1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.IOException;
  29 import java.io.InvalidObjectException;
  30 import java.io.Serializable;
  31 import java.lang.reflect.ParameterizedType;
  32 import java.lang.reflect.Type;
  33 import java.util.function.BiConsumer;
  34 import java.util.function.BiFunction;
  35 import java.util.function.Consumer;
  36 import java.util.function.Function;
  37 
  38 /**
  39  * Hash table based implementation of the <tt>Map</tt> interface.  This
  40  * implementation provides all of the optional map operations, and permits
  41  * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
  42  * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
  43  * unsynchronized and permits nulls.)  This class makes no guarantees as to
  44  * the order of the map; in particular, it does not guarantee that the order
  45  * will remain constant over time.
  46  *
  47  * <p>This implementation provides constant-time performance for the basic
  48  * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
  49  * disperses the elements properly among the buckets.  Iteration over
  50  * collection views requires time proportional to the "capacity" of the
  51  * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
  52  * of key-value mappings).  Thus, it's very important not to set the initial
  53  * capacity too high (or the load factor too low) if iteration performance is
  54  * important.
  55  *
  56  * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
  57  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  58  * <i>capacity</i> is the number of buckets in the hash table, and the initial
  59  * capacity is simply the capacity at the time the hash table is created.  The
  60  * <i>load factor</i> is a measure of how full the hash table is allowed to
  61  * get before its capacity is automatically increased.  When the number of
  62  * entries in the hash table exceeds the product of the load factor and the
  63  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
  64  * structures are rebuilt) so that the hash table has approximately twice the
  65  * number of buckets.
  66  *
  67  * <p>As a general rule, the default load factor (.75) offers a good
  68  * tradeoff between time and space costs.  Higher values decrease the
  69  * space overhead but increase the lookup cost (reflected in most of
  70  * the operations of the <tt>HashMap</tt> class, including
  71  * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
  72  * the map and its load factor should be taken into account when
  73  * setting its initial capacity, so as to minimize the number of
  74  * rehash operations.  If the initial capacity is greater than the
  75  * maximum number of entries divided by the load factor, no rehash
  76  * operations will ever occur.
  77  *
  78  * <p>If many mappings are to be stored in a <tt>HashMap</tt>
  79  * instance, creating it with a sufficiently large capacity will allow
  80  * the mappings to be stored more efficiently than letting it perform
  81  * automatic rehashing as needed to grow the table.  Note that using
  82  * many keys with the same {@code hashCode()} is a sure way to slow
  83  * down performance of any hash table. To ameliorate impact, when keys
  84  * are {@link Comparable}, this class may use comparison order among
  85  * keys to help break ties.
  86  *
  87  * <p><strong>Note that this implementation is not synchronized.</strong>
  88  * If multiple threads access a hash map concurrently, and at least one of
  89  * the threads modifies the map structurally, it <i>must</i> be
  90  * synchronized externally.  (A structural modification is any operation
  91  * that adds or deletes one or more mappings; merely changing the value
  92  * associated with a key that an instance already contains is not a
  93  * structural modification.)  This is typically accomplished by
  94  * synchronizing on some object that naturally encapsulates the map.
  95  *
  96  * If no such object exists, the map should be "wrapped" using the
  97  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  98  * method.  This is best done at creation time, to prevent accidental
  99  * unsynchronized access to the map:<pre>
 100  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 101  *
 102  * <p>The iterators returned by all of this class's "collection view methods"
 103  * are <i>fail-fast</i>: if the map is structurally modified at any time after
 104  * the iterator is created, in any way except through the iterator's own
 105  * <tt>remove</tt> method, the iterator will throw a
 106  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 107  * modification, the iterator fails quickly and cleanly, rather than risking
 108  * arbitrary, non-deterministic behavior at an undetermined time in the
 109  * future.
 110  *
 111  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 112  * as it is, generally speaking, impossible to make any hard guarantees in the
 113  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 114  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 115  * Therefore, it would be wrong to write a program that depended on this
 116  * exception for its correctness: <i>the fail-fast behavior of iterators
 117  * should be used only to detect bugs.</i>
 118  *
 119  * <p>This class is a member of the
 120  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 121  * Java Collections Framework</a>.
 122  *
 123  * @param <K> the type of keys maintained by this map
 124  * @param <V> the type of mapped values
 125  *
 126  * @author  Doug Lea
 127  * @author  Josh Bloch
 128  * @author  Arthur van Hoff
 129  * @author  Neal Gafter
 130  * @see     Object#hashCode()
 131  * @see     Collection
 132  * @see     Map
 133  * @see     TreeMap
 134  * @see     Hashtable
 135  * @since   1.2
 136  */
 137 public class HashMap<K,V> extends AbstractMap<K,V>
 138     implements Map<K,V>, Cloneable, Serializable {
 139 
 140     private static final long serialVersionUID = 362498820763181265L;
 141 
 142     /*
 143      * Implementation notes.
 144      *
 145      * This map usually acts as a binned (bucketed) hash table, but
 146      * when bins get too large, they are transformed into bins of
 147      * TreeNodes, each structured similarly to those in
 148      * java.util.TreeMap. Most methods try to use normal bins, but
 149      * relay to TreeNode methods when applicable (simply by checking
 150      * instanceof a node).  Bins of TreeNodes may be traversed and
 151      * used like any others, but additionally support faster lookup
 152      * when overpopulated. However, since the vast majority of bins in
 153      * normal use are not overpopulated, checking for existence of
 154      * tree bins may be delayed in the course of table methods.
 155      *
 156      * Tree bins (i.e., bins whose elements are all TreeNodes) are
 157      * ordered primarily by hashCode, but in the case of ties, if two
 158      * elements are of the same "class C implements Comparable<C>",
 159      * type then their compareTo method is used for ordering. (We
 160      * conservatively check generic types via reflection to validate
 161      * this -- see method comparableClassFor).  The added complexity
 162      * of tree bins is worthwhile in providing worst-case O(log n)
 163      * operations when keys either have distinct hashes or are
 164      * orderable, Thus, performance degrades gracefully under
 165      * accidental or malicious usages in which hashCode() methods
 166      * return values that are poorly distributed, as well as those in
 167      * which many keys share a hashCode, so long as they are also
 168      * Comparable. (If neither of these apply, we may waste about a
 169      * factor of two in time and space compared to taking no
 170      * precautions. But the only known cases stem from poor user
 171      * programming practices that are already so slow that this makes
 172      * little difference.)
 173      *
 174      * Because TreeNodes are about twice the size of regular nodes, we
 175      * use them only when bins contain enough nodes to warrant use
 176      * (see TREEIFY_THRESHOLD). And when they become too small (due to
 177      * removal or resizing) they are converted back to plain bins.  In
 178      * usages with well-distributed user hashCodes, tree bins are
 179      * rarely used.  Ideally, under random hashCodes, the frequency of
 180      * nodes in bins follows a Poisson distribution
 181      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
 182      * parameter of about 0.5 on average for the default resizing
 183      * threshold of 0.75, although with a large variance because of
 184      * resizing granularity. Ignoring variance, the expected
 185      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
 186      * factorial(k)). The first values are:
 187      *
 188      * 0:    0.60653066
 189      * 1:    0.30326533
 190      * 2:    0.07581633
 191      * 3:    0.01263606
 192      * 4:    0.00157952
 193      * 5:    0.00015795
 194      * 6:    0.00001316
 195      * 7:    0.00000094
 196      * 8:    0.00000006
 197      * more: less than 1 in ten million
 198      *
 199      * The root of a tree bin is normally its first node.  However,
 200      * sometimes (currently only upon Iterator.remove), the root might
 201      * be elsewhere, but can be recovered following parent links
 202      * (method TreeNode.root()).
 203      *
 204      * All applicable internal methods accept a hash code as an
 205      * argument (as normally supplied from a public method), allowing
 206      * them to call each other without recomputing user hashCodes.
 207      * Most internal methods also accept a "tab" argument, that is
 208      * normally the current table, but may be a new or old one when
 209      * resizing or converting.
 210      *
 211      * When bin lists are treeified, split, or untreeified, we keep
 212      * them in the same relative access/traversal order (i.e., field
 213      * Node.next) to better preserve locality, and to slightly
 214      * simplify handling of splits and traversals that invoke
 215      * iterator.remove. When using comparators on insertion, to keep a
 216      * total ordering (or as close as is required here) across
 217      * rebalancings, we compare classes and identityHashCodes as
 218      * tie-breakers.
 219      *
 220      * The use and transitions among plain vs tree modes is
 221      * complicated by the existence of subclass LinkedHashMap. See
 222      * below for hook methods defined to be invoked upon insertion,
 223      * removal and access that allow LinkedHashMap internals to
 224      * otherwise remain independent of these mechanics. (This also
 225      * requires that a map instance be passed to some utility methods
 226      * that may create new nodes.)
 227      *
 228      * The concurrent-programming-like SSA-based coding style helps
 229      * avoid aliasing errors amid all of the twisty pointer operations.
 230      */
 231 
 232     /**
 233      * The default initial capacity - MUST be a power of two.
 234      */
 235     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 236 
 237     /**
 238      * The maximum capacity, used if a higher value is implicitly specified
 239      * by either of the constructors with arguments.
 240      * MUST be a power of two <= 1<<30.
 241      */
 242     static final int MAXIMUM_CAPACITY = 1 << 30;
 243 
 244     /**
 245      * The load factor used when none specified in constructor.
 246      */
 247     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 248 
 249     /**
 250      * The bin count threshold for using a tree rather than list for a
 251      * bin.  Bins are converted to trees when adding an element to a
 252      * bin with at least this many nodes. The value must be greater
 253      * than 2 and should be at least 8 to mesh with assumptions in
 254      * tree removal about conversion back to plain bins upon
 255      * shrinkage.
 256      */
 257     static final int TREEIFY_THRESHOLD = 8;
 258 
 259     /**
 260      * The bin count threshold for untreeifying a (split) bin during a
 261      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 262      * most 6 to mesh with shrinkage detection under removal.
 263      */
 264     static final int UNTREEIFY_THRESHOLD = 6;
 265 
 266     /**
 267      * The smallest table capacity for which bins may be treeified.
 268      * (Otherwise the table is resized if too many nodes in a bin.)
 269      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 270      * between resizing and treeification thresholds.
 271      */
 272     static final int MIN_TREEIFY_CAPACITY = 64;
 273 
 274     /**
 275      * Basic hash bin node, used for most entries.  (See below for
 276      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 277      */
 278     static class Node<K,V> implements Map.Entry<K,V> {
 279         final int hash;
 280         final K key;
 281         V value;
 282         Node<K,V> next;
 283 
 284         Node(int hash, K key, V value, Node<K,V> next) {
 285             this.hash = hash;
 286             this.key = key;
 287             this.value = value;
 288             this.next = next;
 289         }
 290 
 291         public final K getKey()        { return key; }
 292         public final V getValue()      { return value; }
 293         public final String toString() { return key + "=" + value; }
 294 
 295         public final int hashCode() {
 296             return Objects.hashCode(key) ^ Objects.hashCode(value);
 297         }
 298 
 299         public final V setValue(V newValue) {
 300             V oldValue = value;
 301             value = newValue;
 302             return oldValue;
 303         }
 304 
 305         public final boolean equals(Object o) {
 306             if (o == this)
 307                 return true;
 308             if (o instanceof Map.Entry) {
 309                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 310                 if (Objects.equals(key, e.getKey()) &&
 311                     Objects.equals(value, e.getValue()))
 312                     return true;
 313             }
 314             return false;
 315         }
 316     }
 317 
 318     /* ---------------- Static utilities -------------- */
 319 
 320     /**
 321      * Computes key.hashCode() and spreads (XORs) higher bits of hash
 322      * to lower.  Because the table uses power-of-two masking, sets of
 323      * hashes that vary only in bits above the current mask will
 324      * always collide. (Among known examples are sets of Float keys
 325      * holding consecutive whole numbers in small tables.)  So we
 326      * apply a transform that spreads the impact of higher bits
 327      * downward. There is a tradeoff between speed, utility, and
 328      * quality of bit-spreading. Because many common sets of hashes
 329      * are already reasonably distributed (so don't benefit from
 330      * spreading), and because we use trees to handle large sets of
 331      * collisions in bins, we just XOR some shifted bits in the
 332      * cheapest possible way to reduce systematic lossage, as well as
 333      * to incorporate impact of the highest bits that would otherwise
 334      * never be used in index calculations because of table bounds.
 335      */
 336     static final int hash(Object key) {
 337         int h;
 338         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 339     }
 340 
 341     /**
 342      * Returns x's Class if it is of the form "class C implements
 343      * Comparable<C>", else null.
 344      */
 345     static Class<?> comparableClassFor(Object x) {
 346         if (x instanceof Comparable) {
 347             Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
 348             if ((c = x.getClass()) == String.class) // bypass checks
 349                 return c;
 350             if ((ts = c.getGenericInterfaces()) != null) {
 351                 for (int i = 0; i < ts.length; ++i) {
 352                     if (((t = ts[i]) instanceof ParameterizedType) &&
 353                         ((p = (ParameterizedType)t).getRawType() ==
 354                          Comparable.class) &&
 355                         (as = p.getActualTypeArguments()) != null &&
 356                         as.length == 1 && as[0] == c) // type arg is c
 357                         return c;
 358                 }
 359             }
 360         }
 361         return null;
 362     }
 363 
 364     /**
 365      * Returns k.compareTo(x) if x matches kc (k's screened comparable
 366      * class), else 0.
 367      */
 368     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
 369     static int compareComparables(Class<?> kc, Object k, Object x) {
 370         return (x == null || x.getClass() != kc ? 0 :
 371                 ((Comparable)k).compareTo(x));
 372     }
 373 
 374     /**
 375      * Returns a power of two size for the given target capacity.
 376      */
 377     static final int tableSizeFor(int cap) {
 378         int n = cap - 1;
 379         n |= n >>> 1;
 380         n |= n >>> 2;
 381         n |= n >>> 4;
 382         n |= n >>> 8;
 383         n |= n >>> 16;
 384         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
 385     }
 386 
 387     /* ---------------- Fields -------------- */
 388 
 389     /**
 390      * The table, initialized on first use, and resized as
 391      * necessary. When allocated, length is always a power of two.
 392      * (We also tolerate length zero in some operations to allow
 393      * bootstrapping mechanics that are currently not needed.)
 394      */
 395     transient Node<K,V>[] table;
 396 
 397     /**
 398      * Holds cached entrySet(). Note that AbstractMap fields are used
 399      * for keySet() and values().
 400      */
 401     transient Set<Map.Entry<K,V>> entrySet;
 402 
 403     /**
 404      * The number of key-value mappings contained in this map.
 405      */
 406     transient int size;
 407 
 408     /**
 409      * The number of times this HashMap has been structurally modified
 410      * Structural modifications are those that change the number of mappings in
 411      * the HashMap or otherwise modify its internal structure (e.g.,
 412      * rehash).  This field is used to make iterators on Collection-views of
 413      * the HashMap fail-fast.  (See ConcurrentModificationException).
 414      */
 415     transient int modCount;
 416 
 417     /**
 418      * The next size value at which to resize (capacity * load factor).
 419      *
 420      * @serial
 421      */
 422     // (The javadoc description is true upon serialization.
 423     // Additionally, if the table array has not been allocated, this
 424     // field holds the initial array capacity, or zero signifying
 425     // DEFAULT_INITIAL_CAPACITY.)
 426     int threshold;
 427 
 428     /**
 429      * The load factor for the hash table.
 430      *
 431      * @serial
 432      */
 433     final float loadFactor;
 434 
 435     /* ---------------- Public operations -------------- */
 436 
 437     /**
 438      * Constructs an empty <tt>HashMap</tt> with the specified initial
 439      * capacity and load factor.
 440      *
 441      * @param  initialCapacity the initial capacity
 442      * @param  loadFactor      the load factor
 443      * @throws IllegalArgumentException if the initial capacity is negative
 444      *         or the load factor is nonpositive
 445      */
 446     public HashMap(int initialCapacity, float loadFactor) {
 447         if (initialCapacity < 0)
 448             throw new IllegalArgumentException("Illegal initial capacity: " +
 449                                                initialCapacity);
 450         if (initialCapacity > MAXIMUM_CAPACITY)
 451             initialCapacity = MAXIMUM_CAPACITY;
 452         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 453             throw new IllegalArgumentException("Illegal load factor: " +
 454                                                loadFactor);
 455         this.loadFactor = loadFactor;
 456         this.threshold = tableSizeFor(initialCapacity);
 457     }
 458 
 459     /**
 460      * Constructs an empty <tt>HashMap</tt> with the specified initial
 461      * capacity and the default load factor (0.75).
 462      *
 463      * @param  initialCapacity the initial capacity.
 464      * @throws IllegalArgumentException if the initial capacity is negative.
 465      */
 466     public HashMap(int initialCapacity) {
 467         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 468     }
 469 
 470     /**
 471      * Constructs an empty <tt>HashMap</tt> with the default initial capacity
 472      * (16) and the default load factor (0.75).
 473      */
 474     public HashMap() {
 475         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 476     }
 477 
 478     /**
 479      * Constructs a new <tt>HashMap</tt> with the same mappings as the
 480      * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
 481      * default load factor (0.75) and an initial capacity sufficient to
 482      * hold the mappings in the specified <tt>Map</tt>.
 483      *
 484      * @param   m the map whose mappings are to be placed in this map
 485      * @throws  NullPointerException if the specified map is null
 486      */
 487     public HashMap(Map<? extends K, ? extends V> m) {
 488         this.loadFactor = DEFAULT_LOAD_FACTOR;
 489         putMapEntries(m, false);
 490     }
 491 
 492     /**
 493      * Implements Map.putAll and Map constructor
 494      *
 495      * @param m the map
 496      * @param evict false when initially constructing this map, else
 497      * true (relayed to method afterNodeInsertion).
 498      */
 499     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 500         int s = m.size();
 501         if (s > 0) {
 502             if (table == null) { // pre-size
 503                 float ft = ((float)s / loadFactor) + 1.0F;
 504                 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
 505                          (int)ft : MAXIMUM_CAPACITY);
 506                 if (t > threshold)
 507                     threshold = tableSizeFor(t);
 508             }
 509             else if (s > threshold)
 510                 resize();
 511             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
 512                 K key = e.getKey();
 513                 V value = e.getValue();
 514                 putVal(hash(key), key, value, false, evict);
 515             }
 516         }
 517     }
 518 
 519     /**
 520      * Returns the number of key-value mappings in this map.
 521      *
 522      * @return the number of key-value mappings in this map
 523      */
 524     public int size() {
 525         return size;
 526     }
 527 
 528     /**
 529      * Returns <tt>true</tt> if this map contains no key-value mappings.
 530      *
 531      * @return <tt>true</tt> if this map contains no key-value mappings
 532      */
 533     public boolean isEmpty() {
 534         return size == 0;
 535     }
 536 
 537     /**
 538      * Returns the value to which the specified key is mapped,
 539      * or {@code null} if this map contains no mapping for the key.
 540      *
 541      * <p>More formally, if this map contains a mapping from a key
 542      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 543      * key.equals(k))}, then this method returns {@code v}; otherwise
 544      * it returns {@code null}.  (There can be at most one such mapping.)
 545      *
 546      * <p>A return value of {@code null} does not <i>necessarily</i>
 547      * indicate that the map contains no mapping for the key; it's also
 548      * possible that the map explicitly maps the key to {@code null}.
 549      * The {@link #containsKey containsKey} operation may be used to
 550      * distinguish these two cases.
 551      *
 552      * @see #put(Object, Object)
 553      */
 554     public V get(Object key) {
 555         Node<K,V> e;
 556         return (e = getNode(hash(key), key)) == null ? null : e.value;
 557     }
 558 
 559     /**
 560      * Implements Map.get and related methods
 561      *
 562      * @param hash hash for key
 563      * @param key the key
 564      * @return the node, or null if none
 565      */
 566     final Node<K,V> getNode(int hash, Object key) {
 567         Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
 568         if ((tab = table) != null && (n = tab.length) > 0 &&
 569             (first = tab[(n - 1) & hash]) != null) {
 570             if (first.hash == hash && // always check first node
 571                 ((k = first.key) == key || (key != null && key.equals(k))))
 572                 return first;
 573             if ((e = first.next) != null) {
 574                 if (first instanceof TreeNode)
 575                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);
 576                 do {
 577                     if (e.hash == hash &&
 578                         ((k = e.key) == key || (key != null && key.equals(k))))
 579                         return e;
 580                 } while ((e = e.next) != null);
 581             }
 582         }
 583         return null;
 584     }
 585 
 586     /**
 587      * Returns <tt>true</tt> if this map contains a mapping for the
 588      * specified key.
 589      *
 590      * @param   key   The key whose presence in this map is to be tested
 591      * @return <tt>true</tt> if this map contains a mapping for the specified
 592      * key.
 593      */
 594     public boolean containsKey(Object key) {
 595         return getNode(hash(key), key) != null;
 596     }
 597 
 598     /**
 599      * Associates the specified value with the specified key in this map.
 600      * If the map previously contained a mapping for the key, the old
 601      * value is replaced.
 602      *
 603      * @param key key with which the specified value is to be associated
 604      * @param value value to be associated with the specified key
 605      * @return the previous value associated with <tt>key</tt>, or
 606      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 607      *         (A <tt>null</tt> return can also indicate that the map
 608      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 609      */
 610     public V put(K key, V value) {
 611         return putVal(hash(key), key, value, false, true);
 612     }
 613 
 614     /**
 615      * Implements Map.put and related methods
 616      *
 617      * @param hash hash for key
 618      * @param key the key
 619      * @param value the value to put
 620      * @param onlyIfAbsent if true, don't change existing value
 621      * @param evict if false, the table is in creation mode.
 622      * @return previous value, or null if none
 623      */
 624     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 625                    boolean evict) {
 626         Node<K,V>[] tab; Node<K,V> p; int n, i;
 627         if ((tab = table) == null || (n = tab.length) == 0)
 628             n = (tab = resize()).length;
 629         if ((p = tab[i = (n - 1) & hash]) == null)
 630             tab[i] = newNode(hash, key, value, null);
 631         else {
 632             Node<K,V> e; K k;
 633             if (p.hash == hash &&
 634                 ((k = p.key) == key || (key != null && key.equals(k))))
 635                 e = p;
 636             else if (p instanceof TreeNode)
 637                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
 638             else {
 639                 for (int binCount = 0; ; ++binCount) {
 640                     if ((e = p.next) == null) {
 641                         p.next = newNode(hash, key, value, null);
 642                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
 643                             treeifyBin(tab, hash);
 644                         break;
 645                     }
 646                     if (e.hash == hash &&
 647                         ((k = e.key) == key || (key != null && key.equals(k))))
 648                         break;
 649                     p = e;
 650                 }
 651             }
 652             if (e != null) { // existing mapping for key
 653                 V oldValue = e.value;
 654                 if (!onlyIfAbsent || oldValue == null)
 655                     e.value = value;
 656                 afterNodeAccess(e);
 657                 return oldValue;
 658             }
 659         }
 660         ++modCount;
 661         if (++size > threshold)
 662             resize();
 663         afterNodeInsertion(evict);
 664         return null;
 665     }
 666 
 667     /**
 668      * Initializes or doubles table size.  If null, allocates in
 669      * accord with initial capacity target held in field threshold.
 670      * Otherwise, because we are using power-of-two expansion, the
 671      * elements from each bin must either stay at same index, or move
 672      * with a power of two offset in the new table.
 673      *
 674      * @return the table
 675      */
 676     final Node<K,V>[] resize() {
 677         Node<K,V>[] oldTab = table;
 678         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 679         int oldThr = threshold;
 680         int newCap, newThr = 0;
 681         if (oldCap > 0) {
 682             if (oldCap >= MAXIMUM_CAPACITY) {
 683                 threshold = Integer.MAX_VALUE;
 684                 return oldTab;
 685             }
 686             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 687                      oldCap >= DEFAULT_INITIAL_CAPACITY)
 688                 newThr = oldThr << 1; // double threshold
 689         }
 690         else if (oldThr > 0) // initial capacity was placed in threshold
 691             newCap = oldThr;
 692         else {               // zero initial threshold signifies using defaults
 693             newCap = DEFAULT_INITIAL_CAPACITY;
 694             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
 695         }
 696         if (newThr == 0) {
 697             float ft = (float)newCap * loadFactor;
 698             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 699                       (int)ft : Integer.MAX_VALUE);
 700         }
 701         threshold = newThr;
 702         @SuppressWarnings({"rawtypes","unchecked"})
 703             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
 704         table = newTab;
 705         if (oldTab != null) {
 706             for (int j = 0; j < oldCap; ++j) {
 707                 Node<K,V> e;
 708                 if ((e = oldTab[j]) != null) {
 709                     oldTab[j] = null;
 710                     if (e.next == null)
 711                         newTab[e.hash & (newCap - 1)] = e;
 712                     else if (e instanceof TreeNode)
 713                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
 714                     else { // preserve order
 715                         Node<K,V> loHead = null, loTail = null;
 716                         Node<K,V> hiHead = null, hiTail = null;
 717                         Node<K,V> next;
 718                         do {
 719                             next = e.next;
 720                             if ((e.hash & oldCap) == 0) {
 721                                 if (loTail == null)
 722                                     loHead = e;
 723                                 else
 724                                     loTail.next = e;
 725                                 loTail = e;
 726                             }
 727                             else {
 728                                 if (hiTail == null)
 729                                     hiHead = e;
 730                                 else
 731                                     hiTail.next = e;
 732                                 hiTail = e;
 733                             }
 734                         } while ((e = next) != null);
 735                         if (loTail != null) {
 736                             loTail.next = null;
 737                             newTab[j] = loHead;
 738                         }
 739                         if (hiTail != null) {
 740                             hiTail.next = null;
 741                             newTab[j + oldCap] = hiHead;
 742                         }
 743                     }
 744                 }
 745             }
 746         }
 747         return newTab;
 748     }
 749 
 750     /**
 751      * Replaces all linked nodes in bin at index for given hash unless
 752      * table is too small, in which case resizes instead.
 753      */
 754     final void treeifyBin(Node<K,V>[] tab, int hash) {
 755         int n, index; Node<K,V> e;
 756         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 757             resize();
 758         else if ((e = tab[index = (n - 1) & hash]) != null) {
 759             TreeNode<K,V> hd = null, tl = null;
 760             do {
 761                 TreeNode<K,V> p = replacementTreeNode(e, null);
 762                 if (tl == null)
 763                     hd = p;
 764                 else {
 765                     p.prev = tl;
 766                     tl.next = p;
 767                 }
 768                 tl = p;
 769             } while ((e = e.next) != null);
 770             if ((tab[index] = hd) != null)
 771                 hd.treeify(tab);
 772         }
 773     }
 774 
 775     /**
 776      * Copies all of the mappings from the specified map to this map.
 777      * These mappings will replace any mappings that this map had for
 778      * any of the keys currently in the specified map.
 779      *
 780      * @param m mappings to be stored in this map
 781      * @throws NullPointerException if the specified map is null
 782      */
 783     public void putAll(Map<? extends K, ? extends V> m) {
 784         putMapEntries(m, true);
 785     }
 786 
 787     /**
 788      * Removes the mapping for the specified key from this map if present.
 789      *
 790      * @param  key key whose mapping is to be removed from the map
 791      * @return the previous value associated with <tt>key</tt>, or
 792      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 793      *         (A <tt>null</tt> return can also indicate that the map
 794      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 795      */
 796     public V remove(Object key) {
 797         Node<K,V> e;
 798         return (e = removeNode(hash(key), key, null, false, true)) == null ?
 799             null : e.value;
 800     }
 801 
 802     /**
 803      * Implements Map.remove and related methods
 804      *
 805      * @param hash hash for key
 806      * @param key the key
 807      * @param value the value to match if matchValue, else ignored
 808      * @param matchValue if true only remove if value is equal
 809      * @param movable if false do not move other nodes while removing
 810      * @return the node, or null if none
 811      */
 812     final Node<K,V> removeNode(int hash, Object key, Object value,
 813                                boolean matchValue, boolean movable) {
 814         Node<K,V>[] tab; Node<K,V> p; int n, index;
 815         if ((tab = table) != null && (n = tab.length) > 0 &&
 816             (p = tab[index = (n - 1) & hash]) != null) {
 817             Node<K,V> node = null, e; K k; V v;
 818             if (p.hash == hash &&
 819                 ((k = p.key) == key || (key != null && key.equals(k))))
 820                 node = p;
 821             else if ((e = p.next) != null) {
 822                 if (p instanceof TreeNode)
 823                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
 824                 else {
 825                     do {
 826                         if (e.hash == hash &&
 827                             ((k = e.key) == key ||
 828                              (key != null && key.equals(k)))) {
 829                             node = e;
 830                             break;
 831                         }
 832                         p = e;
 833                     } while ((e = e.next) != null);
 834                 }
 835             }
 836             if (node != null && (!matchValue || (v = node.value) == value ||
 837                                  (value != null && value.equals(v)))) {
 838                 if (node instanceof TreeNode)
 839                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
 840                 else if (node == p)
 841                     tab[index] = node.next;
 842                 else
 843                     p.next = node.next;
 844                 ++modCount;
 845                 --size;
 846                 afterNodeRemoval(node);
 847                 return node;
 848             }
 849         }
 850         return null;
 851     }
 852 
 853     /**
 854      * Removes all of the mappings from this map.
 855      * The map will be empty after this call returns.
 856      */
 857     public void clear() {
 858         Node<K,V>[] tab;
 859         modCount++;
 860         if ((tab = table) != null && size > 0) {
 861             size = 0;
 862             for (int i = 0; i < tab.length; ++i)
 863                 tab[i] = null;
 864         }
 865     }
 866 
 867     /**
 868      * Returns <tt>true</tt> if this map maps one or more keys to the
 869      * specified value.
 870      *
 871      * @param value value whose presence in this map is to be tested
 872      * @return <tt>true</tt> if this map maps one or more keys to the
 873      *         specified value
 874      */
 875     public boolean containsValue(Object value) {
 876         Node<K,V>[] tab; V v;
 877         if ((tab = table) != null && size > 0) {
 878             for (int i = 0; i < tab.length; ++i) {
 879                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
 880                     if ((v = e.value) == value ||
 881                         (value != null && value.equals(v)))
 882                         return true;
 883                 }
 884             }
 885         }
 886         return false;
 887     }
 888 
 889     /**
 890      * Returns a {@link Set} view of the keys contained in this map.
 891      * The set is backed by the map, so changes to the map are
 892      * reflected in the set, and vice-versa.  If the map is modified
 893      * while an iteration over the set is in progress (except through
 894      * the iterator's own <tt>remove</tt> operation), the results of
 895      * the iteration are undefined.  The set supports element removal,
 896      * which removes the corresponding mapping from the map, via the
 897      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 898      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 899      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 900      * operations.
 901      *
 902      * @return a set view of the keys contained in this map
 903      */
 904     public Set<K> keySet() {
 905         Set<K> ks = keySet;
 906         if (ks == null) {
 907             ks = new KeySet();
 908             keySet = ks;
 909         }
 910         return ks;
 911     }
 912 
 913     final class KeySet extends AbstractSet<K> {
 914         public final int size()                 { return size; }
 915         public final void clear()               { HashMap.this.clear(); }
 916         public final Iterator<K> iterator()     { return new KeyIterator(); }
 917         public final boolean contains(Object o) { return containsKey(o); }
 918         public final boolean remove(Object key) {
 919             return removeNode(hash(key), key, null, false, true) != null;
 920         }
 921         public final Spliterator<K> spliterator() {
 922             return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
 923         }
 924         public final void forEach(Consumer<? super K> action) {
 925             Node<K,V>[] tab;
 926             if (action == null)
 927                 throw new NullPointerException();
 928             if (size > 0 && (tab = table) != null) {
 929                 int mc = modCount;
 930                 for (int i = 0; i < tab.length; ++i) {
 931                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
 932                         action.accept(e.key);
 933                 }
 934                 if (modCount != mc)
 935                     throw new ConcurrentModificationException();
 936             }
 937         }
 938     }
 939 
 940     /**
 941      * Returns a {@link Collection} view of the values contained in this map.
 942      * The collection is backed by the map, so changes to the map are
 943      * reflected in the collection, and vice-versa.  If the map is
 944      * modified while an iteration over the collection is in progress
 945      * (except through the iterator's own <tt>remove</tt> operation),
 946      * the results of the iteration are undefined.  The collection
 947      * supports element removal, which removes the corresponding
 948      * mapping from the map, via the <tt>Iterator.remove</tt>,
 949      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 950      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 951      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 952      *
 953      * @return a view of the values contained in this map
 954      */
 955     public Collection<V> values() {
 956         Collection<V> vs = values;
 957         if (vs == null) {
 958             vs = new Values();
 959             values = vs;
 960         }
 961         return vs;
 962     }
 963 
 964     final class Values extends AbstractCollection<V> {
 965         public final int size()                 { return size; }
 966         public final void clear()               { HashMap.this.clear(); }
 967         public final Iterator<V> iterator()     { return new ValueIterator(); }
 968         public final boolean contains(Object o) { return containsValue(o); }
 969         public final Spliterator<V> spliterator() {
 970             return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
 971         }
 972         public final void forEach(Consumer<? super V> action) {
 973             Node<K,V>[] tab;
 974             if (action == null)
 975                 throw new NullPointerException();
 976             if (size > 0 && (tab = table) != null) {
 977                 int mc = modCount;
 978                 for (int i = 0; i < tab.length; ++i) {
 979                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
 980                         action.accept(e.value);
 981                 }
 982                 if (modCount != mc)
 983                     throw new ConcurrentModificationException();
 984             }
 985         }
 986     }
 987 
 988     /**
 989      * Returns a {@link Set} view of the mappings contained in this map.
 990      * The set is backed by the map, so changes to the map are
 991      * reflected in the set, and vice-versa.  If the map is modified
 992      * while an iteration over the set is in progress (except through
 993      * the iterator's own <tt>remove</tt> operation, or through the
 994      * <tt>setValue</tt> operation on a map entry returned by the
 995      * iterator) the results of the iteration are undefined.  The set
 996      * supports element removal, which removes the corresponding
 997      * mapping from the map, via the <tt>Iterator.remove</tt>,
 998      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
 999      * <tt>clear</tt> operations.  It does not support the
1000      * <tt>add</tt> or <tt>addAll</tt> operations.
1001      *
1002      * @return a set view of the mappings contained in this map
1003      */
1004     public Set<Map.Entry<K,V>> entrySet() {
1005         Set<Map.Entry<K,V>> es;
1006         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
1007     }
1008 
1009     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1010         public final int size()                 { return size; }
1011         public final void clear()               { HashMap.this.clear(); }
1012         public final Iterator<Map.Entry<K,V>> iterator() {
1013             return new EntryIterator();
1014         }
1015         public final boolean contains(Object o) {
1016             if (!(o instanceof Map.Entry))
1017                 return false;
1018             Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1019             Object key = e.getKey();
1020             Node<K,V> candidate = getNode(hash(key), key);
1021             return candidate != null && candidate.equals(e);
1022         }
1023         public final boolean remove(Object o) {
1024             if (o instanceof Map.Entry) {
1025                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1026                 Object key = e.getKey();
1027                 Object value = e.getValue();
1028                 return removeNode(hash(key), key, value, true, true) != null;
1029             }
1030             return false;
1031         }
1032         public final Spliterator<Map.Entry<K,V>> spliterator() {
1033             return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
1034         }
1035         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
1036             Node<K,V>[] tab;
1037             if (action == null)
1038                 throw new NullPointerException();
1039             if (size > 0 && (tab = table) != null) {
1040                 int mc = modCount;
1041                 for (int i = 0; i < tab.length; ++i) {
1042                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
1043                         action.accept(e);
1044                 }
1045                 if (modCount != mc)
1046                     throw new ConcurrentModificationException();
1047             }
1048         }
1049     }
1050 
1051     // Overrides of JDK8 Map extension methods
1052 
1053     @Override
1054     public V getOrDefault(Object key, V defaultValue) {
1055         Node<K,V> e;
1056         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
1057     }
1058 
1059     @Override
1060     public V putIfAbsent(K key, V value) {
1061         return putVal(hash(key), key, value, true, true);
1062     }
1063 
1064     @Override
1065     public boolean remove(Object key, Object value) {
1066         return removeNode(hash(key), key, value, true, true) != null;
1067     }
1068 
1069     @Override
1070     public boolean replace(K key, V oldValue, V newValue) {
1071         Node<K,V> e; V v;
1072         if ((e = getNode(hash(key), key)) != null &&
1073             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1074             e.value = newValue;
1075             afterNodeAccess(e);
1076             return true;
1077         }
1078         return false;
1079     }
1080 
1081     @Override
1082     public V replace(K key, V value) {
1083         Node<K,V> e;
1084         if ((e = getNode(hash(key), key)) != null) {
1085             V oldValue = e.value;
1086             e.value = value;
1087             afterNodeAccess(e);
1088             return oldValue;
1089         }
1090         return null;
1091     }
1092 
1093     @Override
1094     public V computeIfAbsent(K key,
1095                              Function<? super K, ? extends V> mappingFunction) {
1096         if (mappingFunction == null)
1097             throw new NullPointerException();
1098         int hash = hash(key);
1099         Node<K,V>[] tab; Node<K,V> first; int n, i;
1100         int binCount = 0;
1101         TreeNode<K,V> t = null;
1102         Node<K,V> old = null;
1103         if (size > threshold || (tab = table) == null ||
1104             (n = tab.length) == 0)
1105             n = (tab = resize()).length;
1106         if ((first = tab[i = (n - 1) & hash]) != null) {
1107             if (first instanceof TreeNode)
1108                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1109             else {
1110                 Node<K,V> e = first; K k;
1111                 do {
1112                     if (e.hash == hash &&
1113                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1114                         old = e;
1115                         break;
1116                     }
1117                     ++binCount;
1118                 } while ((e = e.next) != null);
1119             }
1120             V oldValue;
1121             if (old != null && (oldValue = old.value) != null) {
1122                 afterNodeAccess(old);
1123                 return oldValue;
1124             }
1125         }
1126         V v = mappingFunction.apply(key);
1127         if (v == null) {
1128             return null;
1129         } else if (old != null) {
1130             old.value = v;
1131             afterNodeAccess(old);
1132             return v;
1133         }
1134         else if (t != null)
1135             t.putTreeVal(this, tab, hash, key, v);
1136         else {
1137             tab[i] = newNode(hash, key, v, first);
1138             if (binCount >= TREEIFY_THRESHOLD - 1)
1139                 treeifyBin(tab, hash);
1140         }
1141         ++modCount;
1142         ++size;
1143         afterNodeInsertion(true);
1144         return v;
1145     }
1146 
1147     public V computeIfPresent(K key,
1148                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1149         if (remappingFunction == null)
1150             throw new NullPointerException();
1151         Node<K,V> e; V oldValue;
1152         int hash = hash(key);
1153         if ((e = getNode(hash, key)) != null &&
1154             (oldValue = e.value) != null) {
1155             V v = remappingFunction.apply(key, oldValue);
1156             if (v != null) {
1157                 e.value = v;
1158                 afterNodeAccess(e);
1159                 return v;
1160             }
1161             else
1162                 removeNode(hash, key, null, false, true);
1163         }
1164         return null;
1165     }
1166 
1167     @Override
1168     public V compute(K key,
1169                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1170         if (remappingFunction == null)
1171             throw new NullPointerException();
1172         int hash = hash(key);
1173         Node<K,V>[] tab; Node<K,V> first; int n, i;
1174         int binCount = 0;
1175         TreeNode<K,V> t = null;
1176         Node<K,V> old = null;
1177         if (size > threshold || (tab = table) == null ||
1178             (n = tab.length) == 0)
1179             n = (tab = resize()).length;
1180         if ((first = tab[i = (n - 1) & hash]) != null) {
1181             if (first instanceof TreeNode)
1182                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1183             else {
1184                 Node<K,V> e = first; K k;
1185                 do {
1186                     if (e.hash == hash &&
1187                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1188                         old = e;
1189                         break;
1190                     }
1191                     ++binCount;
1192                 } while ((e = e.next) != null);
1193             }
1194         }
1195         V oldValue = (old == null) ? null : old.value;
1196         V v = remappingFunction.apply(key, oldValue);
1197         if (old != null) {
1198             if (v != null) {
1199                 old.value = v;
1200                 afterNodeAccess(old);
1201             }
1202             else
1203                 removeNode(hash, key, null, false, true);
1204         }
1205         else if (v != null) {
1206             if (t != null)
1207                 t.putTreeVal(this, tab, hash, key, v);
1208             else {
1209                 tab[i] = newNode(hash, key, v, first);
1210                 if (binCount >= TREEIFY_THRESHOLD - 1)
1211                     treeifyBin(tab, hash);
1212             }
1213             ++modCount;
1214             ++size;
1215             afterNodeInsertion(true);
1216         }
1217         return v;
1218     }
1219 
1220     @Override
1221     public V merge(K key, V value,
1222                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1223         if (value == null)
1224             throw new NullPointerException();
1225         if (remappingFunction == null)
1226             throw new NullPointerException();
1227         int hash = hash(key);
1228         Node<K,V>[] tab; Node<K,V> first; int n, i;
1229         int binCount = 0;
1230         TreeNode<K,V> t = null;
1231         Node<K,V> old = null;
1232         if (size > threshold || (tab = table) == null ||
1233             (n = tab.length) == 0)
1234             n = (tab = resize()).length;
1235         if ((first = tab[i = (n - 1) & hash]) != null) {
1236             if (first instanceof TreeNode)
1237                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1238             else {
1239                 Node<K,V> e = first; K k;
1240                 do {
1241                     if (e.hash == hash &&
1242                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1243                         old = e;
1244                         break;
1245                     }
1246                     ++binCount;
1247                 } while ((e = e.next) != null);
1248             }
1249         }
1250         if (old != null) {
1251             V v;
1252             if (old.value != null)
1253                 v = remappingFunction.apply(old.value, value);
1254             else
1255                 v = value;
1256             if (v != null) {
1257                 old.value = v;
1258                 afterNodeAccess(old);
1259             }
1260             else
1261                 removeNode(hash, key, null, false, true);
1262             return v;
1263         }
1264         if (value != null) {
1265             if (t != null)
1266                 t.putTreeVal(this, tab, hash, key, value);
1267             else {
1268                 tab[i] = newNode(hash, key, value, first);
1269                 if (binCount >= TREEIFY_THRESHOLD - 1)
1270                     treeifyBin(tab, hash);
1271             }
1272             ++modCount;
1273             ++size;
1274             afterNodeInsertion(true);
1275         }
1276         return value;
1277     }
1278 
1279     @Override
1280     public void forEach(BiConsumer<? super K, ? super V> action) {
1281         Node<K,V>[] tab;
1282         if (action == null)
1283             throw new NullPointerException();
1284         if (size > 0 && (tab = table) != null) {
1285             int mc = modCount;
1286             for (int i = 0; i < tab.length; ++i) {
1287                 for (Node<K,V> e = tab[i]; e != null; e = e.next)
1288                     action.accept(e.key, e.value);
1289             }
1290             if (modCount != mc)
1291                 throw new ConcurrentModificationException();
1292         }
1293     }
1294 
1295     @Override
1296     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1297         Node<K,V>[] tab;
1298         if (function == null)
1299             throw new NullPointerException();
1300         if (size > 0 && (tab = table) != null) {
1301             int mc = modCount;
1302             for (int i = 0; i < tab.length; ++i) {
1303                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
1304                     e.value = function.apply(e.key, e.value);
1305                 }
1306             }
1307             if (modCount != mc)
1308                 throw new ConcurrentModificationException();
1309         }
1310     }
1311 
1312     /* ------------------------------------------------------------ */
1313     // Cloning and serialization
1314 
1315     /**
1316      * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
1317      * values themselves are not cloned.
1318      *
1319      * @return a shallow copy of this map
1320      */
1321     @SuppressWarnings("unchecked")
1322     @Override
1323     public Object clone() {
1324         HashMap<K,V> result;
1325         try {
1326             result = (HashMap<K,V>)super.clone();
1327         } catch (CloneNotSupportedException e) {
1328             // this shouldn't happen, since we are Cloneable
1329             throw new InternalError(e);
1330         }
1331         result.reinitialize();
1332         result.putMapEntries(this, false);
1333         return result;
1334     }
1335 
1336     // These methods are also used when serializing HashSets
1337     final float loadFactor() { return loadFactor; }
1338     final int capacity() {
1339         return (table != null) ? table.length :
1340             (threshold > 0) ? threshold :
1341             DEFAULT_INITIAL_CAPACITY;
1342     }
1343 
1344     /**
1345      * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
1346      * serialize it).
1347      *
1348      * @serialData The <i>capacity</i> of the HashMap (the length of the
1349      *             bucket array) is emitted (int), followed by the
1350      *             <i>size</i> (an int, the number of key-value
1351      *             mappings), followed by the key (Object) and value (Object)
1352      *             for each key-value mapping.  The key-value mappings are
1353      *             emitted in no particular order.
1354      */
1355     private void writeObject(java.io.ObjectOutputStream s)
1356         throws IOException {
1357         int buckets = capacity();
1358         // Write out the threshold, loadfactor, and any hidden stuff
1359         s.defaultWriteObject();
1360         s.writeInt(buckets);
1361         s.writeInt(size);
1362         internalWriteEntries(s);
1363     }
1364 
1365     /**
1366      * Reconstitute the {@code HashMap} instance from a stream (i.e.,
1367      * deserialize it).
1368      */
1369     private void readObject(java.io.ObjectInputStream s)
1370         throws IOException, ClassNotFoundException {
1371         // Read in the threshold (ignored), loadfactor, and any hidden stuff
1372         s.defaultReadObject();
1373         reinitialize();
1374         if (loadFactor <= 0 || Float.isNaN(loadFactor))
1375             throw new InvalidObjectException("Illegal load factor: " +
1376                                              loadFactor);
1377         s.readInt();                // Read and ignore number of buckets
1378         int mappings = s.readInt(); // Read number of mappings (size)
1379         if (mappings < 0)
1380             throw new InvalidObjectException("Illegal mappings count: " +
1381                                              mappings);
1382         else if (mappings > 0) { // (if zero, use defaults)
1383             // Size the table using given load factor only if within
1384             // range of 0.25...4.0
1385             float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
1386             float fc = (float)mappings / lf + 1.0f;
1387             int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
1388                        DEFAULT_INITIAL_CAPACITY :
1389                        (fc >= MAXIMUM_CAPACITY) ?
1390                        MAXIMUM_CAPACITY :
1391                        tableSizeFor((int)fc));
1392             float ft = (float)cap * lf;
1393             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1394                          (int)ft : Integer.MAX_VALUE);
1395             @SuppressWarnings({"rawtypes","unchecked"})
1396                 Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
1397             table = tab;
1398 
1399             // Read the keys and values, and put the mappings in the HashMap
1400             for (int i = 0; i < mappings; i++) {
1401                 @SuppressWarnings("unchecked")
1402                     K key = (K) s.readObject();
1403                 @SuppressWarnings("unchecked")
1404                     V value = (V) s.readObject();
1405                 putVal(hash(key), key, value, false, false);
1406             }
1407         }
1408     }
1409 
1410     /* ------------------------------------------------------------ */
1411     // iterators
1412 
1413     abstract class HashIterator {
1414         Node<K,V> next;        // next entry to return
1415         Node<K,V> current;     // current entry
1416         int expectedModCount;  // for fast-fail
1417         int index;             // current slot
1418 
1419         HashIterator() {
1420             expectedModCount = modCount;
1421             Node<K,V>[] t = table;
1422             current = next = null;
1423             index = 0;
1424             if (t != null && size > 0) { // advance to first entry
1425                 do {} while (index < t.length && (next = t[index++]) == null);
1426             }
1427         }
1428 
1429         public final boolean hasNext() {
1430             return next != null;
1431         }
1432 
1433         final Node<K,V> nextNode() {
1434             Node<K,V>[] t;
1435             Node<K,V> e = next;
1436             if (modCount != expectedModCount)
1437                 throw new ConcurrentModificationException();
1438             if (e == null)
1439                 throw new NoSuchElementException();
1440             if ((next = (current = e).next) == null && (t = table) != null) {
1441                 do {} while (index < t.length && (next = t[index++]) == null);
1442             }
1443             return e;
1444         }
1445 
1446         public final void remove() {
1447             Node<K,V> p = current;
1448             if (p == null)
1449                 throw new IllegalStateException();
1450             if (modCount != expectedModCount)
1451                 throw new ConcurrentModificationException();
1452             current = null;
1453             K key = p.key;
1454             removeNode(hash(key), key, null, false, false);
1455             expectedModCount = modCount;
1456         }
1457     }
1458 
1459     final class KeyIterator extends HashIterator
1460         implements Iterator<K> {
1461         public final K next() { return nextNode().key; }
1462     }
1463 
1464     final class ValueIterator extends HashIterator
1465         implements Iterator<V> {
1466         public final V next() { return nextNode().value; }
1467     }
1468 
1469     final class EntryIterator extends HashIterator
1470         implements Iterator<Map.Entry<K,V>> {
1471         public final Map.Entry<K,V> next() { return nextNode(); }
1472     }
1473 
1474     /* ------------------------------------------------------------ */
1475     // spliterators
1476 
1477     static class HashMapSpliterator<K,V> {
1478         final HashMap<K,V> map;
1479         Node<K,V> current;          // current node
1480         int index;                  // current index, modified on advance/split
1481         int fence;                  // one past last index
1482         int est;                    // size estimate
1483         int expectedModCount;       // for comodification checks
1484 
1485         HashMapSpliterator(HashMap<K,V> m, int origin,
1486                            int fence, int est,
1487                            int expectedModCount) {
1488             this.map = m;
1489             this.index = origin;
1490             this.fence = fence;
1491             this.est = est;
1492             this.expectedModCount = expectedModCount;
1493         }
1494 
1495         final int getFence() { // initialize fence and size on first use
1496             int hi;
1497             if ((hi = fence) < 0) {
1498                 HashMap<K,V> m = map;
1499                 est = m.size;
1500                 expectedModCount = m.modCount;
1501                 Node<K,V>[] tab = m.table;
1502                 hi = fence = (tab == null) ? 0 : tab.length;
1503             }
1504             return hi;
1505         }
1506 
1507         public final long estimateSize() {
1508             getFence(); // force init
1509             return (long) est;
1510         }
1511     }
1512 
1513     static final class KeySpliterator<K,V>
1514         extends HashMapSpliterator<K,V>
1515         implements Spliterator<K> {
1516         KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1517                        int expectedModCount) {
1518             super(m, origin, fence, est, expectedModCount);
1519         }
1520 
1521         public KeySpliterator<K,V> trySplit() {
1522             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1523             return (lo >= mid || current != null) ? null :
1524                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1525                                         expectedModCount);
1526         }
1527 
1528         public void forEachRemaining(Consumer<? super K> action) {
1529             int i, hi, mc;
1530             if (action == null)
1531                 throw new NullPointerException();
1532             HashMap<K,V> m = map;
1533             Node<K,V>[] tab = m.table;
1534             if ((hi = fence) < 0) {
1535                 mc = expectedModCount = m.modCount;
1536                 hi = fence = (tab == null) ? 0 : tab.length;
1537             }
1538             else
1539                 mc = expectedModCount;
1540             if (tab != null && tab.length >= hi &&
1541                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1542                 Node<K,V> p = current;
1543                 current = null;
1544                 do {
1545                     if (p == null)
1546                         p = tab[i++];
1547                     else {
1548                         action.accept(p.key);
1549                         p = p.next;
1550                     }
1551                 } while (p != null || i < hi);
1552                 if (m.modCount != mc)
1553                     throw new ConcurrentModificationException();
1554             }
1555         }
1556 
1557         public boolean tryAdvance(Consumer<? super K> action) {
1558             int hi;
1559             if (action == null)
1560                 throw new NullPointerException();
1561             Node<K,V>[] tab = map.table;
1562             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1563                 while (current != null || index < hi) {
1564                     if (current == null)
1565                         current = tab[index++];
1566                     else {
1567                         K k = current.key;
1568                         current = current.next;
1569                         action.accept(k);
1570                         if (map.modCount != expectedModCount)
1571                             throw new ConcurrentModificationException();
1572                         return true;
1573                     }
1574                 }
1575             }
1576             return false;
1577         }
1578 
1579         public int characteristics() {
1580             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1581                 Spliterator.DISTINCT;
1582         }
1583     }
1584 
1585     static final class ValueSpliterator<K,V>
1586         extends HashMapSpliterator<K,V>
1587         implements Spliterator<V> {
1588         ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
1589                          int expectedModCount) {
1590             super(m, origin, fence, est, expectedModCount);
1591         }
1592 
1593         public ValueSpliterator<K,V> trySplit() {
1594             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1595             return (lo >= mid || current != null) ? null :
1596                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1597                                           expectedModCount);
1598         }
1599 
1600         public void forEachRemaining(Consumer<? super V> action) {
1601             int i, hi, mc;
1602             if (action == null)
1603                 throw new NullPointerException();
1604             HashMap<K,V> m = map;
1605             Node<K,V>[] tab = m.table;
1606             if ((hi = fence) < 0) {
1607                 mc = expectedModCount = m.modCount;
1608                 hi = fence = (tab == null) ? 0 : tab.length;
1609             }
1610             else
1611                 mc = expectedModCount;
1612             if (tab != null && tab.length >= hi &&
1613                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1614                 Node<K,V> p = current;
1615                 current = null;
1616                 do {
1617                     if (p == null)
1618                         p = tab[i++];
1619                     else {
1620                         action.accept(p.value);
1621                         p = p.next;
1622                     }
1623                 } while (p != null || i < hi);
1624                 if (m.modCount != mc)
1625                     throw new ConcurrentModificationException();
1626             }
1627         }
1628 
1629         public boolean tryAdvance(Consumer<? super V> action) {
1630             int hi;
1631             if (action == null)
1632                 throw new NullPointerException();
1633             Node<K,V>[] tab = map.table;
1634             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1635                 while (current != null || index < hi) {
1636                     if (current == null)
1637                         current = tab[index++];
1638                     else {
1639                         V v = current.value;
1640                         current = current.next;
1641                         action.accept(v);
1642                         if (map.modCount != expectedModCount)
1643                             throw new ConcurrentModificationException();
1644                         return true;
1645                     }
1646                 }
1647             }
1648             return false;
1649         }
1650 
1651         public int characteristics() {
1652             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
1653         }
1654     }
1655 
1656     static final class EntrySpliterator<K,V>
1657         extends HashMapSpliterator<K,V>
1658         implements Spliterator<Map.Entry<K,V>> {
1659         EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1660                          int expectedModCount) {
1661             super(m, origin, fence, est, expectedModCount);
1662         }
1663 
1664         public EntrySpliterator<K,V> trySplit() {
1665             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1666             return (lo >= mid || current != null) ? null :
1667                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1668                                           expectedModCount);
1669         }
1670 
1671         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
1672             int i, hi, mc;
1673             if (action == null)
1674                 throw new NullPointerException();
1675             HashMap<K,V> m = map;
1676             Node<K,V>[] tab = m.table;
1677             if ((hi = fence) < 0) {
1678                 mc = expectedModCount = m.modCount;
1679                 hi = fence = (tab == null) ? 0 : tab.length;
1680             }
1681             else
1682                 mc = expectedModCount;
1683             if (tab != null && tab.length >= hi &&
1684                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1685                 Node<K,V> p = current;
1686                 current = null;
1687                 do {
1688                     if (p == null)
1689                         p = tab[i++];
1690                     else {
1691                         action.accept(p);
1692                         p = p.next;
1693                     }
1694                 } while (p != null || i < hi);
1695                 if (m.modCount != mc)
1696                     throw new ConcurrentModificationException();
1697             }
1698         }
1699 
1700         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1701             int hi;
1702             if (action == null)
1703                 throw new NullPointerException();
1704             Node<K,V>[] tab = map.table;
1705             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1706                 while (current != null || index < hi) {
1707                     if (current == null)
1708                         current = tab[index++];
1709                     else {
1710                         Node<K,V> e = current;
1711                         current = current.next;
1712                         action.accept(e);
1713                         if (map.modCount != expectedModCount)
1714                             throw new ConcurrentModificationException();
1715                         return true;
1716                     }
1717                 }
1718             }
1719             return false;
1720         }
1721 
1722         public int characteristics() {
1723             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1724                 Spliterator.DISTINCT;
1725         }
1726     }
1727 
1728     /* ------------------------------------------------------------ */
1729     // LinkedHashMap support
1730 
1731 
1732     /*
1733      * The following package-protected methods are designed to be
1734      * overridden by LinkedHashMap, but not by any other subclass.
1735      * Nearly all other internal methods are also package-protected
1736      * but are declared final, so can be used by LinkedHashMap, view
1737      * classes, and HashSet.
1738      */
1739 
1740     // Create a regular (non-tree) node
1741     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
1742         return new Node<>(hash, key, value, next);
1743     }
1744 
1745     // For conversion from TreeNodes to plain nodes
1746     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
1747         return new Node<>(p.hash, p.key, p.value, next);
1748     }
1749 
1750     // Create a tree bin node
1751     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
1752         return new TreeNode<>(hash, key, value, next);
1753     }
1754 
1755     // For treeifyBin
1756     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
1757         return new TreeNode<>(p.hash, p.key, p.value, next);
1758     }
1759 
1760     /**
1761      * Reset to initial default state.  Called by clone and readObject.
1762      */
1763     void reinitialize() {
1764         table = null;
1765         entrySet = null;
1766         keySet = null;
1767         values = null;
1768         modCount = 0;
1769         threshold = 0;
1770         size = 0;
1771     }
1772 
1773     // Callbacks to allow LinkedHashMap post-actions
1774     void afterNodeAccess(Node<K,V> p) { }
1775     void afterNodeInsertion(boolean evict) { }
1776     void afterNodeRemoval(Node<K,V> p) { }
1777 
1778     // Called only from writeObject, to ensure compatible ordering.
1779     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1780         Node<K,V>[] tab;
1781         if (size > 0 && (tab = table) != null) {
1782             for (int i = 0; i < tab.length; ++i) {
1783                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
1784                     s.writeObject(e.key);
1785                     s.writeObject(e.value);
1786                 }
1787             }
1788         }
1789     }
1790 
1791     /* ------------------------------------------------------------ */
1792     // Tree bins
1793 
1794     /**
1795      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
1796      * extends Node) so can be used as extension of either regular or
1797      * linked node.
1798      */
1799     static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
1800         TreeNode<K,V> parent;  // red-black tree links
1801         TreeNode<K,V> left;
1802         TreeNode<K,V> right;
1803         TreeNode<K,V> prev;    // needed to unlink next upon deletion
1804         boolean red;
1805         TreeNode(int hash, K key, V val, Node<K,V> next) {
1806             super(hash, key, val, next);
1807         }
1808 
1809         /**
1810          * Returns root of tree containing this node.
1811          */
1812         final TreeNode<K,V> root() {
1813             for (TreeNode<K,V> r = this, p;;) {
1814                 if ((p = r.parent) == null)
1815                     return r;
1816                 r = p;
1817             }
1818         }
1819 
1820         /**
1821          * Ensures that the given root is the first node of its bin.
1822          */
1823         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
1824             int n;
1825             if (root != null && tab != null && (n = tab.length) > 0) {
1826                 int index = (n - 1) & root.hash;
1827                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
1828                 if (root != first) {
1829                     Node<K,V> rn;
1830                     tab[index] = root;
1831                     TreeNode<K,V> rp = root.prev;
1832                     if ((rn = root.next) != null)
1833                         ((TreeNode<K,V>)rn).prev = rp;
1834                     if (rp != null)
1835                         rp.next = rn;
1836                     if (first != null)
1837                         first.prev = root;
1838                     root.next = first;
1839                     root.prev = null;
1840                 }
1841                 assert checkInvariants(root);
1842             }
1843         }
1844 
1845         /**
1846          * Finds the node starting at root p with the given hash and key.
1847          * The kc argument caches comparableClassFor(key) upon first use
1848          * comparing keys.
1849          */
1850         final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
1851             TreeNode<K,V> p = this;
1852             do {
1853                 int ph, dir; K pk;
1854                 TreeNode<K,V> pl = p.left, pr = p.right, q;
1855                 if ((ph = p.hash) > h)
1856                     p = pl;
1857                 else if (ph < h)
1858                     p = pr;
1859                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1860                     return p;
1861                 else if (pl == null)
1862                     p = pr;
1863                 else if (pr == null)
1864                     p = pl;
1865                 else if ((kc != null ||
1866                           (kc = comparableClassFor(k)) != null) &&
1867                          (dir = compareComparables(kc, k, pk)) != 0)
1868                     p = (dir < 0) ? pl : pr;
1869                 else if ((q = pr.find(h, k, kc)) != null)
1870                     return q;
1871                 else
1872                     p = pl;
1873             } while (p != null);
1874             return null;
1875         }
1876 
1877         /**
1878          * Calls find for root node.
1879          */
1880         final TreeNode<K,V> getTreeNode(int h, Object k) {
1881             return ((parent != null) ? root() : this).find(h, k, null);
1882         }
1883 
1884         /**
1885          * Tie-breaking utility for ordering insertions when equal
1886          * hashCodes and non-comparable. We don't require a total
1887          * order, just a consistent insertion rule to maintain
1888          * equivalence across rebalancings. Tie-breaking further than
1889          * necessary simplifies testing a bit.
1890          */
1891         static int tieBreakOrder(Object a, Object b) {
1892             int d;
1893             if (a == null || b == null ||
1894                 (d = a.getClass().getName().
1895                  compareTo(b.getClass().getName())) == 0)
1896                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1897                      -1 : 1);
1898             return d;
1899         }
1900 
1901         /**
1902          * Forms tree of the nodes linked from this node.
1903          * @return root of tree
1904          */
1905         final void treeify(Node<K,V>[] tab) {
1906             TreeNode<K,V> root = null;
1907             for (TreeNode<K,V> x = this, next; x != null; x = next) {
1908                 next = (TreeNode<K,V>)x.next;
1909                 x.left = x.right = null;
1910                 if (root == null) {
1911                     x.parent = null;
1912                     x.red = false;
1913                     root = x;
1914                 }
1915                 else {
1916                     K k = x.key;
1917                     int h = x.hash;
1918                     Class<?> kc = null;
1919                     for (TreeNode<K,V> p = root;;) {
1920                         int dir, ph;
1921                         K pk = p.key;
1922                         if ((ph = p.hash) > h)
1923                             dir = -1;
1924                         else if (ph < h)
1925                             dir = 1;
1926                         else if ((kc == null &&
1927                                   (kc = comparableClassFor(k)) == null) ||
1928                                  (dir = compareComparables(kc, k, pk)) == 0)
1929                             dir = tieBreakOrder(k, pk);
1930 
1931                         TreeNode<K,V> xp = p;
1932                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
1933                             x.parent = xp;
1934                             if (dir <= 0)
1935                                 xp.left = x;
1936                             else
1937                                 xp.right = x;
1938                             root = balanceInsertion(root, x);
1939                             break;
1940                         }
1941                     }
1942                 }
1943             }
1944             moveRootToFront(tab, root);
1945         }
1946 
1947         /**
1948          * Returns a list of non-TreeNodes replacing those linked from
1949          * this node.
1950          */
1951         final Node<K,V> untreeify(HashMap<K,V> map) {
1952             Node<K,V> hd = null, tl = null;
1953             for (Node<K,V> q = this; q != null; q = q.next) {
1954                 Node<K,V> p = map.replacementNode(q, null);
1955                 if (tl == null)
1956                     hd = p;
1957                 else
1958                     tl.next = p;
1959                 tl = p;
1960             }
1961             return hd;
1962         }
1963 
1964         /**
1965          * Tree version of putVal.
1966          */
1967         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
1968                                        int h, K k, V v) {
1969             Class<?> kc = null;
1970             boolean searched = false;
1971             TreeNode<K,V> root = (parent != null) ? root() : this;
1972             for (TreeNode<K,V> p = root;;) {
1973                 int dir, ph; K pk;
1974                 if ((ph = p.hash) > h)
1975                     dir = -1;
1976                 else if (ph < h)
1977                     dir = 1;
1978                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1979                     return p;
1980                 else if ((kc == null &&
1981                           (kc = comparableClassFor(k)) == null) ||
1982                          (dir = compareComparables(kc, k, pk)) == 0) {
1983                     if (!searched) {
1984                         TreeNode<K,V> q, ch;
1985                         searched = true;
1986                         if (((ch = p.left) != null &&
1987                              (q = ch.find(h, k, kc)) != null) ||
1988                             ((ch = p.right) != null &&
1989                              (q = ch.find(h, k, kc)) != null))
1990                             return q;
1991                     }
1992                     dir = tieBreakOrder(k, pk);
1993                 }
1994 
1995                 TreeNode<K,V> xp = p;
1996                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
1997                     Node<K,V> xpn = xp.next;
1998                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
1999                     if (dir <= 0)
2000                         xp.left = x;
2001                     else
2002                         xp.right = x;
2003                     xp.next = x;
2004                     x.parent = x.prev = xp;
2005                     if (xpn != null)
2006                         ((TreeNode<K,V>)xpn).prev = x;
2007                     moveRootToFront(tab, balanceInsertion(root, x));
2008                     return null;
2009                 }
2010             }
2011         }
2012 
2013         /**
2014          * Removes the given node, that must be present before this call.
2015          * This is messier than typical red-black deletion code because we
2016          * cannot swap the contents of an interior node with a leaf
2017          * successor that is pinned by "next" pointers that are accessible
2018          * independently during traversal. So instead we swap the tree
2019          * linkages. If the current tree appears to have too few nodes,
2020          * the bin is converted back to a plain bin. (The test triggers
2021          * somewhere between 2 and 6 nodes, depending on tree structure).
2022          */
2023         final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
2024                                   boolean movable) {
2025             int n;
2026             if (tab == null || (n = tab.length) == 0)
2027                 return;
2028             int index = (n - 1) & hash;
2029             TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
2030             TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
2031             if (pred == null)
2032                 tab[index] = first = succ;
2033             else
2034                 pred.next = succ;
2035             if (succ != null)
2036                 succ.prev = pred;
2037             if (first == null)
2038                 return;
2039             if (root.parent != null)
2040                 root = root.root();
2041             if (root == null || root.right == null ||
2042                 (rl = root.left) == null || rl.left == null) {
2043                 tab[index] = first.untreeify(map);  // too small
2044                 return;
2045             }
2046             TreeNode<K,V> p = this, pl = left, pr = right, replacement;
2047             if (pl != null && pr != null) {
2048                 TreeNode<K,V> s = pr, sl;
2049                 while ((sl = s.left) != null) // find successor
2050                     s = sl;
2051                 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2052                 TreeNode<K,V> sr = s.right;
2053                 TreeNode<K,V> pp = p.parent;
2054                 if (s == pr) { // p was s's direct parent
2055                     p.parent = s;
2056                     s.right = p;
2057                 }
2058                 else {
2059                     TreeNode<K,V> sp = s.parent;
2060                     if ((p.parent = sp) != null) {
2061                         if (s == sp.left)
2062                             sp.left = p;
2063                         else
2064                             sp.right = p;
2065                     }
2066                     if ((s.right = pr) != null)
2067                         pr.parent = s;
2068                 }
2069                 p.left = null;
2070                 if ((p.right = sr) != null)
2071                     sr.parent = p;
2072                 if ((s.left = pl) != null)
2073                     pl.parent = s;
2074                 if ((s.parent = pp) == null)
2075                     root = s;
2076                 else if (p == pp.left)
2077                     pp.left = s;
2078                 else
2079                     pp.right = s;
2080                 if (sr != null)
2081                     replacement = sr;
2082                 else
2083                     replacement = p;
2084             }
2085             else if (pl != null)
2086                 replacement = pl;
2087             else if (pr != null)
2088                 replacement = pr;
2089             else
2090                 replacement = p;
2091             if (replacement != p) {
2092                 TreeNode<K,V> pp = replacement.parent = p.parent;
2093                 if (pp == null)
2094                     root = replacement;
2095                 else if (p == pp.left)
2096                     pp.left = replacement;
2097                 else
2098                     pp.right = replacement;
2099                 p.left = p.right = p.parent = null;
2100             }
2101 
2102             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
2103 
2104             if (replacement == p) {  // detach
2105                 TreeNode<K,V> pp = p.parent;
2106                 p.parent = null;
2107                 if (pp != null) {
2108                     if (p == pp.left)
2109                         pp.left = null;
2110                     else if (p == pp.right)
2111                         pp.right = null;
2112                 }
2113             }
2114             if (movable)
2115                 moveRootToFront(tab, r);
2116         }
2117 
2118         /**
2119          * Splits nodes in a tree bin into lower and upper tree bins,
2120          * or untreeifies if now too small. Called only from resize;
2121          * see above discussion about split bits and indices.
2122          *
2123          * @param map the map
2124          * @param tab the table for recording bin heads
2125          * @param index the index of the table being split
2126          * @param bit the bit of hash to split on
2127          */
2128         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
2129             TreeNode<K,V> b = this;
2130             // Relink into lo and hi lists, preserving order
2131             TreeNode<K,V> loHead = null, loTail = null;
2132             TreeNode<K,V> hiHead = null, hiTail = null;
2133             int lc = 0, hc = 0;
2134             for (TreeNode<K,V> e = b, next; e != null; e = next) {
2135                 next = (TreeNode<K,V>)e.next;
2136                 e.next = null;
2137                 if ((e.hash & bit) == 0) {
2138                     if ((e.prev = loTail) == null)
2139                         loHead = e;
2140                     else
2141                         loTail.next = e;
2142                     loTail = e;
2143                     ++lc;
2144                 }
2145                 else {
2146                     if ((e.prev = hiTail) == null)
2147                         hiHead = e;
2148                     else
2149                         hiTail.next = e;
2150                     hiTail = e;
2151                     ++hc;
2152                 }
2153             }
2154 
2155             if (loHead != null) {
2156                 if (lc <= UNTREEIFY_THRESHOLD)
2157                     tab[index] = loHead.untreeify(map);
2158                 else {
2159                     tab[index] = loHead;
2160                     if (hiHead != null) // (else is already treeified)
2161                         loHead.treeify(tab);
2162                 }
2163             }
2164             if (hiHead != null) {
2165                 if (hc <= UNTREEIFY_THRESHOLD)
2166                     tab[index + bit] = hiHead.untreeify(map);
2167                 else {
2168                     tab[index + bit] = hiHead;
2169                     if (loHead != null)
2170                         hiHead.treeify(tab);
2171                 }
2172             }
2173         }
2174 
2175         /* ------------------------------------------------------------ */
2176         // Red-black tree methods, all adapted from CLR
2177 
2178         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2179                                               TreeNode<K,V> p) {
2180             TreeNode<K,V> r, pp, rl;
2181             if (p != null && (r = p.right) != null) {
2182                 if ((rl = p.right = r.left) != null)
2183                     rl.parent = p;
2184                 if ((pp = r.parent = p.parent) == null)
2185                     (root = r).red = false;
2186                 else if (pp.left == p)
2187                     pp.left = r;
2188                 else
2189                     pp.right = r;
2190                 r.left = p;
2191                 p.parent = r;
2192             }
2193             return root;
2194         }
2195 
2196         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2197                                                TreeNode<K,V> p) {
2198             TreeNode<K,V> l, pp, lr;
2199             if (p != null && (l = p.left) != null) {
2200                 if ((lr = p.left = l.right) != null)
2201                     lr.parent = p;
2202                 if ((pp = l.parent = p.parent) == null)
2203                     (root = l).red = false;
2204                 else if (pp.right == p)
2205                     pp.right = l;
2206                 else
2207                     pp.left = l;
2208                 l.right = p;
2209                 p.parent = l;
2210             }
2211             return root;
2212         }
2213 
2214         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2215                                                     TreeNode<K,V> x) {
2216             x.red = true;
2217             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2218                 if ((xp = x.parent) == null) {
2219                     x.red = false;
2220                     return x;
2221                 }
2222                 else if (!xp.red || (xpp = xp.parent) == null)
2223                     return root;
2224                 if (xp == (xppl = xpp.left)) {
2225                     if ((xppr = xpp.right) != null && xppr.red) {
2226                         xppr.red = false;
2227                         xp.red = false;
2228                         xpp.red = true;
2229                         x = xpp;
2230                     }
2231                     else {
2232                         if (x == xp.right) {
2233                             root = rotateLeft(root, x = xp);
2234                             xpp = (xp = x.parent) == null ? null : xp.parent;
2235                         }
2236                         if (xp != null) {
2237                             xp.red = false;
2238                             if (xpp != null) {
2239                                 xpp.red = true;
2240                                 root = rotateRight(root, xpp);
2241                             }
2242                         }
2243                     }
2244                 }
2245                 else {
2246                     if (xppl != null && xppl.red) {
2247                         xppl.red = false;
2248                         xp.red = false;
2249                         xpp.red = true;
2250                         x = xpp;
2251                     }
2252                     else {
2253                         if (x == xp.left) {
2254                             root = rotateRight(root, x = xp);
2255                             xpp = (xp = x.parent) == null ? null : xp.parent;
2256                         }
2257                         if (xp != null) {
2258                             xp.red = false;
2259                             if (xpp != null) {
2260                                 xpp.red = true;
2261                                 root = rotateLeft(root, xpp);
2262                             }
2263                         }
2264                     }
2265                 }
2266             }
2267         }
2268 
2269         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2270                                                    TreeNode<K,V> x) {
2271             for (TreeNode<K,V> xp, xpl, xpr;;)  {
2272                 if (x == null || x == root)
2273                     return root;
2274                 else if ((xp = x.parent) == null) {
2275                     x.red = false;
2276                     return x;
2277                 }
2278                 else if (x.red) {
2279                     x.red = false;
2280                     return root;
2281                 }
2282                 else if ((xpl = xp.left) == x) {
2283                     if ((xpr = xp.right) != null && xpr.red) {
2284                         xpr.red = false;
2285                         xp.red = true;
2286                         root = rotateLeft(root, xp);
2287                         xpr = (xp = x.parent) == null ? null : xp.right;
2288                     }
2289                     if (xpr == null)
2290                         x = xp;
2291                     else {
2292                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2293                         if ((sr == null || !sr.red) &&
2294                             (sl == null || !sl.red)) {
2295                             xpr.red = true;
2296                             x = xp;
2297                         }
2298                         else {
2299                             if (sr == null || !sr.red) {
2300                                 if (sl != null)
2301                                     sl.red = false;
2302                                 xpr.red = true;
2303                                 root = rotateRight(root, xpr);
2304                                 xpr = (xp = x.parent) == null ?
2305                                     null : xp.right;
2306                             }
2307                             if (xpr != null) {
2308                                 xpr.red = (xp == null) ? false : xp.red;
2309                                 if ((sr = xpr.right) != null)
2310                                     sr.red = false;
2311                             }
2312                             if (xp != null) {
2313                                 xp.red = false;
2314                                 root = rotateLeft(root, xp);
2315                             }
2316                             x = root;
2317                         }
2318                     }
2319                 }
2320                 else { // symmetric
2321                     if (xpl != null && xpl.red) {
2322                         xpl.red = false;
2323                         xp.red = true;
2324                         root = rotateRight(root, xp);
2325                         xpl = (xp = x.parent) == null ? null : xp.left;
2326                     }
2327                     if (xpl == null)
2328                         x = xp;
2329                     else {
2330                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2331                         if ((sl == null || !sl.red) &&
2332                             (sr == null || !sr.red)) {
2333                             xpl.red = true;
2334                             x = xp;
2335                         }
2336                         else {
2337                             if (sl == null || !sl.red) {
2338                                 if (sr != null)
2339                                     sr.red = false;
2340                                 xpl.red = true;
2341                                 root = rotateLeft(root, xpl);
2342                                 xpl = (xp = x.parent) == null ?
2343                                     null : xp.left;
2344                             }
2345                             if (xpl != null) {
2346                                 xpl.red = (xp == null) ? false : xp.red;
2347                                 if ((sl = xpl.left) != null)
2348                                     sl.red = false;
2349                             }
2350                             if (xp != null) {
2351                                 xp.red = false;
2352                                 root = rotateRight(root, xp);
2353                             }
2354                             x = root;
2355                         }
2356                     }
2357                 }
2358             }
2359         }
2360 
2361         /**
2362          * Recursive invariant check
2363          */
2364         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2365             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2366                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
2367             if (tb != null && tb.next != t)
2368                 return false;
2369             if (tn != null && tn.prev != t)
2370                 return false;
2371             if (tp != null && t != tp.left && t != tp.right)
2372                 return false;
2373             if (tl != null && (tl.parent != t || tl.hash > t.hash))
2374                 return false;
2375             if (tr != null && (tr.parent != t || tr.hash < t.hash))
2376                 return false;
2377             if (t.red && tl != null && tl.red && tr != null && tr.red)
2378                 return false;
2379             if (tl != null && !checkInvariants(tl))
2380                 return false;
2381             if (tr != null && !checkInvariants(tr))
2382                 return false;
2383             return true;
2384         }
2385     }
2386 
2387 }