------------------------------------
4390 void MergeMemNode::set_base_memory(Node *new_base) {
4391   Node* empty_mem = empty_memory();
4392   set_req(Compile::AliasIdxBot, new_base);
4393   assert(memory_at(req()) == new_base, "must set default memory");
4394   // Clear out other occurrences of new_base:
4395   if (new_base != empty_mem) {
4396     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4397       if (in(i) == new_base)  set_req(i, empty_mem);
4398     }
4399   }
4400 }
4401 
4402 //------------------------------out_RegMask------------------------------------
4403 const RegMask &MergeMemNode::out_RegMask() const {
4404   return RegMask::Empty;
4405 }
4406 
4407 //------------------------------dump_spec--------------------------------------
4408 #ifndef PRODUCT
4409 void MergeMemNode::dump_spec(outputStream *st) const {
4410   st->print(" {");
4411   Node* base_mem = base_memory();
4412   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4413     Node* mem = memory_at(i);
4414     if (mem == base_mem) { st->print(" -"); continue; }
4415     st->print( " N%d:", mem->_idx );
4416     Compile::current()->get_adr_type(i)->dump_on(st);
4417   }
4418   st->print(" }");
4419 }
4420 #endif // !PRODUCT
4421 
4422 
4423 #ifdef ASSERT
4424 static bool might_be_same(Node* a, Node* b) {
4425   if (a == b)  return true;
4426   if (!(a->is_Phi() || b->is_Phi()))  return false;
4427   // phis shift around during optimization
4428   return true;  // pretty stupid...
4429 }
4430 
4431 // verify a narrow slice (either incoming or outgoing)
4432 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4433   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4434   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4435   if (Node::in_dump())      return;  // muzzle asserts when printing
4436   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4437   assert(n != NULL, "");
4438   // Elide intervening MergeMem's
4439   while (n->is_MergeMem()) {
4440     n = n->as_MergeMem()->memory_at(alias_idx);
4441   }
4442   Compile* C = Compile::current();
4443   const TypePtr* n_adr_type = n->adr_type();
4444   if (n == m->empty_memory()) {
4445     // Implicit copy of base_memory()
4446   } else if (n_adr_type != TypePtr::BOTTOM) {
4447     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4448     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4449   } else {
4450     // A few places like make_runtime_call "know" that VM calls are narrow,
4451     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4452     bool expected_wide_mem = false;
4453     if (n == m->base_memory()) {
4454       expected_wide_mem = true;
4455     } else if (alias_idx == Compile::AliasIdxRaw ||
4456                n == m->memory_at(Compile::AliasIdxRaw)) {
4457       expected_wide_mem = true;
4458     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4459       // memory can "leak through" calls on channels that
4460       // are write-once.  Allow this also.
4461       expected_wide_mem = true;
4462     }
4463     assert(expected_wide_mem, "expected narrow slice replacement");
4464   }
4465 }
4466 #else // !ASSERT
4467 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4468 #endif
4469 
4470 
4471 //-----------------------------memory_at---------------------------------------
4472 Node* MergeMemNode::memory_at(uint alias_idx) const {
4473   assert(alias_idx >= Compile::AliasIdxRaw ||
4474          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4475          "must avoid base_memory and AliasIdxTop");
4476 
4477   // Otherwise, it is a narrow slice.
4478   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4479   Compile *C = Compile::current();
4480   if (is_empty_memory(n)) {
4481     // the array is sparse; empty slots are the "top" node
4482     n = base_memory();
4483     assert(Node::in_dump()
4484            || n == NULL || n->bottom_type() == Type::TOP
4485            || n->adr_type() == NULL // address is TOP
4486            || n->adr_type() == TypePtr::BOTTOM
4487            || n->adr_type() == TypeRawPtr::BOTTOM
4488            || Compile::current()->AliasLevel() == 0,
4489            "must be a wide memory");
4490     // AliasLevel == 0 if we are organizing the memory states manually.
4491     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4492   } else {
4493     // make sure the stored slice is sane
4494     #ifdef ASSERT
4495     if (is_error_reported() || Node::in_dump()) {
4496     } else if (might_be_same(n, base_memory())) {
4497       // Give it a pass:  It is a mostly harmless repetition of the base.
4498       // This can arise normally from node subsumption during optimization.
4499     } else {
4500       verify_memory_slice(this, alias_idx, n);
4501     }
4502     #endif
4503   }
4504   return n;
4505 }
4506 
4507 //---------------------------set_memory_at-------------------------------------
4508 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4509   verify_memory_slice(this, alias_idx, n);
4510   Node* empty_mem = empty_memory();
4511   if (n == base_memory())  n = empty_mem;  // collapse default
4512   uint need_req = alias_idx+1;
4513   if (req() < need_req) {
4514     if (n == empty_mem)  return;  // already the default, so do not grow me
4515     // grow the sparse array
4516     do {
4517       add_req(empty_mem);
4518     } while (req() < need_req);
4519   }
4520   set_req( alias_idx, n );
4521 }
4522 
4523 
4524 
4525 //--------------------------iteration_setup------------------------------------
4526 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4527   if (other != NULL) {
4528     grow_to_match(other);
4529     // invariant:  the finite support of mm2 is within mm->req()
4530     #ifdef ASSERT
4531     for (uint i = req(); i < other->req(); i++) {
4532       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4533     }
4534     #endif
4535   }
4536   // Replace spurious copies of base_memory by top.
4537   Node* base_mem = base_memory();
4538   if (base_mem != NULL && !base_mem->is_top()) {
4539     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4540       if (in(i) == base_mem)
4541         set_req(i, empty_memory());
4542     }
4543   }
4544 }
4545 
4546 //---------------------------grow_to_match-------------------------------------
4547 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4548   Node* empty_mem = empty_memory();
4549   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4550   // look for the finite support of the other memory
4551   for (uint i = other->req(); --i >= req(); ) {
4552     if (other->in(i) != empty_mem) {
4553       uint new_len = i+1;
4554       while (req() < new_len)  add_req(empty_mem);
4555       break;
4556     }
4557   }
4558 }
4559 
4560 //---------------------------verify_sparse-------------------------------------
4561 #ifndef PRODUCT
4562 bool MergeMemNode::verify_sparse() const {
4563   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4564   Node* base_mem = base_memory();
4565   // The following can happen in degenerate cases, since empty==top.
4566   if (is_empty_memory(base_mem))  return true;
4567   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4568     assert(in(i) != NULL, "sane slice");
4569     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4570   }
4571   return true;
4572 }
4573 
4574 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4575   Node* n;
4576   n = mm->in(idx);
4577   if (mem == n)  return true;  // might be empty_memory()
4578   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4579   if (mem == n)  return true;
4580   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4581     if (mem == n)  return true;
4582     if (n == NULL)  break;
4583   }
4584   return false;
4585 }
4586 #endif // !PRODUCT