1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 #ifdef _DEBUG
  73 #include <crtdbg.h>
  74 #endif
  75 
  76 
  77 #include <windows.h>
  78 #include <sys/types.h>
  79 #include <sys/stat.h>
  80 #include <sys/timeb.h>
  81 #include <objidl.h>
  82 #include <shlobj.h>
  83 
  84 #include <malloc.h>
  85 #include <signal.h>
  86 #include <direct.h>
  87 #include <errno.h>
  88 #include <fcntl.h>
  89 #include <io.h>
  90 #include <process.h>              // For _beginthreadex(), _endthreadex()
  91 #include <imagehlp.h>             // For os::dll_address_to_function_name
  92 /* for enumerating dll libraries */
  93 #include <vdmdbg.h>
  94 
  95 // for timer info max values which include all bits
  96 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  97 
  98 // For DLL loading/load error detection
  99 // Values of PE COFF
 100 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 101 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 102 
 103 static HANDLE main_process;
 104 static HANDLE main_thread;
 105 static int    main_thread_id;
 106 
 107 static FILETIME process_creation_time;
 108 static FILETIME process_exit_time;
 109 static FILETIME process_user_time;
 110 static FILETIME process_kernel_time;
 111 
 112 #ifdef _M_IA64
 113 #define __CPU__ ia64
 114 #elif _M_AMD64
 115 #define __CPU__ amd64
 116 #else
 117 #define __CPU__ i486
 118 #endif
 119 
 120 // save DLL module handle, used by GetModuleFileName
 121 
 122 HINSTANCE vm_lib_handle;
 123 
 124 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 125   switch (reason) {
 126     case DLL_PROCESS_ATTACH:
 127       vm_lib_handle = hinst;
 128       if(ForceTimeHighResolution)
 129         timeBeginPeriod(1L);
 130       break;
 131     case DLL_PROCESS_DETACH:
 132       if(ForceTimeHighResolution)
 133         timeEndPeriod(1L);
 134 
 135       break;
 136     default:
 137       break;
 138   }
 139   return true;
 140 }
 141 
 142 static inline double fileTimeAsDouble(FILETIME* time) {
 143   const double high  = (double) ((unsigned int) ~0);
 144   const double split = 10000000.0;
 145   double result = (time->dwLowDateTime / split) +
 146                    time->dwHighDateTime * (high/split);
 147   return result;
 148 }
 149 
 150 // Implementation of os
 151 
 152 bool os::getenv(const char* name, char* buffer, int len) {
 153  int result = GetEnvironmentVariable(name, buffer, len);
 154  return result > 0 && result < len;
 155 }
 156 
 157 bool os::unsetenv(const char* name) {
 158   assert(name != NULL, "Null pointer");
 159   return (SetEnvironmentVariable(name, NULL) == TRUE);
 160 }
 161 
 162 // No setuid programs under Windows.
 163 bool os::have_special_privileges() {
 164   return false;
 165 }
 166 
 167 
 168 // This method is  a periodic task to check for misbehaving JNI applications
 169 // under CheckJNI, we can add any periodic checks here.
 170 // For Windows at the moment does nothing
 171 void os::run_periodic_checks() {
 172   return;
 173 }
 174 
 175 #ifndef _WIN64
 176 // previous UnhandledExceptionFilter, if there is one
 177 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 178 
 179 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 180 #endif
 181 void os::init_system_properties_values() {
 182   /* sysclasspath, java_home, dll_dir */
 183   {
 184       char *home_path;
 185       char *dll_path;
 186       char *pslash;
 187       char *bin = "\\bin";
 188       char home_dir[MAX_PATH];
 189 
 190       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 191           os::jvm_path(home_dir, sizeof(home_dir));
 192           // Found the full path to jvm.dll.
 193           // Now cut the path to <java_home>/jre if we can.
 194           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 195           pslash = strrchr(home_dir, '\\');
 196           if (pslash != NULL) {
 197               *pslash = '\0';                 /* get rid of \{client|server} */
 198               pslash = strrchr(home_dir, '\\');
 199               if (pslash != NULL)
 200                   *pslash = '\0';             /* get rid of \bin */
 201           }
 202       }
 203 
 204       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 205       if (home_path == NULL)
 206           return;
 207       strcpy(home_path, home_dir);
 208       Arguments::set_java_home(home_path);
 209 
 210       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 211       if (dll_path == NULL)
 212           return;
 213       strcpy(dll_path, home_dir);
 214       strcat(dll_path, bin);
 215       Arguments::set_dll_dir(dll_path);
 216 
 217       if (!set_boot_path('\\', ';'))
 218           return;
 219   }
 220 
 221   /* library_path */
 222   #define EXT_DIR "\\lib\\ext"
 223   #define BIN_DIR "\\bin"
 224   #define PACKAGE_DIR "\\Sun\\Java"
 225   {
 226     /* Win32 library search order (See the documentation for LoadLibrary):
 227      *
 228      * 1. The directory from which application is loaded.
 229      * 2. The system wide Java Extensions directory (Java only)
 230      * 3. System directory (GetSystemDirectory)
 231      * 4. Windows directory (GetWindowsDirectory)
 232      * 5. The PATH environment variable
 233      * 6. The current directory
 234      */
 235 
 236     char *library_path;
 237     char tmp[MAX_PATH];
 238     char *path_str = ::getenv("PATH");
 239 
 240     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 241         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 242 
 243     library_path[0] = '\0';
 244 
 245     GetModuleFileName(NULL, tmp, sizeof(tmp));
 246     *(strrchr(tmp, '\\')) = '\0';
 247     strcat(library_path, tmp);
 248 
 249     GetWindowsDirectory(tmp, sizeof(tmp));
 250     strcat(library_path, ";");
 251     strcat(library_path, tmp);
 252     strcat(library_path, PACKAGE_DIR BIN_DIR);
 253 
 254     GetSystemDirectory(tmp, sizeof(tmp));
 255     strcat(library_path, ";");
 256     strcat(library_path, tmp);
 257 
 258     GetWindowsDirectory(tmp, sizeof(tmp));
 259     strcat(library_path, ";");
 260     strcat(library_path, tmp);
 261 
 262     if (path_str) {
 263         strcat(library_path, ";");
 264         strcat(library_path, path_str);
 265     }
 266 
 267     strcat(library_path, ";.");
 268 
 269     Arguments::set_library_path(library_path);
 270     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 271   }
 272 
 273   /* Default extensions directory */
 274   {
 275     char path[MAX_PATH];
 276     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 277     GetWindowsDirectory(path, MAX_PATH);
 278     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 279         path, PACKAGE_DIR, EXT_DIR);
 280     Arguments::set_ext_dirs(buf);
 281   }
 282   #undef EXT_DIR
 283   #undef BIN_DIR
 284   #undef PACKAGE_DIR
 285 
 286   /* Default endorsed standards directory. */
 287   {
 288     #define ENDORSED_DIR "\\lib\\endorsed"
 289     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 290     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 291     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 292     Arguments::set_endorsed_dirs(buf);
 293     #undef ENDORSED_DIR
 294   }
 295 
 296 #ifndef _WIN64
 297   // set our UnhandledExceptionFilter and save any previous one
 298   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 299 #endif
 300 
 301   // Done
 302   return;
 303 }
 304 
 305 void os::breakpoint() {
 306   DebugBreak();
 307 }
 308 
 309 // Invoked from the BREAKPOINT Macro
 310 extern "C" void breakpoint() {
 311   os::breakpoint();
 312 }
 313 
 314 /*
 315  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316  * So far, this method is only used by Native Memory Tracking, which is
 317  * only supported on Windows XP or later.
 318  */
 319 
 320 int os::get_native_stack(address* stack, int frames, int toSkip) {
 321 #ifdef _NMT_NOINLINE_
 322   toSkip ++;
 323 #endif
 324   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 325     (PVOID*)stack, NULL);
 326   for (int index = captured; index < frames; index ++) {
 327     stack[index] = NULL;
 328   }
 329   return captured;
 330 }
 331 
 332 
 333 // os::current_stack_base()
 334 //
 335 //   Returns the base of the stack, which is the stack's
 336 //   starting address.  This function must be called
 337 //   while running on the stack of the thread being queried.
 338 
 339 address os::current_stack_base() {
 340   MEMORY_BASIC_INFORMATION minfo;
 341   address stack_bottom;
 342   size_t stack_size;
 343 
 344   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 345   stack_bottom =  (address)minfo.AllocationBase;
 346   stack_size = minfo.RegionSize;
 347 
 348   // Add up the sizes of all the regions with the same
 349   // AllocationBase.
 350   while( 1 )
 351   {
 352     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 353     if ( stack_bottom == (address)minfo.AllocationBase )
 354       stack_size += minfo.RegionSize;
 355     else
 356       break;
 357   }
 358 
 359 #ifdef _M_IA64
 360   // IA64 has memory and register stacks
 361   //
 362   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 363   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 364   // growing downwards, 2MB summed up)
 365   //
 366   // ...
 367   // ------- top of stack (high address) -----
 368   // |
 369   // |      1MB
 370   // |      Backing Store (Register Stack)
 371   // |
 372   // |         / \
 373   // |          |
 374   // |          |
 375   // |          |
 376   // ------------------------ stack base -----
 377   // |      1MB
 378   // |      Memory Stack
 379   // |
 380   // |          |
 381   // |          |
 382   // |          |
 383   // |         \ /
 384   // |
 385   // ----- bottom of stack (low address) -----
 386   // ...
 387 
 388   stack_size = stack_size / 2;
 389 #endif
 390   return stack_bottom + stack_size;
 391 }
 392 
 393 size_t os::current_stack_size() {
 394   size_t sz;
 395   MEMORY_BASIC_INFORMATION minfo;
 396   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 397   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 398   return sz;
 399 }
 400 
 401 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 402   const struct tm* time_struct_ptr = localtime(clock);
 403   if (time_struct_ptr != NULL) {
 404     *res = *time_struct_ptr;
 405     return res;
 406   }
 407   return NULL;
 408 }
 409 
 410 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 411 
 412 // Thread start routine for all new Java threads
 413 static unsigned __stdcall java_start(Thread* thread) {
 414   // Try to randomize the cache line index of hot stack frames.
 415   // This helps when threads of the same stack traces evict each other's
 416   // cache lines. The threads can be either from the same JVM instance, or
 417   // from different JVM instances. The benefit is especially true for
 418   // processors with hyperthreading technology.
 419   static int counter = 0;
 420   int pid = os::current_process_id();
 421   _alloca(((pid ^ counter++) & 7) * 128);
 422 
 423   OSThread* osthr = thread->osthread();
 424   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 425 
 426   if (UseNUMA) {
 427     int lgrp_id = os::numa_get_group_id();
 428     if (lgrp_id != -1) {
 429       thread->set_lgrp_id(lgrp_id);
 430     }
 431   }
 432 
 433 
 434   // Install a win32 structured exception handler around every thread created
 435   // by VM, so VM can genrate error dump when an exception occurred in non-
 436   // Java thread (e.g. VM thread).
 437   __try {
 438      thread->run();
 439   } __except(topLevelExceptionFilter(
 440              (_EXCEPTION_POINTERS*)_exception_info())) {
 441       // Nothing to do.
 442   }
 443 
 444   // One less thread is executing
 445   // When the VMThread gets here, the main thread may have already exited
 446   // which frees the CodeHeap containing the Atomic::add code
 447   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 448     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 449   }
 450 
 451   return 0;
 452 }
 453 
 454 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 455   // Allocate the OSThread object
 456   OSThread* osthread = new OSThread(NULL, NULL);
 457   if (osthread == NULL) return NULL;
 458 
 459   // Initialize support for Java interrupts
 460   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 461   if (interrupt_event == NULL) {
 462     delete osthread;
 463     return NULL;
 464   }
 465   osthread->set_interrupt_event(interrupt_event);
 466 
 467   // Store info on the Win32 thread into the OSThread
 468   osthread->set_thread_handle(thread_handle);
 469   osthread->set_thread_id(thread_id);
 470 
 471   if (UseNUMA) {
 472     int lgrp_id = os::numa_get_group_id();
 473     if (lgrp_id != -1) {
 474       thread->set_lgrp_id(lgrp_id);
 475     }
 476   }
 477 
 478   // Initial thread state is INITIALIZED, not SUSPENDED
 479   osthread->set_state(INITIALIZED);
 480 
 481   return osthread;
 482 }
 483 
 484 
 485 bool os::create_attached_thread(JavaThread* thread) {
 486 #ifdef ASSERT
 487   thread->verify_not_published();
 488 #endif
 489   HANDLE thread_h;
 490   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 491                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 492     fatal("DuplicateHandle failed\n");
 493   }
 494   OSThread* osthread = create_os_thread(thread, thread_h,
 495                                         (int)current_thread_id());
 496   if (osthread == NULL) {
 497      return false;
 498   }
 499 
 500   // Initial thread state is RUNNABLE
 501   osthread->set_state(RUNNABLE);
 502 
 503   thread->set_osthread(osthread);
 504   return true;
 505 }
 506 
 507 bool os::create_main_thread(JavaThread* thread) {
 508 #ifdef ASSERT
 509   thread->verify_not_published();
 510 #endif
 511   if (_starting_thread == NULL) {
 512     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 513      if (_starting_thread == NULL) {
 514         return false;
 515      }
 516   }
 517 
 518   // The primordial thread is runnable from the start)
 519   _starting_thread->set_state(RUNNABLE);
 520 
 521   thread->set_osthread(_starting_thread);
 522   return true;
 523 }
 524 
 525 // Allocate and initialize a new OSThread
 526 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 527   unsigned thread_id;
 528 
 529   // Allocate the OSThread object
 530   OSThread* osthread = new OSThread(NULL, NULL);
 531   if (osthread == NULL) {
 532     return false;
 533   }
 534 
 535   // Initialize support for Java interrupts
 536   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 537   if (interrupt_event == NULL) {
 538     delete osthread;
 539     return NULL;
 540   }
 541   osthread->set_interrupt_event(interrupt_event);
 542   osthread->set_interrupted(false);
 543 
 544   thread->set_osthread(osthread);
 545 
 546   if (stack_size == 0) {
 547     switch (thr_type) {
 548     case os::java_thread:
 549       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 550       if (JavaThread::stack_size_at_create() > 0)
 551         stack_size = JavaThread::stack_size_at_create();
 552       break;
 553     case os::compiler_thread:
 554       if (CompilerThreadStackSize > 0) {
 555         stack_size = (size_t)(CompilerThreadStackSize * K);
 556         break;
 557       } // else fall through:
 558         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 559     case os::vm_thread:
 560     case os::pgc_thread:
 561     case os::cgc_thread:
 562     case os::watcher_thread:
 563       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 564       break;
 565     }
 566   }
 567 
 568   // Create the Win32 thread
 569   //
 570   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 571   // does not specify stack size. Instead, it specifies the size of
 572   // initially committed space. The stack size is determined by
 573   // PE header in the executable. If the committed "stack_size" is larger
 574   // than default value in the PE header, the stack is rounded up to the
 575   // nearest multiple of 1MB. For example if the launcher has default
 576   // stack size of 320k, specifying any size less than 320k does not
 577   // affect the actual stack size at all, it only affects the initial
 578   // commitment. On the other hand, specifying 'stack_size' larger than
 579   // default value may cause significant increase in memory usage, because
 580   // not only the stack space will be rounded up to MB, but also the
 581   // entire space is committed upfront.
 582   //
 583   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 584   // for CreateThread() that can treat 'stack_size' as stack size. However we
 585   // are not supposed to call CreateThread() directly according to MSDN
 586   // document because JVM uses C runtime library. The good news is that the
 587   // flag appears to work with _beginthredex() as well.
 588 
 589 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 590 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 591 #endif
 592 
 593   HANDLE thread_handle =
 594     (HANDLE)_beginthreadex(NULL,
 595                            (unsigned)stack_size,
 596                            (unsigned (__stdcall *)(void*)) java_start,
 597                            thread,
 598                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 599                            &thread_id);
 600   if (thread_handle == NULL) {
 601     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 602     // without the flag.
 603     thread_handle =
 604     (HANDLE)_beginthreadex(NULL,
 605                            (unsigned)stack_size,
 606                            (unsigned (__stdcall *)(void*)) java_start,
 607                            thread,
 608                            CREATE_SUSPENDED,
 609                            &thread_id);
 610   }
 611   if (thread_handle == NULL) {
 612     // Need to clean up stuff we've allocated so far
 613     CloseHandle(osthread->interrupt_event());
 614     thread->set_osthread(NULL);
 615     delete osthread;
 616     return NULL;
 617   }
 618 
 619   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 620 
 621   // Store info on the Win32 thread into the OSThread
 622   osthread->set_thread_handle(thread_handle);
 623   osthread->set_thread_id(thread_id);
 624 
 625   // Initial thread state is INITIALIZED, not SUSPENDED
 626   osthread->set_state(INITIALIZED);
 627 
 628   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 629   return true;
 630 }
 631 
 632 
 633 // Free Win32 resources related to the OSThread
 634 void os::free_thread(OSThread* osthread) {
 635   assert(osthread != NULL, "osthread not set");
 636   CloseHandle(osthread->thread_handle());
 637   CloseHandle(osthread->interrupt_event());
 638   delete osthread;
 639 }
 640 
 641 
 642 static int    has_performance_count = 0;
 643 static jlong first_filetime;
 644 static jlong initial_performance_count;
 645 static jlong performance_frequency;
 646 
 647 
 648 jlong as_long(LARGE_INTEGER x) {
 649   jlong result = 0; // initialization to avoid warning
 650   set_high(&result, x.HighPart);
 651   set_low(&result,  x.LowPart);
 652   return result;
 653 }
 654 
 655 
 656 jlong os::elapsed_counter() {
 657   LARGE_INTEGER count;
 658   if (has_performance_count) {
 659     QueryPerformanceCounter(&count);
 660     return as_long(count) - initial_performance_count;
 661   } else {
 662     FILETIME wt;
 663     GetSystemTimeAsFileTime(&wt);
 664     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 665   }
 666 }
 667 
 668 
 669 jlong os::elapsed_frequency() {
 670   if (has_performance_count) {
 671     return performance_frequency;
 672   } else {
 673    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 674    return 10000000;
 675   }
 676 }
 677 
 678 
 679 julong os::available_memory() {
 680   return win32::available_memory();
 681 }
 682 
 683 julong os::win32::available_memory() {
 684   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 685   // value if total memory is larger than 4GB
 686   MEMORYSTATUSEX ms;
 687   ms.dwLength = sizeof(ms);
 688   GlobalMemoryStatusEx(&ms);
 689 
 690   return (julong)ms.ullAvailPhys;
 691 }
 692 
 693 julong os::physical_memory() {
 694   return win32::physical_memory();
 695 }
 696 
 697 bool os::has_allocatable_memory_limit(julong* limit) {
 698   MEMORYSTATUSEX ms;
 699   ms.dwLength = sizeof(ms);
 700   GlobalMemoryStatusEx(&ms);
 701 #ifdef _LP64
 702   *limit = (julong)ms.ullAvailVirtual;
 703   return true;
 704 #else
 705   // Limit to 1400m because of the 2gb address space wall
 706   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 707   return true;
 708 #endif
 709 }
 710 
 711 // VC6 lacks DWORD_PTR
 712 #if _MSC_VER < 1300
 713 typedef UINT_PTR DWORD_PTR;
 714 #endif
 715 
 716 int os::active_processor_count() {
 717   DWORD_PTR lpProcessAffinityMask = 0;
 718   DWORD_PTR lpSystemAffinityMask = 0;
 719   int proc_count = processor_count();
 720   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 721       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 722     // Nof active processors is number of bits in process affinity mask
 723     int bitcount = 0;
 724     while (lpProcessAffinityMask != 0) {
 725       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 726       bitcount++;
 727     }
 728     return bitcount;
 729   } else {
 730     return proc_count;
 731   }
 732 }
 733 
 734 void os::set_native_thread_name(const char *name) {
 735   // Not yet implemented.
 736   return;
 737 }
 738 
 739 bool os::distribute_processes(uint length, uint* distribution) {
 740   // Not yet implemented.
 741   return false;
 742 }
 743 
 744 bool os::bind_to_processor(uint processor_id) {
 745   // Not yet implemented.
 746   return false;
 747 }
 748 
 749 static void initialize_performance_counter() {
 750   LARGE_INTEGER count;
 751   if (QueryPerformanceFrequency(&count)) {
 752     has_performance_count = 1;
 753     performance_frequency = as_long(count);
 754     QueryPerformanceCounter(&count);
 755     initial_performance_count = as_long(count);
 756   } else {
 757     has_performance_count = 0;
 758     FILETIME wt;
 759     GetSystemTimeAsFileTime(&wt);
 760     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 761   }
 762 }
 763 
 764 
 765 double os::elapsedTime() {
 766   return (double) elapsed_counter() / (double) elapsed_frequency();
 767 }
 768 
 769 
 770 // Windows format:
 771 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 772 // Java format:
 773 //   Java standards require the number of milliseconds since 1/1/1970
 774 
 775 // Constant offset - calculated using offset()
 776 static jlong  _offset   = 116444736000000000;
 777 // Fake time counter for reproducible results when debugging
 778 static jlong  fake_time = 0;
 779 
 780 #ifdef ASSERT
 781 // Just to be safe, recalculate the offset in debug mode
 782 static jlong _calculated_offset = 0;
 783 static int   _has_calculated_offset = 0;
 784 
 785 jlong offset() {
 786   if (_has_calculated_offset) return _calculated_offset;
 787   SYSTEMTIME java_origin;
 788   java_origin.wYear          = 1970;
 789   java_origin.wMonth         = 1;
 790   java_origin.wDayOfWeek     = 0; // ignored
 791   java_origin.wDay           = 1;
 792   java_origin.wHour          = 0;
 793   java_origin.wMinute        = 0;
 794   java_origin.wSecond        = 0;
 795   java_origin.wMilliseconds  = 0;
 796   FILETIME jot;
 797   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 798     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 799   }
 800   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 801   _has_calculated_offset = 1;
 802   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 803   return _calculated_offset;
 804 }
 805 #else
 806 jlong offset() {
 807   return _offset;
 808 }
 809 #endif
 810 
 811 jlong windows_to_java_time(FILETIME wt) {
 812   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 813   return (a - offset()) / 10000;
 814 }
 815 
 816 FILETIME java_to_windows_time(jlong l) {
 817   jlong a = (l * 10000) + offset();
 818   FILETIME result;
 819   result.dwHighDateTime = high(a);
 820   result.dwLowDateTime  = low(a);
 821   return result;
 822 }
 823 
 824 bool os::supports_vtime() { return true; }
 825 bool os::enable_vtime() { return false; }
 826 bool os::vtime_enabled() { return false; }
 827 
 828 double os::elapsedVTime() {
 829   FILETIME created;
 830   FILETIME exited;
 831   FILETIME kernel;
 832   FILETIME user;
 833   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 834     // the resolution of windows_to_java_time() should be sufficient (ms)
 835     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 836   } else {
 837     return elapsedTime();
 838   }
 839 }
 840 
 841 jlong os::javaTimeMillis() {
 842   if (UseFakeTimers) {
 843     return fake_time++;
 844   } else {
 845     FILETIME wt;
 846     GetSystemTimeAsFileTime(&wt);
 847     return windows_to_java_time(wt);
 848   }
 849 }
 850 
 851 jlong os::javaTimeNanos() {
 852   if (!has_performance_count) {
 853     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 854   } else {
 855     LARGE_INTEGER current_count;
 856     QueryPerformanceCounter(&current_count);
 857     double current = as_long(current_count);
 858     double freq = performance_frequency;
 859     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 860     return time;
 861   }
 862 }
 863 
 864 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 865   if (!has_performance_count) {
 866     // javaTimeMillis() doesn't have much percision,
 867     // but it is not going to wrap -- so all 64 bits
 868     info_ptr->max_value = ALL_64_BITS;
 869 
 870     // this is a wall clock timer, so may skip
 871     info_ptr->may_skip_backward = true;
 872     info_ptr->may_skip_forward = true;
 873   } else {
 874     jlong freq = performance_frequency;
 875     if (freq < NANOSECS_PER_SEC) {
 876       // the performance counter is 64 bits and we will
 877       // be multiplying it -- so no wrap in 64 bits
 878       info_ptr->max_value = ALL_64_BITS;
 879     } else if (freq > NANOSECS_PER_SEC) {
 880       // use the max value the counter can reach to
 881       // determine the max value which could be returned
 882       julong max_counter = (julong)ALL_64_BITS;
 883       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 884     } else {
 885       // the performance counter is 64 bits and we will
 886       // be using it directly -- so no wrap in 64 bits
 887       info_ptr->max_value = ALL_64_BITS;
 888     }
 889 
 890     // using a counter, so no skipping
 891     info_ptr->may_skip_backward = false;
 892     info_ptr->may_skip_forward = false;
 893   }
 894   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 895 }
 896 
 897 char* os::local_time_string(char *buf, size_t buflen) {
 898   SYSTEMTIME st;
 899   GetLocalTime(&st);
 900   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 901                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 902   return buf;
 903 }
 904 
 905 bool os::getTimesSecs(double* process_real_time,
 906                      double* process_user_time,
 907                      double* process_system_time) {
 908   HANDLE h_process = GetCurrentProcess();
 909   FILETIME create_time, exit_time, kernel_time, user_time;
 910   BOOL result = GetProcessTimes(h_process,
 911                                &create_time,
 912                                &exit_time,
 913                                &kernel_time,
 914                                &user_time);
 915   if (result != 0) {
 916     FILETIME wt;
 917     GetSystemTimeAsFileTime(&wt);
 918     jlong rtc_millis = windows_to_java_time(wt);
 919     jlong user_millis = windows_to_java_time(user_time);
 920     jlong system_millis = windows_to_java_time(kernel_time);
 921     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 922     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 923     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 924     return true;
 925   } else {
 926     return false;
 927   }
 928 }
 929 
 930 void os::shutdown() {
 931 
 932   // allow PerfMemory to attempt cleanup of any persistent resources
 933   perfMemory_exit();
 934 
 935   // flush buffered output, finish log files
 936   ostream_abort();
 937 
 938   // Check for abort hook
 939   abort_hook_t abort_hook = Arguments::abort_hook();
 940   if (abort_hook != NULL) {
 941     abort_hook();
 942   }
 943 }
 944 
 945 
 946 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 947                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 948 
 949 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 950   HINSTANCE dbghelp;
 951   EXCEPTION_POINTERS ep;
 952   MINIDUMP_EXCEPTION_INFORMATION mei;
 953   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 954 
 955   HANDLE hProcess = GetCurrentProcess();
 956   DWORD processId = GetCurrentProcessId();
 957   HANDLE dumpFile;
 958   MINIDUMP_TYPE dumpType;
 959   static const char* cwd;
 960 
 961 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 962 #ifndef ASSERT
 963   // If running on a client version of Windows and user has not explicitly enabled dumping
 964   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 965     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 966     return;
 967     // If running on a server version of Windows and user has explictly disabled dumping
 968   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 969     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 970     return;
 971   }
 972 #else
 973   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 974     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 975     return;
 976   }
 977 #endif
 978 
 979   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 980 
 981   if (dbghelp == NULL) {
 982     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 983     return;
 984   }
 985 
 986   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 987     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 988     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 989     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 990 
 991   if (_MiniDumpWriteDump == NULL) {
 992     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 993     return;
 994   }
 995 
 996   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 997 
 998 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 999 // API_VERSION_NUMBER 11 or higher contains the ones we want though
1000 #if API_VERSION_NUMBER >= 11
1001   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1002     MiniDumpWithUnloadedModules);
1003 #endif
1004 
1005   cwd = get_current_directory(NULL, 0);
1006   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
1007   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1008 
1009   if (dumpFile == INVALID_HANDLE_VALUE) {
1010     VMError::report_coredump_status("Failed to create file for dumping", false);
1011     return;
1012   }
1013   if (exceptionRecord != NULL && contextRecord != NULL) {
1014     ep.ContextRecord = (PCONTEXT) contextRecord;
1015     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1016 
1017     mei.ThreadId = GetCurrentThreadId();
1018     mei.ExceptionPointers = &ep;
1019     pmei = &mei;
1020   } else {
1021     pmei = NULL;
1022   }
1023 
1024 
1025   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1026   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1027   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1028       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1029         DWORD error = GetLastError();
1030         LPTSTR msgbuf = NULL;
1031 
1032         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1033                       FORMAT_MESSAGE_FROM_SYSTEM |
1034                       FORMAT_MESSAGE_IGNORE_INSERTS,
1035                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1036 
1037           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1038           LocalFree(msgbuf);
1039         } else {
1040           // Call to FormatMessage failed, just include the result from GetLastError
1041           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1042         }
1043         VMError::report_coredump_status(buffer, false);
1044   } else {
1045     VMError::report_coredump_status(buffer, true);
1046   }
1047 
1048   CloseHandle(dumpFile);
1049 }
1050 
1051 
1052 
1053 void os::abort(bool dump_core)
1054 {
1055   os::shutdown();
1056   // no core dump on Windows
1057   ::exit(1);
1058 }
1059 
1060 // Die immediately, no exit hook, no abort hook, no cleanup.
1061 void os::die() {
1062   _exit(-1);
1063 }
1064 
1065 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1066 //  * dirent_md.c       1.15 00/02/02
1067 //
1068 // The declarations for DIR and struct dirent are in jvm_win32.h.
1069 
1070 /* Caller must have already run dirname through JVM_NativePath, which removes
1071    duplicate slashes and converts all instances of '/' into '\\'. */
1072 
1073 DIR *
1074 os::opendir(const char *dirname)
1075 {
1076     assert(dirname != NULL, "just checking");   // hotspot change
1077     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1078     DWORD fattr;                                // hotspot change
1079     char alt_dirname[4] = { 0, 0, 0, 0 };
1080 
1081     if (dirp == 0) {
1082         errno = ENOMEM;
1083         return 0;
1084     }
1085 
1086     /*
1087      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1088      * as a directory in FindFirstFile().  We detect this case here and
1089      * prepend the current drive name.
1090      */
1091     if (dirname[1] == '\0' && dirname[0] == '\\') {
1092         alt_dirname[0] = _getdrive() + 'A' - 1;
1093         alt_dirname[1] = ':';
1094         alt_dirname[2] = '\\';
1095         alt_dirname[3] = '\0';
1096         dirname = alt_dirname;
1097     }
1098 
1099     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1100     if (dirp->path == 0) {
1101         free(dirp, mtInternal);
1102         errno = ENOMEM;
1103         return 0;
1104     }
1105     strcpy(dirp->path, dirname);
1106 
1107     fattr = GetFileAttributes(dirp->path);
1108     if (fattr == 0xffffffff) {
1109         free(dirp->path, mtInternal);
1110         free(dirp, mtInternal);
1111         errno = ENOENT;
1112         return 0;
1113     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1114         free(dirp->path, mtInternal);
1115         free(dirp, mtInternal);
1116         errno = ENOTDIR;
1117         return 0;
1118     }
1119 
1120     /* Append "*.*", or possibly "\\*.*", to path */
1121     if (dirp->path[1] == ':'
1122         && (dirp->path[2] == '\0'
1123             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1124         /* No '\\' needed for cases like "Z:" or "Z:\" */
1125         strcat(dirp->path, "*.*");
1126     } else {
1127         strcat(dirp->path, "\\*.*");
1128     }
1129 
1130     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1131     if (dirp->handle == INVALID_HANDLE_VALUE) {
1132         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1133             free(dirp->path, mtInternal);
1134             free(dirp, mtInternal);
1135             errno = EACCES;
1136             return 0;
1137         }
1138     }
1139     return dirp;
1140 }
1141 
1142 /* parameter dbuf unused on Windows */
1143 
1144 struct dirent *
1145 os::readdir(DIR *dirp, dirent *dbuf)
1146 {
1147     assert(dirp != NULL, "just checking");      // hotspot change
1148     if (dirp->handle == INVALID_HANDLE_VALUE) {
1149         return 0;
1150     }
1151 
1152     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1153 
1154     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1155         if (GetLastError() == ERROR_INVALID_HANDLE) {
1156             errno = EBADF;
1157             return 0;
1158         }
1159         FindClose(dirp->handle);
1160         dirp->handle = INVALID_HANDLE_VALUE;
1161     }
1162 
1163     return &dirp->dirent;
1164 }
1165 
1166 int
1167 os::closedir(DIR *dirp)
1168 {
1169     assert(dirp != NULL, "just checking");      // hotspot change
1170     if (dirp->handle != INVALID_HANDLE_VALUE) {
1171         if (!FindClose(dirp->handle)) {
1172             errno = EBADF;
1173             return -1;
1174         }
1175         dirp->handle = INVALID_HANDLE_VALUE;
1176     }
1177     free(dirp->path, mtInternal);
1178     free(dirp, mtInternal);
1179     return 0;
1180 }
1181 
1182 // This must be hard coded because it's the system's temporary
1183 // directory not the java application's temp directory, ala java.io.tmpdir.
1184 const char* os::get_temp_directory() {
1185   static char path_buf[MAX_PATH];
1186   if (GetTempPath(MAX_PATH, path_buf)>0)
1187     return path_buf;
1188   else{
1189     path_buf[0]='\0';
1190     return path_buf;
1191   }
1192 }
1193 
1194 static bool file_exists(const char* filename) {
1195   if (filename == NULL || strlen(filename) == 0) {
1196     return false;
1197   }
1198   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1199 }
1200 
1201 bool os::dll_build_name(char *buffer, size_t buflen,
1202                         const char* pname, const char* fname) {
1203   bool retval = false;
1204   const size_t pnamelen = pname ? strlen(pname) : 0;
1205   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1206 
1207   // Return error on buffer overflow.
1208   if (pnamelen + strlen(fname) + 10 > buflen) {
1209     return retval;
1210   }
1211 
1212   if (pnamelen == 0) {
1213     jio_snprintf(buffer, buflen, "%s.dll", fname);
1214     retval = true;
1215   } else if (c == ':' || c == '\\') {
1216     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1217     retval = true;
1218   } else if (strchr(pname, *os::path_separator()) != NULL) {
1219     int n;
1220     char** pelements = split_path(pname, &n);
1221     if (pelements == NULL) {
1222       return false;
1223     }
1224     for (int i = 0 ; i < n ; i++) {
1225       char* path = pelements[i];
1226       // Really shouldn't be NULL, but check can't hurt
1227       size_t plen = (path == NULL) ? 0 : strlen(path);
1228       if (plen == 0) {
1229         continue; // skip the empty path values
1230       }
1231       const char lastchar = path[plen - 1];
1232       if (lastchar == ':' || lastchar == '\\') {
1233         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1234       } else {
1235         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1236       }
1237       if (file_exists(buffer)) {
1238         retval = true;
1239         break;
1240       }
1241     }
1242     // release the storage
1243     for (int i = 0 ; i < n ; i++) {
1244       if (pelements[i] != NULL) {
1245         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1246       }
1247     }
1248     if (pelements != NULL) {
1249       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1250     }
1251   } else {
1252     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1253     retval = true;
1254   }
1255   return retval;
1256 }
1257 
1258 // Needs to be in os specific directory because windows requires another
1259 // header file <direct.h>
1260 const char* os::get_current_directory(char *buf, size_t buflen) {
1261   int n = static_cast<int>(buflen);
1262   if (buflen > INT_MAX)  n = INT_MAX;
1263   return _getcwd(buf, n);
1264 }
1265 
1266 //-----------------------------------------------------------
1267 // Helper functions for fatal error handler
1268 #ifdef _WIN64
1269 // Helper routine which returns true if address in
1270 // within the NTDLL address space.
1271 //
1272 static bool _addr_in_ntdll( address addr )
1273 {
1274   HMODULE hmod;
1275   MODULEINFO minfo;
1276 
1277   hmod = GetModuleHandle("NTDLL.DLL");
1278   if ( hmod == NULL ) return false;
1279   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1280                                &minfo, sizeof(MODULEINFO)) )
1281     return false;
1282 
1283   if ( (addr >= minfo.lpBaseOfDll) &&
1284        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1285     return true;
1286   else
1287     return false;
1288 }
1289 #endif
1290 
1291 
1292 // Enumerate all modules for a given process ID
1293 //
1294 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1295 // different API for doing this. We use PSAPI.DLL on NT based
1296 // Windows and ToolHelp on 95/98/Me.
1297 
1298 // Callback function that is called by enumerate_modules() on
1299 // every DLL module.
1300 // Input parameters:
1301 //    int       pid,
1302 //    char*     module_file_name,
1303 //    address   module_base_addr,
1304 //    unsigned  module_size,
1305 //    void*     param
1306 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1307 
1308 // enumerate_modules for Windows NT, using PSAPI
1309 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1310 {
1311   HANDLE   hProcess ;
1312 
1313 # define MAX_NUM_MODULES 128
1314   HMODULE     modules[MAX_NUM_MODULES];
1315   static char filename[ MAX_PATH ];
1316   int         result = 0;
1317 
1318   if (!os::PSApiDll::PSApiAvailable()) {
1319     return 0;
1320   }
1321 
1322   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1323                          FALSE, pid ) ;
1324   if (hProcess == NULL) return 0;
1325 
1326   DWORD size_needed;
1327   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1328                            sizeof(modules), &size_needed)) {
1329       CloseHandle( hProcess );
1330       return 0;
1331   }
1332 
1333   // number of modules that are currently loaded
1334   int num_modules = size_needed / sizeof(HMODULE);
1335 
1336   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1337     // Get Full pathname:
1338     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1339                              filename, sizeof(filename))) {
1340         filename[0] = '\0';
1341     }
1342 
1343     MODULEINFO modinfo;
1344     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1345                                &modinfo, sizeof(modinfo))) {
1346         modinfo.lpBaseOfDll = NULL;
1347         modinfo.SizeOfImage = 0;
1348     }
1349 
1350     // Invoke callback function
1351     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1352                   modinfo.SizeOfImage, param);
1353     if (result) break;
1354   }
1355 
1356   CloseHandle( hProcess ) ;
1357   return result;
1358 }
1359 
1360 
1361 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1362 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1363 {
1364   HANDLE                hSnapShot ;
1365   static MODULEENTRY32  modentry ;
1366   int                   result = 0;
1367 
1368   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1369     return 0;
1370   }
1371 
1372   // Get a handle to a Toolhelp snapshot of the system
1373   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1374   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1375       return FALSE ;
1376   }
1377 
1378   // iterate through all modules
1379   modentry.dwSize = sizeof(MODULEENTRY32) ;
1380   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1381 
1382   while( not_done ) {
1383     // invoke the callback
1384     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1385                 modentry.modBaseSize, param);
1386     if (result) break;
1387 
1388     modentry.dwSize = sizeof(MODULEENTRY32) ;
1389     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1390   }
1391 
1392   CloseHandle(hSnapShot);
1393   return result;
1394 }
1395 
1396 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1397 {
1398   // Get current process ID if caller doesn't provide it.
1399   if (!pid) pid = os::current_process_id();
1400 
1401   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1402   else                    return _enumerate_modules_windows(pid, func, param);
1403 }
1404 
1405 struct _modinfo {
1406    address addr;
1407    char*   full_path;   // point to a char buffer
1408    int     buflen;      // size of the buffer
1409    address base_addr;
1410 };
1411 
1412 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1413                                   unsigned size, void * param) {
1414    struct _modinfo *pmod = (struct _modinfo *)param;
1415    if (!pmod) return -1;
1416 
1417    if (base_addr     <= pmod->addr &&
1418        base_addr+size > pmod->addr) {
1419      // if a buffer is provided, copy path name to the buffer
1420      if (pmod->full_path) {
1421        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1422      }
1423      pmod->base_addr = base_addr;
1424      return 1;
1425    }
1426    return 0;
1427 }
1428 
1429 bool os::dll_address_to_library_name(address addr, char* buf,
1430                                      int buflen, int* offset) {
1431   // buf is not optional, but offset is optional
1432   assert(buf != NULL, "sanity check");
1433 
1434 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1435 //       return the full path to the DLL file, sometimes it returns path
1436 //       to the corresponding PDB file (debug info); sometimes it only
1437 //       returns partial path, which makes life painful.
1438 
1439   struct _modinfo mi;
1440   mi.addr      = addr;
1441   mi.full_path = buf;
1442   mi.buflen    = buflen;
1443   int pid = os::current_process_id();
1444   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1445     // buf already contains path name
1446     if (offset) *offset = addr - mi.base_addr;
1447     return true;
1448   }
1449 
1450   buf[0] = '\0';
1451   if (offset) *offset = -1;
1452   return false;
1453 }
1454 
1455 bool os::dll_address_to_function_name(address addr, char *buf,
1456                                       int buflen, int *offset) {
1457   // buf is not optional, but offset is optional
1458   assert(buf != NULL, "sanity check");
1459 
1460   if (Decoder::decode(addr, buf, buflen, offset)) {
1461     return true;
1462   }
1463   if (offset != NULL)  *offset  = -1;
1464   buf[0] = '\0';
1465   return false;
1466 }
1467 
1468 // save the start and end address of jvm.dll into param[0] and param[1]
1469 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1470                     unsigned size, void * param) {
1471    if (!param) return -1;
1472 
1473    if (base_addr     <= (address)_locate_jvm_dll &&
1474        base_addr+size > (address)_locate_jvm_dll) {
1475          ((address*)param)[0] = base_addr;
1476          ((address*)param)[1] = base_addr + size;
1477          return 1;
1478    }
1479    return 0;
1480 }
1481 
1482 address vm_lib_location[2];    // start and end address of jvm.dll
1483 
1484 // check if addr is inside jvm.dll
1485 bool os::address_is_in_vm(address addr) {
1486   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1487     int pid = os::current_process_id();
1488     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1489       assert(false, "Can't find jvm module.");
1490       return false;
1491     }
1492   }
1493 
1494   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1495 }
1496 
1497 // print module info; param is outputStream*
1498 static int _print_module(int pid, char* fname, address base,
1499                          unsigned size, void* param) {
1500    if (!param) return -1;
1501 
1502    outputStream* st = (outputStream*)param;
1503 
1504    address end_addr = base + size;
1505    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1506    return 0;
1507 }
1508 
1509 // Loads .dll/.so and
1510 // in case of error it checks if .dll/.so was built for the
1511 // same architecture as Hotspot is running on
1512 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1513 {
1514   void * result = LoadLibrary(name);
1515   if (result != NULL)
1516   {
1517     return result;
1518   }
1519 
1520   DWORD errcode = GetLastError();
1521   if (errcode == ERROR_MOD_NOT_FOUND) {
1522     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1523     ebuf[ebuflen-1]='\0';
1524     return NULL;
1525   }
1526 
1527   // Parsing dll below
1528   // If we can read dll-info and find that dll was built
1529   // for an architecture other than Hotspot is running in
1530   // - then print to buffer "DLL was built for a different architecture"
1531   // else call os::lasterror to obtain system error message
1532 
1533   // Read system error message into ebuf
1534   // It may or may not be overwritten below (in the for loop and just above)
1535   lasterror(ebuf, (size_t) ebuflen);
1536   ebuf[ebuflen-1]='\0';
1537   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1538   if (file_descriptor<0)
1539   {
1540     return NULL;
1541   }
1542 
1543   uint32_t signature_offset;
1544   uint16_t lib_arch=0;
1545   bool failed_to_get_lib_arch=
1546   (
1547     //Go to position 3c in the dll
1548     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1549     ||
1550     // Read loacation of signature
1551     (sizeof(signature_offset)!=
1552       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1553     ||
1554     //Go to COFF File Header in dll
1555     //that is located after"signature" (4 bytes long)
1556     (os::seek_to_file_offset(file_descriptor,
1557       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1558     ||
1559     //Read field that contains code of architecture
1560     // that dll was build for
1561     (sizeof(lib_arch)!=
1562       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1563   );
1564 
1565   ::close(file_descriptor);
1566   if (failed_to_get_lib_arch)
1567   {
1568     // file i/o error - report os::lasterror(...) msg
1569     return NULL;
1570   }
1571 
1572   typedef struct
1573   {
1574     uint16_t arch_code;
1575     char* arch_name;
1576   } arch_t;
1577 
1578   static const arch_t arch_array[]={
1579     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1580     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1581     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1582   };
1583   #if   (defined _M_IA64)
1584     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1585   #elif (defined _M_AMD64)
1586     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1587   #elif (defined _M_IX86)
1588     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1589   #else
1590     #error Method os::dll_load requires that one of following \
1591            is defined :_M_IA64,_M_AMD64 or _M_IX86
1592   #endif
1593 
1594 
1595   // Obtain a string for printf operation
1596   // lib_arch_str shall contain string what platform this .dll was built for
1597   // running_arch_str shall string contain what platform Hotspot was built for
1598   char *running_arch_str=NULL,*lib_arch_str=NULL;
1599   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1600   {
1601     if (lib_arch==arch_array[i].arch_code)
1602       lib_arch_str=arch_array[i].arch_name;
1603     if (running_arch==arch_array[i].arch_code)
1604       running_arch_str=arch_array[i].arch_name;
1605   }
1606 
1607   assert(running_arch_str,
1608     "Didn't find runing architecture code in arch_array");
1609 
1610   // If the architure is right
1611   // but some other error took place - report os::lasterror(...) msg
1612   if (lib_arch == running_arch)
1613   {
1614     return NULL;
1615   }
1616 
1617   if (lib_arch_str!=NULL)
1618   {
1619     ::_snprintf(ebuf, ebuflen-1,
1620       "Can't load %s-bit .dll on a %s-bit platform",
1621       lib_arch_str,running_arch_str);
1622   }
1623   else
1624   {
1625     // don't know what architecture this dll was build for
1626     ::_snprintf(ebuf, ebuflen-1,
1627       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1628       lib_arch,running_arch_str);
1629   }
1630 
1631   return NULL;
1632 }
1633 
1634 
1635 void os::print_dll_info(outputStream *st) {
1636    int pid = os::current_process_id();
1637    st->print_cr("Dynamic libraries:");
1638    enumerate_modules(pid, _print_module, (void *)st);
1639 }
1640 
1641 void os::print_os_info_brief(outputStream* st) {
1642   os::print_os_info(st);
1643 }
1644 
1645 void os::print_os_info(outputStream* st) {
1646   st->print("OS:");
1647 
1648   os::win32::print_windows_version(st);
1649 }
1650 
1651 void os::win32::print_windows_version(outputStream* st) {
1652   OSVERSIONINFOEX osvi;
1653   VS_FIXEDFILEINFO *file_info;
1654   TCHAR kernel32_path[MAX_PATH];
1655   UINT len, ret;
1656 
1657   // Use the GetVersionEx information to see if we're on a server or
1658   // workstation edition of Windows. Starting with Windows 8.1 we can't
1659   // trust the OS version information returned by this API.
1660   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1661   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1662   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1663     st->print_cr("Call to GetVersionEx failed");
1664     return;
1665   }
1666   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1667 
1668   // Get the full path to \Windows\System32\kernel32.dll and use that for
1669   // determining what version of Windows we're running on.
1670   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1671   ret = GetSystemDirectory(kernel32_path, len);
1672   if (ret == 0 || ret > len) {
1673     st->print_cr("Call to GetSystemDirectory failed");
1674     return;
1675   }
1676   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1677 
1678   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1679   if (version_size == 0) {
1680     st->print_cr("Call to GetFileVersionInfoSize failed");
1681     return;
1682   }
1683 
1684   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1685   if (version_info == NULL) {
1686     st->print_cr("Failed to allocate version_info");
1687     return;
1688   }
1689 
1690   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1691     os::free(version_info);
1692     st->print_cr("Call to GetFileVersionInfo failed");
1693     return;
1694   }
1695 
1696   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1697     os::free(version_info);
1698     st->print_cr("Call to VerQueryValue failed");
1699     return;
1700   }
1701 
1702   int major_version = HIWORD(file_info->dwProductVersionMS);
1703   int minor_version = LOWORD(file_info->dwProductVersionMS);
1704   int build_number = HIWORD(file_info->dwProductVersionLS);
1705   int build_minor = LOWORD(file_info->dwProductVersionLS);
1706   int os_vers = major_version * 1000 + minor_version;
1707   os::free(version_info);
1708 
1709   st->print(" Windows ");
1710   switch (os_vers) {
1711 
1712   case 6000:
1713     if (is_workstation) {
1714       st->print("Vista");
1715     } else {
1716       st->print("Server 2008");
1717     }
1718     break;
1719 
1720   case 6001:
1721     if (is_workstation) {
1722       st->print("7");
1723     } else {
1724       st->print("Server 2008 R2");
1725     }
1726     break;
1727 
1728   case 6002:
1729     if (is_workstation) {
1730       st->print("8");
1731     } else {
1732       st->print("Server 2012");
1733     }
1734     break;
1735 
1736   case 6003:
1737     if (is_workstation) {
1738       st->print("8.1");
1739     } else {
1740       st->print("Server 2012 R2");
1741     }
1742     break;
1743 
1744   case 6004:
1745     if (is_workstation) {
1746       st->print("10");
1747     } else {
1748       // The server version name of Windows 10 is not known at this time
1749       st->print("%d.%d", major_version, minor_version);
1750     }
1751     break;
1752 
1753   default:
1754     // Unrecognized windows, print out its major and minor versions
1755     st->print("%d.%d", major_version, minor_version);
1756     break;
1757   }
1758 
1759   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1760   // find out whether we are running on 64 bit processor or not
1761   SYSTEM_INFO si;
1762   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1763   os::Kernel32Dll::GetNativeSystemInfo(&si);
1764   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1765     st->print(" , 64 bit");
1766   }
1767 
1768   st->print(" Build %d", build_number);
1769   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1770   st->cr();
1771 }
1772 
1773 void os::pd_print_cpu_info(outputStream* st) {
1774   // Nothing to do for now.
1775 }
1776 
1777 void os::print_memory_info(outputStream* st) {
1778   st->print("Memory:");
1779   st->print(" %dk page", os::vm_page_size()>>10);
1780 
1781   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1782   // value if total memory is larger than 4GB
1783   MEMORYSTATUSEX ms;
1784   ms.dwLength = sizeof(ms);
1785   GlobalMemoryStatusEx(&ms);
1786 
1787   st->print(", physical %uk", os::physical_memory() >> 10);
1788   st->print("(%uk free)", os::available_memory() >> 10);
1789 
1790   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1791   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1792   st->cr();
1793 }
1794 
1795 void os::print_siginfo(outputStream *st, void *siginfo) {
1796   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1797   st->print("siginfo:");
1798   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1799 
1800   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1801       er->NumberParameters >= 2) {
1802       switch (er->ExceptionInformation[0]) {
1803       case 0: st->print(", reading address"); break;
1804       case 1: st->print(", writing address"); break;
1805       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1806                             er->ExceptionInformation[0]);
1807       }
1808       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1809   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1810              er->NumberParameters >= 2 && UseSharedSpaces) {
1811     FileMapInfo* mapinfo = FileMapInfo::current_info();
1812     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1813       st->print("\n\nError accessing class data sharing archive."       \
1814                 " Mapped file inaccessible during execution, "          \
1815                 " possible disk/network problem.");
1816     }
1817   } else {
1818     int num = er->NumberParameters;
1819     if (num > 0) {
1820       st->print(", ExceptionInformation=");
1821       for (int i = 0; i < num; i++) {
1822         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1823       }
1824     }
1825   }
1826   st->cr();
1827 }
1828 
1829 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1830   // do nothing
1831 }
1832 
1833 static char saved_jvm_path[MAX_PATH] = {0};
1834 
1835 // Find the full path to the current module, jvm.dll
1836 void os::jvm_path(char *buf, jint buflen) {
1837   // Error checking.
1838   if (buflen < MAX_PATH) {
1839     assert(false, "must use a large-enough buffer");
1840     buf[0] = '\0';
1841     return;
1842   }
1843   // Lazy resolve the path to current module.
1844   if (saved_jvm_path[0] != 0) {
1845     strcpy(buf, saved_jvm_path);
1846     return;
1847   }
1848 
1849   buf[0] = '\0';
1850   if (Arguments::created_by_gamma_launcher()) {
1851      // Support for the gamma launcher. Check for an
1852      // JAVA_HOME environment variable
1853      // and fix up the path so it looks like
1854      // libjvm.so is installed there (append a fake suffix
1855      // hotspot/libjvm.so).
1856      char* java_home_var = ::getenv("JAVA_HOME");
1857      if (java_home_var != NULL && java_home_var[0] != 0 &&
1858          strlen(java_home_var) < (size_t)buflen) {
1859 
1860         strncpy(buf, java_home_var, buflen);
1861 
1862         // determine if this is a legacy image or modules image
1863         // modules image doesn't have "jre" subdirectory
1864         size_t len = strlen(buf);
1865         char* jrebin_p = buf + len;
1866         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1867         if (0 != _access(buf, 0)) {
1868           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1869         }
1870         len = strlen(buf);
1871         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1872      }
1873   }
1874 
1875   if(buf[0] == '\0') {
1876     GetModuleFileName(vm_lib_handle, buf, buflen);
1877   }
1878   strncpy(saved_jvm_path, buf, MAX_PATH);
1879 }
1880 
1881 
1882 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1883 #ifndef _WIN64
1884   st->print("_");
1885 #endif
1886 }
1887 
1888 
1889 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1890 #ifndef _WIN64
1891   st->print("@%d", args_size  * sizeof(int));
1892 #endif
1893 }
1894 
1895 // This method is a copy of JDK's sysGetLastErrorString
1896 // from src/windows/hpi/src/system_md.c
1897 
1898 size_t os::lasterror(char* buf, size_t len) {
1899   DWORD errval;
1900 
1901   if ((errval = GetLastError()) != 0) {
1902     // DOS error
1903     size_t n = (size_t)FormatMessage(
1904           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1905           NULL,
1906           errval,
1907           0,
1908           buf,
1909           (DWORD)len,
1910           NULL);
1911     if (n > 3) {
1912       // Drop final '.', CR, LF
1913       if (buf[n - 1] == '\n') n--;
1914       if (buf[n - 1] == '\r') n--;
1915       if (buf[n - 1] == '.') n--;
1916       buf[n] = '\0';
1917     }
1918     return n;
1919   }
1920 
1921   if (errno != 0) {
1922     // C runtime error that has no corresponding DOS error code
1923     const char* s = strerror(errno);
1924     size_t n = strlen(s);
1925     if (n >= len) n = len - 1;
1926     strncpy(buf, s, n);
1927     buf[n] = '\0';
1928     return n;
1929   }
1930 
1931   return 0;
1932 }
1933 
1934 int os::get_last_error() {
1935   DWORD error = GetLastError();
1936   if (error == 0)
1937     error = errno;
1938   return (int)error;
1939 }
1940 
1941 // sun.misc.Signal
1942 // NOTE that this is a workaround for an apparent kernel bug where if
1943 // a signal handler for SIGBREAK is installed then that signal handler
1944 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1945 // See bug 4416763.
1946 static void (*sigbreakHandler)(int) = NULL;
1947 
1948 static void UserHandler(int sig, void *siginfo, void *context) {
1949   os::signal_notify(sig);
1950   // We need to reinstate the signal handler each time...
1951   os::signal(sig, (void*)UserHandler);
1952 }
1953 
1954 void* os::user_handler() {
1955   return (void*) UserHandler;
1956 }
1957 
1958 void* os::signal(int signal_number, void* handler) {
1959   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1960     void (*oldHandler)(int) = sigbreakHandler;
1961     sigbreakHandler = (void (*)(int)) handler;
1962     return (void*) oldHandler;
1963   } else {
1964     return (void*)::signal(signal_number, (void (*)(int))handler);
1965   }
1966 }
1967 
1968 void os::signal_raise(int signal_number) {
1969   raise(signal_number);
1970 }
1971 
1972 // The Win32 C runtime library maps all console control events other than ^C
1973 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1974 // logoff, and shutdown events.  We therefore install our own console handler
1975 // that raises SIGTERM for the latter cases.
1976 //
1977 static BOOL WINAPI consoleHandler(DWORD event) {
1978   switch(event) {
1979     case CTRL_C_EVENT:
1980       if (is_error_reported()) {
1981         // Ctrl-C is pressed during error reporting, likely because the error
1982         // handler fails to abort. Let VM die immediately.
1983         os::die();
1984       }
1985 
1986       os::signal_raise(SIGINT);
1987       return TRUE;
1988       break;
1989     case CTRL_BREAK_EVENT:
1990       if (sigbreakHandler != NULL) {
1991         (*sigbreakHandler)(SIGBREAK);
1992       }
1993       return TRUE;
1994       break;
1995     case CTRL_LOGOFF_EVENT: {
1996       // Don't terminate JVM if it is running in a non-interactive session,
1997       // such as a service process.
1998       USEROBJECTFLAGS flags;
1999       HANDLE handle = GetProcessWindowStation();
2000       if (handle != NULL &&
2001           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2002             sizeof( USEROBJECTFLAGS), NULL)) {
2003         // If it is a non-interactive session, let next handler to deal
2004         // with it.
2005         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2006           return FALSE;
2007         }
2008       }
2009     }
2010     case CTRL_CLOSE_EVENT:
2011     case CTRL_SHUTDOWN_EVENT:
2012       os::signal_raise(SIGTERM);
2013       return TRUE;
2014       break;
2015     default:
2016       break;
2017   }
2018   return FALSE;
2019 }
2020 
2021 /*
2022  * The following code is moved from os.cpp for making this
2023  * code platform specific, which it is by its very nature.
2024  */
2025 
2026 // Return maximum OS signal used + 1 for internal use only
2027 // Used as exit signal for signal_thread
2028 int os::sigexitnum_pd(){
2029   return NSIG;
2030 }
2031 
2032 // a counter for each possible signal value, including signal_thread exit signal
2033 static volatile jint pending_signals[NSIG+1] = { 0 };
2034 static HANDLE sig_sem = NULL;
2035 
2036 void os::signal_init_pd() {
2037   // Initialize signal structures
2038   memset((void*)pending_signals, 0, sizeof(pending_signals));
2039 
2040   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2041 
2042   // Programs embedding the VM do not want it to attempt to receive
2043   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2044   // shutdown hooks mechanism introduced in 1.3.  For example, when
2045   // the VM is run as part of a Windows NT service (i.e., a servlet
2046   // engine in a web server), the correct behavior is for any console
2047   // control handler to return FALSE, not TRUE, because the OS's
2048   // "final" handler for such events allows the process to continue if
2049   // it is a service (while terminating it if it is not a service).
2050   // To make this behavior uniform and the mechanism simpler, we
2051   // completely disable the VM's usage of these console events if -Xrs
2052   // (=ReduceSignalUsage) is specified.  This means, for example, that
2053   // the CTRL-BREAK thread dump mechanism is also disabled in this
2054   // case.  See bugs 4323062, 4345157, and related bugs.
2055 
2056   if (!ReduceSignalUsage) {
2057     // Add a CTRL-C handler
2058     SetConsoleCtrlHandler(consoleHandler, TRUE);
2059   }
2060 }
2061 
2062 void os::signal_notify(int signal_number) {
2063   BOOL ret;
2064   if (sig_sem != NULL) {
2065     Atomic::inc(&pending_signals[signal_number]);
2066     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2067     assert(ret != 0, "ReleaseSemaphore() failed");
2068   }
2069 }
2070 
2071 static int check_pending_signals(bool wait_for_signal) {
2072   DWORD ret;
2073   while (true) {
2074     for (int i = 0; i < NSIG + 1; i++) {
2075       jint n = pending_signals[i];
2076       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2077         return i;
2078       }
2079     }
2080     if (!wait_for_signal) {
2081       return -1;
2082     }
2083 
2084     JavaThread *thread = JavaThread::current();
2085 
2086     ThreadBlockInVM tbivm(thread);
2087 
2088     bool threadIsSuspended;
2089     do {
2090       thread->set_suspend_equivalent();
2091       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2092       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2093       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2094 
2095       // were we externally suspended while we were waiting?
2096       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2097       if (threadIsSuspended) {
2098         //
2099         // The semaphore has been incremented, but while we were waiting
2100         // another thread suspended us. We don't want to continue running
2101         // while suspended because that would surprise the thread that
2102         // suspended us.
2103         //
2104         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2105         assert(ret != 0, "ReleaseSemaphore() failed");
2106 
2107         thread->java_suspend_self();
2108       }
2109     } while (threadIsSuspended);
2110   }
2111 }
2112 
2113 int os::signal_lookup() {
2114   return check_pending_signals(false);
2115 }
2116 
2117 int os::signal_wait() {
2118   return check_pending_signals(true);
2119 }
2120 
2121 // Implicit OS exception handling
2122 
2123 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2124   JavaThread* thread = JavaThread::current();
2125   // Save pc in thread
2126 #ifdef _M_IA64
2127   // Do not blow up if no thread info available.
2128   if (thread) {
2129     // Saving PRECISE pc (with slot information) in thread.
2130     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2131     // Convert precise PC into "Unix" format
2132     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2133     thread->set_saved_exception_pc((address)precise_pc);
2134   }
2135   // Set pc to handler
2136   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2137   // Clear out psr.ri (= Restart Instruction) in order to continue
2138   // at the beginning of the target bundle.
2139   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2140   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2141 #elif _M_AMD64
2142   // Do not blow up if no thread info available.
2143   if (thread) {
2144     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2145   }
2146   // Set pc to handler
2147   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2148 #else
2149   // Do not blow up if no thread info available.
2150   if (thread) {
2151     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2152   }
2153   // Set pc to handler
2154   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2155 #endif
2156 
2157   // Continue the execution
2158   return EXCEPTION_CONTINUE_EXECUTION;
2159 }
2160 
2161 
2162 // Used for PostMortemDump
2163 extern "C" void safepoints();
2164 extern "C" void find(int x);
2165 extern "C" void events();
2166 
2167 // According to Windows API documentation, an illegal instruction sequence should generate
2168 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2169 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2170 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2171 
2172 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2173 
2174 // From "Execution Protection in the Windows Operating System" draft 0.35
2175 // Once a system header becomes available, the "real" define should be
2176 // included or copied here.
2177 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2178 
2179 // Handle NAT Bit consumption on IA64.
2180 #ifdef _M_IA64
2181 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2182 #endif
2183 
2184 // Windows Vista/2008 heap corruption check
2185 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2186 
2187 #define def_excpt(val) #val, val
2188 
2189 struct siglabel {
2190   char *name;
2191   int   number;
2192 };
2193 
2194 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2195 // C++ compiler contain this error code. Because this is a compiler-generated
2196 // error, the code is not listed in the Win32 API header files.
2197 // The code is actually a cryptic mnemonic device, with the initial "E"
2198 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2199 // ASCII values of "msc".
2200 
2201 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2202 
2203 
2204 struct siglabel exceptlabels[] = {
2205     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2206     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2207     def_excpt(EXCEPTION_BREAKPOINT),
2208     def_excpt(EXCEPTION_SINGLE_STEP),
2209     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2210     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2211     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2212     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2213     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2214     def_excpt(EXCEPTION_FLT_OVERFLOW),
2215     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2216     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2217     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2218     def_excpt(EXCEPTION_INT_OVERFLOW),
2219     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2220     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2221     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2222     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2223     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2224     def_excpt(EXCEPTION_STACK_OVERFLOW),
2225     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2226     def_excpt(EXCEPTION_GUARD_PAGE),
2227     def_excpt(EXCEPTION_INVALID_HANDLE),
2228     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2229     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2230 #ifdef _M_IA64
2231     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2232 #endif
2233     NULL, 0
2234 };
2235 
2236 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2237   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2238     if (exceptlabels[i].number == exception_code) {
2239        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2240        return buf;
2241     }
2242   }
2243 
2244   return NULL;
2245 }
2246 
2247 //-----------------------------------------------------------------------------
2248 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2249   // handle exception caused by idiv; should only happen for -MinInt/-1
2250   // (division by zero is handled explicitly)
2251 #ifdef _M_IA64
2252   assert(0, "Fix Handle_IDiv_Exception");
2253 #elif _M_AMD64
2254   PCONTEXT ctx = exceptionInfo->ContextRecord;
2255   address pc = (address)ctx->Rip;
2256   assert(pc[0] == 0xF7, "not an idiv opcode");
2257   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2258   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2259   // set correct result values and continue after idiv instruction
2260   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2261   ctx->Rax = (DWORD)min_jint;      // result
2262   ctx->Rdx = (DWORD)0;             // remainder
2263   // Continue the execution
2264 #else
2265   PCONTEXT ctx = exceptionInfo->ContextRecord;
2266   address pc = (address)ctx->Eip;
2267   assert(pc[0] == 0xF7, "not an idiv opcode");
2268   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2269   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2270   // set correct result values and continue after idiv instruction
2271   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2272   ctx->Eax = (DWORD)min_jint;      // result
2273   ctx->Edx = (DWORD)0;             // remainder
2274   // Continue the execution
2275 #endif
2276   return EXCEPTION_CONTINUE_EXECUTION;
2277 }
2278 
2279 #ifndef  _WIN64
2280 //-----------------------------------------------------------------------------
2281 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2282   // handle exception caused by native method modifying control word
2283   PCONTEXT ctx = exceptionInfo->ContextRecord;
2284   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2285 
2286   switch (exception_code) {
2287     case EXCEPTION_FLT_DENORMAL_OPERAND:
2288     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2289     case EXCEPTION_FLT_INEXACT_RESULT:
2290     case EXCEPTION_FLT_INVALID_OPERATION:
2291     case EXCEPTION_FLT_OVERFLOW:
2292     case EXCEPTION_FLT_STACK_CHECK:
2293     case EXCEPTION_FLT_UNDERFLOW:
2294       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2295       if (fp_control_word != ctx->FloatSave.ControlWord) {
2296         // Restore FPCW and mask out FLT exceptions
2297         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2298         // Mask out pending FLT exceptions
2299         ctx->FloatSave.StatusWord &=  0xffffff00;
2300         return EXCEPTION_CONTINUE_EXECUTION;
2301       }
2302   }
2303 
2304   if (prev_uef_handler != NULL) {
2305     // We didn't handle this exception so pass it to the previous
2306     // UnhandledExceptionFilter.
2307     return (prev_uef_handler)(exceptionInfo);
2308   }
2309 
2310   return EXCEPTION_CONTINUE_SEARCH;
2311 }
2312 #else //_WIN64
2313 /*
2314   On Windows, the mxcsr control bits are non-volatile across calls
2315   See also CR 6192333
2316   If EXCEPTION_FLT_* happened after some native method modified
2317   mxcsr - it is not a jvm fault.
2318   However should we decide to restore of mxcsr after a faulty
2319   native method we can uncomment following code
2320       jint MxCsr = INITIAL_MXCSR;
2321         // we can't use StubRoutines::addr_mxcsr_std()
2322         // because in Win64 mxcsr is not saved there
2323       if (MxCsr != ctx->MxCsr) {
2324         ctx->MxCsr = MxCsr;
2325         return EXCEPTION_CONTINUE_EXECUTION;
2326       }
2327 
2328 */
2329 #endif // _WIN64
2330 
2331 
2332 static inline void report_error(Thread* t, DWORD exception_code,
2333                                 address addr, void* siginfo, void* context) {
2334   VMError err(t, exception_code, addr, siginfo, context);
2335   err.report_and_die();
2336 
2337   // If UseOsErrorReporting, this will return here and save the error file
2338   // somewhere where we can find it in the minidump.
2339 }
2340 
2341 //-----------------------------------------------------------------------------
2342 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2343   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2344   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2345 #ifdef _M_IA64
2346   // On Itanium, we need the "precise pc", which has the slot number coded
2347   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2348   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2349   // Convert the pc to "Unix format", which has the slot number coded
2350   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2351   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2352   // information is saved in the Unix format.
2353   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2354 #elif _M_AMD64
2355   address pc = (address) exceptionInfo->ContextRecord->Rip;
2356 #else
2357   address pc = (address) exceptionInfo->ContextRecord->Eip;
2358 #endif
2359   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2360 
2361   // Handle SafeFetch32 and SafeFetchN exceptions.
2362   if (StubRoutines::is_safefetch_fault(pc)) {
2363     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2364   }
2365 
2366 #ifndef _WIN64
2367   // Execution protection violation - win32 running on AMD64 only
2368   // Handled first to avoid misdiagnosis as a "normal" access violation;
2369   // This is safe to do because we have a new/unique ExceptionInformation
2370   // code for this condition.
2371   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2372     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2373     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2374     address addr = (address) exceptionRecord->ExceptionInformation[1];
2375 
2376     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2377       int page_size = os::vm_page_size();
2378 
2379       // Make sure the pc and the faulting address are sane.
2380       //
2381       // If an instruction spans a page boundary, and the page containing
2382       // the beginning of the instruction is executable but the following
2383       // page is not, the pc and the faulting address might be slightly
2384       // different - we still want to unguard the 2nd page in this case.
2385       //
2386       // 15 bytes seems to be a (very) safe value for max instruction size.
2387       bool pc_is_near_addr =
2388         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2389       bool instr_spans_page_boundary =
2390         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2391                          (intptr_t) page_size) > 0);
2392 
2393       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2394         static volatile address last_addr =
2395           (address) os::non_memory_address_word();
2396 
2397         // In conservative mode, don't unguard unless the address is in the VM
2398         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2399             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2400 
2401           // Set memory to RWX and retry
2402           address page_start =
2403             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2404           bool res = os::protect_memory((char*) page_start, page_size,
2405                                         os::MEM_PROT_RWX);
2406 
2407           if (PrintMiscellaneous && Verbose) {
2408             char buf[256];
2409             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2410                          "at " INTPTR_FORMAT
2411                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2412                          page_start, (res ? "success" : strerror(errno)));
2413             tty->print_raw_cr(buf);
2414           }
2415 
2416           // Set last_addr so if we fault again at the same address, we don't
2417           // end up in an endless loop.
2418           //
2419           // There are two potential complications here.  Two threads trapping
2420           // at the same address at the same time could cause one of the
2421           // threads to think it already unguarded, and abort the VM.  Likely
2422           // very rare.
2423           //
2424           // The other race involves two threads alternately trapping at
2425           // different addresses and failing to unguard the page, resulting in
2426           // an endless loop.  This condition is probably even more unlikely
2427           // than the first.
2428           //
2429           // Although both cases could be avoided by using locks or thread
2430           // local last_addr, these solutions are unnecessary complication:
2431           // this handler is a best-effort safety net, not a complete solution.
2432           // It is disabled by default and should only be used as a workaround
2433           // in case we missed any no-execute-unsafe VM code.
2434 
2435           last_addr = addr;
2436 
2437           return EXCEPTION_CONTINUE_EXECUTION;
2438         }
2439       }
2440 
2441       // Last unguard failed or not unguarding
2442       tty->print_raw_cr("Execution protection violation");
2443       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2444                    exceptionInfo->ContextRecord);
2445       return EXCEPTION_CONTINUE_SEARCH;
2446     }
2447   }
2448 #endif // _WIN64
2449 
2450   // Check to see if we caught the safepoint code in the
2451   // process of write protecting the memory serialization page.
2452   // It write enables the page immediately after protecting it
2453   // so just return.
2454   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2455     JavaThread* thread = (JavaThread*) t;
2456     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2457     address addr = (address) exceptionRecord->ExceptionInformation[1];
2458     if ( os::is_memory_serialize_page(thread, addr) ) {
2459       // Block current thread until the memory serialize page permission restored.
2460       os::block_on_serialize_page_trap();
2461       return EXCEPTION_CONTINUE_EXECUTION;
2462     }
2463   }
2464 
2465   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2466       VM_Version::is_cpuinfo_segv_addr(pc)) {
2467     // Verify that OS save/restore AVX registers.
2468     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2469   }
2470 
2471   if (t != NULL && t->is_Java_thread()) {
2472     JavaThread* thread = (JavaThread*) t;
2473     bool in_java = thread->thread_state() == _thread_in_Java;
2474 
2475     // Handle potential stack overflows up front.
2476     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2477       if (os::uses_stack_guard_pages()) {
2478 #ifdef _M_IA64
2479         // Use guard page for register stack.
2480         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2481         address addr = (address) exceptionRecord->ExceptionInformation[1];
2482         // Check for a register stack overflow on Itanium
2483         if (thread->addr_inside_register_stack_red_zone(addr)) {
2484           // Fatal red zone violation happens if the Java program
2485           // catches a StackOverflow error and does so much processing
2486           // that it runs beyond the unprotected yellow guard zone. As
2487           // a result, we are out of here.
2488           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2489         } else if(thread->addr_inside_register_stack(addr)) {
2490           // Disable the yellow zone which sets the state that
2491           // we've got a stack overflow problem.
2492           if (thread->stack_yellow_zone_enabled()) {
2493             thread->disable_stack_yellow_zone();
2494           }
2495           // Give us some room to process the exception.
2496           thread->disable_register_stack_guard();
2497           // Tracing with +Verbose.
2498           if (Verbose) {
2499             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2500             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2501             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2502             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2503                           thread->register_stack_base(),
2504                           thread->register_stack_base() + thread->stack_size());
2505           }
2506 
2507           // Reguard the permanent register stack red zone just to be sure.
2508           // We saw Windows silently disabling this without telling us.
2509           thread->enable_register_stack_red_zone();
2510 
2511           return Handle_Exception(exceptionInfo,
2512             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2513         }
2514 #endif
2515         if (thread->stack_yellow_zone_enabled()) {
2516           // Yellow zone violation.  The o/s has unprotected the first yellow
2517           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2518           // update the enabled status, even if the zone contains only one page.
2519           thread->disable_stack_yellow_zone();
2520           // If not in java code, return and hope for the best.
2521           return in_java ? Handle_Exception(exceptionInfo,
2522             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2523             :  EXCEPTION_CONTINUE_EXECUTION;
2524         } else {
2525           // Fatal red zone violation.
2526           thread->disable_stack_red_zone();
2527           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2528           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2529                        exceptionInfo->ContextRecord);
2530           return EXCEPTION_CONTINUE_SEARCH;
2531         }
2532       } else if (in_java) {
2533         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2534         // a one-time-only guard page, which it has released to us.  The next
2535         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2536         return Handle_Exception(exceptionInfo,
2537           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2538       } else {
2539         // Can only return and hope for the best.  Further stack growth will
2540         // result in an ACCESS_VIOLATION.
2541         return EXCEPTION_CONTINUE_EXECUTION;
2542       }
2543     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2544       // Either stack overflow or null pointer exception.
2545       if (in_java) {
2546         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2547         address addr = (address) exceptionRecord->ExceptionInformation[1];
2548         address stack_end = thread->stack_base() - thread->stack_size();
2549         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2550           // Stack overflow.
2551           assert(!os::uses_stack_guard_pages(),
2552             "should be caught by red zone code above.");
2553           return Handle_Exception(exceptionInfo,
2554             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2555         }
2556         //
2557         // Check for safepoint polling and implicit null
2558         // We only expect null pointers in the stubs (vtable)
2559         // the rest are checked explicitly now.
2560         //
2561         CodeBlob* cb = CodeCache::find_blob(pc);
2562         if (cb != NULL) {
2563           if (os::is_poll_address(addr)) {
2564             address stub = SharedRuntime::get_poll_stub(pc);
2565             return Handle_Exception(exceptionInfo, stub);
2566           }
2567         }
2568         {
2569 #ifdef _WIN64
2570           //
2571           // If it's a legal stack address map the entire region in
2572           //
2573           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2574           address addr = (address) exceptionRecord->ExceptionInformation[1];
2575           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2576                   addr = (address)((uintptr_t)addr &
2577                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2578                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2579                                     !ExecMem);
2580                   return EXCEPTION_CONTINUE_EXECUTION;
2581           }
2582           else
2583 #endif
2584           {
2585             // Null pointer exception.
2586 #ifdef _M_IA64
2587             // Process implicit null checks in compiled code. Note: Implicit null checks
2588             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2589             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2590               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2591               // Handle implicit null check in UEP method entry
2592               if (cb && (cb->is_frame_complete_at(pc) ||
2593                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2594                 if (Verbose) {
2595                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2596                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2597                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2598                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2599                                 *(bundle_start + 1), *bundle_start);
2600                 }
2601                 return Handle_Exception(exceptionInfo,
2602                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2603               }
2604             }
2605 
2606             // Implicit null checks were processed above.  Hence, we should not reach
2607             // here in the usual case => die!
2608             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2609             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2610                          exceptionInfo->ContextRecord);
2611             return EXCEPTION_CONTINUE_SEARCH;
2612 
2613 #else // !IA64
2614 
2615             // Windows 98 reports faulting addresses incorrectly
2616             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2617                 !os::win32::is_nt()) {
2618               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2619               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2620             }
2621             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2622                          exceptionInfo->ContextRecord);
2623             return EXCEPTION_CONTINUE_SEARCH;
2624 #endif
2625           }
2626         }
2627       }
2628 
2629 #ifdef _WIN64
2630       // Special care for fast JNI field accessors.
2631       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2632       // in and the heap gets shrunk before the field access.
2633       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2634         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2635         if (addr != (address)-1) {
2636           return Handle_Exception(exceptionInfo, addr);
2637         }
2638       }
2639 #endif
2640 
2641       // Stack overflow or null pointer exception in native code.
2642       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2643                    exceptionInfo->ContextRecord);
2644       return EXCEPTION_CONTINUE_SEARCH;
2645     } // /EXCEPTION_ACCESS_VIOLATION
2646     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2647 #if defined _M_IA64
2648     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2649               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2650       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2651 
2652       // Compiled method patched to be non entrant? Following conditions must apply:
2653       // 1. must be first instruction in bundle
2654       // 2. must be a break instruction with appropriate code
2655       if((((uint64_t) pc & 0x0F) == 0) &&
2656          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2657         return Handle_Exception(exceptionInfo,
2658                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2659       }
2660     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2661 #endif
2662 
2663 
2664     if (in_java) {
2665       switch (exception_code) {
2666       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2667         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2668 
2669       case EXCEPTION_INT_OVERFLOW:
2670         return Handle_IDiv_Exception(exceptionInfo);
2671 
2672       } // switch
2673     }
2674 #ifndef _WIN64
2675     if (((thread->thread_state() == _thread_in_Java) ||
2676         (thread->thread_state() == _thread_in_native)) &&
2677         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2678     {
2679       LONG result=Handle_FLT_Exception(exceptionInfo);
2680       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2681     }
2682 #endif //_WIN64
2683   }
2684 
2685   if (exception_code != EXCEPTION_BREAKPOINT) {
2686     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2687                  exceptionInfo->ContextRecord);
2688   }
2689   return EXCEPTION_CONTINUE_SEARCH;
2690 }
2691 
2692 #ifndef _WIN64
2693 // Special care for fast JNI accessors.
2694 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2695 // the heap gets shrunk before the field access.
2696 // Need to install our own structured exception handler since native code may
2697 // install its own.
2698 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2699   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2700   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2701     address pc = (address) exceptionInfo->ContextRecord->Eip;
2702     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2703     if (addr != (address)-1) {
2704       return Handle_Exception(exceptionInfo, addr);
2705     }
2706   }
2707   return EXCEPTION_CONTINUE_SEARCH;
2708 }
2709 
2710 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2711 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2712   __try { \
2713     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2714   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2715   } \
2716   return 0; \
2717 }
2718 
2719 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2720 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2721 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2722 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2723 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2724 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2725 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2726 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2727 
2728 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2729   switch (type) {
2730     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2731     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2732     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2733     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2734     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2735     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2736     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2737     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2738     default:        ShouldNotReachHere();
2739   }
2740   return (address)-1;
2741 }
2742 #endif
2743 
2744 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2745   // Install a win32 structured exception handler around the test
2746   // function call so the VM can generate an error dump if needed.
2747   __try {
2748     (*funcPtr)();
2749   } __except(topLevelExceptionFilter(
2750              (_EXCEPTION_POINTERS*)_exception_info())) {
2751     // Nothing to do.
2752   }
2753 }
2754 
2755 // Virtual Memory
2756 
2757 int os::vm_page_size() { return os::win32::vm_page_size(); }
2758 int os::vm_allocation_granularity() {
2759   return os::win32::vm_allocation_granularity();
2760 }
2761 
2762 // Windows large page support is available on Windows 2003. In order to use
2763 // large page memory, the administrator must first assign additional privilege
2764 // to the user:
2765 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2766 //   + select Local Policies -> User Rights Assignment
2767 //   + double click "Lock pages in memory", add users and/or groups
2768 //   + reboot
2769 // Note the above steps are needed for administrator as well, as administrators
2770 // by default do not have the privilege to lock pages in memory.
2771 //
2772 // Note about Windows 2003: although the API supports committing large page
2773 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2774 // scenario, I found through experiment it only uses large page if the entire
2775 // memory region is reserved and committed in a single VirtualAlloc() call.
2776 // This makes Windows large page support more or less like Solaris ISM, in
2777 // that the entire heap must be committed upfront. This probably will change
2778 // in the future, if so the code below needs to be revisited.
2779 
2780 #ifndef MEM_LARGE_PAGES
2781 #define MEM_LARGE_PAGES 0x20000000
2782 #endif
2783 
2784 static HANDLE    _hProcess;
2785 static HANDLE    _hToken;
2786 
2787 // Container for NUMA node list info
2788 class NUMANodeListHolder {
2789 private:
2790   int *_numa_used_node_list;  // allocated below
2791   int _numa_used_node_count;
2792 
2793   void free_node_list() {
2794     if (_numa_used_node_list != NULL) {
2795       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2796     }
2797   }
2798 
2799 public:
2800   NUMANodeListHolder() {
2801     _numa_used_node_count = 0;
2802     _numa_used_node_list = NULL;
2803     // do rest of initialization in build routine (after function pointers are set up)
2804   }
2805 
2806   ~NUMANodeListHolder() {
2807     free_node_list();
2808   }
2809 
2810   bool build() {
2811     DWORD_PTR proc_aff_mask;
2812     DWORD_PTR sys_aff_mask;
2813     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2814     ULONG highest_node_number;
2815     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2816     free_node_list();
2817     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2818     for (unsigned int i = 0; i <= highest_node_number; i++) {
2819       ULONGLONG proc_mask_numa_node;
2820       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2821       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2822         _numa_used_node_list[_numa_used_node_count++] = i;
2823       }
2824     }
2825     return (_numa_used_node_count > 1);
2826   }
2827 
2828   int get_count() {return _numa_used_node_count;}
2829   int get_node_list_entry(int n) {
2830     // for indexes out of range, returns -1
2831     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2832   }
2833 
2834 } numa_node_list_holder;
2835 
2836 
2837 
2838 static size_t _large_page_size = 0;
2839 
2840 static bool resolve_functions_for_large_page_init() {
2841   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2842     os::Advapi32Dll::AdvapiAvailable();
2843 }
2844 
2845 static bool request_lock_memory_privilege() {
2846   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2847                                 os::current_process_id());
2848 
2849   LUID luid;
2850   if (_hProcess != NULL &&
2851       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2852       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2853 
2854     TOKEN_PRIVILEGES tp;
2855     tp.PrivilegeCount = 1;
2856     tp.Privileges[0].Luid = luid;
2857     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2858 
2859     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2860     // privilege. Check GetLastError() too. See MSDN document.
2861     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2862         (GetLastError() == ERROR_SUCCESS)) {
2863       return true;
2864     }
2865   }
2866 
2867   return false;
2868 }
2869 
2870 static void cleanup_after_large_page_init() {
2871   if (_hProcess) CloseHandle(_hProcess);
2872   _hProcess = NULL;
2873   if (_hToken) CloseHandle(_hToken);
2874   _hToken = NULL;
2875 }
2876 
2877 static bool numa_interleaving_init() {
2878   bool success = false;
2879   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2880 
2881   // print a warning if UseNUMAInterleaving flag is specified on command line
2882   bool warn_on_failure = use_numa_interleaving_specified;
2883 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2884 
2885   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2886   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2887   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2888 
2889   if (os::Kernel32Dll::NumaCallsAvailable()) {
2890     if (numa_node_list_holder.build()) {
2891       if (PrintMiscellaneous && Verbose) {
2892         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2893         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2894           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2895         }
2896         tty->print("\n");
2897       }
2898       success = true;
2899     } else {
2900       WARN("Process does not cover multiple NUMA nodes.");
2901     }
2902   } else {
2903     WARN("NUMA Interleaving is not supported by the operating system.");
2904   }
2905   if (!success) {
2906     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2907   }
2908   return success;
2909 #undef WARN
2910 }
2911 
2912 // this routine is used whenever we need to reserve a contiguous VA range
2913 // but we need to make separate VirtualAlloc calls for each piece of the range
2914 // Reasons for doing this:
2915 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2916 //  * UseNUMAInterleaving requires a separate node for each piece
2917 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2918                                          bool should_inject_error=false) {
2919   char * p_buf;
2920   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2921   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2922   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2923 
2924   // first reserve enough address space in advance since we want to be
2925   // able to break a single contiguous virtual address range into multiple
2926   // large page commits but WS2003 does not allow reserving large page space
2927   // so we just use 4K pages for reserve, this gives us a legal contiguous
2928   // address space. then we will deallocate that reservation, and re alloc
2929   // using large pages
2930   const size_t size_of_reserve = bytes + chunk_size;
2931   if (bytes > size_of_reserve) {
2932     // Overflowed.
2933     return NULL;
2934   }
2935   p_buf = (char *) VirtualAlloc(addr,
2936                                 size_of_reserve,  // size of Reserve
2937                                 MEM_RESERVE,
2938                                 PAGE_READWRITE);
2939   // If reservation failed, return NULL
2940   if (p_buf == NULL) return NULL;
2941   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2942   os::release_memory(p_buf, bytes + chunk_size);
2943 
2944   // we still need to round up to a page boundary (in case we are using large pages)
2945   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2946   // instead we handle this in the bytes_to_rq computation below
2947   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2948 
2949   // now go through and allocate one chunk at a time until all bytes are
2950   // allocated
2951   size_t  bytes_remaining = bytes;
2952   // An overflow of align_size_up() would have been caught above
2953   // in the calculation of size_of_reserve.
2954   char * next_alloc_addr = p_buf;
2955   HANDLE hProc = GetCurrentProcess();
2956 
2957 #ifdef ASSERT
2958   // Variable for the failure injection
2959   long ran_num = os::random();
2960   size_t fail_after = ran_num % bytes;
2961 #endif
2962 
2963   int count=0;
2964   while (bytes_remaining) {
2965     // select bytes_to_rq to get to the next chunk_size boundary
2966 
2967     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2968     // Note allocate and commit
2969     char * p_new;
2970 
2971 #ifdef ASSERT
2972     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2973 #else
2974     const bool inject_error_now = false;
2975 #endif
2976 
2977     if (inject_error_now) {
2978       p_new = NULL;
2979     } else {
2980       if (!UseNUMAInterleaving) {
2981         p_new = (char *) VirtualAlloc(next_alloc_addr,
2982                                       bytes_to_rq,
2983                                       flags,
2984                                       prot);
2985       } else {
2986         // get the next node to use from the used_node_list
2987         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2988         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2989         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2990                                                             next_alloc_addr,
2991                                                             bytes_to_rq,
2992                                                             flags,
2993                                                             prot,
2994                                                             node);
2995       }
2996     }
2997 
2998     if (p_new == NULL) {
2999       // Free any allocated pages
3000       if (next_alloc_addr > p_buf) {
3001         // Some memory was committed so release it.
3002         size_t bytes_to_release = bytes - bytes_remaining;
3003         // NMT has yet to record any individual blocks, so it
3004         // need to create a dummy 'reserve' record to match
3005         // the release.
3006         MemTracker::record_virtual_memory_reserve((address)p_buf,
3007           bytes_to_release, CALLER_PC);
3008         os::release_memory(p_buf, bytes_to_release);
3009       }
3010 #ifdef ASSERT
3011       if (should_inject_error) {
3012         if (TracePageSizes && Verbose) {
3013           tty->print_cr("Reserving pages individually failed.");
3014         }
3015       }
3016 #endif
3017       return NULL;
3018     }
3019 
3020     bytes_remaining -= bytes_to_rq;
3021     next_alloc_addr += bytes_to_rq;
3022     count++;
3023   }
3024   // Although the memory is allocated individually, it is returned as one.
3025   // NMT records it as one block.
3026   if ((flags & MEM_COMMIT) != 0) {
3027     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3028   } else {
3029     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3030   }
3031 
3032   // made it this far, success
3033   return p_buf;
3034 }
3035 
3036 
3037 
3038 void os::large_page_init() {
3039   if (!UseLargePages) return;
3040 
3041   // print a warning if any large page related flag is specified on command line
3042   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3043                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3044   bool success = false;
3045 
3046 # define WARN(msg) if (warn_on_failure) { warning(msg); }
3047   if (resolve_functions_for_large_page_init()) {
3048     if (request_lock_memory_privilege()) {
3049       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3050       if (s) {
3051 #if defined(IA32) || defined(AMD64)
3052         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3053           WARN("JVM cannot use large pages bigger than 4mb.");
3054         } else {
3055 #endif
3056           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3057             _large_page_size = LargePageSizeInBytes;
3058           } else {
3059             _large_page_size = s;
3060           }
3061           success = true;
3062 #if defined(IA32) || defined(AMD64)
3063         }
3064 #endif
3065       } else {
3066         WARN("Large page is not supported by the processor.");
3067       }
3068     } else {
3069       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3070     }
3071   } else {
3072     WARN("Large page is not supported by the operating system.");
3073   }
3074 #undef WARN
3075 
3076   const size_t default_page_size = (size_t) vm_page_size();
3077   if (success && _large_page_size > default_page_size) {
3078     _page_sizes[0] = _large_page_size;
3079     _page_sizes[1] = default_page_size;
3080     _page_sizes[2] = 0;
3081   }
3082 
3083   cleanup_after_large_page_init();
3084   UseLargePages = success;
3085 }
3086 
3087 // On win32, one cannot release just a part of reserved memory, it's an
3088 // all or nothing deal.  When we split a reservation, we must break the
3089 // reservation into two reservations.
3090 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3091                               bool realloc) {
3092   if (size > 0) {
3093     release_memory(base, size);
3094     if (realloc) {
3095       reserve_memory(split, base);
3096     }
3097     if (size != split) {
3098       reserve_memory(size - split, base + split);
3099     }
3100   }
3101 }
3102 
3103 // Multiple threads can race in this code but it's not possible to unmap small sections of
3104 // virtual space to get requested alignment, like posix-like os's.
3105 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3106 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3107   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3108       "Alignment must be a multiple of allocation granularity (page size)");
3109   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3110 
3111   size_t extra_size = size + alignment;
3112   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3113 
3114   char* aligned_base = NULL;
3115 
3116   do {
3117     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3118     if (extra_base == NULL) {
3119       return NULL;
3120     }
3121     // Do manual alignment
3122     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3123 
3124     os::release_memory(extra_base, extra_size);
3125 
3126     aligned_base = os::reserve_memory(size, aligned_base);
3127 
3128   } while (aligned_base == NULL);
3129 
3130   return aligned_base;
3131 }
3132 
3133 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3134   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3135          "reserve alignment");
3136   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3137   char* res;
3138   // note that if UseLargePages is on, all the areas that require interleaving
3139   // will go thru reserve_memory_special rather than thru here.
3140   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3141   if (!use_individual) {
3142     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3143   } else {
3144     elapsedTimer reserveTimer;
3145     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3146     // in numa interleaving, we have to allocate pages individually
3147     // (well really chunks of NUMAInterleaveGranularity size)
3148     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3149     if (res == NULL) {
3150       warning("NUMA page allocation failed");
3151     }
3152     if( Verbose && PrintMiscellaneous ) {
3153       reserveTimer.stop();
3154       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3155                     reserveTimer.milliseconds(), reserveTimer.ticks());
3156     }
3157   }
3158   assert(res == NULL || addr == NULL || addr == res,
3159          "Unexpected address from reserve.");
3160 
3161   return res;
3162 }
3163 
3164 // Reserve memory at an arbitrary address, only if that area is
3165 // available (and not reserved for something else).
3166 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3167   // Windows os::reserve_memory() fails of the requested address range is
3168   // not avilable.
3169   return reserve_memory(bytes, requested_addr);
3170 }
3171 
3172 size_t os::large_page_size() {
3173   return _large_page_size;
3174 }
3175 
3176 bool os::can_commit_large_page_memory() {
3177   // Windows only uses large page memory when the entire region is reserved
3178   // and committed in a single VirtualAlloc() call. This may change in the
3179   // future, but with Windows 2003 it's not possible to commit on demand.
3180   return false;
3181 }
3182 
3183 bool os::can_execute_large_page_memory() {
3184   return true;
3185 }
3186 
3187 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
3188   assert(UseLargePages, "only for large pages");
3189 
3190   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3191     return NULL; // Fallback to small pages.
3192   }
3193 
3194   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3195   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3196 
3197   // with large pages, there are two cases where we need to use Individual Allocation
3198   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3199   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3200   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3201     if (TracePageSizes && Verbose) {
3202        tty->print_cr("Reserving large pages individually.");
3203     }
3204     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3205     if (p_buf == NULL) {
3206       // give an appropriate warning message
3207       if (UseNUMAInterleaving) {
3208         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3209       }
3210       if (UseLargePagesIndividualAllocation) {
3211         warning("Individually allocated large pages failed, "
3212                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3213       }
3214       return NULL;
3215     }
3216 
3217     return p_buf;
3218 
3219   } else {
3220     if (TracePageSizes && Verbose) {
3221        tty->print_cr("Reserving large pages in a single large chunk.");
3222     }
3223     // normal policy just allocate it all at once
3224     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3225     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3226     if (res != NULL) {
3227       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3228     }
3229 
3230     return res;
3231   }
3232 }
3233 
3234 bool os::release_memory_special(char* base, size_t bytes) {
3235   assert(base != NULL, "Sanity check");
3236   return release_memory(base, bytes);
3237 }
3238 
3239 void os::print_statistics() {
3240 }
3241 
3242 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3243   int err = os::get_last_error();
3244   char buf[256];
3245   size_t buf_len = os::lasterror(buf, sizeof(buf));
3246   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3247           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3248           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3249 }
3250 
3251 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3252   if (bytes == 0) {
3253     // Don't bother the OS with noops.
3254     return true;
3255   }
3256   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3257   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3258   // Don't attempt to print anything if the OS call fails. We're
3259   // probably low on resources, so the print itself may cause crashes.
3260 
3261   // unless we have NUMAInterleaving enabled, the range of a commit
3262   // is always within a reserve covered by a single VirtualAlloc
3263   // in that case we can just do a single commit for the requested size
3264   if (!UseNUMAInterleaving) {
3265     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3266       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3267       return false;
3268     }
3269     if (exec) {
3270       DWORD oldprot;
3271       // Windows doc says to use VirtualProtect to get execute permissions
3272       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3273         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3274         return false;
3275       }
3276     }
3277     return true;
3278   } else {
3279 
3280     // when NUMAInterleaving is enabled, the commit might cover a range that
3281     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3282     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3283     // returns represents the number of bytes that can be committed in one step.
3284     size_t bytes_remaining = bytes;
3285     char * next_alloc_addr = addr;
3286     while (bytes_remaining > 0) {
3287       MEMORY_BASIC_INFORMATION alloc_info;
3288       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3289       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3290       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3291                        PAGE_READWRITE) == NULL) {
3292         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3293                                             exec);)
3294         return false;
3295       }
3296       if (exec) {
3297         DWORD oldprot;
3298         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3299                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3300           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3301                                               exec);)
3302           return false;
3303         }
3304       }
3305       bytes_remaining -= bytes_to_rq;
3306       next_alloc_addr += bytes_to_rq;
3307     }
3308   }
3309   // if we made it this far, return true
3310   return true;
3311 }
3312 
3313 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3314                        bool exec) {
3315   // alignment_hint is ignored on this OS
3316   return pd_commit_memory(addr, size, exec);
3317 }
3318 
3319 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3320                                   const char* mesg) {
3321   assert(mesg != NULL, "mesg must be specified");
3322   if (!pd_commit_memory(addr, size, exec)) {
3323     warn_fail_commit_memory(addr, size, exec);
3324     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3325   }
3326 }
3327 
3328 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3329                                   size_t alignment_hint, bool exec,
3330                                   const char* mesg) {
3331   // alignment_hint is ignored on this OS
3332   pd_commit_memory_or_exit(addr, size, exec, mesg);
3333 }
3334 
3335 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3336   if (bytes == 0) {
3337     // Don't bother the OS with noops.
3338     return true;
3339   }
3340   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3341   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3342   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3343 }
3344 
3345 bool os::pd_release_memory(char* addr, size_t bytes) {
3346   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3347 }
3348 
3349 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3350   return os::commit_memory(addr, size, !ExecMem);
3351 }
3352 
3353 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3354   return os::uncommit_memory(addr, size);
3355 }
3356 
3357 // Set protections specified
3358 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3359                         bool is_committed) {
3360   unsigned int p = 0;
3361   switch (prot) {
3362   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3363   case MEM_PROT_READ: p = PAGE_READONLY; break;
3364   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3365   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3366   default:
3367     ShouldNotReachHere();
3368   }
3369 
3370   DWORD old_status;
3371 
3372   // Strange enough, but on Win32 one can change protection only for committed
3373   // memory, not a big deal anyway, as bytes less or equal than 64K
3374   if (!is_committed) {
3375     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3376                           "cannot commit protection page");
3377   }
3378   // One cannot use os::guard_memory() here, as on Win32 guard page
3379   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3380   //
3381   // Pages in the region become guard pages. Any attempt to access a guard page
3382   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3383   // the guard page status. Guard pages thus act as a one-time access alarm.
3384   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3385 }
3386 
3387 bool os::guard_memory(char* addr, size_t bytes) {
3388   DWORD old_status;
3389   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3390 }
3391 
3392 bool os::unguard_memory(char* addr, size_t bytes) {
3393   DWORD old_status;
3394   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3395 }
3396 
3397 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3398 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3399 void os::numa_make_global(char *addr, size_t bytes)    { }
3400 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3401 bool os::numa_topology_changed()                       { return false; }
3402 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3403 int os::numa_get_group_id()                            { return 0; }
3404 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3405   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3406     // Provide an answer for UMA systems
3407     ids[0] = 0;
3408     return 1;
3409   } else {
3410     // check for size bigger than actual groups_num
3411     size = MIN2(size, numa_get_groups_num());
3412     for (int i = 0; i < (int)size; i++) {
3413       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3414     }
3415     return size;
3416   }
3417 }
3418 
3419 bool os::get_page_info(char *start, page_info* info) {
3420   return false;
3421 }
3422 
3423 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3424   return end;
3425 }
3426 
3427 char* os::non_memory_address_word() {
3428   // Must never look like an address returned by reserve_memory,
3429   // even in its subfields (as defined by the CPU immediate fields,
3430   // if the CPU splits constants across multiple instructions).
3431   return (char*)-1;
3432 }
3433 
3434 #define MAX_ERROR_COUNT 100
3435 #define SYS_THREAD_ERROR 0xffffffffUL
3436 
3437 void os::pd_start_thread(Thread* thread) {
3438   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3439   // Returns previous suspend state:
3440   // 0:  Thread was not suspended
3441   // 1:  Thread is running now
3442   // >1: Thread is still suspended.
3443   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3444 }
3445 
3446 class HighResolutionInterval : public CHeapObj<mtThread> {
3447   // The default timer resolution seems to be 10 milliseconds.
3448   // (Where is this written down?)
3449   // If someone wants to sleep for only a fraction of the default,
3450   // then we set the timer resolution down to 1 millisecond for
3451   // the duration of their interval.
3452   // We carefully set the resolution back, since otherwise we
3453   // seem to incur an overhead (3%?) that we don't need.
3454   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3455   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3456   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3457   // timeBeginPeriod() if the relative error exceeded some threshold.
3458   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3459   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3460   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3461   // resolution timers running.
3462 private:
3463     jlong resolution;
3464 public:
3465   HighResolutionInterval(jlong ms) {
3466     resolution = ms % 10L;
3467     if (resolution != 0) {
3468       MMRESULT result = timeBeginPeriod(1L);
3469     }
3470   }
3471   ~HighResolutionInterval() {
3472     if (resolution != 0) {
3473       MMRESULT result = timeEndPeriod(1L);
3474     }
3475     resolution = 0L;
3476   }
3477 };
3478 
3479 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3480   jlong limit = (jlong) MAXDWORD;
3481 
3482   while(ms > limit) {
3483     int res;
3484     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3485       return res;
3486     ms -= limit;
3487   }
3488 
3489   assert(thread == Thread::current(),  "thread consistency check");
3490   OSThread* osthread = thread->osthread();
3491   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3492   int result;
3493   if (interruptable) {
3494     assert(thread->is_Java_thread(), "must be java thread");
3495     JavaThread *jt = (JavaThread *) thread;
3496     ThreadBlockInVM tbivm(jt);
3497 
3498     jt->set_suspend_equivalent();
3499     // cleared by handle_special_suspend_equivalent_condition() or
3500     // java_suspend_self() via check_and_wait_while_suspended()
3501 
3502     HANDLE events[1];
3503     events[0] = osthread->interrupt_event();
3504     HighResolutionInterval *phri=NULL;
3505     if(!ForceTimeHighResolution)
3506       phri = new HighResolutionInterval( ms );
3507     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3508       result = OS_TIMEOUT;
3509     } else {
3510       ResetEvent(osthread->interrupt_event());
3511       osthread->set_interrupted(false);
3512       result = OS_INTRPT;
3513     }
3514     delete phri; //if it is NULL, harmless
3515 
3516     // were we externally suspended while we were waiting?
3517     jt->check_and_wait_while_suspended();
3518   } else {
3519     assert(!thread->is_Java_thread(), "must not be java thread");
3520     Sleep((long) ms);
3521     result = OS_TIMEOUT;
3522   }
3523   return result;
3524 }
3525 
3526 //
3527 // Short sleep, direct OS call.
3528 //
3529 // ms = 0, means allow others (if any) to run.
3530 //
3531 void os::naked_short_sleep(jlong ms) {
3532   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3533   Sleep(ms);
3534 }
3535 
3536 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3537 void os::infinite_sleep() {
3538   while (true) {    // sleep forever ...
3539     Sleep(100000);  // ... 100 seconds at a time
3540   }
3541 }
3542 
3543 typedef BOOL (WINAPI * STTSignature)(void) ;
3544 
3545 os::YieldResult os::NakedYield() {
3546   // Use either SwitchToThread() or Sleep(0)
3547   // Consider passing back the return value from SwitchToThread().
3548   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3549     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3550   } else {
3551     Sleep(0);
3552   }
3553   return os::YIELD_UNKNOWN ;
3554 }
3555 
3556 void os::yield() {  os::NakedYield(); }
3557 
3558 void os::yield_all(int attempts) {
3559   // Yields to all threads, including threads with lower priorities
3560   Sleep(1);
3561 }
3562 
3563 // Win32 only gives you access to seven real priorities at a time,
3564 // so we compress Java's ten down to seven.  It would be better
3565 // if we dynamically adjusted relative priorities.
3566 
3567 int os::java_to_os_priority[CriticalPriority + 1] = {
3568   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3569   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3570   THREAD_PRIORITY_LOWEST,                       // 2
3571   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3572   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3573   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3574   THREAD_PRIORITY_NORMAL,                       // 6
3575   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3576   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3577   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3578   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3579   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3580 };
3581 
3582 int prio_policy1[CriticalPriority + 1] = {
3583   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3584   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3585   THREAD_PRIORITY_LOWEST,                       // 2
3586   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3587   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3588   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3589   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3590   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3591   THREAD_PRIORITY_HIGHEST,                      // 8
3592   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3593   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3594   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3595 };
3596 
3597 static int prio_init() {
3598   // If ThreadPriorityPolicy is 1, switch tables
3599   if (ThreadPriorityPolicy == 1) {
3600     int i;
3601     for (i = 0; i < CriticalPriority + 1; i++) {
3602       os::java_to_os_priority[i] = prio_policy1[i];
3603     }
3604   }
3605   if (UseCriticalJavaThreadPriority) {
3606     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3607   }
3608   return 0;
3609 }
3610 
3611 OSReturn os::set_native_priority(Thread* thread, int priority) {
3612   if (!UseThreadPriorities) return OS_OK;
3613   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3614   return ret ? OS_OK : OS_ERR;
3615 }
3616 
3617 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3618   if ( !UseThreadPriorities ) {
3619     *priority_ptr = java_to_os_priority[NormPriority];
3620     return OS_OK;
3621   }
3622   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3623   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3624     assert(false, "GetThreadPriority failed");
3625     return OS_ERR;
3626   }
3627   *priority_ptr = os_prio;
3628   return OS_OK;
3629 }
3630 
3631 
3632 // Hint to the underlying OS that a task switch would not be good.
3633 // Void return because it's a hint and can fail.
3634 void os::hint_no_preempt() {}
3635 
3636 void os::interrupt(Thread* thread) {
3637   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3638          "possibility of dangling Thread pointer");
3639 
3640   OSThread* osthread = thread->osthread();
3641   osthread->set_interrupted(true);
3642   // More than one thread can get here with the same value of osthread,
3643   // resulting in multiple notifications.  We do, however, want the store
3644   // to interrupted() to be visible to other threads before we post
3645   // the interrupt event.
3646   OrderAccess::release();
3647   SetEvent(osthread->interrupt_event());
3648   // For JSR166:  unpark after setting status
3649   if (thread->is_Java_thread())
3650     ((JavaThread*)thread)->parker()->unpark();
3651 
3652   ParkEvent * ev = thread->_ParkEvent ;
3653   if (ev != NULL) ev->unpark() ;
3654 
3655 }
3656 
3657 
3658 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3659   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3660          "possibility of dangling Thread pointer");
3661 
3662   OSThread* osthread = thread->osthread();
3663   // There is no synchronization between the setting of the interrupt
3664   // and it being cleared here. It is critical - see 6535709 - that
3665   // we only clear the interrupt state, and reset the interrupt event,
3666   // if we are going to report that we were indeed interrupted - else
3667   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3668   // depending on the timing. By checking thread interrupt event to see
3669   // if the thread gets real interrupt thus prevent spurious wakeup.
3670   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3671   if (interrupted && clear_interrupted) {
3672     osthread->set_interrupted(false);
3673     ResetEvent(osthread->interrupt_event());
3674   } // Otherwise leave the interrupted state alone
3675 
3676   return interrupted;
3677 }
3678 
3679 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3680 ExtendedPC os::get_thread_pc(Thread* thread) {
3681   CONTEXT context;
3682   context.ContextFlags = CONTEXT_CONTROL;
3683   HANDLE handle = thread->osthread()->thread_handle();
3684 #ifdef _M_IA64
3685   assert(0, "Fix get_thread_pc");
3686   return ExtendedPC(NULL);
3687 #else
3688   if (GetThreadContext(handle, &context)) {
3689 #ifdef _M_AMD64
3690     return ExtendedPC((address) context.Rip);
3691 #else
3692     return ExtendedPC((address) context.Eip);
3693 #endif
3694   } else {
3695     return ExtendedPC(NULL);
3696   }
3697 #endif
3698 }
3699 
3700 // GetCurrentThreadId() returns DWORD
3701 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3702 
3703 static int _initial_pid = 0;
3704 
3705 int os::current_process_id()
3706 {
3707   return (_initial_pid ? _initial_pid : _getpid());
3708 }
3709 
3710 int    os::win32::_vm_page_size       = 0;
3711 int    os::win32::_vm_allocation_granularity = 0;
3712 int    os::win32::_processor_type     = 0;
3713 // Processor level is not available on non-NT systems, use vm_version instead
3714 int    os::win32::_processor_level    = 0;
3715 julong os::win32::_physical_memory    = 0;
3716 size_t os::win32::_default_stack_size = 0;
3717 
3718          intx os::win32::_os_thread_limit    = 0;
3719 volatile intx os::win32::_os_thread_count    = 0;
3720 
3721 bool   os::win32::_is_nt              = false;
3722 bool   os::win32::_is_windows_2003    = false;
3723 bool   os::win32::_is_windows_server  = false;
3724 
3725 void os::win32::initialize_system_info() {
3726   SYSTEM_INFO si;
3727   GetSystemInfo(&si);
3728   _vm_page_size    = si.dwPageSize;
3729   _vm_allocation_granularity = si.dwAllocationGranularity;
3730   _processor_type  = si.dwProcessorType;
3731   _processor_level = si.wProcessorLevel;
3732   set_processor_count(si.dwNumberOfProcessors);
3733 
3734   MEMORYSTATUSEX ms;
3735   ms.dwLength = sizeof(ms);
3736 
3737   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3738   // dwMemoryLoad (% of memory in use)
3739   GlobalMemoryStatusEx(&ms);
3740   _physical_memory = ms.ullTotalPhys;
3741 
3742   OSVERSIONINFOEX oi;
3743   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3744   GetVersionEx((OSVERSIONINFO*)&oi);
3745   switch(oi.dwPlatformId) {
3746     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3747     case VER_PLATFORM_WIN32_NT:
3748       _is_nt = true;
3749       {
3750         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3751         if (os_vers == 5002) {
3752           _is_windows_2003 = true;
3753         }
3754         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3755           oi.wProductType == VER_NT_SERVER) {
3756             _is_windows_server = true;
3757         }
3758       }
3759       break;
3760     default: fatal("Unknown platform");
3761   }
3762 
3763   _default_stack_size = os::current_stack_size();
3764   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3765   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3766     "stack size not a multiple of page size");
3767 
3768   initialize_performance_counter();
3769 
3770   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3771   // known to deadlock the system, if the VM issues to thread operations with
3772   // a too high frequency, e.g., such as changing the priorities.
3773   // The 6000 seems to work well - no deadlocks has been notices on the test
3774   // programs that we have seen experience this problem.
3775   if (!os::win32::is_nt()) {
3776     StarvationMonitorInterval = 6000;
3777   }
3778 }
3779 
3780 
3781 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3782   char path[MAX_PATH];
3783   DWORD size;
3784   DWORD pathLen = (DWORD)sizeof(path);
3785   HINSTANCE result = NULL;
3786 
3787   // only allow library name without path component
3788   assert(strchr(name, '\\') == NULL, "path not allowed");
3789   assert(strchr(name, ':') == NULL, "path not allowed");
3790   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3791     jio_snprintf(ebuf, ebuflen,
3792       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3793     return NULL;
3794   }
3795 
3796   // search system directory
3797   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3798     strcat(path, "\\");
3799     strcat(path, name);
3800     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3801       return result;
3802     }
3803   }
3804 
3805   // try Windows directory
3806   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3807     strcat(path, "\\");
3808     strcat(path, name);
3809     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3810       return result;
3811     }
3812   }
3813 
3814   jio_snprintf(ebuf, ebuflen,
3815     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3816   return NULL;
3817 }
3818 
3819 void os::win32::setmode_streams() {
3820   _setmode(_fileno(stdin), _O_BINARY);
3821   _setmode(_fileno(stdout), _O_BINARY);
3822   _setmode(_fileno(stderr), _O_BINARY);
3823 }
3824 
3825 
3826 bool os::is_debugger_attached() {
3827   return IsDebuggerPresent() ? true : false;
3828 }
3829 
3830 
3831 void os::wait_for_keypress_at_exit(void) {
3832   if (PauseAtExit) {
3833     fprintf(stderr, "Press any key to continue...\n");
3834     fgetc(stdin);
3835   }
3836 }
3837 
3838 
3839 int os::message_box(const char* title, const char* message) {
3840   int result = MessageBox(NULL, message, title,
3841                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3842   return result == IDYES;
3843 }
3844 
3845 int os::allocate_thread_local_storage() {
3846   return TlsAlloc();
3847 }
3848 
3849 
3850 void os::free_thread_local_storage(int index) {
3851   TlsFree(index);
3852 }
3853 
3854 
3855 void os::thread_local_storage_at_put(int index, void* value) {
3856   TlsSetValue(index, value);
3857   assert(thread_local_storage_at(index) == value, "Just checking");
3858 }
3859 
3860 
3861 void* os::thread_local_storage_at(int index) {
3862   return TlsGetValue(index);
3863 }
3864 
3865 
3866 #ifndef PRODUCT
3867 #ifndef _WIN64
3868 // Helpers to check whether NX protection is enabled
3869 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3870   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3871       pex->ExceptionRecord->NumberParameters > 0 &&
3872       pex->ExceptionRecord->ExceptionInformation[0] ==
3873       EXCEPTION_INFO_EXEC_VIOLATION) {
3874     return EXCEPTION_EXECUTE_HANDLER;
3875   }
3876   return EXCEPTION_CONTINUE_SEARCH;
3877 }
3878 
3879 void nx_check_protection() {
3880   // If NX is enabled we'll get an exception calling into code on the stack
3881   char code[] = { (char)0xC3 }; // ret
3882   void *code_ptr = (void *)code;
3883   __try {
3884     __asm call code_ptr
3885   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3886     tty->print_raw_cr("NX protection detected.");
3887   }
3888 }
3889 #endif // _WIN64
3890 #endif // PRODUCT
3891 
3892 // this is called _before_ the global arguments have been parsed
3893 void os::init(void) {
3894   _initial_pid = _getpid();
3895 
3896   init_random(1234567);
3897 
3898   win32::initialize_system_info();
3899   win32::setmode_streams();
3900   init_page_sizes((size_t) win32::vm_page_size());
3901 
3902   // For better scalability on MP systems (must be called after initialize_system_info)
3903 #ifndef PRODUCT
3904   if (is_MP()) {
3905     NoYieldsInMicrolock = true;
3906   }
3907 #endif
3908   // This may be overridden later when argument processing is done.
3909   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3910     os::win32::is_windows_2003());
3911 
3912   // Initialize main_process and main_thread
3913   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3914  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3915                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3916     fatal("DuplicateHandle failed\n");
3917   }
3918   main_thread_id = (int) GetCurrentThreadId();
3919 }
3920 
3921 // To install functions for atexit processing
3922 extern "C" {
3923   static void perfMemory_exit_helper() {
3924     perfMemory_exit();
3925   }
3926 }
3927 
3928 static jint initSock();
3929 
3930 // this is called _after_ the global arguments have been parsed
3931 jint os::init_2(void) {
3932   // Allocate a single page and mark it as readable for safepoint polling
3933   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3934   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3935 
3936   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3937   guarantee( return_page != NULL, "Commit Failed for polling page");
3938 
3939   os::set_polling_page( polling_page );
3940 
3941 #ifndef PRODUCT
3942   if( Verbose && PrintMiscellaneous )
3943     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3944 #endif
3945 
3946   if (!UseMembar) {
3947     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3948     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3949 
3950     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3951     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3952 
3953     os::set_memory_serialize_page( mem_serialize_page );
3954 
3955 #ifndef PRODUCT
3956     if(Verbose && PrintMiscellaneous)
3957       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3958 #endif
3959   }
3960 
3961   // Setup Windows Exceptions
3962 
3963   // for debugging float code generation bugs
3964   if (ForceFloatExceptions) {
3965 #ifndef  _WIN64
3966     static long fp_control_word = 0;
3967     __asm { fstcw fp_control_word }
3968     // see Intel PPro Manual, Vol. 2, p 7-16
3969     const long precision = 0x20;
3970     const long underflow = 0x10;
3971     const long overflow  = 0x08;
3972     const long zero_div  = 0x04;
3973     const long denorm    = 0x02;
3974     const long invalid   = 0x01;
3975     fp_control_word |= invalid;
3976     __asm { fldcw fp_control_word }
3977 #endif
3978   }
3979 
3980   // If stack_commit_size is 0, windows will reserve the default size,
3981   // but only commit a small portion of it.
3982   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3983   size_t default_reserve_size = os::win32::default_stack_size();
3984   size_t actual_reserve_size = stack_commit_size;
3985   if (stack_commit_size < default_reserve_size) {
3986     // If stack_commit_size == 0, we want this too
3987     actual_reserve_size = default_reserve_size;
3988   }
3989 
3990   // Check minimum allowable stack size for thread creation and to initialize
3991   // the java system classes, including StackOverflowError - depends on page
3992   // size.  Add a page for compiler2 recursion in main thread.
3993   // Add in 2*BytesPerWord times page size to account for VM stack during
3994   // class initialization depending on 32 or 64 bit VM.
3995   size_t min_stack_allowed =
3996             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3997             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3998   if (actual_reserve_size < min_stack_allowed) {
3999     tty->print_cr("\nThe stack size specified is too small, "
4000                   "Specify at least %dk",
4001                   min_stack_allowed / K);
4002     return JNI_ERR;
4003   }
4004 
4005   JavaThread::set_stack_size_at_create(stack_commit_size);
4006 
4007   // Calculate theoretical max. size of Threads to guard gainst artifical
4008   // out-of-memory situations, where all available address-space has been
4009   // reserved by thread stacks.
4010   assert(actual_reserve_size != 0, "Must have a stack");
4011 
4012   // Calculate the thread limit when we should start doing Virtual Memory
4013   // banging. Currently when the threads will have used all but 200Mb of space.
4014   //
4015   // TODO: consider performing a similar calculation for commit size instead
4016   // as reserve size, since on a 64-bit platform we'll run into that more
4017   // often than running out of virtual memory space.  We can use the
4018   // lower value of the two calculations as the os_thread_limit.
4019   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4020   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4021 
4022   // at exit methods are called in the reverse order of their registration.
4023   // there is no limit to the number of functions registered. atexit does
4024   // not set errno.
4025 
4026   if (PerfAllowAtExitRegistration) {
4027     // only register atexit functions if PerfAllowAtExitRegistration is set.
4028     // atexit functions can be delayed until process exit time, which
4029     // can be problematic for embedded VM situations. Embedded VMs should
4030     // call DestroyJavaVM() to assure that VM resources are released.
4031 
4032     // note: perfMemory_exit_helper atexit function may be removed in
4033     // the future if the appropriate cleanup code can be added to the
4034     // VM_Exit VMOperation's doit method.
4035     if (atexit(perfMemory_exit_helper) != 0) {
4036       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4037     }
4038   }
4039 
4040 #ifndef _WIN64
4041   // Print something if NX is enabled (win32 on AMD64)
4042   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4043 #endif
4044 
4045   // initialize thread priority policy
4046   prio_init();
4047 
4048   if (UseNUMA && !ForceNUMA) {
4049     UseNUMA = false; // We don't fully support this yet
4050   }
4051 
4052   if (UseNUMAInterleaving) {
4053     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4054     bool success = numa_interleaving_init();
4055     if (!success) UseNUMAInterleaving = false;
4056   }
4057 
4058   if (initSock() != JNI_OK) {
4059     return JNI_ERR;
4060   }
4061 
4062   return JNI_OK;
4063 }
4064 
4065 // Mark the polling page as unreadable
4066 void os::make_polling_page_unreadable(void) {
4067   DWORD old_status;
4068   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
4069     fatal("Could not disable polling page");
4070 };
4071 
4072 // Mark the polling page as readable
4073 void os::make_polling_page_readable(void) {
4074   DWORD old_status;
4075   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
4076     fatal("Could not enable polling page");
4077 };
4078 
4079 
4080 int os::stat(const char *path, struct stat *sbuf) {
4081   char pathbuf[MAX_PATH];
4082   if (strlen(path) > MAX_PATH - 1) {
4083     errno = ENAMETOOLONG;
4084     return -1;
4085   }
4086   os::native_path(strcpy(pathbuf, path));
4087   int ret = ::stat(pathbuf, sbuf);
4088   if (sbuf != NULL && UseUTCFileTimestamp) {
4089     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4090     // the system timezone and so can return different values for the
4091     // same file if/when daylight savings time changes.  This adjustment
4092     // makes sure the same timestamp is returned regardless of the TZ.
4093     //
4094     // See:
4095     // http://msdn.microsoft.com/library/
4096     //   default.asp?url=/library/en-us/sysinfo/base/
4097     //   time_zone_information_str.asp
4098     // and
4099     // http://msdn.microsoft.com/library/default.asp?url=
4100     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4101     //
4102     // NOTE: there is a insidious bug here:  If the timezone is changed
4103     // after the call to stat() but before 'GetTimeZoneInformation()', then
4104     // the adjustment we do here will be wrong and we'll return the wrong
4105     // value (which will likely end up creating an invalid class data
4106     // archive).  Absent a better API for this, or some time zone locking
4107     // mechanism, we'll have to live with this risk.
4108     TIME_ZONE_INFORMATION tz;
4109     DWORD tzid = GetTimeZoneInformation(&tz);
4110     int daylightBias =
4111       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4112     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4113   }
4114   return ret;
4115 }
4116 
4117 
4118 #define FT2INT64(ft) \
4119   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4120 
4121 
4122 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4123 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4124 // of a thread.
4125 //
4126 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4127 // the fast estimate available on the platform.
4128 
4129 // current_thread_cpu_time() is not optimized for Windows yet
4130 jlong os::current_thread_cpu_time() {
4131   // return user + sys since the cost is the same
4132   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4133 }
4134 
4135 jlong os::thread_cpu_time(Thread* thread) {
4136   // consistent with what current_thread_cpu_time() returns.
4137   return os::thread_cpu_time(thread, true /* user+sys */);
4138 }
4139 
4140 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4141   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4142 }
4143 
4144 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4145   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4146   // If this function changes, os::is_thread_cpu_time_supported() should too
4147   if (os::win32::is_nt()) {
4148     FILETIME CreationTime;
4149     FILETIME ExitTime;
4150     FILETIME KernelTime;
4151     FILETIME UserTime;
4152 
4153     if ( GetThreadTimes(thread->osthread()->thread_handle(),
4154                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4155       return -1;
4156     else
4157       if (user_sys_cpu_time) {
4158         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4159       } else {
4160         return FT2INT64(UserTime) * 100;
4161       }
4162   } else {
4163     return (jlong) timeGetTime() * 1000000;
4164   }
4165 }
4166 
4167 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4168   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4169   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4170   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4171   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4172 }
4173 
4174 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4175   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4176   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4177   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4178   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4179 }
4180 
4181 bool os::is_thread_cpu_time_supported() {
4182   // see os::thread_cpu_time
4183   if (os::win32::is_nt()) {
4184     FILETIME CreationTime;
4185     FILETIME ExitTime;
4186     FILETIME KernelTime;
4187     FILETIME UserTime;
4188 
4189     if ( GetThreadTimes(GetCurrentThread(),
4190                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4191       return false;
4192     else
4193       return true;
4194   } else {
4195     return false;
4196   }
4197 }
4198 
4199 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4200 // It does have primitives (PDH API) to get CPU usage and run queue length.
4201 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4202 // If we wanted to implement loadavg on Windows, we have a few options:
4203 //
4204 // a) Query CPU usage and run queue length and "fake" an answer by
4205 //    returning the CPU usage if it's under 100%, and the run queue
4206 //    length otherwise.  It turns out that querying is pretty slow
4207 //    on Windows, on the order of 200 microseconds on a fast machine.
4208 //    Note that on the Windows the CPU usage value is the % usage
4209 //    since the last time the API was called (and the first call
4210 //    returns 100%), so we'd have to deal with that as well.
4211 //
4212 // b) Sample the "fake" answer using a sampling thread and store
4213 //    the answer in a global variable.  The call to loadavg would
4214 //    just return the value of the global, avoiding the slow query.
4215 //
4216 // c) Sample a better answer using exponential decay to smooth the
4217 //    value.  This is basically the algorithm used by UNIX kernels.
4218 //
4219 // Note that sampling thread starvation could affect both (b) and (c).
4220 int os::loadavg(double loadavg[], int nelem) {
4221   return -1;
4222 }
4223 
4224 
4225 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4226 bool os::dont_yield() {
4227   return DontYieldALot;
4228 }
4229 
4230 // This method is a slightly reworked copy of JDK's sysOpen
4231 // from src/windows/hpi/src/sys_api_md.c
4232 
4233 int os::open(const char *path, int oflag, int mode) {
4234   char pathbuf[MAX_PATH];
4235 
4236   if (strlen(path) > MAX_PATH - 1) {
4237     errno = ENAMETOOLONG;
4238           return -1;
4239   }
4240   os::native_path(strcpy(pathbuf, path));
4241   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4242 }
4243 
4244 FILE* os::open(int fd, const char* mode) {
4245   return ::_fdopen(fd, mode);
4246 }
4247 
4248 // Is a (classpath) directory empty?
4249 bool os::dir_is_empty(const char* path) {
4250   WIN32_FIND_DATA fd;
4251   HANDLE f = FindFirstFile(path, &fd);
4252   if (f == INVALID_HANDLE_VALUE) {
4253     return true;
4254   }
4255   FindClose(f);
4256   return false;
4257 }
4258 
4259 // create binary file, rewriting existing file if required
4260 int os::create_binary_file(const char* path, bool rewrite_existing) {
4261   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4262   if (!rewrite_existing) {
4263     oflags |= _O_EXCL;
4264   }
4265   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4266 }
4267 
4268 // return current position of file pointer
4269 jlong os::current_file_offset(int fd) {
4270   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4271 }
4272 
4273 // move file pointer to the specified offset
4274 jlong os::seek_to_file_offset(int fd, jlong offset) {
4275   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4276 }
4277 
4278 
4279 jlong os::lseek(int fd, jlong offset, int whence) {
4280   return (jlong) ::_lseeki64(fd, offset, whence);
4281 }
4282 
4283 // This method is a slightly reworked copy of JDK's sysNativePath
4284 // from src/windows/hpi/src/path_md.c
4285 
4286 /* Convert a pathname to native format.  On win32, this involves forcing all
4287    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4288    sometimes rejects '/') and removing redundant separators.  The input path is
4289    assumed to have been converted into the character encoding used by the local
4290    system.  Because this might be a double-byte encoding, care is taken to
4291    treat double-byte lead characters correctly.
4292 
4293    This procedure modifies the given path in place, as the result is never
4294    longer than the original.  There is no error return; this operation always
4295    succeeds. */
4296 char * os::native_path(char *path) {
4297   char *src = path, *dst = path, *end = path;
4298   char *colon = NULL;           /* If a drive specifier is found, this will
4299                                         point to the colon following the drive
4300                                         letter */
4301 
4302   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4303   assert(((!::IsDBCSLeadByte('/'))
4304     && (!::IsDBCSLeadByte('\\'))
4305     && (!::IsDBCSLeadByte(':'))),
4306     "Illegal lead byte");
4307 
4308   /* Check for leading separators */
4309 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4310   while (isfilesep(*src)) {
4311     src++;
4312   }
4313 
4314   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4315     /* Remove leading separators if followed by drive specifier.  This
4316       hack is necessary to support file URLs containing drive
4317       specifiers (e.g., "file://c:/path").  As a side effect,
4318       "/c:/path" can be used as an alternative to "c:/path". */
4319     *dst++ = *src++;
4320     colon = dst;
4321     *dst++ = ':';
4322     src++;
4323   } else {
4324     src = path;
4325     if (isfilesep(src[0]) && isfilesep(src[1])) {
4326       /* UNC pathname: Retain first separator; leave src pointed at
4327          second separator so that further separators will be collapsed
4328          into the second separator.  The result will be a pathname
4329          beginning with "\\\\" followed (most likely) by a host name. */
4330       src = dst = path + 1;
4331       path[0] = '\\';     /* Force first separator to '\\' */
4332     }
4333   }
4334 
4335   end = dst;
4336 
4337   /* Remove redundant separators from remainder of path, forcing all
4338       separators to be '\\' rather than '/'. Also, single byte space
4339       characters are removed from the end of the path because those
4340       are not legal ending characters on this operating system.
4341   */
4342   while (*src != '\0') {
4343     if (isfilesep(*src)) {
4344       *dst++ = '\\'; src++;
4345       while (isfilesep(*src)) src++;
4346       if (*src == '\0') {
4347         /* Check for trailing separator */
4348         end = dst;
4349         if (colon == dst - 2) break;                      /* "z:\\" */
4350         if (dst == path + 1) break;                       /* "\\" */
4351         if (dst == path + 2 && isfilesep(path[0])) {
4352           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4353             beginning of a UNC pathname.  Even though it is not, by
4354             itself, a valid UNC pathname, we leave it as is in order
4355             to be consistent with the path canonicalizer as well
4356             as the win32 APIs, which treat this case as an invalid
4357             UNC pathname rather than as an alias for the root
4358             directory of the current drive. */
4359           break;
4360         }
4361         end = --dst;  /* Path does not denote a root directory, so
4362                                     remove trailing separator */
4363         break;
4364       }
4365       end = dst;
4366     } else {
4367       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4368         *dst++ = *src++;
4369         if (*src) *dst++ = *src++;
4370         end = dst;
4371       } else {         /* Copy a single-byte character */
4372         char c = *src++;
4373         *dst++ = c;
4374         /* Space is not a legal ending character */
4375         if (c != ' ') end = dst;
4376       }
4377     }
4378   }
4379 
4380   *end = '\0';
4381 
4382   /* For "z:", add "." to work around a bug in the C runtime library */
4383   if (colon == dst - 1) {
4384           path[2] = '.';
4385           path[3] = '\0';
4386   }
4387 
4388   return path;
4389 }
4390 
4391 // This code is a copy of JDK's sysSetLength
4392 // from src/windows/hpi/src/sys_api_md.c
4393 
4394 int os::ftruncate(int fd, jlong length) {
4395   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4396   long high = (long)(length >> 32);
4397   DWORD ret;
4398 
4399   if (h == (HANDLE)(-1)) {
4400     return -1;
4401   }
4402 
4403   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4404   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4405       return -1;
4406   }
4407 
4408   if (::SetEndOfFile(h) == FALSE) {
4409     return -1;
4410   }
4411 
4412   return 0;
4413 }
4414 
4415 
4416 // This code is a copy of JDK's sysSync
4417 // from src/windows/hpi/src/sys_api_md.c
4418 // except for the legacy workaround for a bug in Win 98
4419 
4420 int os::fsync(int fd) {
4421   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4422 
4423   if ( (!::FlushFileBuffers(handle)) &&
4424          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4425     /* from winerror.h */
4426     return -1;
4427   }
4428   return 0;
4429 }
4430 
4431 static int nonSeekAvailable(int, long *);
4432 static int stdinAvailable(int, long *);
4433 
4434 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4435 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4436 
4437 // This code is a copy of JDK's sysAvailable
4438 // from src/windows/hpi/src/sys_api_md.c
4439 
4440 int os::available(int fd, jlong *bytes) {
4441   jlong cur, end;
4442   struct _stati64 stbuf64;
4443 
4444   if (::_fstati64(fd, &stbuf64) >= 0) {
4445     int mode = stbuf64.st_mode;
4446     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4447       int ret;
4448       long lpbytes;
4449       if (fd == 0) {
4450         ret = stdinAvailable(fd, &lpbytes);
4451       } else {
4452         ret = nonSeekAvailable(fd, &lpbytes);
4453       }
4454       (*bytes) = (jlong)(lpbytes);
4455       return ret;
4456     }
4457     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4458       return FALSE;
4459     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4460       return FALSE;
4461     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4462       return FALSE;
4463     }
4464     *bytes = end - cur;
4465     return TRUE;
4466   } else {
4467     return FALSE;
4468   }
4469 }
4470 
4471 // This code is a copy of JDK's nonSeekAvailable
4472 // from src/windows/hpi/src/sys_api_md.c
4473 
4474 static int nonSeekAvailable(int fd, long *pbytes) {
4475   /* This is used for available on non-seekable devices
4476     * (like both named and anonymous pipes, such as pipes
4477     *  connected to an exec'd process).
4478     * Standard Input is a special case.
4479     *
4480     */
4481   HANDLE han;
4482 
4483   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4484     return FALSE;
4485   }
4486 
4487   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4488         /* PeekNamedPipe fails when at EOF.  In that case we
4489          * simply make *pbytes = 0 which is consistent with the
4490          * behavior we get on Solaris when an fd is at EOF.
4491          * The only alternative is to raise an Exception,
4492          * which isn't really warranted.
4493          */
4494     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4495       return FALSE;
4496     }
4497     *pbytes = 0;
4498   }
4499   return TRUE;
4500 }
4501 
4502 #define MAX_INPUT_EVENTS 2000
4503 
4504 // This code is a copy of JDK's stdinAvailable
4505 // from src/windows/hpi/src/sys_api_md.c
4506 
4507 static int stdinAvailable(int fd, long *pbytes) {
4508   HANDLE han;
4509   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4510   DWORD numEvents = 0;  /* Number of events in buffer */
4511   DWORD i = 0;          /* Loop index */
4512   DWORD curLength = 0;  /* Position marker */
4513   DWORD actualLength = 0;       /* Number of bytes readable */
4514   BOOL error = FALSE;         /* Error holder */
4515   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4516 
4517   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4518         return FALSE;
4519   }
4520 
4521   /* Construct an array of input records in the console buffer */
4522   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4523   if (error == 0) {
4524     return nonSeekAvailable(fd, pbytes);
4525   }
4526 
4527   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4528   if (numEvents > MAX_INPUT_EVENTS) {
4529     numEvents = MAX_INPUT_EVENTS;
4530   }
4531 
4532   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4533   if (lpBuffer == NULL) {
4534     return FALSE;
4535   }
4536 
4537   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4538   if (error == 0) {
4539     os::free(lpBuffer, mtInternal);
4540     return FALSE;
4541   }
4542 
4543   /* Examine input records for the number of bytes available */
4544   for(i=0; i<numEvents; i++) {
4545     if (lpBuffer[i].EventType == KEY_EVENT) {
4546 
4547       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4548                                       &(lpBuffer[i].Event);
4549       if (keyRecord->bKeyDown == TRUE) {
4550         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4551         curLength++;
4552         if (*keyPressed == '\r') {
4553           actualLength = curLength;
4554         }
4555       }
4556     }
4557   }
4558 
4559   if(lpBuffer != NULL) {
4560     os::free(lpBuffer, mtInternal);
4561   }
4562 
4563   *pbytes = (long) actualLength;
4564   return TRUE;
4565 }
4566 
4567 // Map a block of memory.
4568 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4569                      char *addr, size_t bytes, bool read_only,
4570                      bool allow_exec) {
4571   HANDLE hFile;
4572   char* base;
4573 
4574   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4575                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4576   if (hFile == NULL) {
4577     if (PrintMiscellaneous && Verbose) {
4578       DWORD err = GetLastError();
4579       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4580     }
4581     return NULL;
4582   }
4583 
4584   if (allow_exec) {
4585     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4586     // unless it comes from a PE image (which the shared archive is not.)
4587     // Even VirtualProtect refuses to give execute access to mapped memory
4588     // that was not previously executable.
4589     //
4590     // Instead, stick the executable region in anonymous memory.  Yuck.
4591     // Penalty is that ~4 pages will not be shareable - in the future
4592     // we might consider DLLizing the shared archive with a proper PE
4593     // header so that mapping executable + sharing is possible.
4594 
4595     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4596                                 PAGE_READWRITE);
4597     if (base == NULL) {
4598       if (PrintMiscellaneous && Verbose) {
4599         DWORD err = GetLastError();
4600         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4601       }
4602       CloseHandle(hFile);
4603       return NULL;
4604     }
4605 
4606     DWORD bytes_read;
4607     OVERLAPPED overlapped;
4608     overlapped.Offset = (DWORD)file_offset;
4609     overlapped.OffsetHigh = 0;
4610     overlapped.hEvent = NULL;
4611     // ReadFile guarantees that if the return value is true, the requested
4612     // number of bytes were read before returning.
4613     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4614     if (!res) {
4615       if (PrintMiscellaneous && Verbose) {
4616         DWORD err = GetLastError();
4617         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4618       }
4619       release_memory(base, bytes);
4620       CloseHandle(hFile);
4621       return NULL;
4622     }
4623   } else {
4624     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4625                                     NULL /*file_name*/);
4626     if (hMap == NULL) {
4627       if (PrintMiscellaneous && Verbose) {
4628         DWORD err = GetLastError();
4629         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4630       }
4631       CloseHandle(hFile);
4632       return NULL;
4633     }
4634 
4635     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4636     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4637                                   (DWORD)bytes, addr);
4638     if (base == NULL) {
4639       if (PrintMiscellaneous && Verbose) {
4640         DWORD err = GetLastError();
4641         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4642       }
4643       CloseHandle(hMap);
4644       CloseHandle(hFile);
4645       return NULL;
4646     }
4647 
4648     if (CloseHandle(hMap) == 0) {
4649       if (PrintMiscellaneous && Verbose) {
4650         DWORD err = GetLastError();
4651         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4652       }
4653       CloseHandle(hFile);
4654       return base;
4655     }
4656   }
4657 
4658   if (allow_exec) {
4659     DWORD old_protect;
4660     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4661     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4662 
4663     if (!res) {
4664       if (PrintMiscellaneous && Verbose) {
4665         DWORD err = GetLastError();
4666         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4667       }
4668       // Don't consider this a hard error, on IA32 even if the
4669       // VirtualProtect fails, we should still be able to execute
4670       CloseHandle(hFile);
4671       return base;
4672     }
4673   }
4674 
4675   if (CloseHandle(hFile) == 0) {
4676     if (PrintMiscellaneous && Verbose) {
4677       DWORD err = GetLastError();
4678       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4679     }
4680     return base;
4681   }
4682 
4683   return base;
4684 }
4685 
4686 
4687 // Remap a block of memory.
4688 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4689                        char *addr, size_t bytes, bool read_only,
4690                        bool allow_exec) {
4691   // This OS does not allow existing memory maps to be remapped so we
4692   // have to unmap the memory before we remap it.
4693   if (!os::unmap_memory(addr, bytes)) {
4694     return NULL;
4695   }
4696 
4697   // There is a very small theoretical window between the unmap_memory()
4698   // call above and the map_memory() call below where a thread in native
4699   // code may be able to access an address that is no longer mapped.
4700 
4701   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4702            read_only, allow_exec);
4703 }
4704 
4705 
4706 // Unmap a block of memory.
4707 // Returns true=success, otherwise false.
4708 
4709 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4710   BOOL result = UnmapViewOfFile(addr);
4711   if (result == 0) {
4712     if (PrintMiscellaneous && Verbose) {
4713       DWORD err = GetLastError();
4714       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4715     }
4716     return false;
4717   }
4718   return true;
4719 }
4720 
4721 void os::pause() {
4722   char filename[MAX_PATH];
4723   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4724     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4725   } else {
4726     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4727   }
4728 
4729   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4730   if (fd != -1) {
4731     struct stat buf;
4732     ::close(fd);
4733     while (::stat(filename, &buf) == 0) {
4734       Sleep(100);
4735     }
4736   } else {
4737     jio_fprintf(stderr,
4738       "Could not open pause file '%s', continuing immediately.\n", filename);
4739   }
4740 }
4741 
4742 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4743   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4744 }
4745 
4746 /*
4747  * See the caveats for this class in os_windows.hpp
4748  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4749  * into this method and returns false. If no OS EXCEPTION was raised, returns
4750  * true.
4751  * The callback is supposed to provide the method that should be protected.
4752  */
4753 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4754   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4755   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4756       "crash_protection already set?");
4757 
4758   bool success = true;
4759   __try {
4760     WatcherThread::watcher_thread()->set_crash_protection(this);
4761     cb.call();
4762   } __except(EXCEPTION_EXECUTE_HANDLER) {
4763     // only for protection, nothing to do
4764     success = false;
4765   }
4766   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4767   return success;
4768 }
4769 
4770 // An Event wraps a win32 "CreateEvent" kernel handle.
4771 //
4772 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4773 //
4774 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4775 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4776 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4777 //     In addition, an unpark() operation might fetch the handle field, but the
4778 //     event could recycle between the fetch and the SetEvent() operation.
4779 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4780 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4781 //     on an stale but recycled handle would be harmless, but in practice this might
4782 //     confuse other non-Sun code, so it's not a viable approach.
4783 //
4784 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4785 //     with the Event.  The event handle is never closed.  This could be construed
4786 //     as handle leakage, but only up to the maximum # of threads that have been extant
4787 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4788 //     permit a process to have hundreds of thousands of open handles.
4789 //
4790 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4791 //     and release unused handles.
4792 //
4793 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4794 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4795 //
4796 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4797 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4798 //
4799 // We use (2).
4800 //
4801 // TODO-FIXME:
4802 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4803 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4804 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4805 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4806 //     into a single win32 CreateEvent() handle.
4807 //
4808 // _Event transitions in park()
4809 //   -1 => -1 : illegal
4810 //    1 =>  0 : pass - return immediately
4811 //    0 => -1 : block
4812 //
4813 // _Event serves as a restricted-range semaphore :
4814 //    -1 : thread is blocked
4815 //     0 : neutral  - thread is running or ready
4816 //     1 : signaled - thread is running or ready
4817 //
4818 // Another possible encoding of _Event would be
4819 // with explicit "PARKED" and "SIGNALED" bits.
4820 
4821 int os::PlatformEvent::park (jlong Millis) {
4822     guarantee (_ParkHandle != NULL , "Invariant") ;
4823     guarantee (Millis > 0          , "Invariant") ;
4824     int v ;
4825 
4826     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4827     // the initial park() operation.
4828 
4829     for (;;) {
4830         v = _Event ;
4831         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4832     }
4833     guarantee ((v == 0) || (v == 1), "invariant") ;
4834     if (v != 0) return OS_OK ;
4835 
4836     // Do this the hard way by blocking ...
4837     // TODO: consider a brief spin here, gated on the success of recent
4838     // spin attempts by this thread.
4839     //
4840     // We decompose long timeouts into series of shorter timed waits.
4841     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4842     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4843     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4844     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4845     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4846     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4847     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4848     // for the already waited time.  This policy does not admit any new outcomes.
4849     // In the future, however, we might want to track the accumulated wait time and
4850     // adjust Millis accordingly if we encounter a spurious wakeup.
4851 
4852     const int MAXTIMEOUT = 0x10000000 ;
4853     DWORD rv = WAIT_TIMEOUT ;
4854     while (_Event < 0 && Millis > 0) {
4855        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4856        if (Millis > MAXTIMEOUT) {
4857           prd = MAXTIMEOUT ;
4858        }
4859        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4860        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4861        if (rv == WAIT_TIMEOUT) {
4862            Millis -= prd ;
4863        }
4864     }
4865     v = _Event ;
4866     _Event = 0 ;
4867     // see comment at end of os::PlatformEvent::park() below:
4868     OrderAccess::fence() ;
4869     // If we encounter a nearly simultanous timeout expiry and unpark()
4870     // we return OS_OK indicating we awoke via unpark().
4871     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4872     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4873 }
4874 
4875 void os::PlatformEvent::park () {
4876     guarantee (_ParkHandle != NULL, "Invariant") ;
4877     // Invariant: Only the thread associated with the Event/PlatformEvent
4878     // may call park().
4879     int v ;
4880     for (;;) {
4881         v = _Event ;
4882         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4883     }
4884     guarantee ((v == 0) || (v == 1), "invariant") ;
4885     if (v != 0) return ;
4886 
4887     // Do this the hard way by blocking ...
4888     // TODO: consider a brief spin here, gated on the success of recent
4889     // spin attempts by this thread.
4890     while (_Event < 0) {
4891        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4892        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4893     }
4894 
4895     // Usually we'll find _Event == 0 at this point, but as
4896     // an optional optimization we clear it, just in case can
4897     // multiple unpark() operations drove _Event up to 1.
4898     _Event = 0 ;
4899     OrderAccess::fence() ;
4900     guarantee (_Event >= 0, "invariant") ;
4901 }
4902 
4903 void os::PlatformEvent::unpark() {
4904   guarantee (_ParkHandle != NULL, "Invariant") ;
4905 
4906   // Transitions for _Event:
4907   //    0 :=> 1
4908   //    1 :=> 1
4909   //   -1 :=> either 0 or 1; must signal target thread
4910   //          That is, we can safely transition _Event from -1 to either
4911   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4912   //          unpark() calls.
4913   // See also: "Semaphores in Plan 9" by Mullender & Cox
4914   //
4915   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4916   // that it will take two back-to-back park() calls for the owning
4917   // thread to block. This has the benefit of forcing a spurious return
4918   // from the first park() call after an unpark() call which will help
4919   // shake out uses of park() and unpark() without condition variables.
4920 
4921   if (Atomic::xchg(1, &_Event) >= 0) return;
4922 
4923   ::SetEvent(_ParkHandle);
4924 }
4925 
4926 
4927 // JSR166
4928 // -------------------------------------------------------
4929 
4930 /*
4931  * The Windows implementation of Park is very straightforward: Basic
4932  * operations on Win32 Events turn out to have the right semantics to
4933  * use them directly. We opportunistically resuse the event inherited
4934  * from Monitor.
4935  */
4936 
4937 
4938 void Parker::park(bool isAbsolute, jlong time) {
4939   guarantee (_ParkEvent != NULL, "invariant") ;
4940   // First, demultiplex/decode time arguments
4941   if (time < 0) { // don't wait
4942     return;
4943   }
4944   else if (time == 0 && !isAbsolute) {
4945     time = INFINITE;
4946   }
4947   else if  (isAbsolute) {
4948     time -= os::javaTimeMillis(); // convert to relative time
4949     if (time <= 0) // already elapsed
4950       return;
4951   }
4952   else { // relative
4953     time /= 1000000; // Must coarsen from nanos to millis
4954     if (time == 0)   // Wait for the minimal time unit if zero
4955       time = 1;
4956   }
4957 
4958   JavaThread* thread = (JavaThread*)(Thread::current());
4959   assert(thread->is_Java_thread(), "Must be JavaThread");
4960   JavaThread *jt = (JavaThread *)thread;
4961 
4962   // Don't wait if interrupted or already triggered
4963   if (Thread::is_interrupted(thread, false) ||
4964     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4965     ResetEvent(_ParkEvent);
4966     return;
4967   }
4968   else {
4969     ThreadBlockInVM tbivm(jt);
4970     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4971     jt->set_suspend_equivalent();
4972 
4973     WaitForSingleObject(_ParkEvent,  time);
4974     ResetEvent(_ParkEvent);
4975 
4976     // If externally suspended while waiting, re-suspend
4977     if (jt->handle_special_suspend_equivalent_condition()) {
4978       jt->java_suspend_self();
4979     }
4980   }
4981 }
4982 
4983 void Parker::unpark() {
4984   guarantee (_ParkEvent != NULL, "invariant") ;
4985   SetEvent(_ParkEvent);
4986 }
4987 
4988 // Run the specified command in a separate process. Return its exit value,
4989 // or -1 on failure (e.g. can't create a new process).
4990 int os::fork_and_exec(char* cmd) {
4991   STARTUPINFO si;
4992   PROCESS_INFORMATION pi;
4993 
4994   memset(&si, 0, sizeof(si));
4995   si.cb = sizeof(si);
4996   memset(&pi, 0, sizeof(pi));
4997   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4998                             cmd,    // command line
4999                             NULL,   // process security attribute
5000                             NULL,   // thread security attribute
5001                             TRUE,   // inherits system handles
5002                             0,      // no creation flags
5003                             NULL,   // use parent's environment block
5004                             NULL,   // use parent's starting directory
5005                             &si,    // (in) startup information
5006                             &pi);   // (out) process information
5007 
5008   if (rslt) {
5009     // Wait until child process exits.
5010     WaitForSingleObject(pi.hProcess, INFINITE);
5011 
5012     DWORD exit_code;
5013     GetExitCodeProcess(pi.hProcess, &exit_code);
5014 
5015     // Close process and thread handles.
5016     CloseHandle(pi.hProcess);
5017     CloseHandle(pi.hThread);
5018 
5019     return (int)exit_code;
5020   } else {
5021     return -1;
5022   }
5023 }
5024 
5025 //--------------------------------------------------------------------------------------------------
5026 // Non-product code
5027 
5028 static int mallocDebugIntervalCounter = 0;
5029 static int mallocDebugCounter = 0;
5030 bool os::check_heap(bool force) {
5031   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5032   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5033     // Note: HeapValidate executes two hardware breakpoints when it finds something
5034     // wrong; at these points, eax contains the address of the offending block (I think).
5035     // To get to the exlicit error message(s) below, just continue twice.
5036     HANDLE heap = GetProcessHeap();
5037     { HeapLock(heap);
5038       PROCESS_HEAP_ENTRY phe;
5039       phe.lpData = NULL;
5040       while (HeapWalk(heap, &phe) != 0) {
5041         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5042             !HeapValidate(heap, 0, phe.lpData)) {
5043           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5044           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5045           fatal("corrupted C heap");
5046         }
5047       }
5048       DWORD err = GetLastError();
5049       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5050         fatal(err_msg("heap walk aborted with error %d", err));
5051       }
5052       HeapUnlock(heap);
5053     }
5054     mallocDebugIntervalCounter = 0;
5055   }
5056   return true;
5057 }
5058 
5059 
5060 bool os::find(address addr, outputStream* st) {
5061   // Nothing yet
5062   return false;
5063 }
5064 
5065 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5066   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5067 
5068   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
5069     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5070     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5071     address addr = (address) exceptionRecord->ExceptionInformation[1];
5072 
5073     if (os::is_memory_serialize_page(thread, addr))
5074       return EXCEPTION_CONTINUE_EXECUTION;
5075   }
5076 
5077   return EXCEPTION_CONTINUE_SEARCH;
5078 }
5079 
5080 // We don't build a headless jre for Windows
5081 bool os::is_headless_jre() { return false; }
5082 
5083 static jint initSock() {
5084   WSADATA wsadata;
5085 
5086   if (!os::WinSock2Dll::WinSock2Available()) {
5087     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5088       ::GetLastError());
5089     return JNI_ERR;
5090   }
5091 
5092   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5093     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5094       ::GetLastError());
5095     return JNI_ERR;
5096   }
5097   return JNI_OK;
5098 }
5099 
5100 struct hostent* os::get_host_by_name(char* name) {
5101   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5102 }
5103 
5104 int os::socket_close(int fd) {
5105   return ::closesocket(fd);
5106 }
5107 
5108 int os::socket_available(int fd, jint *pbytes) {
5109   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
5110   return (ret < 0) ? 0 : 1;
5111 }
5112 
5113 int os::socket(int domain, int type, int protocol) {
5114   return ::socket(domain, type, protocol);
5115 }
5116 
5117 int os::listen(int fd, int count) {
5118   return ::listen(fd, count);
5119 }
5120 
5121 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5122   return ::connect(fd, him, len);
5123 }
5124 
5125 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
5126   return ::accept(fd, him, len);
5127 }
5128 
5129 int os::sendto(int fd, char* buf, size_t len, uint flags,
5130                struct sockaddr* to, socklen_t tolen) {
5131 
5132   return ::sendto(fd, buf, (int)len, flags, to, tolen);
5133 }
5134 
5135 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
5136                  sockaddr* from, socklen_t* fromlen) {
5137 
5138   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
5139 }
5140 
5141 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5142   return ::recv(fd, buf, (int)nBytes, flags);
5143 }
5144 
5145 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5146   return ::send(fd, buf, (int)nBytes, flags);
5147 }
5148 
5149 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5150   return ::send(fd, buf, (int)nBytes, flags);
5151 }
5152 
5153 int os::timeout(int fd, long timeout) {
5154   fd_set tbl;
5155   struct timeval t;
5156 
5157   t.tv_sec  = timeout / 1000;
5158   t.tv_usec = (timeout % 1000) * 1000;
5159 
5160   tbl.fd_count    = 1;
5161   tbl.fd_array[0] = fd;
5162 
5163   return ::select(1, &tbl, 0, 0, &t);
5164 }
5165 
5166 int os::get_host_name(char* name, int namelen) {
5167   return ::gethostname(name, namelen);
5168 }
5169 
5170 int os::socket_shutdown(int fd, int howto) {
5171   return ::shutdown(fd, howto);
5172 }
5173 
5174 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5175   return ::bind(fd, him, len);
5176 }
5177 
5178 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5179   return ::getsockname(fd, him, len);
5180 }
5181 
5182 int os::get_sock_opt(int fd, int level, int optname,
5183                      char* optval, socklen_t* optlen) {
5184   return ::getsockopt(fd, level, optname, optval, optlen);
5185 }
5186 
5187 int os::set_sock_opt(int fd, int level, int optname,
5188                      const char* optval, socklen_t optlen) {
5189   return ::setsockopt(fd, level, optname, optval, optlen);
5190 }
5191 
5192 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5193 #if defined(IA32)
5194 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5195 #elif defined (AMD64)
5196 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5197 #endif
5198 
5199 // returns true if thread could be suspended,
5200 // false otherwise
5201 static bool do_suspend(HANDLE* h) {
5202   if (h != NULL) {
5203     if (SuspendThread(*h) != ~0) {
5204       return true;
5205     }
5206   }
5207   return false;
5208 }
5209 
5210 // resume the thread
5211 // calling resume on an active thread is a no-op
5212 static void do_resume(HANDLE* h) {
5213   if (h != NULL) {
5214     ResumeThread(*h);
5215   }
5216 }
5217 
5218 // retrieve a suspend/resume context capable handle
5219 // from the tid. Caller validates handle return value.
5220 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
5221   if (h != NULL) {
5222     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5223   }
5224 }
5225 
5226 //
5227 // Thread sampling implementation
5228 //
5229 void os::SuspendedThreadTask::internal_do_task() {
5230   CONTEXT    ctxt;
5231   HANDLE     h = NULL;
5232 
5233   // get context capable handle for thread
5234   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5235 
5236   // sanity
5237   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5238     return;
5239   }
5240 
5241   // suspend the thread
5242   if (do_suspend(&h)) {
5243     ctxt.ContextFlags = sampling_context_flags;
5244     // get thread context
5245     GetThreadContext(h, &ctxt);
5246     SuspendedThreadTaskContext context(_thread, &ctxt);
5247     // pass context to Thread Sampling impl
5248     do_task(context);
5249     // resume thread
5250     do_resume(&h);
5251   }
5252 
5253   // close handle
5254   CloseHandle(h);
5255 }
5256 
5257 
5258 // Kernel32 API
5259 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5260 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5261 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5262 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5263 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5264 
5265 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5266 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5267 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5268 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5269 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5270 
5271 
5272 BOOL                        os::Kernel32Dll::initialized = FALSE;
5273 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5274   assert(initialized && _GetLargePageMinimum != NULL,
5275     "GetLargePageMinimumAvailable() not yet called");
5276   return _GetLargePageMinimum();
5277 }
5278 
5279 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5280   if (!initialized) {
5281     initialize();
5282   }
5283   return _GetLargePageMinimum != NULL;
5284 }
5285 
5286 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5287   if (!initialized) {
5288     initialize();
5289   }
5290   return _VirtualAllocExNuma != NULL;
5291 }
5292 
5293 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5294   assert(initialized && _VirtualAllocExNuma != NULL,
5295     "NUMACallsAvailable() not yet called");
5296 
5297   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5298 }
5299 
5300 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5301   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5302     "NUMACallsAvailable() not yet called");
5303 
5304   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5305 }
5306 
5307 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5308   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5309     "NUMACallsAvailable() not yet called");
5310 
5311   return _GetNumaNodeProcessorMask(node, proc_mask);
5312 }
5313 
5314 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5315   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5316     if (!initialized) {
5317       initialize();
5318     }
5319 
5320     if (_RtlCaptureStackBackTrace != NULL) {
5321       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5322         BackTrace, BackTraceHash);
5323     } else {
5324       return 0;
5325     }
5326 }
5327 
5328 void os::Kernel32Dll::initializeCommon() {
5329   if (!initialized) {
5330     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5331     assert(handle != NULL, "Just check");
5332     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5333     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5334     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5335     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5336     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5337     initialized = TRUE;
5338   }
5339 }
5340 
5341 
5342 
5343 #ifndef JDK6_OR_EARLIER
5344 
5345 void os::Kernel32Dll::initialize() {
5346   initializeCommon();
5347 }
5348 
5349 
5350 // Kernel32 API
5351 inline BOOL os::Kernel32Dll::SwitchToThread() {
5352   return ::SwitchToThread();
5353 }
5354 
5355 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5356   return true;
5357 }
5358 
5359   // Help tools
5360 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5361   return true;
5362 }
5363 
5364 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5365   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5366 }
5367 
5368 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5369   return ::Module32First(hSnapshot, lpme);
5370 }
5371 
5372 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5373   return ::Module32Next(hSnapshot, lpme);
5374 }
5375 
5376 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5377   ::GetNativeSystemInfo(lpSystemInfo);
5378 }
5379 
5380 // PSAPI API
5381 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5382   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5383 }
5384 
5385 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5386   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5387 }
5388 
5389 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5390   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5391 }
5392 
5393 inline BOOL os::PSApiDll::PSApiAvailable() {
5394   return true;
5395 }
5396 
5397 
5398 // WinSock2 API
5399 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5400   return ::WSAStartup(wVersionRequested, lpWSAData);
5401 }
5402 
5403 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5404   return ::gethostbyname(name);
5405 }
5406 
5407 inline BOOL os::WinSock2Dll::WinSock2Available() {
5408   return true;
5409 }
5410 
5411 // Advapi API
5412 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5413    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5414    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5415      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5416        BufferLength, PreviousState, ReturnLength);
5417 }
5418 
5419 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5420   PHANDLE TokenHandle) {
5421     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5422 }
5423 
5424 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5425   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5426 }
5427 
5428 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5429   return true;
5430 }
5431 
5432 void* os::get_default_process_handle() {
5433   return (void*)GetModuleHandle(NULL);
5434 }
5435 
5436 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5437 // which is used to find statically linked in agents.
5438 // Additionally for windows, takes into account __stdcall names.
5439 // Parameters:
5440 //            sym_name: Symbol in library we are looking for
5441 //            lib_name: Name of library to look in, NULL for shared libs.
5442 //            is_absolute_path == true if lib_name is absolute path to agent
5443 //                                     such as "C:/a/b/L.dll"
5444 //            == false if only the base name of the library is passed in
5445 //               such as "L"
5446 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5447                                     bool is_absolute_path) {
5448   char *agent_entry_name;
5449   size_t len;
5450   size_t name_len;
5451   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5452   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5453   const char *start;
5454 
5455   if (lib_name != NULL) {
5456     len = name_len = strlen(lib_name);
5457     if (is_absolute_path) {
5458       // Need to strip path, prefix and suffix
5459       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5460         lib_name = ++start;
5461       } else {
5462         // Need to check for drive prefix
5463         if ((start = strchr(lib_name, ':')) != NULL) {
5464           lib_name = ++start;
5465         }
5466       }
5467       if (len <= (prefix_len + suffix_len)) {
5468         return NULL;
5469       }
5470       lib_name += prefix_len;
5471       name_len = strlen(lib_name) - suffix_len;
5472     }
5473   }
5474   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5475   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5476   if (agent_entry_name == NULL) {
5477     return NULL;
5478   }
5479   if (lib_name != NULL) {
5480     const char *p = strrchr(sym_name, '@');
5481     if (p != NULL && p != sym_name) {
5482       // sym_name == _Agent_OnLoad@XX
5483       strncpy(agent_entry_name, sym_name, (p - sym_name));
5484       agent_entry_name[(p-sym_name)] = '\0';
5485       // agent_entry_name == _Agent_OnLoad
5486       strcat(agent_entry_name, "_");
5487       strncat(agent_entry_name, lib_name, name_len);
5488       strcat(agent_entry_name, p);
5489       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5490     } else {
5491       strcpy(agent_entry_name, sym_name);
5492       strcat(agent_entry_name, "_");
5493       strncat(agent_entry_name, lib_name, name_len);
5494     }
5495   } else {
5496     strcpy(agent_entry_name, sym_name);
5497   }
5498   return agent_entry_name;
5499 }
5500 
5501 #else
5502 // Kernel32 API
5503 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5504 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5505 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5506 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5507 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5508 
5509 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5510 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5511 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5512 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5513 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5514 
5515 void os::Kernel32Dll::initialize() {
5516   if (!initialized) {
5517     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5518     assert(handle != NULL, "Just check");
5519 
5520     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5521     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5522       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5523     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5524     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5525     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5526     initializeCommon();  // resolve the functions that always need resolving
5527 
5528     initialized = TRUE;
5529   }
5530 }
5531 
5532 BOOL os::Kernel32Dll::SwitchToThread() {
5533   assert(initialized && _SwitchToThread != NULL,
5534     "SwitchToThreadAvailable() not yet called");
5535   return _SwitchToThread();
5536 }
5537 
5538 
5539 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5540   if (!initialized) {
5541     initialize();
5542   }
5543   return _SwitchToThread != NULL;
5544 }
5545 
5546 // Help tools
5547 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5548   if (!initialized) {
5549     initialize();
5550   }
5551   return _CreateToolhelp32Snapshot != NULL &&
5552          _Module32First != NULL &&
5553          _Module32Next != NULL;
5554 }
5555 
5556 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5557   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5558     "HelpToolsAvailable() not yet called");
5559 
5560   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5561 }
5562 
5563 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5564   assert(initialized && _Module32First != NULL,
5565     "HelpToolsAvailable() not yet called");
5566 
5567   return _Module32First(hSnapshot, lpme);
5568 }
5569 
5570 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5571   assert(initialized && _Module32Next != NULL,
5572     "HelpToolsAvailable() not yet called");
5573 
5574   return _Module32Next(hSnapshot, lpme);
5575 }
5576 
5577 
5578 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5579   if (!initialized) {
5580     initialize();
5581   }
5582   return _GetNativeSystemInfo != NULL;
5583 }
5584 
5585 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5586   assert(initialized && _GetNativeSystemInfo != NULL,
5587     "GetNativeSystemInfoAvailable() not yet called");
5588 
5589   _GetNativeSystemInfo(lpSystemInfo);
5590 }
5591 
5592 // PSAPI API
5593 
5594 
5595 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5596 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5597 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5598 
5599 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5600 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5601 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5602 BOOL                    os::PSApiDll::initialized = FALSE;
5603 
5604 void os::PSApiDll::initialize() {
5605   if (!initialized) {
5606     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5607     if (handle != NULL) {
5608       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5609         "EnumProcessModules");
5610       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5611         "GetModuleFileNameExA");
5612       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5613         "GetModuleInformation");
5614     }
5615     initialized = TRUE;
5616   }
5617 }
5618 
5619 
5620 
5621 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5622   assert(initialized && _EnumProcessModules != NULL,
5623     "PSApiAvailable() not yet called");
5624   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5625 }
5626 
5627 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5628   assert(initialized && _GetModuleFileNameEx != NULL,
5629     "PSApiAvailable() not yet called");
5630   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5631 }
5632 
5633 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5634   assert(initialized && _GetModuleInformation != NULL,
5635     "PSApiAvailable() not yet called");
5636   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5637 }
5638 
5639 BOOL os::PSApiDll::PSApiAvailable() {
5640   if (!initialized) {
5641     initialize();
5642   }
5643   return _EnumProcessModules != NULL &&
5644     _GetModuleFileNameEx != NULL &&
5645     _GetModuleInformation != NULL;
5646 }
5647 
5648 
5649 // WinSock2 API
5650 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5651 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5652 
5653 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5654 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5655 BOOL             os::WinSock2Dll::initialized = FALSE;
5656 
5657 void os::WinSock2Dll::initialize() {
5658   if (!initialized) {
5659     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5660     if (handle != NULL) {
5661       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5662       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5663     }
5664     initialized = TRUE;
5665   }
5666 }
5667 
5668 
5669 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5670   assert(initialized && _WSAStartup != NULL,
5671     "WinSock2Available() not yet called");
5672   return _WSAStartup(wVersionRequested, lpWSAData);
5673 }
5674 
5675 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5676   assert(initialized && _gethostbyname != NULL,
5677     "WinSock2Available() not yet called");
5678   return _gethostbyname(name);
5679 }
5680 
5681 BOOL os::WinSock2Dll::WinSock2Available() {
5682   if (!initialized) {
5683     initialize();
5684   }
5685   return _WSAStartup != NULL &&
5686     _gethostbyname != NULL;
5687 }
5688 
5689 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5690 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5691 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5692 
5693 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5694 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5695 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5696 BOOL                     os::Advapi32Dll::initialized = FALSE;
5697 
5698 void os::Advapi32Dll::initialize() {
5699   if (!initialized) {
5700     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5701     if (handle != NULL) {
5702       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5703         "AdjustTokenPrivileges");
5704       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5705         "OpenProcessToken");
5706       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5707         "LookupPrivilegeValueA");
5708     }
5709     initialized = TRUE;
5710   }
5711 }
5712 
5713 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5714    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5715    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5716    assert(initialized && _AdjustTokenPrivileges != NULL,
5717      "AdvapiAvailable() not yet called");
5718    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5719        BufferLength, PreviousState, ReturnLength);
5720 }
5721 
5722 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5723   PHANDLE TokenHandle) {
5724    assert(initialized && _OpenProcessToken != NULL,
5725      "AdvapiAvailable() not yet called");
5726     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5727 }
5728 
5729 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5730    assert(initialized && _LookupPrivilegeValue != NULL,
5731      "AdvapiAvailable() not yet called");
5732   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5733 }
5734 
5735 BOOL os::Advapi32Dll::AdvapiAvailable() {
5736   if (!initialized) {
5737     initialize();
5738   }
5739   return _AdjustTokenPrivileges != NULL &&
5740     _OpenProcessToken != NULL &&
5741     _LookupPrivilegeValue != NULL;
5742 }
5743 
5744 #endif
5745 
5746 #ifndef PRODUCT
5747 
5748 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5749 // contiguous memory block at a particular address.
5750 // The test first tries to find a good approximate address to allocate at by using the same
5751 // method to allocate some memory at any address. The test then tries to allocate memory in
5752 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5753 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5754 // the previously allocated memory is available for allocation. The only actual failure
5755 // that is reported is when the test tries to allocate at a particular location but gets a
5756 // different valid one. A NULL return value at this point is not considered an error but may
5757 // be legitimate.
5758 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5759 void TestReserveMemorySpecial_test() {
5760   if (!UseLargePages) {
5761     if (VerboseInternalVMTests) {
5762       gclog_or_tty->print("Skipping test because large pages are disabled");
5763     }
5764     return;
5765   }
5766   // save current value of globals
5767   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5768   bool old_use_numa_interleaving = UseNUMAInterleaving;
5769 
5770   // set globals to make sure we hit the correct code path
5771   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5772 
5773   // do an allocation at an address selected by the OS to get a good one.
5774   const size_t large_allocation_size = os::large_page_size() * 4;
5775   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5776   if (result == NULL) {
5777     if (VerboseInternalVMTests) {
5778       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5779         large_allocation_size);
5780     }
5781   } else {
5782     os::release_memory_special(result, large_allocation_size);
5783 
5784     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5785     // we managed to get it once.
5786     const size_t expected_allocation_size = os::large_page_size();
5787     char* expected_location = result + os::large_page_size();
5788     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5789     if (actual_location == NULL) {
5790       if (VerboseInternalVMTests) {
5791         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5792           expected_location, large_allocation_size);
5793       }
5794     } else {
5795       // release memory
5796       os::release_memory_special(actual_location, expected_allocation_size);
5797       // only now check, after releasing any memory to avoid any leaks.
5798       assert(actual_location == expected_location,
5799         err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5800           expected_location, expected_allocation_size, actual_location));
5801     }
5802   }
5803 
5804   // restore globals
5805   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5806   UseNUMAInterleaving = old_use_numa_interleaving;
5807 }
5808 #endif // PRODUCT
5809