1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_bsd.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_bsd.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/objectMonitor.hpp"
  51 #include "runtime/orderAccess.inline.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "services/runtimeService.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/growableArray.hpp"
  67 #include "utilities/vmError.hpp"
  68 
  69 // put OS-includes here
  70 # include <sys/types.h>
  71 # include <sys/mman.h>
  72 # include <sys/stat.h>
  73 # include <sys/select.h>
  74 # include <pthread.h>
  75 # include <signal.h>
  76 # include <errno.h>
  77 # include <dlfcn.h>
  78 # include <stdio.h>
  79 # include <unistd.h>
  80 # include <sys/resource.h>
  81 # include <pthread.h>
  82 # include <sys/stat.h>
  83 # include <sys/time.h>
  84 # include <sys/times.h>
  85 # include <sys/utsname.h>
  86 # include <sys/socket.h>
  87 # include <sys/wait.h>
  88 # include <time.h>
  89 # include <pwd.h>
  90 # include <poll.h>
  91 # include <semaphore.h>
  92 # include <fcntl.h>
  93 # include <string.h>
  94 # include <sys/param.h>
  95 # include <sys/sysctl.h>
  96 # include <sys/ipc.h>
  97 # include <sys/shm.h>
  98 #ifndef __APPLE__
  99 # include <link.h>
 100 #endif
 101 # include <stdint.h>
 102 # include <inttypes.h>
 103 # include <sys/ioctl.h>
 104 # include <sys/syscall.h>
 105 
 106 #if defined(__FreeBSD__) || defined(__NetBSD__)
 107 # include <elf.h>
 108 #endif
 109 
 110 #ifdef __APPLE__
 111 # include <mach/mach.h> // semaphore_* API
 112 # include <mach-o/dyld.h>
 113 # include <sys/proc_info.h>
 114 # include <objc/objc-auto.h>
 115 #endif
 116 
 117 #ifndef MAP_ANONYMOUS
 118 #define MAP_ANONYMOUS MAP_ANON
 119 #endif
 120 
 121 #define MAX_PATH    (2 * K)
 122 
 123 // for timer info max values which include all bits
 124 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 125 
 126 #define LARGEPAGES_BIT (1 << 6)
 127 
 128 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 129 
 130 ////////////////////////////////////////////////////////////////////////////////
 131 // global variables
 132 julong os::Bsd::_physical_memory = 0;
 133 
 134 #ifdef __APPLE__
 135 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 136 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 137 #else
 138 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 139 #endif
 140 pthread_t os::Bsd::_main_thread;
 141 int os::Bsd::_page_size = -1;
 142 
 143 static jlong initial_time_count=0;
 144 
 145 static int clock_tics_per_sec = 100;
 146 
 147 // For diagnostics to print a message once. see run_periodic_checks
 148 static sigset_t check_signal_done;
 149 static bool check_signals = true;
 150 
 151 static pid_t _initial_pid = 0;
 152 
 153 /* Signal number used to suspend/resume a thread */
 154 
 155 /* do not use any signal number less than SIGSEGV, see 4355769 */
 156 static int SR_signum = SIGUSR2;
 157 sigset_t SR_sigset;
 158 
 159 
 160 ////////////////////////////////////////////////////////////////////////////////
 161 // utility functions
 162 
 163 static int SR_initialize();
 164 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 165 
 166 julong os::available_memory() {
 167   return Bsd::available_memory();
 168 }
 169 
 170 // available here means free
 171 julong os::Bsd::available_memory() {
 172   uint64_t available = physical_memory() >> 2;
 173 #ifdef __APPLE__
 174   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 175   vm_statistics64_data_t vmstat;
 176   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 177                                          (host_info64_t)&vmstat, &count);
 178   assert(kerr == KERN_SUCCESS,
 179          "host_statistics64 failed - check mach_host_self() and count");
 180   if (kerr == KERN_SUCCESS) {
 181     available = vmstat.free_count * os::vm_page_size();
 182   }
 183 #endif
 184   return available;
 185 }
 186 
 187 julong os::physical_memory() {
 188   return Bsd::physical_memory();
 189 }
 190 
 191 ////////////////////////////////////////////////////////////////////////////////
 192 // environment support
 193 
 194 bool os::getenv(const char* name, char* buf, int len) {
 195   const char* val = ::getenv(name);
 196   if (val != NULL && strlen(val) < (size_t)len) {
 197     strcpy(buf, val);
 198     return true;
 199   }
 200   if (len > 0) buf[0] = 0;  // return a null string
 201   return false;
 202 }
 203 
 204 
 205 // Return true if user is running as root.
 206 
 207 bool os::have_special_privileges() {
 208   static bool init = false;
 209   static bool privileges = false;
 210   if (!init) {
 211     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 212     init = true;
 213   }
 214   return privileges;
 215 }
 216 
 217 
 218 
 219 // Cpu architecture string
 220 #if   defined(ZERO)
 221 static char cpu_arch[] = ZERO_LIBARCH;
 222 #elif defined(IA64)
 223 static char cpu_arch[] = "ia64";
 224 #elif defined(IA32)
 225 static char cpu_arch[] = "i386";
 226 #elif defined(AMD64)
 227 static char cpu_arch[] = "amd64";
 228 #elif defined(ARM)
 229 static char cpu_arch[] = "arm";
 230 #elif defined(PPC32)
 231 static char cpu_arch[] = "ppc";
 232 #elif defined(SPARC)
 233 #  ifdef _LP64
 234 static char cpu_arch[] = "sparcv9";
 235 #  else
 236 static char cpu_arch[] = "sparc";
 237 #  endif
 238 #else
 239 #error Add appropriate cpu_arch setting
 240 #endif
 241 
 242 // Compiler variant
 243 #ifdef COMPILER2
 244 #define COMPILER_VARIANT "server"
 245 #else
 246 #define COMPILER_VARIANT "client"
 247 #endif
 248 
 249 
 250 void os::Bsd::initialize_system_info() {
 251   int mib[2];
 252   size_t len;
 253   int cpu_val;
 254   julong mem_val;
 255 
 256   /* get processors count via hw.ncpus sysctl */
 257   mib[0] = CTL_HW;
 258   mib[1] = HW_NCPU;
 259   len = sizeof(cpu_val);
 260   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 261        assert(len == sizeof(cpu_val), "unexpected data size");
 262        set_processor_count(cpu_val);
 263   }
 264   else {
 265        set_processor_count(1);   // fallback
 266   }
 267 
 268   /* get physical memory via hw.memsize sysctl (hw.memsize is used
 269    * since it returns a 64 bit value)
 270    */
 271   mib[0] = CTL_HW;
 272 
 273 #if defined (HW_MEMSIZE) // Apple
 274   mib[1] = HW_MEMSIZE;
 275 #elif defined(HW_PHYSMEM) // Most of BSD
 276   mib[1] = HW_PHYSMEM;
 277 #elif defined(HW_REALMEM) // Old FreeBSD
 278   mib[1] = HW_REALMEM;
 279 #else
 280   #error No ways to get physmem
 281 #endif
 282 
 283   len = sizeof(mem_val);
 284   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 285        assert(len == sizeof(mem_val), "unexpected data size");
 286        _physical_memory = mem_val;
 287   } else {
 288        _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
 289   }
 290 
 291 #ifdef __OpenBSD__
 292   {
 293        // limit _physical_memory memory view on OpenBSD since
 294        // datasize rlimit restricts us anyway.
 295        struct rlimit limits;
 296        getrlimit(RLIMIT_DATA, &limits);
 297        _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 298   }
 299 #endif
 300 }
 301 
 302 #ifdef __APPLE__
 303 static const char *get_home() {
 304   const char *home_dir = ::getenv("HOME");
 305   if ((home_dir == NULL) || (*home_dir == '\0')) {
 306     struct passwd *passwd_info = getpwuid(geteuid());
 307     if (passwd_info != NULL) {
 308       home_dir = passwd_info->pw_dir;
 309     }
 310   }
 311 
 312   return home_dir;
 313 }
 314 #endif
 315 
 316 void os::init_system_properties_values() {
 317   // The next steps are taken in the product version:
 318   //
 319   // Obtain the JAVA_HOME value from the location of libjvm.so.
 320   // This library should be located at:
 321   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 322   //
 323   // If "/jre/lib/" appears at the right place in the path, then we
 324   // assume libjvm.so is installed in a JDK and we use this path.
 325   //
 326   // Otherwise exit with message: "Could not create the Java virtual machine."
 327   //
 328   // The following extra steps are taken in the debugging version:
 329   //
 330   // If "/jre/lib/" does NOT appear at the right place in the path
 331   // instead of exit check for $JAVA_HOME environment variable.
 332   //
 333   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 334   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 335   // it looks like libjvm.so is installed there
 336   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 337   //
 338   // Otherwise exit.
 339   //
 340   // Important note: if the location of libjvm.so changes this
 341   // code needs to be changed accordingly.
 342 
 343 // See ld(1):
 344 //      The linker uses the following search paths to locate required
 345 //      shared libraries:
 346 //        1: ...
 347 //        ...
 348 //        7: The default directories, normally /lib and /usr/lib.
 349 #ifndef DEFAULT_LIBPATH
 350 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 351 #endif
 352 
 353 // Base path of extensions installed on the system.
 354 #define SYS_EXT_DIR     "/usr/java/packages"
 355 #define EXTENSIONS_DIR  "/lib/ext"
 356 #define ENDORSED_DIR    "/lib/endorsed"
 357 
 358 #ifndef __APPLE__
 359 
 360   // Buffer that fits several sprintfs.
 361   // Note that the space for the colon and the trailing null are provided
 362   // by the nulls included by the sizeof operator.
 363   const size_t bufsize =
 364     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 365          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 366          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 367   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 368 
 369   // sysclasspath, java_home, dll_dir
 370   {
 371     char *pslash;
 372     os::jvm_path(buf, bufsize);
 373 
 374     // Found the full path to libjvm.so.
 375     // Now cut the path to <java_home>/jre if we can.
 376     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 377     pslash = strrchr(buf, '/');
 378     if (pslash != NULL) {
 379       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 380     }
 381     Arguments::set_dll_dir(buf);
 382 
 383     if (pslash != NULL) {
 384       pslash = strrchr(buf, '/');
 385       if (pslash != NULL) {
 386         *pslash = '\0';          // Get rid of /<arch>.
 387         pslash = strrchr(buf, '/');
 388         if (pslash != NULL) {
 389           *pslash = '\0';        // Get rid of /lib.
 390         }
 391       }
 392     }
 393     Arguments::set_java_home(buf);
 394     set_boot_path('/', ':');
 395   }
 396 
 397   // Where to look for native libraries.
 398   //
 399   // Note: Due to a legacy implementation, most of the library path
 400   // is set in the launcher. This was to accomodate linking restrictions
 401   // on legacy Bsd implementations (which are no longer supported).
 402   // Eventually, all the library path setting will be done here.
 403   //
 404   // However, to prevent the proliferation of improperly built native
 405   // libraries, the new path component /usr/java/packages is added here.
 406   // Eventually, all the library path setting will be done here.
 407   {
 408     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 409     // should always exist (until the legacy problem cited above is
 410     // addressed).
 411     const char *v = ::getenv("LD_LIBRARY_PATH");
 412     const char *v_colon = ":";
 413     if (v == NULL) { v = ""; v_colon = ""; }
 414     // That's +1 for the colon and +1 for the trailing '\0'.
 415     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 416                                                      strlen(v) + 1 +
 417                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 418                                                      mtInternal);
 419     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 420     Arguments::set_library_path(ld_library_path);
 421     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 422   }
 423 
 424   // Extensions directories.
 425   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 426   Arguments::set_ext_dirs(buf);
 427 
 428   // Endorsed standards default directory.
 429   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 430   Arguments::set_endorsed_dirs(buf);
 431 
 432   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 433 
 434 #else // __APPLE__
 435 
 436 #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 437 #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 438 
 439   const char *user_home_dir = get_home();
 440   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 441   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 442     sizeof(SYS_EXTENSIONS_DIRS);
 443 
 444   // Buffer that fits several sprintfs.
 445   // Note that the space for the colon and the trailing null are provided
 446   // by the nulls included by the sizeof operator.
 447   const size_t bufsize =
 448     MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
 449          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
 450          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 451   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 452 
 453   // sysclasspath, java_home, dll_dir
 454   {
 455     char *pslash;
 456     os::jvm_path(buf, bufsize);
 457 
 458     // Found the full path to libjvm.so.
 459     // Now cut the path to <java_home>/jre if we can.
 460     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 461     pslash = strrchr(buf, '/');
 462     if (pslash != NULL) {
 463       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 464     }
 465     Arguments::set_dll_dir(buf);
 466 
 467     if (pslash != NULL) {
 468       pslash = strrchr(buf, '/');
 469       if (pslash != NULL) {
 470         *pslash = '\0';          // Get rid of /lib.
 471       }
 472     }
 473     Arguments::set_java_home(buf);
 474     set_boot_path('/', ':');
 475   }
 476 
 477   // Where to look for native libraries.
 478   //
 479   // Note: Due to a legacy implementation, most of the library path
 480   // is set in the launcher. This was to accomodate linking restrictions
 481   // on legacy Bsd implementations (which are no longer supported).
 482   // Eventually, all the library path setting will be done here.
 483   //
 484   // However, to prevent the proliferation of improperly built native
 485   // libraries, the new path component /usr/java/packages is added here.
 486   // Eventually, all the library path setting will be done here.
 487   {
 488     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 489     // should always exist (until the legacy problem cited above is
 490     // addressed).
 491     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 492     // can specify a directory inside an app wrapper
 493     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 494     const char *l_colon = ":";
 495     if (l == NULL) { l = ""; l_colon = ""; }
 496 
 497     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 498     const char *v_colon = ":";
 499     if (v == NULL) { v = ""; v_colon = ""; }
 500 
 501     // Apple's Java6 has "." at the beginning of java.library.path.
 502     // OpenJDK on Windows has "." at the end of java.library.path.
 503     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 504     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 505     // "." is appended to the end of java.library.path. Yes, this
 506     // could cause a change in behavior, but Apple's Java6 behavior
 507     // can be achieved by putting "." at the beginning of the
 508     // JAVA_LIBRARY_PATH environment variable.
 509     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 510                                                      strlen(v) + 1 + strlen(l) + 1 +
 511                                                      system_ext_size + 3,
 512                                                      mtInternal);
 513     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 514             v, v_colon, l, l_colon, user_home_dir);
 515     Arguments::set_library_path(ld_library_path);
 516     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 517   }
 518 
 519   // Extensions directories.
 520   //
 521   // Note that the space for the colon and the trailing null are provided
 522   // by the nulls included by the sizeof operator (so actually one byte more
 523   // than necessary is allocated).
 524   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 525           user_home_dir, Arguments::get_java_home());
 526   Arguments::set_ext_dirs(buf);
 527 
 528   // Endorsed standards default directory.
 529   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 530   Arguments::set_endorsed_dirs(buf);
 531 
 532   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 533 
 534 #undef SYS_EXTENSIONS_DIR
 535 #undef SYS_EXTENSIONS_DIRS
 536 
 537 #endif // __APPLE__
 538 
 539 #undef SYS_EXT_DIR
 540 #undef EXTENSIONS_DIR
 541 #undef ENDORSED_DIR
 542 }
 543 
 544 ////////////////////////////////////////////////////////////////////////////////
 545 // breakpoint support
 546 
 547 void os::breakpoint() {
 548   BREAKPOINT;
 549 }
 550 
 551 extern "C" void breakpoint() {
 552   // use debugger to set breakpoint here
 553 }
 554 
 555 ////////////////////////////////////////////////////////////////////////////////
 556 // signal support
 557 
 558 debug_only(static bool signal_sets_initialized = false);
 559 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 560 
 561 bool os::Bsd::is_sig_ignored(int sig) {
 562       struct sigaction oact;
 563       sigaction(sig, (struct sigaction*)NULL, &oact);
 564       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 565                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 566       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 567            return true;
 568       else
 569            return false;
 570 }
 571 
 572 void os::Bsd::signal_sets_init() {
 573   // Should also have an assertion stating we are still single-threaded.
 574   assert(!signal_sets_initialized, "Already initialized");
 575   // Fill in signals that are necessarily unblocked for all threads in
 576   // the VM. Currently, we unblock the following signals:
 577   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 578   //                         by -Xrs (=ReduceSignalUsage));
 579   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 580   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 581   // the dispositions or masks wrt these signals.
 582   // Programs embedding the VM that want to use the above signals for their
 583   // own purposes must, at this time, use the "-Xrs" option to prevent
 584   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 585   // (See bug 4345157, and other related bugs).
 586   // In reality, though, unblocking these signals is really a nop, since
 587   // these signals are not blocked by default.
 588   sigemptyset(&unblocked_sigs);
 589   sigemptyset(&allowdebug_blocked_sigs);
 590   sigaddset(&unblocked_sigs, SIGILL);
 591   sigaddset(&unblocked_sigs, SIGSEGV);
 592   sigaddset(&unblocked_sigs, SIGBUS);
 593   sigaddset(&unblocked_sigs, SIGFPE);
 594   sigaddset(&unblocked_sigs, SR_signum);
 595 
 596   if (!ReduceSignalUsage) {
 597    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 598       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 599       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 600    }
 601    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 602       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 603       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 604    }
 605    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 606       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 607       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 608    }
 609   }
 610   // Fill in signals that are blocked by all but the VM thread.
 611   sigemptyset(&vm_sigs);
 612   if (!ReduceSignalUsage)
 613     sigaddset(&vm_sigs, BREAK_SIGNAL);
 614   debug_only(signal_sets_initialized = true);
 615 
 616 }
 617 
 618 // These are signals that are unblocked while a thread is running Java.
 619 // (For some reason, they get blocked by default.)
 620 sigset_t* os::Bsd::unblocked_signals() {
 621   assert(signal_sets_initialized, "Not initialized");
 622   return &unblocked_sigs;
 623 }
 624 
 625 // These are the signals that are blocked while a (non-VM) thread is
 626 // running Java. Only the VM thread handles these signals.
 627 sigset_t* os::Bsd::vm_signals() {
 628   assert(signal_sets_initialized, "Not initialized");
 629   return &vm_sigs;
 630 }
 631 
 632 // These are signals that are blocked during cond_wait to allow debugger in
 633 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 634   assert(signal_sets_initialized, "Not initialized");
 635   return &allowdebug_blocked_sigs;
 636 }
 637 
 638 void os::Bsd::hotspot_sigmask(Thread* thread) {
 639 
 640   //Save caller's signal mask before setting VM signal mask
 641   sigset_t caller_sigmask;
 642   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 643 
 644   OSThread* osthread = thread->osthread();
 645   osthread->set_caller_sigmask(caller_sigmask);
 646 
 647   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 648 
 649   if (!ReduceSignalUsage) {
 650     if (thread->is_VM_thread()) {
 651       // Only the VM thread handles BREAK_SIGNAL ...
 652       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 653     } else {
 654       // ... all other threads block BREAK_SIGNAL
 655       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 656     }
 657   }
 658 }
 659 
 660 
 661 //////////////////////////////////////////////////////////////////////////////
 662 // create new thread
 663 
 664 // check if it's safe to start a new thread
 665 static bool _thread_safety_check(Thread* thread) {
 666   return true;
 667 }
 668 
 669 #ifdef __APPLE__
 670 // library handle for calling objc_registerThreadWithCollector()
 671 // without static linking to the libobjc library
 672 #define OBJC_LIB "/usr/lib/libobjc.dylib"
 673 #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 674 typedef void (*objc_registerThreadWithCollector_t)();
 675 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 676 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 677 #endif
 678 
 679 #ifdef __APPLE__
 680 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 681   // Additional thread_id used to correlate threads in SA
 682   thread_identifier_info_data_t     m_ident_info;
 683   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 684 
 685   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 686               (thread_info_t) &m_ident_info, &count);
 687 
 688   return m_ident_info.thread_id;
 689 }
 690 #endif
 691 
 692 // Thread start routine for all newly created threads
 693 static void *java_start(Thread *thread) {
 694   // Try to randomize the cache line index of hot stack frames.
 695   // This helps when threads of the same stack traces evict each other's
 696   // cache lines. The threads can be either from the same JVM instance, or
 697   // from different JVM instances. The benefit is especially true for
 698   // processors with hyperthreading technology.
 699   static int counter = 0;
 700   int pid = os::current_process_id();
 701   alloca(((pid ^ counter++) & 7) * 128);
 702 
 703   ThreadLocalStorage::set_thread(thread);
 704 
 705   OSThread* osthread = thread->osthread();
 706   Monitor* sync = osthread->startThread_lock();
 707 
 708   // non floating stack BsdThreads needs extra check, see above
 709   if (!_thread_safety_check(thread)) {
 710     // notify parent thread
 711     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 712     osthread->set_state(ZOMBIE);
 713     sync->notify_all();
 714     return NULL;
 715   }
 716 
 717   osthread->set_thread_id(os::Bsd::gettid());
 718 
 719 #ifdef __APPLE__
 720   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 721   guarantee(unique_thread_id != 0, "unique thread id was not found");
 722   osthread->set_unique_thread_id(unique_thread_id);
 723 #endif
 724   // initialize signal mask for this thread
 725   os::Bsd::hotspot_sigmask(thread);
 726 
 727   // initialize floating point control register
 728   os::Bsd::init_thread_fpu_state();
 729 
 730 #ifdef __APPLE__
 731   // register thread with objc gc
 732   if (objc_registerThreadWithCollectorFunction != NULL) {
 733     objc_registerThreadWithCollectorFunction();
 734   }
 735 #endif
 736 
 737   // handshaking with parent thread
 738   {
 739     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 740 
 741     // notify parent thread
 742     osthread->set_state(INITIALIZED);
 743     sync->notify_all();
 744 
 745     // wait until os::start_thread()
 746     while (osthread->get_state() == INITIALIZED) {
 747       sync->wait(Mutex::_no_safepoint_check_flag);
 748     }
 749   }
 750 
 751   // call one more level start routine
 752   thread->run();
 753 
 754   return 0;
 755 }
 756 
 757 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 758   assert(thread->osthread() == NULL, "caller responsible");
 759 
 760   // Allocate the OSThread object
 761   OSThread* osthread = new OSThread(NULL, NULL);
 762   if (osthread == NULL) {
 763     return false;
 764   }
 765 
 766   // set the correct thread state
 767   osthread->set_thread_type(thr_type);
 768 
 769   // Initial state is ALLOCATED but not INITIALIZED
 770   osthread->set_state(ALLOCATED);
 771 
 772   thread->set_osthread(osthread);
 773 
 774   // init thread attributes
 775   pthread_attr_t attr;
 776   pthread_attr_init(&attr);
 777   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 778 
 779   // stack size
 780   if (os::Bsd::supports_variable_stack_size()) {
 781     // calculate stack size if it's not specified by caller
 782     if (stack_size == 0) {
 783       stack_size = os::Bsd::default_stack_size(thr_type);
 784 
 785       switch (thr_type) {
 786       case os::java_thread:
 787         // Java threads use ThreadStackSize which default value can be
 788         // changed with the flag -Xss
 789         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 790         stack_size = JavaThread::stack_size_at_create();
 791         break;
 792       case os::compiler_thread:
 793         if (CompilerThreadStackSize > 0) {
 794           stack_size = (size_t)(CompilerThreadStackSize * K);
 795           break;
 796         } // else fall through:
 797           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 798       case os::vm_thread:
 799       case os::pgc_thread:
 800       case os::cgc_thread:
 801       case os::watcher_thread:
 802         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 803         break;
 804       }
 805     }
 806 
 807     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
 808     pthread_attr_setstacksize(&attr, stack_size);
 809   } else {
 810     // let pthread_create() pick the default value.
 811   }
 812 
 813   ThreadState state;
 814 
 815   {
 816     pthread_t tid;
 817     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 818 
 819     pthread_attr_destroy(&attr);
 820 
 821     if (ret != 0) {
 822       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 823         perror("pthread_create()");
 824       }
 825       // Need to clean up stuff we've allocated so far
 826       thread->set_osthread(NULL);
 827       delete osthread;
 828       return false;
 829     }
 830 
 831     // Store pthread info into the OSThread
 832     osthread->set_pthread_id(tid);
 833 
 834     // Wait until child thread is either initialized or aborted
 835     {
 836       Monitor* sync_with_child = osthread->startThread_lock();
 837       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 838       while ((state = osthread->get_state()) == ALLOCATED) {
 839         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 840       }
 841     }
 842 
 843   }
 844 
 845   // Aborted due to thread limit being reached
 846   if (state == ZOMBIE) {
 847       thread->set_osthread(NULL);
 848       delete osthread;
 849       return false;
 850   }
 851 
 852   // The thread is returned suspended (in state INITIALIZED),
 853   // and is started higher up in the call chain
 854   assert(state == INITIALIZED, "race condition");
 855   return true;
 856 }
 857 
 858 /////////////////////////////////////////////////////////////////////////////
 859 // attach existing thread
 860 
 861 // bootstrap the main thread
 862 bool os::create_main_thread(JavaThread* thread) {
 863   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 864   return create_attached_thread(thread);
 865 }
 866 
 867 bool os::create_attached_thread(JavaThread* thread) {
 868 #ifdef ASSERT
 869     thread->verify_not_published();
 870 #endif
 871 
 872   // Allocate the OSThread object
 873   OSThread* osthread = new OSThread(NULL, NULL);
 874 
 875   if (osthread == NULL) {
 876     return false;
 877   }
 878 
 879   osthread->set_thread_id(os::Bsd::gettid());
 880 
 881   // Store pthread info into the OSThread
 882 #ifdef __APPLE__
 883   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 884   guarantee(unique_thread_id != 0, "just checking");
 885   osthread->set_unique_thread_id(unique_thread_id);
 886 #endif
 887   osthread->set_pthread_id(::pthread_self());
 888 
 889   // initialize floating point control register
 890   os::Bsd::init_thread_fpu_state();
 891 
 892   // Initial thread state is RUNNABLE
 893   osthread->set_state(RUNNABLE);
 894 
 895   thread->set_osthread(osthread);
 896 
 897   // initialize signal mask for this thread
 898   // and save the caller's signal mask
 899   os::Bsd::hotspot_sigmask(thread);
 900 
 901   return true;
 902 }
 903 
 904 void os::pd_start_thread(Thread* thread) {
 905   OSThread * osthread = thread->osthread();
 906   assert(osthread->get_state() != INITIALIZED, "just checking");
 907   Monitor* sync_with_child = osthread->startThread_lock();
 908   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 909   sync_with_child->notify();
 910 }
 911 
 912 // Free Bsd resources related to the OSThread
 913 void os::free_thread(OSThread* osthread) {
 914   assert(osthread != NULL, "osthread not set");
 915 
 916   if (Thread::current()->osthread() == osthread) {
 917     // Restore caller's signal mask
 918     sigset_t sigmask = osthread->caller_sigmask();
 919     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 920    }
 921 
 922   delete osthread;
 923 }
 924 
 925 //////////////////////////////////////////////////////////////////////////////
 926 // thread local storage
 927 
 928 // Restore the thread pointer if the destructor is called. This is in case
 929 // someone from JNI code sets up a destructor with pthread_key_create to run
 930 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 931 // will hang or crash. When detachCurrentThread is called the key will be set
 932 // to null and we will not be called again. If detachCurrentThread is never
 933 // called we could loop forever depending on the pthread implementation.
 934 static void restore_thread_pointer(void* p) {
 935   Thread* thread = (Thread*) p;
 936   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 937 }
 938 
 939 int os::allocate_thread_local_storage() {
 940   pthread_key_t key;
 941   int rslt = pthread_key_create(&key, restore_thread_pointer);
 942   assert(rslt == 0, "cannot allocate thread local storage");
 943   return (int)key;
 944 }
 945 
 946 // Note: This is currently not used by VM, as we don't destroy TLS key
 947 // on VM exit.
 948 void os::free_thread_local_storage(int index) {
 949   int rslt = pthread_key_delete((pthread_key_t)index);
 950   assert(rslt == 0, "invalid index");
 951 }
 952 
 953 void os::thread_local_storage_at_put(int index, void* value) {
 954   int rslt = pthread_setspecific((pthread_key_t)index, value);
 955   assert(rslt == 0, "pthread_setspecific failed");
 956 }
 957 
 958 extern "C" Thread* get_thread() {
 959   return ThreadLocalStorage::thread();
 960 }
 961 
 962 
 963 ////////////////////////////////////////////////////////////////////////////////
 964 // time support
 965 
 966 // Time since start-up in seconds to a fine granularity.
 967 // Used by VMSelfDestructTimer and the MemProfiler.
 968 double os::elapsedTime() {
 969 
 970   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 971 }
 972 
 973 jlong os::elapsed_counter() {
 974   return javaTimeNanos() - initial_time_count;
 975 }
 976 
 977 jlong os::elapsed_frequency() {
 978   return NANOSECS_PER_SEC; // nanosecond resolution
 979 }
 980 
 981 bool os::supports_vtime() { return true; }
 982 bool os::enable_vtime()   { return false; }
 983 bool os::vtime_enabled()  { return false; }
 984 
 985 double os::elapsedVTime() {
 986   // better than nothing, but not much
 987   return elapsedTime();
 988 }
 989 
 990 jlong os::javaTimeMillis() {
 991   timeval time;
 992   int status = gettimeofday(&time, NULL);
 993   assert(status != -1, "bsd error");
 994   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 995 }
 996 
 997 #ifndef __APPLE__
 998 #ifndef CLOCK_MONOTONIC
 999 #define CLOCK_MONOTONIC (1)
1000 #endif
1001 #endif
1002 
1003 #ifdef __APPLE__
1004 void os::Bsd::clock_init() {
1005   mach_timebase_info(&_timebase_info);
1006 }
1007 #else
1008 void os::Bsd::clock_init() {
1009   struct timespec res;
1010   struct timespec tp;
1011   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1012       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1013     // yes, monotonic clock is supported
1014     _clock_gettime = ::clock_gettime;
1015   }
1016 }
1017 #endif
1018 
1019 
1020 #ifdef __APPLE__
1021 
1022 jlong os::javaTimeNanos() {
1023     const uint64_t tm = mach_absolute_time();
1024     const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1025     const uint64_t prev = Bsd::_max_abstime;
1026     if (now <= prev) {
1027       return prev;   // same or retrograde time;
1028     }
1029     const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1030     assert(obsv >= prev, "invariant");   // Monotonicity
1031     // If the CAS succeeded then we're done and return "now".
1032     // If the CAS failed and the observed value "obsv" is >= now then
1033     // we should return "obsv".  If the CAS failed and now > obsv > prv then
1034     // some other thread raced this thread and installed a new value, in which case
1035     // we could either (a) retry the entire operation, (b) retry trying to install now
1036     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1037     // we might discard a higher "now" value in deference to a slightly lower but freshly
1038     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1039     // to (a) or (b) -- and greatly reduces coherence traffic.
1040     // We might also condition (c) on the magnitude of the delta between obsv and now.
1041     // Avoiding excessive CAS operations to hot RW locations is critical.
1042     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1043     return (prev == obsv) ? now : obsv;
1044 }
1045 
1046 #else // __APPLE__
1047 
1048 jlong os::javaTimeNanos() {
1049   if (Bsd::supports_monotonic_clock()) {
1050     struct timespec tp;
1051     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1052     assert(status == 0, "gettime error");
1053     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1054     return result;
1055   } else {
1056     timeval time;
1057     int status = gettimeofday(&time, NULL);
1058     assert(status != -1, "bsd error");
1059     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1060     return 1000 * usecs;
1061   }
1062 }
1063 
1064 #endif // __APPLE__
1065 
1066 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1067   if (Bsd::supports_monotonic_clock()) {
1068     info_ptr->max_value = ALL_64_BITS;
1069 
1070     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1071     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1072     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1073   } else {
1074     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1075     info_ptr->max_value = ALL_64_BITS;
1076 
1077     // gettimeofday is a real time clock so it skips
1078     info_ptr->may_skip_backward = true;
1079     info_ptr->may_skip_forward = true;
1080   }
1081 
1082   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1083 }
1084 
1085 // Return the real, user, and system times in seconds from an
1086 // arbitrary fixed point in the past.
1087 bool os::getTimesSecs(double* process_real_time,
1088                       double* process_user_time,
1089                       double* process_system_time) {
1090   struct tms ticks;
1091   clock_t real_ticks = times(&ticks);
1092 
1093   if (real_ticks == (clock_t) (-1)) {
1094     return false;
1095   } else {
1096     double ticks_per_second = (double) clock_tics_per_sec;
1097     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1098     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1099     *process_real_time = ((double) real_ticks) / ticks_per_second;
1100 
1101     return true;
1102   }
1103 }
1104 
1105 
1106 char * os::local_time_string(char *buf, size_t buflen) {
1107   struct tm t;
1108   time_t long_time;
1109   time(&long_time);
1110   localtime_r(&long_time, &t);
1111   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1112                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1113                t.tm_hour, t.tm_min, t.tm_sec);
1114   return buf;
1115 }
1116 
1117 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1118   return localtime_r(clock, res);
1119 }
1120 
1121 ////////////////////////////////////////////////////////////////////////////////
1122 // runtime exit support
1123 
1124 // Note: os::shutdown() might be called very early during initialization, or
1125 // called from signal handler. Before adding something to os::shutdown(), make
1126 // sure it is async-safe and can handle partially initialized VM.
1127 void os::shutdown() {
1128 
1129   // allow PerfMemory to attempt cleanup of any persistent resources
1130   perfMemory_exit();
1131 
1132   // needs to remove object in file system
1133   AttachListener::abort();
1134 
1135   // flush buffered output, finish log files
1136   ostream_abort();
1137 
1138   // Check for abort hook
1139   abort_hook_t abort_hook = Arguments::abort_hook();
1140   if (abort_hook != NULL) {
1141     abort_hook();
1142   }
1143 
1144 }
1145 
1146 // Note: os::abort() might be called very early during initialization, or
1147 // called from signal handler. Before adding something to os::abort(), make
1148 // sure it is async-safe and can handle partially initialized VM.
1149 void os::abort(bool dump_core) {
1150   os::shutdown();
1151   if (dump_core) {
1152 #ifndef PRODUCT
1153     fdStream out(defaultStream::output_fd());
1154     out.print_raw("Current thread is ");
1155     char buf[16];
1156     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1157     out.print_raw_cr(buf);
1158     out.print_raw_cr("Dumping core ...");
1159 #endif
1160     ::abort(); // dump core
1161   }
1162 
1163   ::exit(1);
1164 }
1165 
1166 // Die immediately, no exit hook, no abort hook, no cleanup.
1167 void os::die() {
1168   // _exit() on BsdThreads only kills current thread
1169   ::abort();
1170 }
1171 
1172 // This method is a copy of JDK's sysGetLastErrorString
1173 // from src/solaris/hpi/src/system_md.c
1174 
1175 size_t os::lasterror(char *buf, size_t len) {
1176 
1177   if (errno == 0)  return 0;
1178 
1179   const char *s = ::strerror(errno);
1180   size_t n = ::strlen(s);
1181   if (n >= len) {
1182     n = len - 1;
1183   }
1184   ::strncpy(buf, s, n);
1185   buf[n] = '\0';
1186   return n;
1187 }
1188 
1189 // Information of current thread in variety of formats
1190 pid_t os::Bsd::gettid() {
1191   int retval = -1;
1192 
1193 #ifdef __APPLE__ //XNU kernel
1194   // despite the fact mach port is actually not a thread id use it
1195   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1196   retval = ::pthread_mach_thread_np(::pthread_self());
1197   guarantee(retval != 0, "just checking");
1198   return retval;
1199 
1200 #elif __FreeBSD__
1201   retval = syscall(SYS_thr_self);
1202 #elif __OpenBSD__
1203   retval = syscall(SYS_getthrid);
1204 #elif __NetBSD__
1205   retval = (pid_t) syscall(SYS__lwp_self);
1206 #endif
1207 
1208   if (retval == -1) {
1209     return getpid();
1210   }
1211 }
1212 
1213 intx os::current_thread_id() {
1214 #ifdef __APPLE__
1215   return (intx)::pthread_mach_thread_np(::pthread_self());
1216 #else
1217   return (intx)::pthread_self();
1218 #endif
1219 }
1220 
1221 int os::current_process_id() {
1222 
1223   // Under the old bsd thread library, bsd gives each thread
1224   // its own process id. Because of this each thread will return
1225   // a different pid if this method were to return the result
1226   // of getpid(2). Bsd provides no api that returns the pid
1227   // of the launcher thread for the vm. This implementation
1228   // returns a unique pid, the pid of the launcher thread
1229   // that starts the vm 'process'.
1230 
1231   // Under the NPTL, getpid() returns the same pid as the
1232   // launcher thread rather than a unique pid per thread.
1233   // Use gettid() if you want the old pre NPTL behaviour.
1234 
1235   // if you are looking for the result of a call to getpid() that
1236   // returns a unique pid for the calling thread, then look at the
1237   // OSThread::thread_id() method in osThread_bsd.hpp file
1238 
1239   return (int)(_initial_pid ? _initial_pid : getpid());
1240 }
1241 
1242 // DLL functions
1243 
1244 #define JNI_LIB_PREFIX "lib"
1245 #ifdef __APPLE__
1246 #define JNI_LIB_SUFFIX ".dylib"
1247 #else
1248 #define JNI_LIB_SUFFIX ".so"
1249 #endif
1250 
1251 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1252 
1253 // This must be hard coded because it's the system's temporary
1254 // directory not the java application's temp directory, ala java.io.tmpdir.
1255 #ifdef __APPLE__
1256 // macosx has a secure per-user temporary directory
1257 char temp_path_storage[PATH_MAX];
1258 const char* os::get_temp_directory() {
1259   static char *temp_path = NULL;
1260   if (temp_path == NULL) {
1261     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1262     if (pathSize == 0 || pathSize > PATH_MAX) {
1263       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1264     }
1265     temp_path = temp_path_storage;
1266   }
1267   return temp_path;
1268 }
1269 #else /* __APPLE__ */
1270 const char* os::get_temp_directory() { return "/tmp"; }
1271 #endif /* __APPLE__ */
1272 
1273 static bool file_exists(const char* filename) {
1274   struct stat statbuf;
1275   if (filename == NULL || strlen(filename) == 0) {
1276     return false;
1277   }
1278   return os::stat(filename, &statbuf) == 0;
1279 }
1280 
1281 bool os::dll_build_name(char* buffer, size_t buflen,
1282                         const char* pname, const char* fname) {
1283   bool retval = false;
1284   // Copied from libhpi
1285   const size_t pnamelen = pname ? strlen(pname) : 0;
1286 
1287   // Return error on buffer overflow.
1288   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1289     return retval;
1290   }
1291 
1292   if (pnamelen == 0) {
1293     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1294     retval = true;
1295   } else if (strchr(pname, *os::path_separator()) != NULL) {
1296     int n;
1297     char** pelements = split_path(pname, &n);
1298     if (pelements == NULL) {
1299       return false;
1300     }
1301     for (int i = 0 ; i < n ; i++) {
1302       // Really shouldn't be NULL, but check can't hurt
1303       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1304         continue; // skip the empty path values
1305       }
1306       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1307           pelements[i], fname);
1308       if (file_exists(buffer)) {
1309         retval = true;
1310         break;
1311       }
1312     }
1313     // release the storage
1314     for (int i = 0 ; i < n ; i++) {
1315       if (pelements[i] != NULL) {
1316         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1317       }
1318     }
1319     if (pelements != NULL) {
1320       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1321     }
1322   } else {
1323     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1324     retval = true;
1325   }
1326   return retval;
1327 }
1328 
1329 // check if addr is inside libjvm.so
1330 bool os::address_is_in_vm(address addr) {
1331   static address libjvm_base_addr;
1332   Dl_info dlinfo;
1333 
1334   if (libjvm_base_addr == NULL) {
1335     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1336       libjvm_base_addr = (address)dlinfo.dli_fbase;
1337     }
1338     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1339   }
1340 
1341   if (dladdr((void *)addr, &dlinfo) != 0) {
1342     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1343   }
1344 
1345   return false;
1346 }
1347 
1348 
1349 #define MACH_MAXSYMLEN 256
1350 
1351 bool os::dll_address_to_function_name(address addr, char *buf,
1352                                       int buflen, int *offset) {
1353   // buf is not optional, but offset is optional
1354   assert(buf != NULL, "sanity check");
1355 
1356   Dl_info dlinfo;
1357   char localbuf[MACH_MAXSYMLEN];
1358 
1359   if (dladdr((void*)addr, &dlinfo) != 0) {
1360     // see if we have a matching symbol
1361     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1362       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1363         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1364       }
1365       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1366       return true;
1367     }
1368     // no matching symbol so try for just file info
1369     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1370       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1371                           buf, buflen, offset, dlinfo.dli_fname)) {
1372          return true;
1373       }
1374     }
1375 
1376     // Handle non-dynamic manually:
1377     if (dlinfo.dli_fbase != NULL &&
1378         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1379                         dlinfo.dli_fbase)) {
1380       if (!Decoder::demangle(localbuf, buf, buflen)) {
1381         jio_snprintf(buf, buflen, "%s", localbuf);
1382       }
1383       return true;
1384     }
1385   }
1386   buf[0] = '\0';
1387   if (offset != NULL) *offset = -1;
1388   return false;
1389 }
1390 
1391 // ported from solaris version
1392 bool os::dll_address_to_library_name(address addr, char* buf,
1393                                      int buflen, int* offset) {
1394   // buf is not optional, but offset is optional
1395   assert(buf != NULL, "sanity check");
1396 
1397   Dl_info dlinfo;
1398 
1399   if (dladdr((void*)addr, &dlinfo) != 0) {
1400     if (dlinfo.dli_fname != NULL) {
1401       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1402     }
1403     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1404       *offset = addr - (address)dlinfo.dli_fbase;
1405     }
1406     return true;
1407   }
1408 
1409   buf[0] = '\0';
1410   if (offset) *offset = -1;
1411   return false;
1412 }
1413 
1414 // Loads .dll/.so and
1415 // in case of error it checks if .dll/.so was built for the
1416 // same architecture as Hotspot is running on
1417 
1418 #ifdef __APPLE__
1419 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1420   void * result= ::dlopen(filename, RTLD_LAZY);
1421   if (result != NULL) {
1422     // Successful loading
1423     return result;
1424   }
1425 
1426   // Read system error message into ebuf
1427   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1428   ebuf[ebuflen-1]='\0';
1429 
1430   return NULL;
1431 }
1432 #else
1433 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1434 {
1435   void * result= ::dlopen(filename, RTLD_LAZY);
1436   if (result != NULL) {
1437     // Successful loading
1438     return result;
1439   }
1440 
1441   Elf32_Ehdr elf_head;
1442 
1443   // Read system error message into ebuf
1444   // It may or may not be overwritten below
1445   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1446   ebuf[ebuflen-1]='\0';
1447   int diag_msg_max_length=ebuflen-strlen(ebuf);
1448   char* diag_msg_buf=ebuf+strlen(ebuf);
1449 
1450   if (diag_msg_max_length==0) {
1451     // No more space in ebuf for additional diagnostics message
1452     return NULL;
1453   }
1454 
1455 
1456   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1457 
1458   if (file_descriptor < 0) {
1459     // Can't open library, report dlerror() message
1460     return NULL;
1461   }
1462 
1463   bool failed_to_read_elf_head=
1464     (sizeof(elf_head)!=
1465         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1466 
1467   ::close(file_descriptor);
1468   if (failed_to_read_elf_head) {
1469     // file i/o error - report dlerror() msg
1470     return NULL;
1471   }
1472 
1473   typedef struct {
1474     Elf32_Half  code;         // Actual value as defined in elf.h
1475     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1476     char        elf_class;    // 32 or 64 bit
1477     char        endianess;    // MSB or LSB
1478     char*       name;         // String representation
1479   } arch_t;
1480 
1481   #ifndef EM_486
1482   #define EM_486          6               /* Intel 80486 */
1483   #endif
1484 
1485   #ifndef EM_MIPS_RS3_LE
1486   #define EM_MIPS_RS3_LE  10              /* MIPS */
1487   #endif
1488 
1489   #ifndef EM_PPC64
1490   #define EM_PPC64        21              /* PowerPC64 */
1491   #endif
1492 
1493   #ifndef EM_S390
1494   #define EM_S390         22              /* IBM System/390 */
1495   #endif
1496 
1497   #ifndef EM_IA_64
1498   #define EM_IA_64        50              /* HP/Intel IA-64 */
1499   #endif
1500 
1501   #ifndef EM_X86_64
1502   #define EM_X86_64       62              /* AMD x86-64 */
1503   #endif
1504 
1505   static const arch_t arch_array[]={
1506     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1507     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1508     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1509     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1510     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1511     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1512     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1513     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1514     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1515     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1516     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1517     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1518     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1519     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1520     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1521     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1522   };
1523 
1524   #if  (defined IA32)
1525     static  Elf32_Half running_arch_code=EM_386;
1526   #elif   (defined AMD64)
1527     static  Elf32_Half running_arch_code=EM_X86_64;
1528   #elif  (defined IA64)
1529     static  Elf32_Half running_arch_code=EM_IA_64;
1530   #elif  (defined __sparc) && (defined _LP64)
1531     static  Elf32_Half running_arch_code=EM_SPARCV9;
1532   #elif  (defined __sparc) && (!defined _LP64)
1533     static  Elf32_Half running_arch_code=EM_SPARC;
1534   #elif  (defined __powerpc64__)
1535     static  Elf32_Half running_arch_code=EM_PPC64;
1536   #elif  (defined __powerpc__)
1537     static  Elf32_Half running_arch_code=EM_PPC;
1538   #elif  (defined ARM)
1539     static  Elf32_Half running_arch_code=EM_ARM;
1540   #elif  (defined S390)
1541     static  Elf32_Half running_arch_code=EM_S390;
1542   #elif  (defined ALPHA)
1543     static  Elf32_Half running_arch_code=EM_ALPHA;
1544   #elif  (defined MIPSEL)
1545     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1546   #elif  (defined PARISC)
1547     static  Elf32_Half running_arch_code=EM_PARISC;
1548   #elif  (defined MIPS)
1549     static  Elf32_Half running_arch_code=EM_MIPS;
1550   #elif  (defined M68K)
1551     static  Elf32_Half running_arch_code=EM_68K;
1552   #else
1553     #error Method os::dll_load requires that one of following is defined:\
1554          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1555   #endif
1556 
1557   // Identify compatability class for VM's architecture and library's architecture
1558   // Obtain string descriptions for architectures
1559 
1560   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1561   int running_arch_index=-1;
1562 
1563   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1564     if (running_arch_code == arch_array[i].code) {
1565       running_arch_index    = i;
1566     }
1567     if (lib_arch.code == arch_array[i].code) {
1568       lib_arch.compat_class = arch_array[i].compat_class;
1569       lib_arch.name         = arch_array[i].name;
1570     }
1571   }
1572 
1573   assert(running_arch_index != -1,
1574     "Didn't find running architecture code (running_arch_code) in arch_array");
1575   if (running_arch_index == -1) {
1576     // Even though running architecture detection failed
1577     // we may still continue with reporting dlerror() message
1578     return NULL;
1579   }
1580 
1581   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1582     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1583     return NULL;
1584   }
1585 
1586 #ifndef S390
1587   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1588     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1589     return NULL;
1590   }
1591 #endif // !S390
1592 
1593   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1594     if ( lib_arch.name!=NULL ) {
1595       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1596         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1597         lib_arch.name, arch_array[running_arch_index].name);
1598     } else {
1599       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1600       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1601         lib_arch.code,
1602         arch_array[running_arch_index].name);
1603     }
1604   }
1605 
1606   return NULL;
1607 }
1608 #endif /* !__APPLE__ */
1609 
1610 void* os::get_default_process_handle() {
1611 #ifdef __APPLE__
1612   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1613   // to avoid finding unexpected symbols on second (or later)
1614   // loads of a library.
1615   return (void*)::dlopen(NULL, RTLD_FIRST);
1616 #else
1617   return (void*)::dlopen(NULL, RTLD_LAZY);
1618 #endif
1619 }
1620 
1621 // XXX: Do we need a lock around this as per Linux?
1622 void* os::dll_lookup(void* handle, const char* name) {
1623   return dlsym(handle, name);
1624 }
1625 
1626 
1627 static bool _print_ascii_file(const char* filename, outputStream* st) {
1628   int fd = ::open(filename, O_RDONLY);
1629   if (fd == -1) {
1630      return false;
1631   }
1632 
1633   char buf[32];
1634   int bytes;
1635   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1636     st->print_raw(buf, bytes);
1637   }
1638 
1639   ::close(fd);
1640 
1641   return true;
1642 }
1643 
1644 void os::print_dll_info(outputStream *st) {
1645   st->print_cr("Dynamic libraries:");
1646 #ifdef RTLD_DI_LINKMAP
1647   Dl_info dli;
1648   void *handle;
1649   Link_map *map;
1650   Link_map *p;
1651 
1652   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1653       dli.dli_fname == NULL) {
1654     st->print_cr("Error: Cannot print dynamic libraries.");
1655     return;
1656   }
1657   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1658   if (handle == NULL) {
1659     st->print_cr("Error: Cannot print dynamic libraries.");
1660     return;
1661   }
1662   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1663   if (map == NULL) {
1664     st->print_cr("Error: Cannot print dynamic libraries.");
1665     return;
1666   }
1667 
1668   while (map->l_prev != NULL)
1669     map = map->l_prev;
1670 
1671   while (map != NULL) {
1672     st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1673     map = map->l_next;
1674   }
1675 
1676   dlclose(handle);
1677 #elif defined(__APPLE__)
1678   uint32_t count;
1679   uint32_t i;
1680 
1681   count = _dyld_image_count();
1682   for (i = 1; i < count; i++) {
1683     const char *name = _dyld_get_image_name(i);
1684     intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1685     st->print_cr(PTR_FORMAT " \t%s", slide, name);
1686   }
1687 #else
1688   st->print_cr("Error: Cannot print dynamic libraries.");
1689 #endif
1690 }
1691 
1692 void os::print_os_info_brief(outputStream* st) {
1693   st->print("Bsd");
1694 
1695   os::Posix::print_uname_info(st);
1696 }
1697 
1698 void os::print_os_info(outputStream* st) {
1699   st->print("OS:");
1700   st->print("Bsd");
1701 
1702   os::Posix::print_uname_info(st);
1703 
1704   os::Posix::print_rlimit_info(st);
1705 
1706   os::Posix::print_load_average(st);
1707 }
1708 
1709 void os::pd_print_cpu_info(outputStream* st) {
1710   // Nothing to do for now.
1711 }
1712 
1713 void os::print_memory_info(outputStream* st) {
1714 
1715   st->print("Memory:");
1716   st->print(" %dk page", os::vm_page_size()>>10);
1717 
1718   st->print(", physical " UINT64_FORMAT "k",
1719             os::physical_memory() >> 10);
1720   st->print("(" UINT64_FORMAT "k free)",
1721             os::available_memory() >> 10);
1722   st->cr();
1723 
1724   // meminfo
1725   st->print("\n/proc/meminfo:\n");
1726   _print_ascii_file("/proc/meminfo", st);
1727   st->cr();
1728 }
1729 
1730 void os::print_siginfo(outputStream* st, void* siginfo) {
1731   const siginfo_t* si = (const siginfo_t*)siginfo;
1732 
1733   os::Posix::print_siginfo_brief(st, si);
1734 
1735   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1736       UseSharedSpaces) {
1737     FileMapInfo* mapinfo = FileMapInfo::current_info();
1738     if (mapinfo->is_in_shared_space(si->si_addr)) {
1739       st->print("\n\nError accessing class data sharing archive."   \
1740                 " Mapped file inaccessible during execution, "      \
1741                 " possible disk/network problem.");
1742     }
1743   }
1744   st->cr();
1745 }
1746 
1747 
1748 static void print_signal_handler(outputStream* st, int sig,
1749                                  char* buf, size_t buflen);
1750 
1751 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1752   st->print_cr("Signal Handlers:");
1753   print_signal_handler(st, SIGSEGV, buf, buflen);
1754   print_signal_handler(st, SIGBUS , buf, buflen);
1755   print_signal_handler(st, SIGFPE , buf, buflen);
1756   print_signal_handler(st, SIGPIPE, buf, buflen);
1757   print_signal_handler(st, SIGXFSZ, buf, buflen);
1758   print_signal_handler(st, SIGILL , buf, buflen);
1759   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1760   print_signal_handler(st, SR_signum, buf, buflen);
1761   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1762   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1763   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1764   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1765 }
1766 
1767 static char saved_jvm_path[MAXPATHLEN] = {0};
1768 
1769 // Find the full path to the current module, libjvm
1770 void os::jvm_path(char *buf, jint buflen) {
1771   // Error checking.
1772   if (buflen < MAXPATHLEN) {
1773     assert(false, "must use a large-enough buffer");
1774     buf[0] = '\0';
1775     return;
1776   }
1777   // Lazy resolve the path to current module.
1778   if (saved_jvm_path[0] != 0) {
1779     strcpy(buf, saved_jvm_path);
1780     return;
1781   }
1782 
1783   char dli_fname[MAXPATHLEN];
1784   bool ret = dll_address_to_library_name(
1785                 CAST_FROM_FN_PTR(address, os::jvm_path),
1786                 dli_fname, sizeof(dli_fname), NULL);
1787   assert(ret, "cannot locate libjvm");
1788   char *rp = NULL;
1789   if (ret && dli_fname[0] != '\0') {
1790     rp = realpath(dli_fname, buf);
1791   }
1792   if (rp == NULL)
1793     return;
1794 
1795   if (Arguments::created_by_gamma_launcher()) {
1796     // Support for the gamma launcher.  Typical value for buf is
1797     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm".  If "/jre/lib/" appears at
1798     // the right place in the string, then assume we are installed in a JDK and
1799     // we're done.  Otherwise, check for a JAVA_HOME environment variable and
1800     // construct a path to the JVM being overridden.
1801 
1802     const char *p = buf + strlen(buf) - 1;
1803     for (int count = 0; p > buf && count < 5; ++count) {
1804       for (--p; p > buf && *p != '/'; --p)
1805         /* empty */ ;
1806     }
1807 
1808     if (strncmp(p, "/jre/lib/", 9) != 0) {
1809       // Look for JAVA_HOME in the environment.
1810       char* java_home_var = ::getenv("JAVA_HOME");
1811       if (java_home_var != NULL && java_home_var[0] != 0) {
1812         char* jrelib_p;
1813         int len;
1814 
1815         // Check the current module name "libjvm"
1816         p = strrchr(buf, '/');
1817         assert(strstr(p, "/libjvm") == p, "invalid library name");
1818 
1819         rp = realpath(java_home_var, buf);
1820         if (rp == NULL)
1821           return;
1822 
1823         // determine if this is a legacy image or modules image
1824         // modules image doesn't have "jre" subdirectory
1825         len = strlen(buf);
1826         assert(len < buflen, "Ran out of buffer space");
1827         jrelib_p = buf + len;
1828 
1829         // Add the appropriate library subdir
1830         snprintf(jrelib_p, buflen-len, "/jre/lib");
1831         if (0 != access(buf, F_OK)) {
1832           snprintf(jrelib_p, buflen-len, "/lib");
1833         }
1834 
1835         // Add the appropriate client or server subdir
1836         len = strlen(buf);
1837         jrelib_p = buf + len;
1838         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1839         if (0 != access(buf, F_OK)) {
1840           snprintf(jrelib_p, buflen-len, "");
1841         }
1842 
1843         // If the path exists within JAVA_HOME, add the JVM library name
1844         // to complete the path to JVM being overridden.  Otherwise fallback
1845         // to the path to the current library.
1846         if (0 == access(buf, F_OK)) {
1847           // Use current module name "libjvm"
1848           len = strlen(buf);
1849           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1850         } else {
1851           // Fall back to path of current library
1852           rp = realpath(dli_fname, buf);
1853           if (rp == NULL)
1854             return;
1855         }
1856       }
1857     }
1858   }
1859 
1860   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1861 }
1862 
1863 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1864   // no prefix required, not even "_"
1865 }
1866 
1867 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1868   // no suffix required
1869 }
1870 
1871 ////////////////////////////////////////////////////////////////////////////////
1872 // sun.misc.Signal support
1873 
1874 static volatile jint sigint_count = 0;
1875 
1876 static void
1877 UserHandler(int sig, void *siginfo, void *context) {
1878   // 4511530 - sem_post is serialized and handled by the manager thread. When
1879   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1880   // don't want to flood the manager thread with sem_post requests.
1881   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1882       return;
1883 
1884   // Ctrl-C is pressed during error reporting, likely because the error
1885   // handler fails to abort. Let VM die immediately.
1886   if (sig == SIGINT && is_error_reported()) {
1887      os::die();
1888   }
1889 
1890   os::signal_notify(sig);
1891 }
1892 
1893 void* os::user_handler() {
1894   return CAST_FROM_FN_PTR(void*, UserHandler);
1895 }
1896 
1897 extern "C" {
1898   typedef void (*sa_handler_t)(int);
1899   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1900 }
1901 
1902 void* os::signal(int signal_number, void* handler) {
1903   struct sigaction sigAct, oldSigAct;
1904 
1905   sigfillset(&(sigAct.sa_mask));
1906   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1907   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1908 
1909   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1910     // -1 means registration failed
1911     return (void *)-1;
1912   }
1913 
1914   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1915 }
1916 
1917 void os::signal_raise(int signal_number) {
1918   ::raise(signal_number);
1919 }
1920 
1921 /*
1922  * The following code is moved from os.cpp for making this
1923  * code platform specific, which it is by its very nature.
1924  */
1925 
1926 // Will be modified when max signal is changed to be dynamic
1927 int os::sigexitnum_pd() {
1928   return NSIG;
1929 }
1930 
1931 // a counter for each possible signal value
1932 static volatile jint pending_signals[NSIG+1] = { 0 };
1933 
1934 // Bsd(POSIX) specific hand shaking semaphore.
1935 #ifdef __APPLE__
1936 typedef semaphore_t os_semaphore_t;
1937 #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1938 #define SEM_WAIT(sem)           semaphore_wait(sem)
1939 #define SEM_POST(sem)           semaphore_signal(sem)
1940 #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1941 #else
1942 typedef sem_t os_semaphore_t;
1943 #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1944 #define SEM_WAIT(sem)           sem_wait(&sem)
1945 #define SEM_POST(sem)           sem_post(&sem)
1946 #define SEM_DESTROY(sem)        sem_destroy(&sem)
1947 #endif
1948 
1949 class Semaphore : public StackObj {
1950   public:
1951     Semaphore();
1952     ~Semaphore();
1953     void signal();
1954     void wait();
1955     bool trywait();
1956     bool timedwait(unsigned int sec, int nsec);
1957   private:
1958     jlong currenttime() const;
1959     os_semaphore_t _semaphore;
1960 };
1961 
1962 Semaphore::Semaphore() : _semaphore(0) {
1963   SEM_INIT(_semaphore, 0);
1964 }
1965 
1966 Semaphore::~Semaphore() {
1967   SEM_DESTROY(_semaphore);
1968 }
1969 
1970 void Semaphore::signal() {
1971   SEM_POST(_semaphore);
1972 }
1973 
1974 void Semaphore::wait() {
1975   SEM_WAIT(_semaphore);
1976 }
1977 
1978 jlong Semaphore::currenttime() const {
1979     struct timeval tv;
1980     gettimeofday(&tv, NULL);
1981     return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1982 }
1983 
1984 #ifdef __APPLE__
1985 bool Semaphore::trywait() {
1986   return timedwait(0, 0);
1987 }
1988 
1989 bool Semaphore::timedwait(unsigned int sec, int nsec) {
1990   kern_return_t kr = KERN_ABORTED;
1991   mach_timespec_t waitspec;
1992   waitspec.tv_sec = sec;
1993   waitspec.tv_nsec = nsec;
1994 
1995   jlong starttime = currenttime();
1996 
1997   kr = semaphore_timedwait(_semaphore, waitspec);
1998   while (kr == KERN_ABORTED) {
1999     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2000 
2001     jlong current = currenttime();
2002     jlong passedtime = current - starttime;
2003 
2004     if (passedtime >= totalwait) {
2005       waitspec.tv_sec = 0;
2006       waitspec.tv_nsec = 0;
2007     } else {
2008       jlong waittime = totalwait - (current - starttime);
2009       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2010       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2011     }
2012 
2013     kr = semaphore_timedwait(_semaphore, waitspec);
2014   }
2015 
2016   return kr == KERN_SUCCESS;
2017 }
2018 
2019 #else
2020 
2021 bool Semaphore::trywait() {
2022   return sem_trywait(&_semaphore) == 0;
2023 }
2024 
2025 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2026   struct timespec ts;
2027   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2028 
2029   while (1) {
2030     int result = sem_timedwait(&_semaphore, &ts);
2031     if (result == 0) {
2032       return true;
2033     } else if (errno == EINTR) {
2034       continue;
2035     } else if (errno == ETIMEDOUT) {
2036       return false;
2037     } else {
2038       return false;
2039     }
2040   }
2041 }
2042 
2043 #endif // __APPLE__
2044 
2045 static os_semaphore_t sig_sem;
2046 static Semaphore sr_semaphore;
2047 
2048 void os::signal_init_pd() {
2049   // Initialize signal structures
2050   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2051 
2052   // Initialize signal semaphore
2053   ::SEM_INIT(sig_sem, 0);
2054 }
2055 
2056 void os::signal_notify(int sig) {
2057   Atomic::inc(&pending_signals[sig]);
2058   ::SEM_POST(sig_sem);
2059 }
2060 
2061 static int check_pending_signals(bool wait) {
2062   Atomic::store(0, &sigint_count);
2063   for (;;) {
2064     for (int i = 0; i < NSIG + 1; i++) {
2065       jint n = pending_signals[i];
2066       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2067         return i;
2068       }
2069     }
2070     if (!wait) {
2071       return -1;
2072     }
2073     JavaThread *thread = JavaThread::current();
2074     ThreadBlockInVM tbivm(thread);
2075 
2076     bool threadIsSuspended;
2077     do {
2078       thread->set_suspend_equivalent();
2079       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2080       ::SEM_WAIT(sig_sem);
2081 
2082       // were we externally suspended while we were waiting?
2083       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2084       if (threadIsSuspended) {
2085         //
2086         // The semaphore has been incremented, but while we were waiting
2087         // another thread suspended us. We don't want to continue running
2088         // while suspended because that would surprise the thread that
2089         // suspended us.
2090         //
2091         ::SEM_POST(sig_sem);
2092 
2093         thread->java_suspend_self();
2094       }
2095     } while (threadIsSuspended);
2096   }
2097 }
2098 
2099 int os::signal_lookup() {
2100   return check_pending_signals(false);
2101 }
2102 
2103 int os::signal_wait() {
2104   return check_pending_signals(true);
2105 }
2106 
2107 ////////////////////////////////////////////////////////////////////////////////
2108 // Virtual Memory
2109 
2110 int os::vm_page_size() {
2111   // Seems redundant as all get out
2112   assert(os::Bsd::page_size() != -1, "must call os::init");
2113   return os::Bsd::page_size();
2114 }
2115 
2116 // Solaris allocates memory by pages.
2117 int os::vm_allocation_granularity() {
2118   assert(os::Bsd::page_size() != -1, "must call os::init");
2119   return os::Bsd::page_size();
2120 }
2121 
2122 // Rationale behind this function:
2123 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2124 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2125 //  samples for JITted code. Here we create private executable mapping over the code cache
2126 //  and then we can use standard (well, almost, as mapping can change) way to provide
2127 //  info for the reporting script by storing timestamp and location of symbol
2128 void bsd_wrap_code(char* base, size_t size) {
2129   static volatile jint cnt = 0;
2130 
2131   if (!UseOprofile) {
2132     return;
2133   }
2134 
2135   char buf[PATH_MAX + 1];
2136   int num = Atomic::add(1, &cnt);
2137 
2138   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2139            os::get_temp_directory(), os::current_process_id(), num);
2140   unlink(buf);
2141 
2142   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2143 
2144   if (fd != -1) {
2145     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2146     if (rv != (off_t)-1) {
2147       if (::write(fd, "", 1) == 1) {
2148         mmap(base, size,
2149              PROT_READ|PROT_WRITE|PROT_EXEC,
2150              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2151       }
2152     }
2153     ::close(fd);
2154     unlink(buf);
2155   }
2156 }
2157 
2158 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2159                                     int err) {
2160   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2161           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2162           strerror(err), err);
2163 }
2164 
2165 // NOTE: Bsd kernel does not really reserve the pages for us.
2166 //       All it does is to check if there are enough free pages
2167 //       left at the time of mmap(). This could be a potential
2168 //       problem.
2169 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2170   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2171 #ifdef __OpenBSD__
2172   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2173   if (::mprotect(addr, size, prot) == 0) {
2174     return true;
2175   }
2176 #else
2177   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2178                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2179   if (res != (uintptr_t) MAP_FAILED) {
2180     return true;
2181   }
2182 #endif
2183 
2184   // Warn about any commit errors we see in non-product builds just
2185   // in case mmap() doesn't work as described on the man page.
2186   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2187 
2188   return false;
2189 }
2190 
2191 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2192                        bool exec) {
2193   // alignment_hint is ignored on this OS
2194   return pd_commit_memory(addr, size, exec);
2195 }
2196 
2197 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2198                                   const char* mesg) {
2199   assert(mesg != NULL, "mesg must be specified");
2200   if (!pd_commit_memory(addr, size, exec)) {
2201     // add extra info in product mode for vm_exit_out_of_memory():
2202     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2203     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2204   }
2205 }
2206 
2207 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2208                                   size_t alignment_hint, bool exec,
2209                                   const char* mesg) {
2210   // alignment_hint is ignored on this OS
2211   pd_commit_memory_or_exit(addr, size, exec, mesg);
2212 }
2213 
2214 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2215 }
2216 
2217 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2218   ::madvise(addr, bytes, MADV_DONTNEED);
2219 }
2220 
2221 void os::numa_make_global(char *addr, size_t bytes) {
2222 }
2223 
2224 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2225 }
2226 
2227 bool os::numa_topology_changed()   { return false; }
2228 
2229 size_t os::numa_get_groups_num() {
2230   return 1;
2231 }
2232 
2233 int os::numa_get_group_id() {
2234   return 0;
2235 }
2236 
2237 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2238   if (size > 0) {
2239     ids[0] = 0;
2240     return 1;
2241   }
2242   return 0;
2243 }
2244 
2245 bool os::get_page_info(char *start, page_info* info) {
2246   return false;
2247 }
2248 
2249 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2250   return end;
2251 }
2252 
2253 
2254 bool os::pd_uncommit_memory(char* addr, size_t size) {
2255 #ifdef __OpenBSD__
2256   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2257   return ::mprotect(addr, size, PROT_NONE) == 0;
2258 #else
2259   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2260                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2261   return res  != (uintptr_t) MAP_FAILED;
2262 #endif
2263 }
2264 
2265 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2266   return os::commit_memory(addr, size, !ExecMem);
2267 }
2268 
2269 // If this is a growable mapping, remove the guard pages entirely by
2270 // munmap()ping them.  If not, just call uncommit_memory().
2271 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2272   return os::uncommit_memory(addr, size);
2273 }
2274 
2275 static address _highest_vm_reserved_address = NULL;
2276 
2277 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2278 // at 'requested_addr'. If there are existing memory mappings at the same
2279 // location, however, they will be overwritten. If 'fixed' is false,
2280 // 'requested_addr' is only treated as a hint, the return value may or
2281 // may not start from the requested address. Unlike Bsd mmap(), this
2282 // function returns NULL to indicate failure.
2283 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2284   char * addr;
2285   int flags;
2286 
2287   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2288   if (fixed) {
2289     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2290     flags |= MAP_FIXED;
2291   }
2292 
2293   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2294   // touch an uncommitted page. Otherwise, the read/write might
2295   // succeed if we have enough swap space to back the physical page.
2296   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2297                        flags, -1, 0);
2298 
2299   if (addr != MAP_FAILED) {
2300     // anon_mmap() should only get called during VM initialization,
2301     // don't need lock (actually we can skip locking even it can be called
2302     // from multiple threads, because _highest_vm_reserved_address is just a
2303     // hint about the upper limit of non-stack memory regions.)
2304     if ((address)addr + bytes > _highest_vm_reserved_address) {
2305       _highest_vm_reserved_address = (address)addr + bytes;
2306     }
2307   }
2308 
2309   return addr == MAP_FAILED ? NULL : addr;
2310 }
2311 
2312 // Don't update _highest_vm_reserved_address, because there might be memory
2313 // regions above addr + size. If so, releasing a memory region only creates
2314 // a hole in the address space, it doesn't help prevent heap-stack collision.
2315 //
2316 static int anon_munmap(char * addr, size_t size) {
2317   return ::munmap(addr, size) == 0;
2318 }
2319 
2320 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2321                          size_t alignment_hint) {
2322   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2323 }
2324 
2325 bool os::pd_release_memory(char* addr, size_t size) {
2326   return anon_munmap(addr, size);
2327 }
2328 
2329 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2330   // Bsd wants the mprotect address argument to be page aligned.
2331   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2332 
2333   // According to SUSv3, mprotect() should only be used with mappings
2334   // established by mmap(), and mmap() always maps whole pages. Unaligned
2335   // 'addr' likely indicates problem in the VM (e.g. trying to change
2336   // protection of malloc'ed or statically allocated memory). Check the
2337   // caller if you hit this assert.
2338   assert(addr == bottom, "sanity check");
2339 
2340   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2341   return ::mprotect(bottom, size, prot) == 0;
2342 }
2343 
2344 // Set protections specified
2345 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2346                         bool is_committed) {
2347   unsigned int p = 0;
2348   switch (prot) {
2349   case MEM_PROT_NONE: p = PROT_NONE; break;
2350   case MEM_PROT_READ: p = PROT_READ; break;
2351   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2352   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2353   default:
2354     ShouldNotReachHere();
2355   }
2356   // is_committed is unused.
2357   return bsd_mprotect(addr, bytes, p);
2358 }
2359 
2360 bool os::guard_memory(char* addr, size_t size) {
2361   return bsd_mprotect(addr, size, PROT_NONE);
2362 }
2363 
2364 bool os::unguard_memory(char* addr, size_t size) {
2365   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2366 }
2367 
2368 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2369   return false;
2370 }
2371 
2372 // Large page support
2373 
2374 static size_t _large_page_size = 0;
2375 
2376 void os::large_page_init() {
2377 }
2378 
2379 
2380 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2381   fatal("This code is not used or maintained.");
2382 
2383   // "exec" is passed in but not used.  Creating the shared image for
2384   // the code cache doesn't have an SHM_X executable permission to check.
2385   assert(UseLargePages && UseSHM, "only for SHM large pages");
2386 
2387   key_t key = IPC_PRIVATE;
2388   char *addr;
2389 
2390   bool warn_on_failure = UseLargePages &&
2391                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2392                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2393                         );
2394 
2395   // Create a large shared memory region to attach to based on size.
2396   // Currently, size is the total size of the heap
2397   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2398   if (shmid == -1) {
2399      // Possible reasons for shmget failure:
2400      // 1. shmmax is too small for Java heap.
2401      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2402      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2403      // 2. not enough large page memory.
2404      //    > check available large pages: cat /proc/meminfo
2405      //    > increase amount of large pages:
2406      //          echo new_value > /proc/sys/vm/nr_hugepages
2407      //      Note 1: different Bsd may use different name for this property,
2408      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2409      //      Note 2: it's possible there's enough physical memory available but
2410      //            they are so fragmented after a long run that they can't
2411      //            coalesce into large pages. Try to reserve large pages when
2412      //            the system is still "fresh".
2413      if (warn_on_failure) {
2414        warning("Failed to reserve shared memory (errno = %d).", errno);
2415      }
2416      return NULL;
2417   }
2418 
2419   // attach to the region
2420   addr = (char*)shmat(shmid, req_addr, 0);
2421   int err = errno;
2422 
2423   // Remove shmid. If shmat() is successful, the actual shared memory segment
2424   // will be deleted when it's detached by shmdt() or when the process
2425   // terminates. If shmat() is not successful this will remove the shared
2426   // segment immediately.
2427   shmctl(shmid, IPC_RMID, NULL);
2428 
2429   if ((intptr_t)addr == -1) {
2430      if (warn_on_failure) {
2431        warning("Failed to attach shared memory (errno = %d).", err);
2432      }
2433      return NULL;
2434   }
2435 
2436   // The memory is committed
2437   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2438 
2439   return addr;
2440 }
2441 
2442 bool os::release_memory_special(char* base, size_t bytes) {
2443   if (MemTracker::tracking_level() > NMT_minimal) {
2444     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2445     // detaching the SHM segment will also delete it, see reserve_memory_special()
2446     int rslt = shmdt(base);
2447     if (rslt == 0) {
2448       tkr.record((address)base, bytes);
2449       return true;
2450     } else {
2451       return false;
2452     }
2453   } else {
2454     return shmdt(base) == 0;
2455   }
2456 }
2457 
2458 size_t os::large_page_size() {
2459   return _large_page_size;
2460 }
2461 
2462 // HugeTLBFS allows application to commit large page memory on demand;
2463 // with SysV SHM the entire memory region must be allocated as shared
2464 // memory.
2465 bool os::can_commit_large_page_memory() {
2466   return UseHugeTLBFS;
2467 }
2468 
2469 bool os::can_execute_large_page_memory() {
2470   return UseHugeTLBFS;
2471 }
2472 
2473 // Reserve memory at an arbitrary address, only if that area is
2474 // available (and not reserved for something else).
2475 
2476 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2477   const int max_tries = 10;
2478   char* base[max_tries];
2479   size_t size[max_tries];
2480   const size_t gap = 0x000000;
2481 
2482   // Assert only that the size is a multiple of the page size, since
2483   // that's all that mmap requires, and since that's all we really know
2484   // about at this low abstraction level.  If we need higher alignment,
2485   // we can either pass an alignment to this method or verify alignment
2486   // in one of the methods further up the call chain.  See bug 5044738.
2487   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2488 
2489   // Repeatedly allocate blocks until the block is allocated at the
2490   // right spot. Give up after max_tries. Note that reserve_memory() will
2491   // automatically update _highest_vm_reserved_address if the call is
2492   // successful. The variable tracks the highest memory address every reserved
2493   // by JVM. It is used to detect heap-stack collision if running with
2494   // fixed-stack BsdThreads. Because here we may attempt to reserve more
2495   // space than needed, it could confuse the collision detecting code. To
2496   // solve the problem, save current _highest_vm_reserved_address and
2497   // calculate the correct value before return.
2498   address old_highest = _highest_vm_reserved_address;
2499 
2500   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2501   // if kernel honors the hint then we can return immediately.
2502   char * addr = anon_mmap(requested_addr, bytes, false);
2503   if (addr == requested_addr) {
2504      return requested_addr;
2505   }
2506 
2507   if (addr != NULL) {
2508      // mmap() is successful but it fails to reserve at the requested address
2509      anon_munmap(addr, bytes);
2510   }
2511 
2512   int i;
2513   for (i = 0; i < max_tries; ++i) {
2514     base[i] = reserve_memory(bytes);
2515 
2516     if (base[i] != NULL) {
2517       // Is this the block we wanted?
2518       if (base[i] == requested_addr) {
2519         size[i] = bytes;
2520         break;
2521       }
2522 
2523       // Does this overlap the block we wanted? Give back the overlapped
2524       // parts and try again.
2525 
2526       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2527       if (top_overlap >= 0 && top_overlap < bytes) {
2528         unmap_memory(base[i], top_overlap);
2529         base[i] += top_overlap;
2530         size[i] = bytes - top_overlap;
2531       } else {
2532         size_t bottom_overlap = base[i] + bytes - requested_addr;
2533         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2534           unmap_memory(requested_addr, bottom_overlap);
2535           size[i] = bytes - bottom_overlap;
2536         } else {
2537           size[i] = bytes;
2538         }
2539       }
2540     }
2541   }
2542 
2543   // Give back the unused reserved pieces.
2544 
2545   for (int j = 0; j < i; ++j) {
2546     if (base[j] != NULL) {
2547       unmap_memory(base[j], size[j]);
2548     }
2549   }
2550 
2551   if (i < max_tries) {
2552     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2553     return requested_addr;
2554   } else {
2555     _highest_vm_reserved_address = old_highest;
2556     return NULL;
2557   }
2558 }
2559 
2560 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2561   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2562 }
2563 
2564 // TODO-FIXME: reconcile Solaris' os::sleep with the bsd variation.
2565 // Solaris uses poll(), bsd uses park().
2566 // Poll() is likely a better choice, assuming that Thread.interrupt()
2567 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2568 // SIGSEGV, see 4355769.
2569 
2570 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2571   assert(thread == Thread::current(),  "thread consistency check");
2572 
2573   ParkEvent * const slp = thread->_SleepEvent ;
2574   slp->reset() ;
2575   OrderAccess::fence() ;
2576 
2577   if (interruptible) {
2578     jlong prevtime = javaTimeNanos();
2579 
2580     for (;;) {
2581       if (os::is_interrupted(thread, true)) {
2582         return OS_INTRPT;
2583       }
2584 
2585       jlong newtime = javaTimeNanos();
2586 
2587       if (newtime - prevtime < 0) {
2588         // time moving backwards, should only happen if no monotonic clock
2589         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2590         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2591       } else {
2592         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2593       }
2594 
2595       if(millis <= 0) {
2596         return OS_OK;
2597       }
2598 
2599       prevtime = newtime;
2600 
2601       {
2602         assert(thread->is_Java_thread(), "sanity check");
2603         JavaThread *jt = (JavaThread *) thread;
2604         ThreadBlockInVM tbivm(jt);
2605         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2606 
2607         jt->set_suspend_equivalent();
2608         // cleared by handle_special_suspend_equivalent_condition() or
2609         // java_suspend_self() via check_and_wait_while_suspended()
2610 
2611         slp->park(millis);
2612 
2613         // were we externally suspended while we were waiting?
2614         jt->check_and_wait_while_suspended();
2615       }
2616     }
2617   } else {
2618     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2619     jlong prevtime = javaTimeNanos();
2620 
2621     for (;;) {
2622       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
2623       // the 1st iteration ...
2624       jlong newtime = javaTimeNanos();
2625 
2626       if (newtime - prevtime < 0) {
2627         // time moving backwards, should only happen if no monotonic clock
2628         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2629         assert(!Bsd::supports_monotonic_clock(), "time moving backwards");
2630       } else {
2631         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2632       }
2633 
2634       if(millis <= 0) break ;
2635 
2636       prevtime = newtime;
2637       slp->park(millis);
2638     }
2639     return OS_OK ;
2640   }
2641 }
2642 
2643 void os::naked_short_sleep(jlong ms) {
2644   struct timespec req;
2645 
2646   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2647   req.tv_sec = 0;
2648   if (ms > 0) {
2649     req.tv_nsec = (ms % 1000) * 1000000;
2650   }
2651   else {
2652     req.tv_nsec = 1;
2653   }
2654 
2655   nanosleep(&req, NULL);
2656 
2657   return;
2658 }
2659 
2660 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2661 void os::infinite_sleep() {
2662   while (true) {    // sleep forever ...
2663     ::sleep(100);   // ... 100 seconds at a time
2664   }
2665 }
2666 
2667 // Used to convert frequent JVM_Yield() to nops
2668 bool os::dont_yield() {
2669   return DontYieldALot;
2670 }
2671 
2672 void os::yield() {
2673   sched_yield();
2674 }
2675 
2676 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2677 
2678 void os::yield_all(int attempts) {
2679   // Yields to all threads, including threads with lower priorities
2680   // Threads on Bsd are all with same priority. The Solaris style
2681   // os::yield_all() with nanosleep(1ms) is not necessary.
2682   sched_yield();
2683 }
2684 
2685 // Called from the tight loops to possibly influence time-sharing heuristics
2686 void os::loop_breaker(int attempts) {
2687   os::yield_all(attempts);
2688 }
2689 
2690 ////////////////////////////////////////////////////////////////////////////////
2691 // thread priority support
2692 
2693 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2694 // only supports dynamic priority, static priority must be zero. For real-time
2695 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2696 // However, for large multi-threaded applications, SCHED_RR is not only slower
2697 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2698 // of 5 runs - Sep 2005).
2699 //
2700 // The following code actually changes the niceness of kernel-thread/LWP. It
2701 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2702 // not the entire user process, and user level threads are 1:1 mapped to kernel
2703 // threads. It has always been the case, but could change in the future. For
2704 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2705 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2706 
2707 #if !defined(__APPLE__)
2708 int os::java_to_os_priority[CriticalPriority + 1] = {
2709   19,              // 0 Entry should never be used
2710 
2711    0,              // 1 MinPriority
2712    3,              // 2
2713    6,              // 3
2714 
2715   10,              // 4
2716   15,              // 5 NormPriority
2717   18,              // 6
2718 
2719   21,              // 7
2720   25,              // 8
2721   28,              // 9 NearMaxPriority
2722 
2723   31,              // 10 MaxPriority
2724 
2725   31               // 11 CriticalPriority
2726 };
2727 #else
2728 /* Using Mach high-level priority assignments */
2729 int os::java_to_os_priority[CriticalPriority + 1] = {
2730    0,              // 0 Entry should never be used (MINPRI_USER)
2731 
2732   27,              // 1 MinPriority
2733   28,              // 2
2734   29,              // 3
2735 
2736   30,              // 4
2737   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2738   32,              // 6
2739 
2740   33,              // 7
2741   34,              // 8
2742   35,              // 9 NearMaxPriority
2743 
2744   36,              // 10 MaxPriority
2745 
2746   36               // 11 CriticalPriority
2747 };
2748 #endif
2749 
2750 static int prio_init() {
2751   if (ThreadPriorityPolicy == 1) {
2752     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2753     // if effective uid is not root. Perhaps, a more elegant way of doing
2754     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2755     if (geteuid() != 0) {
2756       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2757         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2758       }
2759       ThreadPriorityPolicy = 0;
2760     }
2761   }
2762   if (UseCriticalJavaThreadPriority) {
2763     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2764   }
2765   return 0;
2766 }
2767 
2768 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2769   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2770 
2771 #ifdef __OpenBSD__
2772   // OpenBSD pthread_setprio starves low priority threads
2773   return OS_OK;
2774 #elif defined(__FreeBSD__)
2775   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2776 #elif defined(__APPLE__) || defined(__NetBSD__)
2777   struct sched_param sp;
2778   int policy;
2779   pthread_t self = pthread_self();
2780 
2781   if (pthread_getschedparam(self, &policy, &sp) != 0)
2782     return OS_ERR;
2783 
2784   sp.sched_priority = newpri;
2785   if (pthread_setschedparam(self, policy, &sp) != 0)
2786     return OS_ERR;
2787 
2788   return OS_OK;
2789 #else
2790   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2791   return (ret == 0) ? OS_OK : OS_ERR;
2792 #endif
2793 }
2794 
2795 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2796   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2797     *priority_ptr = java_to_os_priority[NormPriority];
2798     return OS_OK;
2799   }
2800 
2801   errno = 0;
2802 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2803   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2804 #elif defined(__APPLE__) || defined(__NetBSD__)
2805   int policy;
2806   struct sched_param sp;
2807 
2808   pthread_getschedparam(pthread_self(), &policy, &sp);
2809   *priority_ptr = sp.sched_priority;
2810 #else
2811   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2812 #endif
2813   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2814 }
2815 
2816 // Hint to the underlying OS that a task switch would not be good.
2817 // Void return because it's a hint and can fail.
2818 void os::hint_no_preempt() {}
2819 
2820 ////////////////////////////////////////////////////////////////////////////////
2821 // suspend/resume support
2822 
2823 //  the low-level signal-based suspend/resume support is a remnant from the
2824 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2825 //  within hotspot. Now there is a single use-case for this:
2826 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2827 //      that runs in the watcher thread.
2828 //  The remaining code is greatly simplified from the more general suspension
2829 //  code that used to be used.
2830 //
2831 //  The protocol is quite simple:
2832 //  - suspend:
2833 //      - sends a signal to the target thread
2834 //      - polls the suspend state of the osthread using a yield loop
2835 //      - target thread signal handler (SR_handler) sets suspend state
2836 //        and blocks in sigsuspend until continued
2837 //  - resume:
2838 //      - sets target osthread state to continue
2839 //      - sends signal to end the sigsuspend loop in the SR_handler
2840 //
2841 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2842 //
2843 
2844 static void resume_clear_context(OSThread *osthread) {
2845   osthread->set_ucontext(NULL);
2846   osthread->set_siginfo(NULL);
2847 }
2848 
2849 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2850   osthread->set_ucontext(context);
2851   osthread->set_siginfo(siginfo);
2852 }
2853 
2854 //
2855 // Handler function invoked when a thread's execution is suspended or
2856 // resumed. We have to be careful that only async-safe functions are
2857 // called here (Note: most pthread functions are not async safe and
2858 // should be avoided.)
2859 //
2860 // Note: sigwait() is a more natural fit than sigsuspend() from an
2861 // interface point of view, but sigwait() prevents the signal hander
2862 // from being run. libpthread would get very confused by not having
2863 // its signal handlers run and prevents sigwait()'s use with the
2864 // mutex granting granting signal.
2865 //
2866 // Currently only ever called on the VMThread or JavaThread
2867 //
2868 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2869   // Save and restore errno to avoid confusing native code with EINTR
2870   // after sigsuspend.
2871   int old_errno = errno;
2872 
2873   Thread* thread = Thread::current();
2874   OSThread* osthread = thread->osthread();
2875   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2876 
2877   os::SuspendResume::State current = osthread->sr.state();
2878   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2879     suspend_save_context(osthread, siginfo, context);
2880 
2881     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2882     os::SuspendResume::State state = osthread->sr.suspended();
2883     if (state == os::SuspendResume::SR_SUSPENDED) {
2884       sigset_t suspend_set;  // signals for sigsuspend()
2885 
2886       // get current set of blocked signals and unblock resume signal
2887       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2888       sigdelset(&suspend_set, SR_signum);
2889 
2890       sr_semaphore.signal();
2891       // wait here until we are resumed
2892       while (1) {
2893         sigsuspend(&suspend_set);
2894 
2895         os::SuspendResume::State result = osthread->sr.running();
2896         if (result == os::SuspendResume::SR_RUNNING) {
2897           sr_semaphore.signal();
2898           break;
2899         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2900           ShouldNotReachHere();
2901         }
2902       }
2903 
2904     } else if (state == os::SuspendResume::SR_RUNNING) {
2905       // request was cancelled, continue
2906     } else {
2907       ShouldNotReachHere();
2908     }
2909 
2910     resume_clear_context(osthread);
2911   } else if (current == os::SuspendResume::SR_RUNNING) {
2912     // request was cancelled, continue
2913   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2914     // ignore
2915   } else {
2916     // ignore
2917   }
2918 
2919   errno = old_errno;
2920 }
2921 
2922 
2923 static int SR_initialize() {
2924   struct sigaction act;
2925   char *s;
2926   /* Get signal number to use for suspend/resume */
2927   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2928     int sig = ::strtol(s, 0, 10);
2929     if (sig > 0 || sig < NSIG) {
2930         SR_signum = sig;
2931     }
2932   }
2933 
2934   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2935         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2936 
2937   sigemptyset(&SR_sigset);
2938   sigaddset(&SR_sigset, SR_signum);
2939 
2940   /* Set up signal handler for suspend/resume */
2941   act.sa_flags = SA_RESTART|SA_SIGINFO;
2942   act.sa_handler = (void (*)(int)) SR_handler;
2943 
2944   // SR_signum is blocked by default.
2945   // 4528190 - We also need to block pthread restart signal (32 on all
2946   // supported Bsd platforms). Note that BsdThreads need to block
2947   // this signal for all threads to work properly. So we don't have
2948   // to use hard-coded signal number when setting up the mask.
2949   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2950 
2951   if (sigaction(SR_signum, &act, 0) == -1) {
2952     return -1;
2953   }
2954 
2955   // Save signal flag
2956   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2957   return 0;
2958 }
2959 
2960 static int sr_notify(OSThread* osthread) {
2961   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2962   assert_status(status == 0, status, "pthread_kill");
2963   return status;
2964 }
2965 
2966 // "Randomly" selected value for how long we want to spin
2967 // before bailing out on suspending a thread, also how often
2968 // we send a signal to a thread we want to resume
2969 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2970 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2971 
2972 // returns true on success and false on error - really an error is fatal
2973 // but this seems the normal response to library errors
2974 static bool do_suspend(OSThread* osthread) {
2975   assert(osthread->sr.is_running(), "thread should be running");
2976   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2977 
2978   // mark as suspended and send signal
2979   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2980     // failed to switch, state wasn't running?
2981     ShouldNotReachHere();
2982     return false;
2983   }
2984 
2985   if (sr_notify(osthread) != 0) {
2986     ShouldNotReachHere();
2987   }
2988 
2989   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2990   while (true) {
2991     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2992       break;
2993     } else {
2994       // timeout
2995       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2996       if (cancelled == os::SuspendResume::SR_RUNNING) {
2997         return false;
2998       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2999         // make sure that we consume the signal on the semaphore as well
3000         sr_semaphore.wait();
3001         break;
3002       } else {
3003         ShouldNotReachHere();
3004         return false;
3005       }
3006     }
3007   }
3008 
3009   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3010   return true;
3011 }
3012 
3013 static void do_resume(OSThread* osthread) {
3014   assert(osthread->sr.is_suspended(), "thread should be suspended");
3015   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3016 
3017   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3018     // failed to switch to WAKEUP_REQUEST
3019     ShouldNotReachHere();
3020     return;
3021   }
3022 
3023   while (true) {
3024     if (sr_notify(osthread) == 0) {
3025       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3026         if (osthread->sr.is_running()) {
3027           return;
3028         }
3029       }
3030     } else {
3031       ShouldNotReachHere();
3032     }
3033   }
3034 
3035   guarantee(osthread->sr.is_running(), "Must be running!");
3036 }
3037 
3038 ////////////////////////////////////////////////////////////////////////////////
3039 // interrupt support
3040 
3041 void os::interrupt(Thread* thread) {
3042   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3043     "possibility of dangling Thread pointer");
3044 
3045   OSThread* osthread = thread->osthread();
3046 
3047   if (!osthread->interrupted()) {
3048     osthread->set_interrupted(true);
3049     // More than one thread can get here with the same value of osthread,
3050     // resulting in multiple notifications.  We do, however, want the store
3051     // to interrupted() to be visible to other threads before we execute unpark().
3052     OrderAccess::fence();
3053     ParkEvent * const slp = thread->_SleepEvent ;
3054     if (slp != NULL) slp->unpark() ;
3055   }
3056 
3057   // For JSR166. Unpark even if interrupt status already was set
3058   if (thread->is_Java_thread())
3059     ((JavaThread*)thread)->parker()->unpark();
3060 
3061   ParkEvent * ev = thread->_ParkEvent ;
3062   if (ev != NULL) ev->unpark() ;
3063 
3064 }
3065 
3066 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3067   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3068     "possibility of dangling Thread pointer");
3069 
3070   OSThread* osthread = thread->osthread();
3071 
3072   bool interrupted = osthread->interrupted();
3073 
3074   if (interrupted && clear_interrupted) {
3075     osthread->set_interrupted(false);
3076     // consider thread->_SleepEvent->reset() ... optional optimization
3077   }
3078 
3079   return interrupted;
3080 }
3081 
3082 ///////////////////////////////////////////////////////////////////////////////////
3083 // signal handling (except suspend/resume)
3084 
3085 // This routine may be used by user applications as a "hook" to catch signals.
3086 // The user-defined signal handler must pass unrecognized signals to this
3087 // routine, and if it returns true (non-zero), then the signal handler must
3088 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3089 // routine will never retun false (zero), but instead will execute a VM panic
3090 // routine kill the process.
3091 //
3092 // If this routine returns false, it is OK to call it again.  This allows
3093 // the user-defined signal handler to perform checks either before or after
3094 // the VM performs its own checks.  Naturally, the user code would be making
3095 // a serious error if it tried to handle an exception (such as a null check
3096 // or breakpoint) that the VM was generating for its own correct operation.
3097 //
3098 // This routine may recognize any of the following kinds of signals:
3099 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3100 // It should be consulted by handlers for any of those signals.
3101 //
3102 // The caller of this routine must pass in the three arguments supplied
3103 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3104 // field of the structure passed to sigaction().  This routine assumes that
3105 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3106 //
3107 // Note that the VM will print warnings if it detects conflicting signal
3108 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3109 //
3110 extern "C" JNIEXPORT int
3111 JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
3112                         void* ucontext, int abort_if_unrecognized);
3113 
3114 void signalHandler(int sig, siginfo_t* info, void* uc) {
3115   assert(info != NULL && uc != NULL, "it must be old kernel");
3116   int orig_errno = errno;  // Preserve errno value over signal handler.
3117   JVM_handle_bsd_signal(sig, info, uc, true);
3118   errno = orig_errno;
3119 }
3120 
3121 
3122 // This boolean allows users to forward their own non-matching signals
3123 // to JVM_handle_bsd_signal, harmlessly.
3124 bool os::Bsd::signal_handlers_are_installed = false;
3125 
3126 // For signal-chaining
3127 struct sigaction os::Bsd::sigact[MAXSIGNUM];
3128 unsigned int os::Bsd::sigs = 0;
3129 bool os::Bsd::libjsig_is_loaded = false;
3130 typedef struct sigaction *(*get_signal_t)(int);
3131 get_signal_t os::Bsd::get_signal_action = NULL;
3132 
3133 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3134   struct sigaction *actp = NULL;
3135 
3136   if (libjsig_is_loaded) {
3137     // Retrieve the old signal handler from libjsig
3138     actp = (*get_signal_action)(sig);
3139   }
3140   if (actp == NULL) {
3141     // Retrieve the preinstalled signal handler from jvm
3142     actp = get_preinstalled_handler(sig);
3143   }
3144 
3145   return actp;
3146 }
3147 
3148 static bool call_chained_handler(struct sigaction *actp, int sig,
3149                                  siginfo_t *siginfo, void *context) {
3150   // Call the old signal handler
3151   if (actp->sa_handler == SIG_DFL) {
3152     // It's more reasonable to let jvm treat it as an unexpected exception
3153     // instead of taking the default action.
3154     return false;
3155   } else if (actp->sa_handler != SIG_IGN) {
3156     if ((actp->sa_flags & SA_NODEFER) == 0) {
3157       // automaticlly block the signal
3158       sigaddset(&(actp->sa_mask), sig);
3159     }
3160 
3161     sa_handler_t hand;
3162     sa_sigaction_t sa;
3163     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3164     // retrieve the chained handler
3165     if (siginfo_flag_set) {
3166       sa = actp->sa_sigaction;
3167     } else {
3168       hand = actp->sa_handler;
3169     }
3170 
3171     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3172       actp->sa_handler = SIG_DFL;
3173     }
3174 
3175     // try to honor the signal mask
3176     sigset_t oset;
3177     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3178 
3179     // call into the chained handler
3180     if (siginfo_flag_set) {
3181       (*sa)(sig, siginfo, context);
3182     } else {
3183       (*hand)(sig);
3184     }
3185 
3186     // restore the signal mask
3187     pthread_sigmask(SIG_SETMASK, &oset, 0);
3188   }
3189   // Tell jvm's signal handler the signal is taken care of.
3190   return true;
3191 }
3192 
3193 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3194   bool chained = false;
3195   // signal-chaining
3196   if (UseSignalChaining) {
3197     struct sigaction *actp = get_chained_signal_action(sig);
3198     if (actp != NULL) {
3199       chained = call_chained_handler(actp, sig, siginfo, context);
3200     }
3201   }
3202   return chained;
3203 }
3204 
3205 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3206   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3207     return &sigact[sig];
3208   }
3209   return NULL;
3210 }
3211 
3212 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3213   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3214   sigact[sig] = oldAct;
3215   sigs |= (unsigned int)1 << sig;
3216 }
3217 
3218 // for diagnostic
3219 int os::Bsd::sigflags[MAXSIGNUM];
3220 
3221 int os::Bsd::get_our_sigflags(int sig) {
3222   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3223   return sigflags[sig];
3224 }
3225 
3226 void os::Bsd::set_our_sigflags(int sig, int flags) {
3227   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3228   sigflags[sig] = flags;
3229 }
3230 
3231 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3232   // Check for overwrite.
3233   struct sigaction oldAct;
3234   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3235 
3236   void* oldhand = oldAct.sa_sigaction
3237                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3238                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3239   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3240       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3241       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3242     if (AllowUserSignalHandlers || !set_installed) {
3243       // Do not overwrite; user takes responsibility to forward to us.
3244       return;
3245     } else if (UseSignalChaining) {
3246       // save the old handler in jvm
3247       save_preinstalled_handler(sig, oldAct);
3248       // libjsig also interposes the sigaction() call below and saves the
3249       // old sigaction on it own.
3250     } else {
3251       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3252                     "%#lx for signal %d.", (long)oldhand, sig));
3253     }
3254   }
3255 
3256   struct sigaction sigAct;
3257   sigfillset(&(sigAct.sa_mask));
3258   sigAct.sa_handler = SIG_DFL;
3259   if (!set_installed) {
3260     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3261   } else {
3262     sigAct.sa_sigaction = signalHandler;
3263     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3264   }
3265 #ifdef __APPLE__
3266   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3267   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3268   // if the signal handler declares it will handle it on alternate stack.
3269   // Notice we only declare we will handle it on alt stack, but we are not
3270   // actually going to use real alt stack - this is just a workaround.
3271   // Please see ux_exception.c, method catch_mach_exception_raise for details
3272   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3273   if (sig == SIGSEGV) {
3274     sigAct.sa_flags |= SA_ONSTACK;
3275   }
3276 #endif
3277 
3278   // Save flags, which are set by ours
3279   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3280   sigflags[sig] = sigAct.sa_flags;
3281 
3282   int ret = sigaction(sig, &sigAct, &oldAct);
3283   assert(ret == 0, "check");
3284 
3285   void* oldhand2  = oldAct.sa_sigaction
3286                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3287                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3288   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3289 }
3290 
3291 // install signal handlers for signals that HotSpot needs to
3292 // handle in order to support Java-level exception handling.
3293 
3294 void os::Bsd::install_signal_handlers() {
3295   if (!signal_handlers_are_installed) {
3296     signal_handlers_are_installed = true;
3297 
3298     // signal-chaining
3299     typedef void (*signal_setting_t)();
3300     signal_setting_t begin_signal_setting = NULL;
3301     signal_setting_t end_signal_setting = NULL;
3302     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3303                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3304     if (begin_signal_setting != NULL) {
3305       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3306                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3307       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3308                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3309       libjsig_is_loaded = true;
3310       assert(UseSignalChaining, "should enable signal-chaining");
3311     }
3312     if (libjsig_is_loaded) {
3313       // Tell libjsig jvm is setting signal handlers
3314       (*begin_signal_setting)();
3315     }
3316 
3317     set_signal_handler(SIGSEGV, true);
3318     set_signal_handler(SIGPIPE, true);
3319     set_signal_handler(SIGBUS, true);
3320     set_signal_handler(SIGILL, true);
3321     set_signal_handler(SIGFPE, true);
3322     set_signal_handler(SIGXFSZ, true);
3323 
3324 #if defined(__APPLE__)
3325     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3326     // signals caught and handled by the JVM. To work around this, we reset the mach task
3327     // signal handler that's placed on our process by CrashReporter. This disables
3328     // CrashReporter-based reporting.
3329     //
3330     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3331     // on caught fatal signals.
3332     //
3333     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3334     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3335     // exception handling, while leaving the standard BSD signal handlers functional.
3336     kern_return_t kr;
3337     kr = task_set_exception_ports(mach_task_self(),
3338         EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3339         MACH_PORT_NULL,
3340         EXCEPTION_STATE_IDENTITY,
3341         MACHINE_THREAD_STATE);
3342 
3343     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3344 #endif
3345 
3346     if (libjsig_is_loaded) {
3347       // Tell libjsig jvm finishes setting signal handlers
3348       (*end_signal_setting)();
3349     }
3350 
3351     // We don't activate signal checker if libjsig is in place, we trust ourselves
3352     // and if UserSignalHandler is installed all bets are off
3353     if (CheckJNICalls) {
3354       if (libjsig_is_loaded) {
3355         if (PrintJNIResolving) {
3356           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3357         }
3358         check_signals = false;
3359       }
3360       if (AllowUserSignalHandlers) {
3361         if (PrintJNIResolving) {
3362           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3363         }
3364         check_signals = false;
3365       }
3366     }
3367   }
3368 }
3369 
3370 
3371 /////
3372 // glibc on Bsd platform uses non-documented flag
3373 // to indicate, that some special sort of signal
3374 // trampoline is used.
3375 // We will never set this flag, and we should
3376 // ignore this flag in our diagnostic
3377 #ifdef SIGNIFICANT_SIGNAL_MASK
3378 #undef SIGNIFICANT_SIGNAL_MASK
3379 #endif
3380 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3381 
3382 static const char* get_signal_handler_name(address handler,
3383                                            char* buf, int buflen) {
3384   int offset;
3385   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3386   if (found) {
3387     // skip directory names
3388     const char *p1, *p2;
3389     p1 = buf;
3390     size_t len = strlen(os::file_separator());
3391     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3392     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3393   } else {
3394     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3395   }
3396   return buf;
3397 }
3398 
3399 static void print_signal_handler(outputStream* st, int sig,
3400                                  char* buf, size_t buflen) {
3401   struct sigaction sa;
3402 
3403   sigaction(sig, NULL, &sa);
3404 
3405   // See comment for SIGNIFICANT_SIGNAL_MASK define
3406   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3407 
3408   st->print("%s: ", os::exception_name(sig, buf, buflen));
3409 
3410   address handler = (sa.sa_flags & SA_SIGINFO)
3411     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3412     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3413 
3414   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3415     st->print("SIG_DFL");
3416   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3417     st->print("SIG_IGN");
3418   } else {
3419     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3420   }
3421 
3422   st->print(", sa_mask[0]=");
3423   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3424 
3425   address rh = VMError::get_resetted_sighandler(sig);
3426   // May be, handler was resetted by VMError?
3427   if(rh != NULL) {
3428     handler = rh;
3429     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3430   }
3431 
3432   st->print(", sa_flags=");
3433   os::Posix::print_sa_flags(st, sa.sa_flags);
3434 
3435   // Check: is it our handler?
3436   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3437      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3438     // It is our signal handler
3439     // check for flags, reset system-used one!
3440     if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3441       st->print(
3442                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3443                 os::Bsd::get_our_sigflags(sig));
3444     }
3445   }
3446   st->cr();
3447 }
3448 
3449 
3450 #define DO_SIGNAL_CHECK(sig) \
3451   if (!sigismember(&check_signal_done, sig)) \
3452     os::Bsd::check_signal_handler(sig)
3453 
3454 // This method is a periodic task to check for misbehaving JNI applications
3455 // under CheckJNI, we can add any periodic checks here
3456 
3457 void os::run_periodic_checks() {
3458 
3459   if (check_signals == false) return;
3460 
3461   // SEGV and BUS if overridden could potentially prevent
3462   // generation of hs*.log in the event of a crash, debugging
3463   // such a case can be very challenging, so we absolutely
3464   // check the following for a good measure:
3465   DO_SIGNAL_CHECK(SIGSEGV);
3466   DO_SIGNAL_CHECK(SIGILL);
3467   DO_SIGNAL_CHECK(SIGFPE);
3468   DO_SIGNAL_CHECK(SIGBUS);
3469   DO_SIGNAL_CHECK(SIGPIPE);
3470   DO_SIGNAL_CHECK(SIGXFSZ);
3471 
3472 
3473   // ReduceSignalUsage allows the user to override these handlers
3474   // see comments at the very top and jvm_solaris.h
3475   if (!ReduceSignalUsage) {
3476     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3477     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3478     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3479     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3480   }
3481 
3482   DO_SIGNAL_CHECK(SR_signum);
3483   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3484 }
3485 
3486 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3487 
3488 static os_sigaction_t os_sigaction = NULL;
3489 
3490 void os::Bsd::check_signal_handler(int sig) {
3491   char buf[O_BUFLEN];
3492   address jvmHandler = NULL;
3493 
3494 
3495   struct sigaction act;
3496   if (os_sigaction == NULL) {
3497     // only trust the default sigaction, in case it has been interposed
3498     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3499     if (os_sigaction == NULL) return;
3500   }
3501 
3502   os_sigaction(sig, (struct sigaction*)NULL, &act);
3503 
3504 
3505   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3506 
3507   address thisHandler = (act.sa_flags & SA_SIGINFO)
3508     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3509     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3510 
3511 
3512   switch(sig) {
3513   case SIGSEGV:
3514   case SIGBUS:
3515   case SIGFPE:
3516   case SIGPIPE:
3517   case SIGILL:
3518   case SIGXFSZ:
3519     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3520     break;
3521 
3522   case SHUTDOWN1_SIGNAL:
3523   case SHUTDOWN2_SIGNAL:
3524   case SHUTDOWN3_SIGNAL:
3525   case BREAK_SIGNAL:
3526     jvmHandler = (address)user_handler();
3527     break;
3528 
3529   case INTERRUPT_SIGNAL:
3530     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3531     break;
3532 
3533   default:
3534     if (sig == SR_signum) {
3535       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3536     } else {
3537       return;
3538     }
3539     break;
3540   }
3541 
3542   if (thisHandler != jvmHandler) {
3543     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3544     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3545     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3546     // No need to check this sig any longer
3547     sigaddset(&check_signal_done, sig);
3548   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3549     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3550     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3551     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3552     // No need to check this sig any longer
3553     sigaddset(&check_signal_done, sig);
3554   }
3555 
3556   // Dump all the signal
3557   if (sigismember(&check_signal_done, sig)) {
3558     print_signal_handlers(tty, buf, O_BUFLEN);
3559   }
3560 }
3561 
3562 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3563 
3564 extern bool signal_name(int signo, char* buf, size_t len);
3565 
3566 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3567   if (0 < exception_code && exception_code <= SIGRTMAX) {
3568     // signal
3569     if (!signal_name(exception_code, buf, size)) {
3570       jio_snprintf(buf, size, "SIG%d", exception_code);
3571     }
3572     return buf;
3573   } else {
3574     return NULL;
3575   }
3576 }
3577 
3578 // this is called _before_ the most of global arguments have been parsed
3579 void os::init(void) {
3580   char dummy;   /* used to get a guess on initial stack address */
3581 //  first_hrtime = gethrtime();
3582 
3583   // With BsdThreads the JavaMain thread pid (primordial thread)
3584   // is different than the pid of the java launcher thread.
3585   // So, on Bsd, the launcher thread pid is passed to the VM
3586   // via the sun.java.launcher.pid property.
3587   // Use this property instead of getpid() if it was correctly passed.
3588   // See bug 6351349.
3589   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3590 
3591   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3592 
3593   clock_tics_per_sec = CLK_TCK;
3594 
3595   init_random(1234567);
3596 
3597   ThreadCritical::initialize();
3598 
3599   Bsd::set_page_size(getpagesize());
3600   if (Bsd::page_size() == -1) {
3601     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3602                   strerror(errno)));
3603   }
3604   init_page_sizes((size_t) Bsd::page_size());
3605 
3606   Bsd::initialize_system_info();
3607 
3608   // main_thread points to the aboriginal thread
3609   Bsd::_main_thread = pthread_self();
3610 
3611   Bsd::clock_init();
3612   initial_time_count = javaTimeNanos();
3613 
3614 #ifdef __APPLE__
3615   // XXXDARWIN
3616   // Work around the unaligned VM callbacks in hotspot's
3617   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3618   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3619   // alignment when doing symbol lookup. To work around this, we force early
3620   // binding of all symbols now, thus binding when alignment is known-good.
3621   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3622 #endif
3623 }
3624 
3625 // To install functions for atexit system call
3626 extern "C" {
3627   static void perfMemory_exit_helper() {
3628     perfMemory_exit();
3629   }
3630 }
3631 
3632 // this is called _after_ the global arguments have been parsed
3633 jint os::init_2(void)
3634 {
3635   // Allocate a single page and mark it as readable for safepoint polling
3636   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3637   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3638 
3639   os::set_polling_page( polling_page );
3640 
3641 #ifndef PRODUCT
3642   if(Verbose && PrintMiscellaneous)
3643     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3644 #endif
3645 
3646   if (!UseMembar) {
3647     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3648     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3649     os::set_memory_serialize_page( mem_serialize_page );
3650 
3651 #ifndef PRODUCT
3652     if(Verbose && PrintMiscellaneous)
3653       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3654 #endif
3655   }
3656 
3657   // initialize suspend/resume support - must do this before signal_sets_init()
3658   if (SR_initialize() != 0) {
3659     perror("SR_initialize failed");
3660     return JNI_ERR;
3661   }
3662 
3663   Bsd::signal_sets_init();
3664   Bsd::install_signal_handlers();
3665 
3666   // Check minimum allowable stack size for thread creation and to initialize
3667   // the java system classes, including StackOverflowError - depends on page
3668   // size.  Add a page for compiler2 recursion in main thread.
3669   // Add in 2*BytesPerWord times page size to account for VM stack during
3670   // class initialization depending on 32 or 64 bit VM.
3671   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3672             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3673                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3674 
3675   size_t threadStackSizeInBytes = ThreadStackSize * K;
3676   if (threadStackSizeInBytes != 0 &&
3677       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3678         tty->print_cr("\nThe stack size specified is too small, "
3679                       "Specify at least %dk",
3680                       os::Bsd::min_stack_allowed/ K);
3681         return JNI_ERR;
3682   }
3683 
3684   // Make the stack size a multiple of the page size so that
3685   // the yellow/red zones can be guarded.
3686   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3687         vm_page_size()));
3688 
3689   if (MaxFDLimit) {
3690     // set the number of file descriptors to max. print out error
3691     // if getrlimit/setrlimit fails but continue regardless.
3692     struct rlimit nbr_files;
3693     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3694     if (status != 0) {
3695       if (PrintMiscellaneous && (Verbose || WizardMode))
3696         perror("os::init_2 getrlimit failed");
3697     } else {
3698       nbr_files.rlim_cur = nbr_files.rlim_max;
3699 
3700 #ifdef __APPLE__
3701       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3702       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3703       // be used instead
3704       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3705 #endif
3706 
3707       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3708       if (status != 0) {
3709         if (PrintMiscellaneous && (Verbose || WizardMode))
3710           perror("os::init_2 setrlimit failed");
3711       }
3712     }
3713   }
3714 
3715   // at-exit methods are called in the reverse order of their registration.
3716   // atexit functions are called on return from main or as a result of a
3717   // call to exit(3C). There can be only 32 of these functions registered
3718   // and atexit() does not set errno.
3719 
3720   if (PerfAllowAtExitRegistration) {
3721     // only register atexit functions if PerfAllowAtExitRegistration is set.
3722     // atexit functions can be delayed until process exit time, which
3723     // can be problematic for embedded VM situations. Embedded VMs should
3724     // call DestroyJavaVM() to assure that VM resources are released.
3725 
3726     // note: perfMemory_exit_helper atexit function may be removed in
3727     // the future if the appropriate cleanup code can be added to the
3728     // VM_Exit VMOperation's doit method.
3729     if (atexit(perfMemory_exit_helper) != 0) {
3730       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3731     }
3732   }
3733 
3734   // initialize thread priority policy
3735   prio_init();
3736 
3737 #ifdef __APPLE__
3738   // dynamically link to objective c gc registration
3739   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3740   if (handleLibObjc != NULL) {
3741     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3742   }
3743 #endif
3744 
3745   return JNI_OK;
3746 }
3747 
3748 // Mark the polling page as unreadable
3749 void os::make_polling_page_unreadable(void) {
3750   if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3751     fatal("Could not disable polling page");
3752 };
3753 
3754 // Mark the polling page as readable
3755 void os::make_polling_page_readable(void) {
3756   if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3757     fatal("Could not enable polling page");
3758   }
3759 };
3760 
3761 int os::active_processor_count() {
3762   return _processor_count;
3763 }
3764 
3765 void os::set_native_thread_name(const char *name) {
3766 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3767   // This is only supported in Snow Leopard and beyond
3768   if (name != NULL) {
3769     // Add a "Java: " prefix to the name
3770     char buf[MAXTHREADNAMESIZE];
3771     snprintf(buf, sizeof(buf), "Java: %s", name);
3772     pthread_setname_np(buf);
3773   }
3774 #endif
3775 }
3776 
3777 bool os::distribute_processes(uint length, uint* distribution) {
3778   // Not yet implemented.
3779   return false;
3780 }
3781 
3782 bool os::bind_to_processor(uint processor_id) {
3783   // Not yet implemented.
3784   return false;
3785 }
3786 
3787 void os::SuspendedThreadTask::internal_do_task() {
3788   if (do_suspend(_thread->osthread())) {
3789     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3790     do_task(context);
3791     do_resume(_thread->osthread());
3792   }
3793 }
3794 
3795 ///
3796 class PcFetcher : public os::SuspendedThreadTask {
3797 public:
3798   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3799   ExtendedPC result();
3800 protected:
3801   void do_task(const os::SuspendedThreadTaskContext& context);
3802 private:
3803   ExtendedPC _epc;
3804 };
3805 
3806 ExtendedPC PcFetcher::result() {
3807   guarantee(is_done(), "task is not done yet.");
3808   return _epc;
3809 }
3810 
3811 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3812   Thread* thread = context.thread();
3813   OSThread* osthread = thread->osthread();
3814   if (osthread->ucontext() != NULL) {
3815     _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3816   } else {
3817     // NULL context is unexpected, double-check this is the VMThread
3818     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3819   }
3820 }
3821 
3822 // Suspends the target using the signal mechanism and then grabs the PC before
3823 // resuming the target. Used by the flat-profiler only
3824 ExtendedPC os::get_thread_pc(Thread* thread) {
3825   // Make sure that it is called by the watcher for the VMThread
3826   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3827   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3828 
3829   PcFetcher fetcher(thread);
3830   fetcher.run();
3831   return fetcher.result();
3832 }
3833 
3834 int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3835 {
3836   return pthread_cond_timedwait(_cond, _mutex, _abstime);
3837 }
3838 
3839 ////////////////////////////////////////////////////////////////////////////////
3840 // debug support
3841 
3842 bool os::find(address addr, outputStream* st) {
3843   Dl_info dlinfo;
3844   memset(&dlinfo, 0, sizeof(dlinfo));
3845   if (dladdr(addr, &dlinfo) != 0) {
3846     st->print(PTR_FORMAT ": ", addr);
3847     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3848       st->print("%s+%#x", dlinfo.dli_sname,
3849                  addr - (intptr_t)dlinfo.dli_saddr);
3850     } else if (dlinfo.dli_fbase != NULL) {
3851       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3852     } else {
3853       st->print("<absolute address>");
3854     }
3855     if (dlinfo.dli_fname != NULL) {
3856       st->print(" in %s", dlinfo.dli_fname);
3857     }
3858     if (dlinfo.dli_fbase != NULL) {
3859       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3860     }
3861     st->cr();
3862 
3863     if (Verbose) {
3864       // decode some bytes around the PC
3865       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3866       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3867       address       lowest = (address) dlinfo.dli_sname;
3868       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3869       if (begin < lowest)  begin = lowest;
3870       Dl_info dlinfo2;
3871       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3872           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3873         end = (address) dlinfo2.dli_saddr;
3874       Disassembler::decode(begin, end, st);
3875     }
3876     return true;
3877   }
3878   return false;
3879 }
3880 
3881 ////////////////////////////////////////////////////////////////////////////////
3882 // misc
3883 
3884 // This does not do anything on Bsd. This is basically a hook for being
3885 // able to use structured exception handling (thread-local exception filters)
3886 // on, e.g., Win32.
3887 void
3888 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3889                          JavaCallArguments* args, Thread* thread) {
3890   f(value, method, args, thread);
3891 }
3892 
3893 void os::print_statistics() {
3894 }
3895 
3896 int os::message_box(const char* title, const char* message) {
3897   int i;
3898   fdStream err(defaultStream::error_fd());
3899   for (i = 0; i < 78; i++) err.print_raw("=");
3900   err.cr();
3901   err.print_raw_cr(title);
3902   for (i = 0; i < 78; i++) err.print_raw("-");
3903   err.cr();
3904   err.print_raw_cr(message);
3905   for (i = 0; i < 78; i++) err.print_raw("=");
3906   err.cr();
3907 
3908   char buf[16];
3909   // Prevent process from exiting upon "read error" without consuming all CPU
3910   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3911 
3912   return buf[0] == 'y' || buf[0] == 'Y';
3913 }
3914 
3915 int os::stat(const char *path, struct stat *sbuf) {
3916   char pathbuf[MAX_PATH];
3917   if (strlen(path) > MAX_PATH - 1) {
3918     errno = ENAMETOOLONG;
3919     return -1;
3920   }
3921   os::native_path(strcpy(pathbuf, path));
3922   return ::stat(pathbuf, sbuf);
3923 }
3924 
3925 bool os::check_heap(bool force) {
3926   return true;
3927 }
3928 
3929 ATTRIBUTE_PRINTF(3, 0)
3930 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3931   return ::vsnprintf(buf, count, format, args);
3932 }
3933 
3934 // Is a (classpath) directory empty?
3935 bool os::dir_is_empty(const char* path) {
3936   DIR *dir = NULL;
3937   struct dirent *ptr;
3938 
3939   dir = opendir(path);
3940   if (dir == NULL) return true;
3941 
3942   /* Scan the directory */
3943   bool result = true;
3944   char buf[sizeof(struct dirent) + MAX_PATH];
3945   while (result && (ptr = ::readdir(dir)) != NULL) {
3946     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3947       result = false;
3948     }
3949   }
3950   closedir(dir);
3951   return result;
3952 }
3953 
3954 // This code originates from JDK's sysOpen and open64_w
3955 // from src/solaris/hpi/src/system_md.c
3956 
3957 #ifndef O_DELETE
3958 #define O_DELETE 0x10000
3959 #endif
3960 
3961 // Open a file. Unlink the file immediately after open returns
3962 // if the specified oflag has the O_DELETE flag set.
3963 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3964 
3965 int os::open(const char *path, int oflag, int mode) {
3966 
3967   if (strlen(path) > MAX_PATH - 1) {
3968     errno = ENAMETOOLONG;
3969     return -1;
3970   }
3971   int fd;
3972   int o_delete = (oflag & O_DELETE);
3973   oflag = oflag & ~O_DELETE;
3974 
3975   fd = ::open(path, oflag, mode);
3976   if (fd == -1) return -1;
3977 
3978   //If the open succeeded, the file might still be a directory
3979   {
3980     struct stat buf;
3981     int ret = ::fstat(fd, &buf);
3982     int st_mode = buf.st_mode;
3983 
3984     if (ret != -1) {
3985       if ((st_mode & S_IFMT) == S_IFDIR) {
3986         errno = EISDIR;
3987         ::close(fd);
3988         return -1;
3989       }
3990     } else {
3991       ::close(fd);
3992       return -1;
3993     }
3994   }
3995 
3996     /*
3997      * All file descriptors that are opened in the JVM and not
3998      * specifically destined for a subprocess should have the
3999      * close-on-exec flag set.  If we don't set it, then careless 3rd
4000      * party native code might fork and exec without closing all
4001      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4002      * UNIXProcess.c), and this in turn might:
4003      *
4004      * - cause end-of-file to fail to be detected on some file
4005      *   descriptors, resulting in mysterious hangs, or
4006      *
4007      * - might cause an fopen in the subprocess to fail on a system
4008      *   suffering from bug 1085341.
4009      *
4010      * (Yes, the default setting of the close-on-exec flag is a Unix
4011      * design flaw)
4012      *
4013      * See:
4014      * 1085341: 32-bit stdio routines should support file descriptors >255
4015      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4016      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4017      */
4018 #ifdef FD_CLOEXEC
4019     {
4020         int flags = ::fcntl(fd, F_GETFD);
4021         if (flags != -1)
4022             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4023     }
4024 #endif
4025 
4026   if (o_delete != 0) {
4027     ::unlink(path);
4028   }
4029   return fd;
4030 }
4031 
4032 
4033 // create binary file, rewriting existing file if required
4034 int os::create_binary_file(const char* path, bool rewrite_existing) {
4035   int oflags = O_WRONLY | O_CREAT;
4036   if (!rewrite_existing) {
4037     oflags |= O_EXCL;
4038   }
4039   return ::open(path, oflags, S_IREAD | S_IWRITE);
4040 }
4041 
4042 // return current position of file pointer
4043 jlong os::current_file_offset(int fd) {
4044   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
4045 }
4046 
4047 // move file pointer to the specified offset
4048 jlong os::seek_to_file_offset(int fd, jlong offset) {
4049   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
4050 }
4051 
4052 // This code originates from JDK's sysAvailable
4053 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4054 
4055 int os::available(int fd, jlong *bytes) {
4056   jlong cur, end;
4057   int mode;
4058   struct stat buf;
4059 
4060   if (::fstat(fd, &buf) >= 0) {
4061     mode = buf.st_mode;
4062     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4063       /*
4064       * XXX: is the following call interruptible? If so, this might
4065       * need to go through the INTERRUPT_IO() wrapper as for other
4066       * blocking, interruptible calls in this file.
4067       */
4068       int n;
4069       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4070         *bytes = n;
4071         return 1;
4072       }
4073     }
4074   }
4075   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
4076     return 0;
4077   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
4078     return 0;
4079   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
4080     return 0;
4081   }
4082   *bytes = end - cur;
4083   return 1;
4084 }
4085 
4086 int os::socket_available(int fd, jint *pbytes) {
4087    if (fd < 0)
4088      return OS_OK;
4089 
4090    int ret;
4091 
4092    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
4093 
4094    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4095    // is expected to return 0 on failure and 1 on success to the jdk.
4096 
4097    return (ret == OS_ERR) ? 0 : 1;
4098 }
4099 
4100 // Map a block of memory.
4101 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4102                      char *addr, size_t bytes, bool read_only,
4103                      bool allow_exec) {
4104   int prot;
4105   int flags;
4106 
4107   if (read_only) {
4108     prot = PROT_READ;
4109     flags = MAP_SHARED;
4110   } else {
4111     prot = PROT_READ | PROT_WRITE;
4112     flags = MAP_PRIVATE;
4113   }
4114 
4115   if (allow_exec) {
4116     prot |= PROT_EXEC;
4117   }
4118 
4119   if (addr != NULL) {
4120     flags |= MAP_FIXED;
4121   }
4122 
4123   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4124                                      fd, file_offset);
4125   if (mapped_address == MAP_FAILED) {
4126     return NULL;
4127   }
4128   return mapped_address;
4129 }
4130 
4131 
4132 // Remap a block of memory.
4133 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4134                        char *addr, size_t bytes, bool read_only,
4135                        bool allow_exec) {
4136   // same as map_memory() on this OS
4137   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4138                         allow_exec);
4139 }
4140 
4141 
4142 // Unmap a block of memory.
4143 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4144   return munmap(addr, bytes) == 0;
4145 }
4146 
4147 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4148 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4149 // of a thread.
4150 //
4151 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4152 // the fast estimate available on the platform.
4153 
4154 jlong os::current_thread_cpu_time() {
4155 #ifdef __APPLE__
4156   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4157 #else
4158   Unimplemented();
4159   return 0;
4160 #endif
4161 }
4162 
4163 jlong os::thread_cpu_time(Thread* thread) {
4164 #ifdef __APPLE__
4165   return os::thread_cpu_time(thread, true /* user + sys */);
4166 #else
4167   Unimplemented();
4168   return 0;
4169 #endif
4170 }
4171 
4172 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4173 #ifdef __APPLE__
4174   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4175 #else
4176   Unimplemented();
4177   return 0;
4178 #endif
4179 }
4180 
4181 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4182 #ifdef __APPLE__
4183   struct thread_basic_info tinfo;
4184   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4185   kern_return_t kr;
4186   thread_t mach_thread;
4187 
4188   mach_thread = thread->osthread()->thread_id();
4189   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4190   if (kr != KERN_SUCCESS)
4191     return -1;
4192 
4193   if (user_sys_cpu_time) {
4194     jlong nanos;
4195     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4196     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4197     return nanos;
4198   } else {
4199     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4200   }
4201 #else
4202   Unimplemented();
4203   return 0;
4204 #endif
4205 }
4206 
4207 
4208 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4209   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4210   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4211   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4212   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4213 }
4214 
4215 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4216   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4217   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4218   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4219   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4220 }
4221 
4222 bool os::is_thread_cpu_time_supported() {
4223 #ifdef __APPLE__
4224   return true;
4225 #else
4226   return false;
4227 #endif
4228 }
4229 
4230 // System loadavg support.  Returns -1 if load average cannot be obtained.
4231 // Bsd doesn't yet have a (official) notion of processor sets,
4232 // so just return the system wide load average.
4233 int os::loadavg(double loadavg[], int nelem) {
4234   return ::getloadavg(loadavg, nelem);
4235 }
4236 
4237 void os::pause() {
4238   char filename[MAX_PATH];
4239   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4240     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4241   } else {
4242     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4243   }
4244 
4245   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4246   if (fd != -1) {
4247     struct stat buf;
4248     ::close(fd);
4249     while (::stat(filename, &buf) == 0) {
4250       (void)::poll(NULL, 0, 100);
4251     }
4252   } else {
4253     jio_fprintf(stderr,
4254       "Could not open pause file '%s', continuing immediately.\n", filename);
4255   }
4256 }
4257 
4258 
4259 // Refer to the comments in os_solaris.cpp park-unpark.
4260 //
4261 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4262 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4263 // For specifics regarding the bug see GLIBC BUGID 261237 :
4264 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4265 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4266 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4267 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4268 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4269 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4270 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4271 // of libpthread avoids the problem, but isn't practical.
4272 //
4273 // Possible remedies:
4274 //
4275 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4276 //      This is palliative and probabilistic, however.  If the thread is preempted
4277 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4278 //      than the minimum period may have passed, and the abstime may be stale (in the
4279 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4280 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4281 //
4282 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4283 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4284 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4285 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4286 //      thread.
4287 //
4288 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4289 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4290 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4291 //      This also works well.  In fact it avoids kernel-level scalability impediments
4292 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4293 //      timers in a graceful fashion.
4294 //
4295 // 4.   When the abstime value is in the past it appears that control returns
4296 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4297 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4298 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4299 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4300 //      It may be possible to avoid reinitialization by checking the return
4301 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4302 //      condvar we must establish the invariant that cond_signal() is only called
4303 //      within critical sections protected by the adjunct mutex.  This prevents
4304 //      cond_signal() from "seeing" a condvar that's in the midst of being
4305 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4306 //      desirable signal-after-unlock optimization that avoids futile context switching.
4307 //
4308 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4309 //      structure when a condvar is used or initialized.  cond_destroy()  would
4310 //      release the helper structure.  Our reinitialize-after-timedwait fix
4311 //      put excessive stress on malloc/free and locks protecting the c-heap.
4312 //
4313 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4314 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4315 // and only enabling the work-around for vulnerable environments.
4316 
4317 // utility to compute the abstime argument to timedwait:
4318 // millis is the relative timeout time
4319 // abstime will be the absolute timeout time
4320 // TODO: replace compute_abstime() with unpackTime()
4321 
4322 static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4323   if (millis < 0)  millis = 0;
4324   struct timeval now;
4325   int status = gettimeofday(&now, NULL);
4326   assert(status == 0, "gettimeofday");
4327   jlong seconds = millis / 1000;
4328   millis %= 1000;
4329   if (seconds > 50000000) { // see man cond_timedwait(3T)
4330     seconds = 50000000;
4331   }
4332   abstime->tv_sec = now.tv_sec  + seconds;
4333   long       usec = now.tv_usec + millis * 1000;
4334   if (usec >= 1000000) {
4335     abstime->tv_sec += 1;
4336     usec -= 1000000;
4337   }
4338   abstime->tv_nsec = usec * 1000;
4339   return abstime;
4340 }
4341 
4342 
4343 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4344 // Conceptually TryPark() should be equivalent to park(0).
4345 
4346 int os::PlatformEvent::TryPark() {
4347   for (;;) {
4348     const int v = _Event ;
4349     guarantee ((v == 0) || (v == 1), "invariant") ;
4350     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4351   }
4352 }
4353 
4354 void os::PlatformEvent::park() {       // AKA "down()"
4355   // Invariant: Only the thread associated with the Event/PlatformEvent
4356   // may call park().
4357   // TODO: assert that _Assoc != NULL or _Assoc == Self
4358   int v ;
4359   for (;;) {
4360       v = _Event ;
4361       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4362   }
4363   guarantee (v >= 0, "invariant") ;
4364   if (v == 0) {
4365      // Do this the hard way by blocking ...
4366      int status = pthread_mutex_lock(_mutex);
4367      assert_status(status == 0, status, "mutex_lock");
4368      guarantee (_nParked == 0, "invariant") ;
4369      ++ _nParked ;
4370      while (_Event < 0) {
4371         status = pthread_cond_wait(_cond, _mutex);
4372         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4373         // Treat this the same as if the wait was interrupted
4374         if (status == ETIMEDOUT) { status = EINTR; }
4375         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4376      }
4377      -- _nParked ;
4378 
4379     _Event = 0 ;
4380      status = pthread_mutex_unlock(_mutex);
4381      assert_status(status == 0, status, "mutex_unlock");
4382     // Paranoia to ensure our locked and lock-free paths interact
4383     // correctly with each other.
4384     OrderAccess::fence();
4385   }
4386   guarantee (_Event >= 0, "invariant") ;
4387 }
4388 
4389 int os::PlatformEvent::park(jlong millis) {
4390   guarantee (_nParked == 0, "invariant") ;
4391 
4392   int v ;
4393   for (;;) {
4394       v = _Event ;
4395       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4396   }
4397   guarantee (v >= 0, "invariant") ;
4398   if (v != 0) return OS_OK ;
4399 
4400   // We do this the hard way, by blocking the thread.
4401   // Consider enforcing a minimum timeout value.
4402   struct timespec abst;
4403   compute_abstime(&abst, millis);
4404 
4405   int ret = OS_TIMEOUT;
4406   int status = pthread_mutex_lock(_mutex);
4407   assert_status(status == 0, status, "mutex_lock");
4408   guarantee (_nParked == 0, "invariant") ;
4409   ++_nParked ;
4410 
4411   // Object.wait(timo) will return because of
4412   // (a) notification
4413   // (b) timeout
4414   // (c) thread.interrupt
4415   //
4416   // Thread.interrupt and object.notify{All} both call Event::set.
4417   // That is, we treat thread.interrupt as a special case of notification.
4418   // The underlying Solaris implementation, cond_timedwait, admits
4419   // spurious/premature wakeups, but the JLS/JVM spec prevents the
4420   // JVM from making those visible to Java code.  As such, we must
4421   // filter out spurious wakeups.  We assume all ETIME returns are valid.
4422   //
4423   // TODO: properly differentiate simultaneous notify+interrupt.
4424   // In that case, we should propagate the notify to another waiter.
4425 
4426   while (_Event < 0) {
4427     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4428     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4429       pthread_cond_destroy (_cond);
4430       pthread_cond_init (_cond, NULL) ;
4431     }
4432     assert_status(status == 0 || status == EINTR ||
4433                   status == ETIMEDOUT,
4434                   status, "cond_timedwait");
4435     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4436     if (status == ETIMEDOUT) break ;
4437     // We consume and ignore EINTR and spurious wakeups.
4438   }
4439   --_nParked ;
4440   if (_Event >= 0) {
4441      ret = OS_OK;
4442   }
4443   _Event = 0 ;
4444   status = pthread_mutex_unlock(_mutex);
4445   assert_status(status == 0, status, "mutex_unlock");
4446   assert (_nParked == 0, "invariant") ;
4447   // Paranoia to ensure our locked and lock-free paths interact
4448   // correctly with each other.
4449   OrderAccess::fence();
4450   return ret;
4451 }
4452 
4453 void os::PlatformEvent::unpark() {
4454   // Transitions for _Event:
4455   //    0 :=> 1
4456   //    1 :=> 1
4457   //   -1 :=> either 0 or 1; must signal target thread
4458   //          That is, we can safely transition _Event from -1 to either
4459   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4460   //          unpark() calls.
4461   // See also: "Semaphores in Plan 9" by Mullender & Cox
4462   //
4463   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4464   // that it will take two back-to-back park() calls for the owning
4465   // thread to block. This has the benefit of forcing a spurious return
4466   // from the first park() call after an unpark() call which will help
4467   // shake out uses of park() and unpark() without condition variables.
4468 
4469   if (Atomic::xchg(1, &_Event) >= 0) return;
4470 
4471   // Wait for the thread associated with the event to vacate
4472   int status = pthread_mutex_lock(_mutex);
4473   assert_status(status == 0, status, "mutex_lock");
4474   int AnyWaiters = _nParked;
4475   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4476   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4477     AnyWaiters = 0;
4478     pthread_cond_signal(_cond);
4479   }
4480   status = pthread_mutex_unlock(_mutex);
4481   assert_status(status == 0, status, "mutex_unlock");
4482   if (AnyWaiters != 0) {
4483     status = pthread_cond_signal(_cond);
4484     assert_status(status == 0, status, "cond_signal");
4485   }
4486 
4487   // Note that we signal() _after dropping the lock for "immortal" Events.
4488   // This is safe and avoids a common class of  futile wakeups.  In rare
4489   // circumstances this can cause a thread to return prematurely from
4490   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4491   // simply re-test the condition and re-park itself.
4492 }
4493 
4494 
4495 // JSR166
4496 // -------------------------------------------------------
4497 
4498 /*
4499  * The solaris and bsd implementations of park/unpark are fairly
4500  * conservative for now, but can be improved. They currently use a
4501  * mutex/condvar pair, plus a a count.
4502  * Park decrements count if > 0, else does a condvar wait.  Unpark
4503  * sets count to 1 and signals condvar.  Only one thread ever waits
4504  * on the condvar. Contention seen when trying to park implies that someone
4505  * is unparking you, so don't wait. And spurious returns are fine, so there
4506  * is no need to track notifications.
4507  */
4508 
4509 #define MAX_SECS 100000000
4510 /*
4511  * This code is common to bsd and solaris and will be moved to a
4512  * common place in dolphin.
4513  *
4514  * The passed in time value is either a relative time in nanoseconds
4515  * or an absolute time in milliseconds. Either way it has to be unpacked
4516  * into suitable seconds and nanoseconds components and stored in the
4517  * given timespec structure.
4518  * Given time is a 64-bit value and the time_t used in the timespec is only
4519  * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4520  * overflow if times way in the future are given. Further on Solaris versions
4521  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4522  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4523  * As it will be 28 years before "now + 100000000" will overflow we can
4524  * ignore overflow and just impose a hard-limit on seconds using the value
4525  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4526  * years from "now".
4527  */
4528 
4529 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4530   assert (time > 0, "convertTime");
4531 
4532   struct timeval now;
4533   int status = gettimeofday(&now, NULL);
4534   assert(status == 0, "gettimeofday");
4535 
4536   time_t max_secs = now.tv_sec + MAX_SECS;
4537 
4538   if (isAbsolute) {
4539     jlong secs = time / 1000;
4540     if (secs > max_secs) {
4541       absTime->tv_sec = max_secs;
4542     }
4543     else {
4544       absTime->tv_sec = secs;
4545     }
4546     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4547   }
4548   else {
4549     jlong secs = time / NANOSECS_PER_SEC;
4550     if (secs >= MAX_SECS) {
4551       absTime->tv_sec = max_secs;
4552       absTime->tv_nsec = 0;
4553     }
4554     else {
4555       absTime->tv_sec = now.tv_sec + secs;
4556       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4557       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4558         absTime->tv_nsec -= NANOSECS_PER_SEC;
4559         ++absTime->tv_sec; // note: this must be <= max_secs
4560       }
4561     }
4562   }
4563   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4564   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4565   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4566   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4567 }
4568 
4569 void Parker::park(bool isAbsolute, jlong time) {
4570   // Ideally we'd do something useful while spinning, such
4571   // as calling unpackTime().
4572 
4573   // Optional fast-path check:
4574   // Return immediately if a permit is available.
4575   // We depend on Atomic::xchg() having full barrier semantics
4576   // since we are doing a lock-free update to _counter.
4577   if (Atomic::xchg(0, &_counter) > 0) return;
4578 
4579   Thread* thread = Thread::current();
4580   assert(thread->is_Java_thread(), "Must be JavaThread");
4581   JavaThread *jt = (JavaThread *)thread;
4582 
4583   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4584   // Check interrupt before trying to wait
4585   if (Thread::is_interrupted(thread, false)) {
4586     return;
4587   }
4588 
4589   // Next, demultiplex/decode time arguments
4590   struct timespec absTime;
4591   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4592     return;
4593   }
4594   if (time > 0) {
4595     unpackTime(&absTime, isAbsolute, time);
4596   }
4597 
4598 
4599   // Enter safepoint region
4600   // Beware of deadlocks such as 6317397.
4601   // The per-thread Parker:: mutex is a classic leaf-lock.
4602   // In particular a thread must never block on the Threads_lock while
4603   // holding the Parker:: mutex.  If safepoints are pending both the
4604   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4605   ThreadBlockInVM tbivm(jt);
4606 
4607   // Don't wait if cannot get lock since interference arises from
4608   // unblocking.  Also. check interrupt before trying wait
4609   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4610     return;
4611   }
4612 
4613   int status ;
4614   if (_counter > 0)  { // no wait needed
4615     _counter = 0;
4616     status = pthread_mutex_unlock(_mutex);
4617     assert (status == 0, "invariant") ;
4618     // Paranoia to ensure our locked and lock-free paths interact
4619     // correctly with each other and Java-level accesses.
4620     OrderAccess::fence();
4621     return;
4622   }
4623 
4624 #ifdef ASSERT
4625   // Don't catch signals while blocked; let the running threads have the signals.
4626   // (This allows a debugger to break into the running thread.)
4627   sigset_t oldsigs;
4628   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4629   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4630 #endif
4631 
4632   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4633   jt->set_suspend_equivalent();
4634   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4635 
4636   if (time == 0) {
4637     status = pthread_cond_wait (_cond, _mutex) ;
4638   } else {
4639     status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4640     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4641       pthread_cond_destroy (_cond) ;
4642       pthread_cond_init    (_cond, NULL);
4643     }
4644   }
4645   assert_status(status == 0 || status == EINTR ||
4646                 status == ETIMEDOUT,
4647                 status, "cond_timedwait");
4648 
4649 #ifdef ASSERT
4650   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4651 #endif
4652 
4653   _counter = 0 ;
4654   status = pthread_mutex_unlock(_mutex) ;
4655   assert_status(status == 0, status, "invariant") ;
4656   // Paranoia to ensure our locked and lock-free paths interact
4657   // correctly with each other and Java-level accesses.
4658   OrderAccess::fence();
4659 
4660   // If externally suspended while waiting, re-suspend
4661   if (jt->handle_special_suspend_equivalent_condition()) {
4662     jt->java_suspend_self();
4663   }
4664 }
4665 
4666 void Parker::unpark() {
4667   int s, status ;
4668   status = pthread_mutex_lock(_mutex);
4669   assert (status == 0, "invariant") ;
4670   s = _counter;
4671   _counter = 1;
4672   if (s < 1) {
4673      if (WorkAroundNPTLTimedWaitHang) {
4674         status = pthread_cond_signal (_cond) ;
4675         assert (status == 0, "invariant") ;
4676         status = pthread_mutex_unlock(_mutex);
4677         assert (status == 0, "invariant") ;
4678      } else {
4679         status = pthread_mutex_unlock(_mutex);
4680         assert (status == 0, "invariant") ;
4681         status = pthread_cond_signal (_cond) ;
4682         assert (status == 0, "invariant") ;
4683      }
4684   } else {
4685     pthread_mutex_unlock(_mutex);
4686     assert (status == 0, "invariant") ;
4687   }
4688 }
4689 
4690 
4691 /* Darwin has no "environ" in a dynamic library. */
4692 #ifdef __APPLE__
4693 #include <crt_externs.h>
4694 #define environ (*_NSGetEnviron())
4695 #else
4696 extern char** environ;
4697 #endif
4698 
4699 // Run the specified command in a separate process. Return its exit value,
4700 // or -1 on failure (e.g. can't fork a new process).
4701 // Unlike system(), this function can be called from signal handler. It
4702 // doesn't block SIGINT et al.
4703 int os::fork_and_exec(char* cmd) {
4704   const char * argv[4] = {"sh", "-c", cmd, NULL};
4705 
4706   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4707   // pthread_atfork handlers and reset pthread library. All we need is a
4708   // separate process to execve. Make a direct syscall to fork process.
4709   // On IA64 there's no fork syscall, we have to use fork() and hope for
4710   // the best...
4711   pid_t pid = fork();
4712 
4713   if (pid < 0) {
4714     // fork failed
4715     return -1;
4716 
4717   } else if (pid == 0) {
4718     // child process
4719 
4720     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4721     // first to kill every thread on the thread list. Because this list is
4722     // not reset by fork() (see notes above), execve() will instead kill
4723     // every thread in the parent process. We know this is the only thread
4724     // in the new process, so make a system call directly.
4725     // IA64 should use normal execve() from glibc to match the glibc fork()
4726     // above.
4727     execve("/bin/sh", (char* const*)argv, environ);
4728 
4729     // execve failed
4730     _exit(-1);
4731 
4732   } else  {
4733     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4734     // care about the actual exit code, for now.
4735 
4736     int status;
4737 
4738     // Wait for the child process to exit.  This returns immediately if
4739     // the child has already exited. */
4740     while (waitpid(pid, &status, 0) < 0) {
4741         switch (errno) {
4742         case ECHILD: return 0;
4743         case EINTR: break;
4744         default: return -1;
4745         }
4746     }
4747 
4748     if (WIFEXITED(status)) {
4749        // The child exited normally; get its exit code.
4750        return WEXITSTATUS(status);
4751     } else if (WIFSIGNALED(status)) {
4752        // The child exited because of a signal
4753        // The best value to return is 0x80 + signal number,
4754        // because that is what all Unix shells do, and because
4755        // it allows callers to distinguish between process exit and
4756        // process death by signal.
4757        return 0x80 + WTERMSIG(status);
4758     } else {
4759        // Unknown exit code; pass it through
4760        return status;
4761     }
4762   }
4763 }
4764 
4765 // is_headless_jre()
4766 //
4767 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4768 // in order to report if we are running in a headless jre
4769 //
4770 // Since JDK8 xawt/libmawt.so was moved into the same directory
4771 // as libawt.so, and renamed libawt_xawt.so
4772 //
4773 bool os::is_headless_jre() {
4774 #ifdef __APPLE__
4775     // We no longer build headless-only on Mac OS X
4776     return false;
4777 #else
4778     struct stat statbuf;
4779     char buf[MAXPATHLEN];
4780     char libmawtpath[MAXPATHLEN];
4781     const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4782     const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4783     char *p;
4784 
4785     // Get path to libjvm.so
4786     os::jvm_path(buf, sizeof(buf));
4787 
4788     // Get rid of libjvm.so
4789     p = strrchr(buf, '/');
4790     if (p == NULL) return false;
4791     else *p = '\0';
4792 
4793     // Get rid of client or server
4794     p = strrchr(buf, '/');
4795     if (p == NULL) return false;
4796     else *p = '\0';
4797 
4798     // check xawt/libmawt.so
4799     strcpy(libmawtpath, buf);
4800     strcat(libmawtpath, xawtstr);
4801     if (::stat(libmawtpath, &statbuf) == 0) return false;
4802 
4803     // check libawt_xawt.so
4804     strcpy(libmawtpath, buf);
4805     strcat(libmawtpath, new_xawtstr);
4806     if (::stat(libmawtpath, &statbuf) == 0) return false;
4807 
4808     return true;
4809 #endif
4810 }
4811 
4812 // Get the default path to the core file
4813 // Returns the length of the string
4814 int os::get_core_path(char* buffer, size_t bufferSize) {
4815   int n = jio_snprintf(buffer, bufferSize, "/cores");
4816 
4817   // Truncate if theoretical string was longer than bufferSize
4818   n = MIN2(n, (int)bufferSize);
4819 
4820   return n;
4821 }
4822 
4823 #ifndef PRODUCT
4824 void TestReserveMemorySpecial_test() {
4825   // No tests available for this platform
4826 }
4827 #endif