1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.security.rsa;
  27 
  28 import java.math.BigInteger;
  29 
  30 import java.security.*;
  31 import java.security.spec.AlgorithmParameterSpec;
  32 import java.security.spec.RSAKeyGenParameterSpec;
  33 
  34 import sun.security.jca.JCAUtil;
  35 import static sun.security.util.SecurityProviderConstants.DEF_RSA_KEY_SIZE;
  36 
  37 /**
  38  * RSA keypair generation. Standard algorithm, minimum key length 512 bit.
  39  * We generate two random primes until we find two where phi is relative
  40  * prime to the public exponent. Default exponent is 65537. It has only bit 0
  41  * and bit 4 set, which makes it particularly efficient.
  42  *
  43  * @since   1.5
  44  * @author  Andreas Sterbenz
  45  */
  46 public final class RSAKeyPairGenerator extends KeyPairGeneratorSpi {
  47 
  48     // public exponent to use
  49     private BigInteger publicExponent;
  50 
  51     // size of the key to generate, >= RSAKeyFactory.MIN_MODLEN
  52     private int keySize;
  53 
  54     // PRNG to use
  55     private SecureRandom random;
  56 
  57     public RSAKeyPairGenerator() {
  58         // initialize to default in case the app does not call initialize()
  59         initialize(DEF_RSA_KEY_SIZE, null);
  60     }
  61 
  62     // initialize the generator. See JCA doc
  63     public void initialize(int keySize, SecureRandom random) {
  64 
  65         // do not allow unreasonably small or large key sizes,
  66         // probably user error
  67         try {
  68             RSAKeyFactory.checkKeyLengths(keySize, RSAKeyGenParameterSpec.F4,
  69                 512, 64 * 1024);
  70         } catch (InvalidKeyException e) {
  71             throw new InvalidParameterException(e.getMessage());
  72         }
  73 
  74         this.keySize = keySize;
  75         this.random = random;
  76         this.publicExponent = RSAKeyGenParameterSpec.F4;
  77     }
  78 
  79     // second initialize method. See JCA doc.
  80     public void initialize(AlgorithmParameterSpec params, SecureRandom random)
  81             throws InvalidAlgorithmParameterException {
  82 
  83         if (params instanceof RSAKeyGenParameterSpec == false) {
  84             throw new InvalidAlgorithmParameterException
  85                 ("Params must be instance of RSAKeyGenParameterSpec");
  86         }
  87 
  88         RSAKeyGenParameterSpec rsaSpec = (RSAKeyGenParameterSpec)params;
  89         int tmpKeySize = rsaSpec.getKeysize();
  90         BigInteger tmpPublicExponent = rsaSpec.getPublicExponent();
  91 
  92         if (tmpPublicExponent == null) {
  93             tmpPublicExponent = RSAKeyGenParameterSpec.F4;
  94         } else {
  95             if (tmpPublicExponent.compareTo(RSAKeyGenParameterSpec.F0) < 0) {
  96                 throw new InvalidAlgorithmParameterException
  97                         ("Public exponent must be 3 or larger");
  98             }
  99             if (tmpPublicExponent.bitLength() > tmpKeySize) {
 100                 throw new InvalidAlgorithmParameterException
 101                         ("Public exponent must be smaller than key size");
 102             }
 103         }
 104 
 105         // do not allow unreasonably large key sizes, probably user error
 106         try {
 107             RSAKeyFactory.checkKeyLengths(tmpKeySize, tmpPublicExponent,
 108                 512, 64 * 1024);
 109         } catch (InvalidKeyException e) {
 110             throw new InvalidAlgorithmParameterException(
 111                 "Invalid key sizes", e);
 112         }
 113 
 114         this.keySize = tmpKeySize;
 115         this.publicExponent = tmpPublicExponent;
 116         this.random = random;
 117     }
 118 
 119     // generate the keypair. See JCA doc
 120     public KeyPair generateKeyPair() {
 121         // accommodate odd key sizes in case anybody wants to use them
 122         int lp = (keySize + 1) >> 1;
 123         int lq = keySize - lp;
 124         if (random == null) {
 125             random = JCAUtil.getSecureRandom();
 126         }
 127         BigInteger e = publicExponent;
 128         while (true) {
 129             // generate two random primes of size lp/lq
 130             BigInteger p = BigInteger.probablePrime(lp, random);
 131             BigInteger q, n;
 132             do {
 133                 q = BigInteger.probablePrime(lq, random);
 134                 // convention is for p > q
 135                 if (p.compareTo(q) < 0) {
 136                     BigInteger tmp = p;
 137                     p = q;
 138                     q = tmp;
 139                 }
 140                 // modulus n = p * q
 141                 n = p.multiply(q);
 142                 // even with correctly sized p and q, there is a chance that
 143                 // n will be one bit short. re-generate the smaller prime if so
 144             } while (n.bitLength() < keySize);
 145 
 146             // phi = (p - 1) * (q - 1) must be relative prime to e
 147             // otherwise RSA just won't work ;-)
 148             BigInteger p1 = p.subtract(BigInteger.ONE);
 149             BigInteger q1 = q.subtract(BigInteger.ONE);
 150             BigInteger phi = p1.multiply(q1);
 151             // generate new p and q until they work. typically
 152             // the first try will succeed when using F4
 153             if (e.gcd(phi).equals(BigInteger.ONE) == false) {
 154                 continue;
 155             }
 156 
 157             // private exponent d is the inverse of e mod phi
 158             BigInteger d = e.modInverse(phi);
 159 
 160             // 1st prime exponent pe = d mod (p - 1)
 161             BigInteger pe = d.mod(p1);
 162             // 2nd prime exponent qe = d mod (q - 1)
 163             BigInteger qe = d.mod(q1);
 164 
 165             // crt coefficient coeff is the inverse of q mod p
 166             BigInteger coeff = q.modInverse(p);
 167 
 168             try {
 169                 PublicKey publicKey = new RSAPublicKeyImpl(n, e);
 170                 PrivateKey privateKey =
 171                         new RSAPrivateCrtKeyImpl(n, e, d, p, q, pe, qe, coeff);
 172                 return new KeyPair(publicKey, privateKey);
 173             } catch (InvalidKeyException exc) {
 174                 // invalid key exception only thrown for keys < 512 bit,
 175                 // will not happen here
 176                 throw new RuntimeException(exc);
 177             }
 178         }
 179     }
 180 
 181 }