1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /*
  26  * This file is available under and governed by the GNU General Public
  27  * License version 2 only, as published by the Free Software Foundation.
  28  * However, the following notice accompanied the original version of this
  29  * file:
  30  *
  31  * Written by Josh Bloch of Google Inc. and released to the public domain,
  32  * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
  33  */
  34 
  35 package java.util;
  36 
  37 import java.io.Serializable;
  38 import java.util.function.Consumer;
  39 import sun.misc.SharedSecrets;
  40 
  41 /**
  42  * Resizable-array implementation of the {@link Deque} interface.  Array
  43  * deques have no capacity restrictions; they grow as necessary to support
  44  * usage.  They are not thread-safe; in the absence of external
  45  * synchronization, they do not support concurrent access by multiple threads.
  46  * Null elements are prohibited.  This class is likely to be faster than
  47  * {@link Stack} when used as a stack, and faster than {@link LinkedList}
  48  * when used as a queue.
  49  *
  50  * <p>Most {@code ArrayDeque} operations run in amortized constant time.
  51  * Exceptions include {@link #remove(Object) remove}, {@link
  52  * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
  53  * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
  54  * iterator.remove()}, and the bulk operations, all of which run in linear
  55  * time.
  56  *
  57  * <p>The iterators returned by this class's {@code iterator} method are
  58  * <i>fail-fast</i>: If the deque is modified at any time after the iterator
  59  * is created, in any way except through the iterator's own {@code remove}
  60  * method, the iterator will generally throw a {@link
  61  * ConcurrentModificationException}.  Thus, in the face of concurrent
  62  * modification, the iterator fails quickly and cleanly, rather than risking
  63  * arbitrary, non-deterministic behavior at an undetermined time in the
  64  * future.
  65  *
  66  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  67  * as it is, generally speaking, impossible to make any hard guarantees in the
  68  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  69  * throw {@code ConcurrentModificationException} on a best-effort basis.
  70  * Therefore, it would be wrong to write a program that depended on this
  71  * exception for its correctness: <i>the fail-fast behavior of iterators
  72  * should be used only to detect bugs.</i>
  73  *
  74  * <p>This class and its iterator implement all of the
  75  * <em>optional</em> methods of the {@link Collection} and {@link
  76  * Iterator} interfaces.
  77  *
  78  * <p>This class is a member of the
  79  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  80  * Java Collections Framework</a>.
  81  *
  82  * @author  Josh Bloch and Doug Lea
  83  * @since   1.6
  84  * @param <E> the type of elements held in this collection
  85  */
  86 public class ArrayDeque<E> extends AbstractCollection<E>
  87                            implements Deque<E>, Cloneable, Serializable
  88 {
  89     /**
  90      * The array in which the elements of the deque are stored.
  91      * The capacity of the deque is the length of this array, which is
  92      * always a power of two. The array is never allowed to become
  93      * full, except transiently within an addX method where it is
  94      * resized (see doubleCapacity) immediately upon becoming full,
  95      * thus avoiding head and tail wrapping around to equal each
  96      * other.  We also guarantee that all array cells not holding
  97      * deque elements are always null.
  98      */
  99     transient Object[] elements; // non-private to simplify nested class access
 100 
 101     /**
 102      * The index of the element at the head of the deque (which is the
 103      * element that would be removed by remove() or pop()); or an
 104      * arbitrary number equal to tail if the deque is empty.
 105      */
 106     transient int head;
 107 
 108     /**
 109      * The index at which the next element would be added to the tail
 110      * of the deque (via addLast(E), add(E), or push(E)).
 111      */
 112     transient int tail;
 113 
 114     /**
 115      * The minimum capacity that we'll use for a newly created deque.
 116      * Must be a power of 2.
 117      */
 118     private static final int MIN_INITIAL_CAPACITY = 8;
 119 
 120     // ******  Array allocation and resizing utilities ******
 121 
 122     private static int calculateSize(int numElements) {
 123         int initialCapacity = MIN_INITIAL_CAPACITY;
 124         // Find the best power of two to hold elements.
 125         // Tests "<=" because arrays aren't kept full.
 126         if (numElements >= initialCapacity) {
 127             initialCapacity = numElements;
 128             initialCapacity |= (initialCapacity >>>  1);
 129             initialCapacity |= (initialCapacity >>>  2);
 130             initialCapacity |= (initialCapacity >>>  4);
 131             initialCapacity |= (initialCapacity >>>  8);
 132             initialCapacity |= (initialCapacity >>> 16);
 133             initialCapacity++;
 134 
 135             if (initialCapacity < 0)   // Too many elements, must back off
 136                 initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
 137         }
 138         return initialCapacity;
 139     }
 140 
 141     /**
 142      * Allocates empty array to hold the given number of elements.
 143      *
 144      * @param numElements  the number of elements to hold
 145      */
 146     private void allocateElements(int numElements) {
 147         elements = new Object[calculateSize(numElements)];
 148     }
 149 
 150     /**
 151      * Doubles the capacity of this deque.  Call only when full, i.e.,
 152      * when head and tail have wrapped around to become equal.
 153      */
 154     private void doubleCapacity() {
 155         assert head == tail;
 156         int p = head;
 157         int n = elements.length;
 158         int r = n - p; // number of elements to the right of p
 159         int newCapacity = n << 1;
 160         if (newCapacity < 0)
 161             throw new IllegalStateException("Sorry, deque too big");
 162         Object[] a = new Object[newCapacity];
 163         System.arraycopy(elements, p, a, 0, r);
 164         System.arraycopy(elements, 0, a, r, p);
 165         elements = a;
 166         head = 0;
 167         tail = n;
 168     }
 169 
 170     /**
 171      * Copies the elements from our element array into the specified array,
 172      * in order (from first to last element in the deque).  It is assumed
 173      * that the array is large enough to hold all elements in the deque.
 174      *
 175      * @return its argument
 176      */
 177     private <T> T[] copyElements(T[] a) {
 178         if (head < tail) {
 179             System.arraycopy(elements, head, a, 0, size());
 180         } else if (head > tail) {
 181             int headPortionLen = elements.length - head;
 182             System.arraycopy(elements, head, a, 0, headPortionLen);
 183             System.arraycopy(elements, 0, a, headPortionLen, tail);
 184         }
 185         return a;
 186     }
 187 
 188     /**
 189      * Constructs an empty array deque with an initial capacity
 190      * sufficient to hold 16 elements.
 191      */
 192     public ArrayDeque() {
 193         elements = new Object[16];
 194     }
 195 
 196     /**
 197      * Constructs an empty array deque with an initial capacity
 198      * sufficient to hold the specified number of elements.
 199      *
 200      * @param numElements  lower bound on initial capacity of the deque
 201      */
 202     public ArrayDeque(int numElements) {
 203         allocateElements(numElements);
 204     }
 205 
 206     /**
 207      * Constructs a deque containing the elements of the specified
 208      * collection, in the order they are returned by the collection's
 209      * iterator.  (The first element returned by the collection's
 210      * iterator becomes the first element, or <i>front</i> of the
 211      * deque.)
 212      *
 213      * @param c the collection whose elements are to be placed into the deque
 214      * @throws NullPointerException if the specified collection is null
 215      */
 216     public ArrayDeque(Collection<? extends E> c) {
 217         allocateElements(c.size());
 218         addAll(c);
 219     }
 220 
 221     // The main insertion and extraction methods are addFirst,
 222     // addLast, pollFirst, pollLast. The other methods are defined in
 223     // terms of these.
 224 
 225     /**
 226      * Inserts the specified element at the front of this deque.
 227      *
 228      * @param e the element to add
 229      * @throws NullPointerException if the specified element is null
 230      */
 231     public void addFirst(E e) {
 232         if (e == null)
 233             throw new NullPointerException();
 234         elements[head = (head - 1) & (elements.length - 1)] = e;
 235         if (head == tail)
 236             doubleCapacity();
 237     }
 238 
 239     /**
 240      * Inserts the specified element at the end of this deque.
 241      *
 242      * <p>This method is equivalent to {@link #add}.
 243      *
 244      * @param e the element to add
 245      * @throws NullPointerException if the specified element is null
 246      */
 247     public void addLast(E e) {
 248         if (e == null)
 249             throw new NullPointerException();
 250         elements[tail] = e;
 251         if ( (tail = (tail + 1) & (elements.length - 1)) == head)
 252             doubleCapacity();
 253     }
 254 
 255     /**
 256      * Inserts the specified element at the front of this deque.
 257      *
 258      * @param e the element to add
 259      * @return {@code true} (as specified by {@link Deque#offerFirst})
 260      * @throws NullPointerException if the specified element is null
 261      */
 262     public boolean offerFirst(E e) {
 263         addFirst(e);
 264         return true;
 265     }
 266 
 267     /**
 268      * Inserts the specified element at the end of this deque.
 269      *
 270      * @param e the element to add
 271      * @return {@code true} (as specified by {@link Deque#offerLast})
 272      * @throws NullPointerException if the specified element is null
 273      */
 274     public boolean offerLast(E e) {
 275         addLast(e);
 276         return true;
 277     }
 278 
 279     /**
 280      * @throws NoSuchElementException {@inheritDoc}
 281      */
 282     public E removeFirst() {
 283         E x = pollFirst();
 284         if (x == null)
 285             throw new NoSuchElementException();
 286         return x;
 287     }
 288 
 289     /**
 290      * @throws NoSuchElementException {@inheritDoc}
 291      */
 292     public E removeLast() {
 293         E x = pollLast();
 294         if (x == null)
 295             throw new NoSuchElementException();
 296         return x;
 297     }
 298 
 299     public E pollFirst() {
 300         int h = head;
 301         @SuppressWarnings("unchecked")
 302         E result = (E) elements[h];
 303         // Element is null if deque empty
 304         if (result == null)
 305             return null;
 306         elements[h] = null;     // Must null out slot
 307         head = (h + 1) & (elements.length - 1);
 308         return result;
 309     }
 310 
 311     public E pollLast() {
 312         int t = (tail - 1) & (elements.length - 1);
 313         @SuppressWarnings("unchecked")
 314         E result = (E) elements[t];
 315         if (result == null)
 316             return null;
 317         elements[t] = null;
 318         tail = t;
 319         return result;
 320     }
 321 
 322     /**
 323      * @throws NoSuchElementException {@inheritDoc}
 324      */
 325     public E getFirst() {
 326         @SuppressWarnings("unchecked")
 327         E result = (E) elements[head];
 328         if (result == null)
 329             throw new NoSuchElementException();
 330         return result;
 331     }
 332 
 333     /**
 334      * @throws NoSuchElementException {@inheritDoc}
 335      */
 336     public E getLast() {
 337         @SuppressWarnings("unchecked")
 338         E result = (E) elements[(tail - 1) & (elements.length - 1)];
 339         if (result == null)
 340             throw new NoSuchElementException();
 341         return result;
 342     }
 343 
 344     @SuppressWarnings("unchecked")
 345     public E peekFirst() {
 346         // elements[head] is null if deque empty
 347         return (E) elements[head];
 348     }
 349 
 350     @SuppressWarnings("unchecked")
 351     public E peekLast() {
 352         return (E) elements[(tail - 1) & (elements.length - 1)];
 353     }
 354 
 355     /**
 356      * Removes the first occurrence of the specified element in this
 357      * deque (when traversing the deque from head to tail).
 358      * If the deque does not contain the element, it is unchanged.
 359      * More formally, removes the first element {@code e} such that
 360      * {@code o.equals(e)} (if such an element exists).
 361      * Returns {@code true} if this deque contained the specified element
 362      * (or equivalently, if this deque changed as a result of the call).
 363      *
 364      * @param o element to be removed from this deque, if present
 365      * @return {@code true} if the deque contained the specified element
 366      */
 367     public boolean removeFirstOccurrence(Object o) {
 368         if (o == null)
 369             return false;
 370         int mask = elements.length - 1;
 371         int i = head;
 372         Object x;
 373         while ( (x = elements[i]) != null) {
 374             if (o.equals(x)) {
 375                 delete(i);
 376                 return true;
 377             }
 378             i = (i + 1) & mask;
 379         }
 380         return false;
 381     }
 382 
 383     /**
 384      * Removes the last occurrence of the specified element in this
 385      * deque (when traversing the deque from head to tail).
 386      * If the deque does not contain the element, it is unchanged.
 387      * More formally, removes the last element {@code e} such that
 388      * {@code o.equals(e)} (if such an element exists).
 389      * Returns {@code true} if this deque contained the specified element
 390      * (or equivalently, if this deque changed as a result of the call).
 391      *
 392      * @param o element to be removed from this deque, if present
 393      * @return {@code true} if the deque contained the specified element
 394      */
 395     public boolean removeLastOccurrence(Object o) {
 396         if (o == null)
 397             return false;
 398         int mask = elements.length - 1;
 399         int i = (tail - 1) & mask;
 400         Object x;
 401         while ( (x = elements[i]) != null) {
 402             if (o.equals(x)) {
 403                 delete(i);
 404                 return true;
 405             }
 406             i = (i - 1) & mask;
 407         }
 408         return false;
 409     }
 410 
 411     // *** Queue methods ***
 412 
 413     /**
 414      * Inserts the specified element at the end of this deque.
 415      *
 416      * <p>This method is equivalent to {@link #addLast}.
 417      *
 418      * @param e the element to add
 419      * @return {@code true} (as specified by {@link Collection#add})
 420      * @throws NullPointerException if the specified element is null
 421      */
 422     public boolean add(E e) {
 423         addLast(e);
 424         return true;
 425     }
 426 
 427     /**
 428      * Inserts the specified element at the end of this deque.
 429      *
 430      * <p>This method is equivalent to {@link #offerLast}.
 431      *
 432      * @param e the element to add
 433      * @return {@code true} (as specified by {@link Queue#offer})
 434      * @throws NullPointerException if the specified element is null
 435      */
 436     public boolean offer(E e) {
 437         return offerLast(e);
 438     }
 439 
 440     /**
 441      * Retrieves and removes the head of the queue represented by this deque.
 442      *
 443      * This method differs from {@link #poll poll} only in that it throws an
 444      * exception if this deque is empty.
 445      *
 446      * <p>This method is equivalent to {@link #removeFirst}.
 447      *
 448      * @return the head of the queue represented by this deque
 449      * @throws NoSuchElementException {@inheritDoc}
 450      */
 451     public E remove() {
 452         return removeFirst();
 453     }
 454 
 455     /**
 456      * Retrieves and removes the head of the queue represented by this deque
 457      * (in other words, the first element of this deque), or returns
 458      * {@code null} if this deque is empty.
 459      *
 460      * <p>This method is equivalent to {@link #pollFirst}.
 461      *
 462      * @return the head of the queue represented by this deque, or
 463      *         {@code null} if this deque is empty
 464      */
 465     public E poll() {
 466         return pollFirst();
 467     }
 468 
 469     /**
 470      * Retrieves, but does not remove, the head of the queue represented by
 471      * this deque.  This method differs from {@link #peek peek} only in
 472      * that it throws an exception if this deque is empty.
 473      *
 474      * <p>This method is equivalent to {@link #getFirst}.
 475      *
 476      * @return the head of the queue represented by this deque
 477      * @throws NoSuchElementException {@inheritDoc}
 478      */
 479     public E element() {
 480         return getFirst();
 481     }
 482 
 483     /**
 484      * Retrieves, but does not remove, the head of the queue represented by
 485      * this deque, or returns {@code null} if this deque is empty.
 486      *
 487      * <p>This method is equivalent to {@link #peekFirst}.
 488      *
 489      * @return the head of the queue represented by this deque, or
 490      *         {@code null} if this deque is empty
 491      */
 492     public E peek() {
 493         return peekFirst();
 494     }
 495 
 496     // *** Stack methods ***
 497 
 498     /**
 499      * Pushes an element onto the stack represented by this deque.  In other
 500      * words, inserts the element at the front of this deque.
 501      *
 502      * <p>This method is equivalent to {@link #addFirst}.
 503      *
 504      * @param e the element to push
 505      * @throws NullPointerException if the specified element is null
 506      */
 507     public void push(E e) {
 508         addFirst(e);
 509     }
 510 
 511     /**
 512      * Pops an element from the stack represented by this deque.  In other
 513      * words, removes and returns the first element of this deque.
 514      *
 515      * <p>This method is equivalent to {@link #removeFirst()}.
 516      *
 517      * @return the element at the front of this deque (which is the top
 518      *         of the stack represented by this deque)
 519      * @throws NoSuchElementException {@inheritDoc}
 520      */
 521     public E pop() {
 522         return removeFirst();
 523     }
 524 
 525     private void checkInvariants() {
 526         assert elements[tail] == null;
 527         assert head == tail ? elements[head] == null :
 528             (elements[head] != null &&
 529              elements[(tail - 1) & (elements.length - 1)] != null);
 530         assert elements[(head - 1) & (elements.length - 1)] == null;
 531     }
 532 
 533     /**
 534      * Removes the element at the specified position in the elements array,
 535      * adjusting head and tail as necessary.  This can result in motion of
 536      * elements backwards or forwards in the array.
 537      *
 538      * <p>This method is called delete rather than remove to emphasize
 539      * that its semantics differ from those of {@link List#remove(int)}.
 540      *
 541      * @return true if elements moved backwards
 542      */
 543     private boolean delete(int i) {
 544         checkInvariants();
 545         final Object[] elements = this.elements;
 546         final int mask = elements.length - 1;
 547         final int h = head;
 548         final int t = tail;
 549         final int front = (i - h) & mask;
 550         final int back  = (t - i) & mask;
 551 
 552         // Invariant: head <= i < tail mod circularity
 553         if (front >= ((t - h) & mask))
 554             throw new ConcurrentModificationException();
 555 
 556         // Optimize for least element motion
 557         if (front < back) {
 558             if (h <= i) {
 559                 System.arraycopy(elements, h, elements, h + 1, front);
 560             } else { // Wrap around
 561                 System.arraycopy(elements, 0, elements, 1, i);
 562                 elements[0] = elements[mask];
 563                 System.arraycopy(elements, h, elements, h + 1, mask - h);
 564             }
 565             elements[h] = null;
 566             head = (h + 1) & mask;
 567             return false;
 568         } else {
 569             if (i < t) { // Copy the null tail as well
 570                 System.arraycopy(elements, i + 1, elements, i, back);
 571                 tail = t - 1;
 572             } else { // Wrap around
 573                 System.arraycopy(elements, i + 1, elements, i, mask - i);
 574                 elements[mask] = elements[0];
 575                 System.arraycopy(elements, 1, elements, 0, t);
 576                 tail = (t - 1) & mask;
 577             }
 578             return true;
 579         }
 580     }
 581 
 582     // *** Collection Methods ***
 583 
 584     /**
 585      * Returns the number of elements in this deque.
 586      *
 587      * @return the number of elements in this deque
 588      */
 589     public int size() {
 590         return (tail - head) & (elements.length - 1);
 591     }
 592 
 593     /**
 594      * Returns {@code true} if this deque contains no elements.
 595      *
 596      * @return {@code true} if this deque contains no elements
 597      */
 598     public boolean isEmpty() {
 599         return head == tail;
 600     }
 601 
 602     /**
 603      * Returns an iterator over the elements in this deque.  The elements
 604      * will be ordered from first (head) to last (tail).  This is the same
 605      * order that elements would be dequeued (via successive calls to
 606      * {@link #remove} or popped (via successive calls to {@link #pop}).
 607      *
 608      * @return an iterator over the elements in this deque
 609      */
 610     public Iterator<E> iterator() {
 611         return new DeqIterator();
 612     }
 613 
 614     public Iterator<E> descendingIterator() {
 615         return new DescendingIterator();
 616     }
 617 
 618     private class DeqIterator implements Iterator<E> {
 619         /**
 620          * Index of element to be returned by subsequent call to next.
 621          */
 622         private int cursor = head;
 623 
 624         /**
 625          * Tail recorded at construction (also in remove), to stop
 626          * iterator and also to check for comodification.
 627          */
 628         private int fence = tail;
 629 
 630         /**
 631          * Index of element returned by most recent call to next.
 632          * Reset to -1 if element is deleted by a call to remove.
 633          */
 634         private int lastRet = -1;
 635 
 636         public boolean hasNext() {
 637             return cursor != fence;
 638         }
 639 
 640         public E next() {
 641             if (cursor == fence)
 642                 throw new NoSuchElementException();
 643             @SuppressWarnings("unchecked")
 644             E result = (E) elements[cursor];
 645             // This check doesn't catch all possible comodifications,
 646             // but does catch the ones that corrupt traversal
 647             if (tail != fence || result == null)
 648                 throw new ConcurrentModificationException();
 649             lastRet = cursor;
 650             cursor = (cursor + 1) & (elements.length - 1);
 651             return result;
 652         }
 653 
 654         public void remove() {
 655             if (lastRet < 0)
 656                 throw new IllegalStateException();
 657             if (delete(lastRet)) { // if left-shifted, undo increment in next()
 658                 cursor = (cursor - 1) & (elements.length - 1);
 659                 fence = tail;
 660             }
 661             lastRet = -1;
 662         }
 663 
 664         public void forEachRemaining(Consumer<? super E> action) {
 665             Objects.requireNonNull(action);
 666             Object[] a = elements;
 667             int m = a.length - 1, f = fence, i = cursor;
 668             cursor = f;
 669             while (i != f) {
 670                 @SuppressWarnings("unchecked") E e = (E)a[i];
 671                 i = (i + 1) & m;
 672                 if (e == null)
 673                     throw new ConcurrentModificationException();
 674                 action.accept(e);
 675             }
 676         }
 677     }
 678 
 679     private class DescendingIterator implements Iterator<E> {
 680         /*
 681          * This class is nearly a mirror-image of DeqIterator, using
 682          * tail instead of head for initial cursor, and head instead of
 683          * tail for fence.
 684          */
 685         private int cursor = tail;
 686         private int fence = head;
 687         private int lastRet = -1;
 688 
 689         public boolean hasNext() {
 690             return cursor != fence;
 691         }
 692 
 693         public E next() {
 694             if (cursor == fence)
 695                 throw new NoSuchElementException();
 696             cursor = (cursor - 1) & (elements.length - 1);
 697             @SuppressWarnings("unchecked")
 698             E result = (E) elements[cursor];
 699             if (head != fence || result == null)
 700                 throw new ConcurrentModificationException();
 701             lastRet = cursor;
 702             return result;
 703         }
 704 
 705         public void remove() {
 706             if (lastRet < 0)
 707                 throw new IllegalStateException();
 708             if (!delete(lastRet)) {
 709                 cursor = (cursor + 1) & (elements.length - 1);
 710                 fence = head;
 711             }
 712             lastRet = -1;
 713         }
 714     }
 715 
 716     /**
 717      * Returns {@code true} if this deque contains the specified element.
 718      * More formally, returns {@code true} if and only if this deque contains
 719      * at least one element {@code e} such that {@code o.equals(e)}.
 720      *
 721      * @param o object to be checked for containment in this deque
 722      * @return {@code true} if this deque contains the specified element
 723      */
 724     public boolean contains(Object o) {
 725         if (o == null)
 726             return false;
 727         int mask = elements.length - 1;
 728         int i = head;
 729         Object x;
 730         while ( (x = elements[i]) != null) {
 731             if (o.equals(x))
 732                 return true;
 733             i = (i + 1) & mask;
 734         }
 735         return false;
 736     }
 737 
 738     /**
 739      * Removes a single instance of the specified element from this deque.
 740      * If the deque does not contain the element, it is unchanged.
 741      * More formally, removes the first element {@code e} such that
 742      * {@code o.equals(e)} (if such an element exists).
 743      * Returns {@code true} if this deque contained the specified element
 744      * (or equivalently, if this deque changed as a result of the call).
 745      *
 746      * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
 747      *
 748      * @param o element to be removed from this deque, if present
 749      * @return {@code true} if this deque contained the specified element
 750      */
 751     public boolean remove(Object o) {
 752         return removeFirstOccurrence(o);
 753     }
 754 
 755     /**
 756      * Removes all of the elements from this deque.
 757      * The deque will be empty after this call returns.
 758      */
 759     public void clear() {
 760         int h = head;
 761         int t = tail;
 762         if (h != t) { // clear all cells
 763             head = tail = 0;
 764             int i = h;
 765             int mask = elements.length - 1;
 766             do {
 767                 elements[i] = null;
 768                 i = (i + 1) & mask;
 769             } while (i != t);
 770         }
 771     }
 772 
 773     /**
 774      * Returns an array containing all of the elements in this deque
 775      * in proper sequence (from first to last element).
 776      *
 777      * <p>The returned array will be "safe" in that no references to it are
 778      * maintained by this deque.  (In other words, this method must allocate
 779      * a new array).  The caller is thus free to modify the returned array.
 780      *
 781      * <p>This method acts as bridge between array-based and collection-based
 782      * APIs.
 783      *
 784      * @return an array containing all of the elements in this deque
 785      */
 786     public Object[] toArray() {
 787         return copyElements(new Object[size()]);
 788     }
 789 
 790     /**
 791      * Returns an array containing all of the elements in this deque in
 792      * proper sequence (from first to last element); the runtime type of the
 793      * returned array is that of the specified array.  If the deque fits in
 794      * the specified array, it is returned therein.  Otherwise, a new array
 795      * is allocated with the runtime type of the specified array and the
 796      * size of this deque.
 797      *
 798      * <p>If this deque fits in the specified array with room to spare
 799      * (i.e., the array has more elements than this deque), the element in
 800      * the array immediately following the end of the deque is set to
 801      * {@code null}.
 802      *
 803      * <p>Like the {@link #toArray()} method, this method acts as bridge between
 804      * array-based and collection-based APIs.  Further, this method allows
 805      * precise control over the runtime type of the output array, and may,
 806      * under certain circumstances, be used to save allocation costs.
 807      *
 808      * <p>Suppose {@code x} is a deque known to contain only strings.
 809      * The following code can be used to dump the deque into a newly
 810      * allocated array of {@code String}:
 811      *
 812      *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
 813      *
 814      * Note that {@code toArray(new Object[0])} is identical in function to
 815      * {@code toArray()}.
 816      *
 817      * @param a the array into which the elements of the deque are to
 818      *          be stored, if it is big enough; otherwise, a new array of the
 819      *          same runtime type is allocated for this purpose
 820      * @return an array containing all of the elements in this deque
 821      * @throws ArrayStoreException if the runtime type of the specified array
 822      *         is not a supertype of the runtime type of every element in
 823      *         this deque
 824      * @throws NullPointerException if the specified array is null
 825      */
 826     @SuppressWarnings("unchecked")
 827     public <T> T[] toArray(T[] a) {
 828         int size = size();
 829         if (a.length < size)
 830             a = (T[])java.lang.reflect.Array.newInstance(
 831                     a.getClass().getComponentType(), size);
 832         copyElements(a);
 833         if (a.length > size)
 834             a[size] = null;
 835         return a;
 836     }
 837 
 838     // *** Object methods ***
 839 
 840     /**
 841      * Returns a copy of this deque.
 842      *
 843      * @return a copy of this deque
 844      */
 845     public ArrayDeque<E> clone() {
 846         try {
 847             @SuppressWarnings("unchecked")
 848             ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
 849             result.elements = Arrays.copyOf(elements, elements.length);
 850             return result;
 851         } catch (CloneNotSupportedException e) {
 852             throw new AssertionError();
 853         }
 854     }
 855 
 856     private static final long serialVersionUID = 2340985798034038923L;
 857 
 858     /**
 859      * Saves this deque to a stream (that is, serializes it).
 860      *
 861      * @serialData The current size ({@code int}) of the deque,
 862      * followed by all of its elements (each an object reference) in
 863      * first-to-last order.
 864      */
 865     private void writeObject(java.io.ObjectOutputStream s)
 866             throws java.io.IOException {
 867         s.defaultWriteObject();
 868 
 869         // Write out size
 870         s.writeInt(size());
 871 
 872         // Write out elements in order.
 873         int mask = elements.length - 1;
 874         for (int i = head; i != tail; i = (i + 1) & mask)
 875             s.writeObject(elements[i]);
 876     }
 877 
 878     /**
 879      * Reconstitutes this deque from a stream (that is, deserializes it).
 880      */
 881     private void readObject(java.io.ObjectInputStream s)
 882             throws java.io.IOException, ClassNotFoundException {
 883         s.defaultReadObject();
 884 
 885         // Read in size and allocate array
 886         int size = s.readInt();
 887         int capacity = calculateSize(size);
 888         SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);
 889         allocateElements(size);
 890         head = 0;
 891         tail = size;
 892 
 893         // Read in all elements in the proper order.
 894         for (int i = 0; i < size; i++)
 895             elements[i] = s.readObject();
 896     }
 897 
 898     /**
 899      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
 900      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
 901      * deque.
 902      *
 903      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
 904      * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
 905      * {@link Spliterator#NONNULL}.  Overriding implementations should document
 906      * the reporting of additional characteristic values.
 907      *
 908      * @return a {@code Spliterator} over the elements in this deque
 909      * @since 1.8
 910      */
 911     public Spliterator<E> spliterator() {
 912         return new DeqSpliterator<E>(this, -1, -1);
 913     }
 914 
 915     static final class DeqSpliterator<E> implements Spliterator<E> {
 916         private final ArrayDeque<E> deq;
 917         private int fence;  // -1 until first use
 918         private int index;  // current index, modified on traverse/split
 919 
 920         /** Creates new spliterator covering the given array and range */
 921         DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
 922             this.deq = deq;
 923             this.index = origin;
 924             this.fence = fence;
 925         }
 926 
 927         private int getFence() { // force initialization
 928             int t;
 929             if ((t = fence) < 0) {
 930                 t = fence = deq.tail;
 931                 index = deq.head;
 932             }
 933             return t;
 934         }
 935 
 936         public DeqSpliterator<E> trySplit() {
 937             int t = getFence(), h = index, n = deq.elements.length;
 938             if (h != t && ((h + 1) & (n - 1)) != t) {
 939                 if (h > t)
 940                     t += n;
 941                 int m = ((h + t) >>> 1) & (n - 1);
 942                 return new DeqSpliterator<>(deq, h, index = m);
 943             }
 944             return null;
 945         }
 946 
 947         public void forEachRemaining(Consumer<? super E> consumer) {
 948             if (consumer == null)
 949                 throw new NullPointerException();
 950             Object[] a = deq.elements;
 951             int m = a.length - 1, f = getFence(), i = index;
 952             index = f;
 953             while (i != f) {
 954                 @SuppressWarnings("unchecked") E e = (E)a[i];
 955                 i = (i + 1) & m;
 956                 if (e == null)
 957                     throw new ConcurrentModificationException();
 958                 consumer.accept(e);
 959             }
 960         }
 961 
 962         public boolean tryAdvance(Consumer<? super E> consumer) {
 963             if (consumer == null)
 964                 throw new NullPointerException();
 965             Object[] a = deq.elements;
 966             int m = a.length - 1, f = getFence(), i = index;
 967             if (i != fence) {
 968                 @SuppressWarnings("unchecked") E e = (E)a[i];
 969                 index = (i + 1) & m;
 970                 if (e == null)
 971                     throw new ConcurrentModificationException();
 972                 consumer.accept(e);
 973                 return true;
 974             }
 975             return false;
 976         }
 977 
 978         public long estimateSize() {
 979             int n = getFence() - index;
 980             if (n < 0)
 981                 n += deq.elements.length;
 982             return (long) n;
 983         }
 984 
 985         @Override
 986         public int characteristics() {
 987             return Spliterator.ORDERED | Spliterator.SIZED |
 988                 Spliterator.NONNULL | Spliterator.SUBSIZED;
 989         }
 990     }
 991 
 992 }