1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/locknode.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/parse.hpp"
  34 #include "opto/rootnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 // Static array so we can figure out which bytecodes stop us from compiling
  42 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  43 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  44 
  45 int nodes_created              = 0;
  46 int methods_parsed             = 0;
  47 int methods_seen               = 0;
  48 int blocks_parsed              = 0;
  49 int blocks_seen                = 0;
  50 
  51 int explicit_null_checks_inserted = 0;
  52 int explicit_null_checks_elided   = 0;
  53 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  54 int implicit_null_throws          = 0;
  55 
  56 int reclaim_idx  = 0;
  57 int reclaim_in   = 0;
  58 int reclaim_node = 0;
  59 
  60 #ifndef PRODUCT
  61 bool Parse::BytecodeParseHistogram::_initialized = false;
  62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  66 #endif
  67 
  68 //------------------------------print_statistics-------------------------------
  69 #ifndef PRODUCT
  70 void Parse::print_statistics() {
  71   tty->print_cr("--- Compiler Statistics ---");
  72   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  73   tty->print("  Nodes created: %d", nodes_created);
  74   tty->cr();
  75   if (methods_seen != methods_parsed)
  76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  77   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  78 
  79   if( explicit_null_checks_inserted )
  80     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  81   if( all_null_checks_found )
  82     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  83                   (100*implicit_null_checks)/all_null_checks_found);
  84   if( implicit_null_throws )
  85     tty->print_cr("%d implicit null exceptions at runtime",
  86                   implicit_null_throws);
  87 
  88   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  89     BytecodeParseHistogram::print();
  90   }
  91 }
  92 #endif
  93 
  94 //------------------------------ON STACK REPLACEMENT---------------------------
  95 
  96 // Construct a node which can be used to get incoming state for
  97 // on stack replacement.
  98 Node *Parse::fetch_interpreter_state(int index,
  99                                      BasicType bt,
 100                                      Node *local_addrs,
 101                                      Node *local_addrs_base) {
 102   Node *mem = memory(Compile::AliasIdxRaw);
 103   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 104   Node *ctl = control();
 105 
 106   // Very similar to LoadNode::make, except we handle un-aligned longs and
 107   // doubles on Sparc.  Intel can handle them just fine directly.
 108   Node *l;
 109   switch (bt) {                // Signature is flattened
 110   case T_INT:     l = new (C) LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT,        MemNode::unordered); break;
 111   case T_FLOAT:   l = new (C) LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT,         MemNode::unordered); break;
 112   case T_ADDRESS: l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,  MemNode::unordered); break;
 113   case T_OBJECT:  l = new (C) LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break;
 114   case T_LONG:
 115   case T_DOUBLE: {
 116     // Since arguments are in reverse order, the argument address 'adr'
 117     // refers to the back half of the long/double.  Recompute adr.
 118     adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize);
 119     if (Matcher::misaligned_doubles_ok) {
 120       l = (bt == T_DOUBLE)
 121         ? (Node*)new (C) LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered)
 122         : (Node*)new (C) LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered);
 123     } else {
 124       l = (bt == T_DOUBLE)
 125         ? (Node*)new (C) LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered)
 126         : (Node*)new (C) LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered);
 127     }
 128     break;
 129   }
 130   default: ShouldNotReachHere();
 131   }
 132   return _gvn.transform(l);
 133 }
 134 
 135 // Helper routine to prevent the interpreter from handing
 136 // unexpected typestate to an OSR method.
 137 // The Node l is a value newly dug out of the interpreter frame.
 138 // The type is the type predicted by ciTypeFlow.  Note that it is
 139 // not a general type, but can only come from Type::get_typeflow_type.
 140 // The safepoint is a map which will feed an uncommon trap.
 141 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 142                                     SafePointNode* &bad_type_exit) {
 143 
 144   const TypeOopPtr* tp = type->isa_oopptr();
 145 
 146   // TypeFlow may assert null-ness if a type appears unloaded.
 147   if (type == TypePtr::NULL_PTR ||
 148       (tp != NULL && !tp->klass()->is_loaded())) {
 149     // Value must be null, not a real oop.
 150     Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) );
 151     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 152     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 153     set_control(_gvn.transform( new (C) IfTrueNode(iff) ));
 154     Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) );
 155     bad_type_exit->control()->add_req(bad_type);
 156     l = null();
 157   }
 158 
 159   // Typeflow can also cut off paths from the CFG, based on
 160   // types which appear unloaded, or call sites which appear unlinked.
 161   // When paths are cut off, values at later merge points can rise
 162   // toward more specific classes.  Make sure these specific classes
 163   // are still in effect.
 164   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 165     // TypeFlow asserted a specific object type.  Value must have that type.
 166     Node* bad_type_ctrl = NULL;
 167     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 168     bad_type_exit->control()->add_req(bad_type_ctrl);
 169   }
 170 
 171   BasicType bt_l = _gvn.type(l)->basic_type();
 172   BasicType bt_t = type->basic_type();
 173   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 174   return l;
 175 }
 176 
 177 // Helper routine which sets up elements of the initial parser map when
 178 // performing a parse for on stack replacement.  Add values into map.
 179 // The only parameter contains the address of a interpreter arguments.
 180 void Parse::load_interpreter_state(Node* osr_buf) {
 181   int index;
 182   int max_locals = jvms()->loc_size();
 183   int max_stack  = jvms()->stk_size();
 184 
 185 
 186   // Mismatch between method and jvms can occur since map briefly held
 187   // an OSR entry state (which takes up one RawPtr word).
 188   assert(max_locals == method()->max_locals(), "sanity");
 189   assert(max_stack  >= method()->max_stack(),  "sanity");
 190   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 191   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 192 
 193   // Find the start block.
 194   Block* osr_block = start_block();
 195   assert(osr_block->start() == osr_bci(), "sanity");
 196 
 197   // Set initial BCI.
 198   set_parse_bci(osr_block->start());
 199 
 200   // Set initial stack depth.
 201   set_sp(osr_block->start_sp());
 202 
 203   // Check bailouts.  We currently do not perform on stack replacement
 204   // of loops in catch blocks or loops which branch with a non-empty stack.
 205   if (sp() != 0) {
 206     C->record_method_not_compilable("OSR starts with non-empty stack");
 207     return;
 208   }
 209   // Do not OSR inside finally clauses:
 210   if (osr_block->has_trap_at(osr_block->start())) {
 211     C->record_method_not_compilable("OSR starts with an immediate trap");
 212     return;
 213   }
 214 
 215   // Commute monitors from interpreter frame to compiler frame.
 216   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 217   int mcnt = osr_block->flow()->monitor_count();
 218   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 219   for (index = 0; index < mcnt; index++) {
 220     // Make a BoxLockNode for the monitor.
 221     Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
 222 
 223 
 224     // Displaced headers and locked objects are interleaved in the
 225     // temp OSR buffer.  We only copy the locked objects out here.
 226     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 227     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 228     // Try and copy the displaced header to the BoxNode
 229     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 230 
 231 
 232     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
 233 
 234     // Build a bogus FastLockNode (no code will be generated) and push the
 235     // monitor into our debug info.
 236     const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock();
 237     map()->push_monitor(flock);
 238 
 239     // If the lock is our method synchronization lock, tuck it away in
 240     // _sync_lock for return and rethrow exit paths.
 241     if (index == 0 && method()->is_synchronized()) {
 242       _synch_lock = flock;
 243     }
 244   }
 245 
 246   // Use the raw liveness computation to make sure that unexpected
 247   // values don't propagate into the OSR frame.
 248   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 249   if (!live_locals.is_valid()) {
 250     // Degenerate or breakpointed method.
 251     C->record_method_not_compilable("OSR in empty or breakpointed method");
 252     return;
 253   }
 254 
 255   // Extract the needed locals from the interpreter frame.
 256   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 257 
 258   // find all the locals that the interpreter thinks contain live oops
 259   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 260   for (index = 0; index < max_locals; index++) {
 261 
 262     if (!live_locals.at(index)) {
 263       continue;
 264     }
 265 
 266     const Type *type = osr_block->local_type_at(index);
 267 
 268     if (type->isa_oopptr() != NULL) {
 269 
 270       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 271       // else we might load a stale oop if the MethodLiveness disagrees with the
 272       // result of the interpreter. If the interpreter says it is dead we agree
 273       // by making the value go to top.
 274       //
 275 
 276       if (!live_oops.at(index)) {
 277         if (C->log() != NULL) {
 278           C->log()->elem("OSR_mismatch local_index='%d'",index);
 279         }
 280         set_local(index, null());
 281         // and ignore it for the loads
 282         continue;
 283       }
 284     }
 285 
 286     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 287     if (type == Type::TOP || type == Type::HALF) {
 288       continue;
 289     }
 290     // If the type falls to bottom, then this must be a local that
 291     // is mixing ints and oops or some such.  Forcing it to top
 292     // makes it go dead.
 293     if (type == Type::BOTTOM) {
 294       continue;
 295     }
 296     // Construct code to access the appropriate local.
 297     BasicType bt = type->basic_type();
 298     if (type == TypePtr::NULL_PTR) {
 299       // Ptr types are mixed together with T_ADDRESS but NULL is
 300       // really for T_OBJECT types so correct it.
 301       bt = T_OBJECT;
 302     }
 303     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 304     set_local(index, value);
 305   }
 306 
 307   // Extract the needed stack entries from the interpreter frame.
 308   for (index = 0; index < sp(); index++) {
 309     const Type *type = osr_block->stack_type_at(index);
 310     if (type != Type::TOP) {
 311       // Currently the compiler bails out when attempting to on stack replace
 312       // at a bci with a non-empty stack.  We should not reach here.
 313       ShouldNotReachHere();
 314     }
 315   }
 316 
 317   // End the OSR migration
 318   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 319                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 320                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 321                     osr_buf);
 322 
 323   // Now that the interpreter state is loaded, make sure it will match
 324   // at execution time what the compiler is expecting now:
 325   SafePointNode* bad_type_exit = clone_map();
 326   bad_type_exit->set_control(new (C) RegionNode(1));
 327 
 328   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 329   for (index = 0; index < max_locals; index++) {
 330     if (stopped())  break;
 331     Node* l = local(index);
 332     if (l->is_top())  continue;  // nothing here
 333     const Type *type = osr_block->local_type_at(index);
 334     if (type->isa_oopptr() != NULL) {
 335       if (!live_oops.at(index)) {
 336         // skip type check for dead oops
 337         continue;
 338       }
 339     }
 340     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 341       // In our current system it's illegal for jsr addresses to be
 342       // live into an OSR entry point because the compiler performs
 343       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 344       // case and aborts the compile if addresses are live into an OSR
 345       // entry point.  Because of that we can assume that any address
 346       // locals at the OSR entry point are dead.  Method liveness
 347       // isn't precise enought to figure out that they are dead in all
 348       // cases so simply skip checking address locals all
 349       // together. Any type check is guaranteed to fail since the
 350       // interpreter type is the result of a load which might have any
 351       // value and the expected type is a constant.
 352       continue;
 353     }
 354     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 355   }
 356 
 357   for (index = 0; index < sp(); index++) {
 358     if (stopped())  break;
 359     Node* l = stack(index);
 360     if (l->is_top())  continue;  // nothing here
 361     const Type *type = osr_block->stack_type_at(index);
 362     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 363   }
 364 
 365   if (bad_type_exit->control()->req() > 1) {
 366     // Build an uncommon trap here, if any inputs can be unexpected.
 367     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 368     record_for_igvn(bad_type_exit->control());
 369     SafePointNode* types_are_good = map();
 370     set_map(bad_type_exit);
 371     // The unexpected type happens because a new edge is active
 372     // in the CFG, which typeflow had previously ignored.
 373     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 374     // This x will be typed as Integer if notReached is not yet linked.
 375     // It could also happen due to a problem in ciTypeFlow analysis.
 376     uncommon_trap(Deoptimization::Reason_constraint,
 377                   Deoptimization::Action_reinterpret);
 378     set_map(types_are_good);
 379   }
 380 }
 381 
 382 //------------------------------Parse------------------------------------------
 383 // Main parser constructor.
 384 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 385   : _exits(caller)
 386 {
 387   // Init some variables
 388   _caller = caller;
 389   _method = parse_method;
 390   _expected_uses = expected_uses;
 391   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 392   _wrote_final = false;
 393   _wrote_volatile = false;
 394   _alloc_with_final = NULL;
 395   _entry_bci = InvocationEntryBci;
 396   _tf = NULL;
 397   _block = NULL;
 398   _first_return = true;
 399   _replaced_nodes_for_exceptions = false;
 400   _new_idx = C->unique();
 401   debug_only(_block_count = -1);
 402   debug_only(_blocks = (Block*)-1);
 403 #ifndef PRODUCT
 404   if (PrintCompilation || PrintOpto) {
 405     // Make sure I have an inline tree, so I can print messages about it.
 406     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 407     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 408   }
 409   _max_switch_depth = 0;
 410   _est_switch_depth = 0;
 411 #endif
 412 
 413   _tf = TypeFunc::make(method());
 414   _iter.reset_to_method(method());
 415   _flow = method()->get_flow_analysis();
 416   if (_flow->failing()) {
 417     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 418   }
 419 
 420 #ifndef PRODUCT
 421   if (_flow->has_irreducible_entry()) {
 422     C->set_parsed_irreducible_loop(true);
 423   }
 424 #endif
 425 
 426   if (_expected_uses <= 0) {
 427     _prof_factor = 1;
 428   } else {
 429     float prof_total = parse_method->interpreter_invocation_count();
 430     if (prof_total <= _expected_uses) {
 431       _prof_factor = 1;
 432     } else {
 433       _prof_factor = _expected_uses / prof_total;
 434     }
 435   }
 436 
 437   CompileLog* log = C->log();
 438   if (log != NULL) {
 439     log->begin_head("parse method='%d' uses='%g'",
 440                     log->identify(parse_method), expected_uses);
 441     if (depth() == 1 && C->is_osr_compilation()) {
 442       log->print(" osr_bci='%d'", C->entry_bci());
 443     }
 444     log->stamp();
 445     log->end_head();
 446   }
 447 
 448   // Accumulate deoptimization counts.
 449   // (The range_check and store_check counts are checked elsewhere.)
 450   ciMethodData* md = method()->method_data();
 451   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 452     uint md_count = md->trap_count(reason);
 453     if (md_count != 0) {
 454       if (md_count == md->trap_count_limit())
 455         md_count += md->overflow_trap_count();
 456       uint total_count = C->trap_count(reason);
 457       uint old_count   = total_count;
 458       total_count += md_count;
 459       // Saturate the add if it overflows.
 460       if (total_count < old_count || total_count < md_count)
 461         total_count = (uint)-1;
 462       C->set_trap_count(reason, total_count);
 463       if (log != NULL)
 464         log->elem("observe trap='%s' count='%d' total='%d'",
 465                   Deoptimization::trap_reason_name(reason),
 466                   md_count, total_count);
 467     }
 468   }
 469   // Accumulate total sum of decompilations, also.
 470   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 471 
 472   _count_invocations = C->do_count_invocations();
 473   _method_data_update = C->do_method_data_update();
 474 
 475   if (log != NULL && method()->has_exception_handlers()) {
 476     log->elem("observe that='has_exception_handlers'");
 477   }
 478 
 479   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 480   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 481 
 482   // Always register dependence if JVMTI is enabled, because
 483   // either breakpoint setting or hotswapping of methods may
 484   // cause deoptimization.
 485   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 486     C->dependencies()->assert_evol_method(method());
 487   }
 488 
 489   methods_seen++;
 490 
 491   // Do some special top-level things.
 492   if (depth() == 1 && C->is_osr_compilation()) {
 493     _entry_bci = C->entry_bci();
 494     _flow = method()->get_osr_flow_analysis(osr_bci());
 495     if (_flow->failing()) {
 496       C->record_method_not_compilable(_flow->failure_reason());
 497 #ifndef PRODUCT
 498       if (PrintOpto && (Verbose || WizardMode)) {
 499         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 500         if (Verbose) {
 501           method()->print();
 502           method()->print_codes();
 503           _flow->print();
 504         }
 505       }
 506 #endif
 507     }
 508     _tf = C->tf();     // the OSR entry type is different
 509   }
 510 
 511 #ifdef ASSERT
 512   if (depth() == 1) {
 513     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 514     if (C->tf() != tf()) {
 515       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 516       assert(C->env()->system_dictionary_modification_counter_changed(),
 517              "Must invalidate if TypeFuncs differ");
 518     }
 519   } else {
 520     assert(!this->is_osr_parse(), "no recursive OSR");
 521   }
 522 #endif
 523 
 524   methods_parsed++;
 525 #ifndef PRODUCT
 526   // add method size here to guarantee that inlined methods are added too
 527   if (TimeCompiler)
 528     _total_bytes_compiled += method()->code_size();
 529 
 530   show_parse_info();
 531 #endif
 532 
 533   if (failing()) {
 534     if (log)  log->done("parse");
 535     return;
 536   }
 537 
 538   gvn().set_type(root(), root()->bottom_type());
 539   gvn().transform(top());
 540 
 541   // Import the results of the ciTypeFlow.
 542   init_blocks();
 543 
 544   // Merge point for all normal exits
 545   build_exits();
 546 
 547   // Setup the initial JVM state map.
 548   SafePointNode* entry_map = create_entry_map();
 549 
 550   // Check for bailouts during map initialization
 551   if (failing() || entry_map == NULL) {
 552     if (log)  log->done("parse");
 553     return;
 554   }
 555 
 556   Node_Notes* caller_nn = C->default_node_notes();
 557   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 558   if (DebugInlinedCalls || depth() == 1) {
 559     C->set_default_node_notes(make_node_notes(caller_nn));
 560   }
 561 
 562   if (is_osr_parse()) {
 563     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 564     entry_map->set_req(TypeFunc::Parms+0, top());
 565     set_map(entry_map);
 566     load_interpreter_state(osr_buf);
 567   } else {
 568     set_map(entry_map);
 569     do_method_entry();
 570   }
 571 
 572   if (depth() == 1 && !failing()) {
 573     // Add check to deoptimize the nmethod if RTM state was changed
 574     rtm_deopt();
 575   }
 576 
 577   // Check for bailouts during method entry or RTM state check setup.
 578   if (failing()) {
 579     if (log)  log->done("parse");
 580     C->set_default_node_notes(caller_nn);
 581     return;
 582   }
 583 
 584   entry_map = map();  // capture any changes performed by method setup code
 585   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 586 
 587   // We begin parsing as if we have just encountered a jump to the
 588   // method entry.
 589   Block* entry_block = start_block();
 590   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 591   set_map_clone(entry_map);
 592   merge_common(entry_block, entry_block->next_path_num());
 593 
 594 #ifndef PRODUCT
 595   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 596   set_parse_histogram( parse_histogram_obj );
 597 #endif
 598 
 599   // Parse all the basic blocks.
 600   do_all_blocks();
 601 
 602   C->set_default_node_notes(caller_nn);
 603 
 604   // Check for bailouts during conversion to graph
 605   if (failing()) {
 606     if (log)  log->done("parse");
 607     return;
 608   }
 609 
 610   // Fix up all exiting control flow.
 611   set_map(entry_map);
 612   do_exits();
 613 
 614   if (log)  log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'",
 615                       C->unique(), C->live_nodes(), C->node_arena()->used());
 616 }
 617 
 618 //---------------------------do_all_blocks-------------------------------------
 619 void Parse::do_all_blocks() {
 620   bool has_irreducible = flow()->has_irreducible_entry();
 621 
 622   // Walk over all blocks in Reverse Post-Order.
 623   while (true) {
 624     bool progress = false;
 625     for (int rpo = 0; rpo < block_count(); rpo++) {
 626       Block* block = rpo_at(rpo);
 627 
 628       if (block->is_parsed()) continue;
 629 
 630       if (!block->is_merged()) {
 631         // Dead block, no state reaches this block
 632         continue;
 633       }
 634 
 635       // Prepare to parse this block.
 636       load_state_from(block);
 637 
 638       if (stopped()) {
 639         // Block is dead.
 640         continue;
 641       }
 642 
 643       blocks_parsed++;
 644 
 645       progress = true;
 646       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 647         // Not all preds have been parsed.  We must build phis everywhere.
 648         // (Note that dead locals do not get phis built, ever.)
 649         ensure_phis_everywhere();
 650 
 651         if (block->is_SEL_head() &&
 652             (UseLoopPredicate || LoopLimitCheck)) {
 653           // Add predicate to single entry (not irreducible) loop head.
 654           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 655           // Need correct bci for predicate.
 656           // It is fine to set it here since do_one_block() will set it anyway.
 657           set_parse_bci(block->start());
 658           add_predicate();
 659           // Add new region for back branches.
 660           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 661           RegionNode *r = new (C) RegionNode(edges+1);
 662           _gvn.set_type(r, Type::CONTROL);
 663           record_for_igvn(r);
 664           r->init_req(edges, control());
 665           set_control(r);
 666           // Add new phis.
 667           ensure_phis_everywhere();
 668         }
 669 
 670         // Leave behind an undisturbed copy of the map, for future merges.
 671         set_map(clone_map());
 672       }
 673 
 674       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 675         // In the absence of irreducible loops, the Region and Phis
 676         // associated with a merge that doesn't involve a backedge can
 677         // be simplified now since the RPO parsing order guarantees
 678         // that any path which was supposed to reach here has already
 679         // been parsed or must be dead.
 680         Node* c = control();
 681         Node* result = _gvn.transform_no_reclaim(control());
 682         if (c != result && TraceOptoParse) {
 683           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 684         }
 685         if (result != top()) {
 686           record_for_igvn(result);
 687         }
 688       }
 689 
 690       // Parse the block.
 691       do_one_block();
 692 
 693       // Check for bailouts.
 694       if (failing())  return;
 695     }
 696 
 697     // with irreducible loops multiple passes might be necessary to parse everything
 698     if (!has_irreducible || !progress) {
 699       break;
 700     }
 701   }
 702 
 703   blocks_seen += block_count();
 704 
 705 #ifndef PRODUCT
 706   // Make sure there are no half-processed blocks remaining.
 707   // Every remaining unprocessed block is dead and may be ignored now.
 708   for (int rpo = 0; rpo < block_count(); rpo++) {
 709     Block* block = rpo_at(rpo);
 710     if (!block->is_parsed()) {
 711       if (TraceOptoParse) {
 712         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 713       }
 714       assert(!block->is_merged(), "no half-processed blocks");
 715     }
 716   }
 717 #endif
 718 }
 719 
 720 //-------------------------------build_exits----------------------------------
 721 // Build normal and exceptional exit merge points.
 722 void Parse::build_exits() {
 723   // make a clone of caller to prevent sharing of side-effects
 724   _exits.set_map(_exits.clone_map());
 725   _exits.clean_stack(_exits.sp());
 726   _exits.sync_jvms();
 727 
 728   RegionNode* region = new (C) RegionNode(1);
 729   record_for_igvn(region);
 730   gvn().set_type_bottom(region);
 731   _exits.set_control(region);
 732 
 733   // Note:  iophi and memphi are not transformed until do_exits.
 734   Node* iophi  = new (C) PhiNode(region, Type::ABIO);
 735   Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 736   gvn().set_type_bottom(iophi);
 737   gvn().set_type_bottom(memphi);
 738   _exits.set_i_o(iophi);
 739   _exits.set_all_memory(memphi);
 740 
 741   // Add a return value to the exit state.  (Do not push it yet.)
 742   if (tf()->range()->cnt() > TypeFunc::Parms) {
 743     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 744     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 745     // becomes loaded during the subsequent parsing, the loaded and unloaded
 746     // types will not join when we transform and push in do_exits().
 747     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 748     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 749       ret_type = TypeOopPtr::BOTTOM;
 750     }
 751     int         ret_size = type2size[ret_type->basic_type()];
 752     Node*       ret_phi  = new (C) PhiNode(region, ret_type);
 753     gvn().set_type_bottom(ret_phi);
 754     _exits.ensure_stack(ret_size);
 755     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 756     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 757     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 758     // Note:  ret_phi is not yet pushed, until do_exits.
 759   }
 760 }
 761 
 762 
 763 //----------------------------build_start_state-------------------------------
 764 // Construct a state which contains only the incoming arguments from an
 765 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 766 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 767   int        arg_size = tf->domain()->cnt();
 768   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 769   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 770   SafePointNode* map  = new (this) SafePointNode(max_size, NULL);
 771   record_for_igvn(map);
 772   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 773   Node_Notes* old_nn = default_node_notes();
 774   if (old_nn != NULL && has_method()) {
 775     Node_Notes* entry_nn = old_nn->clone(this);
 776     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 777     entry_jvms->set_offsets(0);
 778     entry_jvms->set_bci(entry_bci());
 779     entry_nn->set_jvms(entry_jvms);
 780     set_default_node_notes(entry_nn);
 781   }
 782   uint i;
 783   for (i = 0; i < (uint)arg_size; i++) {
 784     Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i));
 785     map->init_req(i, parm);
 786     // Record all these guys for later GVN.
 787     record_for_igvn(parm);
 788   }
 789   for (; i < map->req(); i++) {
 790     map->init_req(i, top());
 791   }
 792   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 793   set_default_node_notes(old_nn);
 794   map->set_jvms(jvms);
 795   jvms->set_map(map);
 796   return jvms;
 797 }
 798 
 799 //-----------------------------make_node_notes---------------------------------
 800 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 801   if (caller_nn == NULL)  return NULL;
 802   Node_Notes* nn = caller_nn->clone(C);
 803   JVMState* caller_jvms = nn->jvms();
 804   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 805   jvms->set_offsets(0);
 806   jvms->set_bci(_entry_bci);
 807   nn->set_jvms(jvms);
 808   return nn;
 809 }
 810 
 811 
 812 //--------------------------return_values--------------------------------------
 813 void Compile::return_values(JVMState* jvms) {
 814   GraphKit kit(jvms);
 815   Node* ret = new (this) ReturnNode(TypeFunc::Parms,
 816                              kit.control(),
 817                              kit.i_o(),
 818                              kit.reset_memory(),
 819                              kit.frameptr(),
 820                              kit.returnadr());
 821   // Add zero or 1 return values
 822   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 823   if (ret_size > 0) {
 824     kit.inc_sp(-ret_size);  // pop the return value(s)
 825     kit.sync_jvms();
 826     ret->add_req(kit.argument(0));
 827     // Note:  The second dummy edge is not needed by a ReturnNode.
 828   }
 829   // bind it to root
 830   root()->add_req(ret);
 831   record_for_igvn(ret);
 832   initial_gvn()->transform_no_reclaim(ret);
 833 }
 834 
 835 //------------------------rethrow_exceptions-----------------------------------
 836 // Bind all exception states in the list into a single RethrowNode.
 837 void Compile::rethrow_exceptions(JVMState* jvms) {
 838   GraphKit kit(jvms);
 839   if (!kit.has_exceptions())  return;  // nothing to generate
 840   // Load my combined exception state into the kit, with all phis transformed:
 841   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 842   Node* ex_oop = kit.use_exception_state(ex_map);
 843   RethrowNode* exit = new (this) RethrowNode(kit.control(),
 844                                       kit.i_o(), kit.reset_memory(),
 845                                       kit.frameptr(), kit.returnadr(),
 846                                       // like a return but with exception input
 847                                       ex_oop);
 848   // bind to root
 849   root()->add_req(exit);
 850   record_for_igvn(exit);
 851   initial_gvn()->transform_no_reclaim(exit);
 852 }
 853 
 854 //---------------------------do_exceptions-------------------------------------
 855 // Process exceptions arising from the current bytecode.
 856 // Send caught exceptions to the proper handler within this method.
 857 // Unhandled exceptions feed into _exit.
 858 void Parse::do_exceptions() {
 859   if (!has_exceptions())  return;
 860 
 861   if (failing()) {
 862     // Pop them all off and throw them away.
 863     while (pop_exception_state() != NULL) ;
 864     return;
 865   }
 866 
 867   PreserveJVMState pjvms(this, false);
 868 
 869   SafePointNode* ex_map;
 870   while ((ex_map = pop_exception_state()) != NULL) {
 871     if (!method()->has_exception_handlers()) {
 872       // Common case:  Transfer control outward.
 873       // Doing it this early allows the exceptions to common up
 874       // even between adjacent method calls.
 875       throw_to_exit(ex_map);
 876     } else {
 877       // Have to look at the exception first.
 878       assert(stopped(), "catch_inline_exceptions trashes the map");
 879       catch_inline_exceptions(ex_map);
 880       stop_and_kill_map();      // we used up this exception state; kill it
 881     }
 882   }
 883 
 884   // We now return to our regularly scheduled program:
 885 }
 886 
 887 //---------------------------throw_to_exit-------------------------------------
 888 // Merge the given map into an exception exit from this method.
 889 // The exception exit will handle any unlocking of receiver.
 890 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 891 void Parse::throw_to_exit(SafePointNode* ex_map) {
 892   // Pop the JVMS to (a copy of) the caller.
 893   GraphKit caller;
 894   caller.set_map_clone(_caller->map());
 895   caller.set_bci(_caller->bci());
 896   caller.set_sp(_caller->sp());
 897   // Copy out the standard machine state:
 898   for (uint i = 0; i < TypeFunc::Parms; i++) {
 899     caller.map()->set_req(i, ex_map->in(i));
 900   }
 901   if (ex_map->has_replaced_nodes()) {
 902     _replaced_nodes_for_exceptions = true;
 903   }
 904   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
 905   // ...and the exception:
 906   Node*          ex_oop        = saved_ex_oop(ex_map);
 907   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 908   // Finally, collect the new exception state in my exits:
 909   _exits.add_exception_state(caller_ex_map);
 910 }
 911 
 912 //------------------------------do_exits---------------------------------------
 913 void Parse::do_exits() {
 914   set_parse_bci(InvocationEntryBci);
 915 
 916   // Now peephole on the return bits
 917   Node* region = _exits.control();
 918   _exits.set_control(gvn().transform(region));
 919 
 920   Node* iophi = _exits.i_o();
 921   _exits.set_i_o(gvn().transform(iophi));
 922 
 923   // On PPC64, also add MemBarRelease for constructors which write
 924   // volatile fields. As support_IRIW_for_not_multiple_copy_atomic_cpu
 925   // is set on PPC64, no sync instruction is issued after volatile
 926   // stores. We want to quarantee the same behaviour as on platforms
 927   // with total store order, although this is not required by the Java
 928   // memory model. So as with finals, we add a barrier here.
 929   if (wrote_final() PPC64_ONLY(|| (wrote_volatile() && method()->is_initializer()))) {
 930     // This method (which must be a constructor by the rules of Java)
 931     // wrote a final.  The effects of all initializations must be
 932     // committed to memory before any code after the constructor
 933     // publishes the reference to the newly constructor object.
 934     // Rather than wait for the publication, we simply block the
 935     // writes here.  Rather than put a barrier on only those writes
 936     // which are required to complete, we force all writes to complete.
 937     //
 938     // "All bets are off" unless the first publication occurs after a
 939     // normal return from the constructor.  We do not attempt to detect
 940     // such unusual early publications.  But no barrier is needed on
 941     // exceptional returns, since they cannot publish normally.
 942     //
 943     _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final());
 944 #ifndef PRODUCT
 945     if (PrintOpto && (Verbose || WizardMode)) {
 946       method()->print_name();
 947       tty->print_cr(" writes finals and needs a memory barrier");
 948     }
 949 #endif
 950   }
 951 
 952   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 953     // transform each slice of the original memphi:
 954     mms.set_memory(_gvn.transform(mms.memory()));
 955   }
 956 
 957   if (tf()->range()->cnt() > TypeFunc::Parms) {
 958     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 959     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 960     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 961     _exits.push_node(ret_type->basic_type(), ret_phi);
 962   }
 963 
 964   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 965 
 966   // Unlock along the exceptional paths.
 967   // This is done late so that we can common up equivalent exceptions
 968   // (e.g., null checks) arising from multiple points within this method.
 969   // See GraphKit::add_exception_state, which performs the commoning.
 970   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 971 
 972   // record exit from a method if compiled while Dtrace is turned on.
 973   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
 974     // First move the exception list out of _exits:
 975     GraphKit kit(_exits.transfer_exceptions_into_jvms());
 976     SafePointNode* normal_map = kit.map();  // keep this guy safe
 977     // Now re-collect the exceptions into _exits:
 978     SafePointNode* ex_map;
 979     while ((ex_map = kit.pop_exception_state()) != NULL) {
 980       Node* ex_oop = kit.use_exception_state(ex_map);
 981       // Force the exiting JVM state to have this method at InvocationEntryBci.
 982       // The exiting JVM state is otherwise a copy of the calling JVMS.
 983       JVMState* caller = kit.jvms();
 984       JVMState* ex_jvms = caller->clone_shallow(C);
 985       ex_jvms->set_map(kit.clone_map());
 986       ex_jvms->map()->set_jvms(ex_jvms);
 987       ex_jvms->set_bci(   InvocationEntryBci);
 988       kit.set_jvms(ex_jvms);
 989       if (do_synch) {
 990         // Add on the synchronized-method box/object combo
 991         kit.map()->push_monitor(_synch_lock);
 992         // Unlock!
 993         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
 994       }
 995       if (C->env()->dtrace_method_probes()) {
 996         kit.make_dtrace_method_exit(method());
 997       }
 998       if (_replaced_nodes_for_exceptions) {
 999         kit.map()->apply_replaced_nodes();
1000       }
1001       // Done with exception-path processing.
1002       ex_map = kit.make_exception_state(ex_oop);
1003       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1004       // Pop the last vestige of this method:
1005       ex_map->set_jvms(caller->clone_shallow(C));
1006       ex_map->jvms()->set_map(ex_map);
1007       _exits.push_exception_state(ex_map);
1008     }
1009     assert(_exits.map() == normal_map, "keep the same return state");
1010   }
1011 
1012   {
1013     // Capture very early exceptions (receiver null checks) from caller JVMS
1014     GraphKit caller(_caller);
1015     SafePointNode* ex_map;
1016     while ((ex_map = caller.pop_exception_state()) != NULL) {
1017       _exits.add_exception_state(ex_map);
1018     }
1019   }
1020   _exits.map()->apply_replaced_nodes();
1021 }
1022 
1023 //-----------------------------create_entry_map-------------------------------
1024 // Initialize our parser map to contain the types at method entry.
1025 // For OSR, the map contains a single RawPtr parameter.
1026 // Initial monitor locking for sync. methods is performed by do_method_entry.
1027 SafePointNode* Parse::create_entry_map() {
1028   // Check for really stupid bail-out cases.
1029   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1030   if (len >= 32760) {
1031     C->record_method_not_compilable_all_tiers("too many local variables");
1032     return NULL;
1033   }
1034 
1035   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1036   _caller->map()->delete_replaced_nodes();
1037 
1038   // If this is an inlined method, we may have to do a receiver null check.
1039   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1040     GraphKit kit(_caller);
1041     kit.null_check_receiver_before_call(method());
1042     _caller = kit.transfer_exceptions_into_jvms();
1043     if (kit.stopped()) {
1044       _exits.add_exception_states_from(_caller);
1045       _exits.set_jvms(_caller);
1046       return NULL;
1047     }
1048   }
1049 
1050   assert(method() != NULL, "parser must have a method");
1051 
1052   // Create an initial safepoint to hold JVM state during parsing
1053   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1054   set_map(new (C) SafePointNode(len, jvms));
1055   jvms->set_map(map());
1056   record_for_igvn(map());
1057   assert(jvms->endoff() == len, "correct jvms sizing");
1058 
1059   SafePointNode* inmap = _caller->map();
1060   assert(inmap != NULL, "must have inmap");
1061   // In case of null check on receiver above
1062   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1063 
1064   uint i;
1065 
1066   // Pass thru the predefined input parameters.
1067   for (i = 0; i < TypeFunc::Parms; i++) {
1068     map()->init_req(i, inmap->in(i));
1069   }
1070 
1071   if (depth() == 1) {
1072     assert(map()->memory()->Opcode() == Op_Parm, "");
1073     // Insert the memory aliasing node
1074     set_all_memory(reset_memory());
1075   }
1076   assert(merged_memory(), "");
1077 
1078   // Now add the locals which are initially bound to arguments:
1079   uint arg_size = tf()->domain()->cnt();
1080   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1081   for (i = TypeFunc::Parms; i < arg_size; i++) {
1082     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1083   }
1084 
1085   // Clear out the rest of the map (locals and stack)
1086   for (i = arg_size; i < len; i++) {
1087     map()->init_req(i, top());
1088   }
1089 
1090   SafePointNode* entry_map = stop();
1091   return entry_map;
1092 }
1093 
1094 //-----------------------------do_method_entry--------------------------------
1095 // Emit any code needed in the pseudo-block before BCI zero.
1096 // The main thing to do is lock the receiver of a synchronized method.
1097 void Parse::do_method_entry() {
1098   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1099   set_sp(0);                      // Java Stack Pointer
1100 
1101   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1102 
1103   if (C->env()->dtrace_method_probes()) {
1104     make_dtrace_method_entry(method());
1105   }
1106 
1107   // If the method is synchronized, we need to construct a lock node, attach
1108   // it to the Start node, and pin it there.
1109   if (method()->is_synchronized()) {
1110     // Insert a FastLockNode right after the Start which takes as arguments
1111     // the current thread pointer, the "this" pointer & the address of the
1112     // stack slot pair used for the lock.  The "this" pointer is a projection
1113     // off the start node, but the locking spot has to be constructed by
1114     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1115     // becomes the second argument to the FastLockNode call.  The
1116     // FastLockNode becomes the new control parent to pin it to the start.
1117 
1118     // Setup Object Pointer
1119     Node *lock_obj = NULL;
1120     if(method()->is_static()) {
1121       ciInstance* mirror = _method->holder()->java_mirror();
1122       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1123       lock_obj = makecon(t_lock);
1124     } else {                  // Else pass the "this" pointer,
1125       lock_obj = local(0);    // which is Parm0 from StartNode
1126     }
1127     // Clear out dead values from the debug info.
1128     kill_dead_locals();
1129     // Build the FastLockNode
1130     _synch_lock = shared_lock(lock_obj);
1131   }
1132 
1133   // Feed profiling data for parameters to the type system so it can
1134   // propagate it as speculative types
1135   record_profiled_parameters_for_speculation();
1136 
1137   if (depth() == 1) {
1138     increment_and_test_invocation_counter(Tier2CompileThreshold);
1139   }
1140 }
1141 
1142 //------------------------------init_blocks------------------------------------
1143 // Initialize our parser map to contain the types/monitors at method entry.
1144 void Parse::init_blocks() {
1145   // Create the blocks.
1146   _block_count = flow()->block_count();
1147   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1148   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1149 
1150   int rpo;
1151 
1152   // Initialize the structs.
1153   for (rpo = 0; rpo < block_count(); rpo++) {
1154     Block* block = rpo_at(rpo);
1155     block->init_node(this, rpo);
1156   }
1157 
1158   // Collect predecessor and successor information.
1159   for (rpo = 0; rpo < block_count(); rpo++) {
1160     Block* block = rpo_at(rpo);
1161     block->init_graph(this);
1162   }
1163 }
1164 
1165 //-------------------------------init_node-------------------------------------
1166 void Parse::Block::init_node(Parse* outer, int rpo) {
1167   _flow = outer->flow()->rpo_at(rpo);
1168   _pred_count = 0;
1169   _preds_parsed = 0;
1170   _count = 0;
1171   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1172   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1173   assert(_live_locals.size() == 0, "sanity");
1174 
1175   // entry point has additional predecessor
1176   if (flow()->is_start())  _pred_count++;
1177   assert(flow()->is_start() == (this == outer->start_block()), "");
1178 }
1179 
1180 //-------------------------------init_graph------------------------------------
1181 void Parse::Block::init_graph(Parse* outer) {
1182   // Create the successor list for this parser block.
1183   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1184   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1185   int ns = tfs->length();
1186   int ne = tfe->length();
1187   _num_successors = ns;
1188   _all_successors = ns+ne;
1189   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1190   int p = 0;
1191   for (int i = 0; i < ns+ne; i++) {
1192     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1193     Block* block2 = outer->rpo_at(tf2->rpo());
1194     _successors[i] = block2;
1195 
1196     // Accumulate pred info for the other block, too.
1197     if (i < ns) {
1198       block2->_pred_count++;
1199     } else {
1200       block2->_is_handler = true;
1201     }
1202 
1203     #ifdef ASSERT
1204     // A block's successors must be distinguishable by BCI.
1205     // That is, no bytecode is allowed to branch to two different
1206     // clones of the same code location.
1207     for (int j = 0; j < i; j++) {
1208       Block* block1 = _successors[j];
1209       if (block1 == block2)  continue;  // duplicates are OK
1210       assert(block1->start() != block2->start(), "successors have unique bcis");
1211     }
1212     #endif
1213   }
1214 
1215   // Note: We never call next_path_num along exception paths, so they
1216   // never get processed as "ready".  Also, the input phis of exception
1217   // handlers get specially processed, so that
1218 }
1219 
1220 //---------------------------successor_for_bci---------------------------------
1221 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1222   for (int i = 0; i < all_successors(); i++) {
1223     Block* block2 = successor_at(i);
1224     if (block2->start() == bci)  return block2;
1225   }
1226   // We can actually reach here if ciTypeFlow traps out a block
1227   // due to an unloaded class, and concurrently with compilation the
1228   // class is then loaded, so that a later phase of the parser is
1229   // able to see more of the bytecode CFG.  Or, the flow pass and
1230   // the parser can have a minor difference of opinion about executability
1231   // of bytecodes.  For example, "obj.field = null" is executable even
1232   // if the field's type is an unloaded class; the flow pass used to
1233   // make a trap for such code.
1234   return NULL;
1235 }
1236 
1237 
1238 //-----------------------------stack_type_at-----------------------------------
1239 const Type* Parse::Block::stack_type_at(int i) const {
1240   return get_type(flow()->stack_type_at(i));
1241 }
1242 
1243 
1244 //-----------------------------local_type_at-----------------------------------
1245 const Type* Parse::Block::local_type_at(int i) const {
1246   // Make dead locals fall to bottom.
1247   if (_live_locals.size() == 0) {
1248     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1249     // This bitmap can be zero length if we saw a breakpoint.
1250     // In such cases, pretend they are all live.
1251     ((Block*)this)->_live_locals = live_locals;
1252   }
1253   if (_live_locals.size() > 0 && !_live_locals.at(i))
1254     return Type::BOTTOM;
1255 
1256   return get_type(flow()->local_type_at(i));
1257 }
1258 
1259 
1260 #ifndef PRODUCT
1261 
1262 //----------------------------name_for_bc--------------------------------------
1263 // helper method for BytecodeParseHistogram
1264 static const char* name_for_bc(int i) {
1265   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1266 }
1267 
1268 //----------------------------BytecodeParseHistogram------------------------------------
1269 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1270   _parser   = p;
1271   _compiler = c;
1272   if( ! _initialized ) { _initialized = true; reset(); }
1273 }
1274 
1275 //----------------------------current_count------------------------------------
1276 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1277   switch( bph_type ) {
1278   case BPH_transforms: { return _parser->gvn().made_progress(); }
1279   case BPH_values:     { return _parser->gvn().made_new_values(); }
1280   default: { ShouldNotReachHere(); return 0; }
1281   }
1282 }
1283 
1284 //----------------------------initialized--------------------------------------
1285 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1286 
1287 //----------------------------reset--------------------------------------------
1288 void Parse::BytecodeParseHistogram::reset() {
1289   int i = Bytecodes::number_of_codes;
1290   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1291 }
1292 
1293 //----------------------------set_initial_state--------------------------------
1294 // Record info when starting to parse one bytecode
1295 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1296   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1297     _initial_bytecode    = bc;
1298     _initial_node_count  = _compiler->unique();
1299     _initial_transforms  = current_count(BPH_transforms);
1300     _initial_values      = current_count(BPH_values);
1301   }
1302 }
1303 
1304 //----------------------------record_change--------------------------------
1305 // Record results of parsing one bytecode
1306 void Parse::BytecodeParseHistogram::record_change() {
1307   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1308     ++_bytecodes_parsed[_initial_bytecode];
1309     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1310     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1311     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1312   }
1313 }
1314 
1315 
1316 //----------------------------print--------------------------------------------
1317 void Parse::BytecodeParseHistogram::print(float cutoff) {
1318   ResourceMark rm;
1319   // print profile
1320   int total  = 0;
1321   int i      = 0;
1322   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1323   int abs_sum = 0;
1324   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1325   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1326   if( total == 0 ) { return; }
1327   tty->cr();
1328   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1329   tty->print_cr("relative:  percentage contribution to compiled nodes");
1330   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1331   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1332   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1333   tty->print_cr("values  :  Average number of node values improved per bytecode");
1334   tty->print_cr("name    :  Bytecode name");
1335   tty->cr();
1336   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1337   tty->print_cr("----------------------------------------------------------------------");
1338   while (--i > 0) {
1339     int       abs = _bytecodes_parsed[i];
1340     float     rel = abs * 100.0F / total;
1341     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1342     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1343     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1344     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1345     if (cutoff <= rel) {
1346       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1347       abs_sum += abs;
1348     }
1349   }
1350   tty->print_cr("----------------------------------------------------------------------");
1351   float rel_sum = abs_sum * 100.0F / total;
1352   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1353   tty->print_cr("----------------------------------------------------------------------");
1354   tty->cr();
1355 }
1356 #endif
1357 
1358 //----------------------------load_state_from----------------------------------
1359 // Load block/map/sp.  But not do not touch iter/bci.
1360 void Parse::load_state_from(Block* block) {
1361   set_block(block);
1362   // load the block's JVM state:
1363   set_map(block->start_map());
1364   set_sp( block->start_sp());
1365 }
1366 
1367 
1368 //-----------------------------record_state------------------------------------
1369 void Parse::Block::record_state(Parse* p) {
1370   assert(!is_merged(), "can only record state once, on 1st inflow");
1371   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1372   set_start_map(p->stop());
1373 }
1374 
1375 
1376 //------------------------------do_one_block-----------------------------------
1377 void Parse::do_one_block() {
1378   if (TraceOptoParse) {
1379     Block *b = block();
1380     int ns = b->num_successors();
1381     int nt = b->all_successors();
1382 
1383     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1384                   block()->rpo(), block()->start(), block()->limit());
1385     for (int i = 0; i < nt; i++) {
1386       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1387     }
1388     if (b->is_loop_head()) tty->print("  lphd");
1389     tty->cr();
1390   }
1391 
1392   assert(block()->is_merged(), "must be merged before being parsed");
1393   block()->mark_parsed();
1394   ++_blocks_parsed;
1395 
1396   // Set iterator to start of block.
1397   iter().reset_to_bci(block()->start());
1398 
1399   CompileLog* log = C->log();
1400 
1401   // Parse bytecodes
1402   while (!stopped() && !failing()) {
1403     iter().next();
1404 
1405     // Learn the current bci from the iterator:
1406     set_parse_bci(iter().cur_bci());
1407 
1408     if (bci() == block()->limit()) {
1409       // Do not walk into the next block until directed by do_all_blocks.
1410       merge(bci());
1411       break;
1412     }
1413     assert(bci() < block()->limit(), "bci still in block");
1414 
1415     if (log != NULL) {
1416       // Output an optional context marker, to help place actions
1417       // that occur during parsing of this BC.  If there is no log
1418       // output until the next context string, this context string
1419       // will be silently ignored.
1420       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1421     }
1422 
1423     if (block()->has_trap_at(bci())) {
1424       // We must respect the flow pass's traps, because it will refuse
1425       // to produce successors for trapping blocks.
1426       int trap_index = block()->flow()->trap_index();
1427       assert(trap_index != 0, "trap index must be valid");
1428       uncommon_trap(trap_index);
1429       break;
1430     }
1431 
1432     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1433 
1434 #ifdef ASSERT
1435     int pre_bc_sp = sp();
1436     int inputs, depth;
1437     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1438     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
1439 #endif //ASSERT
1440 
1441     do_one_bytecode();
1442 
1443     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1444            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
1445 
1446     do_exceptions();
1447 
1448     NOT_PRODUCT( parse_histogram()->record_change(); );
1449 
1450     if (log != NULL)
1451       log->clear_context();  // skip marker if nothing was printed
1452 
1453     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1454     // successor which is typically made ready by visiting this bytecode.
1455     // If the successor has several predecessors, then it is a merge
1456     // point, starts a new basic block, and is handled like other basic blocks.
1457   }
1458 }
1459 
1460 
1461 //------------------------------merge------------------------------------------
1462 void Parse::set_parse_bci(int bci) {
1463   set_bci(bci);
1464   Node_Notes* nn = C->default_node_notes();
1465   if (nn == NULL)  return;
1466 
1467   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1468   if (!DebugInlinedCalls && depth() > 1) {
1469     return;
1470   }
1471 
1472   // Update the JVMS annotation, if present.
1473   JVMState* jvms = nn->jvms();
1474   if (jvms != NULL && jvms->bci() != bci) {
1475     // Update the JVMS.
1476     jvms = jvms->clone_shallow(C);
1477     jvms->set_bci(bci);
1478     nn->set_jvms(jvms);
1479   }
1480 }
1481 
1482 //------------------------------merge------------------------------------------
1483 // Merge the current mapping into the basic block starting at bci
1484 void Parse::merge(int target_bci) {
1485   Block* target = successor_for_bci(target_bci);
1486   if (target == NULL) { handle_missing_successor(target_bci); return; }
1487   assert(!target->is_ready(), "our arrival must be expected");
1488   int pnum = target->next_path_num();
1489   merge_common(target, pnum);
1490 }
1491 
1492 //-------------------------merge_new_path--------------------------------------
1493 // Merge the current mapping into the basic block, using a new path
1494 void Parse::merge_new_path(int target_bci) {
1495   Block* target = successor_for_bci(target_bci);
1496   if (target == NULL) { handle_missing_successor(target_bci); return; }
1497   assert(!target->is_ready(), "new path into frozen graph");
1498   int pnum = target->add_new_path();
1499   merge_common(target, pnum);
1500 }
1501 
1502 //-------------------------merge_exception-------------------------------------
1503 // Merge the current mapping into the basic block starting at bci
1504 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1505 void Parse::merge_exception(int target_bci) {
1506   assert(sp() == 1, "must have only the throw exception on the stack");
1507   Block* target = successor_for_bci(target_bci);
1508   if (target == NULL) { handle_missing_successor(target_bci); return; }
1509   assert(target->is_handler(), "exceptions are handled by special blocks");
1510   int pnum = target->add_new_path();
1511   merge_common(target, pnum);
1512 }
1513 
1514 //--------------------handle_missing_successor---------------------------------
1515 void Parse::handle_missing_successor(int target_bci) {
1516 #ifndef PRODUCT
1517   Block* b = block();
1518   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1519   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1520 #endif
1521   ShouldNotReachHere();
1522 }
1523 
1524 //--------------------------merge_common---------------------------------------
1525 void Parse::merge_common(Parse::Block* target, int pnum) {
1526   if (TraceOptoParse) {
1527     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1528   }
1529 
1530   // Zap extra stack slots to top
1531   assert(sp() == target->start_sp(), "");
1532   clean_stack(sp());
1533 
1534   if (!target->is_merged()) {   // No prior mapping at this bci
1535     if (TraceOptoParse) { tty->print(" with empty state");  }
1536 
1537     // If this path is dead, do not bother capturing it as a merge.
1538     // It is "as if" we had 1 fewer predecessors from the beginning.
1539     if (stopped()) {
1540       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1541       return;
1542     }
1543 
1544     // Record that a new block has been merged.
1545     ++_blocks_merged;
1546 
1547     // Make a region if we know there are multiple or unpredictable inputs.
1548     // (Also, if this is a plain fall-through, we might see another region,
1549     // which must not be allowed into this block's map.)
1550     if (pnum > PhiNode::Input         // Known multiple inputs.
1551         || target->is_handler()       // These have unpredictable inputs.
1552         || target->is_loop_head()     // Known multiple inputs
1553         || control()->is_Region()) {  // We must hide this guy.
1554 
1555       int current_bci = bci();
1556       set_parse_bci(target->start()); // Set target bci
1557       if (target->is_SEL_head()) {
1558         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1559         if (target->start() == 0) {
1560           // Add loop predicate for the special case when
1561           // there are backbranches to the method entry.
1562           add_predicate();
1563         }
1564       }
1565       // Add a Region to start the new basic block.  Phis will be added
1566       // later lazily.
1567       int edges = target->pred_count();
1568       if (edges < pnum)  edges = pnum;  // might be a new path!
1569       RegionNode *r = new (C) RegionNode(edges+1);
1570       gvn().set_type(r, Type::CONTROL);
1571       record_for_igvn(r);
1572       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1573       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1574       r->init_req(pnum, control());
1575       set_control(r);
1576       set_parse_bci(current_bci); // Restore bci
1577     }
1578 
1579     // Convert the existing Parser mapping into a mapping at this bci.
1580     store_state_to(target);
1581     assert(target->is_merged(), "do not come here twice");
1582 
1583   } else {                      // Prior mapping at this bci
1584     if (TraceOptoParse) {  tty->print(" with previous state"); }
1585 #ifdef ASSERT
1586     if (target->is_SEL_head()) {
1587       target->mark_merged_backedge(block());
1588     }
1589 #endif
1590     // We must not manufacture more phis if the target is already parsed.
1591     bool nophi = target->is_parsed();
1592 
1593     SafePointNode* newin = map();// Hang on to incoming mapping
1594     Block* save_block = block(); // Hang on to incoming block;
1595     load_state_from(target);    // Get prior mapping
1596 
1597     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1598     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1599     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1600     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1601 
1602     // Iterate over my current mapping and the old mapping.
1603     // Where different, insert Phi functions.
1604     // Use any existing Phi functions.
1605     assert(control()->is_Region(), "must be merging to a region");
1606     RegionNode* r = control()->as_Region();
1607 
1608     // Compute where to merge into
1609     // Merge incoming control path
1610     r->init_req(pnum, newin->control());
1611 
1612     if (pnum == 1) {            // Last merge for this Region?
1613       if (!block()->flow()->is_irreducible_entry()) {
1614         Node* result = _gvn.transform_no_reclaim(r);
1615         if (r != result && TraceOptoParse) {
1616           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1617         }
1618       }
1619       record_for_igvn(r);
1620     }
1621 
1622     // Update all the non-control inputs to map:
1623     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1624     bool check_elide_phi = target->is_SEL_backedge(save_block);
1625     for (uint j = 1; j < newin->req(); j++) {
1626       Node* m = map()->in(j);   // Current state of target.
1627       Node* n = newin->in(j);   // Incoming change to target state.
1628       PhiNode* phi;
1629       if (m->is_Phi() && m->as_Phi()->region() == r)
1630         phi = m->as_Phi();
1631       else
1632         phi = NULL;
1633       if (m != n) {             // Different; must merge
1634         switch (j) {
1635         // Frame pointer and Return Address never changes
1636         case TypeFunc::FramePtr:// Drop m, use the original value
1637         case TypeFunc::ReturnAdr:
1638           break;
1639         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1640           assert(phi == NULL, "the merge contains phis, not vice versa");
1641           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1642           continue;
1643         default:                // All normal stuff
1644           if (phi == NULL) {
1645             const JVMState* jvms = map()->jvms();
1646             if (EliminateNestedLocks &&
1647                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1648               // BoxLock nodes are not commoning.
1649               // Use old BoxLock node as merged box.
1650               assert(newin->jvms()->is_monitor_box(j), "sanity");
1651               // This assert also tests that nodes are BoxLock.
1652               assert(BoxLockNode::same_slot(n, m), "sanity");
1653               C->gvn_replace_by(n, m);
1654             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1655               phi = ensure_phi(j, nophi);
1656             }
1657           }
1658           break;
1659         }
1660       }
1661       // At this point, n might be top if:
1662       //  - there is no phi (because TypeFlow detected a conflict), or
1663       //  - the corresponding control edges is top (a dead incoming path)
1664       // It is a bug if we create a phi which sees a garbage value on a live path.
1665 
1666       if (phi != NULL) {
1667         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1668         assert(phi->region() == r, "");
1669         phi->set_req(pnum, n);  // Then add 'n' to the merge
1670         if (pnum == PhiNode::Input) {
1671           // Last merge for this Phi.
1672           // So far, Phis have had a reasonable type from ciTypeFlow.
1673           // Now _gvn will join that with the meet of current inputs.
1674           // BOTTOM is never permissible here, 'cause pessimistically
1675           // Phis of pointers cannot lose the basic pointer type.
1676           debug_only(const Type* bt1 = phi->bottom_type());
1677           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1678           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1679           debug_only(const Type* bt2 = phi->bottom_type());
1680           assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow");
1681           record_for_igvn(phi);
1682         }
1683       }
1684     } // End of for all values to be merged
1685 
1686     if (pnum == PhiNode::Input &&
1687         !r->in(0)) {         // The occasional useless Region
1688       assert(control() == r, "");
1689       set_control(r->nonnull_req());
1690     }
1691 
1692     map()->merge_replaced_nodes_with(newin);
1693 
1694     // newin has been subsumed into the lazy merge, and is now dead.
1695     set_block(save_block);
1696 
1697     stop();                     // done with this guy, for now
1698   }
1699 
1700   if (TraceOptoParse) {
1701     tty->print_cr(" on path %d", pnum);
1702   }
1703 
1704   // Done with this parser state.
1705   assert(stopped(), "");
1706 }
1707 
1708 
1709 //--------------------------merge_memory_edges---------------------------------
1710 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1711   // (nophi means we must not create phis, because we already parsed here)
1712   assert(n != NULL, "");
1713   // Merge the inputs to the MergeMems
1714   MergeMemNode* m = merged_memory();
1715 
1716   assert(control()->is_Region(), "must be merging to a region");
1717   RegionNode* r = control()->as_Region();
1718 
1719   PhiNode* base = NULL;
1720   MergeMemNode* remerge = NULL;
1721   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1722     Node *p = mms.force_memory();
1723     Node *q = mms.memory2();
1724     if (mms.is_empty() && nophi) {
1725       // Trouble:  No new splits allowed after a loop body is parsed.
1726       // Instead, wire the new split into a MergeMem on the backedge.
1727       // The optimizer will sort it out, slicing the phi.
1728       if (remerge == NULL) {
1729         assert(base != NULL, "");
1730         assert(base->in(0) != NULL, "should not be xformed away");
1731         remerge = MergeMemNode::make(C, base->in(pnum));
1732         gvn().set_type(remerge, Type::MEMORY);
1733         base->set_req(pnum, remerge);
1734       }
1735       remerge->set_memory_at(mms.alias_idx(), q);
1736       continue;
1737     }
1738     assert(!q->is_MergeMem(), "");
1739     PhiNode* phi;
1740     if (p != q) {
1741       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1742     } else {
1743       if (p->is_Phi() && p->as_Phi()->region() == r)
1744         phi = p->as_Phi();
1745       else
1746         phi = NULL;
1747     }
1748     // Insert q into local phi
1749     if (phi != NULL) {
1750       assert(phi->region() == r, "");
1751       p = phi;
1752       phi->set_req(pnum, q);
1753       if (mms.at_base_memory()) {
1754         base = phi;  // delay transforming it
1755       } else if (pnum == 1) {
1756         record_for_igvn(phi);
1757         p = _gvn.transform_no_reclaim(phi);
1758       }
1759       mms.set_memory(p);// store back through the iterator
1760     }
1761   }
1762   // Transform base last, in case we must fiddle with remerging.
1763   if (base != NULL && pnum == 1) {
1764     record_for_igvn(base);
1765     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1766   }
1767 }
1768 
1769 
1770 //------------------------ensure_phis_everywhere-------------------------------
1771 void Parse::ensure_phis_everywhere() {
1772   ensure_phi(TypeFunc::I_O);
1773 
1774   // Ensure a phi on all currently known memories.
1775   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1776     ensure_memory_phi(mms.alias_idx());
1777     debug_only(mms.set_memory());  // keep the iterator happy
1778   }
1779 
1780   // Note:  This is our only chance to create phis for memory slices.
1781   // If we miss a slice that crops up later, it will have to be
1782   // merged into the base-memory phi that we are building here.
1783   // Later, the optimizer will comb out the knot, and build separate
1784   // phi-loops for each memory slice that matters.
1785 
1786   // Monitors must nest nicely and not get confused amongst themselves.
1787   // Phi-ify everything up to the monitors, though.
1788   uint monoff = map()->jvms()->monoff();
1789   uint nof_monitors = map()->jvms()->nof_monitors();
1790 
1791   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1792   bool check_elide_phi = block()->is_SEL_head();
1793   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1794     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1795       ensure_phi(i);
1796     }
1797   }
1798 
1799   // Even monitors need Phis, though they are well-structured.
1800   // This is true for OSR methods, and also for the rare cases where
1801   // a monitor object is the subject of a replace_in_map operation.
1802   // See bugs 4426707 and 5043395.
1803   for (uint m = 0; m < nof_monitors; m++) {
1804     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1805   }
1806 }
1807 
1808 
1809 //-----------------------------add_new_path------------------------------------
1810 // Add a previously unaccounted predecessor to this block.
1811 int Parse::Block::add_new_path() {
1812   // If there is no map, return the lowest unused path number.
1813   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1814 
1815   SafePointNode* map = start_map();
1816   if (!map->control()->is_Region())
1817     return pred_count()+1;  // there may be a region some day
1818   RegionNode* r = map->control()->as_Region();
1819 
1820   // Add new path to the region.
1821   uint pnum = r->req();
1822   r->add_req(NULL);
1823 
1824   for (uint i = 1; i < map->req(); i++) {
1825     Node* n = map->in(i);
1826     if (i == TypeFunc::Memory) {
1827       // Ensure a phi on all currently known memories.
1828       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1829         Node* phi = mms.memory();
1830         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1831           assert(phi->req() == pnum, "must be same size as region");
1832           phi->add_req(NULL);
1833         }
1834       }
1835     } else {
1836       if (n->is_Phi() && n->as_Phi()->region() == r) {
1837         assert(n->req() == pnum, "must be same size as region");
1838         n->add_req(NULL);
1839       }
1840     }
1841   }
1842 
1843   return pnum;
1844 }
1845 
1846 //------------------------------ensure_phi-------------------------------------
1847 // Turn the idx'th entry of the current map into a Phi
1848 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1849   SafePointNode* map = this->map();
1850   Node* region = map->control();
1851   assert(region->is_Region(), "");
1852 
1853   Node* o = map->in(idx);
1854   assert(o != NULL, "");
1855 
1856   if (o == top())  return NULL; // TOP always merges into TOP
1857 
1858   if (o->is_Phi() && o->as_Phi()->region() == region) {
1859     return o->as_Phi();
1860   }
1861 
1862   // Now use a Phi here for merging
1863   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1864   const JVMState* jvms = map->jvms();
1865   const Type* t;
1866   if (jvms->is_loc(idx)) {
1867     t = block()->local_type_at(idx - jvms->locoff());
1868   } else if (jvms->is_stk(idx)) {
1869     t = block()->stack_type_at(idx - jvms->stkoff());
1870   } else if (jvms->is_mon(idx)) {
1871     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1872     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1873   } else if ((uint)idx < TypeFunc::Parms) {
1874     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1875   } else {
1876     assert(false, "no type information for this phi");
1877   }
1878 
1879   // If the type falls to bottom, then this must be a local that
1880   // is mixing ints and oops or some such.  Forcing it to top
1881   // makes it go dead.
1882   if (t == Type::BOTTOM) {
1883     map->set_req(idx, top());
1884     return NULL;
1885   }
1886 
1887   // Do not create phis for top either.
1888   // A top on a non-null control flow must be an unused even after the.phi.
1889   if (t == Type::TOP || t == Type::HALF) {
1890     map->set_req(idx, top());
1891     return NULL;
1892   }
1893 
1894   PhiNode* phi = PhiNode::make(region, o, t);
1895   gvn().set_type(phi, t);
1896   if (C->do_escape_analysis()) record_for_igvn(phi);
1897   map->set_req(idx, phi);
1898   return phi;
1899 }
1900 
1901 //--------------------------ensure_memory_phi----------------------------------
1902 // Turn the idx'th slice of the current memory into a Phi
1903 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1904   MergeMemNode* mem = merged_memory();
1905   Node* region = control();
1906   assert(region->is_Region(), "");
1907 
1908   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1909   assert(o != NULL && o != top(), "");
1910 
1911   PhiNode* phi;
1912   if (o->is_Phi() && o->as_Phi()->region() == region) {
1913     phi = o->as_Phi();
1914     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1915       // clone the shared base memory phi to make a new memory split
1916       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1917       const Type* t = phi->bottom_type();
1918       const TypePtr* adr_type = C->get_adr_type(idx);
1919       phi = phi->slice_memory(adr_type);
1920       gvn().set_type(phi, t);
1921     }
1922     return phi;
1923   }
1924 
1925   // Now use a Phi here for merging
1926   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1927   const Type* t = o->bottom_type();
1928   const TypePtr* adr_type = C->get_adr_type(idx);
1929   phi = PhiNode::make(region, o, t, adr_type);
1930   gvn().set_type(phi, t);
1931   if (idx == Compile::AliasIdxBot)
1932     mem->set_base_memory(phi);
1933   else
1934     mem->set_memory_at(idx, phi);
1935   return phi;
1936 }
1937 
1938 //------------------------------call_register_finalizer-----------------------
1939 // Check the klass of the receiver and call register_finalizer if the
1940 // class need finalization.
1941 void Parse::call_register_finalizer() {
1942   Node* receiver = local(0);
1943   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1944          "must have non-null instance type");
1945 
1946   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1947   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1948     // The type isn't known exactly so see if CHA tells us anything.
1949     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1950     if (!Dependencies::has_finalizable_subclass(ik)) {
1951       // No finalizable subclasses so skip the dynamic check.
1952       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1953       return;
1954     }
1955   }
1956 
1957   // Insert a dynamic test for whether the instance needs
1958   // finalization.  In general this will fold up since the concrete
1959   // class is often visible so the access flags are constant.
1960   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1961   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1962 
1963   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
1964   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
1965 
1966   Node* mask  = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1967   Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0)));
1968   Node* test  = _gvn.transform(new (C) BoolNode(check, BoolTest::ne));
1969 
1970   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1971 
1972   RegionNode* result_rgn = new (C) RegionNode(3);
1973   record_for_igvn(result_rgn);
1974 
1975   Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff));
1976   result_rgn->init_req(1, skip_register);
1977 
1978   Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff));
1979   set_control(needs_register);
1980   if (stopped()) {
1981     // There is no slow path.
1982     result_rgn->init_req(2, top());
1983   } else {
1984     Node *call = make_runtime_call(RC_NO_LEAF,
1985                                    OptoRuntime::register_finalizer_Type(),
1986                                    OptoRuntime::register_finalizer_Java(),
1987                                    NULL, TypePtr::BOTTOM,
1988                                    receiver);
1989     make_slow_call_ex(call, env()->Throwable_klass(), true);
1990 
1991     Node* fast_io  = call->in(TypeFunc::I_O);
1992     Node* fast_mem = call->in(TypeFunc::Memory);
1993     // These two phis are pre-filled with copies of of the fast IO and Memory
1994     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
1995     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
1996 
1997     result_rgn->init_req(2, control());
1998     io_phi    ->init_req(2, i_o());
1999     mem_phi   ->init_req(2, reset_memory());
2000 
2001     set_all_memory( _gvn.transform(mem_phi) );
2002     set_i_o(        _gvn.transform(io_phi) );
2003   }
2004 
2005   set_control( _gvn.transform(result_rgn) );
2006 }
2007 
2008 // Add check to deoptimize if RTM state is not ProfileRTM
2009 void Parse::rtm_deopt() {
2010 #if INCLUDE_RTM_OPT
2011   if (C->profile_rtm()) {
2012     assert(C->method() != NULL, "only for normal compilations");
2013     assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state");
2014     assert(depth() == 1, "generate check only for main compiled method");
2015 
2016     // Set starting bci for uncommon trap.
2017     set_parse_bci(is_osr_parse() ? osr_bci() : 0);
2018 
2019     // Load the rtm_state from the MethodData.
2020     const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data());
2021     Node* mdo = makecon(adr_type);
2022     int offset = MethodData::rtm_state_offset_in_bytes();
2023     Node* adr_node = basic_plus_adr(mdo, mdo, offset);
2024     Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
2025 
2026     // Separate Load from Cmp by Opaque.
2027     // In expand_macro_nodes() it will be replaced either
2028     // with this load when there are locks in the code
2029     // or with ProfileRTM (cmp->in(2)) otherwise so that
2030     // the check will fold.
2031     Node* profile_state = makecon(TypeInt::make(ProfileRTM));
2032     Node* opq   = _gvn.transform( new (C) Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) );
2033     Node* chk   = _gvn.transform( new (C) CmpINode(opq, profile_state) );
2034     Node* tst   = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
2035     // Branch to failure if state was changed
2036     { BuildCutout unless(this, tst, PROB_ALWAYS);
2037       uncommon_trap(Deoptimization::Reason_rtm_state_change,
2038                     Deoptimization::Action_make_not_entrant);
2039     }
2040   }
2041 #endif
2042 }
2043 
2044 //------------------------------return_current---------------------------------
2045 // Append current _map to _exit_return
2046 void Parse::return_current(Node* value) {
2047   if (RegisterFinalizersAtInit &&
2048       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2049     call_register_finalizer();
2050   }
2051 
2052   // Do not set_parse_bci, so that return goo is credited to the return insn.
2053   set_bci(InvocationEntryBci);
2054   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2055     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2056   }
2057   if (C->env()->dtrace_method_probes()) {
2058     make_dtrace_method_exit(method());
2059   }
2060   SafePointNode* exit_return = _exits.map();
2061   exit_return->in( TypeFunc::Control  )->add_req( control() );
2062   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2063   Node *mem = exit_return->in( TypeFunc::Memory   );
2064   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2065     if (mms.is_empty()) {
2066       // get a copy of the base memory, and patch just this one input
2067       const TypePtr* adr_type = mms.adr_type(C);
2068       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2069       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2070       gvn().set_type_bottom(phi);
2071       phi->del_req(phi->req()-1);  // prepare to re-patch
2072       mms.set_memory(phi);
2073     }
2074     mms.memory()->add_req(mms.memory2());
2075   }
2076 
2077   // frame pointer is always same, already captured
2078   if (value != NULL) {
2079     // If returning oops to an interface-return, there is a silent free
2080     // cast from oop to interface allowed by the Verifier.  Make it explicit
2081     // here.
2082     Node* phi = _exits.argument(0);
2083     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2084     if( tr && tr->klass()->is_loaded() &&
2085         tr->klass()->is_interface() ) {
2086       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2087       if (tp && tp->klass()->is_loaded() &&
2088           !tp->klass()->is_interface()) {
2089         // sharpen the type eagerly; this eases certain assert checking
2090         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2091           tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr();
2092         value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr));
2093       }
2094     }
2095     phi->add_req(value);
2096   }
2097 
2098   if (_first_return) {
2099     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2100     _first_return = false;
2101   } else {
2102     _exits.map()->merge_replaced_nodes_with(map());
2103   }
2104 
2105   stop_and_kill_map();          // This CFG path dies here
2106 }
2107 
2108 
2109 //------------------------------add_safepoint----------------------------------
2110 void Parse::add_safepoint() {
2111   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2112   // after a Call (except Leaf Call) or another SafePoint.
2113   Node *proj = control();
2114   bool add_poll_param = SafePointNode::needs_polling_address_input();
2115   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2116   if( proj->is_Proj() ) {
2117     Node *n0 = proj->in(0);
2118     if( n0->is_Catch() ) {
2119       n0 = n0->in(0)->in(0);
2120       assert( n0->is_Call(), "expect a call here" );
2121     }
2122     if( n0->is_Call() ) {
2123       if( n0->as_Call()->guaranteed_safepoint() )
2124         return;
2125     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2126       return;
2127     }
2128   }
2129 
2130   // Clear out dead values from the debug info.
2131   kill_dead_locals();
2132 
2133   // Clone the JVM State
2134   SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL);
2135 
2136   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2137   // SafePoint we need our GC state to be safe; i.e. we need all our current
2138   // write barriers (card marks) to not float down after the SafePoint so we
2139   // must read raw memory.  Likewise we need all oop stores to match the card
2140   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2141   // state on a deopt).
2142 
2143   // We do not need to WRITE the memory state after a SafePoint.  The control
2144   // edge will keep card-marks and oop-stores from floating up from below a
2145   // SafePoint and our true dependency added here will keep them from floating
2146   // down below a SafePoint.
2147 
2148   // Clone the current memory state
2149   Node* mem = MergeMemNode::make(C, map()->memory());
2150 
2151   mem = _gvn.transform(mem);
2152 
2153   // Pass control through the safepoint
2154   sfpnt->init_req(TypeFunc::Control  , control());
2155   // Fix edges normally used by a call
2156   sfpnt->init_req(TypeFunc::I_O      , top() );
2157   sfpnt->init_req(TypeFunc::Memory   , mem   );
2158   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2159   sfpnt->init_req(TypeFunc::FramePtr , top() );
2160 
2161   // Create a node for the polling address
2162   if( add_poll_param ) {
2163     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2164     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2165   }
2166 
2167   // Fix up the JVM State edges
2168   add_safepoint_edges(sfpnt);
2169   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2170   set_control(transformed_sfpnt);
2171 
2172   // Provide an edge from root to safepoint.  This makes the safepoint
2173   // appear useful until the parse has completed.
2174   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2175     assert(C->root() != NULL, "Expect parse is still valid");
2176     C->root()->add_prec(transformed_sfpnt);
2177   }
2178 }
2179 
2180 #ifndef PRODUCT
2181 //------------------------show_parse_info--------------------------------------
2182 void Parse::show_parse_info() {
2183   InlineTree* ilt = NULL;
2184   if (C->ilt() != NULL) {
2185     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2186     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2187   }
2188   if (PrintCompilation && Verbose) {
2189     if (depth() == 1) {
2190       if( ilt->count_inlines() ) {
2191         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2192                      ilt->count_inline_bcs());
2193         tty->cr();
2194       }
2195     } else {
2196       if (method()->is_synchronized())         tty->print("s");
2197       if (method()->has_exception_handlers())  tty->print("!");
2198       // Check this is not the final compiled version
2199       if (C->trap_can_recompile()) {
2200         tty->print("-");
2201       } else {
2202         tty->print(" ");
2203       }
2204       method()->print_short_name();
2205       if (is_osr_parse()) {
2206         tty->print(" @ %d", osr_bci());
2207       }
2208       tty->print(" (%d bytes)",method()->code_size());
2209       if (ilt->count_inlines()) {
2210         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2211                    ilt->count_inline_bcs());
2212       }
2213       tty->cr();
2214     }
2215   }
2216   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2217     // Print that we succeeded; suppress this message on the first osr parse.
2218 
2219     if (method()->is_synchronized())         tty->print("s");
2220     if (method()->has_exception_handlers())  tty->print("!");
2221     // Check this is not the final compiled version
2222     if (C->trap_can_recompile() && depth() == 1) {
2223       tty->print("-");
2224     } else {
2225       tty->print(" ");
2226     }
2227     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2228     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2229     method()->print_short_name();
2230     if (is_osr_parse()) {
2231       tty->print(" @ %d", osr_bci());
2232     }
2233     if (ilt->caller_bci() != -1) {
2234       tty->print(" @ %d", ilt->caller_bci());
2235     }
2236     tty->print(" (%d bytes)",method()->code_size());
2237     if (ilt->count_inlines()) {
2238       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2239                  ilt->count_inline_bcs());
2240     }
2241     tty->cr();
2242   }
2243 }
2244 
2245 
2246 //------------------------------dump-------------------------------------------
2247 // Dump information associated with the bytecodes of current _method
2248 void Parse::dump() {
2249   if( method() != NULL ) {
2250     // Iterate over bytecodes
2251     ciBytecodeStream iter(method());
2252     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2253       dump_bci( iter.cur_bci() );
2254       tty->cr();
2255     }
2256   }
2257 }
2258 
2259 // Dump information associated with a byte code index, 'bci'
2260 void Parse::dump_bci(int bci) {
2261   // Output info on merge-points, cloning, and within _jsr..._ret
2262   // NYI
2263   tty->print(" bci:%d", bci);
2264 }
2265 
2266 #endif