1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/timer.hpp"
  61 #include "services/attachListener.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "utilities/decoder.hpp"
  65 #include "utilities/defaultStream.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/elfFile.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 // put OS-includes here
  72 # include <sys/types.h>
  73 # include <sys/mman.h>
  74 # include <sys/stat.h>
  75 # include <sys/select.h>
  76 # include <pthread.h>
  77 # include <signal.h>
  78 # include <errno.h>
  79 # include <dlfcn.h>
  80 # include <stdio.h>
  81 # include <unistd.h>
  82 # include <sys/resource.h>
  83 # include <pthread.h>
  84 # include <sys/stat.h>
  85 # include <sys/time.h>
  86 # include <sys/times.h>
  87 # include <sys/utsname.h>
  88 # include <sys/socket.h>
  89 # include <sys/wait.h>
  90 # include <pwd.h>
  91 # include <poll.h>
  92 # include <semaphore.h>
  93 # include <fcntl.h>
  94 # include <string.h>
  95 # include <syscall.h>
  96 # include <sys/sysinfo.h>
  97 # include <gnu/libc-version.h>
  98 # include <sys/ipc.h>
  99 # include <sys/shm.h>
 100 # include <link.h>
 101 # include <stdint.h>
 102 # include <inttypes.h>
 103 # include <sys/ioctl.h>
 104 
 105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 106 
 107 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 108 // getrusage() is prepared to handle the associated failure.
 109 #ifndef RUSAGE_THREAD
 110 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 111 #endif
 112 
 113 #define MAX_PATH    (2 * K)
 114 
 115 #define MAX_SECS 100000000
 116 
 117 // for timer info max values which include all bits
 118 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 119 
 120 #define LARGEPAGES_BIT (1 << 6)
 121 ////////////////////////////////////////////////////////////////////////////////
 122 // global variables
 123 julong os::Linux::_physical_memory = 0;
 124 
 125 address   os::Linux::_initial_thread_stack_bottom = NULL;
 126 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 127 
 128 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 129 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 130 Mutex* os::Linux::_createThread_lock = NULL;
 131 pthread_t os::Linux::_main_thread;
 132 int os::Linux::_page_size = -1;
 133 const int os::Linux::_vm_default_page_size = (8 * K);
 134 bool os::Linux::_is_floating_stack = false;
 135 bool os::Linux::_is_NPTL = false;
 136 bool os::Linux::_supports_fast_thread_cpu_time = false;
 137 const char * os::Linux::_glibc_version = NULL;
 138 const char * os::Linux::_libpthread_version = NULL;
 139 pthread_condattr_t os::Linux::_condattr[1];
 140 
 141 static jlong initial_time_count=0;
 142 
 143 static int clock_tics_per_sec = 100;
 144 
 145 // For diagnostics to print a message once. see run_periodic_checks
 146 static sigset_t check_signal_done;
 147 static bool check_signals = true;
 148 
 149 static pid_t _initial_pid = 0;
 150 
 151 /* Signal number used to suspend/resume a thread */
 152 
 153 /* do not use any signal number less than SIGSEGV, see 4355769 */
 154 static int SR_signum = SIGUSR2;
 155 sigset_t SR_sigset;
 156 
 157 /* Used to protect dlsym() calls */
 158 static pthread_mutex_t dl_mutex;
 159 
 160 // Declarations
 161 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 162 
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 
 167 julong os::available_memory() {
 168   return Linux::available_memory();
 169 }
 170 
 171 julong os::Linux::available_memory() {
 172   // values in struct sysinfo are "unsigned long"
 173   struct sysinfo si;
 174   sysinfo(&si);
 175 
 176   return (julong)si.freeram * si.mem_unit;
 177 }
 178 
 179 julong os::physical_memory() {
 180   return Linux::physical_memory();
 181 }
 182 
 183 ////////////////////////////////////////////////////////////////////////////////
 184 // environment support
 185 
 186 bool os::getenv(const char* name, char* buf, int len) {
 187   const char* val = ::getenv(name);
 188   if (val != NULL && strlen(val) < (size_t)len) {
 189     strcpy(buf, val);
 190     return true;
 191   }
 192   if (len > 0) buf[0] = 0;  // return a null string
 193   return false;
 194 }
 195 
 196 
 197 // Return true if user is running as root.
 198 
 199 bool os::have_special_privileges() {
 200   static bool init = false;
 201   static bool privileges = false;
 202   if (!init) {
 203     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 204     init = true;
 205   }
 206   return privileges;
 207 }
 208 
 209 
 210 #ifndef SYS_gettid
 211 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 212   #ifdef __ia64__
 213     #define SYS_gettid 1105
 214   #else
 215     #ifdef __i386__
 216       #define SYS_gettid 224
 217     #else
 218       #ifdef __amd64__
 219         #define SYS_gettid 186
 220       #else
 221         #ifdef __sparc__
 222           #define SYS_gettid 143
 223         #else
 224           #error define gettid for the arch
 225         #endif
 226       #endif
 227     #endif
 228   #endif
 229 #endif
 230 
 231 // Cpu architecture string
 232 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 233 
 234 // pid_t gettid()
 235 //
 236 // Returns the kernel thread id of the currently running thread. Kernel
 237 // thread id is used to access /proc.
 238 //
 239 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 240 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 241 //
 242 pid_t os::Linux::gettid() {
 243   int rslt = syscall(SYS_gettid);
 244   if (rslt == -1) {
 245      // old kernel, no NPTL support
 246      return getpid();
 247   } else {
 248      return (pid_t)rslt;
 249   }
 250 }
 251 
 252 // Most versions of linux have a bug where the number of processors are
 253 // determined by looking at the /proc file system.  In a chroot environment,
 254 // the system call returns 1.  This causes the VM to act as if it is
 255 // a single processor and elide locking (see is_MP() call).
 256 static bool unsafe_chroot_detected = false;
 257 static const char *unstable_chroot_error = "/proc file system not found.\n"
 258                      "Java may be unstable running multithreaded in a chroot "
 259                      "environment on Linux when /proc filesystem is not mounted.";
 260 
 261 void os::Linux::initialize_system_info() {
 262   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 263   if (processor_count() == 1) {
 264     pid_t pid = os::Linux::gettid();
 265     char fname[32];
 266     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 267     FILE *fp = fopen(fname, "r");
 268     if (fp == NULL) {
 269       unsafe_chroot_detected = true;
 270     } else {
 271       fclose(fp);
 272     }
 273   }
 274   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 275   assert(processor_count() > 0, "linux error");
 276 }
 277 
 278 void os::init_system_properties_values() {
 279   // The next steps are taken in the product version:
 280   //
 281   // Obtain the JAVA_HOME value from the location of libjvm.so.
 282   // This library should be located at:
 283   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 284   //
 285   // If "/jre/lib/" appears at the right place in the path, then we
 286   // assume libjvm.so is installed in a JDK and we use this path.
 287   //
 288   // Otherwise exit with message: "Could not create the Java virtual machine."
 289   //
 290   // The following extra steps are taken in the debugging version:
 291   //
 292   // If "/jre/lib/" does NOT appear at the right place in the path
 293   // instead of exit check for $JAVA_HOME environment variable.
 294   //
 295   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 296   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 297   // it looks like libjvm.so is installed there
 298   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 299   //
 300   // Otherwise exit.
 301   //
 302   // Important note: if the location of libjvm.so changes this
 303   // code needs to be changed accordingly.
 304 
 305 // See ld(1):
 306 //      The linker uses the following search paths to locate required
 307 //      shared libraries:
 308 //        1: ...
 309 //        ...
 310 //        7: The default directories, normally /lib and /usr/lib.
 311 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 312 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 313 #else
 314 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 315 #endif
 316 
 317 // Base path of extensions installed on the system.
 318 #define SYS_EXT_DIR     "/usr/java/packages"
 319 #define EXTENSIONS_DIR  "/lib/ext"
 320 #define ENDORSED_DIR    "/lib/endorsed"
 321 
 322   // Buffer that fits several sprintfs.
 323   // Note that the space for the colon and the trailing null are provided
 324   // by the nulls included by the sizeof operator.
 325   const size_t bufsize =
 326     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 327          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 328          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 329   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 330 
 331   // sysclasspath, java_home, dll_dir
 332   {
 333     char *pslash;
 334     os::jvm_path(buf, bufsize);
 335 
 336     // Found the full path to libjvm.so.
 337     // Now cut the path to <java_home>/jre if we can.
 338     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 339     pslash = strrchr(buf, '/');
 340     if (pslash != NULL) {
 341       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 342     }
 343     Arguments::set_dll_dir(buf);
 344 
 345     if (pslash != NULL) {
 346       pslash = strrchr(buf, '/');
 347       if (pslash != NULL) {
 348         *pslash = '\0';          // Get rid of /<arch>.
 349         pslash = strrchr(buf, '/');
 350         if (pslash != NULL) {
 351           *pslash = '\0';        // Get rid of /lib.
 352         }
 353       }
 354     }
 355     Arguments::set_java_home(buf);
 356     set_boot_path('/', ':');
 357   }
 358 
 359   // Where to look for native libraries.
 360   //
 361   // Note: Due to a legacy implementation, most of the library path
 362   // is set in the launcher. This was to accomodate linking restrictions
 363   // on legacy Linux implementations (which are no longer supported).
 364   // Eventually, all the library path setting will be done here.
 365   //
 366   // However, to prevent the proliferation of improperly built native
 367   // libraries, the new path component /usr/java/packages is added here.
 368   // Eventually, all the library path setting will be done here.
 369   {
 370     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 371     // should always exist (until the legacy problem cited above is
 372     // addressed).
 373     const char *v = ::getenv("LD_LIBRARY_PATH");
 374     const char *v_colon = ":";
 375     if (v == NULL) { v = ""; v_colon = ""; }
 376     // That's +1 for the colon and +1 for the trailing '\0'.
 377     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 378                                                      strlen(v) + 1 +
 379                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 380                                                      mtInternal);
 381     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 382     Arguments::set_library_path(ld_library_path);
 383     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 384   }
 385 
 386   // Extensions directories.
 387   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 388   Arguments::set_ext_dirs(buf);
 389 
 390   // Endorsed standards default directory.
 391   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 392   Arguments::set_endorsed_dirs(buf);
 393 
 394   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 395 
 396 #undef DEFAULT_LIBPATH
 397 #undef SYS_EXT_DIR
 398 #undef EXTENSIONS_DIR
 399 #undef ENDORSED_DIR
 400 }
 401 
 402 ////////////////////////////////////////////////////////////////////////////////
 403 // breakpoint support
 404 
 405 void os::breakpoint() {
 406   BREAKPOINT;
 407 }
 408 
 409 extern "C" void breakpoint() {
 410   // use debugger to set breakpoint here
 411 }
 412 
 413 ////////////////////////////////////////////////////////////////////////////////
 414 // signal support
 415 
 416 debug_only(static bool signal_sets_initialized = false);
 417 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 418 
 419 bool os::Linux::is_sig_ignored(int sig) {
 420       struct sigaction oact;
 421       sigaction(sig, (struct sigaction*)NULL, &oact);
 422       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 423                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 424       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 425            return true;
 426       else
 427            return false;
 428 }
 429 
 430 void os::Linux::signal_sets_init() {
 431   // Should also have an assertion stating we are still single-threaded.
 432   assert(!signal_sets_initialized, "Already initialized");
 433   // Fill in signals that are necessarily unblocked for all threads in
 434   // the VM. Currently, we unblock the following signals:
 435   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 436   //                         by -Xrs (=ReduceSignalUsage));
 437   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 438   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 439   // the dispositions or masks wrt these signals.
 440   // Programs embedding the VM that want to use the above signals for their
 441   // own purposes must, at this time, use the "-Xrs" option to prevent
 442   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 443   // (See bug 4345157, and other related bugs).
 444   // In reality, though, unblocking these signals is really a nop, since
 445   // these signals are not blocked by default.
 446   sigemptyset(&unblocked_sigs);
 447   sigemptyset(&allowdebug_blocked_sigs);
 448   sigaddset(&unblocked_sigs, SIGILL);
 449   sigaddset(&unblocked_sigs, SIGSEGV);
 450   sigaddset(&unblocked_sigs, SIGBUS);
 451   sigaddset(&unblocked_sigs, SIGFPE);
 452 #if defined(PPC64)
 453   sigaddset(&unblocked_sigs, SIGTRAP);
 454 #endif
 455   sigaddset(&unblocked_sigs, SR_signum);
 456 
 457   if (!ReduceSignalUsage) {
 458    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 459       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 460       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 461    }
 462    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 463       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 464       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 465    }
 466    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 469    }
 470   }
 471   // Fill in signals that are blocked by all but the VM thread.
 472   sigemptyset(&vm_sigs);
 473   if (!ReduceSignalUsage)
 474     sigaddset(&vm_sigs, BREAK_SIGNAL);
 475   debug_only(signal_sets_initialized = true);
 476 
 477 }
 478 
 479 // These are signals that are unblocked while a thread is running Java.
 480 // (For some reason, they get blocked by default.)
 481 sigset_t* os::Linux::unblocked_signals() {
 482   assert(signal_sets_initialized, "Not initialized");
 483   return &unblocked_sigs;
 484 }
 485 
 486 // These are the signals that are blocked while a (non-VM) thread is
 487 // running Java. Only the VM thread handles these signals.
 488 sigset_t* os::Linux::vm_signals() {
 489   assert(signal_sets_initialized, "Not initialized");
 490   return &vm_sigs;
 491 }
 492 
 493 // These are signals that are blocked during cond_wait to allow debugger in
 494 sigset_t* os::Linux::allowdebug_blocked_signals() {
 495   assert(signal_sets_initialized, "Not initialized");
 496   return &allowdebug_blocked_sigs;
 497 }
 498 
 499 void os::Linux::hotspot_sigmask(Thread* thread) {
 500 
 501   //Save caller's signal mask before setting VM signal mask
 502   sigset_t caller_sigmask;
 503   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 504 
 505   OSThread* osthread = thread->osthread();
 506   osthread->set_caller_sigmask(caller_sigmask);
 507 
 508   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 509 
 510   if (!ReduceSignalUsage) {
 511     if (thread->is_VM_thread()) {
 512       // Only the VM thread handles BREAK_SIGNAL ...
 513       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 514     } else {
 515       // ... all other threads block BREAK_SIGNAL
 516       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 517     }
 518   }
 519 }
 520 
 521 //////////////////////////////////////////////////////////////////////////////
 522 // detecting pthread library
 523 
 524 void os::Linux::libpthread_init() {
 525   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 526   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 527   // generic name for earlier versions.
 528   // Define macros here so we can build HotSpot on old systems.
 529 # ifndef _CS_GNU_LIBC_VERSION
 530 # define _CS_GNU_LIBC_VERSION 2
 531 # endif
 532 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 533 # define _CS_GNU_LIBPTHREAD_VERSION 3
 534 # endif
 535 
 536   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 537   if (n > 0) {
 538      char *str = (char *)malloc(n, mtInternal);
 539      confstr(_CS_GNU_LIBC_VERSION, str, n);
 540      os::Linux::set_glibc_version(str);
 541   } else {
 542      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 543      static char _gnu_libc_version[32];
 544      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 545               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 546      os::Linux::set_glibc_version(_gnu_libc_version);
 547   }
 548 
 549   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 550   if (n > 0) {
 551      char *str = (char *)malloc(n, mtInternal);
 552      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 553      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 554      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 555      // is the case. LinuxThreads has a hard limit on max number of threads.
 556      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 557      // On the other hand, NPTL does not have such a limit, sysconf()
 558      // will return -1 and errno is not changed. Check if it is really NPTL.
 559      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 560          strstr(str, "NPTL") &&
 561          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 562        free(str);
 563        os::Linux::set_libpthread_version("linuxthreads");
 564      } else {
 565        os::Linux::set_libpthread_version(str);
 566      }
 567   } else {
 568     // glibc before 2.3.2 only has LinuxThreads.
 569     os::Linux::set_libpthread_version("linuxthreads");
 570   }
 571 
 572   if (strstr(libpthread_version(), "NPTL")) {
 573      os::Linux::set_is_NPTL();
 574   } else {
 575      os::Linux::set_is_LinuxThreads();
 576   }
 577 
 578   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 579   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 580   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 581      os::Linux::set_is_floating_stack();
 582   }
 583 }
 584 
 585 /////////////////////////////////////////////////////////////////////////////
 586 // thread stack
 587 
 588 // Force Linux kernel to expand current thread stack. If "bottom" is close
 589 // to the stack guard, caller should block all signals.
 590 //
 591 // MAP_GROWSDOWN:
 592 //   A special mmap() flag that is used to implement thread stacks. It tells
 593 //   kernel that the memory region should extend downwards when needed. This
 594 //   allows early versions of LinuxThreads to only mmap the first few pages
 595 //   when creating a new thread. Linux kernel will automatically expand thread
 596 //   stack as needed (on page faults).
 597 //
 598 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 599 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 600 //   region, it's hard to tell if the fault is due to a legitimate stack
 601 //   access or because of reading/writing non-exist memory (e.g. buffer
 602 //   overrun). As a rule, if the fault happens below current stack pointer,
 603 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 604 //   application (see Linux kernel fault.c).
 605 //
 606 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 607 //   stack overflow detection.
 608 //
 609 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 610 //   not use this flag. However, the stack of initial thread is not created
 611 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 612 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 613 //   and then attach the thread to JVM.
 614 //
 615 // To get around the problem and allow stack banging on Linux, we need to
 616 // manually expand thread stack after receiving the SIGSEGV.
 617 //
 618 // There are two ways to expand thread stack to address "bottom", we used
 619 // both of them in JVM before 1.5:
 620 //   1. adjust stack pointer first so that it is below "bottom", and then
 621 //      touch "bottom"
 622 //   2. mmap() the page in question
 623 //
 624 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 625 // if current sp is already near the lower end of page 101, and we need to
 626 // call mmap() to map page 100, it is possible that part of the mmap() frame
 627 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 628 // That will destroy the mmap() frame and cause VM to crash.
 629 //
 630 // The following code works by adjusting sp first, then accessing the "bottom"
 631 // page to force a page fault. Linux kernel will then automatically expand the
 632 // stack mapping.
 633 //
 634 // _expand_stack_to() assumes its frame size is less than page size, which
 635 // should always be true if the function is not inlined.
 636 
 637 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 638 #define NOINLINE
 639 #else
 640 #define NOINLINE __attribute__ ((noinline))
 641 #endif
 642 
 643 static void _expand_stack_to(address bottom) NOINLINE;
 644 
 645 static void _expand_stack_to(address bottom) {
 646   address sp;
 647   size_t size;
 648   volatile char *p;
 649 
 650   // Adjust bottom to point to the largest address within the same page, it
 651   // gives us a one-page buffer if alloca() allocates slightly more memory.
 652   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 653   bottom += os::Linux::page_size() - 1;
 654 
 655   // sp might be slightly above current stack pointer; if that's the case, we
 656   // will alloca() a little more space than necessary, which is OK. Don't use
 657   // os::current_stack_pointer(), as its result can be slightly below current
 658   // stack pointer, causing us to not alloca enough to reach "bottom".
 659   sp = (address)&sp;
 660 
 661   if (sp > bottom) {
 662     size = sp - bottom;
 663     p = (volatile char *)alloca(size);
 664     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 665     p[0] = '\0';
 666   }
 667 }
 668 
 669 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 670   assert(t!=NULL, "just checking");
 671   assert(t->osthread()->expanding_stack(), "expand should be set");
 672   assert(t->stack_base() != NULL, "stack_base was not initialized");
 673 
 674   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 675     sigset_t mask_all, old_sigset;
 676     sigfillset(&mask_all);
 677     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 678     _expand_stack_to(addr);
 679     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 680     return true;
 681   }
 682   return false;
 683 }
 684 
 685 //////////////////////////////////////////////////////////////////////////////
 686 // create new thread
 687 
 688 static address highest_vm_reserved_address();
 689 
 690 // check if it's safe to start a new thread
 691 static bool _thread_safety_check(Thread* thread) {
 692   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 693     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 694     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 695     //   allocated (MAP_FIXED) from high address space. Every thread stack
 696     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 697     //   it to other values if they rebuild LinuxThreads).
 698     //
 699     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 700     // the memory region has already been mmap'ed. That means if we have too
 701     // many threads and/or very large heap, eventually thread stack will
 702     // collide with heap.
 703     //
 704     // Here we try to prevent heap/stack collision by comparing current
 705     // stack bottom with the highest address that has been mmap'ed by JVM
 706     // plus a safety margin for memory maps created by native code.
 707     //
 708     // This feature can be disabled by setting ThreadSafetyMargin to 0
 709     //
 710     if (ThreadSafetyMargin > 0) {
 711       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 712 
 713       // not safe if our stack extends below the safety margin
 714       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 715     } else {
 716       return true;
 717     }
 718   } else {
 719     // Floating stack LinuxThreads or NPTL:
 720     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 721     //   there's not enough space left, pthread_create() will fail. If we come
 722     //   here, that means enough space has been reserved for stack.
 723     return true;
 724   }
 725 }
 726 
 727 // Thread start routine for all newly created threads
 728 static void *java_start(Thread *thread) {
 729   // Try to randomize the cache line index of hot stack frames.
 730   // This helps when threads of the same stack traces evict each other's
 731   // cache lines. The threads can be either from the same JVM instance, or
 732   // from different JVM instances. The benefit is especially true for
 733   // processors with hyperthreading technology.
 734   static int counter = 0;
 735   int pid = os::current_process_id();
 736   alloca(((pid ^ counter++) & 7) * 128);
 737 
 738   ThreadLocalStorage::set_thread(thread);
 739 
 740   OSThread* osthread = thread->osthread();
 741   Monitor* sync = osthread->startThread_lock();
 742 
 743   // non floating stack LinuxThreads needs extra check, see above
 744   if (!_thread_safety_check(thread)) {
 745     // notify parent thread
 746     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 747     osthread->set_state(ZOMBIE);
 748     sync->notify_all();
 749     return NULL;
 750   }
 751 
 752   // thread_id is kernel thread id (similar to Solaris LWP id)
 753   osthread->set_thread_id(os::Linux::gettid());
 754 
 755   if (UseNUMA) {
 756     int lgrp_id = os::numa_get_group_id();
 757     if (lgrp_id != -1) {
 758       thread->set_lgrp_id(lgrp_id);
 759     }
 760   }
 761   // initialize signal mask for this thread
 762   os::Linux::hotspot_sigmask(thread);
 763 
 764   // initialize floating point control register
 765   os::Linux::init_thread_fpu_state();
 766 
 767   // handshaking with parent thread
 768   {
 769     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 770 
 771     // notify parent thread
 772     osthread->set_state(INITIALIZED);
 773     sync->notify_all();
 774 
 775     // wait until os::start_thread()
 776     while (osthread->get_state() == INITIALIZED) {
 777       sync->wait(Mutex::_no_safepoint_check_flag);
 778     }
 779   }
 780 
 781   // call one more level start routine
 782   thread->run();
 783 
 784   return 0;
 785 }
 786 
 787 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 788   assert(thread->osthread() == NULL, "caller responsible");
 789 
 790   // Allocate the OSThread object
 791   OSThread* osthread = new OSThread(NULL, NULL);
 792   if (osthread == NULL) {
 793     return false;
 794   }
 795 
 796   // set the correct thread state
 797   osthread->set_thread_type(thr_type);
 798 
 799   // Initial state is ALLOCATED but not INITIALIZED
 800   osthread->set_state(ALLOCATED);
 801 
 802   thread->set_osthread(osthread);
 803 
 804   // init thread attributes
 805   pthread_attr_t attr;
 806   pthread_attr_init(&attr);
 807   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 808 
 809   // stack size
 810   if (os::Linux::supports_variable_stack_size()) {
 811     // calculate stack size if it's not specified by caller
 812     if (stack_size == 0) {
 813       stack_size = os::Linux::default_stack_size(thr_type);
 814 
 815       switch (thr_type) {
 816       case os::java_thread:
 817         // Java threads use ThreadStackSize which default value can be
 818         // changed with the flag -Xss
 819         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 820         stack_size = JavaThread::stack_size_at_create();
 821         break;
 822       case os::compiler_thread:
 823         if (CompilerThreadStackSize > 0) {
 824           stack_size = (size_t)(CompilerThreadStackSize * K);
 825           break;
 826         } // else fall through:
 827           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 828       case os::vm_thread:
 829       case os::pgc_thread:
 830       case os::cgc_thread:
 831       case os::watcher_thread:
 832         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 833         break;
 834       }
 835     }
 836 
 837     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 838     pthread_attr_setstacksize(&attr, stack_size);
 839   } else {
 840     // let pthread_create() pick the default value.
 841   }
 842 
 843   // glibc guard page
 844   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 845 
 846   ThreadState state;
 847 
 848   {
 849     // Serialize thread creation if we are running with fixed stack LinuxThreads
 850     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 851     if (lock) {
 852       os::Linux::createThread_lock()->lock_without_safepoint_check();
 853     }
 854 
 855     pthread_t tid;
 856     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 857 
 858     pthread_attr_destroy(&attr);
 859 
 860     if (ret != 0) {
 861       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 862         perror("pthread_create()");
 863       }
 864       // Need to clean up stuff we've allocated so far
 865       thread->set_osthread(NULL);
 866       delete osthread;
 867       if (lock) os::Linux::createThread_lock()->unlock();
 868       return false;
 869     }
 870 
 871     // Store pthread info into the OSThread
 872     osthread->set_pthread_id(tid);
 873 
 874     // Wait until child thread is either initialized or aborted
 875     {
 876       Monitor* sync_with_child = osthread->startThread_lock();
 877       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 878       while ((state = osthread->get_state()) == ALLOCATED) {
 879         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 880       }
 881     }
 882 
 883     if (lock) {
 884       os::Linux::createThread_lock()->unlock();
 885     }
 886   }
 887 
 888   // Aborted due to thread limit being reached
 889   if (state == ZOMBIE) {
 890       thread->set_osthread(NULL);
 891       delete osthread;
 892       return false;
 893   }
 894 
 895   // The thread is returned suspended (in state INITIALIZED),
 896   // and is started higher up in the call chain
 897   assert(state == INITIALIZED, "race condition");
 898   return true;
 899 }
 900 
 901 /////////////////////////////////////////////////////////////////////////////
 902 // attach existing thread
 903 
 904 // bootstrap the main thread
 905 bool os::create_main_thread(JavaThread* thread) {
 906   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 907   return create_attached_thread(thread);
 908 }
 909 
 910 bool os::create_attached_thread(JavaThread* thread) {
 911 #ifdef ASSERT
 912     thread->verify_not_published();
 913 #endif
 914 
 915   // Allocate the OSThread object
 916   OSThread* osthread = new OSThread(NULL, NULL);
 917 
 918   if (osthread == NULL) {
 919     return false;
 920   }
 921 
 922   // Store pthread info into the OSThread
 923   osthread->set_thread_id(os::Linux::gettid());
 924   osthread->set_pthread_id(::pthread_self());
 925 
 926   // initialize floating point control register
 927   os::Linux::init_thread_fpu_state();
 928 
 929   // Initial thread state is RUNNABLE
 930   osthread->set_state(RUNNABLE);
 931 
 932   thread->set_osthread(osthread);
 933 
 934   if (UseNUMA) {
 935     int lgrp_id = os::numa_get_group_id();
 936     if (lgrp_id != -1) {
 937       thread->set_lgrp_id(lgrp_id);
 938     }
 939   }
 940 
 941   if (os::Linux::is_initial_thread()) {
 942     // If current thread is initial thread, its stack is mapped on demand,
 943     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 944     // the entire stack region to avoid SEGV in stack banging.
 945     // It is also useful to get around the heap-stack-gap problem on SuSE
 946     // kernel (see 4821821 for details). We first expand stack to the top
 947     // of yellow zone, then enable stack yellow zone (order is significant,
 948     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 949     // is no gap between the last two virtual memory regions.
 950 
 951     JavaThread *jt = (JavaThread *)thread;
 952     address addr = jt->stack_yellow_zone_base();
 953     assert(addr != NULL, "initialization problem?");
 954     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 955 
 956     osthread->set_expanding_stack();
 957     os::Linux::manually_expand_stack(jt, addr);
 958     osthread->clear_expanding_stack();
 959   }
 960 
 961   // initialize signal mask for this thread
 962   // and save the caller's signal mask
 963   os::Linux::hotspot_sigmask(thread);
 964 
 965   return true;
 966 }
 967 
 968 void os::pd_start_thread(Thread* thread) {
 969   OSThread * osthread = thread->osthread();
 970   assert(osthread->get_state() != INITIALIZED, "just checking");
 971   Monitor* sync_with_child = osthread->startThread_lock();
 972   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 973   sync_with_child->notify();
 974 }
 975 
 976 // Free Linux resources related to the OSThread
 977 void os::free_thread(OSThread* osthread) {
 978   assert(osthread != NULL, "osthread not set");
 979 
 980   if (Thread::current()->osthread() == osthread) {
 981     // Restore caller's signal mask
 982     sigset_t sigmask = osthread->caller_sigmask();
 983     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 984    }
 985 
 986   delete osthread;
 987 }
 988 
 989 //////////////////////////////////////////////////////////////////////////////
 990 // thread local storage
 991 
 992 // Restore the thread pointer if the destructor is called. This is in case
 993 // someone from JNI code sets up a destructor with pthread_key_create to run
 994 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 995 // will hang or crash. When detachCurrentThread is called the key will be set
 996 // to null and we will not be called again. If detachCurrentThread is never
 997 // called we could loop forever depending on the pthread implementation.
 998 static void restore_thread_pointer(void* p) {
 999   Thread* thread = (Thread*) p;
1000   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1001 }
1002 
1003 int os::allocate_thread_local_storage() {
1004   pthread_key_t key;
1005   int rslt = pthread_key_create(&key, restore_thread_pointer);
1006   assert(rslt == 0, "cannot allocate thread local storage");
1007   return (int)key;
1008 }
1009 
1010 // Note: This is currently not used by VM, as we don't destroy TLS key
1011 // on VM exit.
1012 void os::free_thread_local_storage(int index) {
1013   int rslt = pthread_key_delete((pthread_key_t)index);
1014   assert(rslt == 0, "invalid index");
1015 }
1016 
1017 void os::thread_local_storage_at_put(int index, void* value) {
1018   int rslt = pthread_setspecific((pthread_key_t)index, value);
1019   assert(rslt == 0, "pthread_setspecific failed");
1020 }
1021 
1022 extern "C" Thread* get_thread() {
1023   return ThreadLocalStorage::thread();
1024 }
1025 
1026 //////////////////////////////////////////////////////////////////////////////
1027 // initial thread
1028 
1029 // Check if current thread is the initial thread, similar to Solaris thr_main.
1030 bool os::Linux::is_initial_thread(void) {
1031   char dummy;
1032   // If called before init complete, thread stack bottom will be null.
1033   // Can be called if fatal error occurs before initialization.
1034   if (initial_thread_stack_bottom() == NULL) return false;
1035   assert(initial_thread_stack_bottom() != NULL &&
1036          initial_thread_stack_size()   != 0,
1037          "os::init did not locate initial thread's stack region");
1038   if ((address)&dummy >= initial_thread_stack_bottom() &&
1039       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1040        return true;
1041   else return false;
1042 }
1043 
1044 // Find the virtual memory area that contains addr
1045 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1046   FILE *fp = fopen("/proc/self/maps", "r");
1047   if (fp) {
1048     address low, high;
1049     while (!feof(fp)) {
1050       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1051         if (low <= addr && addr < high) {
1052            if (vma_low)  *vma_low  = low;
1053            if (vma_high) *vma_high = high;
1054            fclose (fp);
1055            return true;
1056         }
1057       }
1058       for (;;) {
1059         int ch = fgetc(fp);
1060         if (ch == EOF || ch == (int)'\n') break;
1061       }
1062     }
1063     fclose(fp);
1064   }
1065   return false;
1066 }
1067 
1068 // Locate initial thread stack. This special handling of initial thread stack
1069 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1070 // bogus value for initial thread.
1071 void os::Linux::capture_initial_stack(size_t max_size) {
1072   // stack size is the easy part, get it from RLIMIT_STACK
1073   size_t stack_size;
1074   struct rlimit rlim;
1075   getrlimit(RLIMIT_STACK, &rlim);
1076   stack_size = rlim.rlim_cur;
1077 
1078   // 6308388: a bug in ld.so will relocate its own .data section to the
1079   //   lower end of primordial stack; reduce ulimit -s value a little bit
1080   //   so we won't install guard page on ld.so's data section.
1081   stack_size -= 2 * page_size();
1082 
1083   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1084   //   7.1, in both cases we will get 2G in return value.
1085   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1086   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1087   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1088   //   in case other parts in glibc still assumes 2M max stack size.
1089   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1090   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1091   if (stack_size > 2 * K * K IA64_ONLY(*2))
1092       stack_size = 2 * K * K IA64_ONLY(*2);
1093   // Try to figure out where the stack base (top) is. This is harder.
1094   //
1095   // When an application is started, glibc saves the initial stack pointer in
1096   // a global variable "__libc_stack_end", which is then used by system
1097   // libraries. __libc_stack_end should be pretty close to stack top. The
1098   // variable is available since the very early days. However, because it is
1099   // a private interface, it could disappear in the future.
1100   //
1101   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1102   // to __libc_stack_end, it is very close to stack top, but isn't the real
1103   // stack top. Note that /proc may not exist if VM is running as a chroot
1104   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1105   // /proc/<pid>/stat could change in the future (though unlikely).
1106   //
1107   // We try __libc_stack_end first. If that doesn't work, look for
1108   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1109   // as a hint, which should work well in most cases.
1110 
1111   uintptr_t stack_start;
1112 
1113   // try __libc_stack_end first
1114   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1115   if (p && *p) {
1116     stack_start = *p;
1117   } else {
1118     // see if we can get the start_stack field from /proc/self/stat
1119     FILE *fp;
1120     int pid;
1121     char state;
1122     int ppid;
1123     int pgrp;
1124     int session;
1125     int nr;
1126     int tpgrp;
1127     unsigned long flags;
1128     unsigned long minflt;
1129     unsigned long cminflt;
1130     unsigned long majflt;
1131     unsigned long cmajflt;
1132     unsigned long utime;
1133     unsigned long stime;
1134     long cutime;
1135     long cstime;
1136     long prio;
1137     long nice;
1138     long junk;
1139     long it_real;
1140     uintptr_t start;
1141     uintptr_t vsize;
1142     intptr_t rss;
1143     uintptr_t rsslim;
1144     uintptr_t scodes;
1145     uintptr_t ecode;
1146     int i;
1147 
1148     // Figure what the primordial thread stack base is. Code is inspired
1149     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1150     // followed by command name surrounded by parentheses, state, etc.
1151     char stat[2048];
1152     int statlen;
1153 
1154     fp = fopen("/proc/self/stat", "r");
1155     if (fp) {
1156       statlen = fread(stat, 1, 2047, fp);
1157       stat[statlen] = '\0';
1158       fclose(fp);
1159 
1160       // Skip pid and the command string. Note that we could be dealing with
1161       // weird command names, e.g. user could decide to rename java launcher
1162       // to "java 1.4.2 :)", then the stat file would look like
1163       //                1234 (java 1.4.2 :)) R ... ...
1164       // We don't really need to know the command string, just find the last
1165       // occurrence of ")" and then start parsing from there. See bug 4726580.
1166       char * s = strrchr(stat, ')');
1167 
1168       i = 0;
1169       if (s) {
1170         // Skip blank chars
1171         do s++; while (isspace(*s));
1172 
1173 #define _UFM UINTX_FORMAT
1174 #define _DFM INTX_FORMAT
1175 
1176         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1177         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1178         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1179              &state,          /* 3  %c  */
1180              &ppid,           /* 4  %d  */
1181              &pgrp,           /* 5  %d  */
1182              &session,        /* 6  %d  */
1183              &nr,             /* 7  %d  */
1184              &tpgrp,          /* 8  %d  */
1185              &flags,          /* 9  %lu  */
1186              &minflt,         /* 10 %lu  */
1187              &cminflt,        /* 11 %lu  */
1188              &majflt,         /* 12 %lu  */
1189              &cmajflt,        /* 13 %lu  */
1190              &utime,          /* 14 %lu  */
1191              &stime,          /* 15 %lu  */
1192              &cutime,         /* 16 %ld  */
1193              &cstime,         /* 17 %ld  */
1194              &prio,           /* 18 %ld  */
1195              &nice,           /* 19 %ld  */
1196              &junk,           /* 20 %ld  */
1197              &it_real,        /* 21 %ld  */
1198              &start,          /* 22 UINTX_FORMAT */
1199              &vsize,          /* 23 UINTX_FORMAT */
1200              &rss,            /* 24 INTX_FORMAT  */
1201              &rsslim,         /* 25 UINTX_FORMAT */
1202              &scodes,         /* 26 UINTX_FORMAT */
1203              &ecode,          /* 27 UINTX_FORMAT */
1204              &stack_start);   /* 28 UINTX_FORMAT */
1205       }
1206 
1207 #undef _UFM
1208 #undef _DFM
1209 
1210       if (i != 28 - 2) {
1211          assert(false, "Bad conversion from /proc/self/stat");
1212          // product mode - assume we are the initial thread, good luck in the
1213          // embedded case.
1214          warning("Can't detect initial thread stack location - bad conversion");
1215          stack_start = (uintptr_t) &rlim;
1216       }
1217     } else {
1218       // For some reason we can't open /proc/self/stat (for example, running on
1219       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1220       // most cases, so don't abort:
1221       warning("Can't detect initial thread stack location - no /proc/self/stat");
1222       stack_start = (uintptr_t) &rlim;
1223     }
1224   }
1225 
1226   // Now we have a pointer (stack_start) very close to the stack top, the
1227   // next thing to do is to figure out the exact location of stack top. We
1228   // can find out the virtual memory area that contains stack_start by
1229   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1230   // and its upper limit is the real stack top. (again, this would fail if
1231   // running inside chroot, because /proc may not exist.)
1232 
1233   uintptr_t stack_top;
1234   address low, high;
1235   if (find_vma((address)stack_start, &low, &high)) {
1236     // success, "high" is the true stack top. (ignore "low", because initial
1237     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1238     stack_top = (uintptr_t)high;
1239   } else {
1240     // failed, likely because /proc/self/maps does not exist
1241     warning("Can't detect initial thread stack location - find_vma failed");
1242     // best effort: stack_start is normally within a few pages below the real
1243     // stack top, use it as stack top, and reduce stack size so we won't put
1244     // guard page outside stack.
1245     stack_top = stack_start;
1246     stack_size -= 16 * page_size();
1247   }
1248 
1249   // stack_top could be partially down the page so align it
1250   stack_top = align_size_up(stack_top, page_size());
1251 
1252   if (max_size && stack_size > max_size) {
1253      _initial_thread_stack_size = max_size;
1254   } else {
1255      _initial_thread_stack_size = stack_size;
1256   }
1257 
1258   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1259   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1260 }
1261 
1262 ////////////////////////////////////////////////////////////////////////////////
1263 // time support
1264 
1265 // Time since start-up in seconds to a fine granularity.
1266 // Used by VMSelfDestructTimer and the MemProfiler.
1267 double os::elapsedTime() {
1268 
1269   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1270 }
1271 
1272 jlong os::elapsed_counter() {
1273   return javaTimeNanos() - initial_time_count;
1274 }
1275 
1276 jlong os::elapsed_frequency() {
1277   return NANOSECS_PER_SEC; // nanosecond resolution
1278 }
1279 
1280 bool os::supports_vtime() { return true; }
1281 bool os::enable_vtime()   { return false; }
1282 bool os::vtime_enabled()  { return false; }
1283 
1284 double os::elapsedVTime() {
1285   struct rusage usage;
1286   int retval = getrusage(RUSAGE_THREAD, &usage);
1287   if (retval == 0) {
1288     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1289   } else {
1290     // better than nothing, but not much
1291     return elapsedTime();
1292   }
1293 }
1294 
1295 jlong os::javaTimeMillis() {
1296   timeval time;
1297   int status = gettimeofday(&time, NULL);
1298   assert(status != -1, "linux error");
1299   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1300 }
1301 
1302 #ifndef CLOCK_MONOTONIC
1303 #define CLOCK_MONOTONIC (1)
1304 #endif
1305 
1306 void os::Linux::clock_init() {
1307   // we do dlopen's in this particular order due to bug in linux
1308   // dynamical loader (see 6348968) leading to crash on exit
1309   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1310   if (handle == NULL) {
1311     handle = dlopen("librt.so", RTLD_LAZY);
1312   }
1313 
1314   if (handle) {
1315     int (*clock_getres_func)(clockid_t, struct timespec*) =
1316            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1317     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1318            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1319     if (clock_getres_func && clock_gettime_func) {
1320       // See if monotonic clock is supported by the kernel. Note that some
1321       // early implementations simply return kernel jiffies (updated every
1322       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1323       // for nano time (though the monotonic property is still nice to have).
1324       // It's fixed in newer kernels, however clock_getres() still returns
1325       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1326       // resolution for now. Hopefully as people move to new kernels, this
1327       // won't be a problem.
1328       struct timespec res;
1329       struct timespec tp;
1330       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1331           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1332         // yes, monotonic clock is supported
1333         _clock_gettime = clock_gettime_func;
1334         return;
1335       } else {
1336         // close librt if there is no monotonic clock
1337         dlclose(handle);
1338       }
1339     }
1340   }
1341   warning("No monotonic clock was available - timed services may " \
1342           "be adversely affected if the time-of-day clock changes");
1343 }
1344 
1345 #ifndef SYS_clock_getres
1346 
1347 #if defined(IA32) || defined(AMD64)
1348 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1349 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1350 #else
1351 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1352 #define sys_clock_getres(x,y)  -1
1353 #endif
1354 
1355 #else
1356 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1357 #endif
1358 
1359 void os::Linux::fast_thread_clock_init() {
1360   if (!UseLinuxPosixThreadCPUClocks) {
1361     return;
1362   }
1363   clockid_t clockid;
1364   struct timespec tp;
1365   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1366       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1367 
1368   // Switch to using fast clocks for thread cpu time if
1369   // the sys_clock_getres() returns 0 error code.
1370   // Note, that some kernels may support the current thread
1371   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1372   // returned by the pthread_getcpuclockid().
1373   // If the fast Posix clocks are supported then the sys_clock_getres()
1374   // must return at least tp.tv_sec == 0 which means a resolution
1375   // better than 1 sec. This is extra check for reliability.
1376 
1377   if(pthread_getcpuclockid_func &&
1378      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1379      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1380 
1381     _supports_fast_thread_cpu_time = true;
1382     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1383   }
1384 }
1385 
1386 jlong os::javaTimeNanos() {
1387   if (Linux::supports_monotonic_clock()) {
1388     struct timespec tp;
1389     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1390     assert(status == 0, "gettime error");
1391     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1392     return result;
1393   } else {
1394     timeval time;
1395     int status = gettimeofday(&time, NULL);
1396     assert(status != -1, "linux error");
1397     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1398     return 1000 * usecs;
1399   }
1400 }
1401 
1402 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1403   if (Linux::supports_monotonic_clock()) {
1404     info_ptr->max_value = ALL_64_BITS;
1405 
1406     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1407     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1408     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1409   } else {
1410     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1411     info_ptr->max_value = ALL_64_BITS;
1412 
1413     // gettimeofday is a real time clock so it skips
1414     info_ptr->may_skip_backward = true;
1415     info_ptr->may_skip_forward = true;
1416   }
1417 
1418   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1419 }
1420 
1421 // Return the real, user, and system times in seconds from an
1422 // arbitrary fixed point in the past.
1423 bool os::getTimesSecs(double* process_real_time,
1424                       double* process_user_time,
1425                       double* process_system_time) {
1426   struct tms ticks;
1427   clock_t real_ticks = times(&ticks);
1428 
1429   if (real_ticks == (clock_t) (-1)) {
1430     return false;
1431   } else {
1432     double ticks_per_second = (double) clock_tics_per_sec;
1433     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1434     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1435     *process_real_time = ((double) real_ticks) / ticks_per_second;
1436 
1437     return true;
1438   }
1439 }
1440 
1441 
1442 char * os::local_time_string(char *buf, size_t buflen) {
1443   struct tm t;
1444   time_t long_time;
1445   time(&long_time);
1446   localtime_r(&long_time, &t);
1447   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1448                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1449                t.tm_hour, t.tm_min, t.tm_sec);
1450   return buf;
1451 }
1452 
1453 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1454   return localtime_r(clock, res);
1455 }
1456 
1457 ////////////////////////////////////////////////////////////////////////////////
1458 // runtime exit support
1459 
1460 // Note: os::shutdown() might be called very early during initialization, or
1461 // called from signal handler. Before adding something to os::shutdown(), make
1462 // sure it is async-safe and can handle partially initialized VM.
1463 void os::shutdown() {
1464 
1465   // allow PerfMemory to attempt cleanup of any persistent resources
1466   perfMemory_exit();
1467 
1468   // needs to remove object in file system
1469   AttachListener::abort();
1470 
1471   // flush buffered output, finish log files
1472   ostream_abort();
1473 
1474   // Check for abort hook
1475   abort_hook_t abort_hook = Arguments::abort_hook();
1476   if (abort_hook != NULL) {
1477     abort_hook();
1478   }
1479 
1480 }
1481 
1482 // Note: os::abort() might be called very early during initialization, or
1483 // called from signal handler. Before adding something to os::abort(), make
1484 // sure it is async-safe and can handle partially initialized VM.
1485 void os::abort(bool dump_core) {
1486   os::shutdown();
1487   if (dump_core) {
1488 #ifndef PRODUCT
1489     fdStream out(defaultStream::output_fd());
1490     out.print_raw("Current thread is ");
1491     char buf[16];
1492     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1493     out.print_raw_cr(buf);
1494     out.print_raw_cr("Dumping core ...");
1495 #endif
1496     ::abort(); // dump core
1497   }
1498 
1499   ::exit(1);
1500 }
1501 
1502 // Die immediately, no exit hook, no abort hook, no cleanup.
1503 void os::die() {
1504   // _exit() on LinuxThreads only kills current thread
1505   ::abort();
1506 }
1507 
1508 
1509 // This method is a copy of JDK's sysGetLastErrorString
1510 // from src/solaris/hpi/src/system_md.c
1511 
1512 size_t os::lasterror(char *buf, size_t len) {
1513 
1514   if (errno == 0)  return 0;
1515 
1516   const char *s = ::strerror(errno);
1517   size_t n = ::strlen(s);
1518   if (n >= len) {
1519     n = len - 1;
1520   }
1521   ::strncpy(buf, s, n);
1522   buf[n] = '\0';
1523   return n;
1524 }
1525 
1526 intx os::current_thread_id() { return (intx)pthread_self(); }
1527 int os::current_process_id() {
1528 
1529   // Under the old linux thread library, linux gives each thread
1530   // its own process id. Because of this each thread will return
1531   // a different pid if this method were to return the result
1532   // of getpid(2). Linux provides no api that returns the pid
1533   // of the launcher thread for the vm. This implementation
1534   // returns a unique pid, the pid of the launcher thread
1535   // that starts the vm 'process'.
1536 
1537   // Under the NPTL, getpid() returns the same pid as the
1538   // launcher thread rather than a unique pid per thread.
1539   // Use gettid() if you want the old pre NPTL behaviour.
1540 
1541   // if you are looking for the result of a call to getpid() that
1542   // returns a unique pid for the calling thread, then look at the
1543   // OSThread::thread_id() method in osThread_linux.hpp file
1544 
1545   return (int)(_initial_pid ? _initial_pid : getpid());
1546 }
1547 
1548 // DLL functions
1549 
1550 const char* os::dll_file_extension() { return ".so"; }
1551 
1552 // This must be hard coded because it's the system's temporary
1553 // directory not the java application's temp directory, ala java.io.tmpdir.
1554 const char* os::get_temp_directory() { return "/tmp"; }
1555 
1556 static bool file_exists(const char* filename) {
1557   struct stat statbuf;
1558   if (filename == NULL || strlen(filename) == 0) {
1559     return false;
1560   }
1561   return os::stat(filename, &statbuf) == 0;
1562 }
1563 
1564 bool os::dll_build_name(char* buffer, size_t buflen,
1565                         const char* pname, const char* fname) {
1566   bool retval = false;
1567   // Copied from libhpi
1568   const size_t pnamelen = pname ? strlen(pname) : 0;
1569 
1570   // Return error on buffer overflow.
1571   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1572     return retval;
1573   }
1574 
1575   if (pnamelen == 0) {
1576     snprintf(buffer, buflen, "lib%s.so", fname);
1577     retval = true;
1578   } else if (strchr(pname, *os::path_separator()) != NULL) {
1579     int n;
1580     char** pelements = split_path(pname, &n);
1581     if (pelements == NULL) {
1582       return false;
1583     }
1584     for (int i = 0 ; i < n ; i++) {
1585       // Really shouldn't be NULL, but check can't hurt
1586       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1587         continue; // skip the empty path values
1588       }
1589       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1590       if (file_exists(buffer)) {
1591         retval = true;
1592         break;
1593       }
1594     }
1595     // release the storage
1596     for (int i = 0 ; i < n ; i++) {
1597       if (pelements[i] != NULL) {
1598         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1599       }
1600     }
1601     if (pelements != NULL) {
1602       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1603     }
1604   } else {
1605     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1606     retval = true;
1607   }
1608   return retval;
1609 }
1610 
1611 // check if addr is inside libjvm.so
1612 bool os::address_is_in_vm(address addr) {
1613   static address libjvm_base_addr;
1614   Dl_info dlinfo;
1615 
1616   if (libjvm_base_addr == NULL) {
1617     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1618       libjvm_base_addr = (address)dlinfo.dli_fbase;
1619     }
1620     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1621   }
1622 
1623   if (dladdr((void *)addr, &dlinfo) != 0) {
1624     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1625   }
1626 
1627   return false;
1628 }
1629 
1630 bool os::dll_address_to_function_name(address addr, char *buf,
1631                                       int buflen, int *offset) {
1632   // buf is not optional, but offset is optional
1633   assert(buf != NULL, "sanity check");
1634 
1635   Dl_info dlinfo;
1636 
1637   if (dladdr((void*)addr, &dlinfo) != 0) {
1638     // see if we have a matching symbol
1639     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1640       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1641         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1642       }
1643       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1644       return true;
1645     }
1646     // no matching symbol so try for just file info
1647     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1648       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1649                           buf, buflen, offset, dlinfo.dli_fname)) {
1650         return true;
1651       }
1652     }
1653   }
1654 
1655   buf[0] = '\0';
1656   if (offset != NULL) *offset = -1;
1657   return false;
1658 }
1659 
1660 struct _address_to_library_name {
1661   address addr;          // input : memory address
1662   size_t  buflen;        //         size of fname
1663   char*   fname;         // output: library name
1664   address base;          //         library base addr
1665 };
1666 
1667 static int address_to_library_name_callback(struct dl_phdr_info *info,
1668                                             size_t size, void *data) {
1669   int i;
1670   bool found = false;
1671   address libbase = NULL;
1672   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1673 
1674   // iterate through all loadable segments
1675   for (i = 0; i < info->dlpi_phnum; i++) {
1676     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1677     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1678       // base address of a library is the lowest address of its loaded
1679       // segments.
1680       if (libbase == NULL || libbase > segbase) {
1681         libbase = segbase;
1682       }
1683       // see if 'addr' is within current segment
1684       if (segbase <= d->addr &&
1685           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1686         found = true;
1687       }
1688     }
1689   }
1690 
1691   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1692   // so dll_address_to_library_name() can fall through to use dladdr() which
1693   // can figure out executable name from argv[0].
1694   if (found && info->dlpi_name && info->dlpi_name[0]) {
1695     d->base = libbase;
1696     if (d->fname) {
1697       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1698     }
1699     return 1;
1700   }
1701   return 0;
1702 }
1703 
1704 bool os::dll_address_to_library_name(address addr, char* buf,
1705                                      int buflen, int* offset) {
1706   // buf is not optional, but offset is optional
1707   assert(buf != NULL, "sanity check");
1708 
1709   Dl_info dlinfo;
1710   struct _address_to_library_name data;
1711 
1712   // There is a bug in old glibc dladdr() implementation that it could resolve
1713   // to wrong library name if the .so file has a base address != NULL. Here
1714   // we iterate through the program headers of all loaded libraries to find
1715   // out which library 'addr' really belongs to. This workaround can be
1716   // removed once the minimum requirement for glibc is moved to 2.3.x.
1717   data.addr = addr;
1718   data.fname = buf;
1719   data.buflen = buflen;
1720   data.base = NULL;
1721   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1722 
1723   if (rslt) {
1724      // buf already contains library name
1725      if (offset) *offset = addr - data.base;
1726      return true;
1727   }
1728   if (dladdr((void*)addr, &dlinfo) != 0) {
1729     if (dlinfo.dli_fname != NULL) {
1730       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1731     }
1732     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1733       *offset = addr - (address)dlinfo.dli_fbase;
1734     }
1735     return true;
1736   }
1737 
1738   buf[0] = '\0';
1739   if (offset) *offset = -1;
1740   return false;
1741 }
1742 
1743   // Loads .dll/.so and
1744   // in case of error it checks if .dll/.so was built for the
1745   // same architecture as Hotspot is running on
1746 
1747 
1748 // Remember the stack's state. The Linux dynamic linker will change
1749 // the stack to 'executable' at most once, so we must safepoint only once.
1750 bool os::Linux::_stack_is_executable = false;
1751 
1752 // VM operation that loads a library.  This is necessary if stack protection
1753 // of the Java stacks can be lost during loading the library.  If we
1754 // do not stop the Java threads, they can stack overflow before the stacks
1755 // are protected again.
1756 class VM_LinuxDllLoad: public VM_Operation {
1757  private:
1758   const char *_filename;
1759   char *_ebuf;
1760   int _ebuflen;
1761   void *_lib;
1762  public:
1763   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1764     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1765   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1766   void doit() {
1767     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1768     os::Linux::_stack_is_executable = true;
1769   }
1770   void* loaded_library() { return _lib; }
1771 };
1772 
1773 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1774 {
1775   void * result = NULL;
1776   bool load_attempted = false;
1777 
1778   // Check whether the library to load might change execution rights
1779   // of the stack. If they are changed, the protection of the stack
1780   // guard pages will be lost. We need a safepoint to fix this.
1781   //
1782   // See Linux man page execstack(8) for more info.
1783   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1784     ElfFile ef(filename);
1785     if (!ef.specifies_noexecstack()) {
1786       if (!is_init_completed()) {
1787         os::Linux::_stack_is_executable = true;
1788         // This is OK - No Java threads have been created yet, and hence no
1789         // stack guard pages to fix.
1790         //
1791         // This should happen only when you are building JDK7 using a very
1792         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1793         //
1794         // Dynamic loader will make all stacks executable after
1795         // this function returns, and will not do that again.
1796         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1797       } else {
1798         warning("You have loaded library %s which might have disabled stack guard. "
1799                 "The VM will try to fix the stack guard now.\n"
1800                 "It's highly recommended that you fix the library with "
1801                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1802                 filename);
1803 
1804         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1805         JavaThread *jt = JavaThread::current();
1806         if (jt->thread_state() != _thread_in_native) {
1807           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1808           // that requires ExecStack. Cannot enter safe point. Let's give up.
1809           warning("Unable to fix stack guard. Giving up.");
1810         } else {
1811           if (!LoadExecStackDllInVMThread) {
1812             // This is for the case where the DLL has an static
1813             // constructor function that executes JNI code. We cannot
1814             // load such DLLs in the VMThread.
1815             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1816           }
1817 
1818           ThreadInVMfromNative tiv(jt);
1819           debug_only(VMNativeEntryWrapper vew;)
1820 
1821           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1822           VMThread::execute(&op);
1823           if (LoadExecStackDllInVMThread) {
1824             result = op.loaded_library();
1825           }
1826           load_attempted = true;
1827         }
1828       }
1829     }
1830   }
1831 
1832   if (!load_attempted) {
1833     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1834   }
1835 
1836   if (result != NULL) {
1837     // Successful loading
1838     return result;
1839   }
1840 
1841   Elf32_Ehdr elf_head;
1842   int diag_msg_max_length=ebuflen-strlen(ebuf);
1843   char* diag_msg_buf=ebuf+strlen(ebuf);
1844 
1845   if (diag_msg_max_length==0) {
1846     // No more space in ebuf for additional diagnostics message
1847     return NULL;
1848   }
1849 
1850 
1851   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1852 
1853   if (file_descriptor < 0) {
1854     // Can't open library, report dlerror() message
1855     return NULL;
1856   }
1857 
1858   bool failed_to_read_elf_head=
1859     (sizeof(elf_head)!=
1860         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1861 
1862   ::close(file_descriptor);
1863   if (failed_to_read_elf_head) {
1864     // file i/o error - report dlerror() msg
1865     return NULL;
1866   }
1867 
1868   typedef struct {
1869     Elf32_Half  code;         // Actual value as defined in elf.h
1870     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1871     char        elf_class;    // 32 or 64 bit
1872     char        endianess;    // MSB or LSB
1873     char*       name;         // String representation
1874   } arch_t;
1875 
1876   #ifndef EM_486
1877   #define EM_486          6               /* Intel 80486 */
1878   #endif
1879 
1880   static const arch_t arch_array[]={
1881     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1882     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1883     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1884     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1885     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1886     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1887     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1888     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1889 #if defined(VM_LITTLE_ENDIAN)
1890     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1891 #else
1892     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1893 #endif
1894     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1895     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1896     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1897     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1898     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1899     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1900     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1901   };
1902 
1903   #if  (defined IA32)
1904     static  Elf32_Half running_arch_code=EM_386;
1905   #elif   (defined AMD64)
1906     static  Elf32_Half running_arch_code=EM_X86_64;
1907   #elif  (defined IA64)
1908     static  Elf32_Half running_arch_code=EM_IA_64;
1909   #elif  (defined __sparc) && (defined _LP64)
1910     static  Elf32_Half running_arch_code=EM_SPARCV9;
1911   #elif  (defined __sparc) && (!defined _LP64)
1912     static  Elf32_Half running_arch_code=EM_SPARC;
1913   #elif  (defined __powerpc64__)
1914     static  Elf32_Half running_arch_code=EM_PPC64;
1915   #elif  (defined __powerpc__)
1916     static  Elf32_Half running_arch_code=EM_PPC;
1917   #elif  (defined ARM)
1918     static  Elf32_Half running_arch_code=EM_ARM;
1919   #elif  (defined S390)
1920     static  Elf32_Half running_arch_code=EM_S390;
1921   #elif  (defined ALPHA)
1922     static  Elf32_Half running_arch_code=EM_ALPHA;
1923   #elif  (defined MIPSEL)
1924     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1925   #elif  (defined PARISC)
1926     static  Elf32_Half running_arch_code=EM_PARISC;
1927   #elif  (defined MIPS)
1928     static  Elf32_Half running_arch_code=EM_MIPS;
1929   #elif  (defined M68K)
1930     static  Elf32_Half running_arch_code=EM_68K;
1931   #else
1932     #error Method os::dll_load requires that one of following is defined:\
1933          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1934   #endif
1935 
1936   // Identify compatability class for VM's architecture and library's architecture
1937   // Obtain string descriptions for architectures
1938 
1939   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1940   int running_arch_index=-1;
1941 
1942   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1943     if (running_arch_code == arch_array[i].code) {
1944       running_arch_index    = i;
1945     }
1946     if (lib_arch.code == arch_array[i].code) {
1947       lib_arch.compat_class = arch_array[i].compat_class;
1948       lib_arch.name         = arch_array[i].name;
1949     }
1950   }
1951 
1952   assert(running_arch_index != -1,
1953     "Didn't find running architecture code (running_arch_code) in arch_array");
1954   if (running_arch_index == -1) {
1955     // Even though running architecture detection failed
1956     // we may still continue with reporting dlerror() message
1957     return NULL;
1958   }
1959 
1960   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1961     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1962     return NULL;
1963   }
1964 
1965 #ifndef S390
1966   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1967     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1968     return NULL;
1969   }
1970 #endif // !S390
1971 
1972   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1973     if ( lib_arch.name!=NULL ) {
1974       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1975         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1976         lib_arch.name, arch_array[running_arch_index].name);
1977     } else {
1978       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1979       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1980         lib_arch.code,
1981         arch_array[running_arch_index].name);
1982     }
1983   }
1984 
1985   return NULL;
1986 }
1987 
1988 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
1989   void * result = ::dlopen(filename, RTLD_LAZY);
1990   if (result == NULL) {
1991     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1992     ebuf[ebuflen-1] = '\0';
1993   }
1994   return result;
1995 }
1996 
1997 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
1998   void * result = NULL;
1999   if (LoadExecStackDllInVMThread) {
2000     result = dlopen_helper(filename, ebuf, ebuflen);
2001   }
2002 
2003   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2004   // library that requires an executable stack, or which does not have this
2005   // stack attribute set, dlopen changes the stack attribute to executable. The
2006   // read protection of the guard pages gets lost.
2007   //
2008   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2009   // may have been queued at the same time.
2010 
2011   if (!_stack_is_executable) {
2012     JavaThread *jt = Threads::first();
2013 
2014     while (jt) {
2015       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2016           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2017         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2018                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2019           warning("Attempt to reguard stack yellow zone failed.");
2020         }
2021       }
2022       jt = jt->next();
2023     }
2024   }
2025 
2026   return result;
2027 }
2028 
2029 /*
2030  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2031  * chances are you might want to run the generated bits against glibc-2.0
2032  * libdl.so, so always use locking for any version of glibc.
2033  */
2034 void* os::dll_lookup(void* handle, const char* name) {
2035   pthread_mutex_lock(&dl_mutex);
2036   void* res = dlsym(handle, name);
2037   pthread_mutex_unlock(&dl_mutex);
2038   return res;
2039 }
2040 
2041 void* os::get_default_process_handle() {
2042   return (void*)::dlopen(NULL, RTLD_LAZY);
2043 }
2044 
2045 static bool _print_ascii_file(const char* filename, outputStream* st) {
2046   int fd = ::open(filename, O_RDONLY);
2047   if (fd == -1) {
2048      return false;
2049   }
2050 
2051   char buf[32];
2052   int bytes;
2053   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2054     st->print_raw(buf, bytes);
2055   }
2056 
2057   ::close(fd);
2058 
2059   return true;
2060 }
2061 
2062 void os::print_dll_info(outputStream *st) {
2063    st->print_cr("Dynamic libraries:");
2064 
2065    char fname[32];
2066    pid_t pid = os::Linux::gettid();
2067 
2068    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2069 
2070    if (!_print_ascii_file(fname, st)) {
2071      st->print("Can not get library information for pid = %d\n", pid);
2072    }
2073 }
2074 
2075 void os::print_os_info_brief(outputStream* st) {
2076   os::Linux::print_distro_info(st);
2077 
2078   os::Posix::print_uname_info(st);
2079 
2080   os::Linux::print_libversion_info(st);
2081 
2082 }
2083 
2084 void os::print_os_info(outputStream* st) {
2085   st->print("OS:");
2086 
2087   os::Linux::print_distro_info(st);
2088 
2089   os::Posix::print_uname_info(st);
2090 
2091   // Print warning if unsafe chroot environment detected
2092   if (unsafe_chroot_detected) {
2093     st->print("WARNING!! ");
2094     st->print_cr("%s", unstable_chroot_error);
2095   }
2096 
2097   os::Linux::print_libversion_info(st);
2098 
2099   os::Posix::print_rlimit_info(st);
2100 
2101   os::Posix::print_load_average(st);
2102 
2103   os::Linux::print_full_memory_info(st);
2104 }
2105 
2106 // Try to identify popular distros.
2107 // Most Linux distributions have a /etc/XXX-release file, which contains
2108 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2109 // file that also contains the OS version string. Some have more than one
2110 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2111 // /etc/redhat-release.), so the order is important.
2112 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2113 // their own specific XXX-release file as well as a redhat-release file.
2114 // Because of this the XXX-release file needs to be searched for before the
2115 // redhat-release file.
2116 // Since Red Hat has a lsb-release file that is not very descriptive the
2117 // search for redhat-release needs to be before lsb-release.
2118 // Since the lsb-release file is the new standard it needs to be searched
2119 // before the older style release files.
2120 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2121 // next to last resort.  The os-release file is a new standard that contains
2122 // distribution information and the system-release file seems to be an old
2123 // standard that has been replaced by the lsb-release and os-release files.
2124 // Searching for the debian_version file is the last resort.  It contains
2125 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2126 // "Debian " is printed before the contents of the debian_version file.
2127 void os::Linux::print_distro_info(outputStream* st) {
2128    if (!_print_ascii_file("/etc/oracle-release", st) &&
2129        !_print_ascii_file("/etc/mandriva-release", st) &&
2130        !_print_ascii_file("/etc/mandrake-release", st) &&
2131        !_print_ascii_file("/etc/sun-release", st) &&
2132        !_print_ascii_file("/etc/redhat-release", st) &&
2133        !_print_ascii_file("/etc/lsb-release", st) &&
2134        !_print_ascii_file("/etc/SuSE-release", st) &&
2135        !_print_ascii_file("/etc/turbolinux-release", st) &&
2136        !_print_ascii_file("/etc/gentoo-release", st) &&
2137        !_print_ascii_file("/etc/ltib-release", st) &&
2138        !_print_ascii_file("/etc/angstrom-version", st) &&
2139        !_print_ascii_file("/etc/system-release", st) &&
2140        !_print_ascii_file("/etc/os-release", st)) {
2141 
2142        if (file_exists("/etc/debian_version")) {
2143          st->print("Debian ");
2144          _print_ascii_file("/etc/debian_version", st);
2145        } else {
2146          st->print("Linux");
2147        }
2148    }
2149    st->cr();
2150 }
2151 
2152 void os::Linux::print_libversion_info(outputStream* st) {
2153   // libc, pthread
2154   st->print("libc:");
2155   st->print("%s ", os::Linux::glibc_version());
2156   st->print("%s ", os::Linux::libpthread_version());
2157   if (os::Linux::is_LinuxThreads()) {
2158      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2159   }
2160   st->cr();
2161 }
2162 
2163 void os::Linux::print_full_memory_info(outputStream* st) {
2164    st->print("\n/proc/meminfo:\n");
2165    _print_ascii_file("/proc/meminfo", st);
2166    st->cr();
2167 }
2168 
2169 void os::print_memory_info(outputStream* st) {
2170 
2171   st->print("Memory:");
2172   st->print(" %dk page", os::vm_page_size()>>10);
2173 
2174   // values in struct sysinfo are "unsigned long"
2175   struct sysinfo si;
2176   sysinfo(&si);
2177 
2178   st->print(", physical " UINT64_FORMAT "k",
2179             os::physical_memory() >> 10);
2180   st->print("(" UINT64_FORMAT "k free)",
2181             os::available_memory() >> 10);
2182   st->print(", swap " UINT64_FORMAT "k",
2183             ((jlong)si.totalswap * si.mem_unit) >> 10);
2184   st->print("(" UINT64_FORMAT "k free)",
2185             ((jlong)si.freeswap * si.mem_unit) >> 10);
2186   st->cr();
2187 }
2188 
2189 void os::pd_print_cpu_info(outputStream* st) {
2190   st->print("\n/proc/cpuinfo:\n");
2191   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2192     st->print("  <Not Available>");
2193   }
2194   st->cr();
2195 }
2196 
2197 void os::print_siginfo(outputStream* st, void* siginfo) {
2198   const siginfo_t* si = (const siginfo_t*)siginfo;
2199 
2200   os::Posix::print_siginfo_brief(st, si);
2201 #if INCLUDE_CDS
2202   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2203       UseSharedSpaces) {
2204     FileMapInfo* mapinfo = FileMapInfo::current_info();
2205     if (mapinfo->is_in_shared_space(si->si_addr)) {
2206       st->print("\n\nError accessing class data sharing archive."   \
2207                 " Mapped file inaccessible during execution, "      \
2208                 " possible disk/network problem.");
2209     }
2210   }
2211 #endif
2212   st->cr();
2213 }
2214 
2215 
2216 static void print_signal_handler(outputStream* st, int sig,
2217                                  char* buf, size_t buflen);
2218 
2219 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2220   st->print_cr("Signal Handlers:");
2221   print_signal_handler(st, SIGSEGV, buf, buflen);
2222   print_signal_handler(st, SIGBUS , buf, buflen);
2223   print_signal_handler(st, SIGFPE , buf, buflen);
2224   print_signal_handler(st, SIGPIPE, buf, buflen);
2225   print_signal_handler(st, SIGXFSZ, buf, buflen);
2226   print_signal_handler(st, SIGILL , buf, buflen);
2227   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2228   print_signal_handler(st, SR_signum, buf, buflen);
2229   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2230   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2231   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2232   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2233 #if defined(PPC64)
2234   print_signal_handler(st, SIGTRAP, buf, buflen);
2235 #endif
2236 }
2237 
2238 static char saved_jvm_path[MAXPATHLEN] = {0};
2239 
2240 // Find the full path to the current module, libjvm.so
2241 void os::jvm_path(char *buf, jint buflen) {
2242   // Error checking.
2243   if (buflen < MAXPATHLEN) {
2244     assert(false, "must use a large-enough buffer");
2245     buf[0] = '\0';
2246     return;
2247   }
2248   // Lazy resolve the path to current module.
2249   if (saved_jvm_path[0] != 0) {
2250     strcpy(buf, saved_jvm_path);
2251     return;
2252   }
2253 
2254   char dli_fname[MAXPATHLEN];
2255   bool ret = dll_address_to_library_name(
2256                 CAST_FROM_FN_PTR(address, os::jvm_path),
2257                 dli_fname, sizeof(dli_fname), NULL);
2258   assert(ret, "cannot locate libjvm");
2259   char *rp = NULL;
2260   if (ret && dli_fname[0] != '\0') {
2261     rp = realpath(dli_fname, buf);
2262   }
2263   if (rp == NULL)
2264     return;
2265 
2266   if (Arguments::created_by_gamma_launcher()) {
2267     // Support for the gamma launcher.  Typical value for buf is
2268     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2269     // the right place in the string, then assume we are installed in a JDK and
2270     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2271     // up the path so it looks like libjvm.so is installed there (append a
2272     // fake suffix hotspot/libjvm.so).
2273     const char *p = buf + strlen(buf) - 1;
2274     for (int count = 0; p > buf && count < 5; ++count) {
2275       for (--p; p > buf && *p != '/'; --p)
2276         /* empty */ ;
2277     }
2278 
2279     if (strncmp(p, "/jre/lib/", 9) != 0) {
2280       // Look for JAVA_HOME in the environment.
2281       char* java_home_var = ::getenv("JAVA_HOME");
2282       if (java_home_var != NULL && java_home_var[0] != 0) {
2283         char* jrelib_p;
2284         int len;
2285 
2286         // Check the current module name "libjvm.so".
2287         p = strrchr(buf, '/');
2288         assert(strstr(p, "/libjvm") == p, "invalid library name");
2289 
2290         rp = realpath(java_home_var, buf);
2291         if (rp == NULL)
2292           return;
2293 
2294         // determine if this is a legacy image or modules image
2295         // modules image doesn't have "jre" subdirectory
2296         len = strlen(buf);
2297         assert(len < buflen, "Ran out of buffer room");
2298         jrelib_p = buf + len;
2299         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2300         if (0 != access(buf, F_OK)) {
2301           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2302         }
2303 
2304         if (0 == access(buf, F_OK)) {
2305           // Use current module name "libjvm.so"
2306           len = strlen(buf);
2307           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2308         } else {
2309           // Go back to path of .so
2310           rp = realpath(dli_fname, buf);
2311           if (rp == NULL)
2312             return;
2313         }
2314       }
2315     }
2316   }
2317 
2318   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2319 }
2320 
2321 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2322   // no prefix required, not even "_"
2323 }
2324 
2325 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2326   // no suffix required
2327 }
2328 
2329 ////////////////////////////////////////////////////////////////////////////////
2330 // sun.misc.Signal support
2331 
2332 static volatile jint sigint_count = 0;
2333 
2334 static void
2335 UserHandler(int sig, void *siginfo, void *context) {
2336   // 4511530 - sem_post is serialized and handled by the manager thread. When
2337   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2338   // don't want to flood the manager thread with sem_post requests.
2339   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2340       return;
2341 
2342   // Ctrl-C is pressed during error reporting, likely because the error
2343   // handler fails to abort. Let VM die immediately.
2344   if (sig == SIGINT && is_error_reported()) {
2345      os::die();
2346   }
2347 
2348   os::signal_notify(sig);
2349 }
2350 
2351 void* os::user_handler() {
2352   return CAST_FROM_FN_PTR(void*, UserHandler);
2353 }
2354 
2355 class Semaphore : public StackObj {
2356   public:
2357     Semaphore();
2358     ~Semaphore();
2359     void signal();
2360     void wait();
2361     bool trywait();
2362     bool timedwait(unsigned int sec, int nsec);
2363   private:
2364     sem_t _semaphore;
2365 };
2366 
2367 Semaphore::Semaphore() {
2368   sem_init(&_semaphore, 0, 0);
2369 }
2370 
2371 Semaphore::~Semaphore() {
2372   sem_destroy(&_semaphore);
2373 }
2374 
2375 void Semaphore::signal() {
2376   sem_post(&_semaphore);
2377 }
2378 
2379 void Semaphore::wait() {
2380   sem_wait(&_semaphore);
2381 }
2382 
2383 bool Semaphore::trywait() {
2384   return sem_trywait(&_semaphore) == 0;
2385 }
2386 
2387 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2388 
2389   struct timespec ts;
2390   // Semaphore's are always associated with CLOCK_REALTIME
2391   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2392   // see unpackTime for discussion on overflow checking
2393   if (sec >= MAX_SECS) {
2394     ts.tv_sec += MAX_SECS;
2395     ts.tv_nsec = 0;
2396   } else {
2397     ts.tv_sec += sec;
2398     ts.tv_nsec += nsec;
2399     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2400       ts.tv_nsec -= NANOSECS_PER_SEC;
2401       ++ts.tv_sec; // note: this must be <= max_secs
2402     }
2403   }
2404 
2405   while (1) {
2406     int result = sem_timedwait(&_semaphore, &ts);
2407     if (result == 0) {
2408       return true;
2409     } else if (errno == EINTR) {
2410       continue;
2411     } else if (errno == ETIMEDOUT) {
2412       return false;
2413     } else {
2414       return false;
2415     }
2416   }
2417 }
2418 
2419 extern "C" {
2420   typedef void (*sa_handler_t)(int);
2421   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2422 }
2423 
2424 void* os::signal(int signal_number, void* handler) {
2425   struct sigaction sigAct, oldSigAct;
2426 
2427   sigfillset(&(sigAct.sa_mask));
2428   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2429   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2430 
2431   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2432     // -1 means registration failed
2433     return (void *)-1;
2434   }
2435 
2436   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2437 }
2438 
2439 void os::signal_raise(int signal_number) {
2440   ::raise(signal_number);
2441 }
2442 
2443 /*
2444  * The following code is moved from os.cpp for making this
2445  * code platform specific, which it is by its very nature.
2446  */
2447 
2448 // Will be modified when max signal is changed to be dynamic
2449 int os::sigexitnum_pd() {
2450   return NSIG;
2451 }
2452 
2453 // a counter for each possible signal value
2454 static volatile jint pending_signals[NSIG+1] = { 0 };
2455 
2456 // Linux(POSIX) specific hand shaking semaphore.
2457 static sem_t sig_sem;
2458 static Semaphore sr_semaphore;
2459 
2460 void os::signal_init_pd() {
2461   // Initialize signal structures
2462   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2463 
2464   // Initialize signal semaphore
2465   ::sem_init(&sig_sem, 0, 0);
2466 }
2467 
2468 void os::signal_notify(int sig) {
2469   Atomic::inc(&pending_signals[sig]);
2470   ::sem_post(&sig_sem);
2471 }
2472 
2473 static int check_pending_signals(bool wait) {
2474   Atomic::store(0, &sigint_count);
2475   for (;;) {
2476     for (int i = 0; i < NSIG + 1; i++) {
2477       jint n = pending_signals[i];
2478       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2479         return i;
2480       }
2481     }
2482     if (!wait) {
2483       return -1;
2484     }
2485     JavaThread *thread = JavaThread::current();
2486     ThreadBlockInVM tbivm(thread);
2487 
2488     bool threadIsSuspended;
2489     do {
2490       thread->set_suspend_equivalent();
2491       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2492       ::sem_wait(&sig_sem);
2493 
2494       // were we externally suspended while we were waiting?
2495       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2496       if (threadIsSuspended) {
2497         //
2498         // The semaphore has been incremented, but while we were waiting
2499         // another thread suspended us. We don't want to continue running
2500         // while suspended because that would surprise the thread that
2501         // suspended us.
2502         //
2503         ::sem_post(&sig_sem);
2504 
2505         thread->java_suspend_self();
2506       }
2507     } while (threadIsSuspended);
2508   }
2509 }
2510 
2511 int os::signal_lookup() {
2512   return check_pending_signals(false);
2513 }
2514 
2515 int os::signal_wait() {
2516   return check_pending_signals(true);
2517 }
2518 
2519 ////////////////////////////////////////////////////////////////////////////////
2520 // Virtual Memory
2521 
2522 int os::vm_page_size() {
2523   // Seems redundant as all get out
2524   assert(os::Linux::page_size() != -1, "must call os::init");
2525   return os::Linux::page_size();
2526 }
2527 
2528 // Solaris allocates memory by pages.
2529 int os::vm_allocation_granularity() {
2530   assert(os::Linux::page_size() != -1, "must call os::init");
2531   return os::Linux::page_size();
2532 }
2533 
2534 // Rationale behind this function:
2535 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2536 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2537 //  samples for JITted code. Here we create private executable mapping over the code cache
2538 //  and then we can use standard (well, almost, as mapping can change) way to provide
2539 //  info for the reporting script by storing timestamp and location of symbol
2540 void linux_wrap_code(char* base, size_t size) {
2541   static volatile jint cnt = 0;
2542 
2543   if (!UseOprofile) {
2544     return;
2545   }
2546 
2547   char buf[PATH_MAX+1];
2548   int num = Atomic::add(1, &cnt);
2549 
2550   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2551            os::get_temp_directory(), os::current_process_id(), num);
2552   unlink(buf);
2553 
2554   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2555 
2556   if (fd != -1) {
2557     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2558     if (rv != (off_t)-1) {
2559       if (::write(fd, "", 1) == 1) {
2560         mmap(base, size,
2561              PROT_READ|PROT_WRITE|PROT_EXEC,
2562              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2563       }
2564     }
2565     ::close(fd);
2566     unlink(buf);
2567   }
2568 }
2569 
2570 static bool recoverable_mmap_error(int err) {
2571   // See if the error is one we can let the caller handle. This
2572   // list of errno values comes from JBS-6843484. I can't find a
2573   // Linux man page that documents this specific set of errno
2574   // values so while this list currently matches Solaris, it may
2575   // change as we gain experience with this failure mode.
2576   switch (err) {
2577   case EBADF:
2578   case EINVAL:
2579   case ENOTSUP:
2580     // let the caller deal with these errors
2581     return true;
2582 
2583   default:
2584     // Any remaining errors on this OS can cause our reserved mapping
2585     // to be lost. That can cause confusion where different data
2586     // structures think they have the same memory mapped. The worst
2587     // scenario is if both the VM and a library think they have the
2588     // same memory mapped.
2589     return false;
2590   }
2591 }
2592 
2593 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2594                                     int err) {
2595   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2596           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2597           strerror(err), err);
2598 }
2599 
2600 static void warn_fail_commit_memory(char* addr, size_t size,
2601                                     size_t alignment_hint, bool exec,
2602                                     int err) {
2603   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2604           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2605           alignment_hint, exec, strerror(err), err);
2606 }
2607 
2608 // NOTE: Linux kernel does not really reserve the pages for us.
2609 //       All it does is to check if there are enough free pages
2610 //       left at the time of mmap(). This could be a potential
2611 //       problem.
2612 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2613   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2614   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2615                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2616   if (res != (uintptr_t) MAP_FAILED) {
2617     if (UseNUMAInterleaving) {
2618       numa_make_global(addr, size);
2619     }
2620     return 0;
2621   }
2622 
2623   int err = errno;  // save errno from mmap() call above
2624 
2625   if (!recoverable_mmap_error(err)) {
2626     warn_fail_commit_memory(addr, size, exec, err);
2627     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2628   }
2629 
2630   return err;
2631 }
2632 
2633 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2634   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2635 }
2636 
2637 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2638                                   const char* mesg) {
2639   assert(mesg != NULL, "mesg must be specified");
2640   int err = os::Linux::commit_memory_impl(addr, size, exec);
2641   if (err != 0) {
2642     // the caller wants all commit errors to exit with the specified mesg:
2643     warn_fail_commit_memory(addr, size, exec, err);
2644     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2645   }
2646 }
2647 
2648 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2649 #ifndef MAP_HUGETLB
2650 #define MAP_HUGETLB 0x40000
2651 #endif
2652 
2653 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2654 #ifndef MADV_HUGEPAGE
2655 #define MADV_HUGEPAGE 14
2656 #endif
2657 
2658 int os::Linux::commit_memory_impl(char* addr, size_t size,
2659                                   size_t alignment_hint, bool exec) {
2660   int err = os::Linux::commit_memory_impl(addr, size, exec);
2661   if (err == 0) {
2662     realign_memory(addr, size, alignment_hint);
2663   }
2664   return err;
2665 }
2666 
2667 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2668                           bool exec) {
2669   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2670 }
2671 
2672 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2673                                   size_t alignment_hint, bool exec,
2674                                   const char* mesg) {
2675   assert(mesg != NULL, "mesg must be specified");
2676   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2677   if (err != 0) {
2678     // the caller wants all commit errors to exit with the specified mesg:
2679     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2680     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2681   }
2682 }
2683 
2684 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2685   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2686     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2687     // be supported or the memory may already be backed by huge pages.
2688     ::madvise(addr, bytes, MADV_HUGEPAGE);
2689   }
2690 }
2691 
2692 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2693   // This method works by doing an mmap over an existing mmaping and effectively discarding
2694   // the existing pages. However it won't work for SHM-based large pages that cannot be
2695   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2696   // small pages on top of the SHM segment. This method always works for small pages, so we
2697   // allow that in any case.
2698   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2699     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2700   }
2701 }
2702 
2703 void os::numa_make_global(char *addr, size_t bytes) {
2704   Linux::numa_interleave_memory(addr, bytes);
2705 }
2706 
2707 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2708 // bind policy to MPOL_PREFERRED for the current thread.
2709 #define USE_MPOL_PREFERRED 0
2710 
2711 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2712   // To make NUMA and large pages more robust when both enabled, we need to ease
2713   // the requirements on where the memory should be allocated. MPOL_BIND is the
2714   // default policy and it will force memory to be allocated on the specified
2715   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2716   // the specified node, but will not force it. Using this policy will prevent
2717   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2718   // free large pages.
2719   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2720   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2721 }
2722 
2723 bool os::numa_topology_changed()   { return false; }
2724 
2725 size_t os::numa_get_groups_num() {
2726   int max_node = Linux::numa_max_node();
2727   return max_node > 0 ? max_node + 1 : 1;
2728 }
2729 
2730 int os::numa_get_group_id() {
2731   int cpu_id = Linux::sched_getcpu();
2732   if (cpu_id != -1) {
2733     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2734     if (lgrp_id != -1) {
2735       return lgrp_id;
2736     }
2737   }
2738   return 0;
2739 }
2740 
2741 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2742   for (size_t i = 0; i < size; i++) {
2743     ids[i] = i;
2744   }
2745   return size;
2746 }
2747 
2748 bool os::get_page_info(char *start, page_info* info) {
2749   return false;
2750 }
2751 
2752 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2753   return end;
2754 }
2755 
2756 
2757 int os::Linux::sched_getcpu_syscall(void) {
2758   unsigned int cpu;
2759   int retval = -1;
2760 
2761 #if defined(IA32)
2762 # ifndef SYS_getcpu
2763 # define SYS_getcpu 318
2764 # endif
2765   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2766 #elif defined(AMD64)
2767 // Unfortunately we have to bring all these macros here from vsyscall.h
2768 // to be able to compile on old linuxes.
2769 # define __NR_vgetcpu 2
2770 # define VSYSCALL_START (-10UL << 20)
2771 # define VSYSCALL_SIZE 1024
2772 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2773   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2774   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2775   retval = vgetcpu(&cpu, NULL, NULL);
2776 #endif
2777 
2778   return (retval == -1) ? retval : cpu;
2779 }
2780 
2781 // Something to do with the numa-aware allocator needs these symbols
2782 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2783 extern "C" JNIEXPORT void numa_error(char *where) { }
2784 extern "C" JNIEXPORT int fork1() { return fork(); }
2785 
2786 
2787 // If we are running with libnuma version > 2, then we should
2788 // be trying to use symbols with versions 1.1
2789 // If we are running with earlier version, which did not have symbol versions,
2790 // we should use the base version.
2791 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2792   void *f = dlvsym(handle, name, "libnuma_1.1");
2793   if (f == NULL) {
2794     f = dlsym(handle, name);
2795   }
2796   return f;
2797 }
2798 
2799 bool os::Linux::libnuma_init() {
2800   // sched_getcpu() should be in libc.
2801   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2802                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2803 
2804   // If it's not, try a direct syscall.
2805   if (sched_getcpu() == -1)
2806     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2807 
2808   if (sched_getcpu() != -1) { // Does it work?
2809     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2810     if (handle != NULL) {
2811       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2812                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2813       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2814                                        libnuma_dlsym(handle, "numa_max_node")));
2815       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2816                                         libnuma_dlsym(handle, "numa_available")));
2817       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2818                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2819       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2820                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2821       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2822                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2823 
2824 
2825       if (numa_available() != -1) {
2826         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2827         // Create a cpu -> node mapping
2828         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2829         rebuild_cpu_to_node_map();
2830         return true;
2831       }
2832     }
2833   }
2834   return false;
2835 }
2836 
2837 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2838 // The table is later used in get_node_by_cpu().
2839 void os::Linux::rebuild_cpu_to_node_map() {
2840   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2841                               // in libnuma (possible values are starting from 16,
2842                               // and continuing up with every other power of 2, but less
2843                               // than the maximum number of CPUs supported by kernel), and
2844                               // is a subject to change (in libnuma version 2 the requirements
2845                               // are more reasonable) we'll just hardcode the number they use
2846                               // in the library.
2847   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2848 
2849   size_t cpu_num = os::active_processor_count();
2850   size_t cpu_map_size = NCPUS / BitsPerCLong;
2851   size_t cpu_map_valid_size =
2852     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2853 
2854   cpu_to_node()->clear();
2855   cpu_to_node()->at_grow(cpu_num - 1);
2856   size_t node_num = numa_get_groups_num();
2857 
2858   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2859   for (size_t i = 0; i < node_num; i++) {
2860     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2861       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2862         if (cpu_map[j] != 0) {
2863           for (size_t k = 0; k < BitsPerCLong; k++) {
2864             if (cpu_map[j] & (1UL << k)) {
2865               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2866             }
2867           }
2868         }
2869       }
2870     }
2871   }
2872   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2873 }
2874 
2875 int os::Linux::get_node_by_cpu(int cpu_id) {
2876   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2877     return cpu_to_node()->at(cpu_id);
2878   }
2879   return -1;
2880 }
2881 
2882 GrowableArray<int>* os::Linux::_cpu_to_node;
2883 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2884 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2885 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2886 os::Linux::numa_available_func_t os::Linux::_numa_available;
2887 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2888 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2889 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2890 unsigned long* os::Linux::_numa_all_nodes;
2891 
2892 bool os::pd_uncommit_memory(char* addr, size_t size) {
2893   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2894                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2895   return res  != (uintptr_t) MAP_FAILED;
2896 }
2897 
2898 static
2899 address get_stack_commited_bottom(address bottom, size_t size) {
2900   address nbot = bottom;
2901   address ntop = bottom + size;
2902 
2903   size_t page_sz = os::vm_page_size();
2904   unsigned pages = size / page_sz;
2905 
2906   unsigned char vec[1];
2907   unsigned imin = 1, imax = pages + 1, imid;
2908   int mincore_return_value = 0;
2909 
2910   assert(imin <= imax, "Unexpected page size");
2911 
2912   while (imin < imax) {
2913     imid = (imax + imin) / 2;
2914     nbot = ntop - (imid * page_sz);
2915 
2916     // Use a trick with mincore to check whether the page is mapped or not.
2917     // mincore sets vec to 1 if page resides in memory and to 0 if page
2918     // is swapped output but if page we are asking for is unmapped
2919     // it returns -1,ENOMEM
2920     mincore_return_value = mincore(nbot, page_sz, vec);
2921 
2922     if (mincore_return_value == -1) {
2923       // Page is not mapped go up
2924       // to find first mapped page
2925       if (errno != EAGAIN) {
2926         assert(errno == ENOMEM, "Unexpected mincore errno");
2927         imax = imid;
2928       }
2929     } else {
2930       // Page is mapped go down
2931       // to find first not mapped page
2932       imin = imid + 1;
2933     }
2934   }
2935 
2936   nbot = nbot + page_sz;
2937 
2938   // Adjust stack bottom one page up if last checked page is not mapped
2939   if (mincore_return_value == -1) {
2940     nbot = nbot + page_sz;
2941   }
2942 
2943   return nbot;
2944 }
2945 
2946 
2947 // Linux uses a growable mapping for the stack, and if the mapping for
2948 // the stack guard pages is not removed when we detach a thread the
2949 // stack cannot grow beyond the pages where the stack guard was
2950 // mapped.  If at some point later in the process the stack expands to
2951 // that point, the Linux kernel cannot expand the stack any further
2952 // because the guard pages are in the way, and a segfault occurs.
2953 //
2954 // However, it's essential not to split the stack region by unmapping
2955 // a region (leaving a hole) that's already part of the stack mapping,
2956 // so if the stack mapping has already grown beyond the guard pages at
2957 // the time we create them, we have to truncate the stack mapping.
2958 // So, we need to know the extent of the stack mapping when
2959 // create_stack_guard_pages() is called.
2960 
2961 // We only need this for stacks that are growable: at the time of
2962 // writing thread stacks don't use growable mappings (i.e. those
2963 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2964 // only applies to the main thread.
2965 
2966 // If the (growable) stack mapping already extends beyond the point
2967 // where we're going to put our guard pages, truncate the mapping at
2968 // that point by munmap()ping it.  This ensures that when we later
2969 // munmap() the guard pages we don't leave a hole in the stack
2970 // mapping. This only affects the main/initial thread
2971 
2972 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2973 
2974   if (os::Linux::is_initial_thread()) {
2975     // As we manually grow stack up to bottom inside create_attached_thread(),
2976     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2977     // we don't need to do anything special.
2978     // Check it first, before calling heavy function.
2979     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2980     unsigned char vec[1];
2981 
2982     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2983       // Fallback to slow path on all errors, including EAGAIN
2984       stack_extent = (uintptr_t) get_stack_commited_bottom(
2985                                     os::Linux::initial_thread_stack_bottom(),
2986                                     (size_t)addr - stack_extent);
2987     }
2988 
2989     if (stack_extent < (uintptr_t)addr) {
2990       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2991     }
2992   }
2993 
2994   return os::commit_memory(addr, size, !ExecMem);
2995 }
2996 
2997 // If this is a growable mapping, remove the guard pages entirely by
2998 // munmap()ping them.  If not, just call uncommit_memory(). This only
2999 // affects the main/initial thread, but guard against future OS changes
3000 // It's safe to always unmap guard pages for initial thread because we
3001 // always place it right after end of the mapped region
3002 
3003 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3004   uintptr_t stack_extent, stack_base;
3005 
3006   if (os::Linux::is_initial_thread()) {
3007     return ::munmap(addr, size) == 0;
3008   }
3009 
3010   return os::uncommit_memory(addr, size);
3011 }
3012 
3013 static address _highest_vm_reserved_address = NULL;
3014 
3015 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3016 // at 'requested_addr'. If there are existing memory mappings at the same
3017 // location, however, they will be overwritten. If 'fixed' is false,
3018 // 'requested_addr' is only treated as a hint, the return value may or
3019 // may not start from the requested address. Unlike Linux mmap(), this
3020 // function returns NULL to indicate failure.
3021 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3022   char * addr;
3023   int flags;
3024 
3025   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3026   if (fixed) {
3027     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3028     flags |= MAP_FIXED;
3029   }
3030 
3031   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3032   // touch an uncommitted page. Otherwise, the read/write might
3033   // succeed if we have enough swap space to back the physical page.
3034   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3035                        flags, -1, 0);
3036 
3037   if (addr != MAP_FAILED) {
3038     // anon_mmap() should only get called during VM initialization,
3039     // don't need lock (actually we can skip locking even it can be called
3040     // from multiple threads, because _highest_vm_reserved_address is just a
3041     // hint about the upper limit of non-stack memory regions.)
3042     if ((address)addr + bytes > _highest_vm_reserved_address) {
3043       _highest_vm_reserved_address = (address)addr + bytes;
3044     }
3045   }
3046 
3047   return addr == MAP_FAILED ? NULL : addr;
3048 }
3049 
3050 // Don't update _highest_vm_reserved_address, because there might be memory
3051 // regions above addr + size. If so, releasing a memory region only creates
3052 // a hole in the address space, it doesn't help prevent heap-stack collision.
3053 //
3054 static int anon_munmap(char * addr, size_t size) {
3055   return ::munmap(addr, size) == 0;
3056 }
3057 
3058 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3059                          size_t alignment_hint) {
3060   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3061 }
3062 
3063 bool os::pd_release_memory(char* addr, size_t size) {
3064   return anon_munmap(addr, size);
3065 }
3066 
3067 static address highest_vm_reserved_address() {
3068   return _highest_vm_reserved_address;
3069 }
3070 
3071 static bool linux_mprotect(char* addr, size_t size, int prot) {
3072   // Linux wants the mprotect address argument to be page aligned.
3073   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3074 
3075   // According to SUSv3, mprotect() should only be used with mappings
3076   // established by mmap(), and mmap() always maps whole pages. Unaligned
3077   // 'addr' likely indicates problem in the VM (e.g. trying to change
3078   // protection of malloc'ed or statically allocated memory). Check the
3079   // caller if you hit this assert.
3080   assert(addr == bottom, "sanity check");
3081 
3082   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3083   return ::mprotect(bottom, size, prot) == 0;
3084 }
3085 
3086 // Set protections specified
3087 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3088                         bool is_committed) {
3089   unsigned int p = 0;
3090   switch (prot) {
3091   case MEM_PROT_NONE: p = PROT_NONE; break;
3092   case MEM_PROT_READ: p = PROT_READ; break;
3093   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3094   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3095   default:
3096     ShouldNotReachHere();
3097   }
3098   // is_committed is unused.
3099   return linux_mprotect(addr, bytes, p);
3100 }
3101 
3102 bool os::guard_memory(char* addr, size_t size) {
3103   return linux_mprotect(addr, size, PROT_NONE);
3104 }
3105 
3106 bool os::unguard_memory(char* addr, size_t size) {
3107   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3108 }
3109 
3110 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3111   bool result = false;
3112   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3113                  MAP_ANONYMOUS|MAP_PRIVATE,
3114                  -1, 0);
3115   if (p != MAP_FAILED) {
3116     void *aligned_p = align_ptr_up(p, page_size);
3117 
3118     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3119 
3120     munmap(p, page_size * 2);
3121   }
3122 
3123   if (warn && !result) {
3124     warning("TransparentHugePages is not supported by the operating system.");
3125   }
3126 
3127   return result;
3128 }
3129 
3130 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3131   bool result = false;
3132   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3133                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3134                  -1, 0);
3135 
3136   if (p != MAP_FAILED) {
3137     // We don't know if this really is a huge page or not.
3138     FILE *fp = fopen("/proc/self/maps", "r");
3139     if (fp) {
3140       while (!feof(fp)) {
3141         char chars[257];
3142         long x = 0;
3143         if (fgets(chars, sizeof(chars), fp)) {
3144           if (sscanf(chars, "%lx-%*x", &x) == 1
3145               && x == (long)p) {
3146             if (strstr (chars, "hugepage")) {
3147               result = true;
3148               break;
3149             }
3150           }
3151         }
3152       }
3153       fclose(fp);
3154     }
3155     munmap(p, page_size);
3156   }
3157 
3158   if (warn && !result) {
3159     warning("HugeTLBFS is not supported by the operating system.");
3160   }
3161 
3162   return result;
3163 }
3164 
3165 /*
3166 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3167 *
3168 * From the coredump_filter documentation:
3169 *
3170 * - (bit 0) anonymous private memory
3171 * - (bit 1) anonymous shared memory
3172 * - (bit 2) file-backed private memory
3173 * - (bit 3) file-backed shared memory
3174 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3175 *           effective only if the bit 2 is cleared)
3176 * - (bit 5) hugetlb private memory
3177 * - (bit 6) hugetlb shared memory
3178 */
3179 static void set_coredump_filter(void) {
3180   FILE *f;
3181   long cdm;
3182 
3183   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3184     return;
3185   }
3186 
3187   if (fscanf(f, "%lx", &cdm) != 1) {
3188     fclose(f);
3189     return;
3190   }
3191 
3192   rewind(f);
3193 
3194   if ((cdm & LARGEPAGES_BIT) == 0) {
3195     cdm |= LARGEPAGES_BIT;
3196     fprintf(f, "%#lx", cdm);
3197   }
3198 
3199   fclose(f);
3200 }
3201 
3202 // Large page support
3203 
3204 static size_t _large_page_size = 0;
3205 
3206 size_t os::Linux::find_large_page_size() {
3207   size_t large_page_size = 0;
3208 
3209   // large_page_size on Linux is used to round up heap size. x86 uses either
3210   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3211   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3212   // page as large as 256M.
3213   //
3214   // Here we try to figure out page size by parsing /proc/meminfo and looking
3215   // for a line with the following format:
3216   //    Hugepagesize:     2048 kB
3217   //
3218   // If we can't determine the value (e.g. /proc is not mounted, or the text
3219   // format has been changed), we'll use the largest page size supported by
3220   // the processor.
3221 
3222 #ifndef ZERO
3223   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3224                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3225 #endif // ZERO
3226 
3227   FILE *fp = fopen("/proc/meminfo", "r");
3228   if (fp) {
3229     while (!feof(fp)) {
3230       int x = 0;
3231       char buf[16];
3232       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3233         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3234           large_page_size = x * K;
3235           break;
3236         }
3237       } else {
3238         // skip to next line
3239         for (;;) {
3240           int ch = fgetc(fp);
3241           if (ch == EOF || ch == (int)'\n') break;
3242         }
3243       }
3244     }
3245     fclose(fp);
3246   }
3247 
3248   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3249     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3250         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3251         proper_unit_for_byte_size(large_page_size));
3252   }
3253 
3254   return large_page_size;
3255 }
3256 
3257 size_t os::Linux::setup_large_page_size() {
3258   _large_page_size = Linux::find_large_page_size();
3259   const size_t default_page_size = (size_t)Linux::page_size();
3260   if (_large_page_size > default_page_size) {
3261     _page_sizes[0] = _large_page_size;
3262     _page_sizes[1] = default_page_size;
3263     _page_sizes[2] = 0;
3264   }
3265 
3266   return _large_page_size;
3267 }
3268 
3269 bool os::Linux::setup_large_page_type(size_t page_size) {
3270   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3271       FLAG_IS_DEFAULT(UseSHM) &&
3272       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3273 
3274     // The type of large pages has not been specified by the user.
3275 
3276     // Try UseHugeTLBFS and then UseSHM.
3277     UseHugeTLBFS = UseSHM = true;
3278 
3279     // Don't try UseTransparentHugePages since there are known
3280     // performance issues with it turned on. This might change in the future.
3281     UseTransparentHugePages = false;
3282   }
3283 
3284   if (UseTransparentHugePages) {
3285     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3286     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3287       UseHugeTLBFS = false;
3288       UseSHM = false;
3289       return true;
3290     }
3291     UseTransparentHugePages = false;
3292   }
3293 
3294   if (UseHugeTLBFS) {
3295     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3296     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3297       UseSHM = false;
3298       return true;
3299     }
3300     UseHugeTLBFS = false;
3301   }
3302 
3303   return UseSHM;
3304 }
3305 
3306 void os::large_page_init() {
3307   if (!UseLargePages &&
3308       !UseTransparentHugePages &&
3309       !UseHugeTLBFS &&
3310       !UseSHM) {
3311     // Not using large pages.
3312     return;
3313   }
3314 
3315   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3316     // The user explicitly turned off large pages.
3317     // Ignore the rest of the large pages flags.
3318     UseTransparentHugePages = false;
3319     UseHugeTLBFS = false;
3320     UseSHM = false;
3321     return;
3322   }
3323 
3324   size_t large_page_size = Linux::setup_large_page_size();
3325   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3326 
3327   set_coredump_filter();
3328 }
3329 
3330 #ifndef SHM_HUGETLB
3331 #define SHM_HUGETLB 04000
3332 #endif
3333 
3334 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3335   // "exec" is passed in but not used.  Creating the shared image for
3336   // the code cache doesn't have an SHM_X executable permission to check.
3337   assert(UseLargePages && UseSHM, "only for SHM large pages");
3338   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3339 
3340   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3341     return NULL; // Fallback to small pages.
3342   }
3343 
3344   key_t key = IPC_PRIVATE;
3345   char *addr;
3346 
3347   bool warn_on_failure = UseLargePages &&
3348                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3349                          !FLAG_IS_DEFAULT(UseSHM) ||
3350                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3351                         );
3352   char msg[128];
3353 
3354   // Create a large shared memory region to attach to based on size.
3355   // Currently, size is the total size of the heap
3356   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3357   if (shmid == -1) {
3358      // Possible reasons for shmget failure:
3359      // 1. shmmax is too small for Java heap.
3360      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3361      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3362      // 2. not enough large page memory.
3363      //    > check available large pages: cat /proc/meminfo
3364      //    > increase amount of large pages:
3365      //          echo new_value > /proc/sys/vm/nr_hugepages
3366      //      Note 1: different Linux may use different name for this property,
3367      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3368      //      Note 2: it's possible there's enough physical memory available but
3369      //            they are so fragmented after a long run that they can't
3370      //            coalesce into large pages. Try to reserve large pages when
3371      //            the system is still "fresh".
3372      if (warn_on_failure) {
3373        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3374        warning("%s", msg);
3375      }
3376      return NULL;
3377   }
3378 
3379   // attach to the region
3380   addr = (char*)shmat(shmid, req_addr, 0);
3381   int err = errno;
3382 
3383   // Remove shmid. If shmat() is successful, the actual shared memory segment
3384   // will be deleted when it's detached by shmdt() or when the process
3385   // terminates. If shmat() is not successful this will remove the shared
3386   // segment immediately.
3387   shmctl(shmid, IPC_RMID, NULL);
3388 
3389   if ((intptr_t)addr == -1) {
3390      if (warn_on_failure) {
3391        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3392        warning("%s", msg);
3393      }
3394      return NULL;
3395   }
3396 
3397   return addr;
3398 }
3399 
3400 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3401   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3402 
3403   bool warn_on_failure = UseLargePages &&
3404       (!FLAG_IS_DEFAULT(UseLargePages) ||
3405        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3406        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3407 
3408   if (warn_on_failure) {
3409     char msg[128];
3410     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3411         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3412     warning("%s", msg);
3413   }
3414 }
3415 
3416 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3417   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3418   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3419   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3420 
3421   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3422   char* addr = (char*)::mmap(req_addr, bytes, prot,
3423                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3424                              -1, 0);
3425 
3426   if (addr == MAP_FAILED) {
3427     warn_on_large_pages_failure(req_addr, bytes, errno);
3428     return NULL;
3429   }
3430 
3431   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3432 
3433   return addr;
3434 }
3435 
3436 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3437   size_t large_page_size = os::large_page_size();
3438 
3439   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3440 
3441   // Allocate small pages.
3442 
3443   char* start;
3444   if (req_addr != NULL) {
3445     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3446     assert(is_size_aligned(bytes, alignment), "Must be");
3447     start = os::reserve_memory(bytes, req_addr);
3448     assert(start == NULL || start == req_addr, "Must be");
3449   } else {
3450     start = os::reserve_memory_aligned(bytes, alignment);
3451   }
3452 
3453   if (start == NULL) {
3454     return NULL;
3455   }
3456 
3457   assert(is_ptr_aligned(start, alignment), "Must be");
3458 
3459   if (MemTracker::tracking_level() > NMT_minimal) {
3460     // os::reserve_memory_special will record this memory area.
3461     // Need to release it here to prevent overlapping reservations.
3462     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3463     tkr.record((address)start, bytes);
3464   }
3465 
3466   char* end = start + bytes;
3467 
3468   // Find the regions of the allocated chunk that can be promoted to large pages.
3469   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3470   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3471 
3472   size_t lp_bytes = lp_end - lp_start;
3473 
3474   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3475 
3476   if (lp_bytes == 0) {
3477     // The mapped region doesn't even span the start and the end of a large page.
3478     // Fall back to allocate a non-special area.
3479     ::munmap(start, end - start);
3480     return NULL;
3481   }
3482 
3483   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3484 
3485 
3486   void* result;
3487 
3488   if (start != lp_start) {
3489     result = ::mmap(start, lp_start - start, prot,
3490                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3491                     -1, 0);
3492     if (result == MAP_FAILED) {
3493       ::munmap(lp_start, end - lp_start);
3494       return NULL;
3495     }
3496   }
3497 
3498   result = ::mmap(lp_start, lp_bytes, prot,
3499                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3500                   -1, 0);
3501   if (result == MAP_FAILED) {
3502     warn_on_large_pages_failure(req_addr, bytes, errno);
3503     // If the mmap above fails, the large pages region will be unmapped and we
3504     // have regions before and after with small pages. Release these regions.
3505     //
3506     // |  mapped  |  unmapped  |  mapped  |
3507     // ^          ^            ^          ^
3508     // start      lp_start     lp_end     end
3509     //
3510     ::munmap(start, lp_start - start);
3511     ::munmap(lp_end, end - lp_end);
3512     return NULL;
3513   }
3514 
3515   if (lp_end != end) {
3516       result = ::mmap(lp_end, end - lp_end, prot,
3517                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3518                       -1, 0);
3519     if (result == MAP_FAILED) {
3520       ::munmap(start, lp_end - start);
3521       return NULL;
3522     }
3523   }
3524 
3525   return start;
3526 }
3527 
3528 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3529   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3530   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3531   assert(is_power_of_2(alignment), "Must be");
3532   assert(is_power_of_2(os::large_page_size()), "Must be");
3533   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3534 
3535   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3536     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3537   } else {
3538     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3539   }
3540 }
3541 
3542 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3543   assert(UseLargePages, "only for large pages");
3544 
3545   char* addr;
3546   if (UseSHM) {
3547     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3548   } else {
3549     assert(UseHugeTLBFS, "must be");
3550     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3551   }
3552 
3553   if (addr != NULL) {
3554     if (UseNUMAInterleaving) {
3555       numa_make_global(addr, bytes);
3556     }
3557 
3558     // The memory is committed
3559     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3560   }
3561 
3562   return addr;
3563 }
3564 
3565 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3566   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3567   return shmdt(base) == 0;
3568 }
3569 
3570 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3571   return pd_release_memory(base, bytes);
3572 }
3573 
3574 bool os::release_memory_special(char* base, size_t bytes) {
3575   bool res;
3576   if (MemTracker::tracking_level() > NMT_minimal) {
3577     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3578     res = os::Linux::release_memory_special_impl(base, bytes);
3579     if (res) {
3580       tkr.record((address)base, bytes);
3581     }
3582 
3583   } else {
3584     res = os::Linux::release_memory_special_impl(base, bytes);
3585   }
3586   return res;
3587 }
3588 
3589 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3590   assert(UseLargePages, "only for large pages");
3591   bool res;
3592 
3593   if (UseSHM) {
3594     res = os::Linux::release_memory_special_shm(base, bytes);
3595   } else {
3596     assert(UseHugeTLBFS, "must be");
3597     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3598   }
3599   return res;
3600 }
3601 
3602 size_t os::large_page_size() {
3603   return _large_page_size;
3604 }
3605 
3606 // With SysV SHM the entire memory region must be allocated as shared
3607 // memory.
3608 // HugeTLBFS allows application to commit large page memory on demand.
3609 // However, when committing memory with HugeTLBFS fails, the region
3610 // that was supposed to be committed will lose the old reservation
3611 // and allow other threads to steal that memory region. Because of this
3612 // behavior we can't commit HugeTLBFS memory.
3613 bool os::can_commit_large_page_memory() {
3614   return UseTransparentHugePages;
3615 }
3616 
3617 bool os::can_execute_large_page_memory() {
3618   return UseTransparentHugePages || UseHugeTLBFS;
3619 }
3620 
3621 // Reserve memory at an arbitrary address, only if that area is
3622 // available (and not reserved for something else).
3623 
3624 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3625   const int max_tries = 10;
3626   char* base[max_tries];
3627   size_t size[max_tries];
3628   const size_t gap = 0x000000;
3629 
3630   // Assert only that the size is a multiple of the page size, since
3631   // that's all that mmap requires, and since that's all we really know
3632   // about at this low abstraction level.  If we need higher alignment,
3633   // we can either pass an alignment to this method or verify alignment
3634   // in one of the methods further up the call chain.  See bug 5044738.
3635   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3636 
3637   // Repeatedly allocate blocks until the block is allocated at the
3638   // right spot. Give up after max_tries. Note that reserve_memory() will
3639   // automatically update _highest_vm_reserved_address if the call is
3640   // successful. The variable tracks the highest memory address every reserved
3641   // by JVM. It is used to detect heap-stack collision if running with
3642   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3643   // space than needed, it could confuse the collision detecting code. To
3644   // solve the problem, save current _highest_vm_reserved_address and
3645   // calculate the correct value before return.
3646   address old_highest = _highest_vm_reserved_address;
3647 
3648   // Linux mmap allows caller to pass an address as hint; give it a try first,
3649   // if kernel honors the hint then we can return immediately.
3650   char * addr = anon_mmap(requested_addr, bytes, false);
3651   if (addr == requested_addr) {
3652      return requested_addr;
3653   }
3654 
3655   if (addr != NULL) {
3656      // mmap() is successful but it fails to reserve at the requested address
3657      anon_munmap(addr, bytes);
3658   }
3659 
3660   int i;
3661   for (i = 0; i < max_tries; ++i) {
3662     base[i] = reserve_memory(bytes);
3663 
3664     if (base[i] != NULL) {
3665       // Is this the block we wanted?
3666       if (base[i] == requested_addr) {
3667         size[i] = bytes;
3668         break;
3669       }
3670 
3671       // Does this overlap the block we wanted? Give back the overlapped
3672       // parts and try again.
3673 
3674       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3675       if (top_overlap >= 0 && top_overlap < bytes) {
3676         unmap_memory(base[i], top_overlap);
3677         base[i] += top_overlap;
3678         size[i] = bytes - top_overlap;
3679       } else {
3680         size_t bottom_overlap = base[i] + bytes - requested_addr;
3681         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3682           unmap_memory(requested_addr, bottom_overlap);
3683           size[i] = bytes - bottom_overlap;
3684         } else {
3685           size[i] = bytes;
3686         }
3687       }
3688     }
3689   }
3690 
3691   // Give back the unused reserved pieces.
3692 
3693   for (int j = 0; j < i; ++j) {
3694     if (base[j] != NULL) {
3695       unmap_memory(base[j], size[j]);
3696     }
3697   }
3698 
3699   if (i < max_tries) {
3700     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3701     return requested_addr;
3702   } else {
3703     _highest_vm_reserved_address = old_highest;
3704     return NULL;
3705   }
3706 }
3707 
3708 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3709   return ::read(fd, buf, nBytes);
3710 }
3711 
3712 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3713 // Solaris uses poll(), linux uses park().
3714 // Poll() is likely a better choice, assuming that Thread.interrupt()
3715 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3716 // SIGSEGV, see 4355769.
3717 
3718 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3719   assert(thread == Thread::current(),  "thread consistency check");
3720 
3721   ParkEvent * const slp = thread->_SleepEvent ;
3722   slp->reset() ;
3723   OrderAccess::fence() ;
3724 
3725   if (interruptible) {
3726     jlong prevtime = javaTimeNanos();
3727 
3728     for (;;) {
3729       if (os::is_interrupted(thread, true)) {
3730         return OS_INTRPT;
3731       }
3732 
3733       jlong newtime = javaTimeNanos();
3734 
3735       if (newtime - prevtime < 0) {
3736         // time moving backwards, should only happen if no monotonic clock
3737         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3738         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3739       } else {
3740         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3741       }
3742 
3743       if(millis <= 0) {
3744         return OS_OK;
3745       }
3746 
3747       prevtime = newtime;
3748 
3749       {
3750         assert(thread->is_Java_thread(), "sanity check");
3751         JavaThread *jt = (JavaThread *) thread;
3752         ThreadBlockInVM tbivm(jt);
3753         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3754 
3755         jt->set_suspend_equivalent();
3756         // cleared by handle_special_suspend_equivalent_condition() or
3757         // java_suspend_self() via check_and_wait_while_suspended()
3758 
3759         slp->park(millis);
3760 
3761         // were we externally suspended while we were waiting?
3762         jt->check_and_wait_while_suspended();
3763       }
3764     }
3765   } else {
3766     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3767     jlong prevtime = javaTimeNanos();
3768 
3769     for (;;) {
3770       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3771       // the 1st iteration ...
3772       jlong newtime = javaTimeNanos();
3773 
3774       if (newtime - prevtime < 0) {
3775         // time moving backwards, should only happen if no monotonic clock
3776         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3777         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3778       } else {
3779         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3780       }
3781 
3782       if(millis <= 0) break ;
3783 
3784       prevtime = newtime;
3785       slp->park(millis);
3786     }
3787     return OS_OK ;
3788   }
3789 }
3790 
3791 //
3792 // Short sleep, direct OS call.
3793 //
3794 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3795 // sched_yield(2) will actually give up the CPU:
3796 //
3797 //   * Alone on this pariticular CPU, keeps running.
3798 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3799 //     (pre 2.6.39).
3800 //
3801 // So calling this with 0 is an alternative.
3802 //
3803 void os::naked_short_sleep(jlong ms) {
3804   struct timespec req;
3805 
3806   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3807   req.tv_sec = 0;
3808   if (ms > 0) {
3809     req.tv_nsec = (ms % 1000) * 1000000;
3810   }
3811   else {
3812     req.tv_nsec = 1;
3813   }
3814 
3815   nanosleep(&req, NULL);
3816 
3817   return;
3818 }
3819 
3820 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3821 void os::infinite_sleep() {
3822   while (true) {    // sleep forever ...
3823     ::sleep(100);   // ... 100 seconds at a time
3824   }
3825 }
3826 
3827 // Used to convert frequent JVM_Yield() to nops
3828 bool os::dont_yield() {
3829   return DontYieldALot;
3830 }
3831 
3832 void os::yield() {
3833   sched_yield();
3834 }
3835 
3836 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3837 
3838 void os::yield_all(int attempts) {
3839   // Yields to all threads, including threads with lower priorities
3840   // Threads on Linux are all with same priority. The Solaris style
3841   // os::yield_all() with nanosleep(1ms) is not necessary.
3842   sched_yield();
3843 }
3844 
3845 // Called from the tight loops to possibly influence time-sharing heuristics
3846 void os::loop_breaker(int attempts) {
3847   os::yield_all(attempts);
3848 }
3849 
3850 ////////////////////////////////////////////////////////////////////////////////
3851 // thread priority support
3852 
3853 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3854 // only supports dynamic priority, static priority must be zero. For real-time
3855 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3856 // However, for large multi-threaded applications, SCHED_RR is not only slower
3857 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3858 // of 5 runs - Sep 2005).
3859 //
3860 // The following code actually changes the niceness of kernel-thread/LWP. It
3861 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3862 // not the entire user process, and user level threads are 1:1 mapped to kernel
3863 // threads. It has always been the case, but could change in the future. For
3864 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3865 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3866 
3867 int os::java_to_os_priority[CriticalPriority + 1] = {
3868   19,              // 0 Entry should never be used
3869 
3870    4,              // 1 MinPriority
3871    3,              // 2
3872    2,              // 3
3873 
3874    1,              // 4
3875    0,              // 5 NormPriority
3876   -1,              // 6
3877 
3878   -2,              // 7
3879   -3,              // 8
3880   -4,              // 9 NearMaxPriority
3881 
3882   -5,              // 10 MaxPriority
3883 
3884   -5               // 11 CriticalPriority
3885 };
3886 
3887 static int prio_init() {
3888   if (ThreadPriorityPolicy == 1) {
3889     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3890     // if effective uid is not root. Perhaps, a more elegant way of doing
3891     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3892     if (geteuid() != 0) {
3893       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3894         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3895       }
3896       ThreadPriorityPolicy = 0;
3897     }
3898   }
3899   if (UseCriticalJavaThreadPriority) {
3900     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3901   }
3902   return 0;
3903 }
3904 
3905 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3906   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3907 
3908   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3909   return (ret == 0) ? OS_OK : OS_ERR;
3910 }
3911 
3912 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3913   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3914     *priority_ptr = java_to_os_priority[NormPriority];
3915     return OS_OK;
3916   }
3917 
3918   errno = 0;
3919   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3920   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3921 }
3922 
3923 // Hint to the underlying OS that a task switch would not be good.
3924 // Void return because it's a hint and can fail.
3925 void os::hint_no_preempt() {}
3926 
3927 ////////////////////////////////////////////////////////////////////////////////
3928 // suspend/resume support
3929 
3930 //  the low-level signal-based suspend/resume support is a remnant from the
3931 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3932 //  within hotspot. Now there is a single use-case for this:
3933 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3934 //      that runs in the watcher thread.
3935 //  The remaining code is greatly simplified from the more general suspension
3936 //  code that used to be used.
3937 //
3938 //  The protocol is quite simple:
3939 //  - suspend:
3940 //      - sends a signal to the target thread
3941 //      - polls the suspend state of the osthread using a yield loop
3942 //      - target thread signal handler (SR_handler) sets suspend state
3943 //        and blocks in sigsuspend until continued
3944 //  - resume:
3945 //      - sets target osthread state to continue
3946 //      - sends signal to end the sigsuspend loop in the SR_handler
3947 //
3948 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3949 //
3950 
3951 static void resume_clear_context(OSThread *osthread) {
3952   osthread->set_ucontext(NULL);
3953   osthread->set_siginfo(NULL);
3954 }
3955 
3956 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3957   osthread->set_ucontext(context);
3958   osthread->set_siginfo(siginfo);
3959 }
3960 
3961 //
3962 // Handler function invoked when a thread's execution is suspended or
3963 // resumed. We have to be careful that only async-safe functions are
3964 // called here (Note: most pthread functions are not async safe and
3965 // should be avoided.)
3966 //
3967 // Note: sigwait() is a more natural fit than sigsuspend() from an
3968 // interface point of view, but sigwait() prevents the signal hander
3969 // from being run. libpthread would get very confused by not having
3970 // its signal handlers run and prevents sigwait()'s use with the
3971 // mutex granting granting signal.
3972 //
3973 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3974 //
3975 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3976   // Save and restore errno to avoid confusing native code with EINTR
3977   // after sigsuspend.
3978   int old_errno = errno;
3979 
3980   Thread* thread = Thread::current();
3981   OSThread* osthread = thread->osthread();
3982   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3983 
3984   os::SuspendResume::State current = osthread->sr.state();
3985   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3986     suspend_save_context(osthread, siginfo, context);
3987 
3988     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3989     os::SuspendResume::State state = osthread->sr.suspended();
3990     if (state == os::SuspendResume::SR_SUSPENDED) {
3991       sigset_t suspend_set;  // signals for sigsuspend()
3992 
3993       // get current set of blocked signals and unblock resume signal
3994       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3995       sigdelset(&suspend_set, SR_signum);
3996 
3997       sr_semaphore.signal();
3998       // wait here until we are resumed
3999       while (1) {
4000         sigsuspend(&suspend_set);
4001 
4002         os::SuspendResume::State result = osthread->sr.running();
4003         if (result == os::SuspendResume::SR_RUNNING) {
4004           sr_semaphore.signal();
4005           break;
4006         }
4007       }
4008 
4009     } else if (state == os::SuspendResume::SR_RUNNING) {
4010       // request was cancelled, continue
4011     } else {
4012       ShouldNotReachHere();
4013     }
4014 
4015     resume_clear_context(osthread);
4016   } else if (current == os::SuspendResume::SR_RUNNING) {
4017     // request was cancelled, continue
4018   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4019     // ignore
4020   } else {
4021     // ignore
4022   }
4023 
4024   errno = old_errno;
4025 }
4026 
4027 
4028 static int SR_initialize() {
4029   struct sigaction act;
4030   char *s;
4031   /* Get signal number to use for suspend/resume */
4032   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4033     int sig = ::strtol(s, 0, 10);
4034     if (sig > 0 || sig < _NSIG) {
4035         SR_signum = sig;
4036     }
4037   }
4038 
4039   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4040         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4041 
4042   sigemptyset(&SR_sigset);
4043   sigaddset(&SR_sigset, SR_signum);
4044 
4045   /* Set up signal handler for suspend/resume */
4046   act.sa_flags = SA_RESTART|SA_SIGINFO;
4047   act.sa_handler = (void (*)(int)) SR_handler;
4048 
4049   // SR_signum is blocked by default.
4050   // 4528190 - We also need to block pthread restart signal (32 on all
4051   // supported Linux platforms). Note that LinuxThreads need to block
4052   // this signal for all threads to work properly. So we don't have
4053   // to use hard-coded signal number when setting up the mask.
4054   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4055 
4056   if (sigaction(SR_signum, &act, 0) == -1) {
4057     return -1;
4058   }
4059 
4060   // Save signal flag
4061   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4062   return 0;
4063 }
4064 
4065 static int sr_notify(OSThread* osthread) {
4066   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4067   assert_status(status == 0, status, "pthread_kill");
4068   return status;
4069 }
4070 
4071 // "Randomly" selected value for how long we want to spin
4072 // before bailing out on suspending a thread, also how often
4073 // we send a signal to a thread we want to resume
4074 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4075 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4076 
4077 // returns true on success and false on error - really an error is fatal
4078 // but this seems the normal response to library errors
4079 static bool do_suspend(OSThread* osthread) {
4080   assert(osthread->sr.is_running(), "thread should be running");
4081   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4082 
4083   // mark as suspended and send signal
4084   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4085     // failed to switch, state wasn't running?
4086     ShouldNotReachHere();
4087     return false;
4088   }
4089 
4090   if (sr_notify(osthread) != 0) {
4091     ShouldNotReachHere();
4092   }
4093 
4094   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4095   while (true) {
4096     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4097       break;
4098     } else {
4099       // timeout
4100       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4101       if (cancelled == os::SuspendResume::SR_RUNNING) {
4102         return false;
4103       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4104         // make sure that we consume the signal on the semaphore as well
4105         sr_semaphore.wait();
4106         break;
4107       } else {
4108         ShouldNotReachHere();
4109         return false;
4110       }
4111     }
4112   }
4113 
4114   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4115   return true;
4116 }
4117 
4118 static void do_resume(OSThread* osthread) {
4119   assert(osthread->sr.is_suspended(), "thread should be suspended");
4120   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4121 
4122   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4123     // failed to switch to WAKEUP_REQUEST
4124     ShouldNotReachHere();
4125     return;
4126   }
4127 
4128   while (true) {
4129     if (sr_notify(osthread) == 0) {
4130       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4131         if (osthread->sr.is_running()) {
4132           return;
4133         }
4134       }
4135     } else {
4136       ShouldNotReachHere();
4137     }
4138   }
4139 
4140   guarantee(osthread->sr.is_running(), "Must be running!");
4141 }
4142 
4143 ////////////////////////////////////////////////////////////////////////////////
4144 // interrupt support
4145 
4146 void os::interrupt(Thread* thread) {
4147   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4148     "possibility of dangling Thread pointer");
4149 
4150   OSThread* osthread = thread->osthread();
4151 
4152   if (!osthread->interrupted()) {
4153     osthread->set_interrupted(true);
4154     // More than one thread can get here with the same value of osthread,
4155     // resulting in multiple notifications.  We do, however, want the store
4156     // to interrupted() to be visible to other threads before we execute unpark().
4157     OrderAccess::fence();
4158     ParkEvent * const slp = thread->_SleepEvent ;
4159     if (slp != NULL) slp->unpark() ;
4160   }
4161 
4162   // For JSR166. Unpark even if interrupt status already was set
4163   if (thread->is_Java_thread())
4164     ((JavaThread*)thread)->parker()->unpark();
4165 
4166   ParkEvent * ev = thread->_ParkEvent ;
4167   if (ev != NULL) ev->unpark() ;
4168 
4169 }
4170 
4171 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4172   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4173     "possibility of dangling Thread pointer");
4174 
4175   OSThread* osthread = thread->osthread();
4176 
4177   bool interrupted = osthread->interrupted();
4178 
4179   if (interrupted && clear_interrupted) {
4180     osthread->set_interrupted(false);
4181     // consider thread->_SleepEvent->reset() ... optional optimization
4182   }
4183 
4184   return interrupted;
4185 }
4186 
4187 ///////////////////////////////////////////////////////////////////////////////////
4188 // signal handling (except suspend/resume)
4189 
4190 // This routine may be used by user applications as a "hook" to catch signals.
4191 // The user-defined signal handler must pass unrecognized signals to this
4192 // routine, and if it returns true (non-zero), then the signal handler must
4193 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4194 // routine will never retun false (zero), but instead will execute a VM panic
4195 // routine kill the process.
4196 //
4197 // If this routine returns false, it is OK to call it again.  This allows
4198 // the user-defined signal handler to perform checks either before or after
4199 // the VM performs its own checks.  Naturally, the user code would be making
4200 // a serious error if it tried to handle an exception (such as a null check
4201 // or breakpoint) that the VM was generating for its own correct operation.
4202 //
4203 // This routine may recognize any of the following kinds of signals:
4204 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4205 // It should be consulted by handlers for any of those signals.
4206 //
4207 // The caller of this routine must pass in the three arguments supplied
4208 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4209 // field of the structure passed to sigaction().  This routine assumes that
4210 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4211 //
4212 // Note that the VM will print warnings if it detects conflicting signal
4213 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4214 //
4215 extern "C" JNIEXPORT int
4216 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4217                         void* ucontext, int abort_if_unrecognized);
4218 
4219 void signalHandler(int sig, siginfo_t* info, void* uc) {
4220   assert(info != NULL && uc != NULL, "it must be old kernel");
4221   int orig_errno = errno;  // Preserve errno value over signal handler.
4222   JVM_handle_linux_signal(sig, info, uc, true);
4223   errno = orig_errno;
4224 }
4225 
4226 
4227 // This boolean allows users to forward their own non-matching signals
4228 // to JVM_handle_linux_signal, harmlessly.
4229 bool os::Linux::signal_handlers_are_installed = false;
4230 
4231 // For signal-chaining
4232 struct sigaction os::Linux::sigact[MAXSIGNUM];
4233 unsigned int os::Linux::sigs = 0;
4234 bool os::Linux::libjsig_is_loaded = false;
4235 typedef struct sigaction *(*get_signal_t)(int);
4236 get_signal_t os::Linux::get_signal_action = NULL;
4237 
4238 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4239   struct sigaction *actp = NULL;
4240 
4241   if (libjsig_is_loaded) {
4242     // Retrieve the old signal handler from libjsig
4243     actp = (*get_signal_action)(sig);
4244   }
4245   if (actp == NULL) {
4246     // Retrieve the preinstalled signal handler from jvm
4247     actp = get_preinstalled_handler(sig);
4248   }
4249 
4250   return actp;
4251 }
4252 
4253 static bool call_chained_handler(struct sigaction *actp, int sig,
4254                                  siginfo_t *siginfo, void *context) {
4255   // Call the old signal handler
4256   if (actp->sa_handler == SIG_DFL) {
4257     // It's more reasonable to let jvm treat it as an unexpected exception
4258     // instead of taking the default action.
4259     return false;
4260   } else if (actp->sa_handler != SIG_IGN) {
4261     if ((actp->sa_flags & SA_NODEFER) == 0) {
4262       // automaticlly block the signal
4263       sigaddset(&(actp->sa_mask), sig);
4264     }
4265 
4266     sa_handler_t hand;
4267     sa_sigaction_t sa;
4268     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4269     // retrieve the chained handler
4270     if (siginfo_flag_set) {
4271       sa = actp->sa_sigaction;
4272     } else {
4273       hand = actp->sa_handler;
4274     }
4275 
4276     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4277       actp->sa_handler = SIG_DFL;
4278     }
4279 
4280     // try to honor the signal mask
4281     sigset_t oset;
4282     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4283 
4284     // call into the chained handler
4285     if (siginfo_flag_set) {
4286       (*sa)(sig, siginfo, context);
4287     } else {
4288       (*hand)(sig);
4289     }
4290 
4291     // restore the signal mask
4292     pthread_sigmask(SIG_SETMASK, &oset, 0);
4293   }
4294   // Tell jvm's signal handler the signal is taken care of.
4295   return true;
4296 }
4297 
4298 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4299   bool chained = false;
4300   // signal-chaining
4301   if (UseSignalChaining) {
4302     struct sigaction *actp = get_chained_signal_action(sig);
4303     if (actp != NULL) {
4304       chained = call_chained_handler(actp, sig, siginfo, context);
4305     }
4306   }
4307   return chained;
4308 }
4309 
4310 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4311   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4312     return &sigact[sig];
4313   }
4314   return NULL;
4315 }
4316 
4317 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4318   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4319   sigact[sig] = oldAct;
4320   sigs |= (unsigned int)1 << sig;
4321 }
4322 
4323 // for diagnostic
4324 int os::Linux::sigflags[MAXSIGNUM];
4325 
4326 int os::Linux::get_our_sigflags(int sig) {
4327   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4328   return sigflags[sig];
4329 }
4330 
4331 void os::Linux::set_our_sigflags(int sig, int flags) {
4332   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4333   sigflags[sig] = flags;
4334 }
4335 
4336 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4337   // Check for overwrite.
4338   struct sigaction oldAct;
4339   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4340 
4341   void* oldhand = oldAct.sa_sigaction
4342                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4343                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4344   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4345       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4346       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4347     if (AllowUserSignalHandlers || !set_installed) {
4348       // Do not overwrite; user takes responsibility to forward to us.
4349       return;
4350     } else if (UseSignalChaining) {
4351       // save the old handler in jvm
4352       save_preinstalled_handler(sig, oldAct);
4353       // libjsig also interposes the sigaction() call below and saves the
4354       // old sigaction on it own.
4355     } else {
4356       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4357                     "%#lx for signal %d.", (long)oldhand, sig));
4358     }
4359   }
4360 
4361   struct sigaction sigAct;
4362   sigfillset(&(sigAct.sa_mask));
4363   sigAct.sa_handler = SIG_DFL;
4364   if (!set_installed) {
4365     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4366   } else {
4367     sigAct.sa_sigaction = signalHandler;
4368     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4369   }
4370   // Save flags, which are set by ours
4371   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4372   sigflags[sig] = sigAct.sa_flags;
4373 
4374   int ret = sigaction(sig, &sigAct, &oldAct);
4375   assert(ret == 0, "check");
4376 
4377   void* oldhand2  = oldAct.sa_sigaction
4378                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4379                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4380   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4381 }
4382 
4383 // install signal handlers for signals that HotSpot needs to
4384 // handle in order to support Java-level exception handling.
4385 
4386 void os::Linux::install_signal_handlers() {
4387   if (!signal_handlers_are_installed) {
4388     signal_handlers_are_installed = true;
4389 
4390     // signal-chaining
4391     typedef void (*signal_setting_t)();
4392     signal_setting_t begin_signal_setting = NULL;
4393     signal_setting_t end_signal_setting = NULL;
4394     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4395                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4396     if (begin_signal_setting != NULL) {
4397       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4398                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4399       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4400                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4401       libjsig_is_loaded = true;
4402       assert(UseSignalChaining, "should enable signal-chaining");
4403     }
4404     if (libjsig_is_loaded) {
4405       // Tell libjsig jvm is setting signal handlers
4406       (*begin_signal_setting)();
4407     }
4408 
4409     set_signal_handler(SIGSEGV, true);
4410     set_signal_handler(SIGPIPE, true);
4411     set_signal_handler(SIGBUS, true);
4412     set_signal_handler(SIGILL, true);
4413     set_signal_handler(SIGFPE, true);
4414 #if defined(PPC64)
4415     set_signal_handler(SIGTRAP, true);
4416 #endif
4417     set_signal_handler(SIGXFSZ, true);
4418 
4419     if (libjsig_is_loaded) {
4420       // Tell libjsig jvm finishes setting signal handlers
4421       (*end_signal_setting)();
4422     }
4423 
4424     // We don't activate signal checker if libjsig is in place, we trust ourselves
4425     // and if UserSignalHandler is installed all bets are off.
4426     // Log that signal checking is off only if -verbose:jni is specified.
4427     if (CheckJNICalls) {
4428       if (libjsig_is_loaded) {
4429         if (PrintJNIResolving) {
4430           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4431         }
4432         check_signals = false;
4433       }
4434       if (AllowUserSignalHandlers) {
4435         if (PrintJNIResolving) {
4436           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4437         }
4438         check_signals = false;
4439       }
4440     }
4441   }
4442 }
4443 
4444 // This is the fastest way to get thread cpu time on Linux.
4445 // Returns cpu time (user+sys) for any thread, not only for current.
4446 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4447 // It might work on 2.6.10+ with a special kernel/glibc patch.
4448 // For reference, please, see IEEE Std 1003.1-2004:
4449 //   http://www.unix.org/single_unix_specification
4450 
4451 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4452   struct timespec tp;
4453   int rc = os::Linux::clock_gettime(clockid, &tp);
4454   assert(rc == 0, "clock_gettime is expected to return 0 code");
4455 
4456   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4457 }
4458 
4459 /////
4460 // glibc on Linux platform uses non-documented flag
4461 // to indicate, that some special sort of signal
4462 // trampoline is used.
4463 // We will never set this flag, and we should
4464 // ignore this flag in our diagnostic
4465 #ifdef SIGNIFICANT_SIGNAL_MASK
4466 #undef SIGNIFICANT_SIGNAL_MASK
4467 #endif
4468 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4469 
4470 static const char* get_signal_handler_name(address handler,
4471                                            char* buf, int buflen) {
4472   int offset;
4473   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4474   if (found) {
4475     // skip directory names
4476     const char *p1, *p2;
4477     p1 = buf;
4478     size_t len = strlen(os::file_separator());
4479     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4480     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4481   } else {
4482     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4483   }
4484   return buf;
4485 }
4486 
4487 static void print_signal_handler(outputStream* st, int sig,
4488                                  char* buf, size_t buflen) {
4489   struct sigaction sa;
4490 
4491   sigaction(sig, NULL, &sa);
4492 
4493   // See comment for SIGNIFICANT_SIGNAL_MASK define
4494   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4495 
4496   st->print("%s: ", os::exception_name(sig, buf, buflen));
4497 
4498   address handler = (sa.sa_flags & SA_SIGINFO)
4499     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4500     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4501 
4502   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4503     st->print("SIG_DFL");
4504   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4505     st->print("SIG_IGN");
4506   } else {
4507     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4508   }
4509 
4510   st->print(", sa_mask[0]=");
4511   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4512 
4513   address rh = VMError::get_resetted_sighandler(sig);
4514   // May be, handler was resetted by VMError?
4515   if(rh != NULL) {
4516     handler = rh;
4517     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4518   }
4519 
4520   st->print(", sa_flags=");
4521   os::Posix::print_sa_flags(st, sa.sa_flags);
4522 
4523   // Check: is it our handler?
4524   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4525      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4526     // It is our signal handler
4527     // check for flags, reset system-used one!
4528     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4529       st->print(
4530                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4531                 os::Linux::get_our_sigflags(sig));
4532     }
4533   }
4534   st->cr();
4535 }
4536 
4537 
4538 #define DO_SIGNAL_CHECK(sig) \
4539   if (!sigismember(&check_signal_done, sig)) \
4540     os::Linux::check_signal_handler(sig)
4541 
4542 // This method is a periodic task to check for misbehaving JNI applications
4543 // under CheckJNI, we can add any periodic checks here
4544 
4545 void os::run_periodic_checks() {
4546 
4547   if (check_signals == false) return;
4548 
4549   // SEGV and BUS if overridden could potentially prevent
4550   // generation of hs*.log in the event of a crash, debugging
4551   // such a case can be very challenging, so we absolutely
4552   // check the following for a good measure:
4553   DO_SIGNAL_CHECK(SIGSEGV);
4554   DO_SIGNAL_CHECK(SIGILL);
4555   DO_SIGNAL_CHECK(SIGFPE);
4556   DO_SIGNAL_CHECK(SIGBUS);
4557   DO_SIGNAL_CHECK(SIGPIPE);
4558   DO_SIGNAL_CHECK(SIGXFSZ);
4559 #if defined(PPC64)
4560   DO_SIGNAL_CHECK(SIGTRAP);
4561 #endif
4562 
4563   // ReduceSignalUsage allows the user to override these handlers
4564   // see comments at the very top and jvm_solaris.h
4565   if (!ReduceSignalUsage) {
4566     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4567     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4568     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4569     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4570   }
4571 
4572   DO_SIGNAL_CHECK(SR_signum);
4573   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4574 }
4575 
4576 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4577 
4578 static os_sigaction_t os_sigaction = NULL;
4579 
4580 void os::Linux::check_signal_handler(int sig) {
4581   char buf[O_BUFLEN];
4582   address jvmHandler = NULL;
4583 
4584 
4585   struct sigaction act;
4586   if (os_sigaction == NULL) {
4587     // only trust the default sigaction, in case it has been interposed
4588     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4589     if (os_sigaction == NULL) return;
4590   }
4591 
4592   os_sigaction(sig, (struct sigaction*)NULL, &act);
4593 
4594 
4595   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4596 
4597   address thisHandler = (act.sa_flags & SA_SIGINFO)
4598     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4599     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4600 
4601 
4602   switch(sig) {
4603   case SIGSEGV:
4604   case SIGBUS:
4605   case SIGFPE:
4606   case SIGPIPE:
4607   case SIGILL:
4608   case SIGXFSZ:
4609     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4610     break;
4611 
4612   case SHUTDOWN1_SIGNAL:
4613   case SHUTDOWN2_SIGNAL:
4614   case SHUTDOWN3_SIGNAL:
4615   case BREAK_SIGNAL:
4616     jvmHandler = (address)user_handler();
4617     break;
4618 
4619   case INTERRUPT_SIGNAL:
4620     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4621     break;
4622 
4623   default:
4624     if (sig == SR_signum) {
4625       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4626     } else {
4627       return;
4628     }
4629     break;
4630   }
4631 
4632   if (thisHandler != jvmHandler) {
4633     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4634     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4635     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4636     // No need to check this sig any longer
4637     sigaddset(&check_signal_done, sig);
4638   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4639     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4640     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4641     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4642     // No need to check this sig any longer
4643     sigaddset(&check_signal_done, sig);
4644   }
4645 
4646   // Dump all the signal
4647   if (sigismember(&check_signal_done, sig)) {
4648     print_signal_handlers(tty, buf, O_BUFLEN);
4649   }
4650 }
4651 
4652 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4653 
4654 extern bool signal_name(int signo, char* buf, size_t len);
4655 
4656 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4657   if (0 < exception_code && exception_code <= SIGRTMAX) {
4658     // signal
4659     if (!signal_name(exception_code, buf, size)) {
4660       jio_snprintf(buf, size, "SIG%d", exception_code);
4661     }
4662     return buf;
4663   } else {
4664     return NULL;
4665   }
4666 }
4667 
4668 // this is called _before_ the most of global arguments have been parsed
4669 void os::init(void) {
4670   char dummy;   /* used to get a guess on initial stack address */
4671 //  first_hrtime = gethrtime();
4672 
4673   // With LinuxThreads the JavaMain thread pid (primordial thread)
4674   // is different than the pid of the java launcher thread.
4675   // So, on Linux, the launcher thread pid is passed to the VM
4676   // via the sun.java.launcher.pid property.
4677   // Use this property instead of getpid() if it was correctly passed.
4678   // See bug 6351349.
4679   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4680 
4681   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4682 
4683   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4684 
4685   init_random(1234567);
4686 
4687   ThreadCritical::initialize();
4688 
4689   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4690   if (Linux::page_size() == -1) {
4691     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4692                   strerror(errno)));
4693   }
4694   init_page_sizes((size_t) Linux::page_size());
4695 
4696   Linux::initialize_system_info();
4697 
4698   // main_thread points to the aboriginal thread
4699   Linux::_main_thread = pthread_self();
4700 
4701   Linux::clock_init();
4702   initial_time_count = javaTimeNanos();
4703 
4704   // pthread_condattr initialization for monotonic clock
4705   int status;
4706   pthread_condattr_t* _condattr = os::Linux::condAttr();
4707   if ((status = pthread_condattr_init(_condattr)) != 0) {
4708     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4709   }
4710   // Only set the clock if CLOCK_MONOTONIC is available
4711   if (Linux::supports_monotonic_clock()) {
4712     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4713       if (status == EINVAL) {
4714         warning("Unable to use monotonic clock with relative timed-waits" \
4715                 " - changes to the time-of-day clock may have adverse affects");
4716       } else {
4717         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4718       }
4719     }
4720   }
4721   // else it defaults to CLOCK_REALTIME
4722 
4723   pthread_mutex_init(&dl_mutex, NULL);
4724 
4725   // If the pagesize of the VM is greater than 8K determine the appropriate
4726   // number of initial guard pages.  The user can change this with the
4727   // command line arguments, if needed.
4728   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4729     StackYellowPages = 1;
4730     StackRedPages = 1;
4731     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4732   }
4733 }
4734 
4735 // To install functions for atexit system call
4736 extern "C" {
4737   static void perfMemory_exit_helper() {
4738     perfMemory_exit();
4739   }
4740 }
4741 
4742 // this is called _after_ the global arguments have been parsed
4743 jint os::init_2(void)
4744 {
4745   Linux::fast_thread_clock_init();
4746 
4747   // Allocate a single page and mark it as readable for safepoint polling
4748   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4749   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4750 
4751   os::set_polling_page( polling_page );
4752 
4753 #ifndef PRODUCT
4754   if(Verbose && PrintMiscellaneous)
4755     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4756 #endif
4757 
4758   if (!UseMembar) {
4759     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4760     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4761     os::set_memory_serialize_page( mem_serialize_page );
4762 
4763 #ifndef PRODUCT
4764     if(Verbose && PrintMiscellaneous)
4765       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4766 #endif
4767   }
4768 
4769   // initialize suspend/resume support - must do this before signal_sets_init()
4770   if (SR_initialize() != 0) {
4771     perror("SR_initialize failed");
4772     return JNI_ERR;
4773   }
4774 
4775   Linux::signal_sets_init();
4776   Linux::install_signal_handlers();
4777 
4778   // Check minimum allowable stack size for thread creation and to initialize
4779   // the java system classes, including StackOverflowError - depends on page
4780   // size.  Add a page for compiler2 recursion in main thread.
4781   // Add in 2*BytesPerWord times page size to account for VM stack during
4782   // class initialization depending on 32 or 64 bit VM.
4783   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4784             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4785                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4786 
4787   size_t threadStackSizeInBytes = ThreadStackSize * K;
4788   if (threadStackSizeInBytes != 0 &&
4789       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4790         tty->print_cr("\nThe stack size specified is too small, "
4791                       "Specify at least %dk",
4792                       os::Linux::min_stack_allowed/ K);
4793         return JNI_ERR;
4794   }
4795 
4796   // Make the stack size a multiple of the page size so that
4797   // the yellow/red zones can be guarded.
4798   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4799         vm_page_size()));
4800 
4801   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4802 
4803 #if defined(IA32)
4804   workaround_expand_exec_shield_cs_limit();
4805 #endif
4806 
4807   Linux::libpthread_init();
4808   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4809      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4810           Linux::glibc_version(), Linux::libpthread_version(),
4811           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4812   }
4813 
4814   if (UseNUMA) {
4815     if (!Linux::libnuma_init()) {
4816       UseNUMA = false;
4817     } else {
4818       if ((Linux::numa_max_node() < 1)) {
4819         // There's only one node(they start from 0), disable NUMA.
4820         UseNUMA = false;
4821       }
4822     }
4823     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4824     // we can make the adaptive lgrp chunk resizing work. If the user specified
4825     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4826     // disable adaptive resizing.
4827     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4828       if (FLAG_IS_DEFAULT(UseNUMA)) {
4829         UseNUMA = false;
4830       } else {
4831         if (FLAG_IS_DEFAULT(UseLargePages) &&
4832             FLAG_IS_DEFAULT(UseSHM) &&
4833             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4834           UseLargePages = false;
4835         } else {
4836           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4837           UseAdaptiveSizePolicy = false;
4838           UseAdaptiveNUMAChunkSizing = false;
4839         }
4840       }
4841     }
4842     if (!UseNUMA && ForceNUMA) {
4843       UseNUMA = true;
4844     }
4845   }
4846 
4847   if (MaxFDLimit) {
4848     // set the number of file descriptors to max. print out error
4849     // if getrlimit/setrlimit fails but continue regardless.
4850     struct rlimit nbr_files;
4851     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4852     if (status != 0) {
4853       if (PrintMiscellaneous && (Verbose || WizardMode))
4854         perror("os::init_2 getrlimit failed");
4855     } else {
4856       nbr_files.rlim_cur = nbr_files.rlim_max;
4857       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4858       if (status != 0) {
4859         if (PrintMiscellaneous && (Verbose || WizardMode))
4860           perror("os::init_2 setrlimit failed");
4861       }
4862     }
4863   }
4864 
4865   // Initialize lock used to serialize thread creation (see os::create_thread)
4866   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4867 
4868   // at-exit methods are called in the reverse order of their registration.
4869   // atexit functions are called on return from main or as a result of a
4870   // call to exit(3C). There can be only 32 of these functions registered
4871   // and atexit() does not set errno.
4872 
4873   if (PerfAllowAtExitRegistration) {
4874     // only register atexit functions if PerfAllowAtExitRegistration is set.
4875     // atexit functions can be delayed until process exit time, which
4876     // can be problematic for embedded VM situations. Embedded VMs should
4877     // call DestroyJavaVM() to assure that VM resources are released.
4878 
4879     // note: perfMemory_exit_helper atexit function may be removed in
4880     // the future if the appropriate cleanup code can be added to the
4881     // VM_Exit VMOperation's doit method.
4882     if (atexit(perfMemory_exit_helper) != 0) {
4883       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4884     }
4885   }
4886 
4887   // initialize thread priority policy
4888   prio_init();
4889 
4890   return JNI_OK;
4891 }
4892 
4893 // Mark the polling page as unreadable
4894 void os::make_polling_page_unreadable(void) {
4895   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4896     fatal("Could not disable polling page");
4897 };
4898 
4899 // Mark the polling page as readable
4900 void os::make_polling_page_readable(void) {
4901   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4902     fatal("Could not enable polling page");
4903   }
4904 };
4905 
4906 int os::active_processor_count() {
4907   // Linux doesn't yet have a (official) notion of processor sets,
4908   // so just return the number of online processors.
4909   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4910   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4911   return online_cpus;
4912 }
4913 
4914 void os::set_native_thread_name(const char *name) {
4915   // Not yet implemented.
4916   return;
4917 }
4918 
4919 bool os::distribute_processes(uint length, uint* distribution) {
4920   // Not yet implemented.
4921   return false;
4922 }
4923 
4924 bool os::bind_to_processor(uint processor_id) {
4925   // Not yet implemented.
4926   return false;
4927 }
4928 
4929 ///
4930 
4931 void os::SuspendedThreadTask::internal_do_task() {
4932   if (do_suspend(_thread->osthread())) {
4933     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4934     do_task(context);
4935     do_resume(_thread->osthread());
4936   }
4937 }
4938 
4939 class PcFetcher : public os::SuspendedThreadTask {
4940 public:
4941   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4942   ExtendedPC result();
4943 protected:
4944   void do_task(const os::SuspendedThreadTaskContext& context);
4945 private:
4946   ExtendedPC _epc;
4947 };
4948 
4949 ExtendedPC PcFetcher::result() {
4950   guarantee(is_done(), "task is not done yet.");
4951   return _epc;
4952 }
4953 
4954 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4955   Thread* thread = context.thread();
4956   OSThread* osthread = thread->osthread();
4957   if (osthread->ucontext() != NULL) {
4958     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4959   } else {
4960     // NULL context is unexpected, double-check this is the VMThread
4961     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4962   }
4963 }
4964 
4965 // Suspends the target using the signal mechanism and then grabs the PC before
4966 // resuming the target. Used by the flat-profiler only
4967 ExtendedPC os::get_thread_pc(Thread* thread) {
4968   // Make sure that it is called by the watcher for the VMThread
4969   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4970   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4971 
4972   PcFetcher fetcher(thread);
4973   fetcher.run();
4974   return fetcher.result();
4975 }
4976 
4977 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4978 {
4979    if (is_NPTL()) {
4980       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4981    } else {
4982       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4983       // word back to default 64bit precision if condvar is signaled. Java
4984       // wants 53bit precision.  Save and restore current value.
4985       int fpu = get_fpu_control_word();
4986       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4987       set_fpu_control_word(fpu);
4988       return status;
4989    }
4990 }
4991 
4992 ////////////////////////////////////////////////////////////////////////////////
4993 // debug support
4994 
4995 bool os::find(address addr, outputStream* st) {
4996   Dl_info dlinfo;
4997   memset(&dlinfo, 0, sizeof(dlinfo));
4998   if (dladdr(addr, &dlinfo) != 0) {
4999     st->print(PTR_FORMAT ": ", addr);
5000     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5001       st->print("%s+%#x", dlinfo.dli_sname,
5002                  addr - (intptr_t)dlinfo.dli_saddr);
5003     } else if (dlinfo.dli_fbase != NULL) {
5004       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5005     } else {
5006       st->print("<absolute address>");
5007     }
5008     if (dlinfo.dli_fname != NULL) {
5009       st->print(" in %s", dlinfo.dli_fname);
5010     }
5011     if (dlinfo.dli_fbase != NULL) {
5012       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5013     }
5014     st->cr();
5015 
5016     if (Verbose) {
5017       // decode some bytes around the PC
5018       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5019       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5020       address       lowest = (address) dlinfo.dli_sname;
5021       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5022       if (begin < lowest)  begin = lowest;
5023       Dl_info dlinfo2;
5024       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5025           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5026         end = (address) dlinfo2.dli_saddr;
5027       Disassembler::decode(begin, end, st);
5028     }
5029     return true;
5030   }
5031   return false;
5032 }
5033 
5034 ////////////////////////////////////////////////////////////////////////////////
5035 // misc
5036 
5037 // This does not do anything on Linux. This is basically a hook for being
5038 // able to use structured exception handling (thread-local exception filters)
5039 // on, e.g., Win32.
5040 void
5041 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5042                          JavaCallArguments* args, Thread* thread) {
5043   f(value, method, args, thread);
5044 }
5045 
5046 void os::print_statistics() {
5047 }
5048 
5049 int os::message_box(const char* title, const char* message) {
5050   int i;
5051   fdStream err(defaultStream::error_fd());
5052   for (i = 0; i < 78; i++) err.print_raw("=");
5053   err.cr();
5054   err.print_raw_cr(title);
5055   for (i = 0; i < 78; i++) err.print_raw("-");
5056   err.cr();
5057   err.print_raw_cr(message);
5058   for (i = 0; i < 78; i++) err.print_raw("=");
5059   err.cr();
5060 
5061   char buf[16];
5062   // Prevent process from exiting upon "read error" without consuming all CPU
5063   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5064 
5065   return buf[0] == 'y' || buf[0] == 'Y';
5066 }
5067 
5068 int os::stat(const char *path, struct stat *sbuf) {
5069   char pathbuf[MAX_PATH];
5070   if (strlen(path) > MAX_PATH - 1) {
5071     errno = ENAMETOOLONG;
5072     return -1;
5073   }
5074   os::native_path(strcpy(pathbuf, path));
5075   return ::stat(pathbuf, sbuf);
5076 }
5077 
5078 bool os::check_heap(bool force) {
5079   return true;
5080 }
5081 
5082 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5083   return ::vsnprintf(buf, count, format, args);
5084 }
5085 
5086 // Is a (classpath) directory empty?
5087 bool os::dir_is_empty(const char* path) {
5088   DIR *dir = NULL;
5089   struct dirent *ptr;
5090 
5091   dir = opendir(path);
5092   if (dir == NULL) return true;
5093 
5094   /* Scan the directory */
5095   bool result = true;
5096   char buf[sizeof(struct dirent) + MAX_PATH];
5097   while (result && (ptr = ::readdir(dir)) != NULL) {
5098     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5099       result = false;
5100     }
5101   }
5102   closedir(dir);
5103   return result;
5104 }
5105 
5106 // This code originates from JDK's sysOpen and open64_w
5107 // from src/solaris/hpi/src/system_md.c
5108 
5109 #ifndef O_DELETE
5110 #define O_DELETE 0x10000
5111 #endif
5112 
5113 // Open a file. Unlink the file immediately after open returns
5114 // if the specified oflag has the O_DELETE flag set.
5115 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5116 
5117 int os::open(const char *path, int oflag, int mode) {
5118 
5119   if (strlen(path) > MAX_PATH - 1) {
5120     errno = ENAMETOOLONG;
5121     return -1;
5122   }
5123   int fd;
5124   int o_delete = (oflag & O_DELETE);
5125   oflag = oflag & ~O_DELETE;
5126 
5127   fd = ::open64(path, oflag, mode);
5128   if (fd == -1) return -1;
5129 
5130   //If the open succeeded, the file might still be a directory
5131   {
5132     struct stat64 buf64;
5133     int ret = ::fstat64(fd, &buf64);
5134     int st_mode = buf64.st_mode;
5135 
5136     if (ret != -1) {
5137       if ((st_mode & S_IFMT) == S_IFDIR) {
5138         errno = EISDIR;
5139         ::close(fd);
5140         return -1;
5141       }
5142     } else {
5143       ::close(fd);
5144       return -1;
5145     }
5146   }
5147 
5148     /*
5149      * All file descriptors that are opened in the JVM and not
5150      * specifically destined for a subprocess should have the
5151      * close-on-exec flag set.  If we don't set it, then careless 3rd
5152      * party native code might fork and exec without closing all
5153      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5154      * UNIXProcess.c), and this in turn might:
5155      *
5156      * - cause end-of-file to fail to be detected on some file
5157      *   descriptors, resulting in mysterious hangs, or
5158      *
5159      * - might cause an fopen in the subprocess to fail on a system
5160      *   suffering from bug 1085341.
5161      *
5162      * (Yes, the default setting of the close-on-exec flag is a Unix
5163      * design flaw)
5164      *
5165      * See:
5166      * 1085341: 32-bit stdio routines should support file descriptors >255
5167      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5168      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5169      */
5170 #ifdef FD_CLOEXEC
5171     {
5172         int flags = ::fcntl(fd, F_GETFD);
5173         if (flags != -1)
5174             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5175     }
5176 #endif
5177 
5178   if (o_delete != 0) {
5179     ::unlink(path);
5180   }
5181   return fd;
5182 }
5183 
5184 
5185 // create binary file, rewriting existing file if required
5186 int os::create_binary_file(const char* path, bool rewrite_existing) {
5187   int oflags = O_WRONLY | O_CREAT;
5188   if (!rewrite_existing) {
5189     oflags |= O_EXCL;
5190   }
5191   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5192 }
5193 
5194 // return current position of file pointer
5195 jlong os::current_file_offset(int fd) {
5196   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5197 }
5198 
5199 // move file pointer to the specified offset
5200 jlong os::seek_to_file_offset(int fd, jlong offset) {
5201   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5202 }
5203 
5204 // This code originates from JDK's sysAvailable
5205 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5206 
5207 int os::available(int fd, jlong *bytes) {
5208   jlong cur, end;
5209   int mode;
5210   struct stat64 buf64;
5211 
5212   if (::fstat64(fd, &buf64) >= 0) {
5213     mode = buf64.st_mode;
5214     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5215       /*
5216       * XXX: is the following call interruptible? If so, this might
5217       * need to go through the INTERRUPT_IO() wrapper as for other
5218       * blocking, interruptible calls in this file.
5219       */
5220       int n;
5221       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5222         *bytes = n;
5223         return 1;
5224       }
5225     }
5226   }
5227   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5228     return 0;
5229   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5230     return 0;
5231   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5232     return 0;
5233   }
5234   *bytes = end - cur;
5235   return 1;
5236 }
5237 
5238 int os::socket_available(int fd, jint *pbytes) {
5239   // Linux doc says EINTR not returned, unlike Solaris
5240   int ret = ::ioctl(fd, FIONREAD, pbytes);
5241 
5242   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5243   // is expected to return 0 on failure and 1 on success to the jdk.
5244   return (ret < 0) ? 0 : 1;
5245 }
5246 
5247 // Map a block of memory.
5248 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5249                      char *addr, size_t bytes, bool read_only,
5250                      bool allow_exec) {
5251   int prot;
5252   int flags = MAP_PRIVATE;
5253 
5254   if (read_only) {
5255     prot = PROT_READ;
5256   } else {
5257     prot = PROT_READ | PROT_WRITE;
5258   }
5259 
5260   if (allow_exec) {
5261     prot |= PROT_EXEC;
5262   }
5263 
5264   if (addr != NULL) {
5265     flags |= MAP_FIXED;
5266   }
5267 
5268   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5269                                      fd, file_offset);
5270   if (mapped_address == MAP_FAILED) {
5271     return NULL;
5272   }
5273   return mapped_address;
5274 }
5275 
5276 
5277 // Remap a block of memory.
5278 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5279                        char *addr, size_t bytes, bool read_only,
5280                        bool allow_exec) {
5281   // same as map_memory() on this OS
5282   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5283                         allow_exec);
5284 }
5285 
5286 
5287 // Unmap a block of memory.
5288 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5289   return munmap(addr, bytes) == 0;
5290 }
5291 
5292 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5293 
5294 static clockid_t thread_cpu_clockid(Thread* thread) {
5295   pthread_t tid = thread->osthread()->pthread_id();
5296   clockid_t clockid;
5297 
5298   // Get thread clockid
5299   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5300   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5301   return clockid;
5302 }
5303 
5304 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5305 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5306 // of a thread.
5307 //
5308 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5309 // the fast estimate available on the platform.
5310 
5311 jlong os::current_thread_cpu_time() {
5312   if (os::Linux::supports_fast_thread_cpu_time()) {
5313     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5314   } else {
5315     // return user + sys since the cost is the same
5316     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5317   }
5318 }
5319 
5320 jlong os::thread_cpu_time(Thread* thread) {
5321   // consistent with what current_thread_cpu_time() returns
5322   if (os::Linux::supports_fast_thread_cpu_time()) {
5323     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5324   } else {
5325     return slow_thread_cpu_time(thread, true /* user + sys */);
5326   }
5327 }
5328 
5329 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5330   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5331     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5332   } else {
5333     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5334   }
5335 }
5336 
5337 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5338   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5339     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5340   } else {
5341     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5342   }
5343 }
5344 
5345 //
5346 //  -1 on error.
5347 //
5348 
5349 PRAGMA_DIAG_PUSH
5350 PRAGMA_FORMAT_NONLITERAL_IGNORED
5351 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5352   static bool proc_task_unchecked = true;
5353   static const char *proc_stat_path = "/proc/%d/stat";
5354   pid_t  tid = thread->osthread()->thread_id();
5355   char *s;
5356   char stat[2048];
5357   int statlen;
5358   char proc_name[64];
5359   int count;
5360   long sys_time, user_time;
5361   char cdummy;
5362   int idummy;
5363   long ldummy;
5364   FILE *fp;
5365 
5366   // The /proc/<tid>/stat aggregates per-process usage on
5367   // new Linux kernels 2.6+ where NPTL is supported.
5368   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5369   // See bug 6328462.
5370   // There possibly can be cases where there is no directory
5371   // /proc/self/task, so we check its availability.
5372   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5373     // This is executed only once
5374     proc_task_unchecked = false;
5375     fp = fopen("/proc/self/task", "r");
5376     if (fp != NULL) {
5377       proc_stat_path = "/proc/self/task/%d/stat";
5378       fclose(fp);
5379     }
5380   }
5381 
5382   sprintf(proc_name, proc_stat_path, tid);
5383   fp = fopen(proc_name, "r");
5384   if ( fp == NULL ) return -1;
5385   statlen = fread(stat, 1, 2047, fp);
5386   stat[statlen] = '\0';
5387   fclose(fp);
5388 
5389   // Skip pid and the command string. Note that we could be dealing with
5390   // weird command names, e.g. user could decide to rename java launcher
5391   // to "java 1.4.2 :)", then the stat file would look like
5392   //                1234 (java 1.4.2 :)) R ... ...
5393   // We don't really need to know the command string, just find the last
5394   // occurrence of ")" and then start parsing from there. See bug 4726580.
5395   s = strrchr(stat, ')');
5396   if (s == NULL ) return -1;
5397 
5398   // Skip blank chars
5399   do s++; while (isspace(*s));
5400 
5401   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5402                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5403                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5404                  &user_time, &sys_time);
5405   if ( count != 13 ) return -1;
5406   if (user_sys_cpu_time) {
5407     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5408   } else {
5409     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5410   }
5411 }
5412 PRAGMA_DIAG_POP
5413 
5414 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5415   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5416   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5417   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5418   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5419 }
5420 
5421 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5422   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5423   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5424   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5425   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5426 }
5427 
5428 bool os::is_thread_cpu_time_supported() {
5429   return true;
5430 }
5431 
5432 // System loadavg support.  Returns -1 if load average cannot be obtained.
5433 // Linux doesn't yet have a (official) notion of processor sets,
5434 // so just return the system wide load average.
5435 int os::loadavg(double loadavg[], int nelem) {
5436   return ::getloadavg(loadavg, nelem);
5437 }
5438 
5439 void os::pause() {
5440   char filename[MAX_PATH];
5441   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5442     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5443   } else {
5444     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5445   }
5446 
5447   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5448   if (fd != -1) {
5449     struct stat buf;
5450     ::close(fd);
5451     while (::stat(filename, &buf) == 0) {
5452       (void)::poll(NULL, 0, 100);
5453     }
5454   } else {
5455     jio_fprintf(stderr,
5456       "Could not open pause file '%s', continuing immediately.\n", filename);
5457   }
5458 }
5459 
5460 
5461 // Refer to the comments in os_solaris.cpp park-unpark.
5462 //
5463 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5464 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5465 // For specifics regarding the bug see GLIBC BUGID 261237 :
5466 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5467 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5468 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5469 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5470 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5471 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5472 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5473 // of libpthread avoids the problem, but isn't practical.
5474 //
5475 // Possible remedies:
5476 //
5477 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5478 //      This is palliative and probabilistic, however.  If the thread is preempted
5479 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5480 //      than the minimum period may have passed, and the abstime may be stale (in the
5481 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5482 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5483 //
5484 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5485 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5486 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5487 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5488 //      thread.
5489 //
5490 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5491 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5492 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5493 //      This also works well.  In fact it avoids kernel-level scalability impediments
5494 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5495 //      timers in a graceful fashion.
5496 //
5497 // 4.   When the abstime value is in the past it appears that control returns
5498 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5499 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5500 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5501 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5502 //      It may be possible to avoid reinitialization by checking the return
5503 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5504 //      condvar we must establish the invariant that cond_signal() is only called
5505 //      within critical sections protected by the adjunct mutex.  This prevents
5506 //      cond_signal() from "seeing" a condvar that's in the midst of being
5507 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5508 //      desirable signal-after-unlock optimization that avoids futile context switching.
5509 //
5510 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5511 //      structure when a condvar is used or initialized.  cond_destroy()  would
5512 //      release the helper structure.  Our reinitialize-after-timedwait fix
5513 //      put excessive stress on malloc/free and locks protecting the c-heap.
5514 //
5515 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5516 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5517 // and only enabling the work-around for vulnerable environments.
5518 
5519 // utility to compute the abstime argument to timedwait:
5520 // millis is the relative timeout time
5521 // abstime will be the absolute timeout time
5522 // TODO: replace compute_abstime() with unpackTime()
5523 
5524 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5525   if (millis < 0)  millis = 0;
5526 
5527   jlong seconds = millis / 1000;
5528   millis %= 1000;
5529   if (seconds > 50000000) { // see man cond_timedwait(3T)
5530     seconds = 50000000;
5531   }
5532 
5533   if (os::Linux::supports_monotonic_clock()) {
5534     struct timespec now;
5535     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5536     assert_status(status == 0, status, "clock_gettime");
5537     abstime->tv_sec = now.tv_sec  + seconds;
5538     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5539     if (nanos >= NANOSECS_PER_SEC) {
5540       abstime->tv_sec += 1;
5541       nanos -= NANOSECS_PER_SEC;
5542     }
5543     abstime->tv_nsec = nanos;
5544   } else {
5545     struct timeval now;
5546     int status = gettimeofday(&now, NULL);
5547     assert(status == 0, "gettimeofday");
5548     abstime->tv_sec = now.tv_sec  + seconds;
5549     long usec = now.tv_usec + millis * 1000;
5550     if (usec >= 1000000) {
5551       abstime->tv_sec += 1;
5552       usec -= 1000000;
5553     }
5554     abstime->tv_nsec = usec * 1000;
5555   }
5556   return abstime;
5557 }
5558 
5559 
5560 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5561 // Conceptually TryPark() should be equivalent to park(0).
5562 
5563 int os::PlatformEvent::TryPark() {
5564   for (;;) {
5565     const int v = _Event ;
5566     guarantee ((v == 0) || (v == 1), "invariant") ;
5567     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5568   }
5569 }
5570 
5571 void os::PlatformEvent::park() {       // AKA "down()"
5572   // Invariant: Only the thread associated with the Event/PlatformEvent
5573   // may call park().
5574   // TODO: assert that _Assoc != NULL or _Assoc == Self
5575   int v ;
5576   for (;;) {
5577       v = _Event ;
5578       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5579   }
5580   guarantee (v >= 0, "invariant") ;
5581   if (v == 0) {
5582      // Do this the hard way by blocking ...
5583      int status = pthread_mutex_lock(_mutex);
5584      assert_status(status == 0, status, "mutex_lock");
5585      guarantee (_nParked == 0, "invariant") ;
5586      ++ _nParked ;
5587      while (_Event < 0) {
5588         status = pthread_cond_wait(_cond, _mutex);
5589         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5590         // Treat this the same as if the wait was interrupted
5591         if (status == ETIME) { status = EINTR; }
5592         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5593      }
5594      -- _nParked ;
5595 
5596     _Event = 0 ;
5597      status = pthread_mutex_unlock(_mutex);
5598      assert_status(status == 0, status, "mutex_unlock");
5599     // Paranoia to ensure our locked and lock-free paths interact
5600     // correctly with each other.
5601     OrderAccess::fence();
5602   }
5603   guarantee (_Event >= 0, "invariant") ;
5604 }
5605 
5606 int os::PlatformEvent::park(jlong millis) {
5607   guarantee (_nParked == 0, "invariant") ;
5608 
5609   int v ;
5610   for (;;) {
5611       v = _Event ;
5612       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5613   }
5614   guarantee (v >= 0, "invariant") ;
5615   if (v != 0) return OS_OK ;
5616 
5617   // We do this the hard way, by blocking the thread.
5618   // Consider enforcing a minimum timeout value.
5619   struct timespec abst;
5620   compute_abstime(&abst, millis);
5621 
5622   int ret = OS_TIMEOUT;
5623   int status = pthread_mutex_lock(_mutex);
5624   assert_status(status == 0, status, "mutex_lock");
5625   guarantee (_nParked == 0, "invariant") ;
5626   ++_nParked ;
5627 
5628   // Object.wait(timo) will return because of
5629   // (a) notification
5630   // (b) timeout
5631   // (c) thread.interrupt
5632   //
5633   // Thread.interrupt and object.notify{All} both call Event::set.
5634   // That is, we treat thread.interrupt as a special case of notification.
5635   // The underlying Solaris implementation, cond_timedwait, admits
5636   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5637   // JVM from making those visible to Java code.  As such, we must
5638   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5639   //
5640   // TODO: properly differentiate simultaneous notify+interrupt.
5641   // In that case, we should propagate the notify to another waiter.
5642 
5643   while (_Event < 0) {
5644     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5645     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5646       pthread_cond_destroy (_cond);
5647       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5648     }
5649     assert_status(status == 0 || status == EINTR ||
5650                   status == ETIME || status == ETIMEDOUT,
5651                   status, "cond_timedwait");
5652     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5653     if (status == ETIME || status == ETIMEDOUT) break ;
5654     // We consume and ignore EINTR and spurious wakeups.
5655   }
5656   --_nParked ;
5657   if (_Event >= 0) {
5658      ret = OS_OK;
5659   }
5660   _Event = 0 ;
5661   status = pthread_mutex_unlock(_mutex);
5662   assert_status(status == 0, status, "mutex_unlock");
5663   assert (_nParked == 0, "invariant") ;
5664   // Paranoia to ensure our locked and lock-free paths interact
5665   // correctly with each other.
5666   OrderAccess::fence();
5667   return ret;
5668 }
5669 
5670 void os::PlatformEvent::unpark() {
5671   // Transitions for _Event:
5672   //    0 :=> 1
5673   //    1 :=> 1
5674   //   -1 :=> either 0 or 1; must signal target thread
5675   //          That is, we can safely transition _Event from -1 to either
5676   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5677   //          unpark() calls.
5678   // See also: "Semaphores in Plan 9" by Mullender & Cox
5679   //
5680   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5681   // that it will take two back-to-back park() calls for the owning
5682   // thread to block. This has the benefit of forcing a spurious return
5683   // from the first park() call after an unpark() call which will help
5684   // shake out uses of park() and unpark() without condition variables.
5685 
5686   if (Atomic::xchg(1, &_Event) >= 0) return;
5687 
5688   // Wait for the thread associated with the event to vacate
5689   int status = pthread_mutex_lock(_mutex);
5690   assert_status(status == 0, status, "mutex_lock");
5691   int AnyWaiters = _nParked;
5692   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5693   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5694     AnyWaiters = 0;
5695     pthread_cond_signal(_cond);
5696   }
5697   status = pthread_mutex_unlock(_mutex);
5698   assert_status(status == 0, status, "mutex_unlock");
5699   if (AnyWaiters != 0) {
5700     status = pthread_cond_signal(_cond);
5701     assert_status(status == 0, status, "cond_signal");
5702   }
5703 
5704   // Note that we signal() _after dropping the lock for "immortal" Events.
5705   // This is safe and avoids a common class of  futile wakeups.  In rare
5706   // circumstances this can cause a thread to return prematurely from
5707   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5708   // simply re-test the condition and re-park itself.
5709 }
5710 
5711 
5712 // JSR166
5713 // -------------------------------------------------------
5714 
5715 /*
5716  * The solaris and linux implementations of park/unpark are fairly
5717  * conservative for now, but can be improved. They currently use a
5718  * mutex/condvar pair, plus a a count.
5719  * Park decrements count if > 0, else does a condvar wait.  Unpark
5720  * sets count to 1 and signals condvar.  Only one thread ever waits
5721  * on the condvar. Contention seen when trying to park implies that someone
5722  * is unparking you, so don't wait. And spurious returns are fine, so there
5723  * is no need to track notifications.
5724  */
5725 
5726 /*
5727  * This code is common to linux and solaris and will be moved to a
5728  * common place in dolphin.
5729  *
5730  * The passed in time value is either a relative time in nanoseconds
5731  * or an absolute time in milliseconds. Either way it has to be unpacked
5732  * into suitable seconds and nanoseconds components and stored in the
5733  * given timespec structure.
5734  * Given time is a 64-bit value and the time_t used in the timespec is only
5735  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5736  * overflow if times way in the future are given. Further on Solaris versions
5737  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5738  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5739  * As it will be 28 years before "now + 100000000" will overflow we can
5740  * ignore overflow and just impose a hard-limit on seconds using the value
5741  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5742  * years from "now".
5743  */
5744 
5745 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5746   assert (time > 0, "convertTime");
5747   time_t max_secs = 0;
5748 
5749   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5750     struct timeval now;
5751     int status = gettimeofday(&now, NULL);
5752     assert(status == 0, "gettimeofday");
5753 
5754     max_secs = now.tv_sec + MAX_SECS;
5755 
5756     if (isAbsolute) {
5757       jlong secs = time / 1000;
5758       if (secs > max_secs) {
5759         absTime->tv_sec = max_secs;
5760       } else {
5761         absTime->tv_sec = secs;
5762       }
5763       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5764     } else {
5765       jlong secs = time / NANOSECS_PER_SEC;
5766       if (secs >= MAX_SECS) {
5767         absTime->tv_sec = max_secs;
5768         absTime->tv_nsec = 0;
5769       } else {
5770         absTime->tv_sec = now.tv_sec + secs;
5771         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5772         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5773           absTime->tv_nsec -= NANOSECS_PER_SEC;
5774           ++absTime->tv_sec; // note: this must be <= max_secs
5775         }
5776       }
5777     }
5778   } else {
5779     // must be relative using monotonic clock
5780     struct timespec now;
5781     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5782     assert_status(status == 0, status, "clock_gettime");
5783     max_secs = now.tv_sec + MAX_SECS;
5784     jlong secs = time / NANOSECS_PER_SEC;
5785     if (secs >= MAX_SECS) {
5786       absTime->tv_sec = max_secs;
5787       absTime->tv_nsec = 0;
5788     } else {
5789       absTime->tv_sec = now.tv_sec + secs;
5790       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5791       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5792         absTime->tv_nsec -= NANOSECS_PER_SEC;
5793         ++absTime->tv_sec; // note: this must be <= max_secs
5794       }
5795     }
5796   }
5797   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5798   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5799   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5800   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5801 }
5802 
5803 void Parker::park(bool isAbsolute, jlong time) {
5804   // Ideally we'd do something useful while spinning, such
5805   // as calling unpackTime().
5806 
5807   // Optional fast-path check:
5808   // Return immediately if a permit is available.
5809   // We depend on Atomic::xchg() having full barrier semantics
5810   // since we are doing a lock-free update to _counter.
5811   if (Atomic::xchg(0, &_counter) > 0) return;
5812 
5813   Thread* thread = Thread::current();
5814   assert(thread->is_Java_thread(), "Must be JavaThread");
5815   JavaThread *jt = (JavaThread *)thread;
5816 
5817   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5818   // Check interrupt before trying to wait
5819   if (Thread::is_interrupted(thread, false)) {
5820     return;
5821   }
5822 
5823   // Next, demultiplex/decode time arguments
5824   timespec absTime;
5825   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5826     return;
5827   }
5828   if (time > 0) {
5829     unpackTime(&absTime, isAbsolute, time);
5830   }
5831 
5832 
5833   // Enter safepoint region
5834   // Beware of deadlocks such as 6317397.
5835   // The per-thread Parker:: mutex is a classic leaf-lock.
5836   // In particular a thread must never block on the Threads_lock while
5837   // holding the Parker:: mutex.  If safepoints are pending both the
5838   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5839   ThreadBlockInVM tbivm(jt);
5840 
5841   // Don't wait if cannot get lock since interference arises from
5842   // unblocking.  Also. check interrupt before trying wait
5843   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5844     return;
5845   }
5846 
5847   int status ;
5848   if (_counter > 0)  { // no wait needed
5849     _counter = 0;
5850     status = pthread_mutex_unlock(_mutex);
5851     assert (status == 0, "invariant") ;
5852     // Paranoia to ensure our locked and lock-free paths interact
5853     // correctly with each other and Java-level accesses.
5854     OrderAccess::fence();
5855     return;
5856   }
5857 
5858 #ifdef ASSERT
5859   // Don't catch signals while blocked; let the running threads have the signals.
5860   // (This allows a debugger to break into the running thread.)
5861   sigset_t oldsigs;
5862   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5863   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5864 #endif
5865 
5866   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5867   jt->set_suspend_equivalent();
5868   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5869 
5870   assert(_cur_index == -1, "invariant");
5871   if (time == 0) {
5872     _cur_index = REL_INDEX; // arbitrary choice when not timed
5873     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5874   } else {
5875     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5876     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5877     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5878       pthread_cond_destroy (&_cond[_cur_index]) ;
5879       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5880     }
5881   }
5882   _cur_index = -1;
5883   assert_status(status == 0 || status == EINTR ||
5884                 status == ETIME || status == ETIMEDOUT,
5885                 status, "cond_timedwait");
5886 
5887 #ifdef ASSERT
5888   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5889 #endif
5890 
5891   _counter = 0 ;
5892   status = pthread_mutex_unlock(_mutex) ;
5893   assert_status(status == 0, status, "invariant") ;
5894   // Paranoia to ensure our locked and lock-free paths interact
5895   // correctly with each other and Java-level accesses.
5896   OrderAccess::fence();
5897 
5898   // If externally suspended while waiting, re-suspend
5899   if (jt->handle_special_suspend_equivalent_condition()) {
5900     jt->java_suspend_self();
5901   }
5902 }
5903 
5904 void Parker::unpark() {
5905   int s, status ;
5906   status = pthread_mutex_lock(_mutex);
5907   assert (status == 0, "invariant") ;
5908   s = _counter;
5909   _counter = 1;
5910   if (s < 1) {
5911     // thread might be parked
5912     if (_cur_index != -1) {
5913       // thread is definitely parked
5914       if (WorkAroundNPTLTimedWaitHang) {
5915         status = pthread_cond_signal (&_cond[_cur_index]);
5916         assert (status == 0, "invariant");
5917         status = pthread_mutex_unlock(_mutex);
5918         assert (status == 0, "invariant");
5919       } else {
5920         status = pthread_mutex_unlock(_mutex);
5921         assert (status == 0, "invariant");
5922         status = pthread_cond_signal (&_cond[_cur_index]);
5923         assert (status == 0, "invariant");
5924       }
5925     } else {
5926       pthread_mutex_unlock(_mutex);
5927       assert (status == 0, "invariant") ;
5928     }
5929   } else {
5930     pthread_mutex_unlock(_mutex);
5931     assert (status == 0, "invariant") ;
5932   }
5933 }
5934 
5935 
5936 extern char** environ;
5937 
5938 // Run the specified command in a separate process. Return its exit value,
5939 // or -1 on failure (e.g. can't fork a new process).
5940 // Unlike system(), this function can be called from signal handler. It
5941 // doesn't block SIGINT et al.
5942 int os::fork_and_exec(char* cmd) {
5943   const char * argv[4] = {"sh", "-c", cmd, NULL};
5944 
5945   pid_t pid = fork();
5946 
5947   if (pid < 0) {
5948     // fork failed
5949     return -1;
5950 
5951   } else if (pid == 0) {
5952     // child process
5953 
5954     execve("/bin/sh", (char* const*)argv, environ);
5955 
5956     // execve failed
5957     _exit(-1);
5958 
5959   } else  {
5960     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5961     // care about the actual exit code, for now.
5962 
5963     int status;
5964 
5965     // Wait for the child process to exit.  This returns immediately if
5966     // the child has already exited. */
5967     while (waitpid(pid, &status, 0) < 0) {
5968         switch (errno) {
5969         case ECHILD: return 0;
5970         case EINTR: break;
5971         default: return -1;
5972         }
5973     }
5974 
5975     if (WIFEXITED(status)) {
5976        // The child exited normally; get its exit code.
5977        return WEXITSTATUS(status);
5978     } else if (WIFSIGNALED(status)) {
5979        // The child exited because of a signal
5980        // The best value to return is 0x80 + signal number,
5981        // because that is what all Unix shells do, and because
5982        // it allows callers to distinguish between process exit and
5983        // process death by signal.
5984        return 0x80 + WTERMSIG(status);
5985     } else {
5986        // Unknown exit code; pass it through
5987        return status;
5988     }
5989   }
5990 }
5991 
5992 // is_headless_jre()
5993 //
5994 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5995 // in order to report if we are running in a headless jre
5996 //
5997 // Since JDK8 xawt/libmawt.so was moved into the same directory
5998 // as libawt.so, and renamed libawt_xawt.so
5999 //
6000 bool os::is_headless_jre() {
6001     struct stat statbuf;
6002     char buf[MAXPATHLEN];
6003     char libmawtpath[MAXPATHLEN];
6004     const char *xawtstr  = "/xawt/libmawt.so";
6005     const char *new_xawtstr = "/libawt_xawt.so";
6006     char *p;
6007 
6008     // Get path to libjvm.so
6009     os::jvm_path(buf, sizeof(buf));
6010 
6011     // Get rid of libjvm.so
6012     p = strrchr(buf, '/');
6013     if (p == NULL) return false;
6014     else *p = '\0';
6015 
6016     // Get rid of client or server
6017     p = strrchr(buf, '/');
6018     if (p == NULL) return false;
6019     else *p = '\0';
6020 
6021     // check xawt/libmawt.so
6022     strcpy(libmawtpath, buf);
6023     strcat(libmawtpath, xawtstr);
6024     if (::stat(libmawtpath, &statbuf) == 0) return false;
6025 
6026     // check libawt_xawt.so
6027     strcpy(libmawtpath, buf);
6028     strcat(libmawtpath, new_xawtstr);
6029     if (::stat(libmawtpath, &statbuf) == 0) return false;
6030 
6031     return true;
6032 }
6033 
6034 // Get the default path to the core file
6035 // Returns the length of the string
6036 int os::get_core_path(char* buffer, size_t bufferSize) {
6037   const char* p = get_current_directory(buffer, bufferSize);
6038 
6039   if (p == NULL) {
6040     assert(p != NULL, "failed to get current directory");
6041     return 0;
6042   }
6043 
6044   return strlen(buffer);
6045 }
6046 
6047 /////////////// Unit tests ///////////////
6048 
6049 #ifndef PRODUCT
6050 
6051 #define test_log(...) \
6052   do {\
6053     if (VerboseInternalVMTests) { \
6054       tty->print_cr(__VA_ARGS__); \
6055       tty->flush(); \
6056     }\
6057   } while (false)
6058 
6059 class TestReserveMemorySpecial : AllStatic {
6060  public:
6061   static void small_page_write(void* addr, size_t size) {
6062     size_t page_size = os::vm_page_size();
6063 
6064     char* end = (char*)addr + size;
6065     for (char* p = (char*)addr; p < end; p += page_size) {
6066       *p = 1;
6067     }
6068   }
6069 
6070   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6071     if (!UseHugeTLBFS) {
6072       return;
6073     }
6074 
6075     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6076 
6077     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6078 
6079     if (addr != NULL) {
6080       small_page_write(addr, size);
6081 
6082       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6083     }
6084   }
6085 
6086   static void test_reserve_memory_special_huge_tlbfs_only() {
6087     if (!UseHugeTLBFS) {
6088       return;
6089     }
6090 
6091     size_t lp = os::large_page_size();
6092 
6093     for (size_t size = lp; size <= lp * 10; size += lp) {
6094       test_reserve_memory_special_huge_tlbfs_only(size);
6095     }
6096   }
6097 
6098   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6099     if (!UseHugeTLBFS) {
6100         return;
6101     }
6102 
6103     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6104         size, alignment);
6105 
6106     assert(size >= os::large_page_size(), "Incorrect input to test");
6107 
6108     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6109 
6110     if (addr != NULL) {
6111       small_page_write(addr, size);
6112 
6113       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6114     }
6115   }
6116 
6117   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6118     size_t lp = os::large_page_size();
6119     size_t ag = os::vm_allocation_granularity();
6120 
6121     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6122       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6123     }
6124   }
6125 
6126   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6127     size_t lp = os::large_page_size();
6128     size_t ag = os::vm_allocation_granularity();
6129 
6130     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6131     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6132     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6133     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6134     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6135     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6136     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6137     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6138     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6139   }
6140 
6141   static void test_reserve_memory_special_huge_tlbfs() {
6142     if (!UseHugeTLBFS) {
6143       return;
6144     }
6145 
6146     test_reserve_memory_special_huge_tlbfs_only();
6147     test_reserve_memory_special_huge_tlbfs_mixed();
6148   }
6149 
6150   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6151     if (!UseSHM) {
6152       return;
6153     }
6154 
6155     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6156 
6157     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6158 
6159     if (addr != NULL) {
6160       assert(is_ptr_aligned(addr, alignment), "Check");
6161       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6162 
6163       small_page_write(addr, size);
6164 
6165       os::Linux::release_memory_special_shm(addr, size);
6166     }
6167   }
6168 
6169   static void test_reserve_memory_special_shm() {
6170     size_t lp = os::large_page_size();
6171     size_t ag = os::vm_allocation_granularity();
6172 
6173     for (size_t size = ag; size < lp * 3; size += ag) {
6174       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6175         test_reserve_memory_special_shm(size, alignment);
6176       }
6177     }
6178   }
6179 
6180   static void test() {
6181     test_reserve_memory_special_huge_tlbfs();
6182     test_reserve_memory_special_shm();
6183   }
6184 };
6185 
6186 void TestReserveMemorySpecial_test() {
6187   TestReserveMemorySpecial::test();
6188 }
6189 
6190 #endif