1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/os.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  45 #include "gc_implementation/g1/heapRegion.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 #ifdef PRODUCT
  49 #define BLOCK_COMMENT(str) /* nothing */
  50 #define STOP(error) stop(error)
  51 #else
  52 #define BLOCK_COMMENT(str) block_comment(str)
  53 #define STOP(error) block_comment(error); stop(error)
  54 #endif
  55 
  56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  57 
  58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  59 
  60 #ifdef ASSERT
  61 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  62 #endif
  63 
  64 static Assembler::Condition reverse[] = {
  65     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  66     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  67     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  68     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  69     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  70     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  71     Assembler::above          /* belowEqual    = 0x6 */ ,
  72     Assembler::belowEqual     /* above         = 0x7 */ ,
  73     Assembler::positive       /* negative      = 0x8 */ ,
  74     Assembler::negative       /* positive      = 0x9 */ ,
  75     Assembler::noParity       /* parity        = 0xa */ ,
  76     Assembler::parity         /* noParity      = 0xb */ ,
  77     Assembler::greaterEqual   /* less          = 0xc */ ,
  78     Assembler::less           /* greaterEqual  = 0xd */ ,
  79     Assembler::greater        /* lessEqual     = 0xe */ ,
  80     Assembler::lessEqual      /* greater       = 0xf, */
  81 
  82 };
  83 
  84 
  85 // Implementation of MacroAssembler
  86 
  87 // First all the versions that have distinct versions depending on 32/64 bit
  88 // Unless the difference is trivial (1 line or so).
  89 
  90 #ifndef _LP64
  91 
  92 // 32bit versions
  93 
  94 Address MacroAssembler::as_Address(AddressLiteral adr) {
  95   return Address(adr.target(), adr.rspec());
  96 }
  97 
  98 Address MacroAssembler::as_Address(ArrayAddress adr) {
  99   return Address::make_array(adr);
 100 }
 101 
 102 void MacroAssembler::call_VM_leaf_base(address entry_point,
 103                                        int number_of_arguments) {
 104   call(RuntimeAddress(entry_point));
 105   increment(rsp, number_of_arguments * wordSize);
 106 }
 107 
 108 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 109   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 110 }
 111 
 112 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 117   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::extend_sign(Register hi, Register lo) {
 125   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 126   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 127     cdql();
 128   } else {
 129     movl(hi, lo);
 130     sarl(hi, 31);
 131   }
 132 }
 133 
 134 void MacroAssembler::jC2(Register tmp, Label& L) {
 135   // set parity bit if FPU flag C2 is set (via rax)
 136   save_rax(tmp);
 137   fwait(); fnstsw_ax();
 138   sahf();
 139   restore_rax(tmp);
 140   // branch
 141   jcc(Assembler::parity, L);
 142 }
 143 
 144 void MacroAssembler::jnC2(Register tmp, Label& L) {
 145   // set parity bit if FPU flag C2 is set (via rax)
 146   save_rax(tmp);
 147   fwait(); fnstsw_ax();
 148   sahf();
 149   restore_rax(tmp);
 150   // branch
 151   jcc(Assembler::noParity, L);
 152 }
 153 
 154 // 32bit can do a case table jump in one instruction but we no longer allow the base
 155 // to be installed in the Address class
 156 void MacroAssembler::jump(ArrayAddress entry) {
 157   jmp(as_Address(entry));
 158 }
 159 
 160 // Note: y_lo will be destroyed
 161 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 162   // Long compare for Java (semantics as described in JVM spec.)
 163   Label high, low, done;
 164 
 165   cmpl(x_hi, y_hi);
 166   jcc(Assembler::less, low);
 167   jcc(Assembler::greater, high);
 168   // x_hi is the return register
 169   xorl(x_hi, x_hi);
 170   cmpl(x_lo, y_lo);
 171   jcc(Assembler::below, low);
 172   jcc(Assembler::equal, done);
 173 
 174   bind(high);
 175   xorl(x_hi, x_hi);
 176   increment(x_hi);
 177   jmp(done);
 178 
 179   bind(low);
 180   xorl(x_hi, x_hi);
 181   decrementl(x_hi);
 182 
 183   bind(done);
 184 }
 185 
 186 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 187     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 188 }
 189 
 190 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 191   // leal(dst, as_Address(adr));
 192   // see note in movl as to why we must use a move
 193   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 194 }
 195 
 196 void MacroAssembler::leave() {
 197   mov(rsp, rbp);
 198   pop(rbp);
 199 }
 200 
 201 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 202   // Multiplication of two Java long values stored on the stack
 203   // as illustrated below. Result is in rdx:rax.
 204   //
 205   // rsp ---> [  ??  ] \               \
 206   //            ....    | y_rsp_offset  |
 207   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 208   //          [ y_hi ]                  | (in bytes)
 209   //            ....                    |
 210   //          [ x_lo ]                 /
 211   //          [ x_hi ]
 212   //            ....
 213   //
 214   // Basic idea: lo(result) = lo(x_lo * y_lo)
 215   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 216   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 217   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 218   Label quick;
 219   // load x_hi, y_hi and check if quick
 220   // multiplication is possible
 221   movl(rbx, x_hi);
 222   movl(rcx, y_hi);
 223   movl(rax, rbx);
 224   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 225   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 226   // do full multiplication
 227   // 1st step
 228   mull(y_lo);                                    // x_hi * y_lo
 229   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 230   // 2nd step
 231   movl(rax, x_lo);
 232   mull(rcx);                                     // x_lo * y_hi
 233   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 234   // 3rd step
 235   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 236   movl(rax, x_lo);
 237   mull(y_lo);                                    // x_lo * y_lo
 238   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 239 }
 240 
 241 void MacroAssembler::lneg(Register hi, Register lo) {
 242   negl(lo);
 243   adcl(hi, 0);
 244   negl(hi);
 245 }
 246 
 247 void MacroAssembler::lshl(Register hi, Register lo) {
 248   // Java shift left long support (semantics as described in JVM spec., p.305)
 249   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 250   // shift value is in rcx !
 251   assert(hi != rcx, "must not use rcx");
 252   assert(lo != rcx, "must not use rcx");
 253   const Register s = rcx;                        // shift count
 254   const int      n = BitsPerWord;
 255   Label L;
 256   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 257   cmpl(s, n);                                    // if (s < n)
 258   jcc(Assembler::less, L);                       // else (s >= n)
 259   movl(hi, lo);                                  // x := x << n
 260   xorl(lo, lo);
 261   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 262   bind(L);                                       // s (mod n) < n
 263   shldl(hi, lo);                                 // x := x << s
 264   shll(lo);
 265 }
 266 
 267 
 268 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 269   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 270   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 271   assert(hi != rcx, "must not use rcx");
 272   assert(lo != rcx, "must not use rcx");
 273   const Register s = rcx;                        // shift count
 274   const int      n = BitsPerWord;
 275   Label L;
 276   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 277   cmpl(s, n);                                    // if (s < n)
 278   jcc(Assembler::less, L);                       // else (s >= n)
 279   movl(lo, hi);                                  // x := x >> n
 280   if (sign_extension) sarl(hi, 31);
 281   else                xorl(hi, hi);
 282   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 283   bind(L);                                       // s (mod n) < n
 284   shrdl(lo, hi);                                 // x := x >> s
 285   if (sign_extension) sarl(hi);
 286   else                shrl(hi);
 287 }
 288 
 289 void MacroAssembler::movoop(Register dst, jobject obj) {
 290   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 291 }
 292 
 293 void MacroAssembler::movoop(Address dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 298   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 306   // scratch register is not used,
 307   // it is defined to match parameters of 64-bit version of this method.
 308   if (src.is_lval()) {
 309     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 310   } else {
 311     movl(dst, as_Address(src));
 312   }
 313 }
 314 
 315 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 316   movl(as_Address(dst), src);
 317 }
 318 
 319 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 320   movl(dst, as_Address(src));
 321 }
 322 
 323 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 324 void MacroAssembler::movptr(Address dst, intptr_t src) {
 325   movl(dst, src);
 326 }
 327 
 328 
 329 void MacroAssembler::pop_callee_saved_registers() {
 330   pop(rcx);
 331   pop(rdx);
 332   pop(rdi);
 333   pop(rsi);
 334 }
 335 
 336 void MacroAssembler::pop_fTOS() {
 337   fld_d(Address(rsp, 0));
 338   addl(rsp, 2 * wordSize);
 339 }
 340 
 341 void MacroAssembler::push_callee_saved_registers() {
 342   push(rsi);
 343   push(rdi);
 344   push(rdx);
 345   push(rcx);
 346 }
 347 
 348 void MacroAssembler::push_fTOS() {
 349   subl(rsp, 2 * wordSize);
 350   fstp_d(Address(rsp, 0));
 351 }
 352 
 353 
 354 void MacroAssembler::pushoop(jobject obj) {
 355   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 356 }
 357 
 358 void MacroAssembler::pushklass(Metadata* obj) {
 359   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushptr(AddressLiteral src) {
 363   if (src.is_lval()) {
 364     push_literal32((int32_t)src.target(), src.rspec());
 365   } else {
 366     pushl(as_Address(src));
 367   }
 368 }
 369 
 370 void MacroAssembler::set_word_if_not_zero(Register dst) {
 371   xorl(dst, dst);
 372   set_byte_if_not_zero(dst);
 373 }
 374 
 375 static void pass_arg0(MacroAssembler* masm, Register arg) {
 376   masm->push(arg);
 377 }
 378 
 379 static void pass_arg1(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg2(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg3(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 #ifndef PRODUCT
 392 extern "C" void findpc(intptr_t x);
 393 #endif
 394 
 395 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 396   // In order to get locks to work, we need to fake a in_VM state
 397   JavaThread* thread = JavaThread::current();
 398   JavaThreadState saved_state = thread->thread_state();
 399   thread->set_thread_state(_thread_in_vm);
 400   if (ShowMessageBoxOnError) {
 401     JavaThread* thread = JavaThread::current();
 402     JavaThreadState saved_state = thread->thread_state();
 403     thread->set_thread_state(_thread_in_vm);
 404     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 405       ttyLocker ttyl;
 406       BytecodeCounter::print();
 407     }
 408     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 409     // This is the value of eip which points to where verify_oop will return.
 410     if (os::message_box(msg, "Execution stopped, print registers?")) {
 411       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 412       BREAKPOINT;
 413     }
 414   } else {
 415     ttyLocker ttyl;
 416     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 417   }
 418   // Don't assert holding the ttyLock
 419     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 420   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 421 }
 422 
 423 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 424   ttyLocker ttyl;
 425   FlagSetting fs(Debugging, true);
 426   tty->print_cr("eip = 0x%08x", eip);
 427 #ifndef PRODUCT
 428   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 429     tty->cr();
 430     findpc(eip);
 431     tty->cr();
 432   }
 433 #endif
 434 #define PRINT_REG(rax) \
 435   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 436   PRINT_REG(rax);
 437   PRINT_REG(rbx);
 438   PRINT_REG(rcx);
 439   PRINT_REG(rdx);
 440   PRINT_REG(rdi);
 441   PRINT_REG(rsi);
 442   PRINT_REG(rbp);
 443   PRINT_REG(rsp);
 444 #undef PRINT_REG
 445   // Print some words near top of staack.
 446   int* dump_sp = (int*) rsp;
 447   for (int col1 = 0; col1 < 8; col1++) {
 448     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 449     os::print_location(tty, *dump_sp++);
 450   }
 451   for (int row = 0; row < 16; row++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     for (int col = 0; col < 8; col++) {
 454       tty->print(" 0x%08x", *dump_sp++);
 455     }
 456     tty->cr();
 457   }
 458   // Print some instructions around pc:
 459   Disassembler::decode((address)eip-64, (address)eip);
 460   tty->print_cr("--------");
 461   Disassembler::decode((address)eip, (address)eip+32);
 462 }
 463 
 464 void MacroAssembler::stop(const char* msg) {
 465   ExternalAddress message((address)msg);
 466   // push address of message
 467   pushptr(message.addr());
 468   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 469   pusha();                                            // push registers
 470   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 471   hlt();
 472 }
 473 
 474 void MacroAssembler::warn(const char* msg) {
 475   push_CPU_state();
 476 
 477   ExternalAddress message((address) msg);
 478   // push address of message
 479   pushptr(message.addr());
 480 
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 482   addl(rsp, wordSize);       // discard argument
 483   pop_CPU_state();
 484 }
 485 
 486 void MacroAssembler::print_state() {
 487   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 488   pusha();                                            // push registers
 489 
 490   push_CPU_state();
 491   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 492   pop_CPU_state();
 493 
 494   popa();
 495   addl(rsp, wordSize);
 496 }
 497 
 498 #else // _LP64
 499 
 500 // 64 bit versions
 501 
 502 Address MacroAssembler::as_Address(AddressLiteral adr) {
 503   // amd64 always does this as a pc-rel
 504   // we can be absolute or disp based on the instruction type
 505   // jmp/call are displacements others are absolute
 506   assert(!adr.is_lval(), "must be rval");
 507   assert(reachable(adr), "must be");
 508   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 509 
 510 }
 511 
 512 Address MacroAssembler::as_Address(ArrayAddress adr) {
 513   AddressLiteral base = adr.base();
 514   lea(rscratch1, base);
 515   Address index = adr.index();
 516   assert(index._disp == 0, "must not have disp"); // maybe it can?
 517   Address array(rscratch1, index._index, index._scale, index._disp);
 518   return array;
 519 }
 520 
 521 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 522   Label L, E;
 523 
 524 #ifdef _WIN64
 525   // Windows always allocates space for it's register args
 526   assert(num_args <= 4, "only register arguments supported");
 527   subq(rsp,  frame::arg_reg_save_area_bytes);
 528 #endif
 529 
 530   // Align stack if necessary
 531   testl(rsp, 15);
 532   jcc(Assembler::zero, L);
 533 
 534   subq(rsp, 8);
 535   {
 536     call(RuntimeAddress(entry_point));
 537   }
 538   addq(rsp, 8);
 539   jmp(E);
 540 
 541   bind(L);
 542   {
 543     call(RuntimeAddress(entry_point));
 544   }
 545 
 546   bind(E);
 547 
 548 #ifdef _WIN64
 549   // restore stack pointer
 550   addq(rsp, frame::arg_reg_save_area_bytes);
 551 #endif
 552 
 553 }
 554 
 555 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 556   assert(!src2.is_lval(), "should use cmpptr");
 557 
 558   if (reachable(src2)) {
 559     cmpq(src1, as_Address(src2));
 560   } else {
 561     lea(rscratch1, src2);
 562     Assembler::cmpq(src1, Address(rscratch1, 0));
 563   }
 564 }
 565 
 566 int MacroAssembler::corrected_idivq(Register reg) {
 567   // Full implementation of Java ldiv and lrem; checks for special
 568   // case as described in JVM spec., p.243 & p.271.  The function
 569   // returns the (pc) offset of the idivl instruction - may be needed
 570   // for implicit exceptions.
 571   //
 572   //         normal case                           special case
 573   //
 574   // input : rax: dividend                         min_long
 575   //         reg: divisor   (may not be eax/edx)   -1
 576   //
 577   // output: rax: quotient  (= rax idiv reg)       min_long
 578   //         rdx: remainder (= rax irem reg)       0
 579   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 580   static const int64_t min_long = 0x8000000000000000;
 581   Label normal_case, special_case;
 582 
 583   // check for special case
 584   cmp64(rax, ExternalAddress((address) &min_long));
 585   jcc(Assembler::notEqual, normal_case);
 586   xorl(rdx, rdx); // prepare rdx for possible special case (where
 587                   // remainder = 0)
 588   cmpq(reg, -1);
 589   jcc(Assembler::equal, special_case);
 590 
 591   // handle normal case
 592   bind(normal_case);
 593   cdqq();
 594   int idivq_offset = offset();
 595   idivq(reg);
 596 
 597   // normal and special case exit
 598   bind(special_case);
 599 
 600   return idivq_offset;
 601 }
 602 
 603 void MacroAssembler::decrementq(Register reg, int value) {
 604   if (value == min_jint) { subq(reg, value); return; }
 605   if (value <  0) { incrementq(reg, -value); return; }
 606   if (value == 0) {                        ; return; }
 607   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 608   /* else */      { subq(reg, value)       ; return; }
 609 }
 610 
 611 void MacroAssembler::decrementq(Address dst, int value) {
 612   if (value == min_jint) { subq(dst, value); return; }
 613   if (value <  0) { incrementq(dst, -value); return; }
 614   if (value == 0) {                        ; return; }
 615   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 616   /* else */      { subq(dst, value)       ; return; }
 617 }
 618 
 619 void MacroAssembler::incrementq(AddressLiteral dst) {
 620   if (reachable(dst)) {
 621     incrementq(as_Address(dst));
 622   } else {
 623     lea(rscratch1, dst);
 624     incrementq(Address(rscratch1, 0));
 625   }
 626 }
 627 
 628 void MacroAssembler::incrementq(Register reg, int value) {
 629   if (value == min_jint) { addq(reg, value); return; }
 630   if (value <  0) { decrementq(reg, -value); return; }
 631   if (value == 0) {                        ; return; }
 632   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 633   /* else */      { addq(reg, value)       ; return; }
 634 }
 635 
 636 void MacroAssembler::incrementq(Address dst, int value) {
 637   if (value == min_jint) { addq(dst, value); return; }
 638   if (value <  0) { decrementq(dst, -value); return; }
 639   if (value == 0) {                        ; return; }
 640   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 641   /* else */      { addq(dst, value)       ; return; }
 642 }
 643 
 644 // 32bit can do a case table jump in one instruction but we no longer allow the base
 645 // to be installed in the Address class
 646 void MacroAssembler::jump(ArrayAddress entry) {
 647   lea(rscratch1, entry.base());
 648   Address dispatch = entry.index();
 649   assert(dispatch._base == noreg, "must be");
 650   dispatch._base = rscratch1;
 651   jmp(dispatch);
 652 }
 653 
 654 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 655   ShouldNotReachHere(); // 64bit doesn't use two regs
 656   cmpq(x_lo, y_lo);
 657 }
 658 
 659 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 660     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 661 }
 662 
 663 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 664   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 665   movptr(dst, rscratch1);
 666 }
 667 
 668 void MacroAssembler::leave() {
 669   // %%% is this really better? Why not on 32bit too?
 670   emit_int8((unsigned char)0xC9); // LEAVE
 671 }
 672 
 673 void MacroAssembler::lneg(Register hi, Register lo) {
 674   ShouldNotReachHere(); // 64bit doesn't use two regs
 675   negq(lo);
 676 }
 677 
 678 void MacroAssembler::movoop(Register dst, jobject obj) {
 679   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 680 }
 681 
 682 void MacroAssembler::movoop(Address dst, jobject obj) {
 683   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684   movq(dst, rscratch1);
 685 }
 686 
 687 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 688   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 692   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693   movq(dst, rscratch1);
 694 }
 695 
 696 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 697   if (src.is_lval()) {
 698     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 699   } else {
 700     if (reachable(src)) {
 701       movq(dst, as_Address(src));
 702     } else {
 703       lea(scratch, src);
 704       movq(dst, Address(scratch, 0));
 705     }
 706   }
 707 }
 708 
 709 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 710   movq(as_Address(dst), src);
 711 }
 712 
 713 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 714   movq(dst, as_Address(src));
 715 }
 716 
 717 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 718 void MacroAssembler::movptr(Address dst, intptr_t src) {
 719   mov64(rscratch1, src);
 720   movq(dst, rscratch1);
 721 }
 722 
 723 // These are mostly for initializing NULL
 724 void MacroAssembler::movptr(Address dst, int32_t src) {
 725   movslq(dst, src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, int32_t src) {
 729   mov64(dst, (intptr_t)src);
 730 }
 731 
 732 void MacroAssembler::pushoop(jobject obj) {
 733   movoop(rscratch1, obj);
 734   push(rscratch1);
 735 }
 736 
 737 void MacroAssembler::pushklass(Metadata* obj) {
 738   mov_metadata(rscratch1, obj);
 739   push(rscratch1);
 740 }
 741 
 742 void MacroAssembler::pushptr(AddressLiteral src) {
 743   lea(rscratch1, src);
 744   if (src.is_lval()) {
 745     push(rscratch1);
 746   } else {
 747     pushq(Address(rscratch1, 0));
 748   }
 749 }
 750 
 751 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 752                                            bool clear_pc) {
 753   // we must set sp to zero to clear frame
 754   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 755   // must clear fp, so that compiled frames are not confused; it is
 756   // possible that we need it only for debugging
 757   if (clear_fp) {
 758     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 759   }
 760 
 761   if (clear_pc) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 763   }
 764 }
 765 
 766 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 767                                          Register last_java_fp,
 768                                          address  last_java_pc) {
 769   // determine last_java_sp register
 770   if (!last_java_sp->is_valid()) {
 771     last_java_sp = rsp;
 772   }
 773 
 774   // last_java_fp is optional
 775   if (last_java_fp->is_valid()) {
 776     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 777            last_java_fp);
 778   }
 779 
 780   // last_java_pc is optional
 781   if (last_java_pc != NULL) {
 782     Address java_pc(r15_thread,
 783                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 784     lea(rscratch1, InternalAddress(last_java_pc));
 785     movptr(java_pc, rscratch1);
 786   }
 787 
 788   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 789 }
 790 
 791 static void pass_arg0(MacroAssembler* masm, Register arg) {
 792   if (c_rarg0 != arg ) {
 793     masm->mov(c_rarg0, arg);
 794   }
 795 }
 796 
 797 static void pass_arg1(MacroAssembler* masm, Register arg) {
 798   if (c_rarg1 != arg ) {
 799     masm->mov(c_rarg1, arg);
 800   }
 801 }
 802 
 803 static void pass_arg2(MacroAssembler* masm, Register arg) {
 804   if (c_rarg2 != arg ) {
 805     masm->mov(c_rarg2, arg);
 806   }
 807 }
 808 
 809 static void pass_arg3(MacroAssembler* masm, Register arg) {
 810   if (c_rarg3 != arg ) {
 811     masm->mov(c_rarg3, arg);
 812   }
 813 }
 814 
 815 void MacroAssembler::stop(const char* msg) {
 816   address rip = pc();
 817   pusha(); // get regs on stack
 818   lea(c_rarg0, ExternalAddress((address) msg));
 819   lea(c_rarg1, InternalAddress(rip));
 820   movq(c_rarg2, rsp); // pass pointer to regs array
 821   andq(rsp, -16); // align stack as required by ABI
 822   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 823   hlt();
 824 }
 825 
 826 void MacroAssembler::warn(const char* msg) {
 827   push(rbp);
 828   movq(rbp, rsp);
 829   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 830   push_CPU_state();   // keeps alignment at 16 bytes
 831   lea(c_rarg0, ExternalAddress((address) msg));
 832   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 833   pop_CPU_state();
 834   mov(rsp, rbp);
 835   pop(rbp);
 836 }
 837 
 838 void MacroAssembler::print_state() {
 839   address rip = pc();
 840   pusha();            // get regs on stack
 841   push(rbp);
 842   movq(rbp, rsp);
 843   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 844   push_CPU_state();   // keeps alignment at 16 bytes
 845 
 846   lea(c_rarg0, InternalAddress(rip));
 847   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 848   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 849 
 850   pop_CPU_state();
 851   mov(rsp, rbp);
 852   pop(rbp);
 853   popa();
 854 }
 855 
 856 #ifndef PRODUCT
 857 extern "C" void findpc(intptr_t x);
 858 #endif
 859 
 860 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 861   // In order to get locks to work, we need to fake a in_VM state
 862   if (ShowMessageBoxOnError) {
 863     JavaThread* thread = JavaThread::current();
 864     JavaThreadState saved_state = thread->thread_state();
 865     thread->set_thread_state(_thread_in_vm);
 866 #ifndef PRODUCT
 867     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 868       ttyLocker ttyl;
 869       BytecodeCounter::print();
 870     }
 871 #endif
 872     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 873     // XXX correct this offset for amd64
 874     // This is the value of eip which points to where verify_oop will return.
 875     if (os::message_box(msg, "Execution stopped, print registers?")) {
 876       print_state64(pc, regs);
 877       BREAKPOINT;
 878       assert(false, "start up GDB");
 879     }
 880     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 881   } else {
 882     ttyLocker ttyl;
 883     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 884                     msg);
 885     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 886   }
 887 }
 888 
 889 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 890   ttyLocker ttyl;
 891   FlagSetting fs(Debugging, true);
 892   tty->print_cr("rip = 0x%016lx", pc);
 893 #ifndef PRODUCT
 894   tty->cr();
 895   findpc(pc);
 896   tty->cr();
 897 #endif
 898 #define PRINT_REG(rax, value) \
 899   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 900   PRINT_REG(rax, regs[15]);
 901   PRINT_REG(rbx, regs[12]);
 902   PRINT_REG(rcx, regs[14]);
 903   PRINT_REG(rdx, regs[13]);
 904   PRINT_REG(rdi, regs[8]);
 905   PRINT_REG(rsi, regs[9]);
 906   PRINT_REG(rbp, regs[10]);
 907   PRINT_REG(rsp, regs[11]);
 908   PRINT_REG(r8 , regs[7]);
 909   PRINT_REG(r9 , regs[6]);
 910   PRINT_REG(r10, regs[5]);
 911   PRINT_REG(r11, regs[4]);
 912   PRINT_REG(r12, regs[3]);
 913   PRINT_REG(r13, regs[2]);
 914   PRINT_REG(r14, regs[1]);
 915   PRINT_REG(r15, regs[0]);
 916 #undef PRINT_REG
 917   // Print some words near top of staack.
 918   int64_t* rsp = (int64_t*) regs[11];
 919   int64_t* dump_sp = rsp;
 920   for (int col1 = 0; col1 < 8; col1++) {
 921     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 922     os::print_location(tty, *dump_sp++);
 923   }
 924   for (int row = 0; row < 25; row++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     for (int col = 0; col < 4; col++) {
 927       tty->print(" 0x%016lx", *dump_sp++);
 928     }
 929     tty->cr();
 930   }
 931   // Print some instructions around pc:
 932   Disassembler::decode((address)pc-64, (address)pc);
 933   tty->print_cr("--------");
 934   Disassembler::decode((address)pc, (address)pc+32);
 935 }
 936 
 937 #endif // _LP64
 938 
 939 // Now versions that are common to 32/64 bit
 940 
 941 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 942   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 943 }
 944 
 945 void MacroAssembler::addptr(Register dst, Register src) {
 946   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 947 }
 948 
 949 void MacroAssembler::addptr(Address dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 954   if (reachable(src)) {
 955     Assembler::addsd(dst, as_Address(src));
 956   } else {
 957     lea(rscratch1, src);
 958     Assembler::addsd(dst, Address(rscratch1, 0));
 959   }
 960 }
 961 
 962 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 963   if (reachable(src)) {
 964     addss(dst, as_Address(src));
 965   } else {
 966     lea(rscratch1, src);
 967     addss(dst, Address(rscratch1, 0));
 968   }
 969 }
 970 
 971 void MacroAssembler::align(int modulus) {
 972   if (offset() % modulus != 0) {
 973     nop(modulus - (offset() % modulus));
 974   }
 975 }
 976 
 977 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 978   // Used in sign-masking with aligned address.
 979   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 980   if (reachable(src)) {
 981     Assembler::andpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::andpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 989   // Used in sign-masking with aligned address.
 990   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 991   if (reachable(src)) {
 992     Assembler::andps(dst, as_Address(src));
 993   } else {
 994     lea(rscratch1, src);
 995     Assembler::andps(dst, Address(rscratch1, 0));
 996   }
 997 }
 998 
 999 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1000   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1001 }
1002 
1003 void MacroAssembler::atomic_incl(Address counter_addr) {
1004   if (os::is_MP())
1005     lock();
1006   incrementl(counter_addr);
1007 }
1008 
1009 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1010   if (reachable(counter_addr)) {
1011     atomic_incl(as_Address(counter_addr));
1012   } else {
1013     lea(scr, counter_addr);
1014     atomic_incl(Address(scr, 0));
1015   }
1016 }
1017 
1018 #ifdef _LP64
1019 void MacroAssembler::atomic_incq(Address counter_addr) {
1020   if (os::is_MP())
1021     lock();
1022   incrementq(counter_addr);
1023 }
1024 
1025 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1026   if (reachable(counter_addr)) {
1027     atomic_incq(as_Address(counter_addr));
1028   } else {
1029     lea(scr, counter_addr);
1030     atomic_incq(Address(scr, 0));
1031   }
1032 }
1033 #endif
1034 
1035 // Writes to stack successive pages until offset reached to check for
1036 // stack overflow + shadow pages.  This clobbers tmp.
1037 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1038   movptr(tmp, rsp);
1039   // Bang stack for total size given plus shadow page size.
1040   // Bang one page at a time because large size can bang beyond yellow and
1041   // red zones.
1042   Label loop;
1043   bind(loop);
1044   movl(Address(tmp, (-os::vm_page_size())), size );
1045   subptr(tmp, os::vm_page_size());
1046   subl(size, os::vm_page_size());
1047   jcc(Assembler::greater, loop);
1048 
1049   // Bang down shadow pages too.
1050   // At this point, (tmp-0) is the last address touched, so don't
1051   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1052   // was post-decremented.)  Skip this address by starting at i=1, and
1053   // touch a few more pages below.  N.B.  It is important to touch all
1054   // the way down to and including i=StackShadowPages.
1055   for (int i = 1; i < StackShadowPages; i++) {
1056     // this could be any sized move but this is can be a debugging crumb
1057     // so the bigger the better.
1058     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1059   }
1060 }
1061 
1062 int MacroAssembler::biased_locking_enter(Register lock_reg,
1063                                          Register obj_reg,
1064                                          Register swap_reg,
1065                                          Register tmp_reg,
1066                                          bool swap_reg_contains_mark,
1067                                          Label& done,
1068                                          Label* slow_case,
1069                                          BiasedLockingCounters* counters) {
1070   assert(UseBiasedLocking, "why call this otherwise?");
1071   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1072   LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
1073   bool need_tmp_reg = false;
1074   if (tmp_reg == noreg) {
1075     need_tmp_reg = true;
1076     tmp_reg = lock_reg;
1077     assert_different_registers(lock_reg, obj_reg, swap_reg);
1078   } else {
1079     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1080   }
1081   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1082   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1083   Address saved_mark_addr(lock_reg, 0);
1084 
1085   if (PrintBiasedLockingStatistics && counters == NULL) {
1086     counters = BiasedLocking::counters();
1087   }
1088   // Biased locking
1089   // See whether the lock is currently biased toward our thread and
1090   // whether the epoch is still valid
1091   // Note that the runtime guarantees sufficient alignment of JavaThread
1092   // pointers to allow age to be placed into low bits
1093   // First check to see whether biasing is even enabled for this object
1094   Label cas_label;
1095   int null_check_offset = -1;
1096   if (!swap_reg_contains_mark) {
1097     null_check_offset = offset();
1098     movptr(swap_reg, mark_addr);
1099   }
1100   if (need_tmp_reg) {
1101     push(tmp_reg);
1102   }
1103   movptr(tmp_reg, swap_reg);
1104   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1105   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1106   if (need_tmp_reg) {
1107     pop(tmp_reg);
1108   }
1109   jcc(Assembler::notEqual, cas_label);
1110   // The bias pattern is present in the object's header. Need to check
1111   // whether the bias owner and the epoch are both still current.
1112 #ifndef _LP64
1113   // Note that because there is no current thread register on x86_32 we
1114   // need to store off the mark word we read out of the object to
1115   // avoid reloading it and needing to recheck invariants below. This
1116   // store is unfortunate but it makes the overall code shorter and
1117   // simpler.
1118   movptr(saved_mark_addr, swap_reg);
1119 #endif
1120   if (need_tmp_reg) {
1121     push(tmp_reg);
1122   }
1123   if (swap_reg_contains_mark) {
1124     null_check_offset = offset();
1125   }
1126   load_prototype_header(tmp_reg, obj_reg);
1127 #ifdef _LP64
1128   orptr(tmp_reg, r15_thread);
1129   xorptr(tmp_reg, swap_reg);
1130   Register header_reg = tmp_reg;
1131 #else
1132   xorptr(tmp_reg, swap_reg);
1133   get_thread(swap_reg);
1134   xorptr(swap_reg, tmp_reg);
1135   Register header_reg = swap_reg;
1136 #endif
1137   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1138   if (need_tmp_reg) {
1139     pop(tmp_reg);
1140   }
1141   if (counters != NULL) {
1142     cond_inc32(Assembler::zero,
1143                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1144   }
1145   jcc(Assembler::equal, done);
1146 
1147   Label try_revoke_bias;
1148   Label try_rebias;
1149 
1150   // At this point we know that the header has the bias pattern and
1151   // that we are not the bias owner in the current epoch. We need to
1152   // figure out more details about the state of the header in order to
1153   // know what operations can be legally performed on the object's
1154   // header.
1155 
1156   // If the low three bits in the xor result aren't clear, that means
1157   // the prototype header is no longer biased and we have to revoke
1158   // the bias on this object.
1159   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1160   jccb(Assembler::notZero, try_revoke_bias);
1161 
1162   // Biasing is still enabled for this data type. See whether the
1163   // epoch of the current bias is still valid, meaning that the epoch
1164   // bits of the mark word are equal to the epoch bits of the
1165   // prototype header. (Note that the prototype header's epoch bits
1166   // only change at a safepoint.) If not, attempt to rebias the object
1167   // toward the current thread. Note that we must be absolutely sure
1168   // that the current epoch is invalid in order to do this because
1169   // otherwise the manipulations it performs on the mark word are
1170   // illegal.
1171   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1172   jccb(Assembler::notZero, try_rebias);
1173 
1174   // The epoch of the current bias is still valid but we know nothing
1175   // about the owner; it might be set or it might be clear. Try to
1176   // acquire the bias of the object using an atomic operation. If this
1177   // fails we will go in to the runtime to revoke the object's bias.
1178   // Note that we first construct the presumed unbiased header so we
1179   // don't accidentally blow away another thread's valid bias.
1180   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1181   andptr(swap_reg,
1182          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1183   if (need_tmp_reg) {
1184     push(tmp_reg);
1185   }
1186 #ifdef _LP64
1187   movptr(tmp_reg, swap_reg);
1188   orptr(tmp_reg, r15_thread);
1189 #else
1190   get_thread(tmp_reg);
1191   orptr(tmp_reg, swap_reg);
1192 #endif
1193   if (os::is_MP()) {
1194     lock();
1195   }
1196   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1197   if (need_tmp_reg) {
1198     pop(tmp_reg);
1199   }
1200   // If the biasing toward our thread failed, this means that
1201   // another thread succeeded in biasing it toward itself and we
1202   // need to revoke that bias. The revocation will occur in the
1203   // interpreter runtime in the slow case.
1204   if (counters != NULL) {
1205     cond_inc32(Assembler::zero,
1206                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1207   }
1208   if (slow_case != NULL) {
1209     jcc(Assembler::notZero, *slow_case);
1210   }
1211   jmp(done);
1212 
1213   bind(try_rebias);
1214   // At this point we know the epoch has expired, meaning that the
1215   // current "bias owner", if any, is actually invalid. Under these
1216   // circumstances _only_, we are allowed to use the current header's
1217   // value as the comparison value when doing the cas to acquire the
1218   // bias in the current epoch. In other words, we allow transfer of
1219   // the bias from one thread to another directly in this situation.
1220   //
1221   // FIXME: due to a lack of registers we currently blow away the age
1222   // bits in this situation. Should attempt to preserve them.
1223   if (need_tmp_reg) {
1224     push(tmp_reg);
1225   }
1226   load_prototype_header(tmp_reg, obj_reg);
1227 #ifdef _LP64
1228   orptr(tmp_reg, r15_thread);
1229 #else
1230   get_thread(swap_reg);
1231   orptr(tmp_reg, swap_reg);
1232   movptr(swap_reg, saved_mark_addr);
1233 #endif
1234   if (os::is_MP()) {
1235     lock();
1236   }
1237   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1238   if (need_tmp_reg) {
1239     pop(tmp_reg);
1240   }
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   if (need_tmp_reg) {
1267     push(tmp_reg);
1268   }
1269   load_prototype_header(tmp_reg, obj_reg);
1270   if (os::is_MP()) {
1271     lock();
1272   }
1273   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1274   if (need_tmp_reg) {
1275     pop(tmp_reg);
1276   }
1277   // Fall through to the normal CAS-based lock, because no matter what
1278   // the result of the above CAS, some thread must have succeeded in
1279   // removing the bias bit from the object's header.
1280   if (counters != NULL) {
1281     cond_inc32(Assembler::zero,
1282                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1283   }
1284 
1285   bind(cas_label);
1286 
1287   return null_check_offset;
1288 }
1289 
1290 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1291   assert(UseBiasedLocking, "why call this otherwise?");
1292 
1293   // Check for biased locking unlock case, which is a no-op
1294   // Note: we do not have to check the thread ID for two reasons.
1295   // First, the interpreter checks for IllegalMonitorStateException at
1296   // a higher level. Second, if the bias was revoked while we held the
1297   // lock, the object could not be rebiased toward another thread, so
1298   // the bias bit would be clear.
1299   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1300   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1301   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1302   jcc(Assembler::equal, done);
1303 }
1304 
1305 #ifdef COMPILER2
1306 
1307 #if INCLUDE_RTM_OPT
1308 
1309 // Update rtm_counters based on abort status
1310 // input: abort_status
1311 //        rtm_counters (RTMLockingCounters*)
1312 // flags are killed
1313 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1314 
1315   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1316   if (PrintPreciseRTMLockingStatistics) {
1317     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1318       Label check_abort;
1319       testl(abort_status, (1<<i));
1320       jccb(Assembler::equal, check_abort);
1321       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1322       bind(check_abort);
1323     }
1324   }
1325 }
1326 
1327 // Branch if (random & (count-1) != 0), count is 2^n
1328 // tmp, scr and flags are killed
1329 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1330   assert(tmp == rax, "");
1331   assert(scr == rdx, "");
1332   rdtsc(); // modifies EDX:EAX
1333   andptr(tmp, count-1);
1334   jccb(Assembler::notZero, brLabel);
1335 }
1336 
1337 // Perform abort ratio calculation, set no_rtm bit if high ratio
1338 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1339 // tmpReg, rtm_counters_Reg and flags are killed
1340 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1341                                                  Register rtm_counters_Reg,
1342                                                  RTMLockingCounters* rtm_counters,
1343                                                  Metadata* method_data) {
1344   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1345 
1346   if (RTMLockingCalculationDelay > 0) {
1347     // Delay calculation
1348     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1349     testptr(tmpReg, tmpReg);
1350     jccb(Assembler::equal, L_done);
1351   }
1352   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1353   //   Aborted transactions = abort_count * 100
1354   //   All transactions = total_count *  RTMTotalCountIncrRate
1355   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1356 
1357   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1358   cmpptr(tmpReg, RTMAbortThreshold);
1359   jccb(Assembler::below, L_check_always_rtm2);
1360   imulptr(tmpReg, tmpReg, 100);
1361 
1362   Register scrReg = rtm_counters_Reg;
1363   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1364   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1365   imulptr(scrReg, scrReg, RTMAbortRatio);
1366   cmpptr(tmpReg, scrReg);
1367   jccb(Assembler::below, L_check_always_rtm1);
1368   if (method_data != NULL) {
1369     // set rtm_state to "no rtm" in MDO
1370     mov_metadata(tmpReg, method_data);
1371     if (os::is_MP()) {
1372       lock();
1373     }
1374     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1375   }
1376   jmpb(L_done);
1377   bind(L_check_always_rtm1);
1378   // Reload RTMLockingCounters* address
1379   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1380   bind(L_check_always_rtm2);
1381   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1382   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1383   jccb(Assembler::below, L_done);
1384   if (method_data != NULL) {
1385     // set rtm_state to "always rtm" in MDO
1386     mov_metadata(tmpReg, method_data);
1387     if (os::is_MP()) {
1388       lock();
1389     }
1390     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1391   }
1392   bind(L_done);
1393 }
1394 
1395 // Update counters and perform abort ratio calculation
1396 // input:  abort_status_Reg
1397 // rtm_counters_Reg, flags are killed
1398 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1399                                    Register rtm_counters_Reg,
1400                                    RTMLockingCounters* rtm_counters,
1401                                    Metadata* method_data,
1402                                    bool profile_rtm) {
1403 
1404   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1405   // update rtm counters based on rax value at abort
1406   // reads abort_status_Reg, updates flags
1407   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1408   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1409   if (profile_rtm) {
1410     // Save abort status because abort_status_Reg is used by following code.
1411     if (RTMRetryCount > 0) {
1412       push(abort_status_Reg);
1413     }
1414     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1415     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1416     // restore abort status
1417     if (RTMRetryCount > 0) {
1418       pop(abort_status_Reg);
1419     }
1420   }
1421 }
1422 
1423 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1424 // inputs: retry_count_Reg
1425 //       : abort_status_Reg
1426 // output: retry_count_Reg decremented by 1
1427 // flags are killed
1428 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1429   Label doneRetry;
1430   assert(abort_status_Reg == rax, "");
1431   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1432   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1433   // if reason is in 0x6 and retry count != 0 then retry
1434   andptr(abort_status_Reg, 0x6);
1435   jccb(Assembler::zero, doneRetry);
1436   testl(retry_count_Reg, retry_count_Reg);
1437   jccb(Assembler::zero, doneRetry);
1438   pause();
1439   decrementl(retry_count_Reg);
1440   jmp(retryLabel);
1441   bind(doneRetry);
1442 }
1443 
1444 // Spin and retry if lock is busy,
1445 // inputs: box_Reg (monitor address)
1446 //       : retry_count_Reg
1447 // output: retry_count_Reg decremented by 1
1448 //       : clear z flag if retry count exceeded
1449 // tmp_Reg, scr_Reg, flags are killed
1450 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1451                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1452   Label SpinLoop, SpinExit, doneRetry;
1453   // Clean monitor_value bit to get valid pointer
1454   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
1455 
1456   testl(retry_count_Reg, retry_count_Reg);
1457   jccb(Assembler::zero, doneRetry);
1458   decrementl(retry_count_Reg);
1459   movptr(scr_Reg, RTMSpinLoopCount);
1460 
1461   bind(SpinLoop);
1462   pause();
1463   decrementl(scr_Reg);
1464   jccb(Assembler::lessEqual, SpinExit);
1465   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1466   testptr(tmp_Reg, tmp_Reg);
1467   jccb(Assembler::notZero, SpinLoop);
1468 
1469   bind(SpinExit);
1470   jmp(retryLabel);
1471   bind(doneRetry);
1472   incrementl(retry_count_Reg); // clear z flag
1473 }
1474 
1475 // Use RTM for normal stack locks
1476 // Input: objReg (object to lock)
1477 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1478                                        Register retry_on_abort_count_Reg,
1479                                        RTMLockingCounters* stack_rtm_counters,
1480                                        Metadata* method_data, bool profile_rtm,
1481                                        Label& DONE_LABEL, Label& IsInflated) {
1482   assert(UseRTMForStackLocks, "why call this otherwise?");
1483   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1484   assert(tmpReg == rax, "");
1485   assert(scrReg == rdx, "");
1486   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1487 
1488   if (RTMRetryCount > 0) {
1489     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1490     bind(L_rtm_retry);
1491   }
1492   movptr(tmpReg, Address(objReg, 0));
1493   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1494   jcc(Assembler::notZero, IsInflated);
1495 
1496   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1497     Label L_noincrement;
1498     if (RTMTotalCountIncrRate > 1) {
1499       // tmpReg, scrReg and flags are killed
1500       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1501     }
1502     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1503     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1504     bind(L_noincrement);
1505   }
1506   xbegin(L_on_abort);
1507   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1508   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1509   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1510   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1511 
1512   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1513   if (UseRTMXendForLockBusy) {
1514     xend();
1515     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1516     jmp(L_decrement_retry);
1517   }
1518   else {
1519     xabort(0);
1520   }
1521   bind(L_on_abort);
1522   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1523     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1524   }
1525   bind(L_decrement_retry);
1526   if (RTMRetryCount > 0) {
1527     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1528     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1529   }
1530 }
1531 
1532 // Use RTM for inflating locks
1533 // inputs: objReg (object to lock)
1534 //         boxReg (on-stack box address (displaced header location) - KILLED)
1535 //         tmpReg (ObjectMonitor address + 2(monitor_value))
1536 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1537                                           Register scrReg, Register retry_on_busy_count_Reg,
1538                                           Register retry_on_abort_count_Reg,
1539                                           RTMLockingCounters* rtm_counters,
1540                                           Metadata* method_data, bool profile_rtm,
1541                                           Label& DONE_LABEL) {
1542   assert(UseRTMLocking, "why call this otherwise?");
1543   assert(tmpReg == rax, "");
1544   assert(scrReg == rdx, "");
1545   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1546   // Clean monitor_value bit to get valid pointer
1547   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
1548 
1549   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1550   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1551   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1552 
1553   if (RTMRetryCount > 0) {
1554     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1555     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1556     bind(L_rtm_retry);
1557   }
1558   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1559     Label L_noincrement;
1560     if (RTMTotalCountIncrRate > 1) {
1561       // tmpReg, scrReg and flags are killed
1562       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1563     }
1564     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1565     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1566     bind(L_noincrement);
1567   }
1568   xbegin(L_on_abort);
1569   movptr(tmpReg, Address(objReg, 0));
1570   movptr(tmpReg, Address(tmpReg, owner_offset));
1571   testptr(tmpReg, tmpReg);
1572   jcc(Assembler::zero, DONE_LABEL);
1573   if (UseRTMXendForLockBusy) {
1574     xend();
1575     jmp(L_decrement_retry);
1576   }
1577   else {
1578     xabort(0);
1579   }
1580   bind(L_on_abort);
1581   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1582   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1583     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1584   }
1585   if (RTMRetryCount > 0) {
1586     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1587     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1588   }
1589 
1590   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1591   testptr(tmpReg, tmpReg) ;
1592   jccb(Assembler::notZero, L_decrement_retry) ;
1593 
1594   // Appears unlocked - try to swing _owner from null to non-null.
1595   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1596 #ifdef _LP64
1597   Register threadReg = r15_thread;
1598 #else
1599   get_thread(scrReg);
1600   Register threadReg = scrReg;
1601 #endif
1602   if (os::is_MP()) {
1603     lock();
1604   }
1605   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1606 
1607   if (RTMRetryCount > 0) {
1608     // success done else retry
1609     jccb(Assembler::equal, DONE_LABEL) ;
1610     bind(L_decrement_retry);
1611     // Spin and retry if lock is busy.
1612     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1613   }
1614   else {
1615     bind(L_decrement_retry);
1616   }
1617 }
1618 
1619 #endif //  INCLUDE_RTM_OPT
1620 
1621 // Fast_Lock and Fast_Unlock used by C2
1622 
1623 // Because the transitions from emitted code to the runtime
1624 // monitorenter/exit helper stubs are so slow it's critical that
1625 // we inline both the stack-locking fast-path and the inflated fast path.
1626 //
1627 // See also: cmpFastLock and cmpFastUnlock.
1628 //
1629 // What follows is a specialized inline transliteration of the code
1630 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1631 // another option would be to emit TrySlowEnter and TrySlowExit methods
1632 // at startup-time.  These methods would accept arguments as
1633 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1634 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1635 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1636 // In practice, however, the # of lock sites is bounded and is usually small.
1637 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1638 // if the processor uses simple bimodal branch predictors keyed by EIP
1639 // Since the helper routines would be called from multiple synchronization
1640 // sites.
1641 //
1642 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1643 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1644 // to those specialized methods.  That'd give us a mostly platform-independent
1645 // implementation that the JITs could optimize and inline at their pleasure.
1646 // Done correctly, the only time we'd need to cross to native could would be
1647 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1648 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1649 // (b) explicit barriers or fence operations.
1650 //
1651 // TODO:
1652 //
1653 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1654 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1655 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1656 //    the lock operators would typically be faster than reifying Self.
1657 //
1658 // *  Ideally I'd define the primitives as:
1659 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1660 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1661 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1662 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1663 //    Furthermore the register assignments are overconstrained, possibly resulting in
1664 //    sub-optimal code near the synchronization site.
1665 //
1666 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1667 //    Alternately, use a better sp-proximity test.
1668 //
1669 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1670 //    Either one is sufficient to uniquely identify a thread.
1671 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1672 //
1673 // *  Intrinsify notify() and notifyAll() for the common cases where the
1674 //    object is locked by the calling thread but the waitlist is empty.
1675 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1676 //
1677 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1678 //    But beware of excessive branch density on AMD Opterons.
1679 //
1680 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1681 //    or failure of the fast-path.  If the fast-path fails then we pass
1682 //    control to the slow-path, typically in C.  In Fast_Lock and
1683 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1684 //    will emit a conditional branch immediately after the node.
1685 //    So we have branches to branches and lots of ICC.ZF games.
1686 //    Instead, it might be better to have C2 pass a "FailureLabel"
1687 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1688 //    will drop through the node.  ICC.ZF is undefined at exit.
1689 //    In the case of failure, the node will branch directly to the
1690 //    FailureLabel
1691 
1692 
1693 // obj: object to lock
1694 // box: on-stack box address (displaced header location) - KILLED
1695 // rax,: tmp -- KILLED
1696 // scr: tmp -- KILLED
1697 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1698                                Register scrReg, Register cx1Reg, Register cx2Reg,
1699                                BiasedLockingCounters* counters,
1700                                RTMLockingCounters* rtm_counters,
1701                                RTMLockingCounters* stack_rtm_counters,
1702                                Metadata* method_data,
1703                                bool use_rtm, bool profile_rtm) {
1704   // Ensure the register assignents are disjoint
1705   assert(tmpReg == rax, "");
1706 
1707   if (use_rtm) {
1708     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1709   } else {
1710     assert(cx1Reg == noreg, "");
1711     assert(cx2Reg == noreg, "");
1712     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1713   }
1714 
1715   if (counters != NULL) {
1716     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1717   }
1718   if (EmitSync & 1) {
1719       // set box->dhw = unused_mark (3)
1720       // Force all sync thru slow-path: slow_enter() and slow_exit()
1721       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1722       cmpptr (rsp, (int32_t)NULL_WORD);
1723   } else
1724   if (EmitSync & 2) {
1725       Label DONE_LABEL ;
1726       if (UseBiasedLocking) {
1727          // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
1728          biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1729       }
1730 
1731       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1732       orptr (tmpReg, 0x1);
1733       movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
1734       if (os::is_MP()) {
1735         lock();
1736       }
1737       cmpxchgptr(boxReg, Address(objReg, 0));       // Updates tmpReg
1738       jccb(Assembler::equal, DONE_LABEL);
1739       // Recursive locking
1740       subptr(tmpReg, rsp);
1741       andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1742       movptr(Address(boxReg, 0), tmpReg);
1743       bind(DONE_LABEL);
1744   } else {
1745     // Possible cases that we'll encounter in fast_lock
1746     // ------------------------------------------------
1747     // * Inflated
1748     //    -- unlocked
1749     //    -- Locked
1750     //       = by self
1751     //       = by other
1752     // * biased
1753     //    -- by Self
1754     //    -- by other
1755     // * neutral
1756     // * stack-locked
1757     //    -- by self
1758     //       = sp-proximity test hits
1759     //       = sp-proximity test generates false-negative
1760     //    -- by other
1761     //
1762 
1763     Label IsInflated, DONE_LABEL;
1764 
1765     // it's stack-locked, biased or neutral
1766     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1767     // order to reduce the number of conditional branches in the most common cases.
1768     // Beware -- there's a subtle invariant that fetch of the markword
1769     // at [FETCH], below, will never observe a biased encoding (*101b).
1770     // If this invariant is not held we risk exclusion (safety) failure.
1771     if (UseBiasedLocking && !UseOptoBiasInlining) {
1772       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1773     }
1774 
1775 #if INCLUDE_RTM_OPT
1776     if (UseRTMForStackLocks && use_rtm) {
1777       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1778                         stack_rtm_counters, method_data, profile_rtm,
1779                         DONE_LABEL, IsInflated);
1780     }
1781 #endif // INCLUDE_RTM_OPT
1782 
1783     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1784     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1785     jccb(Assembler::notZero, IsInflated);
1786 
1787     // Attempt stack-locking ...
1788     orptr (tmpReg, markOopDesc::unlocked_value);
1789     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1790     if (os::is_MP()) {
1791       lock();
1792     }
1793     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1794     if (counters != NULL) {
1795       cond_inc32(Assembler::equal,
1796                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1797     }
1798     jcc(Assembler::equal, DONE_LABEL);           // Success
1799 
1800     // Recursive locking.
1801     // The object is stack-locked: markword contains stack pointer to BasicLock.
1802     // Locked by current thread if difference with current SP is less than one page.
1803     subptr(tmpReg, rsp);
1804     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1805     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1806     movptr(Address(boxReg, 0), tmpReg);
1807     if (counters != NULL) {
1808       cond_inc32(Assembler::equal,
1809                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1810     }
1811     jmp(DONE_LABEL);
1812 
1813     bind(IsInflated);
1814     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + 2(monitor_value)
1815 
1816 #if INCLUDE_RTM_OPT
1817     // Use the same RTM locking code in 32- and 64-bit VM.
1818     if (use_rtm) {
1819       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1820                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1821     } else {
1822 #endif // INCLUDE_RTM_OPT
1823 
1824 #ifndef _LP64
1825     // The object is inflated.
1826     //
1827     // TODO-FIXME: eliminate the ugly use of manifest constants:
1828     //   Use markOopDesc::monitor_value instead of "2".
1829     //   use markOop::unused_mark() instead of "3".
1830     // The tmpReg value is an objectMonitor reference ORed with
1831     // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
1832     // objectmonitor pointer by masking off the "2" bit or we can just
1833     // use tmpReg as an objectmonitor pointer but bias the objectmonitor
1834     // field offsets with "-2" to compensate for and annul the low-order tag bit.
1835     //
1836     // I use the latter as it avoids AGI stalls.
1837     // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
1838     // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
1839     //
1840     #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
1841 
1842     // boxReg refers to the on-stack BasicLock in the current frame.
1843     // We'd like to write:
1844     //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
1845     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1846     // additional latency as we have another ST in the store buffer that must drain.
1847 
1848     if (EmitSync & 8192) {
1849        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1850        get_thread (scrReg);
1851        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1852        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1853        if (os::is_MP()) {
1854          lock();
1855        }
1856        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1857     } else
1858     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1859        movptr(scrReg, boxReg);
1860        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1861 
1862        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1863        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1864           // prefetchw [eax + Offset(_owner)-2]
1865           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
1866        }
1867 
1868        if ((EmitSync & 64) == 0) {
1869          // Optimistic form: consider XORL tmpReg,tmpReg
1870          movptr(tmpReg, NULL_WORD);
1871        } else {
1872          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1873          // Test-And-CAS instead of CAS
1874          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
1875          testptr(tmpReg, tmpReg);                   // Locked ?
1876          jccb  (Assembler::notZero, DONE_LABEL);
1877        }
1878 
1879        // Appears unlocked - try to swing _owner from null to non-null.
1880        // Ideally, I'd manifest "Self" with get_thread and then attempt
1881        // to CAS the register containing Self into m->Owner.
1882        // But we don't have enough registers, so instead we can either try to CAS
1883        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1884        // we later store "Self" into m->Owner.  Transiently storing a stack address
1885        // (rsp or the address of the box) into  m->owner is harmless.
1886        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1887        if (os::is_MP()) {
1888          lock();
1889        }
1890        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1891        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1892        jccb  (Assembler::notZero, DONE_LABEL);
1893        get_thread (scrReg);                    // beware: clobbers ICCs
1894        movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg);
1895        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1896 
1897        // If the CAS fails we can either retry or pass control to the slow-path.
1898        // We use the latter tactic.
1899        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1900        // If the CAS was successful ...
1901        //   Self has acquired the lock
1902        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1903        // Intentional fall-through into DONE_LABEL ...
1904     } else {
1905        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1906        movptr(boxReg, tmpReg);
1907 
1908        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1909        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1910           // prefetchw [eax + Offset(_owner)-2]
1911           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
1912        }
1913 
1914        if ((EmitSync & 64) == 0) {
1915          // Optimistic form
1916          xorptr  (tmpReg, tmpReg);
1917        } else {
1918          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1919          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
1920          testptr(tmpReg, tmpReg);                   // Locked ?
1921          jccb  (Assembler::notZero, DONE_LABEL);
1922        }
1923 
1924        // Appears unlocked - try to swing _owner from null to non-null.
1925        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1926        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1927        get_thread (scrReg);
1928        if (os::is_MP()) {
1929          lock();
1930        }
1931        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1932 
1933        // If the CAS fails we can either retry or pass control to the slow-path.
1934        // We use the latter tactic.
1935        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1936        // If the CAS was successful ...
1937        //   Self has acquired the lock
1938        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1939        // Intentional fall-through into DONE_LABEL ...
1940     }
1941 #else // _LP64
1942     // It's inflated
1943 
1944     // TODO: someday avoid the ST-before-CAS penalty by
1945     // relocating (deferring) the following ST.
1946     // We should also think about trying a CAS without having
1947     // fetched _owner.  If the CAS is successful we may
1948     // avoid an RTO->RTS upgrade on the $line.
1949 
1950     // Without cast to int32_t a movptr will destroy r10 which is typically obj
1951     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1952 
1953     movptr (boxReg, tmpReg);
1954     movptr (tmpReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1955     testptr(tmpReg, tmpReg);
1956     jccb   (Assembler::notZero, DONE_LABEL);
1957 
1958     // It's inflated and appears unlocked
1959     if (os::is_MP()) {
1960       lock();
1961     }
1962     cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1963     // Intentional fall-through into DONE_LABEL ...
1964 #endif // _LP64
1965 
1966 #if INCLUDE_RTM_OPT
1967     } // use_rtm()
1968 #endif
1969     // DONE_LABEL is a hot target - we'd really like to place it at the
1970     // start of cache line by padding with NOPs.
1971     // See the AMD and Intel software optimization manuals for the
1972     // most efficient "long" NOP encodings.
1973     // Unfortunately none of our alignment mechanisms suffice.
1974     bind(DONE_LABEL);
1975 
1976     // At DONE_LABEL the icc ZFlag is set as follows ...
1977     // Fast_Unlock uses the same protocol.
1978     // ZFlag == 1 -> Success
1979     // ZFlag == 0 -> Failure - force control through the slow-path
1980   }
1981 }
1982 
1983 // obj: object to unlock
1984 // box: box address (displaced header location), killed.  Must be EAX.
1985 // tmp: killed, cannot be obj nor box.
1986 //
1987 // Some commentary on balanced locking:
1988 //
1989 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1990 // Methods that don't have provably balanced locking are forced to run in the
1991 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1992 // The interpreter provides two properties:
1993 // I1:  At return-time the interpreter automatically and quietly unlocks any
1994 //      objects acquired the current activation (frame).  Recall that the
1995 //      interpreter maintains an on-stack list of locks currently held by
1996 //      a frame.
1997 // I2:  If a method attempts to unlock an object that is not held by the
1998 //      the frame the interpreter throws IMSX.
1999 //
2000 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
2001 // B() doesn't have provably balanced locking so it runs in the interpreter.
2002 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
2003 // is still locked by A().
2004 //
2005 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
2006 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
2007 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
2008 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
2009 
2010 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
2011   assert(boxReg == rax, "");
2012   assert_different_registers(objReg, boxReg, tmpReg);
2013 
2014   if (EmitSync & 4) {
2015     // Disable - inhibit all inlining.  Force control through the slow-path
2016     cmpptr (rsp, 0);
2017   } else
2018   if (EmitSync & 8) {
2019     Label DONE_LABEL;
2020     if (UseBiasedLocking) {
2021        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2022     }
2023     // Classic stack-locking code ...
2024     // Check whether the displaced header is 0
2025     //(=> recursive unlock)
2026     movptr(tmpReg, Address(boxReg, 0));
2027     testptr(tmpReg, tmpReg);
2028     jccb(Assembler::zero, DONE_LABEL);
2029     // If not recursive lock, reset the header to displaced header
2030     if (os::is_MP()) {
2031       lock();
2032     }
2033     cmpxchgptr(tmpReg, Address(objReg, 0));   // Uses RAX which is box
2034     bind(DONE_LABEL);
2035   } else {
2036     Label DONE_LABEL, Stacked, CheckSucc;
2037 
2038     // Critically, the biased locking test must have precedence over
2039     // and appear before the (box->dhw == 0) recursive stack-lock test.
2040     if (UseBiasedLocking && !UseOptoBiasInlining) {
2041        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2042     }
2043 
2044 #if INCLUDE_RTM_OPT
2045     if (UseRTMForStackLocks && use_rtm) {
2046       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2047       Label L_regular_unlock;
2048       movptr(tmpReg, Address(objReg, 0));           // fetch markword
2049       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2050       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
2051       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
2052       xend();                                       // otherwise end...
2053       jmp(DONE_LABEL);                              // ... and we're done
2054       bind(L_regular_unlock);
2055     }
2056 #endif
2057 
2058     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2059     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2060     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2061     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2062     jccb  (Assembler::zero, Stacked);
2063 
2064     // It's inflated.
2065 #if INCLUDE_RTM_OPT
2066     if (use_rtm) {
2067       Label L_regular_inflated_unlock;
2068       // Clean monitor_value bit to get valid pointer
2069       int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
2070       movptr(boxReg, Address(tmpReg, owner_offset));
2071       testptr(boxReg, boxReg);
2072       jccb(Assembler::notZero, L_regular_inflated_unlock);
2073       xend();
2074       jmpb(DONE_LABEL);
2075       bind(L_regular_inflated_unlock);
2076     }
2077 #endif
2078 
2079     // Despite our balanced locking property we still check that m->_owner == Self
2080     // as java routines or native JNI code called by this thread might
2081     // have released the lock.
2082     // Refer to the comments in synchronizer.cpp for how we might encode extra
2083     // state in _succ so we can avoid fetching EntryList|cxq.
2084     //
2085     // I'd like to add more cases in fast_lock() and fast_unlock() --
2086     // such as recursive enter and exit -- but we have to be wary of
2087     // I$ bloat, T$ effects and BP$ effects.
2088     //
2089     // If there's no contention try a 1-0 exit.  That is, exit without
2090     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2091     // we detect and recover from the race that the 1-0 exit admits.
2092     //
2093     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2094     // before it STs null into _owner, releasing the lock.  Updates
2095     // to data protected by the critical section must be visible before
2096     // we drop the lock (and thus before any other thread could acquire
2097     // the lock and observe the fields protected by the lock).
2098     // IA32's memory-model is SPO, so STs are ordered with respect to
2099     // each other and there's no need for an explicit barrier (fence).
2100     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2101 #ifndef _LP64
2102     get_thread (boxReg);
2103     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2104       // prefetchw [ebx + Offset(_owner)-2]
2105       prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2106     }
2107 
2108     // Note that we could employ various encoding schemes to reduce
2109     // the number of loads below (currently 4) to just 2 or 3.
2110     // Refer to the comments in synchronizer.cpp.
2111     // In practice the chain of fetches doesn't seem to impact performance, however.
2112     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2113        // Attempt to reduce branch density - AMD's branch predictor.
2114        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2115        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2116        orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2117        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2118        jccb  (Assembler::notZero, DONE_LABEL);
2119        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2120        jmpb  (DONE_LABEL);
2121     } else {
2122        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2123        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2124        jccb  (Assembler::notZero, DONE_LABEL);
2125        movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2126        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2127        jccb  (Assembler::notZero, CheckSucc);
2128        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2129        jmpb  (DONE_LABEL);
2130     }
2131 
2132     // The Following code fragment (EmitSync & 65536) improves the performance of
2133     // contended applications and contended synchronization microbenchmarks.
2134     // Unfortunately the emission of the code - even though not executed - causes regressions
2135     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2136     // with an equal number of never-executed NOPs results in the same regression.
2137     // We leave it off by default.
2138 
2139     if ((EmitSync & 65536) != 0) {
2140        Label LSuccess, LGoSlowPath ;
2141 
2142        bind  (CheckSucc);
2143 
2144        // Optional pre-test ... it's safe to elide this
2145        if ((EmitSync & 16) == 0) {
2146           cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2147           jccb  (Assembler::zero, LGoSlowPath);
2148        }
2149 
2150        // We have a classic Dekker-style idiom:
2151        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2152        // There are a number of ways to implement the barrier:
2153        // (1) lock:andl &m->_owner, 0
2154        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2155        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2156        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2157        // (2) If supported, an explicit MFENCE is appealing.
2158        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2159        //     particularly if the write-buffer is full as might be the case if
2160        //     if stores closely precede the fence or fence-equivalent instruction.
2161        //     In more modern implementations MFENCE appears faster, however.
2162        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2163        //     The $lines underlying the top-of-stack should be in M-state.
2164        //     The locked add instruction is serializing, of course.
2165        // (4) Use xchg, which is serializing
2166        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2167        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2168        //     The integer condition codes will tell us if succ was 0.
2169        //     Since _succ and _owner should reside in the same $line and
2170        //     we just stored into _owner, it's likely that the $line
2171        //     remains in M-state for the lock:orl.
2172        //
2173        // We currently use (3), although it's likely that switching to (2)
2174        // is correct for the future.
2175 
2176        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2177        if (os::is_MP()) {
2178           if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
2179             mfence();
2180           } else {
2181             lock (); addptr(Address(rsp, 0), 0);
2182           }
2183        }
2184        // Ratify _succ remains non-null
2185        cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0);
2186        jccb  (Assembler::notZero, LSuccess);
2187 
2188        xorptr(boxReg, boxReg);                  // box is really EAX
2189        if (os::is_MP()) { lock(); }
2190        cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2191        jccb  (Assembler::notEqual, LSuccess);
2192        // Since we're low on registers we installed rsp as a placeholding in _owner.
2193        // Now install Self over rsp.  This is safe as we're transitioning from
2194        // non-null to non=null
2195        get_thread (boxReg);
2196        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg);
2197        // Intentional fall-through into LGoSlowPath ...
2198 
2199        bind  (LGoSlowPath);
2200        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2201        jmpb  (DONE_LABEL);
2202 
2203        bind  (LSuccess);
2204        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2205        jmpb  (DONE_LABEL);
2206     }
2207 
2208     bind (Stacked);
2209     // It's not inflated and it's not recursively stack-locked and it's not biased.
2210     // It must be stack-locked.
2211     // Try to reset the header to displaced header.
2212     // The "box" value on the stack is stable, so we can reload
2213     // and be assured we observe the same value as above.
2214     movptr(tmpReg, Address(boxReg, 0));
2215     if (os::is_MP()) {
2216       lock();
2217     }
2218     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2219     // Intention fall-thru into DONE_LABEL
2220 
2221     // DONE_LABEL is a hot target - we'd really like to place it at the
2222     // start of cache line by padding with NOPs.
2223     // See the AMD and Intel software optimization manuals for the
2224     // most efficient "long" NOP encodings.
2225     // Unfortunately none of our alignment mechanisms suffice.
2226     if ((EmitSync & 65536) == 0) {
2227        bind (CheckSucc);
2228     }
2229 #else // _LP64
2230     // It's inflated
2231     movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2232     xorptr(boxReg, r15_thread);
2233     orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2234     jccb  (Assembler::notZero, DONE_LABEL);
2235     movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2236     orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2237     jccb  (Assembler::notZero, CheckSucc);
2238     movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
2239     jmpb  (DONE_LABEL);
2240 
2241     if ((EmitSync & 65536) == 0) {
2242       Label LSuccess, LGoSlowPath ;
2243       bind  (CheckSucc);
2244       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2245       jccb  (Assembler::zero, LGoSlowPath);
2246 
2247       // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
2248       // the explicit ST;MEMBAR combination, but masm doesn't currently support
2249       // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
2250       // are all faster when the write buffer is populated.
2251       movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
2252       if (os::is_MP()) {
2253          lock (); addl (Address(rsp, 0), 0);
2254       }
2255       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2256       jccb  (Assembler::notZero, LSuccess);
2257 
2258       movptr (boxReg, (int32_t)NULL_WORD);                   // box is really EAX
2259       if (os::is_MP()) { lock(); }
2260       cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2261       jccb  (Assembler::notEqual, LSuccess);
2262       // Intentional fall-through into slow-path
2263 
2264       bind  (LGoSlowPath);
2265       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2266       jmpb  (DONE_LABEL);
2267 
2268       bind  (LSuccess);
2269       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2270       jmpb  (DONE_LABEL);
2271     }
2272 
2273     bind  (Stacked);
2274     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2275     if (os::is_MP()) { lock(); }
2276     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2277 
2278     if (EmitSync & 65536) {
2279        bind (CheckSucc);
2280     }
2281 #endif
2282     bind(DONE_LABEL);
2283     // Avoid branch to branch on AMD processors
2284     if (EmitSync & 32768) {
2285        nop();
2286     }
2287   }
2288 }
2289 #endif // COMPILER2
2290 
2291 void MacroAssembler::c2bool(Register x) {
2292   // implements x == 0 ? 0 : 1
2293   // note: must only look at least-significant byte of x
2294   //       since C-style booleans are stored in one byte
2295   //       only! (was bug)
2296   andl(x, 0xFF);
2297   setb(Assembler::notZero, x);
2298 }
2299 
2300 // Wouldn't need if AddressLiteral version had new name
2301 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2302   Assembler::call(L, rtype);
2303 }
2304 
2305 void MacroAssembler::call(Register entry) {
2306   Assembler::call(entry);
2307 }
2308 
2309 void MacroAssembler::call(AddressLiteral entry) {
2310   if (reachable(entry)) {
2311     Assembler::call_literal(entry.target(), entry.rspec());
2312   } else {
2313     lea(rscratch1, entry);
2314     Assembler::call(rscratch1);
2315   }
2316 }
2317 
2318 void MacroAssembler::ic_call(address entry) {
2319   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2320   movptr(rax, (intptr_t)Universe::non_oop_word());
2321   call(AddressLiteral(entry, rh));
2322 }
2323 
2324 // Implementation of call_VM versions
2325 
2326 void MacroAssembler::call_VM(Register oop_result,
2327                              address entry_point,
2328                              bool check_exceptions) {
2329   Label C, E;
2330   call(C, relocInfo::none);
2331   jmp(E);
2332 
2333   bind(C);
2334   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2335   ret(0);
2336 
2337   bind(E);
2338 }
2339 
2340 void MacroAssembler::call_VM(Register oop_result,
2341                              address entry_point,
2342                              Register arg_1,
2343                              bool check_exceptions) {
2344   Label C, E;
2345   call(C, relocInfo::none);
2346   jmp(E);
2347 
2348   bind(C);
2349   pass_arg1(this, arg_1);
2350   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2351   ret(0);
2352 
2353   bind(E);
2354 }
2355 
2356 void MacroAssembler::call_VM(Register oop_result,
2357                              address entry_point,
2358                              Register arg_1,
2359                              Register arg_2,
2360                              bool check_exceptions) {
2361   Label C, E;
2362   call(C, relocInfo::none);
2363   jmp(E);
2364 
2365   bind(C);
2366 
2367   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2368 
2369   pass_arg2(this, arg_2);
2370   pass_arg1(this, arg_1);
2371   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2372   ret(0);
2373 
2374   bind(E);
2375 }
2376 
2377 void MacroAssembler::call_VM(Register oop_result,
2378                              address entry_point,
2379                              Register arg_1,
2380                              Register arg_2,
2381                              Register arg_3,
2382                              bool check_exceptions) {
2383   Label C, E;
2384   call(C, relocInfo::none);
2385   jmp(E);
2386 
2387   bind(C);
2388 
2389   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2390   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2391   pass_arg3(this, arg_3);
2392 
2393   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2394   pass_arg2(this, arg_2);
2395 
2396   pass_arg1(this, arg_1);
2397   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2398   ret(0);
2399 
2400   bind(E);
2401 }
2402 
2403 void MacroAssembler::call_VM(Register oop_result,
2404                              Register last_java_sp,
2405                              address entry_point,
2406                              int number_of_arguments,
2407                              bool check_exceptions) {
2408   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2409   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2410 }
2411 
2412 void MacroAssembler::call_VM(Register oop_result,
2413                              Register last_java_sp,
2414                              address entry_point,
2415                              Register arg_1,
2416                              bool check_exceptions) {
2417   pass_arg1(this, arg_1);
2418   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2419 }
2420 
2421 void MacroAssembler::call_VM(Register oop_result,
2422                              Register last_java_sp,
2423                              address entry_point,
2424                              Register arg_1,
2425                              Register arg_2,
2426                              bool check_exceptions) {
2427 
2428   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2429   pass_arg2(this, arg_2);
2430   pass_arg1(this, arg_1);
2431   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2432 }
2433 
2434 void MacroAssembler::call_VM(Register oop_result,
2435                              Register last_java_sp,
2436                              address entry_point,
2437                              Register arg_1,
2438                              Register arg_2,
2439                              Register arg_3,
2440                              bool check_exceptions) {
2441   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2442   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2443   pass_arg3(this, arg_3);
2444   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2445   pass_arg2(this, arg_2);
2446   pass_arg1(this, arg_1);
2447   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2448 }
2449 
2450 void MacroAssembler::super_call_VM(Register oop_result,
2451                                    Register last_java_sp,
2452                                    address entry_point,
2453                                    int number_of_arguments,
2454                                    bool check_exceptions) {
2455   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2456   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2457 }
2458 
2459 void MacroAssembler::super_call_VM(Register oop_result,
2460                                    Register last_java_sp,
2461                                    address entry_point,
2462                                    Register arg_1,
2463                                    bool check_exceptions) {
2464   pass_arg1(this, arg_1);
2465   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2466 }
2467 
2468 void MacroAssembler::super_call_VM(Register oop_result,
2469                                    Register last_java_sp,
2470                                    address entry_point,
2471                                    Register arg_1,
2472                                    Register arg_2,
2473                                    bool check_exceptions) {
2474 
2475   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2476   pass_arg2(this, arg_2);
2477   pass_arg1(this, arg_1);
2478   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2479 }
2480 
2481 void MacroAssembler::super_call_VM(Register oop_result,
2482                                    Register last_java_sp,
2483                                    address entry_point,
2484                                    Register arg_1,
2485                                    Register arg_2,
2486                                    Register arg_3,
2487                                    bool check_exceptions) {
2488   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2489   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2490   pass_arg3(this, arg_3);
2491   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2492   pass_arg2(this, arg_2);
2493   pass_arg1(this, arg_1);
2494   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2495 }
2496 
2497 void MacroAssembler::call_VM_base(Register oop_result,
2498                                   Register java_thread,
2499                                   Register last_java_sp,
2500                                   address  entry_point,
2501                                   int      number_of_arguments,
2502                                   bool     check_exceptions) {
2503   // determine java_thread register
2504   if (!java_thread->is_valid()) {
2505 #ifdef _LP64
2506     java_thread = r15_thread;
2507 #else
2508     java_thread = rdi;
2509     get_thread(java_thread);
2510 #endif // LP64
2511   }
2512   // determine last_java_sp register
2513   if (!last_java_sp->is_valid()) {
2514     last_java_sp = rsp;
2515   }
2516   // debugging support
2517   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2518   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2519 #ifdef ASSERT
2520   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2521   // r12 is the heapbase.
2522   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2523 #endif // ASSERT
2524 
2525   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2526   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2527 
2528   // push java thread (becomes first argument of C function)
2529 
2530   NOT_LP64(push(java_thread); number_of_arguments++);
2531   LP64_ONLY(mov(c_rarg0, r15_thread));
2532 
2533   // set last Java frame before call
2534   assert(last_java_sp != rbp, "can't use ebp/rbp");
2535 
2536   // Only interpreter should have to set fp
2537   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2538 
2539   // do the call, remove parameters
2540   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2541 
2542   // restore the thread (cannot use the pushed argument since arguments
2543   // may be overwritten by C code generated by an optimizing compiler);
2544   // however can use the register value directly if it is callee saved.
2545   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2546     // rdi & rsi (also r15) are callee saved -> nothing to do
2547 #ifdef ASSERT
2548     guarantee(java_thread != rax, "change this code");
2549     push(rax);
2550     { Label L;
2551       get_thread(rax);
2552       cmpptr(java_thread, rax);
2553       jcc(Assembler::equal, L);
2554       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2555       bind(L);
2556     }
2557     pop(rax);
2558 #endif
2559   } else {
2560     get_thread(java_thread);
2561   }
2562   // reset last Java frame
2563   // Only interpreter should have to clear fp
2564   reset_last_Java_frame(java_thread, true, false);
2565 
2566 #ifndef CC_INTERP
2567    // C++ interp handles this in the interpreter
2568   check_and_handle_popframe(java_thread);
2569   check_and_handle_earlyret(java_thread);
2570 #endif /* CC_INTERP */
2571 
2572   if (check_exceptions) {
2573     // check for pending exceptions (java_thread is set upon return)
2574     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2575 #ifndef _LP64
2576     jump_cc(Assembler::notEqual,
2577             RuntimeAddress(StubRoutines::forward_exception_entry()));
2578 #else
2579     // This used to conditionally jump to forward_exception however it is
2580     // possible if we relocate that the branch will not reach. So we must jump
2581     // around so we can always reach
2582 
2583     Label ok;
2584     jcc(Assembler::equal, ok);
2585     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2586     bind(ok);
2587 #endif // LP64
2588   }
2589 
2590   // get oop result if there is one and reset the value in the thread
2591   if (oop_result->is_valid()) {
2592     get_vm_result(oop_result, java_thread);
2593   }
2594 }
2595 
2596 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2597 
2598   // Calculate the value for last_Java_sp
2599   // somewhat subtle. call_VM does an intermediate call
2600   // which places a return address on the stack just under the
2601   // stack pointer as the user finsihed with it. This allows
2602   // use to retrieve last_Java_pc from last_Java_sp[-1].
2603   // On 32bit we then have to push additional args on the stack to accomplish
2604   // the actual requested call. On 64bit call_VM only can use register args
2605   // so the only extra space is the return address that call_VM created.
2606   // This hopefully explains the calculations here.
2607 
2608 #ifdef _LP64
2609   // We've pushed one address, correct last_Java_sp
2610   lea(rax, Address(rsp, wordSize));
2611 #else
2612   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2613 #endif // LP64
2614 
2615   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2616 
2617 }
2618 
2619 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2620   call_VM_leaf_base(entry_point, number_of_arguments);
2621 }
2622 
2623 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2624   pass_arg0(this, arg_0);
2625   call_VM_leaf(entry_point, 1);
2626 }
2627 
2628 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2629 
2630   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2631   pass_arg1(this, arg_1);
2632   pass_arg0(this, arg_0);
2633   call_VM_leaf(entry_point, 2);
2634 }
2635 
2636 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2637   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2638   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2639   pass_arg2(this, arg_2);
2640   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2641   pass_arg1(this, arg_1);
2642   pass_arg0(this, arg_0);
2643   call_VM_leaf(entry_point, 3);
2644 }
2645 
2646 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2647   pass_arg0(this, arg_0);
2648   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2649 }
2650 
2651 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2652 
2653   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2654   pass_arg1(this, arg_1);
2655   pass_arg0(this, arg_0);
2656   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2657 }
2658 
2659 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2660   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2661   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2662   pass_arg2(this, arg_2);
2663   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2664   pass_arg1(this, arg_1);
2665   pass_arg0(this, arg_0);
2666   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2667 }
2668 
2669 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2670   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2671   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2672   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2673   pass_arg3(this, arg_3);
2674   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2675   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2676   pass_arg2(this, arg_2);
2677   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2678   pass_arg1(this, arg_1);
2679   pass_arg0(this, arg_0);
2680   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2681 }
2682 
2683 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2684   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2685   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2686   verify_oop(oop_result, "broken oop in call_VM_base");
2687 }
2688 
2689 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2690   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2691   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2692 }
2693 
2694 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2695 }
2696 
2697 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2698 }
2699 
2700 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2701   if (reachable(src1)) {
2702     cmpl(as_Address(src1), imm);
2703   } else {
2704     lea(rscratch1, src1);
2705     cmpl(Address(rscratch1, 0), imm);
2706   }
2707 }
2708 
2709 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2710   assert(!src2.is_lval(), "use cmpptr");
2711   if (reachable(src2)) {
2712     cmpl(src1, as_Address(src2));
2713   } else {
2714     lea(rscratch1, src2);
2715     cmpl(src1, Address(rscratch1, 0));
2716   }
2717 }
2718 
2719 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2720   Assembler::cmpl(src1, imm);
2721 }
2722 
2723 void MacroAssembler::cmp32(Register src1, Address src2) {
2724   Assembler::cmpl(src1, src2);
2725 }
2726 
2727 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2728   ucomisd(opr1, opr2);
2729 
2730   Label L;
2731   if (unordered_is_less) {
2732     movl(dst, -1);
2733     jcc(Assembler::parity, L);
2734     jcc(Assembler::below , L);
2735     movl(dst, 0);
2736     jcc(Assembler::equal , L);
2737     increment(dst);
2738   } else { // unordered is greater
2739     movl(dst, 1);
2740     jcc(Assembler::parity, L);
2741     jcc(Assembler::above , L);
2742     movl(dst, 0);
2743     jcc(Assembler::equal , L);
2744     decrementl(dst);
2745   }
2746   bind(L);
2747 }
2748 
2749 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2750   ucomiss(opr1, opr2);
2751 
2752   Label L;
2753   if (unordered_is_less) {
2754     movl(dst, -1);
2755     jcc(Assembler::parity, L);
2756     jcc(Assembler::below , L);
2757     movl(dst, 0);
2758     jcc(Assembler::equal , L);
2759     increment(dst);
2760   } else { // unordered is greater
2761     movl(dst, 1);
2762     jcc(Assembler::parity, L);
2763     jcc(Assembler::above , L);
2764     movl(dst, 0);
2765     jcc(Assembler::equal , L);
2766     decrementl(dst);
2767   }
2768   bind(L);
2769 }
2770 
2771 
2772 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2773   if (reachable(src1)) {
2774     cmpb(as_Address(src1), imm);
2775   } else {
2776     lea(rscratch1, src1);
2777     cmpb(Address(rscratch1, 0), imm);
2778   }
2779 }
2780 
2781 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2782 #ifdef _LP64
2783   if (src2.is_lval()) {
2784     movptr(rscratch1, src2);
2785     Assembler::cmpq(src1, rscratch1);
2786   } else if (reachable(src2)) {
2787     cmpq(src1, as_Address(src2));
2788   } else {
2789     lea(rscratch1, src2);
2790     Assembler::cmpq(src1, Address(rscratch1, 0));
2791   }
2792 #else
2793   if (src2.is_lval()) {
2794     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2795   } else {
2796     cmpl(src1, as_Address(src2));
2797   }
2798 #endif // _LP64
2799 }
2800 
2801 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2802   assert(src2.is_lval(), "not a mem-mem compare");
2803 #ifdef _LP64
2804   // moves src2's literal address
2805   movptr(rscratch1, src2);
2806   Assembler::cmpq(src1, rscratch1);
2807 #else
2808   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2809 #endif // _LP64
2810 }
2811 
2812 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2813   if (reachable(adr)) {
2814     if (os::is_MP())
2815       lock();
2816     cmpxchgptr(reg, as_Address(adr));
2817   } else {
2818     lea(rscratch1, adr);
2819     if (os::is_MP())
2820       lock();
2821     cmpxchgptr(reg, Address(rscratch1, 0));
2822   }
2823 }
2824 
2825 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2826   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2827 }
2828 
2829 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2830   if (reachable(src)) {
2831     Assembler::comisd(dst, as_Address(src));
2832   } else {
2833     lea(rscratch1, src);
2834     Assembler::comisd(dst, Address(rscratch1, 0));
2835   }
2836 }
2837 
2838 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2839   if (reachable(src)) {
2840     Assembler::comiss(dst, as_Address(src));
2841   } else {
2842     lea(rscratch1, src);
2843     Assembler::comiss(dst, Address(rscratch1, 0));
2844   }
2845 }
2846 
2847 
2848 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2849   Condition negated_cond = negate_condition(cond);
2850   Label L;
2851   jcc(negated_cond, L);
2852   pushf(); // Preserve flags
2853   atomic_incl(counter_addr);
2854   popf();
2855   bind(L);
2856 }
2857 
2858 int MacroAssembler::corrected_idivl(Register reg) {
2859   // Full implementation of Java idiv and irem; checks for
2860   // special case as described in JVM spec., p.243 & p.271.
2861   // The function returns the (pc) offset of the idivl
2862   // instruction - may be needed for implicit exceptions.
2863   //
2864   //         normal case                           special case
2865   //
2866   // input : rax,: dividend                         min_int
2867   //         reg: divisor   (may not be rax,/rdx)   -1
2868   //
2869   // output: rax,: quotient  (= rax, idiv reg)       min_int
2870   //         rdx: remainder (= rax, irem reg)       0
2871   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2872   const int min_int = 0x80000000;
2873   Label normal_case, special_case;
2874 
2875   // check for special case
2876   cmpl(rax, min_int);
2877   jcc(Assembler::notEqual, normal_case);
2878   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2879   cmpl(reg, -1);
2880   jcc(Assembler::equal, special_case);
2881 
2882   // handle normal case
2883   bind(normal_case);
2884   cdql();
2885   int idivl_offset = offset();
2886   idivl(reg);
2887 
2888   // normal and special case exit
2889   bind(special_case);
2890 
2891   return idivl_offset;
2892 }
2893 
2894 
2895 
2896 void MacroAssembler::decrementl(Register reg, int value) {
2897   if (value == min_jint) {subl(reg, value) ; return; }
2898   if (value <  0) { incrementl(reg, -value); return; }
2899   if (value == 0) {                        ; return; }
2900   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2901   /* else */      { subl(reg, value)       ; return; }
2902 }
2903 
2904 void MacroAssembler::decrementl(Address dst, int value) {
2905   if (value == min_jint) {subl(dst, value) ; return; }
2906   if (value <  0) { incrementl(dst, -value); return; }
2907   if (value == 0) {                        ; return; }
2908   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2909   /* else */      { subl(dst, value)       ; return; }
2910 }
2911 
2912 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2913   assert (shift_value > 0, "illegal shift value");
2914   Label _is_positive;
2915   testl (reg, reg);
2916   jcc (Assembler::positive, _is_positive);
2917   int offset = (1 << shift_value) - 1 ;
2918 
2919   if (offset == 1) {
2920     incrementl(reg);
2921   } else {
2922     addl(reg, offset);
2923   }
2924 
2925   bind (_is_positive);
2926   sarl(reg, shift_value);
2927 }
2928 
2929 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2930   if (reachable(src)) {
2931     Assembler::divsd(dst, as_Address(src));
2932   } else {
2933     lea(rscratch1, src);
2934     Assembler::divsd(dst, Address(rscratch1, 0));
2935   }
2936 }
2937 
2938 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2939   if (reachable(src)) {
2940     Assembler::divss(dst, as_Address(src));
2941   } else {
2942     lea(rscratch1, src);
2943     Assembler::divss(dst, Address(rscratch1, 0));
2944   }
2945 }
2946 
2947 // !defined(COMPILER2) is because of stupid core builds
2948 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2949 void MacroAssembler::empty_FPU_stack() {
2950   if (VM_Version::supports_mmx()) {
2951     emms();
2952   } else {
2953     for (int i = 8; i-- > 0; ) ffree(i);
2954   }
2955 }
2956 #endif // !LP64 || C1 || !C2
2957 
2958 
2959 // Defines obj, preserves var_size_in_bytes
2960 void MacroAssembler::eden_allocate(Register obj,
2961                                    Register var_size_in_bytes,
2962                                    int con_size_in_bytes,
2963                                    Register t1,
2964                                    Label& slow_case) {
2965   assert(obj == rax, "obj must be in rax, for cmpxchg");
2966   assert_different_registers(obj, var_size_in_bytes, t1);
2967   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
2968     jmp(slow_case);
2969   } else {
2970     Register end = t1;
2971     Label retry;
2972     bind(retry);
2973     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2974     movptr(obj, heap_top);
2975     if (var_size_in_bytes == noreg) {
2976       lea(end, Address(obj, con_size_in_bytes));
2977     } else {
2978       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2979     }
2980     // if end < obj then we wrapped around => object too long => slow case
2981     cmpptr(end, obj);
2982     jcc(Assembler::below, slow_case);
2983     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2984     jcc(Assembler::above, slow_case);
2985     // Compare obj with the top addr, and if still equal, store the new top addr in
2986     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2987     // it otherwise. Use lock prefix for atomicity on MPs.
2988     locked_cmpxchgptr(end, heap_top);
2989     jcc(Assembler::notEqual, retry);
2990   }
2991 }
2992 
2993 void MacroAssembler::enter() {
2994   push(rbp);
2995   mov(rbp, rsp);
2996 }
2997 
2998 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2999 void MacroAssembler::fat_nop() {
3000   if (UseAddressNop) {
3001     addr_nop_5();
3002   } else {
3003     emit_int8(0x26); // es:
3004     emit_int8(0x2e); // cs:
3005     emit_int8(0x64); // fs:
3006     emit_int8(0x65); // gs:
3007     emit_int8((unsigned char)0x90);
3008   }
3009 }
3010 
3011 void MacroAssembler::fcmp(Register tmp) {
3012   fcmp(tmp, 1, true, true);
3013 }
3014 
3015 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
3016   assert(!pop_right || pop_left, "usage error");
3017   if (VM_Version::supports_cmov()) {
3018     assert(tmp == noreg, "unneeded temp");
3019     if (pop_left) {
3020       fucomip(index);
3021     } else {
3022       fucomi(index);
3023     }
3024     if (pop_right) {
3025       fpop();
3026     }
3027   } else {
3028     assert(tmp != noreg, "need temp");
3029     if (pop_left) {
3030       if (pop_right) {
3031         fcompp();
3032       } else {
3033         fcomp(index);
3034       }
3035     } else {
3036       fcom(index);
3037     }
3038     // convert FPU condition into eflags condition via rax,
3039     save_rax(tmp);
3040     fwait(); fnstsw_ax();
3041     sahf();
3042     restore_rax(tmp);
3043   }
3044   // condition codes set as follows:
3045   //
3046   // CF (corresponds to C0) if x < y
3047   // PF (corresponds to C2) if unordered
3048   // ZF (corresponds to C3) if x = y
3049 }
3050 
3051 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3052   fcmp2int(dst, unordered_is_less, 1, true, true);
3053 }
3054 
3055 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3056   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3057   Label L;
3058   if (unordered_is_less) {
3059     movl(dst, -1);
3060     jcc(Assembler::parity, L);
3061     jcc(Assembler::below , L);
3062     movl(dst, 0);
3063     jcc(Assembler::equal , L);
3064     increment(dst);
3065   } else { // unordered is greater
3066     movl(dst, 1);
3067     jcc(Assembler::parity, L);
3068     jcc(Assembler::above , L);
3069     movl(dst, 0);
3070     jcc(Assembler::equal , L);
3071     decrementl(dst);
3072   }
3073   bind(L);
3074 }
3075 
3076 void MacroAssembler::fld_d(AddressLiteral src) {
3077   fld_d(as_Address(src));
3078 }
3079 
3080 void MacroAssembler::fld_s(AddressLiteral src) {
3081   fld_s(as_Address(src));
3082 }
3083 
3084 void MacroAssembler::fld_x(AddressLiteral src) {
3085   Assembler::fld_x(as_Address(src));
3086 }
3087 
3088 void MacroAssembler::fldcw(AddressLiteral src) {
3089   Assembler::fldcw(as_Address(src));
3090 }
3091 
3092 void MacroAssembler::pow_exp_core_encoding() {
3093   // kills rax, rcx, rdx
3094   subptr(rsp,sizeof(jdouble));
3095   // computes 2^X. Stack: X ...
3096   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3097   // keep it on the thread's stack to compute 2^int(X) later
3098   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3099   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3100   fld_s(0);                 // Stack: X X ...
3101   frndint();                // Stack: int(X) X ...
3102   fsuba(1);                 // Stack: int(X) X-int(X) ...
3103   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3104   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3105   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3106   faddp(1);                 // Stack: 2^(X-int(X))
3107   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3108   // shift int(X)+1023 to exponent position.
3109   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3110   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3111   // values so detect them and set result to NaN.
3112   movl(rax,Address(rsp,0));
3113   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3114   addl(rax, 1023);
3115   movl(rdx,rax);
3116   shll(rax,20);
3117   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3118   addl(rdx,1);
3119   // Check that 1 < int(X)+1023+1 < 2048
3120   // in 3 steps:
3121   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3122   // 2- (int(X)+1023+1)&-2048 != 0
3123   // 3- (int(X)+1023+1)&-2048 != 1
3124   // Do 2- first because addl just updated the flags.
3125   cmov32(Assembler::equal,rax,rcx);
3126   cmpl(rdx,1);
3127   cmov32(Assembler::equal,rax,rcx);
3128   testl(rdx,rcx);
3129   cmov32(Assembler::notEqual,rax,rcx);
3130   movl(Address(rsp,4),rax);
3131   movl(Address(rsp,0),0);
3132   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3133   addptr(rsp,sizeof(jdouble));
3134 }
3135 
3136 void MacroAssembler::increase_precision() {
3137   subptr(rsp, BytesPerWord);
3138   fnstcw(Address(rsp, 0));
3139   movl(rax, Address(rsp, 0));
3140   orl(rax, 0x300);
3141   push(rax);
3142   fldcw(Address(rsp, 0));
3143   pop(rax);
3144 }
3145 
3146 void MacroAssembler::restore_precision() {
3147   fldcw(Address(rsp, 0));
3148   addptr(rsp, BytesPerWord);
3149 }
3150 
3151 void MacroAssembler::fast_pow() {
3152   // computes X^Y = 2^(Y * log2(X))
3153   // if fast computation is not possible, result is NaN. Requires
3154   // fallback from user of this macro.
3155   // increase precision for intermediate steps of the computation
3156   BLOCK_COMMENT("fast_pow {");
3157   increase_precision();
3158   fyl2x();                 // Stack: (Y*log2(X)) ...
3159   pow_exp_core_encoding(); // Stack: exp(X) ...
3160   restore_precision();
3161   BLOCK_COMMENT("} fast_pow");
3162 }
3163 
3164 void MacroAssembler::fast_exp() {
3165   // computes exp(X) = 2^(X * log2(e))
3166   // if fast computation is not possible, result is NaN. Requires
3167   // fallback from user of this macro.
3168   // increase precision for intermediate steps of the computation
3169   increase_precision();
3170   fldl2e();                // Stack: log2(e) X ...
3171   fmulp(1);                // Stack: (X*log2(e)) ...
3172   pow_exp_core_encoding(); // Stack: exp(X) ...
3173   restore_precision();
3174 }
3175 
3176 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
3177   // kills rax, rcx, rdx
3178   // pow and exp needs 2 extra registers on the fpu stack.
3179   Label slow_case, done;
3180   Register tmp = noreg;
3181   if (!VM_Version::supports_cmov()) {
3182     // fcmp needs a temporary so preserve rdx,
3183     tmp = rdx;
3184   }
3185   Register tmp2 = rax;
3186   Register tmp3 = rcx;
3187 
3188   if (is_exp) {
3189     // Stack: X
3190     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
3191     fast_exp();                 // Stack: exp(X) X
3192     fcmp(tmp, 0, false, false); // Stack: exp(X) X
3193     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
3194     jcc(Assembler::parity, slow_case);
3195     // get rid of duplicate argument. Stack: exp(X)
3196     if (num_fpu_regs_in_use > 0) {
3197       fxch();
3198       fpop();
3199     } else {
3200       ffree(1);
3201     }
3202     jmp(done);
3203   } else {
3204     // Stack: X Y
3205     Label x_negative, y_odd;
3206 
3207     fldz();                     // Stack: 0 X Y
3208     fcmp(tmp, 1, true, false);  // Stack: X Y
3209     jcc(Assembler::above, x_negative);
3210 
3211     // X >= 0
3212 
3213     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3214     fld_s(1);                   // Stack: X Y X Y
3215     fast_pow();                 // Stack: X^Y X Y
3216     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3217     // X^Y not equal to itself: X^Y is NaN go to slow case.
3218     jcc(Assembler::parity, slow_case);
3219     // get rid of duplicate arguments. Stack: X^Y
3220     if (num_fpu_regs_in_use > 0) {
3221       fxch(); fpop();
3222       fxch(); fpop();
3223     } else {
3224       ffree(2);
3225       ffree(1);
3226     }
3227     jmp(done);
3228 
3229     // X <= 0
3230     bind(x_negative);
3231 
3232     fld_s(1);                   // Stack: Y X Y
3233     frndint();                  // Stack: int(Y) X Y
3234     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3235     jcc(Assembler::notEqual, slow_case);
3236 
3237     subptr(rsp, 8);
3238 
3239     // For X^Y, when X < 0, Y has to be an integer and the final
3240     // result depends on whether it's odd or even. We just checked
3241     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3242     // integer to test its parity. If int(Y) is huge and doesn't fit
3243     // in the 64 bit integer range, the integer indefinite value will
3244     // end up in the gp registers. Huge numbers are all even, the
3245     // integer indefinite number is even so it's fine.
3246 
3247 #ifdef ASSERT
3248     // Let's check we don't end up with an integer indefinite number
3249     // when not expected. First test for huge numbers: check whether
3250     // int(Y)+1 == int(Y) which is true for very large numbers and
3251     // those are all even. A 64 bit integer is guaranteed to not
3252     // overflow for numbers where y+1 != y (when precision is set to
3253     // double precision).
3254     Label y_not_huge;
3255 
3256     fld1();                     // Stack: 1 int(Y) X Y
3257     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3258 
3259 #ifdef _LP64
3260     // trip to memory to force the precision down from double extended
3261     // precision
3262     fstp_d(Address(rsp, 0));
3263     fld_d(Address(rsp, 0));
3264 #endif
3265 
3266     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3267 #endif
3268 
3269     // move int(Y) as 64 bit integer to thread's stack
3270     fistp_d(Address(rsp,0));    // Stack: X Y
3271 
3272 #ifdef ASSERT
3273     jcc(Assembler::notEqual, y_not_huge);
3274 
3275     // Y is huge so we know it's even. It may not fit in a 64 bit
3276     // integer and we don't want the debug code below to see the
3277     // integer indefinite value so overwrite int(Y) on the thread's
3278     // stack with 0.
3279     movl(Address(rsp, 0), 0);
3280     movl(Address(rsp, 4), 0);
3281 
3282     bind(y_not_huge);
3283 #endif
3284 
3285     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3286     fld_s(1);                   // Stack: X Y X Y
3287     fabs();                     // Stack: abs(X) Y X Y
3288     fast_pow();                 // Stack: abs(X)^Y X Y
3289     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3290     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3291 
3292     pop(tmp2);
3293     NOT_LP64(pop(tmp3));
3294     jcc(Assembler::parity, slow_case);
3295 
3296 #ifdef ASSERT
3297     // Check that int(Y) is not integer indefinite value (int
3298     // overflow). Shouldn't happen because for values that would
3299     // overflow, 1+int(Y)==Y which was tested earlier.
3300 #ifndef _LP64
3301     {
3302       Label integer;
3303       testl(tmp2, tmp2);
3304       jcc(Assembler::notZero, integer);
3305       cmpl(tmp3, 0x80000000);
3306       jcc(Assembler::notZero, integer);
3307       STOP("integer indefinite value shouldn't be seen here");
3308       bind(integer);
3309     }
3310 #else
3311     {
3312       Label integer;
3313       mov(tmp3, tmp2); // preserve tmp2 for parity check below
3314       shlq(tmp3, 1);
3315       jcc(Assembler::carryClear, integer);
3316       jcc(Assembler::notZero, integer);
3317       STOP("integer indefinite value shouldn't be seen here");
3318       bind(integer);
3319     }
3320 #endif
3321 #endif
3322 
3323     // get rid of duplicate arguments. Stack: X^Y
3324     if (num_fpu_regs_in_use > 0) {
3325       fxch(); fpop();
3326       fxch(); fpop();
3327     } else {
3328       ffree(2);
3329       ffree(1);
3330     }
3331 
3332     testl(tmp2, 1);
3333     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3334     // X <= 0, Y even: X^Y = -abs(X)^Y
3335 
3336     fchs();                     // Stack: -abs(X)^Y Y
3337     jmp(done);
3338   }
3339 
3340   // slow case: runtime call
3341   bind(slow_case);
3342 
3343   fpop();                       // pop incorrect result or int(Y)
3344 
3345   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
3346                       is_exp ? 1 : 2, num_fpu_regs_in_use);
3347 
3348   // Come here with result in F-TOS
3349   bind(done);
3350 }
3351 
3352 void MacroAssembler::fpop() {
3353   ffree();
3354   fincstp();
3355 }
3356 
3357 void MacroAssembler::fremr(Register tmp) {
3358   save_rax(tmp);
3359   { Label L;
3360     bind(L);
3361     fprem();
3362     fwait(); fnstsw_ax();
3363 #ifdef _LP64
3364     testl(rax, 0x400);
3365     jcc(Assembler::notEqual, L);
3366 #else
3367     sahf();
3368     jcc(Assembler::parity, L);
3369 #endif // _LP64
3370   }
3371   restore_rax(tmp);
3372   // Result is in ST0.
3373   // Note: fxch & fpop to get rid of ST1
3374   // (otherwise FPU stack could overflow eventually)
3375   fxch(1);
3376   fpop();
3377 }
3378 
3379 
3380 void MacroAssembler::incrementl(AddressLiteral dst) {
3381   if (reachable(dst)) {
3382     incrementl(as_Address(dst));
3383   } else {
3384     lea(rscratch1, dst);
3385     incrementl(Address(rscratch1, 0));
3386   }
3387 }
3388 
3389 void MacroAssembler::incrementl(ArrayAddress dst) {
3390   incrementl(as_Address(dst));
3391 }
3392 
3393 void MacroAssembler::incrementl(Register reg, int value) {
3394   if (value == min_jint) {addl(reg, value) ; return; }
3395   if (value <  0) { decrementl(reg, -value); return; }
3396   if (value == 0) {                        ; return; }
3397   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3398   /* else */      { addl(reg, value)       ; return; }
3399 }
3400 
3401 void MacroAssembler::incrementl(Address dst, int value) {
3402   if (value == min_jint) {addl(dst, value) ; return; }
3403   if (value <  0) { decrementl(dst, -value); return; }
3404   if (value == 0) {                        ; return; }
3405   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3406   /* else */      { addl(dst, value)       ; return; }
3407 }
3408 
3409 void MacroAssembler::jump(AddressLiteral dst) {
3410   if (reachable(dst)) {
3411     jmp_literal(dst.target(), dst.rspec());
3412   } else {
3413     lea(rscratch1, dst);
3414     jmp(rscratch1);
3415   }
3416 }
3417 
3418 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3419   if (reachable(dst)) {
3420     InstructionMark im(this);
3421     relocate(dst.reloc());
3422     const int short_size = 2;
3423     const int long_size = 6;
3424     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3425     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3426       // 0111 tttn #8-bit disp
3427       emit_int8(0x70 | cc);
3428       emit_int8((offs - short_size) & 0xFF);
3429     } else {
3430       // 0000 1111 1000 tttn #32-bit disp
3431       emit_int8(0x0F);
3432       emit_int8((unsigned char)(0x80 | cc));
3433       emit_int32(offs - long_size);
3434     }
3435   } else {
3436 #ifdef ASSERT
3437     warning("reversing conditional branch");
3438 #endif /* ASSERT */
3439     Label skip;
3440     jccb(reverse[cc], skip);
3441     lea(rscratch1, dst);
3442     Assembler::jmp(rscratch1);
3443     bind(skip);
3444   }
3445 }
3446 
3447 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3448   if (reachable(src)) {
3449     Assembler::ldmxcsr(as_Address(src));
3450   } else {
3451     lea(rscratch1, src);
3452     Assembler::ldmxcsr(Address(rscratch1, 0));
3453   }
3454 }
3455 
3456 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3457   int off;
3458   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3459     off = offset();
3460     movsbl(dst, src); // movsxb
3461   } else {
3462     off = load_unsigned_byte(dst, src);
3463     shll(dst, 24);
3464     sarl(dst, 24);
3465   }
3466   return off;
3467 }
3468 
3469 // Note: load_signed_short used to be called load_signed_word.
3470 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3471 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3472 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3473 int MacroAssembler::load_signed_short(Register dst, Address src) {
3474   int off;
3475   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3476     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3477     // version but this is what 64bit has always done. This seems to imply
3478     // that users are only using 32bits worth.
3479     off = offset();
3480     movswl(dst, src); // movsxw
3481   } else {
3482     off = load_unsigned_short(dst, src);
3483     shll(dst, 16);
3484     sarl(dst, 16);
3485   }
3486   return off;
3487 }
3488 
3489 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3490   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3491   // and "3.9 Partial Register Penalties", p. 22).
3492   int off;
3493   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3494     off = offset();
3495     movzbl(dst, src); // movzxb
3496   } else {
3497     xorl(dst, dst);
3498     off = offset();
3499     movb(dst, src);
3500   }
3501   return off;
3502 }
3503 
3504 // Note: load_unsigned_short used to be called load_unsigned_word.
3505 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3506   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3507   // and "3.9 Partial Register Penalties", p. 22).
3508   int off;
3509   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3510     off = offset();
3511     movzwl(dst, src); // movzxw
3512   } else {
3513     xorl(dst, dst);
3514     off = offset();
3515     movw(dst, src);
3516   }
3517   return off;
3518 }
3519 
3520 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3521   switch (size_in_bytes) {
3522 #ifndef _LP64
3523   case  8:
3524     assert(dst2 != noreg, "second dest register required");
3525     movl(dst,  src);
3526     movl(dst2, src.plus_disp(BytesPerInt));
3527     break;
3528 #else
3529   case  8:  movq(dst, src); break;
3530 #endif
3531   case  4:  movl(dst, src); break;
3532   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3533   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3534   default:  ShouldNotReachHere();
3535   }
3536 }
3537 
3538 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3539   switch (size_in_bytes) {
3540 #ifndef _LP64
3541   case  8:
3542     assert(src2 != noreg, "second source register required");
3543     movl(dst,                        src);
3544     movl(dst.plus_disp(BytesPerInt), src2);
3545     break;
3546 #else
3547   case  8:  movq(dst, src); break;
3548 #endif
3549   case  4:  movl(dst, src); break;
3550   case  2:  movw(dst, src); break;
3551   case  1:  movb(dst, src); break;
3552   default:  ShouldNotReachHere();
3553   }
3554 }
3555 
3556 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3557   if (reachable(dst)) {
3558     movl(as_Address(dst), src);
3559   } else {
3560     lea(rscratch1, dst);
3561     movl(Address(rscratch1, 0), src);
3562   }
3563 }
3564 
3565 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3566   if (reachable(src)) {
3567     movl(dst, as_Address(src));
3568   } else {
3569     lea(rscratch1, src);
3570     movl(dst, Address(rscratch1, 0));
3571   }
3572 }
3573 
3574 // C++ bool manipulation
3575 
3576 void MacroAssembler::movbool(Register dst, Address src) {
3577   if(sizeof(bool) == 1)
3578     movb(dst, src);
3579   else if(sizeof(bool) == 2)
3580     movw(dst, src);
3581   else if(sizeof(bool) == 4)
3582     movl(dst, src);
3583   else
3584     // unsupported
3585     ShouldNotReachHere();
3586 }
3587 
3588 void MacroAssembler::movbool(Address dst, bool boolconst) {
3589   if(sizeof(bool) == 1)
3590     movb(dst, (int) boolconst);
3591   else if(sizeof(bool) == 2)
3592     movw(dst, (int) boolconst);
3593   else if(sizeof(bool) == 4)
3594     movl(dst, (int) boolconst);
3595   else
3596     // unsupported
3597     ShouldNotReachHere();
3598 }
3599 
3600 void MacroAssembler::movbool(Address dst, Register src) {
3601   if(sizeof(bool) == 1)
3602     movb(dst, src);
3603   else if(sizeof(bool) == 2)
3604     movw(dst, src);
3605   else if(sizeof(bool) == 4)
3606     movl(dst, src);
3607   else
3608     // unsupported
3609     ShouldNotReachHere();
3610 }
3611 
3612 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3613   movb(as_Address(dst), src);
3614 }
3615 
3616 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3617   if (reachable(src)) {
3618     movdl(dst, as_Address(src));
3619   } else {
3620     lea(rscratch1, src);
3621     movdl(dst, Address(rscratch1, 0));
3622   }
3623 }
3624 
3625 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3626   if (reachable(src)) {
3627     movq(dst, as_Address(src));
3628   } else {
3629     lea(rscratch1, src);
3630     movq(dst, Address(rscratch1, 0));
3631   }
3632 }
3633 
3634 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3635   if (reachable(src)) {
3636     if (UseXmmLoadAndClearUpper) {
3637       movsd (dst, as_Address(src));
3638     } else {
3639       movlpd(dst, as_Address(src));
3640     }
3641   } else {
3642     lea(rscratch1, src);
3643     if (UseXmmLoadAndClearUpper) {
3644       movsd (dst, Address(rscratch1, 0));
3645     } else {
3646       movlpd(dst, Address(rscratch1, 0));
3647     }
3648   }
3649 }
3650 
3651 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3652   if (reachable(src)) {
3653     movss(dst, as_Address(src));
3654   } else {
3655     lea(rscratch1, src);
3656     movss(dst, Address(rscratch1, 0));
3657   }
3658 }
3659 
3660 void MacroAssembler::movptr(Register dst, Register src) {
3661   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3662 }
3663 
3664 void MacroAssembler::movptr(Register dst, Address src) {
3665   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3666 }
3667 
3668 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3669 void MacroAssembler::movptr(Register dst, intptr_t src) {
3670   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3671 }
3672 
3673 void MacroAssembler::movptr(Address dst, Register src) {
3674   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3675 }
3676 
3677 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3678   if (reachable(src)) {
3679     Assembler::movdqu(dst, as_Address(src));
3680   } else {
3681     lea(rscratch1, src);
3682     Assembler::movdqu(dst, Address(rscratch1, 0));
3683   }
3684 }
3685 
3686 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3687   if (reachable(src)) {
3688     Assembler::movdqa(dst, as_Address(src));
3689   } else {
3690     lea(rscratch1, src);
3691     Assembler::movdqa(dst, Address(rscratch1, 0));
3692   }
3693 }
3694 
3695 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3696   if (reachable(src)) {
3697     Assembler::movsd(dst, as_Address(src));
3698   } else {
3699     lea(rscratch1, src);
3700     Assembler::movsd(dst, Address(rscratch1, 0));
3701   }
3702 }
3703 
3704 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3705   if (reachable(src)) {
3706     Assembler::movss(dst, as_Address(src));
3707   } else {
3708     lea(rscratch1, src);
3709     Assembler::movss(dst, Address(rscratch1, 0));
3710   }
3711 }
3712 
3713 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3714   if (reachable(src)) {
3715     Assembler::mulsd(dst, as_Address(src));
3716   } else {
3717     lea(rscratch1, src);
3718     Assembler::mulsd(dst, Address(rscratch1, 0));
3719   }
3720 }
3721 
3722 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3723   if (reachable(src)) {
3724     Assembler::mulss(dst, as_Address(src));
3725   } else {
3726     lea(rscratch1, src);
3727     Assembler::mulss(dst, Address(rscratch1, 0));
3728   }
3729 }
3730 
3731 void MacroAssembler::null_check(Register reg, int offset) {
3732   if (needs_explicit_null_check(offset)) {
3733     // provoke OS NULL exception if reg = NULL by
3734     // accessing M[reg] w/o changing any (non-CC) registers
3735     // NOTE: cmpl is plenty here to provoke a segv
3736     cmpptr(rax, Address(reg, 0));
3737     // Note: should probably use testl(rax, Address(reg, 0));
3738     //       may be shorter code (however, this version of
3739     //       testl needs to be implemented first)
3740   } else {
3741     // nothing to do, (later) access of M[reg + offset]
3742     // will provoke OS NULL exception if reg = NULL
3743   }
3744 }
3745 
3746 void MacroAssembler::os_breakpoint() {
3747   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3748   // (e.g., MSVC can't call ps() otherwise)
3749   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3750 }
3751 
3752 void MacroAssembler::pop_CPU_state() {
3753   pop_FPU_state();
3754   pop_IU_state();
3755 }
3756 
3757 void MacroAssembler::pop_FPU_state() {
3758   NOT_LP64(frstor(Address(rsp, 0));)
3759   LP64_ONLY(fxrstor(Address(rsp, 0));)
3760   addptr(rsp, FPUStateSizeInWords * wordSize);
3761 }
3762 
3763 void MacroAssembler::pop_IU_state() {
3764   popa();
3765   LP64_ONLY(addq(rsp, 8));
3766   popf();
3767 }
3768 
3769 // Save Integer and Float state
3770 // Warning: Stack must be 16 byte aligned (64bit)
3771 void MacroAssembler::push_CPU_state() {
3772   push_IU_state();
3773   push_FPU_state();
3774 }
3775 
3776 void MacroAssembler::push_FPU_state() {
3777   subptr(rsp, FPUStateSizeInWords * wordSize);
3778 #ifndef _LP64
3779   fnsave(Address(rsp, 0));
3780   fwait();
3781 #else
3782   fxsave(Address(rsp, 0));
3783 #endif // LP64
3784 }
3785 
3786 void MacroAssembler::push_IU_state() {
3787   // Push flags first because pusha kills them
3788   pushf();
3789   // Make sure rsp stays 16-byte aligned
3790   LP64_ONLY(subq(rsp, 8));
3791   pusha();
3792 }
3793 
3794 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3795   // determine java_thread register
3796   if (!java_thread->is_valid()) {
3797     java_thread = rdi;
3798     get_thread(java_thread);
3799   }
3800   // we must set sp to zero to clear frame
3801   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3802   if (clear_fp) {
3803     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3804   }
3805 
3806   if (clear_pc)
3807     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3808 
3809 }
3810 
3811 void MacroAssembler::restore_rax(Register tmp) {
3812   if (tmp == noreg) pop(rax);
3813   else if (tmp != rax) mov(rax, tmp);
3814 }
3815 
3816 void MacroAssembler::round_to(Register reg, int modulus) {
3817   addptr(reg, modulus - 1);
3818   andptr(reg, -modulus);
3819 }
3820 
3821 void MacroAssembler::save_rax(Register tmp) {
3822   if (tmp == noreg) push(rax);
3823   else if (tmp != rax) mov(tmp, rax);
3824 }
3825 
3826 // Write serialization page so VM thread can do a pseudo remote membar.
3827 // We use the current thread pointer to calculate a thread specific
3828 // offset to write to within the page. This minimizes bus traffic
3829 // due to cache line collision.
3830 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3831   movl(tmp, thread);
3832   shrl(tmp, os::get_serialize_page_shift_count());
3833   andl(tmp, (os::vm_page_size() - sizeof(int)));
3834 
3835   Address index(noreg, tmp, Address::times_1);
3836   ExternalAddress page(os::get_memory_serialize_page());
3837 
3838   // Size of store must match masking code above
3839   movl(as_Address(ArrayAddress(page, index)), tmp);
3840 }
3841 
3842 // Calls to C land
3843 //
3844 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3845 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3846 // has to be reset to 0. This is required to allow proper stack traversal.
3847 void MacroAssembler::set_last_Java_frame(Register java_thread,
3848                                          Register last_java_sp,
3849                                          Register last_java_fp,
3850                                          address  last_java_pc) {
3851   // determine java_thread register
3852   if (!java_thread->is_valid()) {
3853     java_thread = rdi;
3854     get_thread(java_thread);
3855   }
3856   // determine last_java_sp register
3857   if (!last_java_sp->is_valid()) {
3858     last_java_sp = rsp;
3859   }
3860 
3861   // last_java_fp is optional
3862 
3863   if (last_java_fp->is_valid()) {
3864     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3865   }
3866 
3867   // last_java_pc is optional
3868 
3869   if (last_java_pc != NULL) {
3870     lea(Address(java_thread,
3871                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3872         InternalAddress(last_java_pc));
3873 
3874   }
3875   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3876 }
3877 
3878 void MacroAssembler::shlptr(Register dst, int imm8) {
3879   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3880 }
3881 
3882 void MacroAssembler::shrptr(Register dst, int imm8) {
3883   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3884 }
3885 
3886 void MacroAssembler::sign_extend_byte(Register reg) {
3887   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3888     movsbl(reg, reg); // movsxb
3889   } else {
3890     shll(reg, 24);
3891     sarl(reg, 24);
3892   }
3893 }
3894 
3895 void MacroAssembler::sign_extend_short(Register reg) {
3896   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3897     movswl(reg, reg); // movsxw
3898   } else {
3899     shll(reg, 16);
3900     sarl(reg, 16);
3901   }
3902 }
3903 
3904 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3905   assert(reachable(src), "Address should be reachable");
3906   testl(dst, as_Address(src));
3907 }
3908 
3909 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3910   if (reachable(src)) {
3911     Assembler::sqrtsd(dst, as_Address(src));
3912   } else {
3913     lea(rscratch1, src);
3914     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3915   }
3916 }
3917 
3918 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3919   if (reachable(src)) {
3920     Assembler::sqrtss(dst, as_Address(src));
3921   } else {
3922     lea(rscratch1, src);
3923     Assembler::sqrtss(dst, Address(rscratch1, 0));
3924   }
3925 }
3926 
3927 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3928   if (reachable(src)) {
3929     Assembler::subsd(dst, as_Address(src));
3930   } else {
3931     lea(rscratch1, src);
3932     Assembler::subsd(dst, Address(rscratch1, 0));
3933   }
3934 }
3935 
3936 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3937   if (reachable(src)) {
3938     Assembler::subss(dst, as_Address(src));
3939   } else {
3940     lea(rscratch1, src);
3941     Assembler::subss(dst, Address(rscratch1, 0));
3942   }
3943 }
3944 
3945 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3946   if (reachable(src)) {
3947     Assembler::ucomisd(dst, as_Address(src));
3948   } else {
3949     lea(rscratch1, src);
3950     Assembler::ucomisd(dst, Address(rscratch1, 0));
3951   }
3952 }
3953 
3954 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3955   if (reachable(src)) {
3956     Assembler::ucomiss(dst, as_Address(src));
3957   } else {
3958     lea(rscratch1, src);
3959     Assembler::ucomiss(dst, Address(rscratch1, 0));
3960   }
3961 }
3962 
3963 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3964   // Used in sign-bit flipping with aligned address.
3965   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3966   if (reachable(src)) {
3967     Assembler::xorpd(dst, as_Address(src));
3968   } else {
3969     lea(rscratch1, src);
3970     Assembler::xorpd(dst, Address(rscratch1, 0));
3971   }
3972 }
3973 
3974 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3975   // Used in sign-bit flipping with aligned address.
3976   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3977   if (reachable(src)) {
3978     Assembler::xorps(dst, as_Address(src));
3979   } else {
3980     lea(rscratch1, src);
3981     Assembler::xorps(dst, Address(rscratch1, 0));
3982   }
3983 }
3984 
3985 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3986   // Used in sign-bit flipping with aligned address.
3987   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3988   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3989   if (reachable(src)) {
3990     Assembler::pshufb(dst, as_Address(src));
3991   } else {
3992     lea(rscratch1, src);
3993     Assembler::pshufb(dst, Address(rscratch1, 0));
3994   }
3995 }
3996 
3997 // AVX 3-operands instructions
3998 
3999 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4000   if (reachable(src)) {
4001     vaddsd(dst, nds, as_Address(src));
4002   } else {
4003     lea(rscratch1, src);
4004     vaddsd(dst, nds, Address(rscratch1, 0));
4005   }
4006 }
4007 
4008 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4009   if (reachable(src)) {
4010     vaddss(dst, nds, as_Address(src));
4011   } else {
4012     lea(rscratch1, src);
4013     vaddss(dst, nds, Address(rscratch1, 0));
4014   }
4015 }
4016 
4017 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4018   if (reachable(src)) {
4019     vandpd(dst, nds, as_Address(src), vector256);
4020   } else {
4021     lea(rscratch1, src);
4022     vandpd(dst, nds, Address(rscratch1, 0), vector256);
4023   }
4024 }
4025 
4026 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4027   if (reachable(src)) {
4028     vandps(dst, nds, as_Address(src), vector256);
4029   } else {
4030     lea(rscratch1, src);
4031     vandps(dst, nds, Address(rscratch1, 0), vector256);
4032   }
4033 }
4034 
4035 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4036   if (reachable(src)) {
4037     vdivsd(dst, nds, as_Address(src));
4038   } else {
4039     lea(rscratch1, src);
4040     vdivsd(dst, nds, Address(rscratch1, 0));
4041   }
4042 }
4043 
4044 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4045   if (reachable(src)) {
4046     vdivss(dst, nds, as_Address(src));
4047   } else {
4048     lea(rscratch1, src);
4049     vdivss(dst, nds, Address(rscratch1, 0));
4050   }
4051 }
4052 
4053 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4054   if (reachable(src)) {
4055     vmulsd(dst, nds, as_Address(src));
4056   } else {
4057     lea(rscratch1, src);
4058     vmulsd(dst, nds, Address(rscratch1, 0));
4059   }
4060 }
4061 
4062 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4063   if (reachable(src)) {
4064     vmulss(dst, nds, as_Address(src));
4065   } else {
4066     lea(rscratch1, src);
4067     vmulss(dst, nds, Address(rscratch1, 0));
4068   }
4069 }
4070 
4071 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4072   if (reachable(src)) {
4073     vsubsd(dst, nds, as_Address(src));
4074   } else {
4075     lea(rscratch1, src);
4076     vsubsd(dst, nds, Address(rscratch1, 0));
4077   }
4078 }
4079 
4080 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4081   if (reachable(src)) {
4082     vsubss(dst, nds, as_Address(src));
4083   } else {
4084     lea(rscratch1, src);
4085     vsubss(dst, nds, Address(rscratch1, 0));
4086   }
4087 }
4088 
4089 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4090   if (reachable(src)) {
4091     vxorpd(dst, nds, as_Address(src), vector256);
4092   } else {
4093     lea(rscratch1, src);
4094     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
4095   }
4096 }
4097 
4098 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4099   if (reachable(src)) {
4100     vxorps(dst, nds, as_Address(src), vector256);
4101   } else {
4102     lea(rscratch1, src);
4103     vxorps(dst, nds, Address(rscratch1, 0), vector256);
4104   }
4105 }
4106 
4107 
4108 //////////////////////////////////////////////////////////////////////////////////
4109 #if INCLUDE_ALL_GCS
4110 
4111 void MacroAssembler::g1_write_barrier_pre(Register obj,
4112                                           Register pre_val,
4113                                           Register thread,
4114                                           Register tmp,
4115                                           bool tosca_live,
4116                                           bool expand_call) {
4117 
4118   // If expand_call is true then we expand the call_VM_leaf macro
4119   // directly to skip generating the check by
4120   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4121 
4122 #ifdef _LP64
4123   assert(thread == r15_thread, "must be");
4124 #endif // _LP64
4125 
4126   Label done;
4127   Label runtime;
4128 
4129   assert(pre_val != noreg, "check this code");
4130 
4131   if (obj != noreg) {
4132     assert_different_registers(obj, pre_val, tmp);
4133     assert(pre_val != rax, "check this code");
4134   }
4135 
4136   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4137                                        PtrQueue::byte_offset_of_active()));
4138   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4139                                        PtrQueue::byte_offset_of_index()));
4140   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4141                                        PtrQueue::byte_offset_of_buf()));
4142 
4143 
4144   // Is marking active?
4145   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4146     cmpl(in_progress, 0);
4147   } else {
4148     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4149     cmpb(in_progress, 0);
4150   }
4151   jcc(Assembler::equal, done);
4152 
4153   // Do we need to load the previous value?
4154   if (obj != noreg) {
4155     load_heap_oop(pre_val, Address(obj, 0));
4156   }
4157 
4158   // Is the previous value null?
4159   cmpptr(pre_val, (int32_t) NULL_WORD);
4160   jcc(Assembler::equal, done);
4161 
4162   // Can we store original value in the thread's buffer?
4163   // Is index == 0?
4164   // (The index field is typed as size_t.)
4165 
4166   movptr(tmp, index);                   // tmp := *index_adr
4167   cmpptr(tmp, 0);                       // tmp == 0?
4168   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4169 
4170   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4171   movptr(index, tmp);                   // *index_adr := tmp
4172   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4173 
4174   // Record the previous value
4175   movptr(Address(tmp, 0), pre_val);
4176   jmp(done);
4177 
4178   bind(runtime);
4179   // save the live input values
4180   if(tosca_live) push(rax);
4181 
4182   if (obj != noreg && obj != rax)
4183     push(obj);
4184 
4185   if (pre_val != rax)
4186     push(pre_val);
4187 
4188   // Calling the runtime using the regular call_VM_leaf mechanism generates
4189   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4190   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4191   //
4192   // If we care generating the pre-barrier without a frame (e.g. in the
4193   // intrinsified Reference.get() routine) then ebp might be pointing to
4194   // the caller frame and so this check will most likely fail at runtime.
4195   //
4196   // Expanding the call directly bypasses the generation of the check.
4197   // So when we do not have have a full interpreter frame on the stack
4198   // expand_call should be passed true.
4199 
4200   NOT_LP64( push(thread); )
4201 
4202   if (expand_call) {
4203     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4204     pass_arg1(this, thread);
4205     pass_arg0(this, pre_val);
4206     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4207   } else {
4208     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4209   }
4210 
4211   NOT_LP64( pop(thread); )
4212 
4213   // save the live input values
4214   if (pre_val != rax)
4215     pop(pre_val);
4216 
4217   if (obj != noreg && obj != rax)
4218     pop(obj);
4219 
4220   if(tosca_live) pop(rax);
4221 
4222   bind(done);
4223 }
4224 
4225 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4226                                            Register new_val,
4227                                            Register thread,
4228                                            Register tmp,
4229                                            Register tmp2) {
4230 #ifdef _LP64
4231   assert(thread == r15_thread, "must be");
4232 #endif // _LP64
4233 
4234   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4235                                        PtrQueue::byte_offset_of_index()));
4236   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4237                                        PtrQueue::byte_offset_of_buf()));
4238 
4239   BarrierSet* bs = Universe::heap()->barrier_set();
4240   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4241   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4242 
4243   Label done;
4244   Label runtime;
4245 
4246   // Does store cross heap regions?
4247 
4248   movptr(tmp, store_addr);
4249   xorptr(tmp, new_val);
4250   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4251   jcc(Assembler::equal, done);
4252 
4253   // crosses regions, storing NULL?
4254 
4255   cmpptr(new_val, (int32_t) NULL_WORD);
4256   jcc(Assembler::equal, done);
4257 
4258   // storing region crossing non-NULL, is card already dirty?
4259 
4260   const Register card_addr = tmp;
4261   const Register cardtable = tmp2;
4262 
4263   movptr(card_addr, store_addr);
4264   shrptr(card_addr, CardTableModRefBS::card_shift);
4265   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4266   // a valid address and therefore is not properly handled by the relocation code.
4267   movptr(cardtable, (intptr_t)ct->byte_map_base);
4268   addptr(card_addr, cardtable);
4269 
4270   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4271   jcc(Assembler::equal, done);
4272 
4273   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4274   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4275   jcc(Assembler::equal, done);
4276 
4277 
4278   // storing a region crossing, non-NULL oop, card is clean.
4279   // dirty card and log.
4280 
4281   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4282 
4283   cmpl(queue_index, 0);
4284   jcc(Assembler::equal, runtime);
4285   subl(queue_index, wordSize);
4286   movptr(tmp2, buffer);
4287 #ifdef _LP64
4288   movslq(rscratch1, queue_index);
4289   addq(tmp2, rscratch1);
4290   movq(Address(tmp2, 0), card_addr);
4291 #else
4292   addl(tmp2, queue_index);
4293   movl(Address(tmp2, 0), card_addr);
4294 #endif
4295   jmp(done);
4296 
4297   bind(runtime);
4298   // save the live input values
4299   push(store_addr);
4300   push(new_val);
4301 #ifdef _LP64
4302   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4303 #else
4304   push(thread);
4305   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4306   pop(thread);
4307 #endif
4308   pop(new_val);
4309   pop(store_addr);
4310 
4311   bind(done);
4312 }
4313 
4314 #endif // INCLUDE_ALL_GCS
4315 //////////////////////////////////////////////////////////////////////////////////
4316 
4317 
4318 void MacroAssembler::store_check(Register obj) {
4319   // Does a store check for the oop in register obj. The content of
4320   // register obj is destroyed afterwards.
4321   store_check_part_1(obj);
4322   store_check_part_2(obj);
4323 }
4324 
4325 void MacroAssembler::store_check(Register obj, Address dst) {
4326   store_check(obj);
4327 }
4328 
4329 
4330 // split the store check operation so that other instructions can be scheduled inbetween
4331 void MacroAssembler::store_check_part_1(Register obj) {
4332   BarrierSet* bs = Universe::heap()->barrier_set();
4333   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4334   shrptr(obj, CardTableModRefBS::card_shift);
4335 }
4336 
4337 void MacroAssembler::store_check_part_2(Register obj) {
4338   BarrierSet* bs = Universe::heap()->barrier_set();
4339   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4340   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4341   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4342 
4343   // The calculation for byte_map_base is as follows:
4344   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4345   // So this essentially converts an address to a displacement and it will
4346   // never need to be relocated. On 64bit however the value may be too
4347   // large for a 32bit displacement.
4348   intptr_t disp = (intptr_t) ct->byte_map_base;
4349   if (is_simm32(disp)) {
4350     Address cardtable(noreg, obj, Address::times_1, disp);
4351     movb(cardtable, 0);
4352   } else {
4353     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4354     // displacement and done in a single instruction given favorable mapping and a
4355     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4356     // entry and that entry is not properly handled by the relocation code.
4357     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4358     Address index(noreg, obj, Address::times_1);
4359     movb(as_Address(ArrayAddress(cardtable, index)), 0);
4360   }
4361 }
4362 
4363 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4364   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4365 }
4366 
4367 // Force generation of a 4 byte immediate value even if it fits into 8bit
4368 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4369   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4370 }
4371 
4372 void MacroAssembler::subptr(Register dst, Register src) {
4373   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4374 }
4375 
4376 // C++ bool manipulation
4377 void MacroAssembler::testbool(Register dst) {
4378   if(sizeof(bool) == 1)
4379     testb(dst, 0xff);
4380   else if(sizeof(bool) == 2) {
4381     // testw implementation needed for two byte bools
4382     ShouldNotReachHere();
4383   } else if(sizeof(bool) == 4)
4384     testl(dst, dst);
4385   else
4386     // unsupported
4387     ShouldNotReachHere();
4388 }
4389 
4390 void MacroAssembler::testptr(Register dst, Register src) {
4391   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4392 }
4393 
4394 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4395 void MacroAssembler::tlab_allocate(Register obj,
4396                                    Register var_size_in_bytes,
4397                                    int con_size_in_bytes,
4398                                    Register t1,
4399                                    Register t2,
4400                                    Label& slow_case) {
4401   assert_different_registers(obj, t1, t2);
4402   assert_different_registers(obj, var_size_in_bytes, t1);
4403   Register end = t2;
4404   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4405 
4406   verify_tlab();
4407 
4408   NOT_LP64(get_thread(thread));
4409 
4410   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4411   if (var_size_in_bytes == noreg) {
4412     lea(end, Address(obj, con_size_in_bytes));
4413   } else {
4414     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4415   }
4416   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4417   jcc(Assembler::above, slow_case);
4418 
4419   // update the tlab top pointer
4420   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4421 
4422   // recover var_size_in_bytes if necessary
4423   if (var_size_in_bytes == end) {
4424     subptr(var_size_in_bytes, obj);
4425   }
4426   verify_tlab();
4427 }
4428 
4429 // Preserves rbx, and rdx.
4430 Register MacroAssembler::tlab_refill(Label& retry,
4431                                      Label& try_eden,
4432                                      Label& slow_case) {
4433   Register top = rax;
4434   Register t1  = rcx;
4435   Register t2  = rsi;
4436   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4437   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4438   Label do_refill, discard_tlab;
4439 
4440   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
4441     // No allocation in the shared eden.
4442     jmp(slow_case);
4443   }
4444 
4445   NOT_LP64(get_thread(thread_reg));
4446 
4447   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4448   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4449 
4450   // calculate amount of free space
4451   subptr(t1, top);
4452   shrptr(t1, LogHeapWordSize);
4453 
4454   // Retain tlab and allocate object in shared space if
4455   // the amount free in the tlab is too large to discard.
4456   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4457   jcc(Assembler::lessEqual, discard_tlab);
4458 
4459   // Retain
4460   // %%% yuck as movptr...
4461   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4462   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4463   if (TLABStats) {
4464     // increment number of slow_allocations
4465     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4466   }
4467   jmp(try_eden);
4468 
4469   bind(discard_tlab);
4470   if (TLABStats) {
4471     // increment number of refills
4472     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4473     // accumulate wastage -- t1 is amount free in tlab
4474     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4475   }
4476 
4477   // if tlab is currently allocated (top or end != null) then
4478   // fill [top, end + alignment_reserve) with array object
4479   testptr(top, top);
4480   jcc(Assembler::zero, do_refill);
4481 
4482   // set up the mark word
4483   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4484   // set the length to the remaining space
4485   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4486   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4487   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4488   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4489   // set klass to intArrayKlass
4490   // dubious reloc why not an oop reloc?
4491   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4492   // store klass last.  concurrent gcs assumes klass length is valid if
4493   // klass field is not null.
4494   store_klass(top, t1);
4495 
4496   movptr(t1, top);
4497   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4498   incr_allocated_bytes(thread_reg, t1, 0);
4499 
4500   // refill the tlab with an eden allocation
4501   bind(do_refill);
4502   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4503   shlptr(t1, LogHeapWordSize);
4504   // allocate new tlab, address returned in top
4505   eden_allocate(top, t1, 0, t2, slow_case);
4506 
4507   // Check that t1 was preserved in eden_allocate.
4508 #ifdef ASSERT
4509   if (UseTLAB) {
4510     Label ok;
4511     Register tsize = rsi;
4512     assert_different_registers(tsize, thread_reg, t1);
4513     push(tsize);
4514     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4515     shlptr(tsize, LogHeapWordSize);
4516     cmpptr(t1, tsize);
4517     jcc(Assembler::equal, ok);
4518     STOP("assert(t1 != tlab size)");
4519     should_not_reach_here();
4520 
4521     bind(ok);
4522     pop(tsize);
4523   }
4524 #endif
4525   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4526   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4527   addptr(top, t1);
4528   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4529   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4530   verify_tlab();
4531   jmp(retry);
4532 
4533   return thread_reg; // for use by caller
4534 }
4535 
4536 void MacroAssembler::incr_allocated_bytes(Register thread,
4537                                           Register var_size_in_bytes,
4538                                           int con_size_in_bytes,
4539                                           Register t1) {
4540   if (!thread->is_valid()) {
4541 #ifdef _LP64
4542     thread = r15_thread;
4543 #else
4544     assert(t1->is_valid(), "need temp reg");
4545     thread = t1;
4546     get_thread(thread);
4547 #endif
4548   }
4549 
4550 #ifdef _LP64
4551   if (var_size_in_bytes->is_valid()) {
4552     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4553   } else {
4554     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4555   }
4556 #else
4557   if (var_size_in_bytes->is_valid()) {
4558     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4559   } else {
4560     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4561   }
4562   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4563 #endif
4564 }
4565 
4566 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4567   pusha();
4568 
4569   // if we are coming from c1, xmm registers may be live
4570   int off = 0;
4571   if (UseSSE == 1)  {
4572     subptr(rsp, sizeof(jdouble)*8);
4573     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4574     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4575     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4576     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4577     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4578     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4579     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4580     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4581   } else if (UseSSE >= 2)  {
4582 #ifdef COMPILER2
4583     if (MaxVectorSize > 16) {
4584       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4585       // Save upper half of YMM registes
4586       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4587       vextractf128h(Address(rsp,  0),xmm0);
4588       vextractf128h(Address(rsp, 16),xmm1);
4589       vextractf128h(Address(rsp, 32),xmm2);
4590       vextractf128h(Address(rsp, 48),xmm3);
4591       vextractf128h(Address(rsp, 64),xmm4);
4592       vextractf128h(Address(rsp, 80),xmm5);
4593       vextractf128h(Address(rsp, 96),xmm6);
4594       vextractf128h(Address(rsp,112),xmm7);
4595 #ifdef _LP64
4596       vextractf128h(Address(rsp,128),xmm8);
4597       vextractf128h(Address(rsp,144),xmm9);
4598       vextractf128h(Address(rsp,160),xmm10);
4599       vextractf128h(Address(rsp,176),xmm11);
4600       vextractf128h(Address(rsp,192),xmm12);
4601       vextractf128h(Address(rsp,208),xmm13);
4602       vextractf128h(Address(rsp,224),xmm14);
4603       vextractf128h(Address(rsp,240),xmm15);
4604 #endif
4605     }
4606 #endif
4607     // Save whole 128bit (16 bytes) XMM regiters
4608     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4609     movdqu(Address(rsp,off++*16),xmm0);
4610     movdqu(Address(rsp,off++*16),xmm1);
4611     movdqu(Address(rsp,off++*16),xmm2);
4612     movdqu(Address(rsp,off++*16),xmm3);
4613     movdqu(Address(rsp,off++*16),xmm4);
4614     movdqu(Address(rsp,off++*16),xmm5);
4615     movdqu(Address(rsp,off++*16),xmm6);
4616     movdqu(Address(rsp,off++*16),xmm7);
4617 #ifdef _LP64
4618     movdqu(Address(rsp,off++*16),xmm8);
4619     movdqu(Address(rsp,off++*16),xmm9);
4620     movdqu(Address(rsp,off++*16),xmm10);
4621     movdqu(Address(rsp,off++*16),xmm11);
4622     movdqu(Address(rsp,off++*16),xmm12);
4623     movdqu(Address(rsp,off++*16),xmm13);
4624     movdqu(Address(rsp,off++*16),xmm14);
4625     movdqu(Address(rsp,off++*16),xmm15);
4626 #endif
4627   }
4628 
4629   // Preserve registers across runtime call
4630   int incoming_argument_and_return_value_offset = -1;
4631   if (num_fpu_regs_in_use > 1) {
4632     // Must preserve all other FPU regs (could alternatively convert
4633     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4634     // FPU state, but can not trust C compiler)
4635     NEEDS_CLEANUP;
4636     // NOTE that in this case we also push the incoming argument(s) to
4637     // the stack and restore it later; we also use this stack slot to
4638     // hold the return value from dsin, dcos etc.
4639     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4640       subptr(rsp, sizeof(jdouble));
4641       fstp_d(Address(rsp, 0));
4642     }
4643     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4644     for (int i = nb_args-1; i >= 0; i--) {
4645       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4646     }
4647   }
4648 
4649   subptr(rsp, nb_args*sizeof(jdouble));
4650   for (int i = 0; i < nb_args; i++) {
4651     fstp_d(Address(rsp, i*sizeof(jdouble)));
4652   }
4653 
4654 #ifdef _LP64
4655   if (nb_args > 0) {
4656     movdbl(xmm0, Address(rsp, 0));
4657   }
4658   if (nb_args > 1) {
4659     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4660   }
4661   assert(nb_args <= 2, "unsupported number of args");
4662 #endif // _LP64
4663 
4664   // NOTE: we must not use call_VM_leaf here because that requires a
4665   // complete interpreter frame in debug mode -- same bug as 4387334
4666   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4667   // do proper 64bit abi
4668 
4669   NEEDS_CLEANUP;
4670   // Need to add stack banging before this runtime call if it needs to
4671   // be taken; however, there is no generic stack banging routine at
4672   // the MacroAssembler level
4673 
4674   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4675 
4676 #ifdef _LP64
4677   movsd(Address(rsp, 0), xmm0);
4678   fld_d(Address(rsp, 0));
4679 #endif // _LP64
4680   addptr(rsp, sizeof(jdouble) * nb_args);
4681   if (num_fpu_regs_in_use > 1) {
4682     // Must save return value to stack and then restore entire FPU
4683     // stack except incoming arguments
4684     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4685     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4686       fld_d(Address(rsp, 0));
4687       addptr(rsp, sizeof(jdouble));
4688     }
4689     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4690     addptr(rsp, sizeof(jdouble) * nb_args);
4691   }
4692 
4693   off = 0;
4694   if (UseSSE == 1)  {
4695     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4696     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4697     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4698     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4699     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4700     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4701     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4702     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4703     addptr(rsp, sizeof(jdouble)*8);
4704   } else if (UseSSE >= 2)  {
4705     // Restore whole 128bit (16 bytes) XMM regiters
4706     movdqu(xmm0, Address(rsp,off++*16));
4707     movdqu(xmm1, Address(rsp,off++*16));
4708     movdqu(xmm2, Address(rsp,off++*16));
4709     movdqu(xmm3, Address(rsp,off++*16));
4710     movdqu(xmm4, Address(rsp,off++*16));
4711     movdqu(xmm5, Address(rsp,off++*16));
4712     movdqu(xmm6, Address(rsp,off++*16));
4713     movdqu(xmm7, Address(rsp,off++*16));
4714 #ifdef _LP64
4715     movdqu(xmm8, Address(rsp,off++*16));
4716     movdqu(xmm9, Address(rsp,off++*16));
4717     movdqu(xmm10, Address(rsp,off++*16));
4718     movdqu(xmm11, Address(rsp,off++*16));
4719     movdqu(xmm12, Address(rsp,off++*16));
4720     movdqu(xmm13, Address(rsp,off++*16));
4721     movdqu(xmm14, Address(rsp,off++*16));
4722     movdqu(xmm15, Address(rsp,off++*16));
4723 #endif
4724     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4725 #ifdef COMPILER2
4726     if (MaxVectorSize > 16) {
4727       // Restore upper half of YMM registes.
4728       vinsertf128h(xmm0, Address(rsp,  0));
4729       vinsertf128h(xmm1, Address(rsp, 16));
4730       vinsertf128h(xmm2, Address(rsp, 32));
4731       vinsertf128h(xmm3, Address(rsp, 48));
4732       vinsertf128h(xmm4, Address(rsp, 64));
4733       vinsertf128h(xmm5, Address(rsp, 80));
4734       vinsertf128h(xmm6, Address(rsp, 96));
4735       vinsertf128h(xmm7, Address(rsp,112));
4736 #ifdef _LP64
4737       vinsertf128h(xmm8, Address(rsp,128));
4738       vinsertf128h(xmm9, Address(rsp,144));
4739       vinsertf128h(xmm10, Address(rsp,160));
4740       vinsertf128h(xmm11, Address(rsp,176));
4741       vinsertf128h(xmm12, Address(rsp,192));
4742       vinsertf128h(xmm13, Address(rsp,208));
4743       vinsertf128h(xmm14, Address(rsp,224));
4744       vinsertf128h(xmm15, Address(rsp,240));
4745 #endif
4746       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4747     }
4748 #endif
4749   }
4750   popa();
4751 }
4752 
4753 static const double     pi_4 =  0.7853981633974483;
4754 
4755 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4756   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4757   // was attempted in this code; unfortunately it appears that the
4758   // switch to 80-bit precision and back causes this to be
4759   // unprofitable compared with simply performing a runtime call if
4760   // the argument is out of the (-pi/4, pi/4) range.
4761 
4762   Register tmp = noreg;
4763   if (!VM_Version::supports_cmov()) {
4764     // fcmp needs a temporary so preserve rbx,
4765     tmp = rbx;
4766     push(tmp);
4767   }
4768 
4769   Label slow_case, done;
4770 
4771   ExternalAddress pi4_adr = (address)&pi_4;
4772   if (reachable(pi4_adr)) {
4773     // x ?<= pi/4
4774     fld_d(pi4_adr);
4775     fld_s(1);                // Stack:  X  PI/4  X
4776     fabs();                  // Stack: |X| PI/4  X
4777     fcmp(tmp);
4778     jcc(Assembler::above, slow_case);
4779 
4780     // fastest case: -pi/4 <= x <= pi/4
4781     switch(trig) {
4782     case 's':
4783       fsin();
4784       break;
4785     case 'c':
4786       fcos();
4787       break;
4788     case 't':
4789       ftan();
4790       break;
4791     default:
4792       assert(false, "bad intrinsic");
4793       break;
4794     }
4795     jmp(done);
4796   }
4797 
4798   // slow case: runtime call
4799   bind(slow_case);
4800 
4801   switch(trig) {
4802   case 's':
4803     {
4804       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4805     }
4806     break;
4807   case 'c':
4808     {
4809       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4810     }
4811     break;
4812   case 't':
4813     {
4814       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4815     }
4816     break;
4817   default:
4818     assert(false, "bad intrinsic");
4819     break;
4820   }
4821 
4822   // Come here with result in F-TOS
4823   bind(done);
4824 
4825   if (tmp != noreg) {
4826     pop(tmp);
4827   }
4828 }
4829 
4830 
4831 // Look up the method for a megamorphic invokeinterface call.
4832 // The target method is determined by <intf_klass, itable_index>.
4833 // The receiver klass is in recv_klass.
4834 // On success, the result will be in method_result, and execution falls through.
4835 // On failure, execution transfers to the given label.
4836 void MacroAssembler::lookup_interface_method(Register recv_klass,
4837                                              Register intf_klass,
4838                                              RegisterOrConstant itable_index,
4839                                              Register method_result,
4840                                              Register scan_temp,
4841                                              Label& L_no_such_interface) {
4842   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4843   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4844          "caller must use same register for non-constant itable index as for method");
4845 
4846   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4847   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4848   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4849   int scan_step   = itableOffsetEntry::size() * wordSize;
4850   int vte_size    = vtableEntry::size() * wordSize;
4851   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4852   assert(vte_size == wordSize, "else adjust times_vte_scale");
4853 
4854   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4855 
4856   // %%% Could store the aligned, prescaled offset in the klassoop.
4857   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4858   if (HeapWordsPerLong > 1) {
4859     // Round up to align_object_offset boundary
4860     // see code for InstanceKlass::start_of_itable!
4861     round_to(scan_temp, BytesPerLong);
4862   }
4863 
4864   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4865   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4866   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4867 
4868   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4869   //   if (scan->interface() == intf) {
4870   //     result = (klass + scan->offset() + itable_index);
4871   //   }
4872   // }
4873   Label search, found_method;
4874 
4875   for (int peel = 1; peel >= 0; peel--) {
4876     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4877     cmpptr(intf_klass, method_result);
4878 
4879     if (peel) {
4880       jccb(Assembler::equal, found_method);
4881     } else {
4882       jccb(Assembler::notEqual, search);
4883       // (invert the test to fall through to found_method...)
4884     }
4885 
4886     if (!peel)  break;
4887 
4888     bind(search);
4889 
4890     // Check that the previous entry is non-null.  A null entry means that
4891     // the receiver class doesn't implement the interface, and wasn't the
4892     // same as when the caller was compiled.
4893     testptr(method_result, method_result);
4894     jcc(Assembler::zero, L_no_such_interface);
4895     addptr(scan_temp, scan_step);
4896   }
4897 
4898   bind(found_method);
4899 
4900   // Got a hit.
4901   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4902   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4903 }
4904 
4905 
4906 // virtual method calling
4907 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4908                                            RegisterOrConstant vtable_index,
4909                                            Register method_result) {
4910   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4911   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4912   Address vtable_entry_addr(recv_klass,
4913                             vtable_index, Address::times_ptr,
4914                             base + vtableEntry::method_offset_in_bytes());
4915   movptr(method_result, vtable_entry_addr);
4916 }
4917 
4918 
4919 void MacroAssembler::check_klass_subtype(Register sub_klass,
4920                            Register super_klass,
4921                            Register temp_reg,
4922                            Label& L_success) {
4923   Label L_failure;
4924   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4925   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4926   bind(L_failure);
4927 }
4928 
4929 
4930 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4931                                                    Register super_klass,
4932                                                    Register temp_reg,
4933                                                    Label* L_success,
4934                                                    Label* L_failure,
4935                                                    Label* L_slow_path,
4936                                         RegisterOrConstant super_check_offset) {
4937   assert_different_registers(sub_klass, super_klass, temp_reg);
4938   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4939   if (super_check_offset.is_register()) {
4940     assert_different_registers(sub_klass, super_klass,
4941                                super_check_offset.as_register());
4942   } else if (must_load_sco) {
4943     assert(temp_reg != noreg, "supply either a temp or a register offset");
4944   }
4945 
4946   Label L_fallthrough;
4947   int label_nulls = 0;
4948   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4949   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4950   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4951   assert(label_nulls <= 1, "at most one NULL in the batch");
4952 
4953   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4954   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4955   Address super_check_offset_addr(super_klass, sco_offset);
4956 
4957   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4958   // range of a jccb.  If this routine grows larger, reconsider at
4959   // least some of these.
4960 #define local_jcc(assembler_cond, label)                                \
4961   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4962   else                             jcc( assembler_cond, label) /*omit semi*/
4963 
4964   // Hacked jmp, which may only be used just before L_fallthrough.
4965 #define final_jmp(label)                                                \
4966   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4967   else                            jmp(label)                /*omit semi*/
4968 
4969   // If the pointers are equal, we are done (e.g., String[] elements).
4970   // This self-check enables sharing of secondary supertype arrays among
4971   // non-primary types such as array-of-interface.  Otherwise, each such
4972   // type would need its own customized SSA.
4973   // We move this check to the front of the fast path because many
4974   // type checks are in fact trivially successful in this manner,
4975   // so we get a nicely predicted branch right at the start of the check.
4976   cmpptr(sub_klass, super_klass);
4977   local_jcc(Assembler::equal, *L_success);
4978 
4979   // Check the supertype display:
4980   if (must_load_sco) {
4981     // Positive movl does right thing on LP64.
4982     movl(temp_reg, super_check_offset_addr);
4983     super_check_offset = RegisterOrConstant(temp_reg);
4984   }
4985   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4986   cmpptr(super_klass, super_check_addr); // load displayed supertype
4987 
4988   // This check has worked decisively for primary supers.
4989   // Secondary supers are sought in the super_cache ('super_cache_addr').
4990   // (Secondary supers are interfaces and very deeply nested subtypes.)
4991   // This works in the same check above because of a tricky aliasing
4992   // between the super_cache and the primary super display elements.
4993   // (The 'super_check_addr' can address either, as the case requires.)
4994   // Note that the cache is updated below if it does not help us find
4995   // what we need immediately.
4996   // So if it was a primary super, we can just fail immediately.
4997   // Otherwise, it's the slow path for us (no success at this point).
4998 
4999   if (super_check_offset.is_register()) {
5000     local_jcc(Assembler::equal, *L_success);
5001     cmpl(super_check_offset.as_register(), sc_offset);
5002     if (L_failure == &L_fallthrough) {
5003       local_jcc(Assembler::equal, *L_slow_path);
5004     } else {
5005       local_jcc(Assembler::notEqual, *L_failure);
5006       final_jmp(*L_slow_path);
5007     }
5008   } else if (super_check_offset.as_constant() == sc_offset) {
5009     // Need a slow path; fast failure is impossible.
5010     if (L_slow_path == &L_fallthrough) {
5011       local_jcc(Assembler::equal, *L_success);
5012     } else {
5013       local_jcc(Assembler::notEqual, *L_slow_path);
5014       final_jmp(*L_success);
5015     }
5016   } else {
5017     // No slow path; it's a fast decision.
5018     if (L_failure == &L_fallthrough) {
5019       local_jcc(Assembler::equal, *L_success);
5020     } else {
5021       local_jcc(Assembler::notEqual, *L_failure);
5022       final_jmp(*L_success);
5023     }
5024   }
5025 
5026   bind(L_fallthrough);
5027 
5028 #undef local_jcc
5029 #undef final_jmp
5030 }
5031 
5032 
5033 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5034                                                    Register super_klass,
5035                                                    Register temp_reg,
5036                                                    Register temp2_reg,
5037                                                    Label* L_success,
5038                                                    Label* L_failure,
5039                                                    bool set_cond_codes) {
5040   assert_different_registers(sub_klass, super_klass, temp_reg);
5041   if (temp2_reg != noreg)
5042     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5043 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5044 
5045   Label L_fallthrough;
5046   int label_nulls = 0;
5047   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5048   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5049   assert(label_nulls <= 1, "at most one NULL in the batch");
5050 
5051   // a couple of useful fields in sub_klass:
5052   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5053   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5054   Address secondary_supers_addr(sub_klass, ss_offset);
5055   Address super_cache_addr(     sub_klass, sc_offset);
5056 
5057   // Do a linear scan of the secondary super-klass chain.
5058   // This code is rarely used, so simplicity is a virtue here.
5059   // The repne_scan instruction uses fixed registers, which we must spill.
5060   // Don't worry too much about pre-existing connections with the input regs.
5061 
5062   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5063   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5064 
5065   // Get super_klass value into rax (even if it was in rdi or rcx).
5066   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5067   if (super_klass != rax || UseCompressedOops) {
5068     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5069     mov(rax, super_klass);
5070   }
5071   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5072   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5073 
5074 #ifndef PRODUCT
5075   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5076   ExternalAddress pst_counter_addr((address) pst_counter);
5077   NOT_LP64(  incrementl(pst_counter_addr) );
5078   LP64_ONLY( lea(rcx, pst_counter_addr) );
5079   LP64_ONLY( incrementl(Address(rcx, 0)) );
5080 #endif //PRODUCT
5081 
5082   // We will consult the secondary-super array.
5083   movptr(rdi, secondary_supers_addr);
5084   // Load the array length.  (Positive movl does right thing on LP64.)
5085   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5086   // Skip to start of data.
5087   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5088 
5089   // Scan RCX words at [RDI] for an occurrence of RAX.
5090   // Set NZ/Z based on last compare.
5091   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5092   // not change flags (only scas instruction which is repeated sets flags).
5093   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5094 
5095     testptr(rax,rax); // Set Z = 0
5096     repne_scan();
5097 
5098   // Unspill the temp. registers:
5099   if (pushed_rdi)  pop(rdi);
5100   if (pushed_rcx)  pop(rcx);
5101   if (pushed_rax)  pop(rax);
5102 
5103   if (set_cond_codes) {
5104     // Special hack for the AD files:  rdi is guaranteed non-zero.
5105     assert(!pushed_rdi, "rdi must be left non-NULL");
5106     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5107   }
5108 
5109   if (L_failure == &L_fallthrough)
5110         jccb(Assembler::notEqual, *L_failure);
5111   else  jcc(Assembler::notEqual, *L_failure);
5112 
5113   // Success.  Cache the super we found and proceed in triumph.
5114   movptr(super_cache_addr, super_klass);
5115 
5116   if (L_success != &L_fallthrough) {
5117     jmp(*L_success);
5118   }
5119 
5120 #undef IS_A_TEMP
5121 
5122   bind(L_fallthrough);
5123 }
5124 
5125 
5126 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5127   if (VM_Version::supports_cmov()) {
5128     cmovl(cc, dst, src);
5129   } else {
5130     Label L;
5131     jccb(negate_condition(cc), L);
5132     movl(dst, src);
5133     bind(L);
5134   }
5135 }
5136 
5137 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5138   if (VM_Version::supports_cmov()) {
5139     cmovl(cc, dst, src);
5140   } else {
5141     Label L;
5142     jccb(negate_condition(cc), L);
5143     movl(dst, src);
5144     bind(L);
5145   }
5146 }
5147 
5148 void MacroAssembler::verify_oop(Register reg, const char* s) {
5149   if (!VerifyOops) return;
5150 
5151   // Pass register number to verify_oop_subroutine
5152   const char* b = NULL;
5153   {
5154     ResourceMark rm;
5155     stringStream ss;
5156     ss.print("verify_oop: %s: %s", reg->name(), s);
5157     b = code_string(ss.as_string());
5158   }
5159   BLOCK_COMMENT("verify_oop {");
5160 #ifdef _LP64
5161   push(rscratch1);                    // save r10, trashed by movptr()
5162 #endif
5163   push(rax);                          // save rax,
5164   push(reg);                          // pass register argument
5165   ExternalAddress buffer((address) b);
5166   // avoid using pushptr, as it modifies scratch registers
5167   // and our contract is not to modify anything
5168   movptr(rax, buffer.addr());
5169   push(rax);
5170   // call indirectly to solve generation ordering problem
5171   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5172   call(rax);
5173   // Caller pops the arguments (oop, message) and restores rax, r10
5174   BLOCK_COMMENT("} verify_oop");
5175 }
5176 
5177 
5178 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5179                                                       Register tmp,
5180                                                       int offset) {
5181   intptr_t value = *delayed_value_addr;
5182   if (value != 0)
5183     return RegisterOrConstant(value + offset);
5184 
5185   // load indirectly to solve generation ordering problem
5186   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5187 
5188 #ifdef ASSERT
5189   { Label L;
5190     testptr(tmp, tmp);
5191     if (WizardMode) {
5192       const char* buf = NULL;
5193       {
5194         ResourceMark rm;
5195         stringStream ss;
5196         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
5197         buf = code_string(ss.as_string());
5198       }
5199       jcc(Assembler::notZero, L);
5200       STOP(buf);
5201     } else {
5202       jccb(Assembler::notZero, L);
5203       hlt();
5204     }
5205     bind(L);
5206   }
5207 #endif
5208 
5209   if (offset != 0)
5210     addptr(tmp, offset);
5211 
5212   return RegisterOrConstant(tmp);
5213 }
5214 
5215 
5216 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5217                                          int extra_slot_offset) {
5218   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5219   int stackElementSize = Interpreter::stackElementSize;
5220   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5221 #ifdef ASSERT
5222   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5223   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5224 #endif
5225   Register             scale_reg    = noreg;
5226   Address::ScaleFactor scale_factor = Address::no_scale;
5227   if (arg_slot.is_constant()) {
5228     offset += arg_slot.as_constant() * stackElementSize;
5229   } else {
5230     scale_reg    = arg_slot.as_register();
5231     scale_factor = Address::times(stackElementSize);
5232   }
5233   offset += wordSize;           // return PC is on stack
5234   return Address(rsp, scale_reg, scale_factor, offset);
5235 }
5236 
5237 
5238 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5239   if (!VerifyOops) return;
5240 
5241   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5242   // Pass register number to verify_oop_subroutine
5243   const char* b = NULL;
5244   {
5245     ResourceMark rm;
5246     stringStream ss;
5247     ss.print("verify_oop_addr: %s", s);
5248     b = code_string(ss.as_string());
5249   }
5250 #ifdef _LP64
5251   push(rscratch1);                    // save r10, trashed by movptr()
5252 #endif
5253   push(rax);                          // save rax,
5254   // addr may contain rsp so we will have to adjust it based on the push
5255   // we just did (and on 64 bit we do two pushes)
5256   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5257   // stores rax into addr which is backwards of what was intended.
5258   if (addr.uses(rsp)) {
5259     lea(rax, addr);
5260     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5261   } else {
5262     pushptr(addr);
5263   }
5264 
5265   ExternalAddress buffer((address) b);
5266   // pass msg argument
5267   // avoid using pushptr, as it modifies scratch registers
5268   // and our contract is not to modify anything
5269   movptr(rax, buffer.addr());
5270   push(rax);
5271 
5272   // call indirectly to solve generation ordering problem
5273   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5274   call(rax);
5275   // Caller pops the arguments (addr, message) and restores rax, r10.
5276 }
5277 
5278 void MacroAssembler::verify_tlab() {
5279 #ifdef ASSERT
5280   if (UseTLAB && VerifyOops) {
5281     Label next, ok;
5282     Register t1 = rsi;
5283     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5284 
5285     push(t1);
5286     NOT_LP64(push(thread_reg));
5287     NOT_LP64(get_thread(thread_reg));
5288 
5289     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5290     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5291     jcc(Assembler::aboveEqual, next);
5292     STOP("assert(top >= start)");
5293     should_not_reach_here();
5294 
5295     bind(next);
5296     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5297     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5298     jcc(Assembler::aboveEqual, ok);
5299     STOP("assert(top <= end)");
5300     should_not_reach_here();
5301 
5302     bind(ok);
5303     NOT_LP64(pop(thread_reg));
5304     pop(t1);
5305   }
5306 #endif
5307 }
5308 
5309 class ControlWord {
5310  public:
5311   int32_t _value;
5312 
5313   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5314   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5315   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5316   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5317   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5318   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5319   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5320   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5321 
5322   void print() const {
5323     // rounding control
5324     const char* rc;
5325     switch (rounding_control()) {
5326       case 0: rc = "round near"; break;
5327       case 1: rc = "round down"; break;
5328       case 2: rc = "round up  "; break;
5329       case 3: rc = "chop      "; break;
5330     };
5331     // precision control
5332     const char* pc;
5333     switch (precision_control()) {
5334       case 0: pc = "24 bits "; break;
5335       case 1: pc = "reserved"; break;
5336       case 2: pc = "53 bits "; break;
5337       case 3: pc = "64 bits "; break;
5338     };
5339     // flags
5340     char f[9];
5341     f[0] = ' ';
5342     f[1] = ' ';
5343     f[2] = (precision   ()) ? 'P' : 'p';
5344     f[3] = (underflow   ()) ? 'U' : 'u';
5345     f[4] = (overflow    ()) ? 'O' : 'o';
5346     f[5] = (zero_divide ()) ? 'Z' : 'z';
5347     f[6] = (denormalized()) ? 'D' : 'd';
5348     f[7] = (invalid     ()) ? 'I' : 'i';
5349     f[8] = '\x0';
5350     // output
5351     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5352   }
5353 
5354 };
5355 
5356 class StatusWord {
5357  public:
5358   int32_t _value;
5359 
5360   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5361   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5362   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5363   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5364   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5365   int  top() const                     { return  (_value >> 11) & 7      ; }
5366   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5367   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5368   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5369   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5370   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5371   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5372   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5373   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5374 
5375   void print() const {
5376     // condition codes
5377     char c[5];
5378     c[0] = (C3()) ? '3' : '-';
5379     c[1] = (C2()) ? '2' : '-';
5380     c[2] = (C1()) ? '1' : '-';
5381     c[3] = (C0()) ? '0' : '-';
5382     c[4] = '\x0';
5383     // flags
5384     char f[9];
5385     f[0] = (error_status()) ? 'E' : '-';
5386     f[1] = (stack_fault ()) ? 'S' : '-';
5387     f[2] = (precision   ()) ? 'P' : '-';
5388     f[3] = (underflow   ()) ? 'U' : '-';
5389     f[4] = (overflow    ()) ? 'O' : '-';
5390     f[5] = (zero_divide ()) ? 'Z' : '-';
5391     f[6] = (denormalized()) ? 'D' : '-';
5392     f[7] = (invalid     ()) ? 'I' : '-';
5393     f[8] = '\x0';
5394     // output
5395     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5396   }
5397 
5398 };
5399 
5400 class TagWord {
5401  public:
5402   int32_t _value;
5403 
5404   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5405 
5406   void print() const {
5407     printf("%04x", _value & 0xFFFF);
5408   }
5409 
5410 };
5411 
5412 class FPU_Register {
5413  public:
5414   int32_t _m0;
5415   int32_t _m1;
5416   int16_t _ex;
5417 
5418   bool is_indefinite() const           {
5419     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5420   }
5421 
5422   void print() const {
5423     char  sign = (_ex < 0) ? '-' : '+';
5424     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5425     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5426   };
5427 
5428 };
5429 
5430 class FPU_State {
5431  public:
5432   enum {
5433     register_size       = 10,
5434     number_of_registers =  8,
5435     register_mask       =  7
5436   };
5437 
5438   ControlWord  _control_word;
5439   StatusWord   _status_word;
5440   TagWord      _tag_word;
5441   int32_t      _error_offset;
5442   int32_t      _error_selector;
5443   int32_t      _data_offset;
5444   int32_t      _data_selector;
5445   int8_t       _register[register_size * number_of_registers];
5446 
5447   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5448   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5449 
5450   const char* tag_as_string(int tag) const {
5451     switch (tag) {
5452       case 0: return "valid";
5453       case 1: return "zero";
5454       case 2: return "special";
5455       case 3: return "empty";
5456     }
5457     ShouldNotReachHere();
5458     return NULL;
5459   }
5460 
5461   void print() const {
5462     // print computation registers
5463     { int t = _status_word.top();
5464       for (int i = 0; i < number_of_registers; i++) {
5465         int j = (i - t) & register_mask;
5466         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5467         st(j)->print();
5468         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5469       }
5470     }
5471     printf("\n");
5472     // print control registers
5473     printf("ctrl = "); _control_word.print(); printf("\n");
5474     printf("stat = "); _status_word .print(); printf("\n");
5475     printf("tags = "); _tag_word    .print(); printf("\n");
5476   }
5477 
5478 };
5479 
5480 class Flag_Register {
5481  public:
5482   int32_t _value;
5483 
5484   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5485   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5486   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5487   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5488   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5489   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5490   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5491 
5492   void print() const {
5493     // flags
5494     char f[8];
5495     f[0] = (overflow       ()) ? 'O' : '-';
5496     f[1] = (direction      ()) ? 'D' : '-';
5497     f[2] = (sign           ()) ? 'S' : '-';
5498     f[3] = (zero           ()) ? 'Z' : '-';
5499     f[4] = (auxiliary_carry()) ? 'A' : '-';
5500     f[5] = (parity         ()) ? 'P' : '-';
5501     f[6] = (carry          ()) ? 'C' : '-';
5502     f[7] = '\x0';
5503     // output
5504     printf("%08x  flags = %s", _value, f);
5505   }
5506 
5507 };
5508 
5509 class IU_Register {
5510  public:
5511   int32_t _value;
5512 
5513   void print() const {
5514     printf("%08x  %11d", _value, _value);
5515   }
5516 
5517 };
5518 
5519 class IU_State {
5520  public:
5521   Flag_Register _eflags;
5522   IU_Register   _rdi;
5523   IU_Register   _rsi;
5524   IU_Register   _rbp;
5525   IU_Register   _rsp;
5526   IU_Register   _rbx;
5527   IU_Register   _rdx;
5528   IU_Register   _rcx;
5529   IU_Register   _rax;
5530 
5531   void print() const {
5532     // computation registers
5533     printf("rax,  = "); _rax.print(); printf("\n");
5534     printf("rbx,  = "); _rbx.print(); printf("\n");
5535     printf("rcx  = "); _rcx.print(); printf("\n");
5536     printf("rdx  = "); _rdx.print(); printf("\n");
5537     printf("rdi  = "); _rdi.print(); printf("\n");
5538     printf("rsi  = "); _rsi.print(); printf("\n");
5539     printf("rbp,  = "); _rbp.print(); printf("\n");
5540     printf("rsp  = "); _rsp.print(); printf("\n");
5541     printf("\n");
5542     // control registers
5543     printf("flgs = "); _eflags.print(); printf("\n");
5544   }
5545 };
5546 
5547 
5548 class CPU_State {
5549  public:
5550   FPU_State _fpu_state;
5551   IU_State  _iu_state;
5552 
5553   void print() const {
5554     printf("--------------------------------------------------\n");
5555     _iu_state .print();
5556     printf("\n");
5557     _fpu_state.print();
5558     printf("--------------------------------------------------\n");
5559   }
5560 
5561 };
5562 
5563 
5564 static void _print_CPU_state(CPU_State* state) {
5565   state->print();
5566 };
5567 
5568 
5569 void MacroAssembler::print_CPU_state() {
5570   push_CPU_state();
5571   push(rsp);                // pass CPU state
5572   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5573   addptr(rsp, wordSize);       // discard argument
5574   pop_CPU_state();
5575 }
5576 
5577 
5578 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5579   static int counter = 0;
5580   FPU_State* fs = &state->_fpu_state;
5581   counter++;
5582   // For leaf calls, only verify that the top few elements remain empty.
5583   // We only need 1 empty at the top for C2 code.
5584   if( stack_depth < 0 ) {
5585     if( fs->tag_for_st(7) != 3 ) {
5586       printf("FPR7 not empty\n");
5587       state->print();
5588       assert(false, "error");
5589       return false;
5590     }
5591     return true;                // All other stack states do not matter
5592   }
5593 
5594   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5595          "bad FPU control word");
5596 
5597   // compute stack depth
5598   int i = 0;
5599   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5600   int d = i;
5601   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5602   // verify findings
5603   if (i != FPU_State::number_of_registers) {
5604     // stack not contiguous
5605     printf("%s: stack not contiguous at ST%d\n", s, i);
5606     state->print();
5607     assert(false, "error");
5608     return false;
5609   }
5610   // check if computed stack depth corresponds to expected stack depth
5611   if (stack_depth < 0) {
5612     // expected stack depth is -stack_depth or less
5613     if (d > -stack_depth) {
5614       // too many elements on the stack
5615       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5616       state->print();
5617       assert(false, "error");
5618       return false;
5619     }
5620   } else {
5621     // expected stack depth is stack_depth
5622     if (d != stack_depth) {
5623       // wrong stack depth
5624       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5625       state->print();
5626       assert(false, "error");
5627       return false;
5628     }
5629   }
5630   // everything is cool
5631   return true;
5632 }
5633 
5634 
5635 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5636   if (!VerifyFPU) return;
5637   push_CPU_state();
5638   push(rsp);                // pass CPU state
5639   ExternalAddress msg((address) s);
5640   // pass message string s
5641   pushptr(msg.addr());
5642   push(stack_depth);        // pass stack depth
5643   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5644   addptr(rsp, 3 * wordSize);   // discard arguments
5645   // check for error
5646   { Label L;
5647     testl(rax, rax);
5648     jcc(Assembler::notZero, L);
5649     int3();                  // break if error condition
5650     bind(L);
5651   }
5652   pop_CPU_state();
5653 }
5654 
5655 void MacroAssembler::restore_cpu_control_state_after_jni() {
5656   // Either restore the MXCSR register after returning from the JNI Call
5657   // or verify that it wasn't changed (with -Xcheck:jni flag).
5658   if (VM_Version::supports_sse()) {
5659     if (RestoreMXCSROnJNICalls) {
5660       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5661     } else if (CheckJNICalls) {
5662       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5663     }
5664   }
5665   if (VM_Version::supports_avx()) {
5666     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5667     vzeroupper();
5668   }
5669 
5670 #ifndef _LP64
5671   // Either restore the x87 floating pointer control word after returning
5672   // from the JNI call or verify that it wasn't changed.
5673   if (CheckJNICalls) {
5674     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5675   }
5676 #endif // _LP64
5677 }
5678 
5679 
5680 void MacroAssembler::load_klass(Register dst, Register src) {
5681 #ifdef _LP64
5682   if (UseCompressedClassPointers) {
5683     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5684     decode_klass_not_null(dst);
5685   } else
5686 #endif
5687     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5688 }
5689 
5690 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5691   load_klass(dst, src);
5692   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5693 }
5694 
5695 void MacroAssembler::store_klass(Register dst, Register src) {
5696 #ifdef _LP64
5697   if (UseCompressedClassPointers) {
5698     encode_klass_not_null(src);
5699     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5700   } else
5701 #endif
5702     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5703 }
5704 
5705 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5706 #ifdef _LP64
5707   // FIXME: Must change all places where we try to load the klass.
5708   if (UseCompressedOops) {
5709     movl(dst, src);
5710     decode_heap_oop(dst);
5711   } else
5712 #endif
5713     movptr(dst, src);
5714 }
5715 
5716 // Doesn't do verfication, generates fixed size code
5717 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5718 #ifdef _LP64
5719   if (UseCompressedOops) {
5720     movl(dst, src);
5721     decode_heap_oop_not_null(dst);
5722   } else
5723 #endif
5724     movptr(dst, src);
5725 }
5726 
5727 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5728 #ifdef _LP64
5729   if (UseCompressedOops) {
5730     assert(!dst.uses(src), "not enough registers");
5731     encode_heap_oop(src);
5732     movl(dst, src);
5733   } else
5734 #endif
5735     movptr(dst, src);
5736 }
5737 
5738 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5739   assert_different_registers(src1, tmp);
5740 #ifdef _LP64
5741   if (UseCompressedOops) {
5742     bool did_push = false;
5743     if (tmp == noreg) {
5744       tmp = rax;
5745       push(tmp);
5746       did_push = true;
5747       assert(!src2.uses(rsp), "can't push");
5748     }
5749     load_heap_oop(tmp, src2);
5750     cmpptr(src1, tmp);
5751     if (did_push)  pop(tmp);
5752   } else
5753 #endif
5754     cmpptr(src1, src2);
5755 }
5756 
5757 // Used for storing NULLs.
5758 void MacroAssembler::store_heap_oop_null(Address dst) {
5759 #ifdef _LP64
5760   if (UseCompressedOops) {
5761     movl(dst, (int32_t)NULL_WORD);
5762   } else {
5763     movslq(dst, (int32_t)NULL_WORD);
5764   }
5765 #else
5766   movl(dst, (int32_t)NULL_WORD);
5767 #endif
5768 }
5769 
5770 #ifdef _LP64
5771 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5772   if (UseCompressedClassPointers) {
5773     // Store to klass gap in destination
5774     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5775   }
5776 }
5777 
5778 #ifdef ASSERT
5779 void MacroAssembler::verify_heapbase(const char* msg) {
5780   assert (UseCompressedOops, "should be compressed");
5781   assert (Universe::heap() != NULL, "java heap should be initialized");
5782   if (CheckCompressedOops) {
5783     Label ok;
5784     push(rscratch1); // cmpptr trashes rscratch1
5785     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5786     jcc(Assembler::equal, ok);
5787     STOP(msg);
5788     bind(ok);
5789     pop(rscratch1);
5790   }
5791 }
5792 #endif
5793 
5794 // Algorithm must match oop.inline.hpp encode_heap_oop.
5795 void MacroAssembler::encode_heap_oop(Register r) {
5796 #ifdef ASSERT
5797   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5798 #endif
5799   verify_oop(r, "broken oop in encode_heap_oop");
5800   if (Universe::narrow_oop_base() == NULL) {
5801     if (Universe::narrow_oop_shift() != 0) {
5802       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5803       shrq(r, LogMinObjAlignmentInBytes);
5804     }
5805     return;
5806   }
5807   testq(r, r);
5808   cmovq(Assembler::equal, r, r12_heapbase);
5809   subq(r, r12_heapbase);
5810   shrq(r, LogMinObjAlignmentInBytes);
5811 }
5812 
5813 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5814 #ifdef ASSERT
5815   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5816   if (CheckCompressedOops) {
5817     Label ok;
5818     testq(r, r);
5819     jcc(Assembler::notEqual, ok);
5820     STOP("null oop passed to encode_heap_oop_not_null");
5821     bind(ok);
5822   }
5823 #endif
5824   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5825   if (Universe::narrow_oop_base() != NULL) {
5826     subq(r, r12_heapbase);
5827   }
5828   if (Universe::narrow_oop_shift() != 0) {
5829     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5830     shrq(r, LogMinObjAlignmentInBytes);
5831   }
5832 }
5833 
5834 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5835 #ifdef ASSERT
5836   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5837   if (CheckCompressedOops) {
5838     Label ok;
5839     testq(src, src);
5840     jcc(Assembler::notEqual, ok);
5841     STOP("null oop passed to encode_heap_oop_not_null2");
5842     bind(ok);
5843   }
5844 #endif
5845   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5846   if (dst != src) {
5847     movq(dst, src);
5848   }
5849   if (Universe::narrow_oop_base() != NULL) {
5850     subq(dst, r12_heapbase);
5851   }
5852   if (Universe::narrow_oop_shift() != 0) {
5853     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5854     shrq(dst, LogMinObjAlignmentInBytes);
5855   }
5856 }
5857 
5858 void  MacroAssembler::decode_heap_oop(Register r) {
5859 #ifdef ASSERT
5860   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5861 #endif
5862   if (Universe::narrow_oop_base() == NULL) {
5863     if (Universe::narrow_oop_shift() != 0) {
5864       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5865       shlq(r, LogMinObjAlignmentInBytes);
5866     }
5867   } else {
5868     Label done;
5869     shlq(r, LogMinObjAlignmentInBytes);
5870     jccb(Assembler::equal, done);
5871     addq(r, r12_heapbase);
5872     bind(done);
5873   }
5874   verify_oop(r, "broken oop in decode_heap_oop");
5875 }
5876 
5877 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5878   // Note: it will change flags
5879   assert (UseCompressedOops, "should only be used for compressed headers");
5880   assert (Universe::heap() != NULL, "java heap should be initialized");
5881   // Cannot assert, unverified entry point counts instructions (see .ad file)
5882   // vtableStubs also counts instructions in pd_code_size_limit.
5883   // Also do not verify_oop as this is called by verify_oop.
5884   if (Universe::narrow_oop_shift() != 0) {
5885     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5886     shlq(r, LogMinObjAlignmentInBytes);
5887     if (Universe::narrow_oop_base() != NULL) {
5888       addq(r, r12_heapbase);
5889     }
5890   } else {
5891     assert (Universe::narrow_oop_base() == NULL, "sanity");
5892   }
5893 }
5894 
5895 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5896   // Note: it will change flags
5897   assert (UseCompressedOops, "should only be used for compressed headers");
5898   assert (Universe::heap() != NULL, "java heap should be initialized");
5899   // Cannot assert, unverified entry point counts instructions (see .ad file)
5900   // vtableStubs also counts instructions in pd_code_size_limit.
5901   // Also do not verify_oop as this is called by verify_oop.
5902   if (Universe::narrow_oop_shift() != 0) {
5903     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5904     if (LogMinObjAlignmentInBytes == Address::times_8) {
5905       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5906     } else {
5907       if (dst != src) {
5908         movq(dst, src);
5909       }
5910       shlq(dst, LogMinObjAlignmentInBytes);
5911       if (Universe::narrow_oop_base() != NULL) {
5912         addq(dst, r12_heapbase);
5913       }
5914     }
5915   } else {
5916     assert (Universe::narrow_oop_base() == NULL, "sanity");
5917     if (dst != src) {
5918       movq(dst, src);
5919     }
5920   }
5921 }
5922 
5923 void MacroAssembler::encode_klass_not_null(Register r) {
5924   if (Universe::narrow_klass_base() != NULL) {
5925     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5926     assert(r != r12_heapbase, "Encoding a klass in r12");
5927     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5928     subq(r, r12_heapbase);
5929   }
5930   if (Universe::narrow_klass_shift() != 0) {
5931     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5932     shrq(r, LogKlassAlignmentInBytes);
5933   }
5934   if (Universe::narrow_klass_base() != NULL) {
5935     reinit_heapbase();
5936   }
5937 }
5938 
5939 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5940   if (dst == src) {
5941     encode_klass_not_null(src);
5942   } else {
5943     if (Universe::narrow_klass_base() != NULL) {
5944       mov64(dst, (int64_t)Universe::narrow_klass_base());
5945       negq(dst);
5946       addq(dst, src);
5947     } else {
5948       movptr(dst, src);
5949     }
5950     if (Universe::narrow_klass_shift() != 0) {
5951       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5952       shrq(dst, LogKlassAlignmentInBytes);
5953     }
5954   }
5955 }
5956 
5957 // Function instr_size_for_decode_klass_not_null() counts the instructions
5958 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5959 // when (Universe::heap() != NULL).  Hence, if the instructions they
5960 // generate change, then this method needs to be updated.
5961 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5962   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5963   if (Universe::narrow_klass_base() != NULL) {
5964     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5965     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5966   } else {
5967     // longest load decode klass function, mov64, leaq
5968     return 16;
5969   }
5970 }
5971 
5972 // !!! If the instructions that get generated here change then function
5973 // instr_size_for_decode_klass_not_null() needs to get updated.
5974 void  MacroAssembler::decode_klass_not_null(Register r) {
5975   // Note: it will change flags
5976   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5977   assert(r != r12_heapbase, "Decoding a klass in r12");
5978   // Cannot assert, unverified entry point counts instructions (see .ad file)
5979   // vtableStubs also counts instructions in pd_code_size_limit.
5980   // Also do not verify_oop as this is called by verify_oop.
5981   if (Universe::narrow_klass_shift() != 0) {
5982     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5983     shlq(r, LogKlassAlignmentInBytes);
5984   }
5985   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5986   if (Universe::narrow_klass_base() != NULL) {
5987     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5988     addq(r, r12_heapbase);
5989     reinit_heapbase();
5990   }
5991 }
5992 
5993 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5994   // Note: it will change flags
5995   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5996   if (dst == src) {
5997     decode_klass_not_null(dst);
5998   } else {
5999     // Cannot assert, unverified entry point counts instructions (see .ad file)
6000     // vtableStubs also counts instructions in pd_code_size_limit.
6001     // Also do not verify_oop as this is called by verify_oop.
6002     mov64(dst, (int64_t)Universe::narrow_klass_base());
6003     if (Universe::narrow_klass_shift() != 0) {
6004       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6005       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6006       leaq(dst, Address(dst, src, Address::times_8, 0));
6007     } else {
6008       addq(dst, src);
6009     }
6010   }
6011 }
6012 
6013 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6014   assert (UseCompressedOops, "should only be used for compressed headers");
6015   assert (Universe::heap() != NULL, "java heap should be initialized");
6016   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6017   int oop_index = oop_recorder()->find_index(obj);
6018   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6019   mov_narrow_oop(dst, oop_index, rspec);
6020 }
6021 
6022 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6023   assert (UseCompressedOops, "should only be used for compressed headers");
6024   assert (Universe::heap() != NULL, "java heap should be initialized");
6025   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6026   int oop_index = oop_recorder()->find_index(obj);
6027   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6028   mov_narrow_oop(dst, oop_index, rspec);
6029 }
6030 
6031 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6032   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6033   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6034   int klass_index = oop_recorder()->find_index(k);
6035   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6036   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6037 }
6038 
6039 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6040   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6041   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6042   int klass_index = oop_recorder()->find_index(k);
6043   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6044   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6045 }
6046 
6047 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6048   assert (UseCompressedOops, "should only be used for compressed headers");
6049   assert (Universe::heap() != NULL, "java heap should be initialized");
6050   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6051   int oop_index = oop_recorder()->find_index(obj);
6052   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6053   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6054 }
6055 
6056 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6057   assert (UseCompressedOops, "should only be used for compressed headers");
6058   assert (Universe::heap() != NULL, "java heap should be initialized");
6059   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6060   int oop_index = oop_recorder()->find_index(obj);
6061   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6062   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6063 }
6064 
6065 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6066   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6067   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6068   int klass_index = oop_recorder()->find_index(k);
6069   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6070   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6071 }
6072 
6073 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6074   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6075   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6076   int klass_index = oop_recorder()->find_index(k);
6077   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6078   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6079 }
6080 
6081 void MacroAssembler::reinit_heapbase() {
6082   if (UseCompressedOops || UseCompressedClassPointers) {
6083     if (Universe::heap() != NULL) {
6084       if (Universe::narrow_oop_base() == NULL) {
6085         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6086       } else {
6087         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6088       }
6089     } else {
6090       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6091     }
6092   }
6093 }
6094 
6095 #endif // _LP64
6096 
6097 
6098 // C2 compiled method's prolog code.
6099 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6100 
6101   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6102   // NativeJump::patch_verified_entry will be able to patch out the entry
6103   // code safely. The push to verify stack depth is ok at 5 bytes,
6104   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6105   // stack bang then we must use the 6 byte frame allocation even if
6106   // we have no frame. :-(
6107   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6108 
6109   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6110   // Remove word for return addr
6111   framesize -= wordSize;
6112   stack_bang_size -= wordSize;
6113 
6114   // Calls to C2R adapters often do not accept exceptional returns.
6115   // We require that their callers must bang for them.  But be careful, because
6116   // some VM calls (such as call site linkage) can use several kilobytes of
6117   // stack.  But the stack safety zone should account for that.
6118   // See bugs 4446381, 4468289, 4497237.
6119   if (stack_bang_size > 0) {
6120     generate_stack_overflow_check(stack_bang_size);
6121 
6122     // We always push rbp, so that on return to interpreter rbp, will be
6123     // restored correctly and we can correct the stack.
6124     push(rbp);
6125     // Remove word for ebp
6126     framesize -= wordSize;
6127 
6128     // Create frame
6129     if (framesize) {
6130       subptr(rsp, framesize);
6131     }
6132   } else {
6133     // Create frame (force generation of a 4 byte immediate value)
6134     subptr_imm32(rsp, framesize);
6135 
6136     // Save RBP register now.
6137     framesize -= wordSize;
6138     movptr(Address(rsp, framesize), rbp);
6139   }
6140 
6141   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6142     framesize -= wordSize;
6143     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6144   }
6145 
6146 #ifndef _LP64
6147   // If method sets FPU control word do it now
6148   if (fp_mode_24b) {
6149     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6150   }
6151   if (UseSSE >= 2 && VerifyFPU) {
6152     verify_FPU(0, "FPU stack must be clean on entry");
6153   }
6154 #endif
6155 
6156 #ifdef ASSERT
6157   if (VerifyStackAtCalls) {
6158     Label L;
6159     push(rax);
6160     mov(rax, rsp);
6161     andptr(rax, StackAlignmentInBytes-1);
6162     cmpptr(rax, StackAlignmentInBytes-wordSize);
6163     pop(rax);
6164     jcc(Assembler::equal, L);
6165     STOP("Stack is not properly aligned!");
6166     bind(L);
6167   }
6168 #endif
6169 
6170 }
6171 
6172 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6173   // cnt - number of qwords (8-byte words).
6174   // base - start address, qword aligned.
6175   assert(base==rdi, "base register must be edi for rep stos");
6176   assert(tmp==rax,   "tmp register must be eax for rep stos");
6177   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6178 
6179   xorptr(tmp, tmp);
6180   if (UseFastStosb) {
6181     shlptr(cnt,3); // convert to number of bytes
6182     rep_stosb();
6183   } else {
6184     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6185     rep_stos();
6186   }
6187 }
6188 
6189 // IndexOf for constant substrings with size >= 8 chars
6190 // which don't need to be loaded through stack.
6191 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6192                                       Register cnt1, Register cnt2,
6193                                       int int_cnt2,  Register result,
6194                                       XMMRegister vec, Register tmp) {
6195   ShortBranchVerifier sbv(this);
6196   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6197 
6198   // This method uses pcmpestri inxtruction with bound registers
6199   //   inputs:
6200   //     xmm - substring
6201   //     rax - substring length (elements count)
6202   //     mem - scanned string
6203   //     rdx - string length (elements count)
6204   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6205   //   outputs:
6206   //     rcx - matched index in string
6207   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6208 
6209   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6210         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6211         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6212 
6213   // Note, inline_string_indexOf() generates checks:
6214   // if (substr.count > string.count) return -1;
6215   // if (substr.count == 0) return 0;
6216   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6217 
6218   // Load substring.
6219   movdqu(vec, Address(str2, 0));
6220   movl(cnt2, int_cnt2);
6221   movptr(result, str1); // string addr
6222 
6223   if (int_cnt2 > 8) {
6224     jmpb(SCAN_TO_SUBSTR);
6225 
6226     // Reload substr for rescan, this code
6227     // is executed only for large substrings (> 8 chars)
6228     bind(RELOAD_SUBSTR);
6229     movdqu(vec, Address(str2, 0));
6230     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6231 
6232     bind(RELOAD_STR);
6233     // We came here after the beginning of the substring was
6234     // matched but the rest of it was not so we need to search
6235     // again. Start from the next element after the previous match.
6236 
6237     // cnt2 is number of substring reminding elements and
6238     // cnt1 is number of string reminding elements when cmp failed.
6239     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6240     subl(cnt1, cnt2);
6241     addl(cnt1, int_cnt2);
6242     movl(cnt2, int_cnt2); // Now restore cnt2
6243 
6244     decrementl(cnt1);     // Shift to next element
6245     cmpl(cnt1, cnt2);
6246     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6247 
6248     addptr(result, 2);
6249 
6250   } // (int_cnt2 > 8)
6251 
6252   // Scan string for start of substr in 16-byte vectors
6253   bind(SCAN_TO_SUBSTR);
6254   pcmpestri(vec, Address(result, 0), 0x0d);
6255   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6256   subl(cnt1, 8);
6257   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6258   cmpl(cnt1, cnt2);
6259   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6260   addptr(result, 16);
6261   jmpb(SCAN_TO_SUBSTR);
6262 
6263   // Found a potential substr
6264   bind(FOUND_CANDIDATE);
6265   // Matched whole vector if first element matched (tmp(rcx) == 0).
6266   if (int_cnt2 == 8) {
6267     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6268   } else { // int_cnt2 > 8
6269     jccb(Assembler::overflow, FOUND_SUBSTR);
6270   }
6271   // After pcmpestri tmp(rcx) contains matched element index
6272   // Compute start addr of substr
6273   lea(result, Address(result, tmp, Address::times_2));
6274 
6275   // Make sure string is still long enough
6276   subl(cnt1, tmp);
6277   cmpl(cnt1, cnt2);
6278   if (int_cnt2 == 8) {
6279     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6280   } else { // int_cnt2 > 8
6281     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6282   }
6283   // Left less then substring.
6284 
6285   bind(RET_NOT_FOUND);
6286   movl(result, -1);
6287   jmpb(EXIT);
6288 
6289   if (int_cnt2 > 8) {
6290     // This code is optimized for the case when whole substring
6291     // is matched if its head is matched.
6292     bind(MATCH_SUBSTR_HEAD);
6293     pcmpestri(vec, Address(result, 0), 0x0d);
6294     // Reload only string if does not match
6295     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6296 
6297     Label CONT_SCAN_SUBSTR;
6298     // Compare the rest of substring (> 8 chars).
6299     bind(FOUND_SUBSTR);
6300     // First 8 chars are already matched.
6301     negptr(cnt2);
6302     addptr(cnt2, 8);
6303 
6304     bind(SCAN_SUBSTR);
6305     subl(cnt1, 8);
6306     cmpl(cnt2, -8); // Do not read beyond substring
6307     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6308     // Back-up strings to avoid reading beyond substring:
6309     // cnt1 = cnt1 - cnt2 + 8
6310     addl(cnt1, cnt2); // cnt2 is negative
6311     addl(cnt1, 8);
6312     movl(cnt2, 8); negptr(cnt2);
6313     bind(CONT_SCAN_SUBSTR);
6314     if (int_cnt2 < (int)G) {
6315       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6316       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6317     } else {
6318       // calculate index in register to avoid integer overflow (int_cnt2*2)
6319       movl(tmp, int_cnt2);
6320       addptr(tmp, cnt2);
6321       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6322       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6323     }
6324     // Need to reload strings pointers if not matched whole vector
6325     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6326     addptr(cnt2, 8);
6327     jcc(Assembler::negative, SCAN_SUBSTR);
6328     // Fall through if found full substring
6329 
6330   } // (int_cnt2 > 8)
6331 
6332   bind(RET_FOUND);
6333   // Found result if we matched full small substring.
6334   // Compute substr offset
6335   subptr(result, str1);
6336   shrl(result, 1); // index
6337   bind(EXIT);
6338 
6339 } // string_indexofC8
6340 
6341 // Small strings are loaded through stack if they cross page boundary.
6342 void MacroAssembler::string_indexof(Register str1, Register str2,
6343                                     Register cnt1, Register cnt2,
6344                                     int int_cnt2,  Register result,
6345                                     XMMRegister vec, Register tmp) {
6346   ShortBranchVerifier sbv(this);
6347   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6348   //
6349   // int_cnt2 is length of small (< 8 chars) constant substring
6350   // or (-1) for non constant substring in which case its length
6351   // is in cnt2 register.
6352   //
6353   // Note, inline_string_indexOf() generates checks:
6354   // if (substr.count > string.count) return -1;
6355   // if (substr.count == 0) return 0;
6356   //
6357   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6358 
6359   // This method uses pcmpestri inxtruction with bound registers
6360   //   inputs:
6361   //     xmm - substring
6362   //     rax - substring length (elements count)
6363   //     mem - scanned string
6364   //     rdx - string length (elements count)
6365   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6366   //   outputs:
6367   //     rcx - matched index in string
6368   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6369 
6370   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6371         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6372         FOUND_CANDIDATE;
6373 
6374   { //========================================================
6375     // We don't know where these strings are located
6376     // and we can't read beyond them. Load them through stack.
6377     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6378 
6379     movptr(tmp, rsp); // save old SP
6380 
6381     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6382       if (int_cnt2 == 1) {  // One char
6383         load_unsigned_short(result, Address(str2, 0));
6384         movdl(vec, result); // move 32 bits
6385       } else if (int_cnt2 == 2) { // Two chars
6386         movdl(vec, Address(str2, 0)); // move 32 bits
6387       } else if (int_cnt2 == 4) { // Four chars
6388         movq(vec, Address(str2, 0));  // move 64 bits
6389       } else { // cnt2 = { 3, 5, 6, 7 }
6390         // Array header size is 12 bytes in 32-bit VM
6391         // + 6 bytes for 3 chars == 18 bytes,
6392         // enough space to load vec and shift.
6393         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6394         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6395         psrldq(vec, 16-(int_cnt2*2));
6396       }
6397     } else { // not constant substring
6398       cmpl(cnt2, 8);
6399       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6400 
6401       // We can read beyond string if srt+16 does not cross page boundary
6402       // since heaps are aligned and mapped by pages.
6403       assert(os::vm_page_size() < (int)G, "default page should be small");
6404       movl(result, str2); // We need only low 32 bits
6405       andl(result, (os::vm_page_size()-1));
6406       cmpl(result, (os::vm_page_size()-16));
6407       jccb(Assembler::belowEqual, CHECK_STR);
6408 
6409       // Move small strings to stack to allow load 16 bytes into vec.
6410       subptr(rsp, 16);
6411       int stk_offset = wordSize-2;
6412       push(cnt2);
6413 
6414       bind(COPY_SUBSTR);
6415       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6416       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6417       decrement(cnt2);
6418       jccb(Assembler::notZero, COPY_SUBSTR);
6419 
6420       pop(cnt2);
6421       movptr(str2, rsp);  // New substring address
6422     } // non constant
6423 
6424     bind(CHECK_STR);
6425     cmpl(cnt1, 8);
6426     jccb(Assembler::aboveEqual, BIG_STRINGS);
6427 
6428     // Check cross page boundary.
6429     movl(result, str1); // We need only low 32 bits
6430     andl(result, (os::vm_page_size()-1));
6431     cmpl(result, (os::vm_page_size()-16));
6432     jccb(Assembler::belowEqual, BIG_STRINGS);
6433 
6434     subptr(rsp, 16);
6435     int stk_offset = -2;
6436     if (int_cnt2 < 0) { // not constant
6437       push(cnt2);
6438       stk_offset += wordSize;
6439     }
6440     movl(cnt2, cnt1);
6441 
6442     bind(COPY_STR);
6443     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6444     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6445     decrement(cnt2);
6446     jccb(Assembler::notZero, COPY_STR);
6447 
6448     if (int_cnt2 < 0) { // not constant
6449       pop(cnt2);
6450     }
6451     movptr(str1, rsp);  // New string address
6452 
6453     bind(BIG_STRINGS);
6454     // Load substring.
6455     if (int_cnt2 < 0) { // -1
6456       movdqu(vec, Address(str2, 0));
6457       push(cnt2);       // substr count
6458       push(str2);       // substr addr
6459       push(str1);       // string addr
6460     } else {
6461       // Small (< 8 chars) constant substrings are loaded already.
6462       movl(cnt2, int_cnt2);
6463     }
6464     push(tmp);  // original SP
6465 
6466   } // Finished loading
6467 
6468   //========================================================
6469   // Start search
6470   //
6471 
6472   movptr(result, str1); // string addr
6473 
6474   if (int_cnt2  < 0) {  // Only for non constant substring
6475     jmpb(SCAN_TO_SUBSTR);
6476 
6477     // SP saved at sp+0
6478     // String saved at sp+1*wordSize
6479     // Substr saved at sp+2*wordSize
6480     // Substr count saved at sp+3*wordSize
6481 
6482     // Reload substr for rescan, this code
6483     // is executed only for large substrings (> 8 chars)
6484     bind(RELOAD_SUBSTR);
6485     movptr(str2, Address(rsp, 2*wordSize));
6486     movl(cnt2, Address(rsp, 3*wordSize));
6487     movdqu(vec, Address(str2, 0));
6488     // We came here after the beginning of the substring was
6489     // matched but the rest of it was not so we need to search
6490     // again. Start from the next element after the previous match.
6491     subptr(str1, result); // Restore counter
6492     shrl(str1, 1);
6493     addl(cnt1, str1);
6494     decrementl(cnt1);   // Shift to next element
6495     cmpl(cnt1, cnt2);
6496     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6497 
6498     addptr(result, 2);
6499   } // non constant
6500 
6501   // Scan string for start of substr in 16-byte vectors
6502   bind(SCAN_TO_SUBSTR);
6503   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6504   pcmpestri(vec, Address(result, 0), 0x0d);
6505   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6506   subl(cnt1, 8);
6507   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6508   cmpl(cnt1, cnt2);
6509   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6510   addptr(result, 16);
6511 
6512   bind(ADJUST_STR);
6513   cmpl(cnt1, 8); // Do not read beyond string
6514   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6515   // Back-up string to avoid reading beyond string.
6516   lea(result, Address(result, cnt1, Address::times_2, -16));
6517   movl(cnt1, 8);
6518   jmpb(SCAN_TO_SUBSTR);
6519 
6520   // Found a potential substr
6521   bind(FOUND_CANDIDATE);
6522   // After pcmpestri tmp(rcx) contains matched element index
6523 
6524   // Make sure string is still long enough
6525   subl(cnt1, tmp);
6526   cmpl(cnt1, cnt2);
6527   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6528   // Left less then substring.
6529 
6530   bind(RET_NOT_FOUND);
6531   movl(result, -1);
6532   jmpb(CLEANUP);
6533 
6534   bind(FOUND_SUBSTR);
6535   // Compute start addr of substr
6536   lea(result, Address(result, tmp, Address::times_2));
6537 
6538   if (int_cnt2 > 0) { // Constant substring
6539     // Repeat search for small substring (< 8 chars)
6540     // from new point without reloading substring.
6541     // Have to check that we don't read beyond string.
6542     cmpl(tmp, 8-int_cnt2);
6543     jccb(Assembler::greater, ADJUST_STR);
6544     // Fall through if matched whole substring.
6545   } else { // non constant
6546     assert(int_cnt2 == -1, "should be != 0");
6547 
6548     addl(tmp, cnt2);
6549     // Found result if we matched whole substring.
6550     cmpl(tmp, 8);
6551     jccb(Assembler::lessEqual, RET_FOUND);
6552 
6553     // Repeat search for small substring (<= 8 chars)
6554     // from new point 'str1' without reloading substring.
6555     cmpl(cnt2, 8);
6556     // Have to check that we don't read beyond string.
6557     jccb(Assembler::lessEqual, ADJUST_STR);
6558 
6559     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6560     // Compare the rest of substring (> 8 chars).
6561     movptr(str1, result);
6562 
6563     cmpl(tmp, cnt2);
6564     // First 8 chars are already matched.
6565     jccb(Assembler::equal, CHECK_NEXT);
6566 
6567     bind(SCAN_SUBSTR);
6568     pcmpestri(vec, Address(str1, 0), 0x0d);
6569     // Need to reload strings pointers if not matched whole vector
6570     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6571 
6572     bind(CHECK_NEXT);
6573     subl(cnt2, 8);
6574     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6575     addptr(str1, 16);
6576     addptr(str2, 16);
6577     subl(cnt1, 8);
6578     cmpl(cnt2, 8); // Do not read beyond substring
6579     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6580     // Back-up strings to avoid reading beyond substring.
6581     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6582     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6583     subl(cnt1, cnt2);
6584     movl(cnt2, 8);
6585     addl(cnt1, 8);
6586     bind(CONT_SCAN_SUBSTR);
6587     movdqu(vec, Address(str2, 0));
6588     jmpb(SCAN_SUBSTR);
6589 
6590     bind(RET_FOUND_LONG);
6591     movptr(str1, Address(rsp, wordSize));
6592   } // non constant
6593 
6594   bind(RET_FOUND);
6595   // Compute substr offset
6596   subptr(result, str1);
6597   shrl(result, 1); // index
6598 
6599   bind(CLEANUP);
6600   pop(rsp); // restore SP
6601 
6602 } // string_indexof
6603 
6604 // Compare strings.
6605 void MacroAssembler::string_compare(Register str1, Register str2,
6606                                     Register cnt1, Register cnt2, Register result,
6607                                     XMMRegister vec1) {
6608   ShortBranchVerifier sbv(this);
6609   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6610 
6611   // Compute the minimum of the string lengths and the
6612   // difference of the string lengths (stack).
6613   // Do the conditional move stuff
6614   movl(result, cnt1);
6615   subl(cnt1, cnt2);
6616   push(cnt1);
6617   cmov32(Assembler::lessEqual, cnt2, result);
6618 
6619   // Is the minimum length zero?
6620   testl(cnt2, cnt2);
6621   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6622 
6623   // Compare first characters
6624   load_unsigned_short(result, Address(str1, 0));
6625   load_unsigned_short(cnt1, Address(str2, 0));
6626   subl(result, cnt1);
6627   jcc(Assembler::notZero,  POP_LABEL);
6628   cmpl(cnt2, 1);
6629   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6630 
6631   // Check if the strings start at the same location.
6632   cmpptr(str1, str2);
6633   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6634 
6635   Address::ScaleFactor scale = Address::times_2;
6636   int stride = 8;
6637 
6638   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6639     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6640     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6641     Label COMPARE_TAIL_LONG;
6642     int pcmpmask = 0x19;
6643 
6644     // Setup to compare 16-chars (32-bytes) vectors,
6645     // start from first character again because it has aligned address.
6646     int stride2 = 16;
6647     int adr_stride  = stride  << scale;
6648     int adr_stride2 = stride2 << scale;
6649 
6650     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6651     // rax and rdx are used by pcmpestri as elements counters
6652     movl(result, cnt2);
6653     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6654     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6655 
6656     // fast path : compare first 2 8-char vectors.
6657     bind(COMPARE_16_CHARS);
6658     movdqu(vec1, Address(str1, 0));
6659     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6660     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6661 
6662     movdqu(vec1, Address(str1, adr_stride));
6663     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6664     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6665     addl(cnt1, stride);
6666 
6667     // Compare the characters at index in cnt1
6668     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6669     load_unsigned_short(result, Address(str1, cnt1, scale));
6670     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6671     subl(result, cnt2);
6672     jmp(POP_LABEL);
6673 
6674     // Setup the registers to start vector comparison loop
6675     bind(COMPARE_WIDE_VECTORS);
6676     lea(str1, Address(str1, result, scale));
6677     lea(str2, Address(str2, result, scale));
6678     subl(result, stride2);
6679     subl(cnt2, stride2);
6680     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6681     negptr(result);
6682 
6683     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6684     bind(COMPARE_WIDE_VECTORS_LOOP);
6685     vmovdqu(vec1, Address(str1, result, scale));
6686     vpxor(vec1, Address(str2, result, scale));
6687     vptest(vec1, vec1);
6688     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6689     addptr(result, stride2);
6690     subl(cnt2, stride2);
6691     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6692     // clean upper bits of YMM registers
6693     vpxor(vec1, vec1);
6694 
6695     // compare wide vectors tail
6696     bind(COMPARE_WIDE_TAIL);
6697     testptr(result, result);
6698     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6699 
6700     movl(result, stride2);
6701     movl(cnt2, result);
6702     negptr(result);
6703     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6704 
6705     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6706     bind(VECTOR_NOT_EQUAL);
6707     // clean upper bits of YMM registers
6708     vpxor(vec1, vec1);
6709     lea(str1, Address(str1, result, scale));
6710     lea(str2, Address(str2, result, scale));
6711     jmp(COMPARE_16_CHARS);
6712 
6713     // Compare tail chars, length between 1 to 15 chars
6714     bind(COMPARE_TAIL_LONG);
6715     movl(cnt2, result);
6716     cmpl(cnt2, stride);
6717     jccb(Assembler::less, COMPARE_SMALL_STR);
6718 
6719     movdqu(vec1, Address(str1, 0));
6720     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6721     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6722     subptr(cnt2, stride);
6723     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6724     lea(str1, Address(str1, result, scale));
6725     lea(str2, Address(str2, result, scale));
6726     negptr(cnt2);
6727     jmpb(WHILE_HEAD_LABEL);
6728 
6729     bind(COMPARE_SMALL_STR);
6730   } else if (UseSSE42Intrinsics) {
6731     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6732     int pcmpmask = 0x19;
6733     // Setup to compare 8-char (16-byte) vectors,
6734     // start from first character again because it has aligned address.
6735     movl(result, cnt2);
6736     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6737     jccb(Assembler::zero, COMPARE_TAIL);
6738 
6739     lea(str1, Address(str1, result, scale));
6740     lea(str2, Address(str2, result, scale));
6741     negptr(result);
6742 
6743     // pcmpestri
6744     //   inputs:
6745     //     vec1- substring
6746     //     rax - negative string length (elements count)
6747     //     mem - scaned string
6748     //     rdx - string length (elements count)
6749     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6750     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6751     //   outputs:
6752     //     rcx - first mismatched element index
6753     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6754 
6755     bind(COMPARE_WIDE_VECTORS);
6756     movdqu(vec1, Address(str1, result, scale));
6757     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6758     // After pcmpestri cnt1(rcx) contains mismatched element index
6759 
6760     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6761     addptr(result, stride);
6762     subptr(cnt2, stride);
6763     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6764 
6765     // compare wide vectors tail
6766     testptr(result, result);
6767     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6768 
6769     movl(cnt2, stride);
6770     movl(result, stride);
6771     negptr(result);
6772     movdqu(vec1, Address(str1, result, scale));
6773     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6774     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6775 
6776     // Mismatched characters in the vectors
6777     bind(VECTOR_NOT_EQUAL);
6778     addptr(cnt1, result);
6779     load_unsigned_short(result, Address(str1, cnt1, scale));
6780     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6781     subl(result, cnt2);
6782     jmpb(POP_LABEL);
6783 
6784     bind(COMPARE_TAIL); // limit is zero
6785     movl(cnt2, result);
6786     // Fallthru to tail compare
6787   }
6788   // Shift str2 and str1 to the end of the arrays, negate min
6789   lea(str1, Address(str1, cnt2, scale));
6790   lea(str2, Address(str2, cnt2, scale));
6791   decrementl(cnt2);  // first character was compared already
6792   negptr(cnt2);
6793 
6794   // Compare the rest of the elements
6795   bind(WHILE_HEAD_LABEL);
6796   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6797   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6798   subl(result, cnt1);
6799   jccb(Assembler::notZero, POP_LABEL);
6800   increment(cnt2);
6801   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6802 
6803   // Strings are equal up to min length.  Return the length difference.
6804   bind(LENGTH_DIFF_LABEL);
6805   pop(result);
6806   jmpb(DONE_LABEL);
6807 
6808   // Discard the stored length difference
6809   bind(POP_LABEL);
6810   pop(cnt1);
6811 
6812   // That's it
6813   bind(DONE_LABEL);
6814 }
6815 
6816 // Compare char[] arrays aligned to 4 bytes or substrings.
6817 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6818                                         Register limit, Register result, Register chr,
6819                                         XMMRegister vec1, XMMRegister vec2) {
6820   ShortBranchVerifier sbv(this);
6821   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6822 
6823   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6824   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6825 
6826   // Check the input args
6827   cmpptr(ary1, ary2);
6828   jcc(Assembler::equal, TRUE_LABEL);
6829 
6830   if (is_array_equ) {
6831     // Need additional checks for arrays_equals.
6832     testptr(ary1, ary1);
6833     jcc(Assembler::zero, FALSE_LABEL);
6834     testptr(ary2, ary2);
6835     jcc(Assembler::zero, FALSE_LABEL);
6836 
6837     // Check the lengths
6838     movl(limit, Address(ary1, length_offset));
6839     cmpl(limit, Address(ary2, length_offset));
6840     jcc(Assembler::notEqual, FALSE_LABEL);
6841   }
6842 
6843   // count == 0
6844   testl(limit, limit);
6845   jcc(Assembler::zero, TRUE_LABEL);
6846 
6847   if (is_array_equ) {
6848     // Load array address
6849     lea(ary1, Address(ary1, base_offset));
6850     lea(ary2, Address(ary2, base_offset));
6851   }
6852 
6853   shll(limit, 1);      // byte count != 0
6854   movl(result, limit); // copy
6855 
6856   if (UseAVX >= 2) {
6857     // With AVX2, use 32-byte vector compare
6858     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6859 
6860     // Compare 32-byte vectors
6861     andl(result, 0x0000001e);  //   tail count (in bytes)
6862     andl(limit, 0xffffffe0);   // vector count (in bytes)
6863     jccb(Assembler::zero, COMPARE_TAIL);
6864 
6865     lea(ary1, Address(ary1, limit, Address::times_1));
6866     lea(ary2, Address(ary2, limit, Address::times_1));
6867     negptr(limit);
6868 
6869     bind(COMPARE_WIDE_VECTORS);
6870     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6871     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6872     vpxor(vec1, vec2);
6873 
6874     vptest(vec1, vec1);
6875     jccb(Assembler::notZero, FALSE_LABEL);
6876     addptr(limit, 32);
6877     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6878 
6879     testl(result, result);
6880     jccb(Assembler::zero, TRUE_LABEL);
6881 
6882     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6883     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6884     vpxor(vec1, vec2);
6885 
6886     vptest(vec1, vec1);
6887     jccb(Assembler::notZero, FALSE_LABEL);
6888     jmpb(TRUE_LABEL);
6889 
6890     bind(COMPARE_TAIL); // limit is zero
6891     movl(limit, result);
6892     // Fallthru to tail compare
6893   } else if (UseSSE42Intrinsics) {
6894     // With SSE4.2, use double quad vector compare
6895     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6896 
6897     // Compare 16-byte vectors
6898     andl(result, 0x0000000e);  //   tail count (in bytes)
6899     andl(limit, 0xfffffff0);   // vector count (in bytes)
6900     jccb(Assembler::zero, COMPARE_TAIL);
6901 
6902     lea(ary1, Address(ary1, limit, Address::times_1));
6903     lea(ary2, Address(ary2, limit, Address::times_1));
6904     negptr(limit);
6905 
6906     bind(COMPARE_WIDE_VECTORS);
6907     movdqu(vec1, Address(ary1, limit, Address::times_1));
6908     movdqu(vec2, Address(ary2, limit, Address::times_1));
6909     pxor(vec1, vec2);
6910 
6911     ptest(vec1, vec1);
6912     jccb(Assembler::notZero, FALSE_LABEL);
6913     addptr(limit, 16);
6914     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6915 
6916     testl(result, result);
6917     jccb(Assembler::zero, TRUE_LABEL);
6918 
6919     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6920     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
6921     pxor(vec1, vec2);
6922 
6923     ptest(vec1, vec1);
6924     jccb(Assembler::notZero, FALSE_LABEL);
6925     jmpb(TRUE_LABEL);
6926 
6927     bind(COMPARE_TAIL); // limit is zero
6928     movl(limit, result);
6929     // Fallthru to tail compare
6930   }
6931 
6932   // Compare 4-byte vectors
6933   andl(limit, 0xfffffffc); // vector count (in bytes)
6934   jccb(Assembler::zero, COMPARE_CHAR);
6935 
6936   lea(ary1, Address(ary1, limit, Address::times_1));
6937   lea(ary2, Address(ary2, limit, Address::times_1));
6938   negptr(limit);
6939 
6940   bind(COMPARE_VECTORS);
6941   movl(chr, Address(ary1, limit, Address::times_1));
6942   cmpl(chr, Address(ary2, limit, Address::times_1));
6943   jccb(Assembler::notEqual, FALSE_LABEL);
6944   addptr(limit, 4);
6945   jcc(Assembler::notZero, COMPARE_VECTORS);
6946 
6947   // Compare trailing char (final 2 bytes), if any
6948   bind(COMPARE_CHAR);
6949   testl(result, 0x2);   // tail  char
6950   jccb(Assembler::zero, TRUE_LABEL);
6951   load_unsigned_short(chr, Address(ary1, 0));
6952   load_unsigned_short(limit, Address(ary2, 0));
6953   cmpl(chr, limit);
6954   jccb(Assembler::notEqual, FALSE_LABEL);
6955 
6956   bind(TRUE_LABEL);
6957   movl(result, 1);   // return true
6958   jmpb(DONE);
6959 
6960   bind(FALSE_LABEL);
6961   xorl(result, result); // return false
6962 
6963   // That's it
6964   bind(DONE);
6965   if (UseAVX >= 2) {
6966     // clean upper bits of YMM registers
6967     vpxor(vec1, vec1);
6968     vpxor(vec2, vec2);
6969   }
6970 }
6971 
6972 void MacroAssembler::generate_fill(BasicType t, bool aligned,
6973                                    Register to, Register value, Register count,
6974                                    Register rtmp, XMMRegister xtmp) {
6975   ShortBranchVerifier sbv(this);
6976   assert_different_registers(to, value, count, rtmp);
6977   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
6978   Label L_fill_2_bytes, L_fill_4_bytes;
6979 
6980   int shift = -1;
6981   switch (t) {
6982     case T_BYTE:
6983       shift = 2;
6984       break;
6985     case T_SHORT:
6986       shift = 1;
6987       break;
6988     case T_INT:
6989       shift = 0;
6990       break;
6991     default: ShouldNotReachHere();
6992   }
6993 
6994   if (t == T_BYTE) {
6995     andl(value, 0xff);
6996     movl(rtmp, value);
6997     shll(rtmp, 8);
6998     orl(value, rtmp);
6999   }
7000   if (t == T_SHORT) {
7001     andl(value, 0xffff);
7002   }
7003   if (t == T_BYTE || t == T_SHORT) {
7004     movl(rtmp, value);
7005     shll(rtmp, 16);
7006     orl(value, rtmp);
7007   }
7008 
7009   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7010   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7011   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7012     // align source address at 4 bytes address boundary
7013     if (t == T_BYTE) {
7014       // One byte misalignment happens only for byte arrays
7015       testptr(to, 1);
7016       jccb(Assembler::zero, L_skip_align1);
7017       movb(Address(to, 0), value);
7018       increment(to);
7019       decrement(count);
7020       BIND(L_skip_align1);
7021     }
7022     // Two bytes misalignment happens only for byte and short (char) arrays
7023     testptr(to, 2);
7024     jccb(Assembler::zero, L_skip_align2);
7025     movw(Address(to, 0), value);
7026     addptr(to, 2);
7027     subl(count, 1<<(shift-1));
7028     BIND(L_skip_align2);
7029   }
7030   if (UseSSE < 2) {
7031     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7032     // Fill 32-byte chunks
7033     subl(count, 8 << shift);
7034     jcc(Assembler::less, L_check_fill_8_bytes);
7035     align(16);
7036 
7037     BIND(L_fill_32_bytes_loop);
7038 
7039     for (int i = 0; i < 32; i += 4) {
7040       movl(Address(to, i), value);
7041     }
7042 
7043     addptr(to, 32);
7044     subl(count, 8 << shift);
7045     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7046     BIND(L_check_fill_8_bytes);
7047     addl(count, 8 << shift);
7048     jccb(Assembler::zero, L_exit);
7049     jmpb(L_fill_8_bytes);
7050 
7051     //
7052     // length is too short, just fill qwords
7053     //
7054     BIND(L_fill_8_bytes_loop);
7055     movl(Address(to, 0), value);
7056     movl(Address(to, 4), value);
7057     addptr(to, 8);
7058     BIND(L_fill_8_bytes);
7059     subl(count, 1 << (shift + 1));
7060     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7061     // fall through to fill 4 bytes
7062   } else {
7063     Label L_fill_32_bytes;
7064     if (!UseUnalignedLoadStores) {
7065       // align to 8 bytes, we know we are 4 byte aligned to start
7066       testptr(to, 4);
7067       jccb(Assembler::zero, L_fill_32_bytes);
7068       movl(Address(to, 0), value);
7069       addptr(to, 4);
7070       subl(count, 1<<shift);
7071     }
7072     BIND(L_fill_32_bytes);
7073     {
7074       assert( UseSSE >= 2, "supported cpu only" );
7075       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7076       movdl(xtmp, value);
7077       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7078         // Fill 64-byte chunks
7079         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7080         vpbroadcastd(xtmp, xtmp);
7081 
7082         subl(count, 16 << shift);
7083         jcc(Assembler::less, L_check_fill_32_bytes);
7084         align(16);
7085 
7086         BIND(L_fill_64_bytes_loop);
7087         vmovdqu(Address(to, 0), xtmp);
7088         vmovdqu(Address(to, 32), xtmp);
7089         addptr(to, 64);
7090         subl(count, 16 << shift);
7091         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7092 
7093         BIND(L_check_fill_32_bytes);
7094         addl(count, 8 << shift);
7095         jccb(Assembler::less, L_check_fill_8_bytes);
7096         vmovdqu(Address(to, 0), xtmp);
7097         addptr(to, 32);
7098         subl(count, 8 << shift);
7099 
7100         BIND(L_check_fill_8_bytes);
7101         // clean upper bits of YMM registers
7102         movdl(xtmp, value);
7103         pshufd(xtmp, xtmp, 0);
7104       } else {
7105         // Fill 32-byte chunks
7106         pshufd(xtmp, xtmp, 0);
7107 
7108         subl(count, 8 << shift);
7109         jcc(Assembler::less, L_check_fill_8_bytes);
7110         align(16);
7111 
7112         BIND(L_fill_32_bytes_loop);
7113 
7114         if (UseUnalignedLoadStores) {
7115           movdqu(Address(to, 0), xtmp);
7116           movdqu(Address(to, 16), xtmp);
7117         } else {
7118           movq(Address(to, 0), xtmp);
7119           movq(Address(to, 8), xtmp);
7120           movq(Address(to, 16), xtmp);
7121           movq(Address(to, 24), xtmp);
7122         }
7123 
7124         addptr(to, 32);
7125         subl(count, 8 << shift);
7126         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7127 
7128         BIND(L_check_fill_8_bytes);
7129       }
7130       addl(count, 8 << shift);
7131       jccb(Assembler::zero, L_exit);
7132       jmpb(L_fill_8_bytes);
7133 
7134       //
7135       // length is too short, just fill qwords
7136       //
7137       BIND(L_fill_8_bytes_loop);
7138       movq(Address(to, 0), xtmp);
7139       addptr(to, 8);
7140       BIND(L_fill_8_bytes);
7141       subl(count, 1 << (shift + 1));
7142       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7143     }
7144   }
7145   // fill trailing 4 bytes
7146   BIND(L_fill_4_bytes);
7147   testl(count, 1<<shift);
7148   jccb(Assembler::zero, L_fill_2_bytes);
7149   movl(Address(to, 0), value);
7150   if (t == T_BYTE || t == T_SHORT) {
7151     addptr(to, 4);
7152     BIND(L_fill_2_bytes);
7153     // fill trailing 2 bytes
7154     testl(count, 1<<(shift-1));
7155     jccb(Assembler::zero, L_fill_byte);
7156     movw(Address(to, 0), value);
7157     if (t == T_BYTE) {
7158       addptr(to, 2);
7159       BIND(L_fill_byte);
7160       // fill trailing byte
7161       testl(count, 1);
7162       jccb(Assembler::zero, L_exit);
7163       movb(Address(to, 0), value);
7164     } else {
7165       BIND(L_fill_byte);
7166     }
7167   } else {
7168     BIND(L_fill_2_bytes);
7169   }
7170   BIND(L_exit);
7171 }
7172 
7173 // encode char[] to byte[] in ISO_8859_1
7174 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7175                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7176                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7177                                       Register tmp5, Register result) {
7178   // rsi: src
7179   // rdi: dst
7180   // rdx: len
7181   // rcx: tmp5
7182   // rax: result
7183   ShortBranchVerifier sbv(this);
7184   assert_different_registers(src, dst, len, tmp5, result);
7185   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7186 
7187   // set result
7188   xorl(result, result);
7189   // check for zero length
7190   testl(len, len);
7191   jcc(Assembler::zero, L_done);
7192   movl(result, len);
7193 
7194   // Setup pointers
7195   lea(src, Address(src, len, Address::times_2)); // char[]
7196   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7197   negptr(len);
7198 
7199   if (UseSSE42Intrinsics || UseAVX >= 2) {
7200     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7201     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7202 
7203     if (UseAVX >= 2) {
7204       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7205       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7206       movdl(tmp1Reg, tmp5);
7207       vpbroadcastd(tmp1Reg, tmp1Reg);
7208       jmpb(L_chars_32_check);
7209 
7210       bind(L_copy_32_chars);
7211       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7212       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7213       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7214       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7215       jccb(Assembler::notZero, L_copy_32_chars_exit);
7216       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7217       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
7218       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7219 
7220       bind(L_chars_32_check);
7221       addptr(len, 32);
7222       jccb(Assembler::lessEqual, L_copy_32_chars);
7223 
7224       bind(L_copy_32_chars_exit);
7225       subptr(len, 16);
7226       jccb(Assembler::greater, L_copy_16_chars_exit);
7227 
7228     } else if (UseSSE42Intrinsics) {
7229       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7230       movdl(tmp1Reg, tmp5);
7231       pshufd(tmp1Reg, tmp1Reg, 0);
7232       jmpb(L_chars_16_check);
7233     }
7234 
7235     bind(L_copy_16_chars);
7236     if (UseAVX >= 2) {
7237       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7238       vptest(tmp2Reg, tmp1Reg);
7239       jccb(Assembler::notZero, L_copy_16_chars_exit);
7240       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
7241       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
7242     } else {
7243       if (UseAVX > 0) {
7244         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7245         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7246         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
7247       } else {
7248         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7249         por(tmp2Reg, tmp3Reg);
7250         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7251         por(tmp2Reg, tmp4Reg);
7252       }
7253       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7254       jccb(Assembler::notZero, L_copy_16_chars_exit);
7255       packuswb(tmp3Reg, tmp4Reg);
7256     }
7257     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7258 
7259     bind(L_chars_16_check);
7260     addptr(len, 16);
7261     jccb(Assembler::lessEqual, L_copy_16_chars);
7262 
7263     bind(L_copy_16_chars_exit);
7264     if (UseAVX >= 2) {
7265       // clean upper bits of YMM registers
7266       vpxor(tmp2Reg, tmp2Reg);
7267       vpxor(tmp3Reg, tmp3Reg);
7268       vpxor(tmp4Reg, tmp4Reg);
7269       movdl(tmp1Reg, tmp5);
7270       pshufd(tmp1Reg, tmp1Reg, 0);
7271     }
7272     subptr(len, 8);
7273     jccb(Assembler::greater, L_copy_8_chars_exit);
7274 
7275     bind(L_copy_8_chars);
7276     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7277     ptest(tmp3Reg, tmp1Reg);
7278     jccb(Assembler::notZero, L_copy_8_chars_exit);
7279     packuswb(tmp3Reg, tmp1Reg);
7280     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7281     addptr(len, 8);
7282     jccb(Assembler::lessEqual, L_copy_8_chars);
7283 
7284     bind(L_copy_8_chars_exit);
7285     subptr(len, 8);
7286     jccb(Assembler::zero, L_done);
7287   }
7288 
7289   bind(L_copy_1_char);
7290   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7291   testl(tmp5, 0xff00);      // check if Unicode char
7292   jccb(Assembler::notZero, L_copy_1_char_exit);
7293   movb(Address(dst, len, Address::times_1, 0), tmp5);
7294   addptr(len, 1);
7295   jccb(Assembler::less, L_copy_1_char);
7296 
7297   bind(L_copy_1_char_exit);
7298   addptr(result, len); // len is negative count of not processed elements
7299   bind(L_done);
7300 }
7301 
7302 #ifdef _LP64
7303 /**
7304  * Helper for multiply_to_len().
7305  */
7306 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7307   addq(dest_lo, src1);
7308   adcq(dest_hi, 0);
7309   addq(dest_lo, src2);
7310   adcq(dest_hi, 0);
7311 }
7312 
7313 /**
7314  * Multiply 64 bit by 64 bit first loop.
7315  */
7316 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7317                                            Register y, Register y_idx, Register z,
7318                                            Register carry, Register product,
7319                                            Register idx, Register kdx) {
7320   //
7321   //  jlong carry, x[], y[], z[];
7322   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7323   //    huge_128 product = y[idx] * x[xstart] + carry;
7324   //    z[kdx] = (jlong)product;
7325   //    carry  = (jlong)(product >>> 64);
7326   //  }
7327   //  z[xstart] = carry;
7328   //
7329 
7330   Label L_first_loop, L_first_loop_exit;
7331   Label L_one_x, L_one_y, L_multiply;
7332 
7333   decrementl(xstart);
7334   jcc(Assembler::negative, L_one_x);
7335 
7336   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7337   rorq(x_xstart, 32); // convert big-endian to little-endian
7338 
7339   bind(L_first_loop);
7340   decrementl(idx);
7341   jcc(Assembler::negative, L_first_loop_exit);
7342   decrementl(idx);
7343   jcc(Assembler::negative, L_one_y);
7344   movq(y_idx, Address(y, idx, Address::times_4,  0));
7345   rorq(y_idx, 32); // convert big-endian to little-endian
7346   bind(L_multiply);
7347   movq(product, x_xstart);
7348   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7349   addq(product, carry);
7350   adcq(rdx, 0);
7351   subl(kdx, 2);
7352   movl(Address(z, kdx, Address::times_4,  4), product);
7353   shrq(product, 32);
7354   movl(Address(z, kdx, Address::times_4,  0), product);
7355   movq(carry, rdx);
7356   jmp(L_first_loop);
7357 
7358   bind(L_one_y);
7359   movl(y_idx, Address(y,  0));
7360   jmp(L_multiply);
7361 
7362   bind(L_one_x);
7363   movl(x_xstart, Address(x,  0));
7364   jmp(L_first_loop);
7365 
7366   bind(L_first_loop_exit);
7367 }
7368 
7369 /**
7370  * Multiply 64 bit by 64 bit and add 128 bit.
7371  */
7372 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7373                                             Register yz_idx, Register idx,
7374                                             Register carry, Register product, int offset) {
7375   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7376   //     z[kdx] = (jlong)product;
7377 
7378   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7379   rorq(yz_idx, 32); // convert big-endian to little-endian
7380   movq(product, x_xstart);
7381   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7382   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7383   rorq(yz_idx, 32); // convert big-endian to little-endian
7384 
7385   add2_with_carry(rdx, product, carry, yz_idx);
7386 
7387   movl(Address(z, idx, Address::times_4,  offset+4), product);
7388   shrq(product, 32);
7389   movl(Address(z, idx, Address::times_4,  offset), product);
7390 
7391 }
7392 
7393 /**
7394  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7395  */
7396 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7397                                              Register yz_idx, Register idx, Register jdx,
7398                                              Register carry, Register product,
7399                                              Register carry2) {
7400   //   jlong carry, x[], y[], z[];
7401   //   int kdx = ystart+1;
7402   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7403   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7404   //     z[kdx+idx+1] = (jlong)product;
7405   //     jlong carry2  = (jlong)(product >>> 64);
7406   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7407   //     z[kdx+idx] = (jlong)product;
7408   //     carry  = (jlong)(product >>> 64);
7409   //   }
7410   //   idx += 2;
7411   //   if (idx > 0) {
7412   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7413   //     z[kdx+idx] = (jlong)product;
7414   //     carry  = (jlong)(product >>> 64);
7415   //   }
7416   //
7417 
7418   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7419 
7420   movl(jdx, idx);
7421   andl(jdx, 0xFFFFFFFC);
7422   shrl(jdx, 2);
7423 
7424   bind(L_third_loop);
7425   subl(jdx, 1);
7426   jcc(Assembler::negative, L_third_loop_exit);
7427   subl(idx, 4);
7428 
7429   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7430   movq(carry2, rdx);
7431 
7432   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7433   movq(carry, rdx);
7434   jmp(L_third_loop);
7435 
7436   bind (L_third_loop_exit);
7437 
7438   andl (idx, 0x3);
7439   jcc(Assembler::zero, L_post_third_loop_done);
7440 
7441   Label L_check_1;
7442   subl(idx, 2);
7443   jcc(Assembler::negative, L_check_1);
7444 
7445   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7446   movq(carry, rdx);
7447 
7448   bind (L_check_1);
7449   addl (idx, 0x2);
7450   andl (idx, 0x1);
7451   subl(idx, 1);
7452   jcc(Assembler::negative, L_post_third_loop_done);
7453 
7454   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7455   movq(product, x_xstart);
7456   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7457   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7458 
7459   add2_with_carry(rdx, product, yz_idx, carry);
7460 
7461   movl(Address(z, idx, Address::times_4,  0), product);
7462   shrq(product, 32);
7463 
7464   shlq(rdx, 32);
7465   orq(product, rdx);
7466   movq(carry, product);
7467 
7468   bind(L_post_third_loop_done);
7469 }
7470 
7471 /**
7472  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7473  *
7474  */
7475 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7476                                                   Register carry, Register carry2,
7477                                                   Register idx, Register jdx,
7478                                                   Register yz_idx1, Register yz_idx2,
7479                                                   Register tmp, Register tmp3, Register tmp4) {
7480   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7481 
7482   //   jlong carry, x[], y[], z[];
7483   //   int kdx = ystart+1;
7484   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7485   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7486   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7487   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7488   //     carry  = (jlong)(tmp4 >>> 64);
7489   //     z[kdx+idx+1] = (jlong)tmp3;
7490   //     z[kdx+idx] = (jlong)tmp4;
7491   //   }
7492   //   idx += 2;
7493   //   if (idx > 0) {
7494   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7495   //     z[kdx+idx] = (jlong)yz_idx1;
7496   //     carry  = (jlong)(yz_idx1 >>> 64);
7497   //   }
7498   //
7499 
7500   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7501 
7502   movl(jdx, idx);
7503   andl(jdx, 0xFFFFFFFC);
7504   shrl(jdx, 2);
7505 
7506   bind(L_third_loop);
7507   subl(jdx, 1);
7508   jcc(Assembler::negative, L_third_loop_exit);
7509   subl(idx, 4);
7510 
7511   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7512   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7513   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7514   rorxq(yz_idx2, yz_idx2, 32);
7515 
7516   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7517   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7518 
7519   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7520   rorxq(yz_idx1, yz_idx1, 32);
7521   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7522   rorxq(yz_idx2, yz_idx2, 32);
7523 
7524   if (VM_Version::supports_adx()) {
7525     adcxq(tmp3, carry);
7526     adoxq(tmp3, yz_idx1);
7527 
7528     adcxq(tmp4, tmp);
7529     adoxq(tmp4, yz_idx2);
7530 
7531     movl(carry, 0); // does not affect flags
7532     adcxq(carry2, carry);
7533     adoxq(carry2, carry);
7534   } else {
7535     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7536     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7537   }
7538   movq(carry, carry2);
7539 
7540   movl(Address(z, idx, Address::times_4, 12), tmp3);
7541   shrq(tmp3, 32);
7542   movl(Address(z, idx, Address::times_4,  8), tmp3);
7543 
7544   movl(Address(z, idx, Address::times_4,  4), tmp4);
7545   shrq(tmp4, 32);
7546   movl(Address(z, idx, Address::times_4,  0), tmp4);
7547 
7548   jmp(L_third_loop);
7549 
7550   bind (L_third_loop_exit);
7551 
7552   andl (idx, 0x3);
7553   jcc(Assembler::zero, L_post_third_loop_done);
7554 
7555   Label L_check_1;
7556   subl(idx, 2);
7557   jcc(Assembler::negative, L_check_1);
7558 
7559   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7560   rorxq(yz_idx1, yz_idx1, 32);
7561   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7562   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7563   rorxq(yz_idx2, yz_idx2, 32);
7564 
7565   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7566 
7567   movl(Address(z, idx, Address::times_4,  4), tmp3);
7568   shrq(tmp3, 32);
7569   movl(Address(z, idx, Address::times_4,  0), tmp3);
7570   movq(carry, tmp4);
7571 
7572   bind (L_check_1);
7573   addl (idx, 0x2);
7574   andl (idx, 0x1);
7575   subl(idx, 1);
7576   jcc(Assembler::negative, L_post_third_loop_done);
7577   movl(tmp4, Address(y, idx, Address::times_4,  0));
7578   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7579   movl(tmp4, Address(z, idx, Address::times_4,  0));
7580 
7581   add2_with_carry(carry2, tmp3, tmp4, carry);
7582 
7583   movl(Address(z, idx, Address::times_4,  0), tmp3);
7584   shrq(tmp3, 32);
7585 
7586   shlq(carry2, 32);
7587   orq(tmp3, carry2);
7588   movq(carry, tmp3);
7589 
7590   bind(L_post_third_loop_done);
7591 }
7592 
7593 /**
7594  * Code for BigInteger::multiplyToLen() instrinsic.
7595  *
7596  * rdi: x
7597  * rax: xlen
7598  * rsi: y
7599  * rcx: ylen
7600  * r8:  z
7601  * r11: zlen
7602  * r12: tmp1
7603  * r13: tmp2
7604  * r14: tmp3
7605  * r15: tmp4
7606  * rbx: tmp5
7607  *
7608  */
7609 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7610                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7611   ShortBranchVerifier sbv(this);
7612   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7613 
7614   push(tmp1);
7615   push(tmp2);
7616   push(tmp3);
7617   push(tmp4);
7618   push(tmp5);
7619 
7620   push(xlen);
7621   push(zlen);
7622 
7623   const Register idx = tmp1;
7624   const Register kdx = tmp2;
7625   const Register xstart = tmp3;
7626 
7627   const Register y_idx = tmp4;
7628   const Register carry = tmp5;
7629   const Register product  = xlen;
7630   const Register x_xstart = zlen;  // reuse register
7631 
7632   // First Loop.
7633   //
7634   //  final static long LONG_MASK = 0xffffffffL;
7635   //  int xstart = xlen - 1;
7636   //  int ystart = ylen - 1;
7637   //  long carry = 0;
7638   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7639   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7640   //    z[kdx] = (int)product;
7641   //    carry = product >>> 32;
7642   //  }
7643   //  z[xstart] = (int)carry;
7644   //
7645 
7646   movl(idx, ylen);      // idx = ylen;
7647   movl(kdx, zlen);      // kdx = xlen+ylen;
7648   xorq(carry, carry);   // carry = 0;
7649 
7650   Label L_done;
7651 
7652   movl(xstart, xlen);
7653   decrementl(xstart);
7654   jcc(Assembler::negative, L_done);
7655 
7656   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7657 
7658   Label L_second_loop;
7659   testl(kdx, kdx);
7660   jcc(Assembler::zero, L_second_loop);
7661 
7662   Label L_carry;
7663   subl(kdx, 1);
7664   jcc(Assembler::zero, L_carry);
7665 
7666   movl(Address(z, kdx, Address::times_4,  0), carry);
7667   shrq(carry, 32);
7668   subl(kdx, 1);
7669 
7670   bind(L_carry);
7671   movl(Address(z, kdx, Address::times_4,  0), carry);
7672 
7673   // Second and third (nested) loops.
7674   //
7675   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7676   //   carry = 0;
7677   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7678   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7679   //                    (z[k] & LONG_MASK) + carry;
7680   //     z[k] = (int)product;
7681   //     carry = product >>> 32;
7682   //   }
7683   //   z[i] = (int)carry;
7684   // }
7685   //
7686   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7687 
7688   const Register jdx = tmp1;
7689 
7690   bind(L_second_loop);
7691   xorl(carry, carry);    // carry = 0;
7692   movl(jdx, ylen);       // j = ystart+1
7693 
7694   subl(xstart, 1);       // i = xstart-1;
7695   jcc(Assembler::negative, L_done);
7696 
7697   push (z);
7698 
7699   Label L_last_x;
7700   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7701   subl(xstart, 1);       // i = xstart-1;
7702   jcc(Assembler::negative, L_last_x);
7703 
7704   if (UseBMI2Instructions) {
7705     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7706     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7707   } else {
7708     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7709     rorq(x_xstart, 32);  // convert big-endian to little-endian
7710   }
7711 
7712   Label L_third_loop_prologue;
7713   bind(L_third_loop_prologue);
7714 
7715   push (x);
7716   push (xstart);
7717   push (ylen);
7718 
7719 
7720   if (UseBMI2Instructions) {
7721     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7722   } else { // !UseBMI2Instructions
7723     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7724   }
7725 
7726   pop(ylen);
7727   pop(xlen);
7728   pop(x);
7729   pop(z);
7730 
7731   movl(tmp3, xlen);
7732   addl(tmp3, 1);
7733   movl(Address(z, tmp3, Address::times_4,  0), carry);
7734   subl(tmp3, 1);
7735   jccb(Assembler::negative, L_done);
7736 
7737   shrq(carry, 32);
7738   movl(Address(z, tmp3, Address::times_4,  0), carry);
7739   jmp(L_second_loop);
7740 
7741   // Next infrequent code is moved outside loops.
7742   bind(L_last_x);
7743   if (UseBMI2Instructions) {
7744     movl(rdx, Address(x,  0));
7745   } else {
7746     movl(x_xstart, Address(x,  0));
7747   }
7748   jmp(L_third_loop_prologue);
7749 
7750   bind(L_done);
7751 
7752   pop(zlen);
7753   pop(xlen);
7754 
7755   pop(tmp5);
7756   pop(tmp4);
7757   pop(tmp3);
7758   pop(tmp2);
7759   pop(tmp1);
7760 }
7761 #endif
7762 
7763 /**
7764  * Emits code to update CRC-32 with a byte value according to constants in table
7765  *
7766  * @param [in,out]crc   Register containing the crc.
7767  * @param [in]val       Register containing the byte to fold into the CRC.
7768  * @param [in]table     Register containing the table of crc constants.
7769  *
7770  * uint32_t crc;
7771  * val = crc_table[(val ^ crc) & 0xFF];
7772  * crc = val ^ (crc >> 8);
7773  *
7774  */
7775 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
7776   xorl(val, crc);
7777   andl(val, 0xFF);
7778   shrl(crc, 8); // unsigned shift
7779   xorl(crc, Address(table, val, Address::times_4, 0));
7780 }
7781 
7782 /**
7783  * Fold 128-bit data chunk
7784  */
7785 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
7786   if (UseAVX > 0) {
7787     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
7788     vpclmulldq(xcrc, xK, xcrc); // [63:0]
7789     vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
7790     pxor(xcrc, xtmp);
7791   } else {
7792     movdqa(xtmp, xcrc);
7793     pclmulhdq(xtmp, xK);   // [123:64]
7794     pclmulldq(xcrc, xK);   // [63:0]
7795     pxor(xcrc, xtmp);
7796     movdqu(xtmp, Address(buf, offset));
7797     pxor(xcrc, xtmp);
7798   }
7799 }
7800 
7801 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
7802   if (UseAVX > 0) {
7803     vpclmulhdq(xtmp, xK, xcrc);
7804     vpclmulldq(xcrc, xK, xcrc);
7805     pxor(xcrc, xbuf);
7806     pxor(xcrc, xtmp);
7807   } else {
7808     movdqa(xtmp, xcrc);
7809     pclmulhdq(xtmp, xK);
7810     pclmulldq(xcrc, xK);
7811     pxor(xcrc, xbuf);
7812     pxor(xcrc, xtmp);
7813   }
7814 }
7815 
7816 /**
7817  * 8-bit folds to compute 32-bit CRC
7818  *
7819  * uint64_t xcrc;
7820  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
7821  */
7822 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
7823   movdl(tmp, xcrc);
7824   andl(tmp, 0xFF);
7825   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
7826   psrldq(xcrc, 1); // unsigned shift one byte
7827   pxor(xcrc, xtmp);
7828 }
7829 
7830 /**
7831  * uint32_t crc;
7832  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
7833  */
7834 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
7835   movl(tmp, crc);
7836   andl(tmp, 0xFF);
7837   shrl(crc, 8);
7838   xorl(crc, Address(table, tmp, Address::times_4, 0));
7839 }
7840 
7841 /**
7842  * @param crc   register containing existing CRC (32-bit)
7843  * @param buf   register pointing to input byte buffer (byte*)
7844  * @param len   register containing number of bytes
7845  * @param table register that will contain address of CRC table
7846  * @param tmp   scratch register
7847  */
7848 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
7849   assert_different_registers(crc, buf, len, table, tmp, rax);
7850 
7851   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
7852   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
7853 
7854   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
7855   notl(crc); // ~crc
7856   cmpl(len, 16);
7857   jcc(Assembler::less, L_tail);
7858 
7859   // Align buffer to 16 bytes
7860   movl(tmp, buf);
7861   andl(tmp, 0xF);
7862   jccb(Assembler::zero, L_aligned);
7863   subl(tmp,  16);
7864   addl(len, tmp);
7865 
7866   align(4);
7867   BIND(L_align_loop);
7868   movsbl(rax, Address(buf, 0)); // load byte with sign extension
7869   update_byte_crc32(crc, rax, table);
7870   increment(buf);
7871   incrementl(tmp);
7872   jccb(Assembler::less, L_align_loop);
7873 
7874   BIND(L_aligned);
7875   movl(tmp, len); // save
7876   shrl(len, 4);
7877   jcc(Assembler::zero, L_tail_restore);
7878 
7879   // Fold crc into first bytes of vector
7880   movdqa(xmm1, Address(buf, 0));
7881   movdl(rax, xmm1);
7882   xorl(crc, rax);
7883   pinsrd(xmm1, crc, 0);
7884   addptr(buf, 16);
7885   subl(len, 4); // len > 0
7886   jcc(Assembler::less, L_fold_tail);
7887 
7888   movdqa(xmm2, Address(buf,  0));
7889   movdqa(xmm3, Address(buf, 16));
7890   movdqa(xmm4, Address(buf, 32));
7891   addptr(buf, 48);
7892   subl(len, 3);
7893   jcc(Assembler::lessEqual, L_fold_512b);
7894 
7895   // Fold total 512 bits of polynomial on each iteration,
7896   // 128 bits per each of 4 parallel streams.
7897   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
7898 
7899   align(32);
7900   BIND(L_fold_512b_loop);
7901   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
7902   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
7903   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
7904   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
7905   addptr(buf, 64);
7906   subl(len, 4);
7907   jcc(Assembler::greater, L_fold_512b_loop);
7908 
7909   // Fold 512 bits to 128 bits.
7910   BIND(L_fold_512b);
7911   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
7912   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
7913   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
7914   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
7915 
7916   // Fold the rest of 128 bits data chunks
7917   BIND(L_fold_tail);
7918   addl(len, 3);
7919   jccb(Assembler::lessEqual, L_fold_128b);
7920   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
7921 
7922   BIND(L_fold_tail_loop);
7923   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
7924   addptr(buf, 16);
7925   decrementl(len);
7926   jccb(Assembler::greater, L_fold_tail_loop);
7927 
7928   // Fold 128 bits in xmm1 down into 32 bits in crc register.
7929   BIND(L_fold_128b);
7930   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
7931   if (UseAVX > 0) {
7932     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
7933     vpand(xmm3, xmm0, xmm2, false /* vector256 */);
7934     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
7935   } else {
7936     movdqa(xmm2, xmm0);
7937     pclmulqdq(xmm2, xmm1, 0x1);
7938     movdqa(xmm3, xmm0);
7939     pand(xmm3, xmm2);
7940     pclmulqdq(xmm0, xmm3, 0x1);
7941   }
7942   psrldq(xmm1, 8);
7943   psrldq(xmm2, 4);
7944   pxor(xmm0, xmm1);
7945   pxor(xmm0, xmm2);
7946 
7947   // 8 8-bit folds to compute 32-bit CRC.
7948   for (int j = 0; j < 4; j++) {
7949     fold_8bit_crc32(xmm0, table, xmm1, rax);
7950   }
7951   movdl(crc, xmm0); // mov 32 bits to general register
7952   for (int j = 0; j < 4; j++) {
7953     fold_8bit_crc32(crc, table, rax);
7954   }
7955 
7956   BIND(L_tail_restore);
7957   movl(len, tmp); // restore
7958   BIND(L_tail);
7959   andl(len, 0xf);
7960   jccb(Assembler::zero, L_exit);
7961 
7962   // Fold the rest of bytes
7963   align(4);
7964   BIND(L_tail_loop);
7965   movsbl(rax, Address(buf, 0)); // load byte with sign extension
7966   update_byte_crc32(crc, rax, table);
7967   increment(buf);
7968   decrementl(len);
7969   jccb(Assembler::greater, L_tail_loop);
7970 
7971   BIND(L_exit);
7972   notl(crc); // ~c
7973 }
7974 
7975 #undef BIND
7976 #undef BLOCK_COMMENT
7977 
7978 
7979 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
7980   switch (cond) {
7981     // Note some conditions are synonyms for others
7982     case Assembler::zero:         return Assembler::notZero;
7983     case Assembler::notZero:      return Assembler::zero;
7984     case Assembler::less:         return Assembler::greaterEqual;
7985     case Assembler::lessEqual:    return Assembler::greater;
7986     case Assembler::greater:      return Assembler::lessEqual;
7987     case Assembler::greaterEqual: return Assembler::less;
7988     case Assembler::below:        return Assembler::aboveEqual;
7989     case Assembler::belowEqual:   return Assembler::above;
7990     case Assembler::above:        return Assembler::belowEqual;
7991     case Assembler::aboveEqual:   return Assembler::below;
7992     case Assembler::overflow:     return Assembler::noOverflow;
7993     case Assembler::noOverflow:   return Assembler::overflow;
7994     case Assembler::negative:     return Assembler::positive;
7995     case Assembler::positive:     return Assembler::negative;
7996     case Assembler::parity:       return Assembler::noParity;
7997     case Assembler::noParity:     return Assembler::parity;
7998   }
7999   ShouldNotReachHere(); return Assembler::overflow;
8000 }
8001 
8002 SkipIfEqual::SkipIfEqual(
8003     MacroAssembler* masm, const bool* flag_addr, bool value) {
8004   _masm = masm;
8005   _masm->cmp8(ExternalAddress((address)flag_addr), value);
8006   _masm->jcc(Assembler::equal, _label);
8007 }
8008 
8009 SkipIfEqual::~SkipIfEqual() {
8010   _masm->bind(_label);
8011 }