1 /*
   2  * Copyright (c) 1999, 2006, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.Set;
  30 
  31 import com.sun.tools.javac.code.*;
  32 import com.sun.tools.javac.jvm.*;
  33 import com.sun.tools.javac.tree.*;
  34 import com.sun.tools.javac.util.*;
  35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  36 import com.sun.tools.javac.util.List;
  37 
  38 import com.sun.tools.javac.tree.JCTree.*;
  39 import com.sun.tools.javac.code.Lint;
  40 import com.sun.tools.javac.code.Lint.LintCategory;
  41 import com.sun.tools.javac.code.Type.*;
  42 import com.sun.tools.javac.code.Symbol.*;
  43 
  44 import static com.sun.tools.javac.code.Flags.*;
  45 import static com.sun.tools.javac.code.Kinds.*;
  46 import static com.sun.tools.javac.code.TypeTags.*;
  47 
  48 /** Type checking helper class for the attribution phase.
  49  *
  50  *  <p><b>This is NOT part of any supported API.
  51  *  If you write code that depends on this, you do so at your own risk.
  52  *  This code and its internal interfaces are subject to change or
  53  *  deletion without notice.</b>
  54  */
  55 public class Check {
  56     protected static final Context.Key<Check> checkKey =
  57         new Context.Key<Check>();
  58 
  59     private final Name.Table names;
  60     private final Log log;
  61     private final Symtab syms;
  62     private final Infer infer;
  63     private final Target target;
  64     private final Source source;
  65     private final Types types;
  66     private final boolean skipAnnotations;
  67     private final TreeInfo treeinfo;
  68 
  69     // The set of lint options currently in effect. It is initialized
  70     // from the context, and then is set/reset as needed by Attr as it
  71     // visits all the various parts of the trees during attribution.
  72     private Lint lint;
  73 
  74     public static Check instance(Context context) {
  75         Check instance = context.get(checkKey);
  76         if (instance == null)
  77             instance = new Check(context);
  78         return instance;
  79     }
  80 
  81     protected Check(Context context) {
  82         context.put(checkKey, this);
  83 
  84         names = Name.Table.instance(context);
  85         log = Log.instance(context);
  86         syms = Symtab.instance(context);
  87         infer = Infer.instance(context);
  88         this.types = Types.instance(context);
  89         Options options = Options.instance(context);
  90         target = Target.instance(context);
  91         source = Source.instance(context);
  92         lint = Lint.instance(context);
  93         treeinfo = TreeInfo.instance(context);
  94 
  95         Source source = Source.instance(context);
  96         allowGenerics = source.allowGenerics();
  97         allowAnnotations = source.allowAnnotations();
  98         complexInference = options.get("-complexinference") != null;
  99         skipAnnotations = options.get("skipAnnotations") != null;
 100 
 101         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 102         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 103         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
 104 
 105         deprecationHandler = new MandatoryWarningHandler(log,verboseDeprecated,
 106                 enforceMandatoryWarnings, "deprecated");
 107         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
 108                 enforceMandatoryWarnings, "unchecked");
 109     }
 110 
 111     /** Switch: generics enabled?
 112      */
 113     boolean allowGenerics;
 114 
 115     /** Switch: annotations enabled?
 116      */
 117     boolean allowAnnotations;
 118 
 119     /** Switch: -complexinference option set?
 120      */
 121     boolean complexInference;
 122 
 123     /** A table mapping flat names of all compiled classes in this run to their
 124      *  symbols; maintained from outside.
 125      */
 126     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
 127 
 128     /** A handler for messages about deprecated usage.
 129      */
 130     private MandatoryWarningHandler deprecationHandler;
 131 
 132     /** A handler for messages about unchecked or unsafe usage.
 133      */
 134     private MandatoryWarningHandler uncheckedHandler;
 135 
 136 
 137 /* *************************************************************************
 138  * Errors and Warnings
 139  **************************************************************************/
 140 
 141     Lint setLint(Lint newLint) {
 142         Lint prev = lint;
 143         lint = newLint;
 144         return prev;
 145     }
 146 
 147     /** Warn about deprecated symbol.
 148      *  @param pos        Position to be used for error reporting.
 149      *  @param sym        The deprecated symbol.
 150      */
 151     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 152         if (!lint.isSuppressed(LintCategory.DEPRECATION))
 153             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
 154     }
 155 
 156     /** Warn about unchecked operation.
 157      *  @param pos        Position to be used for error reporting.
 158      *  @param msg        A string describing the problem.
 159      */
 160     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
 161         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 162             uncheckedHandler.report(pos, msg, args);
 163     }
 164 
 165     /**
 166      * Report any deferred diagnostics.
 167      */
 168     public void reportDeferredDiagnostics() {
 169         deprecationHandler.reportDeferredDiagnostic();
 170         uncheckedHandler.reportDeferredDiagnostic();
 171     }
 172 
 173 
 174     /** Report a failure to complete a class.
 175      *  @param pos        Position to be used for error reporting.
 176      *  @param ex         The failure to report.
 177      */
 178     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 179         log.error(pos, "cant.access", ex.sym, ex.errmsg);
 180         if (ex instanceof ClassReader.BadClassFile) throw new Abort();
 181         else return syms.errType;
 182     }
 183 
 184     /** Report a type error.
 185      *  @param pos        Position to be used for error reporting.
 186      *  @param problem    A string describing the error.
 187      *  @param found      The type that was found.
 188      *  @param req        The type that was required.
 189      */
 190     Type typeError(DiagnosticPosition pos, Object problem, Type found, Type req) {
 191         log.error(pos, "prob.found.req",
 192                   problem, found, req);
 193         return syms.errType;
 194     }
 195 
 196     Type typeError(DiagnosticPosition pos, String problem, Type found, Type req, Object explanation) {
 197         log.error(pos, "prob.found.req.1", problem, found, req, explanation);
 198         return syms.errType;
 199     }
 200 
 201     /** Report an error that wrong type tag was found.
 202      *  @param pos        Position to be used for error reporting.
 203      *  @param required   An internationalized string describing the type tag
 204      *                    required.
 205      *  @param found      The type that was found.
 206      */
 207     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
 208         log.error(pos, "type.found.req", found, required);
 209         return syms.errType;
 210     }
 211 
 212     /** Report an error that symbol cannot be referenced before super
 213      *  has been called.
 214      *  @param pos        Position to be used for error reporting.
 215      *  @param sym        The referenced symbol.
 216      */
 217     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
 218         log.error(pos, "cant.ref.before.ctor.called", sym);
 219     }
 220 
 221     /** Report duplicate declaration error.
 222      */
 223     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 224         if (!sym.type.isErroneous()) {
 225             log.error(pos, "already.defined", sym, sym.location());
 226         }
 227     }
 228 
 229     /** Report array/varargs duplicate declaration
 230      */
 231     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 232         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 233             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
 234         }
 235     }
 236 
 237 /* ************************************************************************
 238  * duplicate declaration checking
 239  *************************************************************************/
 240 
 241     /** Check that variable does not hide variable with same name in
 242      *  immediately enclosing local scope.
 243      *  @param pos           Position for error reporting.
 244      *  @param v             The symbol.
 245      *  @param s             The scope.
 246      */
 247     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 248         if (s.next != null) {
 249             for (Scope.Entry e = s.next.lookup(v.name);
 250                  e.scope != null && e.sym.owner == v.owner;
 251                  e = e.next()) {
 252                 if (e.sym.kind == VAR &&
 253                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 254                     v.name != names.error) {
 255                     duplicateError(pos, e.sym);
 256                     return;
 257                 }
 258             }
 259         }
 260     }
 261 
 262     /** Check that a class or interface does not hide a class or
 263      *  interface with same name in immediately enclosing local scope.
 264      *  @param pos           Position for error reporting.
 265      *  @param c             The symbol.
 266      *  @param s             The scope.
 267      */
 268     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 269         if (s.next != null) {
 270             for (Scope.Entry e = s.next.lookup(c.name);
 271                  e.scope != null && e.sym.owner == c.owner;
 272                  e = e.next()) {
 273                 if (e.sym.kind == TYP &&
 274                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 275                     c.name != names.error) {
 276                     duplicateError(pos, e.sym);
 277                     return;
 278                 }
 279             }
 280         }
 281     }
 282 
 283     /** Check that class does not have the same name as one of
 284      *  its enclosing classes, or as a class defined in its enclosing scope.
 285      *  return true if class is unique in its enclosing scope.
 286      *  @param pos           Position for error reporting.
 287      *  @param name          The class name.
 288      *  @param s             The enclosing scope.
 289      */
 290     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 291         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
 292             if (e.sym.kind == TYP && e.sym.name != names.error) {
 293                 duplicateError(pos, e.sym);
 294                 return false;
 295             }
 296         }
 297         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 298             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
 299                 duplicateError(pos, sym);
 300                 return true;
 301             }
 302         }
 303         return true;
 304     }
 305 
 306 /* *************************************************************************
 307  * Class name generation
 308  **************************************************************************/
 309 
 310     /** Return name of local class.
 311      *  This is of the form    <enclClass> $ n <classname>
 312      *  where
 313      *    enclClass is the flat name of the enclosing class,
 314      *    classname is the simple name of the local class
 315      */
 316     Name localClassName(ClassSymbol c) {
 317         for (int i=1; ; i++) {
 318             Name flatname = names.
 319                 fromString("" + c.owner.enclClass().flatname +
 320                            target.syntheticNameChar() + i +
 321                            c.name);
 322             if (compiled.get(flatname) == null) return flatname;
 323         }
 324     }
 325 
 326 /* *************************************************************************
 327  * Type Checking
 328  **************************************************************************/
 329 
 330     /** Check that a given type is assignable to a given proto-type.
 331      *  If it is, return the type, otherwise return errType.
 332      *  @param pos        Position to be used for error reporting.
 333      *  @param found      The type that was found.
 334      *  @param req        The type that was required.
 335      */
 336     Type checkType(DiagnosticPosition pos, Type found, Type req) {
 337         if (req.tag == ERROR)
 338             return req;
 339         if (found.tag == FORALL)
 340             return instantiatePoly(pos, (ForAll)found, req, convertWarner(pos, found, req));
 341         if (req.tag == NONE)
 342             return found;
 343         if (types.isAssignable(found, req, convertWarner(pos, found, req)))
 344             return found;
 345         if (found.tag <= DOUBLE && req.tag <= DOUBLE)
 346             return typeError(pos, JCDiagnostic.fragment("possible.loss.of.precision"), found, req);
 347         if (found.isSuperBound()) {
 348             log.error(pos, "assignment.from.super-bound", found);
 349             return syms.errType;
 350         }
 351         if (req.isExtendsBound()) {
 352             log.error(pos, "assignment.to.extends-bound", req);
 353             return syms.errType;
 354         }
 355         return typeError(pos, JCDiagnostic.fragment("incompatible.types"), found, req);
 356     }
 357 
 358     /** Instantiate polymorphic type to some prototype, unless
 359      *  prototype is `anyPoly' in which case polymorphic type
 360      *  is returned unchanged.
 361      */
 362     Type instantiatePoly(DiagnosticPosition pos, ForAll t, Type pt, Warner warn) {
 363         if (pt == Infer.anyPoly && complexInference) {
 364             return t;
 365         } else if (pt == Infer.anyPoly || pt.tag == NONE) {
 366             Type newpt = t.qtype.tag <= VOID ? t.qtype : syms.objectType;
 367             return instantiatePoly(pos, t, newpt, warn);
 368         } else if (pt.tag == ERROR) {
 369             return pt;
 370         } else {
 371             try {
 372                 return infer.instantiateExpr(t, pt, warn);
 373             } catch (Infer.NoInstanceException ex) {
 374                 if (ex.isAmbiguous) {
 375                     JCDiagnostic d = ex.getDiagnostic();
 376                     log.error(pos,
 377                               "undetermined.type" + (d!=null ? ".1" : ""),
 378                               t, d);
 379                     return syms.errType;
 380                 } else {
 381                     JCDiagnostic d = ex.getDiagnostic();
 382                     return typeError(pos,
 383                                      JCDiagnostic.fragment("incompatible.types" + (d!=null ? ".1" : ""), d),
 384                                      t, pt);
 385                 }
 386             }
 387         }
 388     }
 389 
 390     /** Check that a given type can be cast to a given target type.
 391      *  Return the result of the cast.
 392      *  @param pos        Position to be used for error reporting.
 393      *  @param found      The type that is being cast.
 394      *  @param req        The target type of the cast.
 395      */
 396     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 397         if (found.tag == FORALL) {
 398             instantiatePoly(pos, (ForAll) found, req, castWarner(pos, found, req));
 399             return req;
 400         } else if (types.isCastable(found, req, castWarner(pos, found, req))) {
 401             return req;
 402         } else {
 403             return typeError(pos,
 404                              JCDiagnostic.fragment("inconvertible.types"),
 405                              found, req);
 406         }
 407     }
 408 //where
 409         /** Is type a type variable, or a (possibly multi-dimensional) array of
 410          *  type variables?
 411          */
 412         boolean isTypeVar(Type t) {
 413             return t.tag == TYPEVAR || t.tag == ARRAY && isTypeVar(types.elemtype(t));
 414         }
 415 
 416     /** Check that a type is within some bounds.
 417      *
 418      *  Used in TypeApply to verify that, e.g., X in V<X> is a valid
 419      *  type argument.
 420      *  @param pos           Position to be used for error reporting.
 421      *  @param a             The type that should be bounded by bs.
 422      *  @param bs            The bound.
 423      */
 424     private void checkExtends(DiagnosticPosition pos, Type a, TypeVar bs) {
 425         if (a.isUnbound()) {
 426             return;
 427         } else if (a.tag != WILDCARD) {
 428             a = types.upperBound(a);
 429             for (List<Type> l = types.getBounds(bs); l.nonEmpty(); l = l.tail) {
 430                 if (!types.isSubtype(a, l.head)) {
 431                     log.error(pos, "not.within.bounds", a);
 432                     return;
 433                 }
 434             }
 435         } else if (a.isExtendsBound()) {
 436             if (!types.isCastable(bs.getUpperBound(), types.upperBound(a), Warner.noWarnings))
 437                 log.error(pos, "not.within.bounds", a);
 438         } else if (a.isSuperBound()) {
 439             if (types.notSoftSubtype(types.lowerBound(a), bs.getUpperBound()))
 440                 log.error(pos, "not.within.bounds", a);
 441         }
 442     }
 443 
 444     /** Check that type is different from 'void'.
 445      *  @param pos           Position to be used for error reporting.
 446      *  @param t             The type to be checked.
 447      */
 448     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 449         if (t.tag == VOID) {
 450             log.error(pos, "void.not.allowed.here");
 451             return syms.errType;
 452         } else {
 453             return t;
 454         }
 455     }
 456 
 457     /** Check that type is a class or interface type.
 458      *  @param pos           Position to be used for error reporting.
 459      *  @param t             The type to be checked.
 460      */
 461     Type checkClassType(DiagnosticPosition pos, Type t) {
 462         if (t.tag != CLASS && t.tag != ERROR)
 463             return typeTagError(pos,
 464                                 JCDiagnostic.fragment("type.req.class"),
 465                                 (t.tag == TYPEVAR)
 466                                 ? JCDiagnostic.fragment("type.parameter", t)
 467                                 : t);
 468         else
 469             return t;
 470     }
 471 
 472     /** Check that type is a class or interface type.
 473      *  @param pos           Position to be used for error reporting.
 474      *  @param t             The type to be checked.
 475      *  @param noBounds    True if type bounds are illegal here.
 476      */
 477     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 478         t = checkClassType(pos, t);
 479         if (noBounds && t.isParameterized()) {
 480             List<Type> args = t.getTypeArguments();
 481             while (args.nonEmpty()) {
 482                 if (args.head.tag == WILDCARD)
 483                     return typeTagError(pos,
 484                                         log.getLocalizedString("type.req.exact"),
 485                                         args.head);
 486                 args = args.tail;
 487             }
 488         }
 489         return t;
 490     }
 491 
 492     /** Check that type is a reifiable class, interface or array type.
 493      *  @param pos           Position to be used for error reporting.
 494      *  @param t             The type to be checked.
 495      */
 496     Type checkReifiableReferenceType(DiagnosticPosition pos, Type t) {
 497         if (t.tag != CLASS && t.tag != ARRAY && t.tag != ERROR) {
 498             return typeTagError(pos,
 499                                 JCDiagnostic.fragment("type.req.class.array"),
 500                                 t);
 501         } else if (!types.isReifiable(t)) {
 502             log.error(pos, "illegal.generic.type.for.instof");
 503             return syms.errType;
 504         } else {
 505             return t;
 506         }
 507     }
 508 
 509     /** Check that type is a reference type, i.e. a class, interface or array type
 510      *  or a type variable.
 511      *  @param pos           Position to be used for error reporting.
 512      *  @param t             The type to be checked.
 513      */
 514     Type checkRefType(DiagnosticPosition pos, Type t) {
 515         switch (t.tag) {
 516         case CLASS:
 517         case ARRAY:
 518         case TYPEVAR:
 519         case WILDCARD:
 520         case ERROR:
 521             return t;
 522         default:
 523             return typeTagError(pos,
 524                                 JCDiagnostic.fragment("type.req.ref"),
 525                                 t);
 526         }
 527     }
 528 
 529     /** Check that type is a null or reference type.
 530      *  @param pos           Position to be used for error reporting.
 531      *  @param t             The type to be checked.
 532      */
 533     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 534         switch (t.tag) {
 535         case CLASS:
 536         case ARRAY:
 537         case TYPEVAR:
 538         case WILDCARD:
 539         case BOT:
 540         case ERROR:
 541             return t;
 542         default:
 543             return typeTagError(pos,
 544                                 JCDiagnostic.fragment("type.req.ref"),
 545                                 t);
 546         }
 547     }
 548 
 549     /** Check that flag set does not contain elements of two conflicting sets. s
 550      *  Return true if it doesn't.
 551      *  @param pos           Position to be used for error reporting.
 552      *  @param flags         The set of flags to be checked.
 553      *  @param set1          Conflicting flags set #1.
 554      *  @param set2          Conflicting flags set #2.
 555      */
 556     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 557         if ((flags & set1) != 0 && (flags & set2) != 0) {
 558             log.error(pos,
 559                       "illegal.combination.of.modifiers",
 560                       TreeInfo.flagNames(TreeInfo.firstFlag(flags & set1)),
 561                       TreeInfo.flagNames(TreeInfo.firstFlag(flags & set2)));
 562             return false;
 563         } else
 564             return true;
 565     }
 566 
 567     /** Check that given modifiers are legal for given symbol and
 568      *  return modifiers together with any implicit modififiers for that symbol.
 569      *  Warning: we can't use flags() here since this method
 570      *  is called during class enter, when flags() would cause a premature
 571      *  completion.
 572      *  @param pos           Position to be used for error reporting.
 573      *  @param flags         The set of modifiers given in a definition.
 574      *  @param sym           The defined symbol.
 575      */
 576     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
 577         long mask;
 578         long implicit = 0;
 579         switch (sym.kind) {
 580         case VAR:
 581             if (sym.owner.kind != TYP)
 582                 mask = LocalVarFlags;
 583             else if ((sym.owner.flags_field & INTERFACE) != 0)
 584                 mask = implicit = InterfaceVarFlags;
 585             else
 586                 mask = VarFlags;
 587             break;
 588         case MTH:
 589             if (sym.name == names.init) {
 590                 if ((sym.owner.flags_field & ENUM) != 0) {
 591                     // enum constructors cannot be declared public or
 592                     // protected and must be implicitly or explicitly
 593                     // private
 594                     implicit = PRIVATE;
 595                     mask = PRIVATE;
 596                 } else
 597                     mask = ConstructorFlags;
 598             }  else if ((sym.owner.flags_field & INTERFACE) != 0)
 599                 mask = implicit = InterfaceMethodFlags;
 600             else {
 601                 mask = MethodFlags;
 602             }
 603             // Imply STRICTFP if owner has STRICTFP set.
 604             if (((flags|implicit) & Flags.ABSTRACT) == 0)
 605               implicit |= sym.owner.flags_field & STRICTFP;
 606             break;
 607         case TYP:
 608             if (sym.isLocal()) {
 609                 mask = LocalClassFlags;
 610                 if (sym.name.len == 0) { // Anonymous class
 611                     // Anonymous classes in static methods are themselves static;
 612                     // that's why we admit STATIC here.
 613                     mask |= STATIC;
 614                     // JLS: Anonymous classes are final.
 615                     implicit |= FINAL;
 616                 }
 617                 if ((sym.owner.flags_field & STATIC) == 0 &&
 618                     (flags & ENUM) != 0)
 619                     log.error(pos, "enums.must.be.static");
 620             } else if (sym.owner.kind == TYP) {
 621                 mask = MemberClassFlags;
 622                 if (sym.owner.owner.kind == PCK ||
 623                     (sym.owner.flags_field & STATIC) != 0)
 624                     mask |= STATIC;
 625                 else if ((flags & ENUM) != 0)
 626                     log.error(pos, "enums.must.be.static");
 627                 // Nested interfaces and enums are always STATIC (Spec ???)
 628                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
 629             } else {
 630                 mask = ClassFlags;
 631             }
 632             // Interfaces are always ABSTRACT
 633             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
 634 
 635             if ((flags & ENUM) != 0) {
 636                 // enums can't be declared abstract or final
 637                 mask &= ~(ABSTRACT | FINAL);
 638                 implicit |= implicitEnumFinalFlag(tree);
 639             }
 640             // Imply STRICTFP if owner has STRICTFP set.
 641             implicit |= sym.owner.flags_field & STRICTFP;
 642             break;
 643         default:
 644             throw new AssertionError();
 645         }
 646         long illegal = flags & StandardFlags & ~mask;
 647         if (illegal != 0) {
 648             if ((illegal & INTERFACE) != 0) {
 649                 log.error(pos, "intf.not.allowed.here");
 650                 mask |= INTERFACE;
 651             }
 652             else {
 653                 log.error(pos,
 654                           "mod.not.allowed.here", TreeInfo.flagNames(illegal));
 655             }
 656         }
 657         else if ((sym.kind == TYP ||
 658                   // ISSUE: Disallowing abstract&private is no longer appropriate
 659                   // in the presence of inner classes. Should it be deleted here?
 660                   checkDisjoint(pos, flags,
 661                                 ABSTRACT,
 662                                 PRIVATE | STATIC))
 663                  &&
 664                  checkDisjoint(pos, flags,
 665                                ABSTRACT | INTERFACE,
 666                                FINAL | NATIVE | SYNCHRONIZED)
 667                  &&
 668                  checkDisjoint(pos, flags,
 669                                PUBLIC,
 670                                PRIVATE | PROTECTED)
 671                  &&
 672                  checkDisjoint(pos, flags,
 673                                PRIVATE,
 674                                PUBLIC | PROTECTED)
 675                  &&
 676                  checkDisjoint(pos, flags,
 677                                FINAL,
 678                                VOLATILE)
 679                  &&
 680                  (sym.kind == TYP ||
 681                   checkDisjoint(pos, flags,
 682                                 ABSTRACT | NATIVE,
 683                                 STRICTFP))) {
 684             // skip
 685         }
 686         return flags & (mask | ~StandardFlags) | implicit;
 687     }
 688 
 689 
 690     /** Determine if this enum should be implicitly final.
 691      *
 692      *  If the enum has no specialized enum contants, it is final.
 693      *
 694      *  If the enum does have specialized enum contants, it is
 695      *  <i>not</i> final.
 696      */
 697     private long implicitEnumFinalFlag(JCTree tree) {
 698         if (tree.getTag() != JCTree.CLASSDEF) return 0;
 699         class SpecialTreeVisitor extends JCTree.Visitor {
 700             boolean specialized;
 701             SpecialTreeVisitor() {
 702                 this.specialized = false;
 703             };
 704 
 705             public void visitTree(JCTree tree) { /* no-op */ }
 706 
 707             public void visitVarDef(JCVariableDecl tree) {
 708                 if ((tree.mods.flags & ENUM) != 0) {
 709                     if (tree.init instanceof JCNewClass &&
 710                         ((JCNewClass) tree.init).def != null) {
 711                         specialized = true;
 712                     }
 713                 }
 714             }
 715         }
 716 
 717         SpecialTreeVisitor sts = new SpecialTreeVisitor();
 718         JCClassDecl cdef = (JCClassDecl) tree;
 719         for (JCTree defs: cdef.defs) {
 720             defs.accept(sts);
 721             if (sts.specialized) return 0;
 722         }
 723         return FINAL;
 724     }
 725 
 726 /* *************************************************************************
 727  * Type Validation
 728  **************************************************************************/
 729 
 730     /** Validate a type expression. That is,
 731      *  check that all type arguments of a parametric type are within
 732      *  their bounds. This must be done in a second phase after type attributon
 733      *  since a class might have a subclass as type parameter bound. E.g:
 734      *
 735      *  class B<A extends C> { ... }
 736      *  class C extends B<C> { ... }
 737      *
 738      *  and we can't make sure that the bound is already attributed because
 739      *  of possible cycles.
 740      */
 741     private Validator validator = new Validator();
 742 
 743     /** Visitor method: Validate a type expression, if it is not null, catching
 744      *  and reporting any completion failures.
 745      */
 746     void validate(JCTree tree) {
 747         try {
 748             if (tree != null) tree.accept(validator);
 749         } catch (CompletionFailure ex) {
 750             completionError(tree.pos(), ex);
 751         }
 752     }
 753 
 754     /** Visitor method: Validate a list of type expressions.
 755      */
 756     void validate(List<? extends JCTree> trees) {
 757         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
 758             validate(l.head);
 759     }
 760 
 761     /** Visitor method: Validate a list of type parameters.
 762      */
 763     void validateTypeParams(List<JCTypeParameter> trees) {
 764         for (List<JCTypeParameter> l = trees; l.nonEmpty(); l = l.tail)
 765             validate(l.head);
 766     }
 767 
 768     /** A visitor class for type validation.
 769      */
 770     class Validator extends JCTree.Visitor {
 771 
 772         public void visitTypeArray(JCArrayTypeTree tree) {
 773             validate(tree.elemtype);
 774         }
 775 
 776         public void visitTypeApply(JCTypeApply tree) {
 777             if (tree.type.tag == CLASS) {
 778                 List<Type> formals = tree.type.tsym.type.getTypeArguments();
 779                 List<Type> actuals = tree.type.getTypeArguments();
 780                 List<JCExpression> args = tree.arguments;
 781                 List<Type> forms = formals;
 782                 ListBuffer<TypeVar> tvars_buf = new ListBuffer<TypeVar>();
 783 
 784                 // For matching pairs of actual argument types `a' and
 785                 // formal type parameters with declared bound `b' ...
 786                 while (args.nonEmpty() && forms.nonEmpty()) {
 787                     validate(args.head);
 788 
 789                     // exact type arguments needs to know their
 790                     // bounds (for upper and lower bound
 791                     // calculations).  So we create new TypeVars with
 792                     // bounds substed with actuals.
 793                     tvars_buf.append(types.substBound(((TypeVar)forms.head),
 794                                                       formals,
 795                                                       Type.removeBounds(actuals)));
 796 
 797                     args = args.tail;
 798                     forms = forms.tail;
 799                 }
 800 
 801                 args = tree.arguments;
 802                 List<TypeVar> tvars = tvars_buf.toList();
 803                 while (args.nonEmpty() && tvars.nonEmpty()) {
 804                     // Let the actual arguments know their bound
 805                     args.head.type.withTypeVar(tvars.head);
 806                     args = args.tail;
 807                     tvars = tvars.tail;
 808                 }
 809 
 810                 args = tree.arguments;
 811                 tvars = tvars_buf.toList();
 812                 while (args.nonEmpty() && tvars.nonEmpty()) {
 813                     checkExtends(args.head.pos(),
 814                                  args.head.type,
 815                                  tvars.head);
 816                     args = args.tail;
 817                     tvars = tvars.tail;
 818                 }
 819 
 820                 // Check that this type is either fully parameterized, or
 821                 // not parameterized at all.
 822                 if (tree.type.getEnclosingType().isRaw())
 823                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
 824                 if (tree.clazz.getTag() == JCTree.SELECT)
 825                     visitSelectInternal((JCFieldAccess)tree.clazz);
 826             }
 827         }
 828 
 829         public void visitTypeParameter(JCTypeParameter tree) {
 830             validate(tree.bounds);
 831             checkClassBounds(tree.pos(), tree.type);
 832         }
 833 
 834         @Override
 835         public void visitWildcard(JCWildcard tree) {
 836             if (tree.inner != null)
 837                 validate(tree.inner);
 838         }
 839 
 840         public void visitSelect(JCFieldAccess tree) {
 841             if (tree.type.tag == CLASS) {
 842                 visitSelectInternal(tree);
 843 
 844                 // Check that this type is either fully parameterized, or
 845                 // not parameterized at all.
 846                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
 847                     log.error(tree.pos(), "improperly.formed.type.param.missing");
 848             }
 849         }
 850         public void visitSelectInternal(JCFieldAccess tree) {
 851             if (tree.type.getEnclosingType().tag != CLASS &&
 852                 tree.selected.type.isParameterized()) {
 853                 // The enclosing type is not a class, so we are
 854                 // looking at a static member type.  However, the
 855                 // qualifying expression is parameterized.
 856                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
 857             } else {
 858                 // otherwise validate the rest of the expression
 859                 validate(tree.selected);
 860             }
 861         }
 862 
 863         /** Default visitor method: do nothing.
 864          */
 865         public void visitTree(JCTree tree) {
 866         }
 867     }
 868 
 869 /* *************************************************************************
 870  * Exception checking
 871  **************************************************************************/
 872 
 873     /* The following methods treat classes as sets that contain
 874      * the class itself and all their subclasses
 875      */
 876 
 877     /** Is given type a subtype of some of the types in given list?
 878      */
 879     boolean subset(Type t, List<Type> ts) {
 880         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
 881             if (types.isSubtype(t, l.head)) return true;
 882         return false;
 883     }
 884 
 885     /** Is given type a subtype or supertype of
 886      *  some of the types in given list?
 887      */
 888     boolean intersects(Type t, List<Type> ts) {
 889         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
 890             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
 891         return false;
 892     }
 893 
 894     /** Add type set to given type list, unless it is a subclass of some class
 895      *  in the list.
 896      */
 897     List<Type> incl(Type t, List<Type> ts) {
 898         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
 899     }
 900 
 901     /** Remove type set from type set list.
 902      */
 903     List<Type> excl(Type t, List<Type> ts) {
 904         if (ts.isEmpty()) {
 905             return ts;
 906         } else {
 907             List<Type> ts1 = excl(t, ts.tail);
 908             if (types.isSubtype(ts.head, t)) return ts1;
 909             else if (ts1 == ts.tail) return ts;
 910             else return ts1.prepend(ts.head);
 911         }
 912     }
 913 
 914     /** Form the union of two type set lists.
 915      */
 916     List<Type> union(List<Type> ts1, List<Type> ts2) {
 917         List<Type> ts = ts1;
 918         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
 919             ts = incl(l.head, ts);
 920         return ts;
 921     }
 922 
 923     /** Form the difference of two type lists.
 924      */
 925     List<Type> diff(List<Type> ts1, List<Type> ts2) {
 926         List<Type> ts = ts1;
 927         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
 928             ts = excl(l.head, ts);
 929         return ts;
 930     }
 931 
 932     /** Form the intersection of two type lists.
 933      */
 934     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
 935         List<Type> ts = List.nil();
 936         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
 937             if (subset(l.head, ts2)) ts = incl(l.head, ts);
 938         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
 939             if (subset(l.head, ts1)) ts = incl(l.head, ts);
 940         return ts;
 941     }
 942 
 943     /** Is exc an exception symbol that need not be declared?
 944      */
 945     boolean isUnchecked(ClassSymbol exc) {
 946         return
 947             exc.kind == ERR ||
 948             exc.isSubClass(syms.errorType.tsym, types) ||
 949             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
 950     }
 951 
 952     /** Is exc an exception type that need not be declared?
 953      */
 954     boolean isUnchecked(Type exc) {
 955         return
 956             (exc.tag == TYPEVAR) ? isUnchecked(types.supertype(exc)) :
 957             (exc.tag == CLASS) ? isUnchecked((ClassSymbol)exc.tsym) :
 958             exc.tag == BOT;
 959     }
 960 
 961     /** Same, but handling completion failures.
 962      */
 963     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
 964         try {
 965             return isUnchecked(exc);
 966         } catch (CompletionFailure ex) {
 967             completionError(pos, ex);
 968             return true;
 969         }
 970     }
 971 
 972     /** Is exc handled by given exception list?
 973      */
 974     boolean isHandled(Type exc, List<Type> handled) {
 975         return isUnchecked(exc) || subset(exc, handled);
 976     }
 977 
 978     /** Return all exceptions in thrown list that are not in handled list.
 979      *  @param thrown     The list of thrown exceptions.
 980      *  @param handled    The list of handled exceptions.
 981      */
 982     List<Type> unHandled(List<Type> thrown, List<Type> handled) {
 983         List<Type> unhandled = List.nil();
 984         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
 985             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
 986         return unhandled;
 987     }
 988 
 989 /* *************************************************************************
 990  * Overriding/Implementation checking
 991  **************************************************************************/
 992 
 993     /** The level of access protection given by a flag set,
 994      *  where PRIVATE is highest and PUBLIC is lowest.
 995      */
 996     static int protection(long flags) {
 997         switch ((short)(flags & AccessFlags)) {
 998         case PRIVATE: return 3;
 999         case PROTECTED: return 1;
1000         default:
1001         case PUBLIC: return 0;
1002         case 0: return 2;
1003         }
1004     }
1005 
1006     /** A string describing the access permission given by a flag set.
1007      *  This always returns a space-separated list of Java Keywords.
1008      */
1009     private static String protectionString(long flags) {
1010         long flags1 = flags & AccessFlags;
1011         return (flags1 == 0) ? "package" : TreeInfo.flagNames(flags1);
1012     }
1013 
1014     /** A customized "cannot override" error message.
1015      *  @param m      The overriding method.
1016      *  @param other  The overridden method.
1017      *  @return       An internationalized string.
1018      */
1019     static Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1020         String key;
1021         if ((other.owner.flags() & INTERFACE) == 0)
1022             key = "cant.override";
1023         else if ((m.owner.flags() & INTERFACE) == 0)
1024             key = "cant.implement";
1025         else
1026             key = "clashes.with";
1027         return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
1028     }
1029 
1030     /** A customized "override" warning message.
1031      *  @param m      The overriding method.
1032      *  @param other  The overridden method.
1033      *  @return       An internationalized string.
1034      */
1035     static Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1036         String key;
1037         if ((other.owner.flags() & INTERFACE) == 0)
1038             key = "unchecked.override";
1039         else if ((m.owner.flags() & INTERFACE) == 0)
1040             key = "unchecked.implement";
1041         else
1042             key = "unchecked.clash.with";
1043         return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
1044     }
1045 
1046     /** A customized "override" warning message.
1047      *  @param m      The overriding method.
1048      *  @param other  The overridden method.
1049      *  @return       An internationalized string.
1050      */
1051     static Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1052         String key;
1053         if ((other.owner.flags() & INTERFACE) == 0)
1054             key = "varargs.override";
1055         else  if ((m.owner.flags() & INTERFACE) == 0)
1056             key = "varargs.implement";
1057         else
1058             key = "varargs.clash.with";
1059         return JCDiagnostic.fragment(key, m, m.location(), other, other.location());
1060     }
1061 
1062     /** Check that this method conforms with overridden method 'other'.
1063      *  where `origin' is the class where checking started.
1064      *  Complications:
1065      *  (1) Do not check overriding of synthetic methods
1066      *      (reason: they might be final).
1067      *      todo: check whether this is still necessary.
1068      *  (2) Admit the case where an interface proxy throws fewer exceptions
1069      *      than the method it implements. Augment the proxy methods with the
1070      *      undeclared exceptions in this case.
1071      *  (3) When generics are enabled, admit the case where an interface proxy
1072      *      has a result type
1073      *      extended by the result type of the method it implements.
1074      *      Change the proxies result type to the smaller type in this case.
1075      *
1076      *  @param tree         The tree from which positions
1077      *                      are extracted for errors.
1078      *  @param m            The overriding method.
1079      *  @param other        The overridden method.
1080      *  @param origin       The class of which the overriding method
1081      *                      is a member.
1082      */
1083     void checkOverride(JCTree tree,
1084                        MethodSymbol m,
1085                        MethodSymbol other,
1086                        ClassSymbol origin) {
1087         // Don't check overriding of synthetic methods or by bridge methods.
1088         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1089             return;
1090         }
1091 
1092         // Error if static method overrides instance method (JLS 8.4.6.2).
1093         if ((m.flags() & STATIC) != 0 &&
1094                    (other.flags() & STATIC) == 0) {
1095             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1096                       cannotOverride(m, other));
1097             return;
1098         }
1099 
1100         // Error if instance method overrides static or final
1101         // method (JLS 8.4.6.1).
1102         if ((other.flags() & FINAL) != 0 ||
1103                  (m.flags() & STATIC) == 0 &&
1104                  (other.flags() & STATIC) != 0) {
1105             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1106                       cannotOverride(m, other),
1107                       TreeInfo.flagNames(other.flags() & (FINAL | STATIC)));
1108             return;
1109         }
1110 
1111         if ((m.owner.flags() & ANNOTATION) != 0) {
1112             // handled in validateAnnotationMethod
1113             return;
1114         }
1115 
1116         // Error if overriding method has weaker access (JLS 8.4.6.3).
1117         if ((origin.flags() & INTERFACE) == 0 &&
1118                  protection(m.flags()) > protection(other.flags())) {
1119             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1120                       cannotOverride(m, other),
1121                       protectionString(other.flags()));
1122             return;
1123 
1124         }
1125 
1126         Type mt = types.memberType(origin.type, m);
1127         Type ot = types.memberType(origin.type, other);
1128         // Error if overriding result type is different
1129         // (or, in the case of generics mode, not a subtype) of
1130         // overridden result type. We have to rename any type parameters
1131         // before comparing types.
1132         List<Type> mtvars = mt.getTypeArguments();
1133         List<Type> otvars = ot.getTypeArguments();
1134         Type mtres = mt.getReturnType();
1135         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1136 
1137         overrideWarner.warned = false;
1138         boolean resultTypesOK =
1139             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1140         if (!resultTypesOK) {
1141             if (!source.allowCovariantReturns() &&
1142                 m.owner != origin &&
1143                 m.owner.isSubClass(other.owner, types)) {
1144                 // allow limited interoperability with covariant returns
1145             } else {
1146                 typeError(TreeInfo.diagnosticPositionFor(m, tree),
1147                           JCDiagnostic.fragment("override.incompatible.ret",
1148                                          cannotOverride(m, other)),
1149                           mtres, otres);
1150                 return;
1151             }
1152         } else if (overrideWarner.warned) {
1153             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1154                           "prob.found.req",
1155                           JCDiagnostic.fragment("override.unchecked.ret",
1156                                               uncheckedOverrides(m, other)),
1157                           mtres, otres);
1158         }
1159 
1160         // Error if overriding method throws an exception not reported
1161         // by overridden method.
1162         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1163         List<Type> unhandled = unHandled(mt.getThrownTypes(), otthrown);
1164         if (unhandled.nonEmpty()) {
1165             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1166                       "override.meth.doesnt.throw",
1167                       cannotOverride(m, other),
1168                       unhandled.head);
1169             return;
1170         }
1171 
1172         // Optional warning if varargs don't agree
1173         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1174             && lint.isEnabled(Lint.LintCategory.OVERRIDES)) {
1175             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1176                         ((m.flags() & Flags.VARARGS) != 0)
1177                         ? "override.varargs.missing"
1178                         : "override.varargs.extra",
1179                         varargsOverrides(m, other));
1180         }
1181 
1182         // Warn if instance method overrides bridge method (compiler spec ??)
1183         if ((other.flags() & BRIDGE) != 0) {
1184             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1185                         uncheckedOverrides(m, other));
1186         }
1187 
1188         // Warn if a deprecated method overridden by a non-deprecated one.
1189         if ((other.flags() & DEPRECATED) != 0
1190             && (m.flags() & DEPRECATED) == 0
1191             && m.outermostClass() != other.outermostClass()
1192             && !isDeprecatedOverrideIgnorable(other, origin)) {
1193             warnDeprecated(TreeInfo.diagnosticPositionFor(m, tree), other);
1194         }
1195     }
1196     // where
1197         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1198             // If the method, m, is defined in an interface, then ignore the issue if the method
1199             // is only inherited via a supertype and also implemented in the supertype,
1200             // because in that case, we will rediscover the issue when examining the method
1201             // in the supertype.
1202             // If the method, m, is not defined in an interface, then the only time we need to
1203             // address the issue is when the method is the supertype implemementation: any other
1204             // case, we will have dealt with when examining the supertype classes
1205             ClassSymbol mc = m.enclClass();
1206             Type st = types.supertype(origin.type);
1207             if (st.tag != CLASS)
1208                 return true;
1209             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1210 
1211             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1212                 List<Type> intfs = types.interfaces(origin.type);
1213                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1214             }
1215             else
1216                 return (stimpl != m);
1217         }
1218 
1219 
1220     // used to check if there were any unchecked conversions
1221     Warner overrideWarner = new Warner();
1222 
1223     /** Check that a class does not inherit two concrete methods
1224      *  with the same signature.
1225      *  @param pos          Position to be used for error reporting.
1226      *  @param site         The class type to be checked.
1227      */
1228     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1229         Type sup = types.supertype(site);
1230         if (sup.tag != CLASS) return;
1231 
1232         for (Type t1 = sup;
1233              t1.tsym.type.isParameterized();
1234              t1 = types.supertype(t1)) {
1235             for (Scope.Entry e1 = t1.tsym.members().elems;
1236                  e1 != null;
1237                  e1 = e1.sibling) {
1238                 Symbol s1 = e1.sym;
1239                 if (s1.kind != MTH ||
1240                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1241                     !s1.isInheritedIn(site.tsym, types) ||
1242                     ((MethodSymbol)s1).implementation(site.tsym,
1243                                                       types,
1244                                                       true) != s1)
1245                     continue;
1246                 Type st1 = types.memberType(t1, s1);
1247                 int s1ArgsLength = st1.getParameterTypes().length();
1248                 if (st1 == s1.type) continue;
1249 
1250                 for (Type t2 = sup;
1251                      t2.tag == CLASS;
1252                      t2 = types.supertype(t2)) {
1253                     for (Scope.Entry e2 = t1.tsym.members().lookup(s1.name);
1254                          e2.scope != null;
1255                          e2 = e2.next()) {
1256                         Symbol s2 = e2.sym;
1257                         if (s2 == s1 ||
1258                             s2.kind != MTH ||
1259                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1260                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1261                             !s2.isInheritedIn(site.tsym, types) ||
1262                             ((MethodSymbol)s2).implementation(site.tsym,
1263                                                               types,
1264                                                               true) != s2)
1265                             continue;
1266                         Type st2 = types.memberType(t2, s2);
1267                         if (types.overrideEquivalent(st1, st2))
1268                             log.error(pos, "concrete.inheritance.conflict",
1269                                       s1, t1, s2, t2, sup);
1270                     }
1271                 }
1272             }
1273         }
1274     }
1275 
1276     /** Check that classes (or interfaces) do not each define an abstract
1277      *  method with same name and arguments but incompatible return types.
1278      *  @param pos          Position to be used for error reporting.
1279      *  @param t1           The first argument type.
1280      *  @param t2           The second argument type.
1281      */
1282     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1283                                             Type t1,
1284                                             Type t2) {
1285         return checkCompatibleAbstracts(pos, t1, t2,
1286                                         types.makeCompoundType(t1, t2));
1287     }
1288 
1289     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1290                                             Type t1,
1291                                             Type t2,
1292                                             Type site) {
1293         Symbol sym = firstIncompatibility(t1, t2, site);
1294         if (sym != null) {
1295             log.error(pos, "types.incompatible.diff.ret",
1296                       t1, t2, sym.name +
1297                       "(" + types.memberType(t2, sym).getParameterTypes() + ")");
1298             return false;
1299         }
1300         return true;
1301     }
1302 
1303     /** Return the first method which is defined with same args
1304      *  but different return types in two given interfaces, or null if none
1305      *  exists.
1306      *  @param t1     The first type.
1307      *  @param t2     The second type.
1308      *  @param site   The most derived type.
1309      *  @returns symbol from t2 that conflicts with one in t1.
1310      */
1311     private Symbol firstIncompatibility(Type t1, Type t2, Type site) {
1312         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
1313         closure(t1, interfaces1);
1314         Map<TypeSymbol,Type> interfaces2;
1315         if (t1 == t2)
1316             interfaces2 = interfaces1;
1317         else
1318             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
1319 
1320         for (Type t3 : interfaces1.values()) {
1321             for (Type t4 : interfaces2.values()) {
1322                 Symbol s = firstDirectIncompatibility(t3, t4, site);
1323                 if (s != null) return s;
1324             }
1325         }
1326         return null;
1327     }
1328 
1329     /** Compute all the supertypes of t, indexed by type symbol. */
1330     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1331         if (t.tag != CLASS) return;
1332         if (typeMap.put(t.tsym, t) == null) {
1333             closure(types.supertype(t), typeMap);
1334             for (Type i : types.interfaces(t))
1335                 closure(i, typeMap);
1336         }
1337     }
1338 
1339     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1340     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1341         if (t.tag != CLASS) return;
1342         if (typesSkip.get(t.tsym) != null) return;
1343         if (typeMap.put(t.tsym, t) == null) {
1344             closure(types.supertype(t), typesSkip, typeMap);
1345             for (Type i : types.interfaces(t))
1346                 closure(i, typesSkip, typeMap);
1347         }
1348     }
1349 
1350     /** Return the first method in t2 that conflicts with a method from t1. */
1351     private Symbol firstDirectIncompatibility(Type t1, Type t2, Type site) {
1352         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
1353             Symbol s1 = e1.sym;
1354             Type st1 = null;
1355             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types)) continue;
1356             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1357             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1358             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
1359                 Symbol s2 = e2.sym;
1360                 if (s1 == s2) continue;
1361                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types)) continue;
1362                 if (st1 == null) st1 = types.memberType(t1, s1);
1363                 Type st2 = types.memberType(t2, s2);
1364                 if (types.overrideEquivalent(st1, st2)) {
1365                     List<Type> tvars1 = st1.getTypeArguments();
1366                     List<Type> tvars2 = st2.getTypeArguments();
1367                     Type rt1 = st1.getReturnType();
1368                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1369                     boolean compat =
1370                         types.isSameType(rt1, rt2) ||
1371                         rt1.tag >= CLASS && rt2.tag >= CLASS &&
1372                         (types.covariantReturnType(rt1, rt2, Warner.noWarnings) ||
1373                          types.covariantReturnType(rt2, rt1, Warner.noWarnings));
1374                     if (!compat) return s2;
1375                 }
1376             }
1377         }
1378         return null;
1379     }
1380 
1381     /** Check that a given method conforms with any method it overrides.
1382      *  @param tree         The tree from which positions are extracted
1383      *                      for errors.
1384      *  @param m            The overriding method.
1385      */
1386     void checkOverride(JCTree tree, MethodSymbol m) {
1387         ClassSymbol origin = (ClassSymbol)m.owner;
1388         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1389             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1390                 log.error(tree.pos(), "enum.no.finalize");
1391                 return;
1392             }
1393         for (Type t = types.supertype(origin.type); t.tag == CLASS;
1394              t = types.supertype(t)) {
1395             TypeSymbol c = t.tsym;
1396             Scope.Entry e = c.members().lookup(m.name);
1397             while (e.scope != null) {
1398                 if (m.overrides(e.sym, origin, types, false))
1399                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
1400                 e = e.next();
1401             }
1402         }
1403     }
1404 
1405     /** Check that all abstract members of given class have definitions.
1406      *  @param pos          Position to be used for error reporting.
1407      *  @param c            The class.
1408      */
1409     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
1410         try {
1411             MethodSymbol undef = firstUndef(c, c);
1412             if (undef != null) {
1413                 if ((c.flags() & ENUM) != 0 &&
1414                     types.supertype(c.type).tsym == syms.enumSym &&
1415                     (c.flags() & FINAL) == 0) {
1416                     // add the ABSTRACT flag to an enum
1417                     c.flags_field |= ABSTRACT;
1418                 } else {
1419                     MethodSymbol undef1 =
1420                         new MethodSymbol(undef.flags(), undef.name,
1421                                          types.memberType(c.type, undef), undef.owner);
1422                     log.error(pos, "does.not.override.abstract",
1423                               c, undef1, undef1.location());
1424                 }
1425             }
1426         } catch (CompletionFailure ex) {
1427             completionError(pos, ex);
1428         }
1429     }
1430 //where
1431         /** Return first abstract member of class `c' that is not defined
1432          *  in `impl', null if there is none.
1433          */
1434         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
1435             MethodSymbol undef = null;
1436             // Do not bother to search in classes that are not abstract,
1437             // since they cannot have abstract members.
1438             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
1439                 Scope s = c.members();
1440                 for (Scope.Entry e = s.elems;
1441                      undef == null && e != null;
1442                      e = e.sibling) {
1443                     if (e.sym.kind == MTH &&
1444                         (e.sym.flags() & (ABSTRACT|IPROXY)) == ABSTRACT) {
1445                         MethodSymbol absmeth = (MethodSymbol)e.sym;
1446                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
1447                         if (implmeth == null || implmeth == absmeth)
1448                             undef = absmeth;
1449                     }
1450                 }
1451                 if (undef == null) {
1452                     Type st = types.supertype(c.type);
1453                     if (st.tag == CLASS)
1454                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
1455                 }
1456                 for (List<Type> l = types.interfaces(c.type);
1457                      undef == null && l.nonEmpty();
1458                      l = l.tail) {
1459                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
1460                 }
1461             }
1462             return undef;
1463         }
1464 
1465     /** Check for cyclic references. Issue an error if the
1466      *  symbol of the type referred to has a LOCKED flag set.
1467      *
1468      *  @param pos      Position to be used for error reporting.
1469      *  @param t        The type referred to.
1470      */
1471     void checkNonCyclic(DiagnosticPosition pos, Type t) {
1472         checkNonCyclicInternal(pos, t);
1473     }
1474 
1475 
1476     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
1477         checkNonCyclic1(pos, t, new HashSet<TypeVar>());
1478     }
1479 
1480     private void checkNonCyclic1(DiagnosticPosition pos, Type t, Set<TypeVar> seen) {
1481         final TypeVar tv;
1482         if (seen.contains(t)) {
1483             tv = (TypeVar)t;
1484             tv.bound = new ErrorType();
1485             log.error(pos, "cyclic.inheritance", t);
1486         } else if (t.tag == TYPEVAR) {
1487             tv = (TypeVar)t;
1488             seen.add(tv);
1489             for (Type b : types.getBounds(tv))
1490                 checkNonCyclic1(pos, b, seen);
1491         }
1492     }
1493 
1494     /** Check for cyclic references. Issue an error if the
1495      *  symbol of the type referred to has a LOCKED flag set.
1496      *
1497      *  @param pos      Position to be used for error reporting.
1498      *  @param t        The type referred to.
1499      *  @returns        True if the check completed on all attributed classes
1500      */
1501     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
1502         boolean complete = true; // was the check complete?
1503         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
1504         Symbol c = t.tsym;
1505         if ((c.flags_field & ACYCLIC) != 0) return true;
1506 
1507         if ((c.flags_field & LOCKED) != 0) {
1508             noteCyclic(pos, (ClassSymbol)c);
1509         } else if (!c.type.isErroneous()) {
1510             try {
1511                 c.flags_field |= LOCKED;
1512                 if (c.type.tag == CLASS) {
1513                     ClassType clazz = (ClassType)c.type;
1514                     if (clazz.interfaces_field != null)
1515                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
1516                             complete &= checkNonCyclicInternal(pos, l.head);
1517                     if (clazz.supertype_field != null) {
1518                         Type st = clazz.supertype_field;
1519                         if (st != null && st.tag == CLASS)
1520                             complete &= checkNonCyclicInternal(pos, st);
1521                     }
1522                     if (c.owner.kind == TYP)
1523                         complete &= checkNonCyclicInternal(pos, c.owner.type);
1524                 }
1525             } finally {
1526                 c.flags_field &= ~LOCKED;
1527             }
1528         }
1529         if (complete)
1530             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
1531         if (complete) c.flags_field |= ACYCLIC;
1532         return complete;
1533     }
1534 
1535     /** Note that we found an inheritance cycle. */
1536     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
1537         log.error(pos, "cyclic.inheritance", c);
1538         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
1539             l.head = new ErrorType((ClassSymbol)l.head.tsym);
1540         Type st = types.supertype(c.type);
1541         if (st.tag == CLASS)
1542             ((ClassType)c.type).supertype_field = new ErrorType((ClassSymbol)st.tsym);
1543         c.type = new ErrorType(c);
1544         c.flags_field |= ACYCLIC;
1545     }
1546 
1547     /** Check that all methods which implement some
1548      *  method conform to the method they implement.
1549      *  @param tree         The class definition whose members are checked.
1550      */
1551     void checkImplementations(JCClassDecl tree) {
1552         checkImplementations(tree, tree.sym);
1553     }
1554 //where
1555         /** Check that all methods which implement some
1556          *  method in `ic' conform to the method they implement.
1557          */
1558         void checkImplementations(JCClassDecl tree, ClassSymbol ic) {
1559             ClassSymbol origin = tree.sym;
1560             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
1561                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
1562                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
1563                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
1564                         if (e.sym.kind == MTH &&
1565                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
1566                             MethodSymbol absmeth = (MethodSymbol)e.sym;
1567                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
1568                             if (implmeth != null && implmeth != absmeth &&
1569                                 (implmeth.owner.flags() & INTERFACE) ==
1570                                 (origin.flags() & INTERFACE)) {
1571                                 // don't check if implmeth is in a class, yet
1572                                 // origin is an interface. This case arises only
1573                                 // if implmeth is declared in Object. The reason is
1574                                 // that interfaces really don't inherit from
1575                                 // Object it's just that the compiler represents
1576                                 // things that way.
1577                                 checkOverride(tree, implmeth, absmeth, origin);
1578                             }
1579                         }
1580                     }
1581                 }
1582             }
1583         }
1584 
1585     /** Check that all abstract methods implemented by a class are
1586      *  mutually compatible.
1587      *  @param pos          Position to be used for error reporting.
1588      *  @param c            The class whose interfaces are checked.
1589      */
1590     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
1591         List<Type> supertypes = types.interfaces(c);
1592         Type supertype = types.supertype(c);
1593         if (supertype.tag == CLASS &&
1594             (supertype.tsym.flags() & ABSTRACT) != 0)
1595             supertypes = supertypes.prepend(supertype);
1596         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
1597             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
1598                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
1599                 return;
1600             for (List<Type> m = supertypes; m != l; m = m.tail)
1601                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
1602                     return;
1603         }
1604         checkCompatibleConcretes(pos, c);
1605     }
1606 
1607     /** Check that class c does not implement directly or indirectly
1608      *  the same parameterized interface with two different argument lists.
1609      *  @param pos          Position to be used for error reporting.
1610      *  @param type         The type whose interfaces are checked.
1611      */
1612     void checkClassBounds(DiagnosticPosition pos, Type type) {
1613         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
1614     }
1615 //where
1616         /** Enter all interfaces of type `type' into the hash table `seensofar'
1617          *  with their class symbol as key and their type as value. Make
1618          *  sure no class is entered with two different types.
1619          */
1620         void checkClassBounds(DiagnosticPosition pos,
1621                               Map<TypeSymbol,Type> seensofar,
1622                               Type type) {
1623             if (type.isErroneous()) return;
1624             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
1625                 Type it = l.head;
1626                 Type oldit = seensofar.put(it.tsym, it);
1627                 if (oldit != null) {
1628                     List<Type> oldparams = oldit.allparams();
1629                     List<Type> newparams = it.allparams();
1630                     if (!types.containsTypeEquivalent(oldparams, newparams))
1631                         log.error(pos, "cant.inherit.diff.arg",
1632                                   it.tsym, Type.toString(oldparams),
1633                                   Type.toString(newparams));
1634                 }
1635                 checkClassBounds(pos, seensofar, it);
1636             }
1637             Type st = types.supertype(type);
1638             if (st != null) checkClassBounds(pos, seensofar, st);
1639         }
1640 
1641     /** Enter interface into into set.
1642      *  If it existed already, issue a "repeated interface" error.
1643      */
1644     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
1645         if (its.contains(it))
1646             log.error(pos, "repeated.interface");
1647         else {
1648             its.add(it);
1649         }
1650     }
1651 
1652 /* *************************************************************************
1653  * Check annotations
1654  **************************************************************************/
1655 
1656     /** Annotation types are restricted to primitives, String, an
1657      *  enum, an annotation, Class, Class<?>, Class<? extends
1658      *  Anything>, arrays of the preceding.
1659      */
1660     void validateAnnotationType(JCTree restype) {
1661         // restype may be null if an error occurred, so don't bother validating it
1662         if (restype != null) {
1663             validateAnnotationType(restype.pos(), restype.type);
1664         }
1665     }
1666 
1667     void validateAnnotationType(DiagnosticPosition pos, Type type) {
1668         if (type.isPrimitive()) return;
1669         if (types.isSameType(type, syms.stringType)) return;
1670         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
1671         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
1672         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
1673         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
1674             validateAnnotationType(pos, types.elemtype(type));
1675             return;
1676         }
1677         log.error(pos, "invalid.annotation.member.type");
1678     }
1679 
1680     /**
1681      * "It is also a compile-time error if any method declared in an
1682      * annotation type has a signature that is override-equivalent to
1683      * that of any public or protected method declared in class Object
1684      * or in the interface annotation.Annotation."
1685      *
1686      * @jls3 9.6 Annotation Types
1687      */
1688     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
1689         for (Type sup = syms.annotationType; sup.tag == CLASS; sup = types.supertype(sup)) {
1690             Scope s = sup.tsym.members();
1691             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
1692                 if (e.sym.kind == MTH &&
1693                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
1694                     types.overrideEquivalent(m.type, e.sym.type))
1695                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
1696             }
1697         }
1698     }
1699 
1700     /** Check the annotations of a symbol.
1701      */
1702     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
1703         if (skipAnnotations) return;
1704         for (JCAnnotation a : annotations)
1705             validateAnnotation(a, s);
1706     }
1707 
1708     /** Check an annotation of a symbol.
1709      */
1710     public void validateAnnotation(JCAnnotation a, Symbol s) {
1711         validateAnnotation(a);
1712 
1713         if (!annotationApplicable(a, s))
1714             log.error(a.pos(), "annotation.type.not.applicable");
1715 
1716         if (a.annotationType.type.tsym == syms.overrideType.tsym) {
1717             if (!isOverrider(s))
1718                 log.error(a.pos(), "method.does.not.override.superclass");
1719         }
1720     }
1721 
1722     /** Is s a method symbol that overrides a method in a superclass? */
1723     boolean isOverrider(Symbol s) {
1724         if (s.kind != MTH || s.isStatic())
1725             return false;
1726         MethodSymbol m = (MethodSymbol)s;
1727         TypeSymbol owner = (TypeSymbol)m.owner;
1728         for (Type sup : types.closure(owner.type)) {
1729             if (sup == owner.type)
1730                 continue; // skip "this"
1731             Scope scope = sup.tsym.members();
1732             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
1733                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
1734                     return true;
1735             }
1736         }
1737         return false;
1738     }
1739 
1740     /** Is the annotation applicable to the symbol? */
1741     boolean annotationApplicable(JCAnnotation a, Symbol s) {
1742         Attribute.Compound atTarget =
1743             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
1744         if (atTarget == null) return true;
1745         Attribute atValue = atTarget.member(names.value);
1746         if (!(atValue instanceof Attribute.Array)) return true; // error recovery
1747         Attribute.Array arr = (Attribute.Array) atValue;
1748         for (Attribute app : arr.values) {
1749             if (!(app instanceof Attribute.Enum)) return true; // recovery
1750             Attribute.Enum e = (Attribute.Enum) app;
1751             if (e.value.name == names.TYPE)
1752                 { if (s.kind == TYP) return true; }
1753             else if (e.value.name == names.FIELD)
1754                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
1755             else if (e.value.name == names.METHOD)
1756                 { if (s.kind == MTH && !s.isConstructor()) return true; }
1757             else if (e.value.name == names.PARAMETER)
1758                 { if (s.kind == VAR &&
1759                       s.owner.kind == MTH &&
1760                       (s.flags() & PARAMETER) != 0)
1761                     return true;
1762                 }
1763             else if (e.value.name == names.CONSTRUCTOR)
1764                 { if (s.kind == MTH && s.isConstructor()) return true; }
1765             else if (e.value.name == names.LOCAL_VARIABLE)
1766                 { if (s.kind == VAR && s.owner.kind == MTH &&
1767                       (s.flags() & PARAMETER) == 0)
1768                     return true;
1769                 }
1770             else if (e.value.name == names.ANNOTATION_TYPE)
1771                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
1772                     return true;
1773                 }
1774             else if (e.value.name == names.PACKAGE)
1775                 { if (s.kind == PCK) return true; }
1776             else
1777                 return true; // recovery
1778         }
1779         return false;
1780     }
1781 
1782     /** Check an annotation value.
1783      */
1784     public void validateAnnotation(JCAnnotation a) {
1785         if (a.type.isErroneous()) return;
1786 
1787         // collect an inventory of the members
1788         Set<MethodSymbol> members = new HashSet<MethodSymbol>();
1789         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
1790              e != null;
1791              e = e.sibling)
1792             if (e.sym.kind == MTH)
1793                 members.add((MethodSymbol) e.sym);
1794 
1795         // count them off as they're annotated
1796         for (JCTree arg : a.args) {
1797             if (arg.getTag() != JCTree.ASSIGN) continue; // recovery
1798             JCAssign assign = (JCAssign) arg;
1799             Symbol m = TreeInfo.symbol(assign.lhs);
1800             if (m == null || m.type.isErroneous()) continue;
1801             if (!members.remove(m))
1802                 log.error(arg.pos(), "duplicate.annotation.member.value",
1803                           m.name, a.type);
1804             if (assign.rhs.getTag() == ANNOTATION)
1805                 validateAnnotation((JCAnnotation)assign.rhs);
1806         }
1807 
1808         // all the remaining ones better have default values
1809         for (MethodSymbol m : members)
1810             if (m.defaultValue == null && !m.type.isErroneous())
1811                 log.error(a.pos(), "annotation.missing.default.value",
1812                           a.type, m.name);
1813 
1814         // special case: java.lang.annotation.Target must not have
1815         // repeated values in its value member
1816         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
1817             a.args.tail == null)
1818             return;
1819 
1820         if (a.args.head.getTag() != JCTree.ASSIGN) return; // error recovery
1821         JCAssign assign = (JCAssign) a.args.head;
1822         Symbol m = TreeInfo.symbol(assign.lhs);
1823         if (m.name != names.value) return;
1824         JCTree rhs = assign.rhs;
1825         if (rhs.getTag() != JCTree.NEWARRAY) return;
1826         JCNewArray na = (JCNewArray) rhs;
1827         Set<Symbol> targets = new HashSet<Symbol>();
1828         for (JCTree elem : na.elems) {
1829             if (!targets.add(TreeInfo.symbol(elem))) {
1830                 log.error(elem.pos(), "repeated.annotation.target");
1831             }
1832         }
1833     }
1834 
1835     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
1836         if (allowAnnotations &&
1837             lint.isEnabled(Lint.LintCategory.DEP_ANN) &&
1838             (s.flags() & DEPRECATED) != 0 &&
1839             !syms.deprecatedType.isErroneous() &&
1840             s.attribute(syms.deprecatedType.tsym) == null) {
1841             log.warning(pos, "missing.deprecated.annotation");
1842         }
1843     }
1844 
1845 /* *************************************************************************
1846  * Check for recursive annotation elements.
1847  **************************************************************************/
1848 
1849     /** Check for cycles in the graph of annotation elements.
1850      */
1851     void checkNonCyclicElements(JCClassDecl tree) {
1852         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
1853         assert (tree.sym.flags_field & LOCKED) == 0;
1854         try {
1855             tree.sym.flags_field |= LOCKED;
1856             for (JCTree def : tree.defs) {
1857                 if (def.getTag() != JCTree.METHODDEF) continue;
1858                 JCMethodDecl meth = (JCMethodDecl)def;
1859                 checkAnnotationResType(meth.pos(), meth.restype.type);
1860             }
1861         } finally {
1862             tree.sym.flags_field &= ~LOCKED;
1863             tree.sym.flags_field |= ACYCLIC_ANN;
1864         }
1865     }
1866 
1867     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
1868         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
1869             return;
1870         if ((tsym.flags_field & LOCKED) != 0) {
1871             log.error(pos, "cyclic.annotation.element");
1872             return;
1873         }
1874         try {
1875             tsym.flags_field |= LOCKED;
1876             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
1877                 Symbol s = e.sym;
1878                 if (s.kind != Kinds.MTH)
1879                     continue;
1880                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
1881             }
1882         } finally {
1883             tsym.flags_field &= ~LOCKED;
1884             tsym.flags_field |= ACYCLIC_ANN;
1885         }
1886     }
1887 
1888     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
1889         switch (type.tag) {
1890         case TypeTags.CLASS:
1891             if ((type.tsym.flags() & ANNOTATION) != 0)
1892                 checkNonCyclicElementsInternal(pos, type.tsym);
1893             break;
1894         case TypeTags.ARRAY:
1895             checkAnnotationResType(pos, types.elemtype(type));
1896             break;
1897         default:
1898             break; // int etc
1899         }
1900     }
1901 
1902 /* *************************************************************************
1903  * Check for cycles in the constructor call graph.
1904  **************************************************************************/
1905 
1906     /** Check for cycles in the graph of constructors calling other
1907      *  constructors.
1908      */
1909     void checkCyclicConstructors(JCClassDecl tree) {
1910         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
1911 
1912         // enter each constructor this-call into the map
1913         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
1914             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
1915             if (app == null) continue;
1916             JCMethodDecl meth = (JCMethodDecl) l.head;
1917             if (TreeInfo.name(app.meth) == names._this) {
1918                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
1919             } else {
1920                 meth.sym.flags_field |= ACYCLIC;
1921             }
1922         }
1923 
1924         // Check for cycles in the map
1925         Symbol[] ctors = new Symbol[0];
1926         ctors = callMap.keySet().toArray(ctors);
1927         for (Symbol caller : ctors) {
1928             checkCyclicConstructor(tree, caller, callMap);
1929         }
1930     }
1931 
1932     /** Look in the map to see if the given constructor is part of a
1933      *  call cycle.
1934      */
1935     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
1936                                         Map<Symbol,Symbol> callMap) {
1937         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
1938             if ((ctor.flags_field & LOCKED) != 0) {
1939                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
1940                           "recursive.ctor.invocation");
1941             } else {
1942                 ctor.flags_field |= LOCKED;
1943                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
1944                 ctor.flags_field &= ~LOCKED;
1945             }
1946             ctor.flags_field |= ACYCLIC;
1947         }
1948     }
1949 
1950 /* *************************************************************************
1951  * Miscellaneous
1952  **************************************************************************/
1953 
1954     /**
1955      * Return the opcode of the operator but emit an error if it is an
1956      * error.
1957      * @param pos        position for error reporting.
1958      * @param operator   an operator
1959      * @param tag        a tree tag
1960      * @param left       type of left hand side
1961      * @param right      type of right hand side
1962      */
1963     int checkOperator(DiagnosticPosition pos,
1964                        OperatorSymbol operator,
1965                        int tag,
1966                        Type left,
1967                        Type right) {
1968         if (operator.opcode == ByteCodes.error) {
1969             log.error(pos,
1970                       "operator.cant.be.applied",
1971                       treeinfo.operatorName(tag),
1972                       left + "," + right);
1973         }
1974         return operator.opcode;
1975     }
1976 
1977 
1978     /**
1979      *  Check for division by integer constant zero
1980      *  @param pos           Position for error reporting.
1981      *  @param operator      The operator for the expression
1982      *  @param operand       The right hand operand for the expression
1983      */
1984     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
1985         if (operand.constValue() != null
1986             && lint.isEnabled(Lint.LintCategory.DIVZERO)
1987             && operand.tag <= LONG
1988             && ((Number) (operand.constValue())).longValue() == 0) {
1989             int opc = ((OperatorSymbol)operator).opcode;
1990             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
1991                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
1992                 log.warning(pos, "div.zero");
1993             }
1994         }
1995     }
1996 
1997     /**
1998      * Check for empty statements after if
1999      */
2000     void checkEmptyIf(JCIf tree) {
2001         if (tree.thenpart.getTag() == JCTree.SKIP && tree.elsepart == null && lint.isEnabled(Lint.LintCategory.EMPTY))
2002             log.warning(tree.thenpart.pos(), "empty.if");
2003     }
2004 
2005     /** Check that symbol is unique in given scope.
2006      *  @param pos           Position for error reporting.
2007      *  @param sym           The symbol.
2008      *  @param s             The scope.
2009      */
2010     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
2011         if (sym.type.isErroneous())
2012             return true;
2013         if (sym.owner.name == names.any) return false;
2014         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
2015             if (sym != e.sym &&
2016                 sym.kind == e.sym.kind &&
2017                 sym.name != names.error &&
2018                 (sym.kind != MTH || types.overrideEquivalent(sym.type, e.sym.type))) {
2019                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS))
2020                     varargsDuplicateError(pos, sym, e.sym);
2021                 else
2022                     duplicateError(pos, e.sym);
2023                 return false;
2024             }
2025         }
2026         return true;
2027     }
2028 
2029     /** Check that single-type import is not already imported or top-level defined,
2030      *  but make an exception for two single-type imports which denote the same type.
2031      *  @param pos           Position for error reporting.
2032      *  @param sym           The symbol.
2033      *  @param s             The scope
2034      */
2035     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
2036         return checkUniqueImport(pos, sym, s, false);
2037     }
2038 
2039     /** Check that static single-type import is not already imported or top-level defined,
2040      *  but make an exception for two single-type imports which denote the same type.
2041      *  @param pos           Position for error reporting.
2042      *  @param sym           The symbol.
2043      *  @param s             The scope
2044      *  @param staticImport  Whether or not this was a static import
2045      */
2046     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
2047         return checkUniqueImport(pos, sym, s, true);
2048     }
2049 
2050     /** Check that single-type import is not already imported or top-level defined,
2051      *  but make an exception for two single-type imports which denote the same type.
2052      *  @param pos           Position for error reporting.
2053      *  @param sym           The symbol.
2054      *  @param s             The scope.
2055      *  @param staticImport  Whether or not this was a static import
2056      */
2057     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
2058         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
2059             // is encountered class entered via a class declaration?
2060             boolean isClassDecl = e.scope == s;
2061             if ((isClassDecl || sym != e.sym) &&
2062                 sym.kind == e.sym.kind &&
2063                 sym.name != names.error) {
2064                 if (!e.sym.type.isErroneous()) {
2065                     String what = e.sym.toString();
2066                     if (!isClassDecl) {
2067                         if (staticImport)
2068                             log.error(pos, "already.defined.static.single.import", what);
2069                         else
2070                             log.error(pos, "already.defined.single.import", what);
2071                     }
2072                     else if (sym != e.sym)
2073                         log.error(pos, "already.defined.this.unit", what);
2074                 }
2075                 return false;
2076             }
2077         }
2078         return true;
2079     }
2080 
2081     /** Check that a qualified name is in canonical form (for import decls).
2082      */
2083     public void checkCanonical(JCTree tree) {
2084         if (!isCanonical(tree))
2085             log.error(tree.pos(), "import.requires.canonical",
2086                       TreeInfo.symbol(tree));
2087     }
2088         // where
2089         private boolean isCanonical(JCTree tree) {
2090             while (tree.getTag() == JCTree.SELECT) {
2091                 JCFieldAccess s = (JCFieldAccess) tree;
2092                 if (s.sym.owner != TreeInfo.symbol(s.selected))
2093                     return false;
2094                 tree = s.selected;
2095             }
2096             return true;
2097         }
2098 
2099     private class ConversionWarner extends Warner {
2100         final String key;
2101         final Type found;
2102         final Type expected;
2103         public ConversionWarner(DiagnosticPosition pos, String key, Type found, Type expected) {
2104             super(pos);
2105             this.key = key;
2106             this.found = found;
2107             this.expected = expected;
2108         }
2109 
2110         public void warnUnchecked() {
2111             boolean warned = this.warned;
2112             super.warnUnchecked();
2113             if (warned) return; // suppress redundant diagnostics
2114             Object problem = JCDiagnostic.fragment(key);
2115             Check.this.warnUnchecked(pos(), "prob.found.req", problem, found, expected);
2116         }
2117     }
2118 
2119     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
2120         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
2121     }
2122 
2123     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
2124         return new ConversionWarner(pos, "unchecked.assign", found, expected);
2125     }
2126 }