1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 protected:
  43 #ifdef ASSERT
  44   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  45 #endif
  46   virtual uint size_of() const; // Size is bigger (ASSERT only)
  47 public:
  48   enum { Control,               // When is it safe to do this load?
  49          Memory,                // Chunk of memory is being loaded from
  50          Address,               // Actually address, derived from base
  51          ValueIn,               // Value to store
  52          OopStore               // Preceeding oop store, only in StoreCM
  53   };
  54   typedef enum { unordered = 0,
  55                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  56                  release        // Store has to release or be preceded by MemBarRelease.
  57   } MemOrd;
  58 protected:
  59   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  60     : Node(c0,c1,c2   ) {
  61     init_class_id(Class_Mem);
  62     debug_only(_adr_type=at; adr_type();)
  63   }
  64   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  65     : Node(c0,c1,c2,c3) {
  66     init_class_id(Class_Mem);
  67     debug_only(_adr_type=at; adr_type();)
  68   }
  69   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  70     : Node(c0,c1,c2,c3,c4) {
  71     init_class_id(Class_Mem);
  72     debug_only(_adr_type=at; adr_type();)
  73   }
  74 
  75 public:
  76   // Helpers for the optimizer.  Documented in memnode.cpp.
  77   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  78                                       Node* p2, AllocateNode* a2,
  79                                       PhaseTransform* phase);
  80   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  81 
  82   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  83   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  84   // This one should probably be a phase-specific function:
  85   static bool all_controls_dominate(Node* dom, Node* sub);
  86 
  87   // Find any cast-away of null-ness and keep its control.
  88   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
  89   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
  90 
  91   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  92 
  93   // Shared code for Ideal methods:
  94   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  95 
  96   // Helper function for adr_type() implementations.
  97   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
  98 
  99   // Raw access function, to allow copying of adr_type efficiently in
 100   // product builds and retain the debug info for debug builds.
 101   const TypePtr *raw_adr_type() const {
 102 #ifdef ASSERT
 103     return _adr_type;
 104 #else
 105     return 0;
 106 #endif
 107   }
 108 
 109   // Map a load or store opcode to its corresponding store opcode.
 110   // (Return -1 if unknown.)
 111   virtual int store_Opcode() const { return -1; }
 112 
 113   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 114   virtual BasicType memory_type() const = 0;
 115   virtual int memory_size() const {
 116 #ifdef ASSERT
 117     return type2aelembytes(memory_type(), true);
 118 #else
 119     return type2aelembytes(memory_type());
 120 #endif
 121   }
 122 
 123   // Search through memory states which precede this node (load or store).
 124   // Look for an exact match for the address, with no intervening
 125   // aliased stores.
 126   Node* find_previous_store(PhaseTransform* phase);
 127 
 128   // Can this node (load or store) accurately see a stored value in
 129   // the given memory state?  (The state may or may not be in(Memory).)
 130   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 131 
 132 #ifndef PRODUCT
 133   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 134   virtual void dump_spec(outputStream *st) const;
 135 #endif
 136 };
 137 
 138 //------------------------------LoadNode---------------------------------------
 139 // Load value; requires Memory and Address
 140 class LoadNode : public MemNode {
 141 private:
 142   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 143   // loads that can be reordered, and such requiring acquire semantics to
 144   // adhere to the Java specification.  The required behaviour is stored in
 145   // this field.
 146   const MemOrd _mo;
 147 
 148 protected:
 149   virtual uint cmp(const Node &n) const;
 150   virtual uint size_of() const; // Size is bigger
 151   // Should LoadNode::Ideal() attempt to remove control edges?
 152   virtual bool can_remove_control() const;
 153   const Type* const _type;      // What kind of value is loaded?
 154 public:
 155 
 156   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo)
 157     : MemNode(c,mem,adr,at), _type(rt), _mo(mo) {
 158     init_class_id(Class_Load);
 159   }
 160   inline bool is_unordered() const { return !is_acquire(); }
 161   inline bool is_acquire() const {
 162     assert(_mo == unordered || _mo == acquire, "unexpected");
 163     return _mo == acquire;
 164   }
 165 
 166   // Polymorphic factory method:
 167    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 168                      const TypePtr* at, const Type *rt, BasicType bt, MemOrd mo);
 169 
 170   virtual uint hash()   const;  // Check the type
 171 
 172   // Handle algebraic identities here.  If we have an identity, return the Node
 173   // we are equivalent to.  We look for Load of a Store.
 174   virtual Node *Identity( PhaseTransform *phase );
 175 
 176   // If the load is from Field memory and the pointer is non-null, it might be possible to
 177   // zero out the control input.
 178   // If the offset is constant and the base is an object allocation,
 179   // try to hook me up to the exact initializing store.
 180   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 181 
 182   // Split instance field load through Phi.
 183   Node* split_through_phi(PhaseGVN *phase);
 184 
 185   // Recover original value from boxed values
 186   Node *eliminate_autobox(PhaseGVN *phase);
 187 
 188   // Compute a new Type for this node.  Basically we just do the pre-check,
 189   // then call the virtual add() to set the type.
 190   virtual const Type *Value( PhaseTransform *phase ) const;
 191 
 192   // Common methods for LoadKlass and LoadNKlass nodes.
 193   const Type *klass_value_common( PhaseTransform *phase ) const;
 194   Node *klass_identity_common( PhaseTransform *phase );
 195 
 196   virtual uint ideal_reg() const;
 197   virtual const Type *bottom_type() const;
 198   // Following method is copied from TypeNode:
 199   void set_type(const Type* t) {
 200     assert(t != NULL, "sanity");
 201     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 202     *(const Type**)&_type = t;   // cast away const-ness
 203     // If this node is in the hash table, make sure it doesn't need a rehash.
 204     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 205   }
 206   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 207 
 208   // Do not match memory edge
 209   virtual uint match_edge(uint idx) const;
 210 
 211   // Map a load opcode to its corresponding store opcode.
 212   virtual int store_Opcode() const = 0;
 213 
 214   // Check if the load's memory input is a Phi node with the same control.
 215   bool is_instance_field_load_with_local_phi(Node* ctrl);
 216 
 217 #ifndef PRODUCT
 218   virtual void dump_spec(outputStream *st) const;
 219 #endif
 220 #ifdef ASSERT
 221   // Helper function to allow a raw load without control edge for some cases
 222   static bool is_immutable_value(Node* adr);
 223 #endif
 224 protected:
 225   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 226                                      ciKlass* klass) const;
 227   // depends_only_on_test is almost always true, and needs to be almost always
 228   // true to enable key hoisting & commoning optimizations.  However, for the
 229   // special case of RawPtr loads from TLS top & end, and other loads performed by
 230   // GC barriers, the control edge carries the dependence preventing hoisting past
 231   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 232   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 233   // which produce results (new raw memory state) inside of loops preventing all
 234   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 235   // See comment in macro.cpp, around line 125 expand_allocate_common().
 236   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
 237 
 238 };
 239 
 240 //------------------------------LoadBNode--------------------------------------
 241 // Load a byte (8bits signed) from memory
 242 class LoadBNode : public LoadNode {
 243 public:
 244   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
 245     : LoadNode(c, mem, adr, at, ti, mo) {}
 246   virtual int Opcode() const;
 247   virtual uint ideal_reg() const { return Op_RegI; }
 248   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 249   virtual const Type *Value(PhaseTransform *phase) const;
 250   virtual int store_Opcode() const { return Op_StoreB; }
 251   virtual BasicType memory_type() const { return T_BYTE; }
 252 };
 253 
 254 //------------------------------LoadUBNode-------------------------------------
 255 // Load a unsigned byte (8bits unsigned) from memory
 256 class LoadUBNode : public LoadNode {
 257 public:
 258   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo)
 259     : LoadNode(c, mem, adr, at, ti, mo) {}
 260   virtual int Opcode() const;
 261   virtual uint ideal_reg() const { return Op_RegI; }
 262   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 263   virtual const Type *Value(PhaseTransform *phase) const;
 264   virtual int store_Opcode() const { return Op_StoreB; }
 265   virtual BasicType memory_type() const { return T_BYTE; }
 266 };
 267 
 268 //------------------------------LoadUSNode-------------------------------------
 269 // Load an unsigned short/char (16bits unsigned) from memory
 270 class LoadUSNode : public LoadNode {
 271 public:
 272   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
 273     : LoadNode(c, mem, adr, at, ti, mo) {}
 274   virtual int Opcode() const;
 275   virtual uint ideal_reg() const { return Op_RegI; }
 276   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 277   virtual const Type *Value(PhaseTransform *phase) const;
 278   virtual int store_Opcode() const { return Op_StoreC; }
 279   virtual BasicType memory_type() const { return T_CHAR; }
 280 };
 281 
 282 //------------------------------LoadSNode--------------------------------------
 283 // Load a short (16bits signed) from memory
 284 class LoadSNode : public LoadNode {
 285 public:
 286   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
 287     : LoadNode(c, mem, adr, at, ti, mo) {}
 288   virtual int Opcode() const;
 289   virtual uint ideal_reg() const { return Op_RegI; }
 290   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 291   virtual const Type *Value(PhaseTransform *phase) const;
 292   virtual int store_Opcode() const { return Op_StoreC; }
 293   virtual BasicType memory_type() const { return T_SHORT; }
 294 };
 295 
 296 //------------------------------LoadINode--------------------------------------
 297 // Load an integer from memory
 298 class LoadINode : public LoadNode {
 299 public:
 300   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo)
 301     : LoadNode(c, mem, adr, at, ti, mo) {}
 302   virtual int Opcode() const;
 303   virtual uint ideal_reg() const { return Op_RegI; }
 304   virtual int store_Opcode() const { return Op_StoreI; }
 305   virtual BasicType memory_type() const { return T_INT; }
 306 };
 307 
 308 //------------------------------LoadRangeNode----------------------------------
 309 // Load an array length from the array
 310 class LoadRangeNode : public LoadINode {
 311 public:
 312   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 313     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 314   virtual int Opcode() const;
 315   virtual const Type *Value( PhaseTransform *phase ) const;
 316   virtual Node *Identity( PhaseTransform *phase );
 317   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 318 };
 319 
 320 //------------------------------LoadLNode--------------------------------------
 321 // Load a long from memory
 322 class LoadLNode : public LoadNode {
 323   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 324   virtual uint cmp( const Node &n ) const {
 325     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 326       && LoadNode::cmp(n);
 327   }
 328   virtual uint size_of() const { return sizeof(*this); }
 329   const bool _require_atomic_access;  // is piecewise load forbidden?
 330 
 331 public:
 332   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 333             MemOrd mo, bool require_atomic_access = false)
 334     : LoadNode(c, mem, adr, at, tl, mo), _require_atomic_access(require_atomic_access) {}
 335   virtual int Opcode() const;
 336   virtual uint ideal_reg() const { return Op_RegL; }
 337   virtual int store_Opcode() const { return Op_StoreL; }
 338   virtual BasicType memory_type() const { return T_LONG; }
 339   bool require_atomic_access() { return _require_atomic_access; }
 340   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 341                                 const Type* rt, MemOrd mo);
 342 #ifndef PRODUCT
 343   virtual void dump_spec(outputStream *st) const {
 344     LoadNode::dump_spec(st);
 345     if (_require_atomic_access)  st->print(" Atomic!");
 346   }
 347 #endif
 348 };
 349 
 350 //------------------------------LoadL_unalignedNode----------------------------
 351 // Load a long from unaligned memory
 352 class LoadL_unalignedNode : public LoadLNode {
 353 public:
 354   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo)
 355     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo) {}
 356   virtual int Opcode() const;
 357 };
 358 
 359 //------------------------------LoadFNode--------------------------------------
 360 // Load a float (64 bits) from memory
 361 class LoadFNode : public LoadNode {
 362 public:
 363   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo)
 364     : LoadNode(c, mem, adr, at, t, mo) {}
 365   virtual int Opcode() const;
 366   virtual uint ideal_reg() const { return Op_RegF; }
 367   virtual int store_Opcode() const { return Op_StoreF; }
 368   virtual BasicType memory_type() const { return T_FLOAT; }
 369 };
 370 
 371 //------------------------------LoadDNode--------------------------------------
 372 // Load a double (64 bits) from memory
 373 class LoadDNode : public LoadNode {
 374 public:
 375   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo)
 376     : LoadNode(c, mem, adr, at, t, mo) {}
 377   virtual int Opcode() const;
 378   virtual uint ideal_reg() const { return Op_RegD; }
 379   virtual int store_Opcode() const { return Op_StoreD; }
 380   virtual BasicType memory_type() const { return T_DOUBLE; }
 381 };
 382 
 383 //------------------------------LoadD_unalignedNode----------------------------
 384 // Load a double from unaligned memory
 385 class LoadD_unalignedNode : public LoadDNode {
 386 public:
 387   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo)
 388     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo) {}
 389   virtual int Opcode() const;
 390 };
 391 
 392 //------------------------------LoadPNode--------------------------------------
 393 // Load a pointer from memory (either object or array)
 394 class LoadPNode : public LoadNode {
 395 public:
 396   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo)
 397     : LoadNode(c, mem, adr, at, t, mo) {}
 398   virtual int Opcode() const;
 399   virtual uint ideal_reg() const { return Op_RegP; }
 400   virtual int store_Opcode() const { return Op_StoreP; }
 401   virtual BasicType memory_type() const { return T_ADDRESS; }
 402 };
 403 
 404 
 405 //------------------------------LoadNNode--------------------------------------
 406 // Load a narrow oop from memory (either object or array)
 407 class LoadNNode : public LoadNode {
 408 public:
 409   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo)
 410     : LoadNode(c, mem, adr, at, t, mo) {}
 411   virtual int Opcode() const;
 412   virtual uint ideal_reg() const { return Op_RegN; }
 413   virtual int store_Opcode() const { return Op_StoreN; }
 414   virtual BasicType memory_type() const { return T_NARROWOOP; }
 415 };
 416 
 417 //------------------------------LoadKlassNode----------------------------------
 418 // Load a Klass from an object
 419 class LoadKlassNode : public LoadPNode {
 420 protected:
 421   // In most cases, LoadKlassNode does not have the control input set. If the control
 422   // input is set, it must not be removed (by LoadNode::Ideal()).
 423   virtual bool can_remove_control() const;
 424 public:
 425   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 426     : LoadPNode(c, mem, adr, at, tk, mo) {}
 427   virtual int Opcode() const;
 428   virtual const Type *Value( PhaseTransform *phase ) const;
 429   virtual Node *Identity( PhaseTransform *phase );
 430   virtual bool depends_only_on_test() const { return true; }
 431 
 432   // Polymorphic factory method:
 433   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 434                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 435 };
 436 
 437 //------------------------------LoadNKlassNode---------------------------------
 438 // Load a narrow Klass from an object.
 439 class LoadNKlassNode : public LoadNNode {
 440 public:
 441   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 442     : LoadNNode(c, mem, adr, at, tk, mo) {}
 443   virtual int Opcode() const;
 444   virtual uint ideal_reg() const { return Op_RegN; }
 445   virtual int store_Opcode() const { return Op_StoreNKlass; }
 446   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 447 
 448   virtual const Type *Value( PhaseTransform *phase ) const;
 449   virtual Node *Identity( PhaseTransform *phase );
 450   virtual bool depends_only_on_test() const { return true; }
 451 };
 452 
 453 
 454 //------------------------------StoreNode--------------------------------------
 455 // Store value; requires Store, Address and Value
 456 class StoreNode : public MemNode {
 457 private:
 458   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 459   // stores that can be reordered, and such requiring release semantics to
 460   // adhere to the Java specification.  The required behaviour is stored in
 461   // this field.
 462   const MemOrd _mo;
 463   // Needed for proper cloning.
 464   virtual uint size_of() const { return sizeof(*this); }
 465 protected:
 466   virtual uint cmp( const Node &n ) const;
 467   virtual bool depends_only_on_test() const { return false; }
 468 
 469   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 470   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 471 
 472 public:
 473   // We must ensure that stores of object references will be visible
 474   // only after the object's initialization. So the callers of this
 475   // procedure must indicate that the store requires `release'
 476   // semantics, if the stored value is an object reference that might
 477   // point to a new object and may become externally visible.
 478   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 479     : MemNode(c, mem, adr, at, val), _mo(mo) {
 480     init_class_id(Class_Store);
 481   }
 482   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 483     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 484     init_class_id(Class_Store);
 485   }
 486 
 487   inline bool is_unordered() const { return !is_release(); }
 488   inline bool is_release() const {
 489     assert((_mo == unordered || _mo == release), "unexpected");
 490     return _mo == release;
 491   }
 492 
 493   // Conservatively release stores of object references in order to
 494   // ensure visibility of object initialization.
 495   static inline MemOrd release_if_reference(const BasicType t) {
 496     const MemOrd mo = (t == T_ARRAY ||
 497                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 498                        t == T_OBJECT) ? release : unordered;
 499     return mo;
 500   }
 501 
 502   // Polymorphic factory method
 503   //
 504   // We must ensure that stores of object references will be visible
 505   // only after the object's initialization. So the callers of this
 506   // procedure must indicate that the store requires `release'
 507   // semantics, if the stored value is an object reference that might
 508   // point to a new object and may become externally visible.
 509   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 510                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 511 
 512   virtual uint hash() const;    // Check the type
 513 
 514   // If the store is to Field memory and the pointer is non-null, we can
 515   // zero out the control input.
 516   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 517 
 518   // Compute a new Type for this node.  Basically we just do the pre-check,
 519   // then call the virtual add() to set the type.
 520   virtual const Type *Value( PhaseTransform *phase ) const;
 521 
 522   // Check for identity function on memory (Load then Store at same address)
 523   virtual Node *Identity( PhaseTransform *phase );
 524 
 525   // Do not match memory edge
 526   virtual uint match_edge(uint idx) const;
 527 
 528   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 529 
 530   // Map a store opcode to its corresponding own opcode, trivially.
 531   virtual int store_Opcode() const { return Opcode(); }
 532 
 533   // have all possible loads of the value stored been optimized away?
 534   bool value_never_loaded(PhaseTransform *phase) const;
 535 };
 536 
 537 //------------------------------StoreBNode-------------------------------------
 538 // Store byte to memory
 539 class StoreBNode : public StoreNode {
 540 public:
 541   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 542     : StoreNode(c, mem, adr, at, val, mo) {}
 543   virtual int Opcode() const;
 544   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 545   virtual BasicType memory_type() const { return T_BYTE; }
 546 };
 547 
 548 //------------------------------StoreCNode-------------------------------------
 549 // Store char/short to memory
 550 class StoreCNode : public StoreNode {
 551 public:
 552   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 553     : StoreNode(c, mem, adr, at, val, mo) {}
 554   virtual int Opcode() const;
 555   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 556   virtual BasicType memory_type() const { return T_CHAR; }
 557 };
 558 
 559 //------------------------------StoreINode-------------------------------------
 560 // Store int to memory
 561 class StoreINode : public StoreNode {
 562 public:
 563   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 564     : StoreNode(c, mem, adr, at, val, mo) {}
 565   virtual int Opcode() const;
 566   virtual BasicType memory_type() const { return T_INT; }
 567 };
 568 
 569 //------------------------------StoreLNode-------------------------------------
 570 // Store long to memory
 571 class StoreLNode : public StoreNode {
 572   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 573   virtual uint cmp( const Node &n ) const {
 574     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 575       && StoreNode::cmp(n);
 576   }
 577   virtual uint size_of() const { return sizeof(*this); }
 578   const bool _require_atomic_access;  // is piecewise store forbidden?
 579 
 580 public:
 581   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 582     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 583   virtual int Opcode() const;
 584   virtual BasicType memory_type() const { return T_LONG; }
 585   bool require_atomic_access() { return _require_atomic_access; }
 586   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 587 #ifndef PRODUCT
 588   virtual void dump_spec(outputStream *st) const {
 589     StoreNode::dump_spec(st);
 590     if (_require_atomic_access)  st->print(" Atomic!");
 591   }
 592 #endif
 593 };
 594 
 595 //------------------------------StoreFNode-------------------------------------
 596 // Store float to memory
 597 class StoreFNode : public StoreNode {
 598 public:
 599   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 600     : StoreNode(c, mem, adr, at, val, mo) {}
 601   virtual int Opcode() const;
 602   virtual BasicType memory_type() const { return T_FLOAT; }
 603 };
 604 
 605 //------------------------------StoreDNode-------------------------------------
 606 // Store double to memory
 607 class StoreDNode : public StoreNode {
 608 public:
 609   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 610     : StoreNode(c, mem, adr, at, val, mo) {}
 611   virtual int Opcode() const;
 612   virtual BasicType memory_type() const { return T_DOUBLE; }
 613 };
 614 
 615 //------------------------------StorePNode-------------------------------------
 616 // Store pointer to memory
 617 class StorePNode : public StoreNode {
 618 public:
 619   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 620     : StoreNode(c, mem, adr, at, val, mo) {}
 621   virtual int Opcode() const;
 622   virtual BasicType memory_type() const { return T_ADDRESS; }
 623 };
 624 
 625 //------------------------------StoreNNode-------------------------------------
 626 // Store narrow oop to memory
 627 class StoreNNode : public StoreNode {
 628 public:
 629   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 630     : StoreNode(c, mem, adr, at, val, mo) {}
 631   virtual int Opcode() const;
 632   virtual BasicType memory_type() const { return T_NARROWOOP; }
 633 };
 634 
 635 //------------------------------StoreNKlassNode--------------------------------------
 636 // Store narrow klass to memory
 637 class StoreNKlassNode : public StoreNNode {
 638 public:
 639   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 640     : StoreNNode(c, mem, adr, at, val, mo) {}
 641   virtual int Opcode() const;
 642   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 643 };
 644 
 645 //------------------------------StoreCMNode-----------------------------------
 646 // Store card-mark byte to memory for CM
 647 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 648 // Preceeding equivalent StoreCMs may be eliminated.
 649 class StoreCMNode : public StoreNode {
 650  private:
 651   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 652   virtual uint cmp( const Node &n ) const {
 653     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 654       && StoreNode::cmp(n);
 655   }
 656   virtual uint size_of() const { return sizeof(*this); }
 657   int _oop_alias_idx;   // The alias_idx of OopStore
 658 
 659 public:
 660   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 661     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 662     _oop_alias_idx(oop_alias_idx) {
 663     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 664            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 665            "bad oop alias idx");
 666   }
 667   virtual int Opcode() const;
 668   virtual Node *Identity( PhaseTransform *phase );
 669   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 670   virtual const Type *Value( PhaseTransform *phase ) const;
 671   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 672   int oop_alias_idx() const { return _oop_alias_idx; }
 673 };
 674 
 675 //------------------------------LoadPLockedNode---------------------------------
 676 // Load-locked a pointer from memory (either object or array).
 677 // On Sparc & Intel this is implemented as a normal pointer load.
 678 // On PowerPC and friends it's a real load-locked.
 679 class LoadPLockedNode : public LoadPNode {
 680 public:
 681   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 682     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 683   virtual int Opcode() const;
 684   virtual int store_Opcode() const { return Op_StorePConditional; }
 685   virtual bool depends_only_on_test() const { return true; }
 686 };
 687 
 688 //------------------------------SCMemProjNode---------------------------------------
 689 // This class defines a projection of the memory  state of a store conditional node.
 690 // These nodes return a value, but also update memory.
 691 class SCMemProjNode : public ProjNode {
 692 public:
 693   enum {SCMEMPROJCON = (uint)-2};
 694   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 695   virtual int Opcode() const;
 696   virtual bool      is_CFG() const  { return false; }
 697   virtual const Type *bottom_type() const {return Type::MEMORY;}
 698   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
 699   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 700   virtual const Type *Value( PhaseTransform *phase ) const;
 701 #ifndef PRODUCT
 702   virtual void dump_spec(outputStream *st) const {};
 703 #endif
 704 };
 705 
 706 //------------------------------LoadStoreNode---------------------------
 707 // Note: is_Mem() method returns 'true' for this class.
 708 class LoadStoreNode : public Node {
 709 private:
 710   const Type* const _type;      // What kind of value is loaded?
 711   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 712   virtual uint size_of() const; // Size is bigger
 713 public:
 714   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 715   virtual bool depends_only_on_test() const { return false; }
 716   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 717 
 718   virtual const Type *bottom_type() const { return _type; }
 719   virtual uint ideal_reg() const;
 720   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 721 
 722   bool result_not_used() const;
 723 };
 724 
 725 class LoadStoreConditionalNode : public LoadStoreNode {
 726 public:
 727   enum {
 728     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 729   };
 730   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 731 };
 732 
 733 //------------------------------StorePConditionalNode---------------------------
 734 // Conditionally store pointer to memory, if no change since prior
 735 // load-locked.  Sets flags for success or failure of the store.
 736 class StorePConditionalNode : public LoadStoreConditionalNode {
 737 public:
 738   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 739   virtual int Opcode() const;
 740   // Produces flags
 741   virtual uint ideal_reg() const { return Op_RegFlags; }
 742 };
 743 
 744 //------------------------------StoreIConditionalNode---------------------------
 745 // Conditionally store int to memory, if no change since prior
 746 // load-locked.  Sets flags for success or failure of the store.
 747 class StoreIConditionalNode : public LoadStoreConditionalNode {
 748 public:
 749   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 750   virtual int Opcode() const;
 751   // Produces flags
 752   virtual uint ideal_reg() const { return Op_RegFlags; }
 753 };
 754 
 755 //------------------------------StoreLConditionalNode---------------------------
 756 // Conditionally store long to memory, if no change since prior
 757 // load-locked.  Sets flags for success or failure of the store.
 758 class StoreLConditionalNode : public LoadStoreConditionalNode {
 759 public:
 760   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 761   virtual int Opcode() const;
 762   // Produces flags
 763   virtual uint ideal_reg() const { return Op_RegFlags; }
 764 };
 765 
 766 
 767 //------------------------------CompareAndSwapLNode---------------------------
 768 class CompareAndSwapLNode : public LoadStoreConditionalNode {
 769 public:
 770   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 771   virtual int Opcode() const;
 772 };
 773 
 774 
 775 //------------------------------CompareAndSwapINode---------------------------
 776 class CompareAndSwapINode : public LoadStoreConditionalNode {
 777 public:
 778   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 779   virtual int Opcode() const;
 780 };
 781 
 782 
 783 //------------------------------CompareAndSwapPNode---------------------------
 784 class CompareAndSwapPNode : public LoadStoreConditionalNode {
 785 public:
 786   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 787   virtual int Opcode() const;
 788 };
 789 
 790 //------------------------------CompareAndSwapNNode---------------------------
 791 class CompareAndSwapNNode : public LoadStoreConditionalNode {
 792 public:
 793   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 794   virtual int Opcode() const;
 795 };
 796 
 797 //------------------------------GetAndAddINode---------------------------
 798 class GetAndAddINode : public LoadStoreNode {
 799 public:
 800   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 801   virtual int Opcode() const;
 802 };
 803 
 804 //------------------------------GetAndAddLNode---------------------------
 805 class GetAndAddLNode : public LoadStoreNode {
 806 public:
 807   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 808   virtual int Opcode() const;
 809 };
 810 
 811 
 812 //------------------------------GetAndSetINode---------------------------
 813 class GetAndSetINode : public LoadStoreNode {
 814 public:
 815   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 816   virtual int Opcode() const;
 817 };
 818 
 819 //------------------------------GetAndSetINode---------------------------
 820 class GetAndSetLNode : public LoadStoreNode {
 821 public:
 822   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 823   virtual int Opcode() const;
 824 };
 825 
 826 //------------------------------GetAndSetPNode---------------------------
 827 class GetAndSetPNode : public LoadStoreNode {
 828 public:
 829   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 830   virtual int Opcode() const;
 831 };
 832 
 833 //------------------------------GetAndSetNNode---------------------------
 834 class GetAndSetNNode : public LoadStoreNode {
 835 public:
 836   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 837   virtual int Opcode() const;
 838 };
 839 
 840 //------------------------------ClearArray-------------------------------------
 841 class ClearArrayNode: public Node {
 842 public:
 843   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 844     : Node(ctrl,arymem,word_cnt,base) {
 845     init_class_id(Class_ClearArray);
 846   }
 847   virtual int         Opcode() const;
 848   virtual const Type *bottom_type() const { return Type::MEMORY; }
 849   // ClearArray modifies array elements, and so affects only the
 850   // array memory addressed by the bottom_type of its base address.
 851   virtual const class TypePtr *adr_type() const;
 852   virtual Node *Identity( PhaseTransform *phase );
 853   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 854   virtual uint match_edge(uint idx) const;
 855 
 856   // Clear the given area of an object or array.
 857   // The start offset must always be aligned mod BytesPerInt.
 858   // The end offset must always be aligned mod BytesPerLong.
 859   // Return the new memory.
 860   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 861                             intptr_t start_offset,
 862                             intptr_t end_offset,
 863                             PhaseGVN* phase);
 864   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 865                             intptr_t start_offset,
 866                             Node* end_offset,
 867                             PhaseGVN* phase);
 868   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 869                             Node* start_offset,
 870                             Node* end_offset,
 871                             PhaseGVN* phase);
 872   // Return allocation input memory edge if it is different instance
 873   // or itself if it is the one we are looking for.
 874   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 875 };
 876 
 877 //------------------------------StrIntrinsic-------------------------------
 878 // Base class for Ideal nodes used in String instrinsic code.
 879 class StrIntrinsicNode: public Node {
 880 public:
 881   StrIntrinsicNode(Node* control, Node* char_array_mem,
 882                    Node* s1, Node* c1, Node* s2, Node* c2):
 883     Node(control, char_array_mem, s1, c1, s2, c2) {
 884   }
 885 
 886   StrIntrinsicNode(Node* control, Node* char_array_mem,
 887                    Node* s1, Node* s2, Node* c):
 888     Node(control, char_array_mem, s1, s2, c) {
 889   }
 890 
 891   StrIntrinsicNode(Node* control, Node* char_array_mem,
 892                    Node* s1, Node* s2):
 893     Node(control, char_array_mem, s1, s2) {
 894   }
 895 
 896   virtual bool depends_only_on_test() const { return false; }
 897   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
 898   virtual uint match_edge(uint idx) const;
 899   virtual uint ideal_reg() const { return Op_RegI; }
 900   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 901   virtual const Type *Value(PhaseTransform *phase) const;
 902 };
 903 
 904 //------------------------------StrComp-------------------------------------
 905 class StrCompNode: public StrIntrinsicNode {
 906 public:
 907   StrCompNode(Node* control, Node* char_array_mem,
 908               Node* s1, Node* c1, Node* s2, Node* c2):
 909     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 910   virtual int Opcode() const;
 911   virtual const Type* bottom_type() const { return TypeInt::INT; }
 912 };
 913 
 914 //------------------------------StrEquals-------------------------------------
 915 class StrEqualsNode: public StrIntrinsicNode {
 916 public:
 917   StrEqualsNode(Node* control, Node* char_array_mem,
 918                 Node* s1, Node* s2, Node* c):
 919     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
 920   virtual int Opcode() const;
 921   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 922 };
 923 
 924 //------------------------------StrIndexOf-------------------------------------
 925 class StrIndexOfNode: public StrIntrinsicNode {
 926 public:
 927   StrIndexOfNode(Node* control, Node* char_array_mem,
 928               Node* s1, Node* c1, Node* s2, Node* c2):
 929     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
 930   virtual int Opcode() const;
 931   virtual const Type* bottom_type() const { return TypeInt::INT; }
 932 };
 933 
 934 //------------------------------AryEq---------------------------------------
 935 class AryEqNode: public StrIntrinsicNode {
 936 public:
 937   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
 938     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
 939   virtual int Opcode() const;
 940   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 941 };
 942 
 943 
 944 //------------------------------EncodeISOArray--------------------------------
 945 // encode char[] to byte[] in ISO_8859_1
 946 class EncodeISOArrayNode: public Node {
 947 public:
 948   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
 949   virtual int Opcode() const;
 950   virtual bool depends_only_on_test() const { return false; }
 951   virtual const Type* bottom_type() const { return TypeInt::INT; }
 952   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
 953   virtual uint match_edge(uint idx) const;
 954   virtual uint ideal_reg() const { return Op_RegI; }
 955   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 956   virtual const Type *Value(PhaseTransform *phase) const;
 957 };
 958 
 959 //------------------------------MemBar-----------------------------------------
 960 // There are different flavors of Memory Barriers to match the Java Memory
 961 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
 962 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
 963 // volatile-load.  Monitor-exit and volatile-store act as Release: no
 964 // preceding ref can be moved to after them.  We insert a MemBar-Release
 965 // before a FastUnlock or volatile-store.  All volatiles need to be
 966 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
 967 // separate it from any following volatile-load.
 968 class MemBarNode: public MultiNode {
 969   virtual uint hash() const ;                  // { return NO_HASH; }
 970   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
 971 
 972   virtual uint size_of() const { return sizeof(*this); }
 973   // Memory type this node is serializing.  Usually either rawptr or bottom.
 974   const TypePtr* _adr_type;
 975 
 976 public:
 977   enum {
 978     Precedent = TypeFunc::Parms  // optional edge to force precedence
 979   };
 980   MemBarNode(Compile* C, int alias_idx, Node* precedent);
 981   virtual int Opcode() const = 0;
 982   virtual const class TypePtr *adr_type() const { return _adr_type; }
 983   virtual const Type *Value( PhaseTransform *phase ) const;
 984   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 985   virtual uint match_edge(uint idx) const { return 0; }
 986   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
 987   virtual Node *match( const ProjNode *proj, const Matcher *m );
 988   // Factory method.  Builds a wide or narrow membar.
 989   // Optional 'precedent' becomes an extra edge if not null.
 990   static MemBarNode* make(Compile* C, int opcode,
 991                           int alias_idx = Compile::AliasIdxBot,
 992                           Node* precedent = NULL);
 993 };
 994 
 995 // "Acquire" - no following ref can move before (but earlier refs can
 996 // follow, like an early Load stalled in cache).  Requires multi-cpu
 997 // visibility.  Inserted after a volatile load.
 998 class MemBarAcquireNode: public MemBarNode {
 999 public:
1000   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
1001     : MemBarNode(C, alias_idx, precedent) {}
1002   virtual int Opcode() const;
1003 };
1004 
1005 // "Acquire" - no following ref can move before (but earlier refs can
1006 // follow, like an early Load stalled in cache).  Requires multi-cpu
1007 // visibility.  Inserted independ of any load, as required
1008 // for intrinsic sun.misc.Unsafe.loadFence().
1009 class LoadFenceNode: public MemBarNode {
1010 public:
1011   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1012     : MemBarNode(C, alias_idx, precedent) {}
1013   virtual int Opcode() const;
1014 };
1015 
1016 // "Release" - no earlier ref can move after (but later refs can move
1017 // up, like a speculative pipelined cache-hitting Load).  Requires
1018 // multi-cpu visibility.  Inserted before a volatile store.
1019 class MemBarReleaseNode: public MemBarNode {
1020 public:
1021   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1022     : MemBarNode(C, alias_idx, precedent) {}
1023   virtual int Opcode() const;
1024 };
1025 
1026 // "Release" - no earlier ref can move after (but later refs can move
1027 // up, like a speculative pipelined cache-hitting Load).  Requires
1028 // multi-cpu visibility.  Inserted independent of any store, as required
1029 // for intrinsic sun.misc.Unsafe.storeFence().
1030 class StoreFenceNode: public MemBarNode {
1031 public:
1032   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1033     : MemBarNode(C, alias_idx, precedent) {}
1034   virtual int Opcode() const;
1035 };
1036 
1037 // "Acquire" - no following ref can move before (but earlier refs can
1038 // follow, like an early Load stalled in cache).  Requires multi-cpu
1039 // visibility.  Inserted after a FastLock.
1040 class MemBarAcquireLockNode: public MemBarNode {
1041 public:
1042   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1043     : MemBarNode(C, alias_idx, precedent) {}
1044   virtual int Opcode() const;
1045 };
1046 
1047 // "Release" - no earlier ref can move after (but later refs can move
1048 // up, like a speculative pipelined cache-hitting Load).  Requires
1049 // multi-cpu visibility.  Inserted before a FastUnLock.
1050 class MemBarReleaseLockNode: public MemBarNode {
1051 public:
1052   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1053     : MemBarNode(C, alias_idx, precedent) {}
1054   virtual int Opcode() const;
1055 };
1056 
1057 class MemBarStoreStoreNode: public MemBarNode {
1058 public:
1059   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1060     : MemBarNode(C, alias_idx, precedent) {
1061     init_class_id(Class_MemBarStoreStore);
1062   }
1063   virtual int Opcode() const;
1064 };
1065 
1066 // Ordering between a volatile store and a following volatile load.
1067 // Requires multi-CPU visibility?
1068 class MemBarVolatileNode: public MemBarNode {
1069 public:
1070   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1071     : MemBarNode(C, alias_idx, precedent) {}
1072   virtual int Opcode() const;
1073 };
1074 
1075 // Ordering within the same CPU.  Used to order unsafe memory references
1076 // inside the compiler when we lack alias info.  Not needed "outside" the
1077 // compiler because the CPU does all the ordering for us.
1078 class MemBarCPUOrderNode: public MemBarNode {
1079 public:
1080   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1081     : MemBarNode(C, alias_idx, precedent) {}
1082   virtual int Opcode() const;
1083   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1084 };
1085 
1086 // Isolation of object setup after an AllocateNode and before next safepoint.
1087 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1088 class InitializeNode: public MemBarNode {
1089   friend class AllocateNode;
1090 
1091   enum {
1092     Incomplete    = 0,
1093     Complete      = 1,
1094     WithArraycopy = 2
1095   };
1096   int _is_complete;
1097 
1098   bool _does_not_escape;
1099 
1100 public:
1101   enum {
1102     Control    = TypeFunc::Control,
1103     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1104     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1105     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1106   };
1107 
1108   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1109   virtual int Opcode() const;
1110   virtual uint size_of() const { return sizeof(*this); }
1111   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1112   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1113 
1114   // Manage incoming memory edges via a MergeMem on in(Memory):
1115   Node* memory(uint alias_idx);
1116 
1117   // The raw memory edge coming directly from the Allocation.
1118   // The contents of this memory are *always* all-zero-bits.
1119   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1120 
1121   // Return the corresponding allocation for this initialization (or null if none).
1122   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1123   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1124   AllocateNode* allocation();
1125 
1126   // Anything other than zeroing in this init?
1127   bool is_non_zero();
1128 
1129   // An InitializeNode must completed before macro expansion is done.
1130   // Completion requires that the AllocateNode must be followed by
1131   // initialization of the new memory to zero, then to any initializers.
1132   bool is_complete() { return _is_complete != Incomplete; }
1133   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1134 
1135   // Mark complete.  (Must not yet be complete.)
1136   void set_complete(PhaseGVN* phase);
1137   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1138 
1139   bool does_not_escape() { return _does_not_escape; }
1140   void set_does_not_escape() { _does_not_escape = true; }
1141 
1142 #ifdef ASSERT
1143   // ensure all non-degenerate stores are ordered and non-overlapping
1144   bool stores_are_sane(PhaseTransform* phase);
1145 #endif //ASSERT
1146 
1147   // See if this store can be captured; return offset where it initializes.
1148   // Return 0 if the store cannot be moved (any sort of problem).
1149   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1150 
1151   // Capture another store; reformat it to write my internal raw memory.
1152   // Return the captured copy, else NULL if there is some sort of problem.
1153   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1154 
1155   // Find captured store which corresponds to the range [start..start+size).
1156   // Return my own memory projection (meaning the initial zero bits)
1157   // if there is no such store.  Return NULL if there is a problem.
1158   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1159 
1160   // Called when the associated AllocateNode is expanded into CFG.
1161   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1162                         intptr_t header_size, Node* size_in_bytes,
1163                         PhaseGVN* phase);
1164 
1165  private:
1166   void remove_extra_zeroes();
1167 
1168   // Find out where a captured store should be placed (or already is placed).
1169   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1170                                      PhaseTransform* phase);
1171 
1172   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1173 
1174   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1175 
1176   bool detect_init_independence(Node* n, int& count);
1177 
1178   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1179                                PhaseGVN* phase);
1180 
1181   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1182 };
1183 
1184 //------------------------------MergeMem---------------------------------------
1185 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1186 class MergeMemNode: public Node {
1187   virtual uint hash() const ;                  // { return NO_HASH; }
1188   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1189   friend class MergeMemStream;
1190   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1191 
1192 public:
1193   // If the input is a whole memory state, clone it with all its slices intact.
1194   // Otherwise, make a new memory state with just that base memory input.
1195   // In either case, the result is a newly created MergeMem.
1196   static MergeMemNode* make(Compile* C, Node* base_memory);
1197 
1198   virtual int Opcode() const;
1199   virtual Node *Identity( PhaseTransform *phase );
1200   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1201   virtual uint ideal_reg() const { return NotAMachineReg; }
1202   virtual uint match_edge(uint idx) const { return 0; }
1203   virtual const RegMask &out_RegMask() const;
1204   virtual const Type *bottom_type() const { return Type::MEMORY; }
1205   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1206   // sparse accessors
1207   // Fetch the previously stored "set_memory_at", or else the base memory.
1208   // (Caller should clone it if it is a phi-nest.)
1209   Node* memory_at(uint alias_idx) const;
1210   // set the memory, regardless of its previous value
1211   void set_memory_at(uint alias_idx, Node* n);
1212   // the "base" is the memory that provides the non-finite support
1213   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1214   // warning: setting the base can implicitly set any of the other slices too
1215   void set_base_memory(Node* def);
1216   // sentinel value which denotes a copy of the base memory:
1217   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1218   static Node* make_empty_memory(); // where the sentinel comes from
1219   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1220   // hook for the iterator, to perform any necessary setup
1221   void iteration_setup(const MergeMemNode* other = NULL);
1222   // push sentinels until I am at least as long as the other (semantic no-op)
1223   void grow_to_match(const MergeMemNode* other);
1224   bool verify_sparse() const PRODUCT_RETURN0;
1225 #ifndef PRODUCT
1226   virtual void dump_spec(outputStream *st) const;
1227 #endif
1228 };
1229 
1230 class MergeMemStream : public StackObj {
1231  private:
1232   MergeMemNode*       _mm;
1233   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1234   Node*               _mm_base;  // loop-invariant base memory of _mm
1235   int                 _idx;
1236   int                 _cnt;
1237   Node*               _mem;
1238   Node*               _mem2;
1239   int                 _cnt2;
1240 
1241   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1242     // subsume_node will break sparseness at times, whenever a memory slice
1243     // folds down to a copy of the base ("fat") memory.  In such a case,
1244     // the raw edge will update to base, although it should be top.
1245     // This iterator will recognize either top or base_memory as an
1246     // "empty" slice.  See is_empty, is_empty2, and next below.
1247     //
1248     // The sparseness property is repaired in MergeMemNode::Ideal.
1249     // As long as access to a MergeMem goes through this iterator
1250     // or the memory_at accessor, flaws in the sparseness will
1251     // never be observed.
1252     //
1253     // Also, iteration_setup repairs sparseness.
1254     assert(mm->verify_sparse(), "please, no dups of base");
1255     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1256 
1257     _mm  = mm;
1258     _mm_base = mm->base_memory();
1259     _mm2 = mm2;
1260     _cnt = mm->req();
1261     _idx = Compile::AliasIdxBot-1; // start at the base memory
1262     _mem = NULL;
1263     _mem2 = NULL;
1264   }
1265 
1266 #ifdef ASSERT
1267   Node* check_memory() const {
1268     if (at_base_memory())
1269       return _mm->base_memory();
1270     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1271       return _mm->memory_at(_idx);
1272     else
1273       return _mm_base;
1274   }
1275   Node* check_memory2() const {
1276     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1277   }
1278 #endif
1279 
1280   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1281   void assert_synch() const {
1282     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1283            "no side-effects except through the stream");
1284   }
1285 
1286  public:
1287 
1288   // expected usages:
1289   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1290   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1291 
1292   // iterate over one merge
1293   MergeMemStream(MergeMemNode* mm) {
1294     mm->iteration_setup();
1295     init(mm);
1296     debug_only(_cnt2 = 999);
1297   }
1298   // iterate in parallel over two merges
1299   // only iterates through non-empty elements of mm2
1300   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1301     assert(mm2, "second argument must be a MergeMem also");
1302     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1303     mm->iteration_setup(mm2);
1304     init(mm, mm2);
1305     _cnt2 = mm2->req();
1306   }
1307 #ifdef ASSERT
1308   ~MergeMemStream() {
1309     assert_synch();
1310   }
1311 #endif
1312 
1313   MergeMemNode* all_memory() const {
1314     return _mm;
1315   }
1316   Node* base_memory() const {
1317     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1318     return _mm_base;
1319   }
1320   const MergeMemNode* all_memory2() const {
1321     assert(_mm2 != NULL, "");
1322     return _mm2;
1323   }
1324   bool at_base_memory() const {
1325     return _idx == Compile::AliasIdxBot;
1326   }
1327   int alias_idx() const {
1328     assert(_mem, "must call next 1st");
1329     return _idx;
1330   }
1331 
1332   const TypePtr* adr_type() const {
1333     return Compile::current()->get_adr_type(alias_idx());
1334   }
1335 
1336   const TypePtr* adr_type(Compile* C) const {
1337     return C->get_adr_type(alias_idx());
1338   }
1339   bool is_empty() const {
1340     assert(_mem, "must call next 1st");
1341     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1342     return _mem->is_top();
1343   }
1344   bool is_empty2() const {
1345     assert(_mem2, "must call next 1st");
1346     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1347     return _mem2->is_top();
1348   }
1349   Node* memory() const {
1350     assert(!is_empty(), "must not be empty");
1351     assert_synch();
1352     return _mem;
1353   }
1354   // get the current memory, regardless of empty or non-empty status
1355   Node* force_memory() const {
1356     assert(!is_empty() || !at_base_memory(), "");
1357     // Use _mm_base to defend against updates to _mem->base_memory().
1358     Node *mem = _mem->is_top() ? _mm_base : _mem;
1359     assert(mem == check_memory(), "");
1360     return mem;
1361   }
1362   Node* memory2() const {
1363     assert(_mem2 == check_memory2(), "");
1364     return _mem2;
1365   }
1366   void set_memory(Node* mem) {
1367     if (at_base_memory()) {
1368       // Note that this does not change the invariant _mm_base.
1369       _mm->set_base_memory(mem);
1370     } else {
1371       _mm->set_memory_at(_idx, mem);
1372     }
1373     _mem = mem;
1374     assert_synch();
1375   }
1376 
1377   // Recover from a side effect to the MergeMemNode.
1378   void set_memory() {
1379     _mem = _mm->in(_idx);
1380   }
1381 
1382   bool next()  { return next(false); }
1383   bool next2() { return next(true); }
1384 
1385   bool next_non_empty()  { return next_non_empty(false); }
1386   bool next_non_empty2() { return next_non_empty(true); }
1387   // next_non_empty2 can yield states where is_empty() is true
1388 
1389  private:
1390   // find the next item, which might be empty
1391   bool next(bool have_mm2) {
1392     assert((_mm2 != NULL) == have_mm2, "use other next");
1393     assert_synch();
1394     if (++_idx < _cnt) {
1395       // Note:  This iterator allows _mm to be non-sparse.
1396       // It behaves the same whether _mem is top or base_memory.
1397       _mem = _mm->in(_idx);
1398       if (have_mm2)
1399         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1400       return true;
1401     }
1402     return false;
1403   }
1404 
1405   // find the next non-empty item
1406   bool next_non_empty(bool have_mm2) {
1407     while (next(have_mm2)) {
1408       if (!is_empty()) {
1409         // make sure _mem2 is filled in sensibly
1410         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1411         return true;
1412       } else if (have_mm2 && !is_empty2()) {
1413         return true;   // is_empty() == true
1414       }
1415     }
1416     return false;
1417   }
1418 };
1419 
1420 //------------------------------Prefetch---------------------------------------
1421 
1422 // Non-faulting prefetch load.  Prefetch for many reads.
1423 class PrefetchReadNode : public Node {
1424 public:
1425   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1426   virtual int Opcode() const;
1427   virtual uint ideal_reg() const { return NotAMachineReg; }
1428   virtual uint match_edge(uint idx) const { return idx==2; }
1429   virtual const Type *bottom_type() const { return Type::ABIO; }
1430 };
1431 
1432 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
1433 class PrefetchWriteNode : public Node {
1434 public:
1435   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1436   virtual int Opcode() const;
1437   virtual uint ideal_reg() const { return NotAMachineReg; }
1438   virtual uint match_edge(uint idx) const { return idx==2; }
1439   virtual const Type *bottom_type() const { return Type::ABIO; }
1440 };
1441 
1442 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1443 class PrefetchAllocationNode : public Node {
1444 public:
1445   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1446   virtual int Opcode() const;
1447   virtual uint ideal_reg() const { return NotAMachineReg; }
1448   virtual uint match_edge(uint idx) const { return idx==2; }
1449   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1450 };
1451 
1452 #endif // SHARE_VM_OPTO_MEMNODE_HPP