1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.IOException;
  29 import java.io.InvalidObjectException;
  30 import java.io.Serializable;
  31 import java.lang.reflect.ParameterizedType;
  32 import java.lang.reflect.Type;
  33 import java.util.function.BiConsumer;
  34 import java.util.function.BiFunction;
  35 import java.util.function.Consumer;
  36 import java.util.function.Function;
  37 import sun.misc.SharedSecrets;
  38 
  39 /**
  40  * Hash table based implementation of the <tt>Map</tt> interface.  This
  41  * implementation provides all of the optional map operations, and permits
  42  * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
  43  * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
  44  * unsynchronized and permits nulls.)  This class makes no guarantees as to
  45  * the order of the map; in particular, it does not guarantee that the order
  46  * will remain constant over time.
  47  *
  48  * <p>This implementation provides constant-time performance for the basic
  49  * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
  50  * disperses the elements properly among the buckets.  Iteration over
  51  * collection views requires time proportional to the "capacity" of the
  52  * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
  53  * of key-value mappings).  Thus, it's very important not to set the initial
  54  * capacity too high (or the load factor too low) if iteration performance is
  55  * important.
  56  *
  57  * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
  58  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  59  * <i>capacity</i> is the number of buckets in the hash table, and the initial
  60  * capacity is simply the capacity at the time the hash table is created.  The
  61  * <i>load factor</i> is a measure of how full the hash table is allowed to
  62  * get before its capacity is automatically increased.  When the number of
  63  * entries in the hash table exceeds the product of the load factor and the
  64  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
  65  * structures are rebuilt) so that the hash table has approximately twice the
  66  * number of buckets.
  67  *
  68  * <p>As a general rule, the default load factor (.75) offers a good
  69  * tradeoff between time and space costs.  Higher values decrease the
  70  * space overhead but increase the lookup cost (reflected in most of
  71  * the operations of the <tt>HashMap</tt> class, including
  72  * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
  73  * the map and its load factor should be taken into account when
  74  * setting its initial capacity, so as to minimize the number of
  75  * rehash operations.  If the initial capacity is greater than the
  76  * maximum number of entries divided by the load factor, no rehash
  77  * operations will ever occur.
  78  *
  79  * <p>If many mappings are to be stored in a <tt>HashMap</tt>
  80  * instance, creating it with a sufficiently large capacity will allow
  81  * the mappings to be stored more efficiently than letting it perform
  82  * automatic rehashing as needed to grow the table.  Note that using
  83  * many keys with the same {@code hashCode()} is a sure way to slow
  84  * down performance of any hash table. To ameliorate impact, when keys
  85  * are {@link Comparable}, this class may use comparison order among
  86  * keys to help break ties.
  87  *
  88  * <p><strong>Note that this implementation is not synchronized.</strong>
  89  * If multiple threads access a hash map concurrently, and at least one of
  90  * the threads modifies the map structurally, it <i>must</i> be
  91  * synchronized externally.  (A structural modification is any operation
  92  * that adds or deletes one or more mappings; merely changing the value
  93  * associated with a key that an instance already contains is not a
  94  * structural modification.)  This is typically accomplished by
  95  * synchronizing on some object that naturally encapsulates the map.
  96  *
  97  * If no such object exists, the map should be "wrapped" using the
  98  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  99  * method.  This is best done at creation time, to prevent accidental
 100  * unsynchronized access to the map:<pre>
 101  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 102  *
 103  * <p>The iterators returned by all of this class's "collection view methods"
 104  * are <i>fail-fast</i>: if the map is structurally modified at any time after
 105  * the iterator is created, in any way except through the iterator's own
 106  * <tt>remove</tt> method, the iterator will throw a
 107  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 108  * modification, the iterator fails quickly and cleanly, rather than risking
 109  * arbitrary, non-deterministic behavior at an undetermined time in the
 110  * future.
 111  *
 112  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 113  * as it is, generally speaking, impossible to make any hard guarantees in the
 114  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 115  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 116  * Therefore, it would be wrong to write a program that depended on this
 117  * exception for its correctness: <i>the fail-fast behavior of iterators
 118  * should be used only to detect bugs.</i>
 119  *
 120  * <p>This class is a member of the
 121  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 122  * Java Collections Framework</a>.
 123  *
 124  * @param <K> the type of keys maintained by this map
 125  * @param <V> the type of mapped values
 126  *
 127  * @author  Doug Lea
 128  * @author  Josh Bloch
 129  * @author  Arthur van Hoff
 130  * @author  Neal Gafter
 131  * @see     Object#hashCode()
 132  * @see     Collection
 133  * @see     Map
 134  * @see     TreeMap
 135  * @see     Hashtable
 136  * @since   1.2
 137  */
 138 public class HashMap<K,V> extends AbstractMap<K,V>
 139     implements Map<K,V>, Cloneable, Serializable {
 140 
 141     private static final long serialVersionUID = 362498820763181265L;
 142 
 143     /*
 144      * Implementation notes.
 145      *
 146      * This map usually acts as a binned (bucketed) hash table, but
 147      * when bins get too large, they are transformed into bins of
 148      * TreeNodes, each structured similarly to those in
 149      * java.util.TreeMap. Most methods try to use normal bins, but
 150      * relay to TreeNode methods when applicable (simply by checking
 151      * instanceof a node).  Bins of TreeNodes may be traversed and
 152      * used like any others, but additionally support faster lookup
 153      * when overpopulated. However, since the vast majority of bins in
 154      * normal use are not overpopulated, checking for existence of
 155      * tree bins may be delayed in the course of table methods.
 156      *
 157      * Tree bins (i.e., bins whose elements are all TreeNodes) are
 158      * ordered primarily by hashCode, but in the case of ties, if two
 159      * elements are of the same "class C implements Comparable<C>",
 160      * type then their compareTo method is used for ordering. (We
 161      * conservatively check generic types via reflection to validate
 162      * this -- see method comparableClassFor).  The added complexity
 163      * of tree bins is worthwhile in providing worst-case O(log n)
 164      * operations when keys either have distinct hashes or are
 165      * orderable, Thus, performance degrades gracefully under
 166      * accidental or malicious usages in which hashCode() methods
 167      * return values that are poorly distributed, as well as those in
 168      * which many keys share a hashCode, so long as they are also
 169      * Comparable. (If neither of these apply, we may waste about a
 170      * factor of two in time and space compared to taking no
 171      * precautions. But the only known cases stem from poor user
 172      * programming practices that are already so slow that this makes
 173      * little difference.)
 174      *
 175      * Because TreeNodes are about twice the size of regular nodes, we
 176      * use them only when bins contain enough nodes to warrant use
 177      * (see TREEIFY_THRESHOLD). And when they become too small (due to
 178      * removal or resizing) they are converted back to plain bins.  In
 179      * usages with well-distributed user hashCodes, tree bins are
 180      * rarely used.  Ideally, under random hashCodes, the frequency of
 181      * nodes in bins follows a Poisson distribution
 182      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
 183      * parameter of about 0.5 on average for the default resizing
 184      * threshold of 0.75, although with a large variance because of
 185      * resizing granularity. Ignoring variance, the expected
 186      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
 187      * factorial(k)). The first values are:
 188      *
 189      * 0:    0.60653066
 190      * 1:    0.30326533
 191      * 2:    0.07581633
 192      * 3:    0.01263606
 193      * 4:    0.00157952
 194      * 5:    0.00015795
 195      * 6:    0.00001316
 196      * 7:    0.00000094
 197      * 8:    0.00000006
 198      * more: less than 1 in ten million
 199      *
 200      * The root of a tree bin is normally its first node.  However,
 201      * sometimes (currently only upon Iterator.remove), the root might
 202      * be elsewhere, but can be recovered following parent links
 203      * (method TreeNode.root()).
 204      *
 205      * All applicable internal methods accept a hash code as an
 206      * argument (as normally supplied from a public method), allowing
 207      * them to call each other without recomputing user hashCodes.
 208      * Most internal methods also accept a "tab" argument, that is
 209      * normally the current table, but may be a new or old one when
 210      * resizing or converting.
 211      *
 212      * When bin lists are treeified, split, or untreeified, we keep
 213      * them in the same relative access/traversal order (i.e., field
 214      * Node.next) to better preserve locality, and to slightly
 215      * simplify handling of splits and traversals that invoke
 216      * iterator.remove. When using comparators on insertion, to keep a
 217      * total ordering (or as close as is required here) across
 218      * rebalancings, we compare classes and identityHashCodes as
 219      * tie-breakers.
 220      *
 221      * The use and transitions among plain vs tree modes is
 222      * complicated by the existence of subclass LinkedHashMap. See
 223      * below for hook methods defined to be invoked upon insertion,
 224      * removal and access that allow LinkedHashMap internals to
 225      * otherwise remain independent of these mechanics. (This also
 226      * requires that a map instance be passed to some utility methods
 227      * that may create new nodes.)
 228      *
 229      * The concurrent-programming-like SSA-based coding style helps
 230      * avoid aliasing errors amid all of the twisty pointer operations.
 231      */
 232 
 233     /**
 234      * The default initial capacity - MUST be a power of two.
 235      */
 236     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 237 
 238     /**
 239      * The maximum capacity, used if a higher value is implicitly specified
 240      * by either of the constructors with arguments.
 241      * MUST be a power of two <= 1<<30.
 242      */
 243     static final int MAXIMUM_CAPACITY = 1 << 30;
 244 
 245     /**
 246      * The load factor used when none specified in constructor.
 247      */
 248     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 249 
 250     /**
 251      * The bin count threshold for using a tree rather than list for a
 252      * bin.  Bins are converted to trees when adding an element to a
 253      * bin with at least this many nodes. The value must be greater
 254      * than 2 and should be at least 8 to mesh with assumptions in
 255      * tree removal about conversion back to plain bins upon
 256      * shrinkage.
 257      */
 258     static final int TREEIFY_THRESHOLD = 8;
 259 
 260     /**
 261      * The bin count threshold for untreeifying a (split) bin during a
 262      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 263      * most 6 to mesh with shrinkage detection under removal.
 264      */
 265     static final int UNTREEIFY_THRESHOLD = 6;
 266 
 267     /**
 268      * The smallest table capacity for which bins may be treeified.
 269      * (Otherwise the table is resized if too many nodes in a bin.)
 270      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 271      * between resizing and treeification thresholds.
 272      */
 273     static final int MIN_TREEIFY_CAPACITY = 64;
 274 
 275     /**
 276      * Basic hash bin node, used for most entries.  (See below for
 277      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 278      */
 279     static class Node<K,V> implements Map.Entry<K,V> {
 280         final int hash;
 281         final K key;
 282         V value;
 283         Node<K,V> next;
 284 
 285         Node(int hash, K key, V value, Node<K,V> next) {
 286             this.hash = hash;
 287             this.key = key;
 288             this.value = value;
 289             this.next = next;
 290         }
 291 
 292         public final K getKey()        { return key; }
 293         public final V getValue()      { return value; }
 294         public final String toString() { return key + "=" + value; }
 295 
 296         public final int hashCode() {
 297             return Objects.hashCode(key) ^ Objects.hashCode(value);
 298         }
 299 
 300         public final V setValue(V newValue) {
 301             V oldValue = value;
 302             value = newValue;
 303             return oldValue;
 304         }
 305 
 306         public final boolean equals(Object o) {
 307             if (o == this)
 308                 return true;
 309             if (o instanceof Map.Entry) {
 310                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 311                 if (Objects.equals(key, e.getKey()) &&
 312                     Objects.equals(value, e.getValue()))
 313                     return true;
 314             }
 315             return false;
 316         }
 317     }
 318 
 319     /* ---------------- Static utilities -------------- */
 320 
 321     /**
 322      * Computes key.hashCode() and spreads (XORs) higher bits of hash
 323      * to lower.  Because the table uses power-of-two masking, sets of
 324      * hashes that vary only in bits above the current mask will
 325      * always collide. (Among known examples are sets of Float keys
 326      * holding consecutive whole numbers in small tables.)  So we
 327      * apply a transform that spreads the impact of higher bits
 328      * downward. There is a tradeoff between speed, utility, and
 329      * quality of bit-spreading. Because many common sets of hashes
 330      * are already reasonably distributed (so don't benefit from
 331      * spreading), and because we use trees to handle large sets of
 332      * collisions in bins, we just XOR some shifted bits in the
 333      * cheapest possible way to reduce systematic lossage, as well as
 334      * to incorporate impact of the highest bits that would otherwise
 335      * never be used in index calculations because of table bounds.
 336      */
 337     static final int hash(Object key) {
 338         int h;
 339         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 340     }
 341 
 342     /**
 343      * Returns x's Class if it is of the form "class C implements
 344      * Comparable<C>", else null.
 345      */
 346     static Class<?> comparableClassFor(Object x) {
 347         if (x instanceof Comparable) {
 348             Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
 349             if ((c = x.getClass()) == String.class) // bypass checks
 350                 return c;
 351             if ((ts = c.getGenericInterfaces()) != null) {
 352                 for (int i = 0; i < ts.length; ++i) {
 353                     if (((t = ts[i]) instanceof ParameterizedType) &&
 354                         ((p = (ParameterizedType)t).getRawType() ==
 355                          Comparable.class) &&
 356                         (as = p.getActualTypeArguments()) != null &&
 357                         as.length == 1 && as[0] == c) // type arg is c
 358                         return c;
 359                 }
 360             }
 361         }
 362         return null;
 363     }
 364 
 365     /**
 366      * Returns k.compareTo(x) if x matches kc (k's screened comparable
 367      * class), else 0.
 368      */
 369     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
 370     static int compareComparables(Class<?> kc, Object k, Object x) {
 371         return (x == null || x.getClass() != kc ? 0 :
 372                 ((Comparable)k).compareTo(x));
 373     }
 374 
 375     /**
 376      * Returns a power of two size for the given target capacity.
 377      */
 378     static final int tableSizeFor(int cap) {
 379         int n = cap - 1;
 380         n |= n >>> 1;
 381         n |= n >>> 2;
 382         n |= n >>> 4;
 383         n |= n >>> 8;
 384         n |= n >>> 16;
 385         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
 386     }
 387 
 388     /* ---------------- Fields -------------- */
 389 
 390     /**
 391      * The table, initialized on first use, and resized as
 392      * necessary. When allocated, length is always a power of two.
 393      * (We also tolerate length zero in some operations to allow
 394      * bootstrapping mechanics that are currently not needed.)
 395      */
 396     transient Node<K,V>[] table;
 397 
 398     /**
 399      * Holds cached entrySet(). Note that AbstractMap fields are used
 400      * for keySet() and values().
 401      */
 402     transient Set<Map.Entry<K,V>> entrySet;
 403 
 404     /**
 405      * The number of key-value mappings contained in this map.
 406      */
 407     transient int size;
 408 
 409     /**
 410      * The number of times this HashMap has been structurally modified
 411      * Structural modifications are those that change the number of mappings in
 412      * the HashMap or otherwise modify its internal structure (e.g.,
 413      * rehash).  This field is used to make iterators on Collection-views of
 414      * the HashMap fail-fast.  (See ConcurrentModificationException).
 415      */
 416     transient int modCount;
 417 
 418     /**
 419      * The next size value at which to resize (capacity * load factor).
 420      *
 421      * @serial
 422      */
 423     // (The javadoc description is true upon serialization.
 424     // Additionally, if the table array has not been allocated, this
 425     // field holds the initial array capacity, or zero signifying
 426     // DEFAULT_INITIAL_CAPACITY.)
 427     int threshold;
 428 
 429     /**
 430      * The load factor for the hash table.
 431      *
 432      * @serial
 433      */
 434     final float loadFactor;
 435 
 436     /* ---------------- Public operations -------------- */
 437 
 438     /**
 439      * Constructs an empty <tt>HashMap</tt> with the specified initial
 440      * capacity and load factor.
 441      *
 442      * @param  initialCapacity the initial capacity
 443      * @param  loadFactor      the load factor
 444      * @throws IllegalArgumentException if the initial capacity is negative
 445      *         or the load factor is nonpositive
 446      */
 447     public HashMap(int initialCapacity, float loadFactor) {
 448         if (initialCapacity < 0)
 449             throw new IllegalArgumentException("Illegal initial capacity: " +
 450                                                initialCapacity);
 451         if (initialCapacity > MAXIMUM_CAPACITY)
 452             initialCapacity = MAXIMUM_CAPACITY;
 453         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 454             throw new IllegalArgumentException("Illegal load factor: " +
 455                                                loadFactor);
 456         this.loadFactor = loadFactor;
 457         this.threshold = tableSizeFor(initialCapacity);
 458     }
 459 
 460     /**
 461      * Constructs an empty <tt>HashMap</tt> with the specified initial
 462      * capacity and the default load factor (0.75).
 463      *
 464      * @param  initialCapacity the initial capacity.
 465      * @throws IllegalArgumentException if the initial capacity is negative.
 466      */
 467     public HashMap(int initialCapacity) {
 468         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 469     }
 470 
 471     /**
 472      * Constructs an empty <tt>HashMap</tt> with the default initial capacity
 473      * (16) and the default load factor (0.75).
 474      */
 475     public HashMap() {
 476         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 477     }
 478 
 479     /**
 480      * Constructs a new <tt>HashMap</tt> with the same mappings as the
 481      * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
 482      * default load factor (0.75) and an initial capacity sufficient to
 483      * hold the mappings in the specified <tt>Map</tt>.
 484      *
 485      * @param   m the map whose mappings are to be placed in this map
 486      * @throws  NullPointerException if the specified map is null
 487      */
 488     public HashMap(Map<? extends K, ? extends V> m) {
 489         this.loadFactor = DEFAULT_LOAD_FACTOR;
 490         putMapEntries(m, false);
 491     }
 492 
 493     /**
 494      * Implements Map.putAll and Map constructor
 495      *
 496      * @param m the map
 497      * @param evict false when initially constructing this map, else
 498      * true (relayed to method afterNodeInsertion).
 499      */
 500     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 501         int s = m.size();
 502         if (s > 0) {
 503             if (table == null) { // pre-size
 504                 float ft = ((float)s / loadFactor) + 1.0F;
 505                 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
 506                          (int)ft : MAXIMUM_CAPACITY);
 507                 if (t > threshold)
 508                     threshold = tableSizeFor(t);
 509             }
 510             else if (s > threshold)
 511                 resize();
 512             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
 513                 K key = e.getKey();
 514                 V value = e.getValue();
 515                 putVal(hash(key), key, value, false, evict);
 516             }
 517         }
 518     }
 519 
 520     /**
 521      * Returns the number of key-value mappings in this map.
 522      *
 523      * @return the number of key-value mappings in this map
 524      */
 525     public int size() {
 526         return size;
 527     }
 528 
 529     /**
 530      * Returns <tt>true</tt> if this map contains no key-value mappings.
 531      *
 532      * @return <tt>true</tt> if this map contains no key-value mappings
 533      */
 534     public boolean isEmpty() {
 535         return size == 0;
 536     }
 537 
 538     /**
 539      * Returns the value to which the specified key is mapped,
 540      * or {@code null} if this map contains no mapping for the key.
 541      *
 542      * <p>More formally, if this map contains a mapping from a key
 543      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 544      * key.equals(k))}, then this method returns {@code v}; otherwise
 545      * it returns {@code null}.  (There can be at most one such mapping.)
 546      *
 547      * <p>A return value of {@code null} does not <i>necessarily</i>
 548      * indicate that the map contains no mapping for the key; it's also
 549      * possible that the map explicitly maps the key to {@code null}.
 550      * The {@link #containsKey containsKey} operation may be used to
 551      * distinguish these two cases.
 552      *
 553      * @see #put(Object, Object)
 554      */
 555     public V get(Object key) {
 556         Node<K,V> e;
 557         return (e = getNode(hash(key), key)) == null ? null : e.value;
 558     }
 559 
 560     /**
 561      * Implements Map.get and related methods
 562      *
 563      * @param hash hash for key
 564      * @param key the key
 565      * @return the node, or null if none
 566      */
 567     final Node<K,V> getNode(int hash, Object key) {
 568         Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
 569         if ((tab = table) != null && (n = tab.length) > 0 &&
 570             (first = tab[(n - 1) & hash]) != null) {
 571             if (first.hash == hash && // always check first node
 572                 ((k = first.key) == key || (key != null && key.equals(k))))
 573                 return first;
 574             if ((e = first.next) != null) {
 575                 if (first instanceof TreeNode)
 576                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);
 577                 do {
 578                     if (e.hash == hash &&
 579                         ((k = e.key) == key || (key != null && key.equals(k))))
 580                         return e;
 581                 } while ((e = e.next) != null);
 582             }
 583         }
 584         return null;
 585     }
 586 
 587     /**
 588      * Returns <tt>true</tt> if this map contains a mapping for the
 589      * specified key.
 590      *
 591      * @param   key   The key whose presence in this map is to be tested
 592      * @return <tt>true</tt> if this map contains a mapping for the specified
 593      * key.
 594      */
 595     public boolean containsKey(Object key) {
 596         return getNode(hash(key), key) != null;
 597     }
 598 
 599     /**
 600      * Associates the specified value with the specified key in this map.
 601      * If the map previously contained a mapping for the key, the old
 602      * value is replaced.
 603      *
 604      * @param key key with which the specified value is to be associated
 605      * @param value value to be associated with the specified key
 606      * @return the previous value associated with <tt>key</tt>, or
 607      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 608      *         (A <tt>null</tt> return can also indicate that the map
 609      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 610      */
 611     public V put(K key, V value) {
 612         return putVal(hash(key), key, value, false, true);
 613     }
 614 
 615     /**
 616      * Implements Map.put and related methods
 617      *
 618      * @param hash hash for key
 619      * @param key the key
 620      * @param value the value to put
 621      * @param onlyIfAbsent if true, don't change existing value
 622      * @param evict if false, the table is in creation mode.
 623      * @return previous value, or null if none
 624      */
 625     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 626                    boolean evict) {
 627         Node<K,V>[] tab; Node<K,V> p; int n, i;
 628         if ((tab = table) == null || (n = tab.length) == 0)
 629             n = (tab = resize()).length;
 630         if ((p = tab[i = (n - 1) & hash]) == null)
 631             tab[i] = newNode(hash, key, value, null);
 632         else {
 633             Node<K,V> e; K k;
 634             if (p.hash == hash &&
 635                 ((k = p.key) == key || (key != null && key.equals(k))))
 636                 e = p;
 637             else if (p instanceof TreeNode)
 638                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
 639             else {
 640                 for (int binCount = 0; ; ++binCount) {
 641                     if ((e = p.next) == null) {
 642                         p.next = newNode(hash, key, value, null);
 643                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
 644                             treeifyBin(tab, hash);
 645                         break;
 646                     }
 647                     if (e.hash == hash &&
 648                         ((k = e.key) == key || (key != null && key.equals(k))))
 649                         break;
 650                     p = e;
 651                 }
 652             }
 653             if (e != null) { // existing mapping for key
 654                 V oldValue = e.value;
 655                 if (!onlyIfAbsent || oldValue == null)
 656                     e.value = value;
 657                 afterNodeAccess(e);
 658                 return oldValue;
 659             }
 660         }
 661         ++modCount;
 662         if (++size > threshold)
 663             resize();
 664         afterNodeInsertion(evict);
 665         return null;
 666     }
 667 
 668     /**
 669      * Initializes or doubles table size.  If null, allocates in
 670      * accord with initial capacity target held in field threshold.
 671      * Otherwise, because we are using power-of-two expansion, the
 672      * elements from each bin must either stay at same index, or move
 673      * with a power of two offset in the new table.
 674      *
 675      * @return the table
 676      */
 677     final Node<K,V>[] resize() {
 678         Node<K,V>[] oldTab = table;
 679         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 680         int oldThr = threshold;
 681         int newCap, newThr = 0;
 682         if (oldCap > 0) {
 683             if (oldCap >= MAXIMUM_CAPACITY) {
 684                 threshold = Integer.MAX_VALUE;
 685                 return oldTab;
 686             }
 687             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 688                      oldCap >= DEFAULT_INITIAL_CAPACITY)
 689                 newThr = oldThr << 1; // double threshold
 690         }
 691         else if (oldThr > 0) // initial capacity was placed in threshold
 692             newCap = oldThr;
 693         else {               // zero initial threshold signifies using defaults
 694             newCap = DEFAULT_INITIAL_CAPACITY;
 695             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
 696         }
 697         if (newThr == 0) {
 698             float ft = (float)newCap * loadFactor;
 699             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 700                       (int)ft : Integer.MAX_VALUE);
 701         }
 702         threshold = newThr;
 703         @SuppressWarnings({"rawtypes","unchecked"})
 704             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
 705         table = newTab;
 706         if (oldTab != null) {
 707             for (int j = 0; j < oldCap; ++j) {
 708                 Node<K,V> e;
 709                 if ((e = oldTab[j]) != null) {
 710                     oldTab[j] = null;
 711                     if (e.next == null)
 712                         newTab[e.hash & (newCap - 1)] = e;
 713                     else if (e instanceof TreeNode)
 714                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
 715                     else { // preserve order
 716                         Node<K,V> loHead = null, loTail = null;
 717                         Node<K,V> hiHead = null, hiTail = null;
 718                         Node<K,V> next;
 719                         do {
 720                             next = e.next;
 721                             if ((e.hash & oldCap) == 0) {
 722                                 if (loTail == null)
 723                                     loHead = e;
 724                                 else
 725                                     loTail.next = e;
 726                                 loTail = e;
 727                             }
 728                             else {
 729                                 if (hiTail == null)
 730                                     hiHead = e;
 731                                 else
 732                                     hiTail.next = e;
 733                                 hiTail = e;
 734                             }
 735                         } while ((e = next) != null);
 736                         if (loTail != null) {
 737                             loTail.next = null;
 738                             newTab[j] = loHead;
 739                         }
 740                         if (hiTail != null) {
 741                             hiTail.next = null;
 742                             newTab[j + oldCap] = hiHead;
 743                         }
 744                     }
 745                 }
 746             }
 747         }
 748         return newTab;
 749     }
 750 
 751     /**
 752      * Replaces all linked nodes in bin at index for given hash unless
 753      * table is too small, in which case resizes instead.
 754      */
 755     final void treeifyBin(Node<K,V>[] tab, int hash) {
 756         int n, index; Node<K,V> e;
 757         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 758             resize();
 759         else if ((e = tab[index = (n - 1) & hash]) != null) {
 760             TreeNode<K,V> hd = null, tl = null;
 761             do {
 762                 TreeNode<K,V> p = replacementTreeNode(e, null);
 763                 if (tl == null)
 764                     hd = p;
 765                 else {
 766                     p.prev = tl;
 767                     tl.next = p;
 768                 }
 769                 tl = p;
 770             } while ((e = e.next) != null);
 771             if ((tab[index] = hd) != null)
 772                 hd.treeify(tab);
 773         }
 774     }
 775 
 776     /**
 777      * Copies all of the mappings from the specified map to this map.
 778      * These mappings will replace any mappings that this map had for
 779      * any of the keys currently in the specified map.
 780      *
 781      * @param m mappings to be stored in this map
 782      * @throws NullPointerException if the specified map is null
 783      */
 784     public void putAll(Map<? extends K, ? extends V> m) {
 785         putMapEntries(m, true);
 786     }
 787 
 788     /**
 789      * Removes the mapping for the specified key from this map if present.
 790      *
 791      * @param  key key whose mapping is to be removed from the map
 792      * @return the previous value associated with <tt>key</tt>, or
 793      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 794      *         (A <tt>null</tt> return can also indicate that the map
 795      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 796      */
 797     public V remove(Object key) {
 798         Node<K,V> e;
 799         return (e = removeNode(hash(key), key, null, false, true)) == null ?
 800             null : e.value;
 801     }
 802 
 803     /**
 804      * Implements Map.remove and related methods
 805      *
 806      * @param hash hash for key
 807      * @param key the key
 808      * @param value the value to match if matchValue, else ignored
 809      * @param matchValue if true only remove if value is equal
 810      * @param movable if false do not move other nodes while removing
 811      * @return the node, or null if none
 812      */
 813     final Node<K,V> removeNode(int hash, Object key, Object value,
 814                                boolean matchValue, boolean movable) {
 815         Node<K,V>[] tab; Node<K,V> p; int n, index;
 816         if ((tab = table) != null && (n = tab.length) > 0 &&
 817             (p = tab[index = (n - 1) & hash]) != null) {
 818             Node<K,V> node = null, e; K k; V v;
 819             if (p.hash == hash &&
 820                 ((k = p.key) == key || (key != null && key.equals(k))))
 821                 node = p;
 822             else if ((e = p.next) != null) {
 823                 if (p instanceof TreeNode)
 824                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
 825                 else {
 826                     do {
 827                         if (e.hash == hash &&
 828                             ((k = e.key) == key ||
 829                              (key != null && key.equals(k)))) {
 830                             node = e;
 831                             break;
 832                         }
 833                         p = e;
 834                     } while ((e = e.next) != null);
 835                 }
 836             }
 837             if (node != null && (!matchValue || (v = node.value) == value ||
 838                                  (value != null && value.equals(v)))) {
 839                 if (node instanceof TreeNode)
 840                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
 841                 else if (node == p)
 842                     tab[index] = node.next;
 843                 else
 844                     p.next = node.next;
 845                 ++modCount;
 846                 --size;
 847                 afterNodeRemoval(node);
 848                 return node;
 849             }
 850         }
 851         return null;
 852     }
 853 
 854     /**
 855      * Removes all of the mappings from this map.
 856      * The map will be empty after this call returns.
 857      */
 858     public void clear() {
 859         Node<K,V>[] tab;
 860         modCount++;
 861         if ((tab = table) != null && size > 0) {
 862             size = 0;
 863             for (int i = 0; i < tab.length; ++i)
 864                 tab[i] = null;
 865         }
 866     }
 867 
 868     /**
 869      * Returns <tt>true</tt> if this map maps one or more keys to the
 870      * specified value.
 871      *
 872      * @param value value whose presence in this map is to be tested
 873      * @return <tt>true</tt> if this map maps one or more keys to the
 874      *         specified value
 875      */
 876     public boolean containsValue(Object value) {
 877         Node<K,V>[] tab; V v;
 878         if ((tab = table) != null && size > 0) {
 879             for (int i = 0; i < tab.length; ++i) {
 880                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
 881                     if ((v = e.value) == value ||
 882                         (value != null && value.equals(v)))
 883                         return true;
 884                 }
 885             }
 886         }
 887         return false;
 888     }
 889 
 890     /**
 891      * Returns a {@link Set} view of the keys contained in this map.
 892      * The set is backed by the map, so changes to the map are
 893      * reflected in the set, and vice-versa.  If the map is modified
 894      * while an iteration over the set is in progress (except through
 895      * the iterator's own <tt>remove</tt> operation), the results of
 896      * the iteration are undefined.  The set supports element removal,
 897      * which removes the corresponding mapping from the map, via the
 898      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 899      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 900      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 901      * operations.
 902      *
 903      * @return a set view of the keys contained in this map
 904      */
 905     public Set<K> keySet() {
 906         Set<K> ks = keySet;
 907         if (ks == null) {
 908             ks = new KeySet();
 909             keySet = ks;
 910         }
 911         return ks;
 912     }
 913 
 914     final class KeySet extends AbstractSet<K> {
 915         public final int size()                 { return size; }
 916         public final void clear()               { HashMap.this.clear(); }
 917         public final Iterator<K> iterator()     { return new KeyIterator(); }
 918         public final boolean contains(Object o) { return containsKey(o); }
 919         public final boolean remove(Object key) {
 920             return removeNode(hash(key), key, null, false, true) != null;
 921         }
 922         public final Spliterator<K> spliterator() {
 923             return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
 924         }
 925         public final void forEach(Consumer<? super K> action) {
 926             Node<K,V>[] tab;
 927             if (action == null)
 928                 throw new NullPointerException();
 929             if (size > 0 && (tab = table) != null) {
 930                 int mc = modCount;
 931                 for (int i = 0; i < tab.length; ++i) {
 932                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
 933                         action.accept(e.key);
 934                 }
 935                 if (modCount != mc)
 936                     throw new ConcurrentModificationException();
 937             }
 938         }
 939     }
 940 
 941     /**
 942      * Returns a {@link Collection} view of the values contained in this map.
 943      * The collection is backed by the map, so changes to the map are
 944      * reflected in the collection, and vice-versa.  If the map is
 945      * modified while an iteration over the collection is in progress
 946      * (except through the iterator's own <tt>remove</tt> operation),
 947      * the results of the iteration are undefined.  The collection
 948      * supports element removal, which removes the corresponding
 949      * mapping from the map, via the <tt>Iterator.remove</tt>,
 950      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 951      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 952      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 953      *
 954      * @return a view of the values contained in this map
 955      */
 956     public Collection<V> values() {
 957         Collection<V> vs = values;
 958         if (vs == null) {
 959             vs = new Values();
 960             values = vs;
 961         }
 962         return vs;
 963     }
 964 
 965     final class Values extends AbstractCollection<V> {
 966         public final int size()                 { return size; }
 967         public final void clear()               { HashMap.this.clear(); }
 968         public final Iterator<V> iterator()     { return new ValueIterator(); }
 969         public final boolean contains(Object o) { return containsValue(o); }
 970         public final Spliterator<V> spliterator() {
 971             return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
 972         }
 973         public final void forEach(Consumer<? super V> action) {
 974             Node<K,V>[] tab;
 975             if (action == null)
 976                 throw new NullPointerException();
 977             if (size > 0 && (tab = table) != null) {
 978                 int mc = modCount;
 979                 for (int i = 0; i < tab.length; ++i) {
 980                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
 981                         action.accept(e.value);
 982                 }
 983                 if (modCount != mc)
 984                     throw new ConcurrentModificationException();
 985             }
 986         }
 987     }
 988 
 989     /**
 990      * Returns a {@link Set} view of the mappings contained in this map.
 991      * The set is backed by the map, so changes to the map are
 992      * reflected in the set, and vice-versa.  If the map is modified
 993      * while an iteration over the set is in progress (except through
 994      * the iterator's own <tt>remove</tt> operation, or through the
 995      * <tt>setValue</tt> operation on a map entry returned by the
 996      * iterator) the results of the iteration are undefined.  The set
 997      * supports element removal, which removes the corresponding
 998      * mapping from the map, via the <tt>Iterator.remove</tt>,
 999      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
1000      * <tt>clear</tt> operations.  It does not support the
1001      * <tt>add</tt> or <tt>addAll</tt> operations.
1002      *
1003      * @return a set view of the mappings contained in this map
1004      */
1005     public Set<Map.Entry<K,V>> entrySet() {
1006         Set<Map.Entry<K,V>> es;
1007         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
1008     }
1009 
1010     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1011         public final int size()                 { return size; }
1012         public final void clear()               { HashMap.this.clear(); }
1013         public final Iterator<Map.Entry<K,V>> iterator() {
1014             return new EntryIterator();
1015         }
1016         public final boolean contains(Object o) {
1017             if (!(o instanceof Map.Entry))
1018                 return false;
1019             Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1020             Object key = e.getKey();
1021             Node<K,V> candidate = getNode(hash(key), key);
1022             return candidate != null && candidate.equals(e);
1023         }
1024         public final boolean remove(Object o) {
1025             if (o instanceof Map.Entry) {
1026                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1027                 Object key = e.getKey();
1028                 Object value = e.getValue();
1029                 return removeNode(hash(key), key, value, true, true) != null;
1030             }
1031             return false;
1032         }
1033         public final Spliterator<Map.Entry<K,V>> spliterator() {
1034             return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
1035         }
1036         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
1037             Node<K,V>[] tab;
1038             if (action == null)
1039                 throw new NullPointerException();
1040             if (size > 0 && (tab = table) != null) {
1041                 int mc = modCount;
1042                 for (int i = 0; i < tab.length; ++i) {
1043                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
1044                         action.accept(e);
1045                 }
1046                 if (modCount != mc)
1047                     throw new ConcurrentModificationException();
1048             }
1049         }
1050     }
1051 
1052     // Overrides of JDK8 Map extension methods
1053 
1054     @Override
1055     public V getOrDefault(Object key, V defaultValue) {
1056         Node<K,V> e;
1057         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
1058     }
1059 
1060     @Override
1061     public V putIfAbsent(K key, V value) {
1062         return putVal(hash(key), key, value, true, true);
1063     }
1064 
1065     @Override
1066     public boolean remove(Object key, Object value) {
1067         return removeNode(hash(key), key, value, true, true) != null;
1068     }
1069 
1070     @Override
1071     public boolean replace(K key, V oldValue, V newValue) {
1072         Node<K,V> e; V v;
1073         if ((e = getNode(hash(key), key)) != null &&
1074             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1075             e.value = newValue;
1076             afterNodeAccess(e);
1077             return true;
1078         }
1079         return false;
1080     }
1081 
1082     @Override
1083     public V replace(K key, V value) {
1084         Node<K,V> e;
1085         if ((e = getNode(hash(key), key)) != null) {
1086             V oldValue = e.value;
1087             e.value = value;
1088             afterNodeAccess(e);
1089             return oldValue;
1090         }
1091         return null;
1092     }
1093 
1094     @Override
1095     public V computeIfAbsent(K key,
1096                              Function<? super K, ? extends V> mappingFunction) {
1097         if (mappingFunction == null)
1098             throw new NullPointerException();
1099         int hash = hash(key);
1100         Node<K,V>[] tab; Node<K,V> first; int n, i;
1101         int binCount = 0;
1102         TreeNode<K,V> t = null;
1103         Node<K,V> old = null;
1104         if (size > threshold || (tab = table) == null ||
1105             (n = tab.length) == 0)
1106             n = (tab = resize()).length;
1107         if ((first = tab[i = (n - 1) & hash]) != null) {
1108             if (first instanceof TreeNode)
1109                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1110             else {
1111                 Node<K,V> e = first; K k;
1112                 do {
1113                     if (e.hash == hash &&
1114                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1115                         old = e;
1116                         break;
1117                     }
1118                     ++binCount;
1119                 } while ((e = e.next) != null);
1120             }
1121             V oldValue;
1122             if (old != null && (oldValue = old.value) != null) {
1123                 afterNodeAccess(old);
1124                 return oldValue;
1125             }
1126         }
1127         V v = mappingFunction.apply(key);
1128         if (v == null) {
1129             return null;
1130         } else if (old != null) {
1131             old.value = v;
1132             afterNodeAccess(old);
1133             return v;
1134         }
1135         else if (t != null)
1136             t.putTreeVal(this, tab, hash, key, v);
1137         else {
1138             tab[i] = newNode(hash, key, v, first);
1139             if (binCount >= TREEIFY_THRESHOLD - 1)
1140                 treeifyBin(tab, hash);
1141         }
1142         ++modCount;
1143         ++size;
1144         afterNodeInsertion(true);
1145         return v;
1146     }
1147 
1148     public V computeIfPresent(K key,
1149                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1150         if (remappingFunction == null)
1151             throw new NullPointerException();
1152         Node<K,V> e; V oldValue;
1153         int hash = hash(key);
1154         if ((e = getNode(hash, key)) != null &&
1155             (oldValue = e.value) != null) {
1156             V v = remappingFunction.apply(key, oldValue);
1157             if (v != null) {
1158                 e.value = v;
1159                 afterNodeAccess(e);
1160                 return v;
1161             }
1162             else
1163                 removeNode(hash, key, null, false, true);
1164         }
1165         return null;
1166     }
1167 
1168     @Override
1169     public V compute(K key,
1170                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1171         if (remappingFunction == null)
1172             throw new NullPointerException();
1173         int hash = hash(key);
1174         Node<K,V>[] tab; Node<K,V> first; int n, i;
1175         int binCount = 0;
1176         TreeNode<K,V> t = null;
1177         Node<K,V> old = null;
1178         if (size > threshold || (tab = table) == null ||
1179             (n = tab.length) == 0)
1180             n = (tab = resize()).length;
1181         if ((first = tab[i = (n - 1) & hash]) != null) {
1182             if (first instanceof TreeNode)
1183                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1184             else {
1185                 Node<K,V> e = first; K k;
1186                 do {
1187                     if (e.hash == hash &&
1188                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1189                         old = e;
1190                         break;
1191                     }
1192                     ++binCount;
1193                 } while ((e = e.next) != null);
1194             }
1195         }
1196         V oldValue = (old == null) ? null : old.value;
1197         V v = remappingFunction.apply(key, oldValue);
1198         if (old != null) {
1199             if (v != null) {
1200                 old.value = v;
1201                 afterNodeAccess(old);
1202             }
1203             else
1204                 removeNode(hash, key, null, false, true);
1205         }
1206         else if (v != null) {
1207             if (t != null)
1208                 t.putTreeVal(this, tab, hash, key, v);
1209             else {
1210                 tab[i] = newNode(hash, key, v, first);
1211                 if (binCount >= TREEIFY_THRESHOLD - 1)
1212                     treeifyBin(tab, hash);
1213             }
1214             ++modCount;
1215             ++size;
1216             afterNodeInsertion(true);
1217         }
1218         return v;
1219     }
1220 
1221     @Override
1222     public V merge(K key, V value,
1223                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1224         if (value == null)
1225             throw new NullPointerException();
1226         if (remappingFunction == null)
1227             throw new NullPointerException();
1228         int hash = hash(key);
1229         Node<K,V>[] tab; Node<K,V> first; int n, i;
1230         int binCount = 0;
1231         TreeNode<K,V> t = null;
1232         Node<K,V> old = null;
1233         if (size > threshold || (tab = table) == null ||
1234             (n = tab.length) == 0)
1235             n = (tab = resize()).length;
1236         if ((first = tab[i = (n - 1) & hash]) != null) {
1237             if (first instanceof TreeNode)
1238                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1239             else {
1240                 Node<K,V> e = first; K k;
1241                 do {
1242                     if (e.hash == hash &&
1243                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1244                         old = e;
1245                         break;
1246                     }
1247                     ++binCount;
1248                 } while ((e = e.next) != null);
1249             }
1250         }
1251         if (old != null) {
1252             V v;
1253             if (old.value != null)
1254                 v = remappingFunction.apply(old.value, value);
1255             else
1256                 v = value;
1257             if (v != null) {
1258                 old.value = v;
1259                 afterNodeAccess(old);
1260             }
1261             else
1262                 removeNode(hash, key, null, false, true);
1263             return v;
1264         }
1265         if (value != null) {
1266             if (t != null)
1267                 t.putTreeVal(this, tab, hash, key, value);
1268             else {
1269                 tab[i] = newNode(hash, key, value, first);
1270                 if (binCount >= TREEIFY_THRESHOLD - 1)
1271                     treeifyBin(tab, hash);
1272             }
1273             ++modCount;
1274             ++size;
1275             afterNodeInsertion(true);
1276         }
1277         return value;
1278     }
1279 
1280     @Override
1281     public void forEach(BiConsumer<? super K, ? super V> action) {
1282         Node<K,V>[] tab;
1283         if (action == null)
1284             throw new NullPointerException();
1285         if (size > 0 && (tab = table) != null) {
1286             int mc = modCount;
1287             for (int i = 0; i < tab.length; ++i) {
1288                 for (Node<K,V> e = tab[i]; e != null; e = e.next)
1289                     action.accept(e.key, e.value);
1290             }
1291             if (modCount != mc)
1292                 throw new ConcurrentModificationException();
1293         }
1294     }
1295 
1296     @Override
1297     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1298         Node<K,V>[] tab;
1299         if (function == null)
1300             throw new NullPointerException();
1301         if (size > 0 && (tab = table) != null) {
1302             int mc = modCount;
1303             for (int i = 0; i < tab.length; ++i) {
1304                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
1305                     e.value = function.apply(e.key, e.value);
1306                 }
1307             }
1308             if (modCount != mc)
1309                 throw new ConcurrentModificationException();
1310         }
1311     }
1312 
1313     /* ------------------------------------------------------------ */
1314     // Cloning and serialization
1315 
1316     /**
1317      * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
1318      * values themselves are not cloned.
1319      *
1320      * @return a shallow copy of this map
1321      */
1322     @SuppressWarnings("unchecked")
1323     @Override
1324     public Object clone() {
1325         HashMap<K,V> result;
1326         try {
1327             result = (HashMap<K,V>)super.clone();
1328         } catch (CloneNotSupportedException e) {
1329             // this shouldn't happen, since we are Cloneable
1330             throw new InternalError(e);
1331         }
1332         result.reinitialize();
1333         result.putMapEntries(this, false);
1334         return result;
1335     }
1336 
1337     // These methods are also used when serializing HashSets
1338     final float loadFactor() { return loadFactor; }
1339     final int capacity() {
1340         return (table != null) ? table.length :
1341             (threshold > 0) ? threshold :
1342             DEFAULT_INITIAL_CAPACITY;
1343     }
1344 
1345     /**
1346      * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
1347      * serialize it).
1348      *
1349      * @serialData The <i>capacity</i> of the HashMap (the length of the
1350      *             bucket array) is emitted (int), followed by the
1351      *             <i>size</i> (an int, the number of key-value
1352      *             mappings), followed by the key (Object) and value (Object)
1353      *             for each key-value mapping.  The key-value mappings are
1354      *             emitted in no particular order.
1355      */
1356     private void writeObject(java.io.ObjectOutputStream s)
1357         throws IOException {
1358         int buckets = capacity();
1359         // Write out the threshold, loadfactor, and any hidden stuff
1360         s.defaultWriteObject();
1361         s.writeInt(buckets);
1362         s.writeInt(size);
1363         internalWriteEntries(s);
1364     }
1365 
1366     /**
1367      * Reconstitute the {@code HashMap} instance from a stream (i.e.,
1368      * deserialize it).
1369      */
1370     private void readObject(java.io.ObjectInputStream s)
1371         throws IOException, ClassNotFoundException {
1372         // Read in the threshold (ignored), loadfactor, and any hidden stuff
1373         s.defaultReadObject();
1374         reinitialize();
1375         if (loadFactor <= 0 || Float.isNaN(loadFactor))
1376             throw new InvalidObjectException("Illegal load factor: " +
1377                                              loadFactor);
1378         s.readInt();                // Read and ignore number of buckets
1379         int mappings = s.readInt(); // Read number of mappings (size)
1380         if (mappings < 0)
1381             throw new InvalidObjectException("Illegal mappings count: " +
1382                                              mappings);
1383         else if (mappings > 0) { // (if zero, use defaults)
1384             // Size the table using given load factor only if within
1385             // range of 0.25...4.0
1386             float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
1387             float fc = (float)mappings / lf + 1.0f;
1388             int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
1389                        DEFAULT_INITIAL_CAPACITY :
1390                        (fc >= MAXIMUM_CAPACITY) ?
1391                        MAXIMUM_CAPACITY :
1392                        tableSizeFor((int)fc));
1393             float ft = (float)cap * lf;
1394             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1395                          (int)ft : Integer.MAX_VALUE);
1396 
1397             // Check Map.Entry[].class since it's the nearest public type to
1398             // what we're actually creating.
1399             SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);
1400             @SuppressWarnings({"rawtypes","unchecked"})
1401             Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
1402             table = tab;
1403 
1404             // Read the keys and values, and put the mappings in the HashMap
1405             for (int i = 0; i < mappings; i++) {
1406                 @SuppressWarnings("unchecked")
1407                     K key = (K) s.readObject();
1408                 @SuppressWarnings("unchecked")
1409                     V value = (V) s.readObject();
1410                 putVal(hash(key), key, value, false, false);
1411             }
1412         }
1413     }
1414 
1415     /* ------------------------------------------------------------ */
1416     // iterators
1417 
1418     abstract class HashIterator {
1419         Node<K,V> next;        // next entry to return
1420         Node<K,V> current;     // current entry
1421         int expectedModCount;  // for fast-fail
1422         int index;             // current slot
1423 
1424         HashIterator() {
1425             expectedModCount = modCount;
1426             Node<K,V>[] t = table;
1427             current = next = null;
1428             index = 0;
1429             if (t != null && size > 0) { // advance to first entry
1430                 do {} while (index < t.length && (next = t[index++]) == null);
1431             }
1432         }
1433 
1434         public final boolean hasNext() {
1435             return next != null;
1436         }
1437 
1438         final Node<K,V> nextNode() {
1439             Node<K,V>[] t;
1440             Node<K,V> e = next;
1441             if (modCount != expectedModCount)
1442                 throw new ConcurrentModificationException();
1443             if (e == null)
1444                 throw new NoSuchElementException();
1445             if ((next = (current = e).next) == null && (t = table) != null) {
1446                 do {} while (index < t.length && (next = t[index++]) == null);
1447             }
1448             return e;
1449         }
1450 
1451         public final void remove() {
1452             Node<K,V> p = current;
1453             if (p == null)
1454                 throw new IllegalStateException();
1455             if (modCount != expectedModCount)
1456                 throw new ConcurrentModificationException();
1457             current = null;
1458             K key = p.key;
1459             removeNode(hash(key), key, null, false, false);
1460             expectedModCount = modCount;
1461         }
1462     }
1463 
1464     final class KeyIterator extends HashIterator
1465         implements Iterator<K> {
1466         public final K next() { return nextNode().key; }
1467     }
1468 
1469     final class ValueIterator extends HashIterator
1470         implements Iterator<V> {
1471         public final V next() { return nextNode().value; }
1472     }
1473 
1474     final class EntryIterator extends HashIterator
1475         implements Iterator<Map.Entry<K,V>> {
1476         public final Map.Entry<K,V> next() { return nextNode(); }
1477     }
1478 
1479     /* ------------------------------------------------------------ */
1480     // spliterators
1481 
1482     static class HashMapSpliterator<K,V> {
1483         final HashMap<K,V> map;
1484         Node<K,V> current;          // current node
1485         int index;                  // current index, modified on advance/split
1486         int fence;                  // one past last index
1487         int est;                    // size estimate
1488         int expectedModCount;       // for comodification checks
1489 
1490         HashMapSpliterator(HashMap<K,V> m, int origin,
1491                            int fence, int est,
1492                            int expectedModCount) {
1493             this.map = m;
1494             this.index = origin;
1495             this.fence = fence;
1496             this.est = est;
1497             this.expectedModCount = expectedModCount;
1498         }
1499 
1500         final int getFence() { // initialize fence and size on first use
1501             int hi;
1502             if ((hi = fence) < 0) {
1503                 HashMap<K,V> m = map;
1504                 est = m.size;
1505                 expectedModCount = m.modCount;
1506                 Node<K,V>[] tab = m.table;
1507                 hi = fence = (tab == null) ? 0 : tab.length;
1508             }
1509             return hi;
1510         }
1511 
1512         public final long estimateSize() {
1513             getFence(); // force init
1514             return (long) est;
1515         }
1516     }
1517 
1518     static final class KeySpliterator<K,V>
1519         extends HashMapSpliterator<K,V>
1520         implements Spliterator<K> {
1521         KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1522                        int expectedModCount) {
1523             super(m, origin, fence, est, expectedModCount);
1524         }
1525 
1526         public KeySpliterator<K,V> trySplit() {
1527             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1528             return (lo >= mid || current != null) ? null :
1529                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1530                                         expectedModCount);
1531         }
1532 
1533         public void forEachRemaining(Consumer<? super K> action) {
1534             int i, hi, mc;
1535             if (action == null)
1536                 throw new NullPointerException();
1537             HashMap<K,V> m = map;
1538             Node<K,V>[] tab = m.table;
1539             if ((hi = fence) < 0) {
1540                 mc = expectedModCount = m.modCount;
1541                 hi = fence = (tab == null) ? 0 : tab.length;
1542             }
1543             else
1544                 mc = expectedModCount;
1545             if (tab != null && tab.length >= hi &&
1546                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1547                 Node<K,V> p = current;
1548                 current = null;
1549                 do {
1550                     if (p == null)
1551                         p = tab[i++];
1552                     else {
1553                         action.accept(p.key);
1554                         p = p.next;
1555                     }
1556                 } while (p != null || i < hi);
1557                 if (m.modCount != mc)
1558                     throw new ConcurrentModificationException();
1559             }
1560         }
1561 
1562         public boolean tryAdvance(Consumer<? super K> action) {
1563             int hi;
1564             if (action == null)
1565                 throw new NullPointerException();
1566             Node<K,V>[] tab = map.table;
1567             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1568                 while (current != null || index < hi) {
1569                     if (current == null)
1570                         current = tab[index++];
1571                     else {
1572                         K k = current.key;
1573                         current = current.next;
1574                         action.accept(k);
1575                         if (map.modCount != expectedModCount)
1576                             throw new ConcurrentModificationException();
1577                         return true;
1578                     }
1579                 }
1580             }
1581             return false;
1582         }
1583 
1584         public int characteristics() {
1585             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1586                 Spliterator.DISTINCT;
1587         }
1588     }
1589 
1590     static final class ValueSpliterator<K,V>
1591         extends HashMapSpliterator<K,V>
1592         implements Spliterator<V> {
1593         ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
1594                          int expectedModCount) {
1595             super(m, origin, fence, est, expectedModCount);
1596         }
1597 
1598         public ValueSpliterator<K,V> trySplit() {
1599             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1600             return (lo >= mid || current != null) ? null :
1601                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1602                                           expectedModCount);
1603         }
1604 
1605         public void forEachRemaining(Consumer<? super V> action) {
1606             int i, hi, mc;
1607             if (action == null)
1608                 throw new NullPointerException();
1609             HashMap<K,V> m = map;
1610             Node<K,V>[] tab = m.table;
1611             if ((hi = fence) < 0) {
1612                 mc = expectedModCount = m.modCount;
1613                 hi = fence = (tab == null) ? 0 : tab.length;
1614             }
1615             else
1616                 mc = expectedModCount;
1617             if (tab != null && tab.length >= hi &&
1618                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1619                 Node<K,V> p = current;
1620                 current = null;
1621                 do {
1622                     if (p == null)
1623                         p = tab[i++];
1624                     else {
1625                         action.accept(p.value);
1626                         p = p.next;
1627                     }
1628                 } while (p != null || i < hi);
1629                 if (m.modCount != mc)
1630                     throw new ConcurrentModificationException();
1631             }
1632         }
1633 
1634         public boolean tryAdvance(Consumer<? super V> action) {
1635             int hi;
1636             if (action == null)
1637                 throw new NullPointerException();
1638             Node<K,V>[] tab = map.table;
1639             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1640                 while (current != null || index < hi) {
1641                     if (current == null)
1642                         current = tab[index++];
1643                     else {
1644                         V v = current.value;
1645                         current = current.next;
1646                         action.accept(v);
1647                         if (map.modCount != expectedModCount)
1648                             throw new ConcurrentModificationException();
1649                         return true;
1650                     }
1651                 }
1652             }
1653             return false;
1654         }
1655 
1656         public int characteristics() {
1657             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
1658         }
1659     }
1660 
1661     static final class EntrySpliterator<K,V>
1662         extends HashMapSpliterator<K,V>
1663         implements Spliterator<Map.Entry<K,V>> {
1664         EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1665                          int expectedModCount) {
1666             super(m, origin, fence, est, expectedModCount);
1667         }
1668 
1669         public EntrySpliterator<K,V> trySplit() {
1670             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1671             return (lo >= mid || current != null) ? null :
1672                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1673                                           expectedModCount);
1674         }
1675 
1676         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
1677             int i, hi, mc;
1678             if (action == null)
1679                 throw new NullPointerException();
1680             HashMap<K,V> m = map;
1681             Node<K,V>[] tab = m.table;
1682             if ((hi = fence) < 0) {
1683                 mc = expectedModCount = m.modCount;
1684                 hi = fence = (tab == null) ? 0 : tab.length;
1685             }
1686             else
1687                 mc = expectedModCount;
1688             if (tab != null && tab.length >= hi &&
1689                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1690                 Node<K,V> p = current;
1691                 current = null;
1692                 do {
1693                     if (p == null)
1694                         p = tab[i++];
1695                     else {
1696                         action.accept(p);
1697                         p = p.next;
1698                     }
1699                 } while (p != null || i < hi);
1700                 if (m.modCount != mc)
1701                     throw new ConcurrentModificationException();
1702             }
1703         }
1704 
1705         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1706             int hi;
1707             if (action == null)
1708                 throw new NullPointerException();
1709             Node<K,V>[] tab = map.table;
1710             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1711                 while (current != null || index < hi) {
1712                     if (current == null)
1713                         current = tab[index++];
1714                     else {
1715                         Node<K,V> e = current;
1716                         current = current.next;
1717                         action.accept(e);
1718                         if (map.modCount != expectedModCount)
1719                             throw new ConcurrentModificationException();
1720                         return true;
1721                     }
1722                 }
1723             }
1724             return false;
1725         }
1726 
1727         public int characteristics() {
1728             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1729                 Spliterator.DISTINCT;
1730         }
1731     }
1732 
1733     /* ------------------------------------------------------------ */
1734     // LinkedHashMap support
1735 
1736 
1737     /*
1738      * The following package-protected methods are designed to be
1739      * overridden by LinkedHashMap, but not by any other subclass.
1740      * Nearly all other internal methods are also package-protected
1741      * but are declared final, so can be used by LinkedHashMap, view
1742      * classes, and HashSet.
1743      */
1744 
1745     // Create a regular (non-tree) node
1746     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
1747         return new Node<>(hash, key, value, next);
1748     }
1749 
1750     // For conversion from TreeNodes to plain nodes
1751     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
1752         return new Node<>(p.hash, p.key, p.value, next);
1753     }
1754 
1755     // Create a tree bin node
1756     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
1757         return new TreeNode<>(hash, key, value, next);
1758     }
1759 
1760     // For treeifyBin
1761     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
1762         return new TreeNode<>(p.hash, p.key, p.value, next);
1763     }
1764 
1765     /**
1766      * Reset to initial default state.  Called by clone and readObject.
1767      */
1768     void reinitialize() {
1769         table = null;
1770         entrySet = null;
1771         keySet = null;
1772         values = null;
1773         modCount = 0;
1774         threshold = 0;
1775         size = 0;
1776     }
1777 
1778     // Callbacks to allow LinkedHashMap post-actions
1779     void afterNodeAccess(Node<K,V> p) { }
1780     void afterNodeInsertion(boolean evict) { }
1781     void afterNodeRemoval(Node<K,V> p) { }
1782 
1783     // Called only from writeObject, to ensure compatible ordering.
1784     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1785         Node<K,V>[] tab;
1786         if (size > 0 && (tab = table) != null) {
1787             for (int i = 0; i < tab.length; ++i) {
1788                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
1789                     s.writeObject(e.key);
1790                     s.writeObject(e.value);
1791                 }
1792             }
1793         }
1794     }
1795 
1796     /* ------------------------------------------------------------ */
1797     // Tree bins
1798 
1799     /**
1800      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
1801      * extends Node) so can be used as extension of either regular or
1802      * linked node.
1803      */
1804     static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
1805         TreeNode<K,V> parent;  // red-black tree links
1806         TreeNode<K,V> left;
1807         TreeNode<K,V> right;
1808         TreeNode<K,V> prev;    // needed to unlink next upon deletion
1809         boolean red;
1810         TreeNode(int hash, K key, V val, Node<K,V> next) {
1811             super(hash, key, val, next);
1812         }
1813 
1814         /**
1815          * Returns root of tree containing this node.
1816          */
1817         final TreeNode<K,V> root() {
1818             for (TreeNode<K,V> r = this, p;;) {
1819                 if ((p = r.parent) == null)
1820                     return r;
1821                 r = p;
1822             }
1823         }
1824 
1825         /**
1826          * Ensures that the given root is the first node of its bin.
1827          */
1828         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
1829             int n;
1830             if (root != null && tab != null && (n = tab.length) > 0) {
1831                 int index = (n - 1) & root.hash;
1832                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
1833                 if (root != first) {
1834                     Node<K,V> rn;
1835                     tab[index] = root;
1836                     TreeNode<K,V> rp = root.prev;
1837                     if ((rn = root.next) != null)
1838                         ((TreeNode<K,V>)rn).prev = rp;
1839                     if (rp != null)
1840                         rp.next = rn;
1841                     if (first != null)
1842                         first.prev = root;
1843                     root.next = first;
1844                     root.prev = null;
1845                 }
1846                 assert checkInvariants(root);
1847             }
1848         }
1849 
1850         /**
1851          * Finds the node starting at root p with the given hash and key.
1852          * The kc argument caches comparableClassFor(key) upon first use
1853          * comparing keys.
1854          */
1855         final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
1856             TreeNode<K,V> p = this;
1857             do {
1858                 int ph, dir; K pk;
1859                 TreeNode<K,V> pl = p.left, pr = p.right, q;
1860                 if ((ph = p.hash) > h)
1861                     p = pl;
1862                 else if (ph < h)
1863                     p = pr;
1864                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1865                     return p;
1866                 else if (pl == null)
1867                     p = pr;
1868                 else if (pr == null)
1869                     p = pl;
1870                 else if ((kc != null ||
1871                           (kc = comparableClassFor(k)) != null) &&
1872                          (dir = compareComparables(kc, k, pk)) != 0)
1873                     p = (dir < 0) ? pl : pr;
1874                 else if ((q = pr.find(h, k, kc)) != null)
1875                     return q;
1876                 else
1877                     p = pl;
1878             } while (p != null);
1879             return null;
1880         }
1881 
1882         /**
1883          * Calls find for root node.
1884          */
1885         final TreeNode<K,V> getTreeNode(int h, Object k) {
1886             return ((parent != null) ? root() : this).find(h, k, null);
1887         }
1888 
1889         /**
1890          * Tie-breaking utility for ordering insertions when equal
1891          * hashCodes and non-comparable. We don't require a total
1892          * order, just a consistent insertion rule to maintain
1893          * equivalence across rebalancings. Tie-breaking further than
1894          * necessary simplifies testing a bit.
1895          */
1896         static int tieBreakOrder(Object a, Object b) {
1897             int d;
1898             if (a == null || b == null ||
1899                 (d = a.getClass().getName().
1900                  compareTo(b.getClass().getName())) == 0)
1901                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1902                      -1 : 1);
1903             return d;
1904         }
1905 
1906         /**
1907          * Forms tree of the nodes linked from this node.
1908          * @return root of tree
1909          */
1910         final void treeify(Node<K,V>[] tab) {
1911             TreeNode<K,V> root = null;
1912             for (TreeNode<K,V> x = this, next; x != null; x = next) {
1913                 next = (TreeNode<K,V>)x.next;
1914                 x.left = x.right = null;
1915                 if (root == null) {
1916                     x.parent = null;
1917                     x.red = false;
1918                     root = x;
1919                 }
1920                 else {
1921                     K k = x.key;
1922                     int h = x.hash;
1923                     Class<?> kc = null;
1924                     for (TreeNode<K,V> p = root;;) {
1925                         int dir, ph;
1926                         K pk = p.key;
1927                         if ((ph = p.hash) > h)
1928                             dir = -1;
1929                         else if (ph < h)
1930                             dir = 1;
1931                         else if ((kc == null &&
1932                                   (kc = comparableClassFor(k)) == null) ||
1933                                  (dir = compareComparables(kc, k, pk)) == 0)
1934                             dir = tieBreakOrder(k, pk);
1935 
1936                         TreeNode<K,V> xp = p;
1937                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
1938                             x.parent = xp;
1939                             if (dir <= 0)
1940                                 xp.left = x;
1941                             else
1942                                 xp.right = x;
1943                             root = balanceInsertion(root, x);
1944                             break;
1945                         }
1946                     }
1947                 }
1948             }
1949             moveRootToFront(tab, root);
1950         }
1951 
1952         /**
1953          * Returns a list of non-TreeNodes replacing those linked from
1954          * this node.
1955          */
1956         final Node<K,V> untreeify(HashMap<K,V> map) {
1957             Node<K,V> hd = null, tl = null;
1958             for (Node<K,V> q = this; q != null; q = q.next) {
1959                 Node<K,V> p = map.replacementNode(q, null);
1960                 if (tl == null)
1961                     hd = p;
1962                 else
1963                     tl.next = p;
1964                 tl = p;
1965             }
1966             return hd;
1967         }
1968 
1969         /**
1970          * Tree version of putVal.
1971          */
1972         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
1973                                        int h, K k, V v) {
1974             Class<?> kc = null;
1975             boolean searched = false;
1976             TreeNode<K,V> root = (parent != null) ? root() : this;
1977             for (TreeNode<K,V> p = root;;) {
1978                 int dir, ph; K pk;
1979                 if ((ph = p.hash) > h)
1980                     dir = -1;
1981                 else if (ph < h)
1982                     dir = 1;
1983                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1984                     return p;
1985                 else if ((kc == null &&
1986                           (kc = comparableClassFor(k)) == null) ||
1987                          (dir = compareComparables(kc, k, pk)) == 0) {
1988                     if (!searched) {
1989                         TreeNode<K,V> q, ch;
1990                         searched = true;
1991                         if (((ch = p.left) != null &&
1992                              (q = ch.find(h, k, kc)) != null) ||
1993                             ((ch = p.right) != null &&
1994                              (q = ch.find(h, k, kc)) != null))
1995                             return q;
1996                     }
1997                     dir = tieBreakOrder(k, pk);
1998                 }
1999 
2000                 TreeNode<K,V> xp = p;
2001                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2002                     Node<K,V> xpn = xp.next;
2003                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
2004                     if (dir <= 0)
2005                         xp.left = x;
2006                     else
2007                         xp.right = x;
2008                     xp.next = x;
2009                     x.parent = x.prev = xp;
2010                     if (xpn != null)
2011                         ((TreeNode<K,V>)xpn).prev = x;
2012                     moveRootToFront(tab, balanceInsertion(root, x));
2013                     return null;
2014                 }
2015             }
2016         }
2017 
2018         /**
2019          * Removes the given node, that must be present before this call.
2020          * This is messier than typical red-black deletion code because we
2021          * cannot swap the contents of an interior node with a leaf
2022          * successor that is pinned by "next" pointers that are accessible
2023          * independently during traversal. So instead we swap the tree
2024          * linkages. If the current tree appears to have too few nodes,
2025          * the bin is converted back to a plain bin. (The test triggers
2026          * somewhere between 2 and 6 nodes, depending on tree structure).
2027          */
2028         final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
2029                                   boolean movable) {
2030             int n;
2031             if (tab == null || (n = tab.length) == 0)
2032                 return;
2033             int index = (n - 1) & hash;
2034             TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
2035             TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
2036             if (pred == null)
2037                 tab[index] = first = succ;
2038             else
2039                 pred.next = succ;
2040             if (succ != null)
2041                 succ.prev = pred;
2042             if (first == null)
2043                 return;
2044             if (root.parent != null)
2045                 root = root.root();
2046             if (root == null || root.right == null ||
2047                 (rl = root.left) == null || rl.left == null) {
2048                 tab[index] = first.untreeify(map);  // too small
2049                 return;
2050             }
2051             TreeNode<K,V> p = this, pl = left, pr = right, replacement;
2052             if (pl != null && pr != null) {
2053                 TreeNode<K,V> s = pr, sl;
2054                 while ((sl = s.left) != null) // find successor
2055                     s = sl;
2056                 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2057                 TreeNode<K,V> sr = s.right;
2058                 TreeNode<K,V> pp = p.parent;
2059                 if (s == pr) { // p was s's direct parent
2060                     p.parent = s;
2061                     s.right = p;
2062                 }
2063                 else {
2064                     TreeNode<K,V> sp = s.parent;
2065                     if ((p.parent = sp) != null) {
2066                         if (s == sp.left)
2067                             sp.left = p;
2068                         else
2069                             sp.right = p;
2070                     }
2071                     if ((s.right = pr) != null)
2072                         pr.parent = s;
2073                 }
2074                 p.left = null;
2075                 if ((p.right = sr) != null)
2076                     sr.parent = p;
2077                 if ((s.left = pl) != null)
2078                     pl.parent = s;
2079                 if ((s.parent = pp) == null)
2080                     root = s;
2081                 else if (p == pp.left)
2082                     pp.left = s;
2083                 else
2084                     pp.right = s;
2085                 if (sr != null)
2086                     replacement = sr;
2087                 else
2088                     replacement = p;
2089             }
2090             else if (pl != null)
2091                 replacement = pl;
2092             else if (pr != null)
2093                 replacement = pr;
2094             else
2095                 replacement = p;
2096             if (replacement != p) {
2097                 TreeNode<K,V> pp = replacement.parent = p.parent;
2098                 if (pp == null)
2099                     root = replacement;
2100                 else if (p == pp.left)
2101                     pp.left = replacement;
2102                 else
2103                     pp.right = replacement;
2104                 p.left = p.right = p.parent = null;
2105             }
2106 
2107             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
2108 
2109             if (replacement == p) {  // detach
2110                 TreeNode<K,V> pp = p.parent;
2111                 p.parent = null;
2112                 if (pp != null) {
2113                     if (p == pp.left)
2114                         pp.left = null;
2115                     else if (p == pp.right)
2116                         pp.right = null;
2117                 }
2118             }
2119             if (movable)
2120                 moveRootToFront(tab, r);
2121         }
2122 
2123         /**
2124          * Splits nodes in a tree bin into lower and upper tree bins,
2125          * or untreeifies if now too small. Called only from resize;
2126          * see above discussion about split bits and indices.
2127          *
2128          * @param map the map
2129          * @param tab the table for recording bin heads
2130          * @param index the index of the table being split
2131          * @param bit the bit of hash to split on
2132          */
2133         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
2134             TreeNode<K,V> b = this;
2135             // Relink into lo and hi lists, preserving order
2136             TreeNode<K,V> loHead = null, loTail = null;
2137             TreeNode<K,V> hiHead = null, hiTail = null;
2138             int lc = 0, hc = 0;
2139             for (TreeNode<K,V> e = b, next; e != null; e = next) {
2140                 next = (TreeNode<K,V>)e.next;
2141                 e.next = null;
2142                 if ((e.hash & bit) == 0) {
2143                     if ((e.prev = loTail) == null)
2144                         loHead = e;
2145                     else
2146                         loTail.next = e;
2147                     loTail = e;
2148                     ++lc;
2149                 }
2150                 else {
2151                     if ((e.prev = hiTail) == null)
2152                         hiHead = e;
2153                     else
2154                         hiTail.next = e;
2155                     hiTail = e;
2156                     ++hc;
2157                 }
2158             }
2159 
2160             if (loHead != null) {
2161                 if (lc <= UNTREEIFY_THRESHOLD)
2162                     tab[index] = loHead.untreeify(map);
2163                 else {
2164                     tab[index] = loHead;
2165                     if (hiHead != null) // (else is already treeified)
2166                         loHead.treeify(tab);
2167                 }
2168             }
2169             if (hiHead != null) {
2170                 if (hc <= UNTREEIFY_THRESHOLD)
2171                     tab[index + bit] = hiHead.untreeify(map);
2172                 else {
2173                     tab[index + bit] = hiHead;
2174                     if (loHead != null)
2175                         hiHead.treeify(tab);
2176                 }
2177             }
2178         }
2179 
2180         /* ------------------------------------------------------------ */
2181         // Red-black tree methods, all adapted from CLR
2182 
2183         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2184                                               TreeNode<K,V> p) {
2185             TreeNode<K,V> r, pp, rl;
2186             if (p != null && (r = p.right) != null) {
2187                 if ((rl = p.right = r.left) != null)
2188                     rl.parent = p;
2189                 if ((pp = r.parent = p.parent) == null)
2190                     (root = r).red = false;
2191                 else if (pp.left == p)
2192                     pp.left = r;
2193                 else
2194                     pp.right = r;
2195                 r.left = p;
2196                 p.parent = r;
2197             }
2198             return root;
2199         }
2200 
2201         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2202                                                TreeNode<K,V> p) {
2203             TreeNode<K,V> l, pp, lr;
2204             if (p != null && (l = p.left) != null) {
2205                 if ((lr = p.left = l.right) != null)
2206                     lr.parent = p;
2207                 if ((pp = l.parent = p.parent) == null)
2208                     (root = l).red = false;
2209                 else if (pp.right == p)
2210                     pp.right = l;
2211                 else
2212                     pp.left = l;
2213                 l.right = p;
2214                 p.parent = l;
2215             }
2216             return root;
2217         }
2218 
2219         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2220                                                     TreeNode<K,V> x) {
2221             x.red = true;
2222             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2223                 if ((xp = x.parent) == null) {
2224                     x.red = false;
2225                     return x;
2226                 }
2227                 else if (!xp.red || (xpp = xp.parent) == null)
2228                     return root;
2229                 if (xp == (xppl = xpp.left)) {
2230                     if ((xppr = xpp.right) != null && xppr.red) {
2231                         xppr.red = false;
2232                         xp.red = false;
2233                         xpp.red = true;
2234                         x = xpp;
2235                     }
2236                     else {
2237                         if (x == xp.right) {
2238                             root = rotateLeft(root, x = xp);
2239                             xpp = (xp = x.parent) == null ? null : xp.parent;
2240                         }
2241                         if (xp != null) {
2242                             xp.red = false;
2243                             if (xpp != null) {
2244                                 xpp.red = true;
2245                                 root = rotateRight(root, xpp);
2246                             }
2247                         }
2248                     }
2249                 }
2250                 else {
2251                     if (xppl != null && xppl.red) {
2252                         xppl.red = false;
2253                         xp.red = false;
2254                         xpp.red = true;
2255                         x = xpp;
2256                     }
2257                     else {
2258                         if (x == xp.left) {
2259                             root = rotateRight(root, x = xp);
2260                             xpp = (xp = x.parent) == null ? null : xp.parent;
2261                         }
2262                         if (xp != null) {
2263                             xp.red = false;
2264                             if (xpp != null) {
2265                                 xpp.red = true;
2266                                 root = rotateLeft(root, xpp);
2267                             }
2268                         }
2269                     }
2270                 }
2271             }
2272         }
2273 
2274         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2275                                                    TreeNode<K,V> x) {
2276             for (TreeNode<K,V> xp, xpl, xpr;;)  {
2277                 if (x == null || x == root)
2278                     return root;
2279                 else if ((xp = x.parent) == null) {
2280                     x.red = false;
2281                     return x;
2282                 }
2283                 else if (x.red) {
2284                     x.red = false;
2285                     return root;
2286                 }
2287                 else if ((xpl = xp.left) == x) {
2288                     if ((xpr = xp.right) != null && xpr.red) {
2289                         xpr.red = false;
2290                         xp.red = true;
2291                         root = rotateLeft(root, xp);
2292                         xpr = (xp = x.parent) == null ? null : xp.right;
2293                     }
2294                     if (xpr == null)
2295                         x = xp;
2296                     else {
2297                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2298                         if ((sr == null || !sr.red) &&
2299                             (sl == null || !sl.red)) {
2300                             xpr.red = true;
2301                             x = xp;
2302                         }
2303                         else {
2304                             if (sr == null || !sr.red) {
2305                                 if (sl != null)
2306                                     sl.red = false;
2307                                 xpr.red = true;
2308                                 root = rotateRight(root, xpr);
2309                                 xpr = (xp = x.parent) == null ?
2310                                     null : xp.right;
2311                             }
2312                             if (xpr != null) {
2313                                 xpr.red = (xp == null) ? false : xp.red;
2314                                 if ((sr = xpr.right) != null)
2315                                     sr.red = false;
2316                             }
2317                             if (xp != null) {
2318                                 xp.red = false;
2319                                 root = rotateLeft(root, xp);
2320                             }
2321                             x = root;
2322                         }
2323                     }
2324                 }
2325                 else { // symmetric
2326                     if (xpl != null && xpl.red) {
2327                         xpl.red = false;
2328                         xp.red = true;
2329                         root = rotateRight(root, xp);
2330                         xpl = (xp = x.parent) == null ? null : xp.left;
2331                     }
2332                     if (xpl == null)
2333                         x = xp;
2334                     else {
2335                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2336                         if ((sl == null || !sl.red) &&
2337                             (sr == null || !sr.red)) {
2338                             xpl.red = true;
2339                             x = xp;
2340                         }
2341                         else {
2342                             if (sl == null || !sl.red) {
2343                                 if (sr != null)
2344                                     sr.red = false;
2345                                 xpl.red = true;
2346                                 root = rotateLeft(root, xpl);
2347                                 xpl = (xp = x.parent) == null ?
2348                                     null : xp.left;
2349                             }
2350                             if (xpl != null) {
2351                                 xpl.red = (xp == null) ? false : xp.red;
2352                                 if ((sl = xpl.left) != null)
2353                                     sl.red = false;
2354                             }
2355                             if (xp != null) {
2356                                 xp.red = false;
2357                                 root = rotateRight(root, xp);
2358                             }
2359                             x = root;
2360                         }
2361                     }
2362                 }
2363             }
2364         }
2365 
2366         /**
2367          * Recursive invariant check
2368          */
2369         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2370             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2371                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
2372             if (tb != null && tb.next != t)
2373                 return false;
2374             if (tn != null && tn.prev != t)
2375                 return false;
2376             if (tp != null && t != tp.left && t != tp.right)
2377                 return false;
2378             if (tl != null && (tl.parent != t || tl.hash > t.hash))
2379                 return false;
2380             if (tr != null && (tr.parent != t || tr.hash < t.hash))
2381                 return false;
2382             if (t.red && tl != null && tl.red && tr != null && tr.red)
2383                 return false;
2384             if (tl != null && !checkInvariants(tl))
2385                 return false;
2386             if (tr != null && !checkInvariants(tr))
2387                 return false;
2388             return true;
2389         }
2390     }
2391 
2392 }