1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /* crc32.c -- compute the CRC-32 of a data stream
  26  * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
  27  * For conditions of distribution and use, see copyright notice in zlib.h
  28  *
  29  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
  30  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
  31  * tables for updating the shift register in one step with three exclusive-ors
  32  * instead of four steps with four exclusive-ors.  This results in about a
  33  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
  34  */
  35 
  36 /* @(#) $Id$ */
  37 
  38 /*
  39   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
  40   protection on the static variables used to control the first-use generation
  41   of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
  42   first call get_crc_table() to initialize the tables before allowing more than
  43   one thread to use crc32().
  44 
  45   DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
  46  */
  47 
  48 #ifdef MAKECRCH
  49 #  include <stdio.h>
  50 #  ifndef DYNAMIC_CRC_TABLE
  51 #    define DYNAMIC_CRC_TABLE
  52 #  endif /* !DYNAMIC_CRC_TABLE */
  53 #endif /* MAKECRCH */
  54 
  55 #include "zutil.h"      /* for STDC and FAR definitions */
  56 
  57 /* Definitions for doing the crc four data bytes at a time. */
  58 #if !defined(NOBYFOUR) && defined(Z_U4)
  59 #  define BYFOUR
  60 #endif
  61 #ifdef BYFOUR
  62    local unsigned long crc32_little OF((unsigned long,
  63                         const unsigned char FAR *, z_size_t));
  64    local unsigned long crc32_big OF((unsigned long,
  65                         const unsigned char FAR *, z_size_t));
  66 #  define TBLS 8
  67 #else
  68 #  define TBLS 1
  69 #endif /* BYFOUR */
  70 
  71 /* Local functions for crc concatenation */
  72 local unsigned long gf2_matrix_times OF((unsigned long *mat,
  73                                          unsigned long vec));
  74 local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
  75 local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
  76 
  77 
  78 #ifdef DYNAMIC_CRC_TABLE
  79 
  80 local volatile int crc_table_empty = 1;
  81 local z_crc_t FAR crc_table[TBLS][256];
  82 local void make_crc_table OF((void));
  83 #ifdef MAKECRCH
  84    local void write_table OF((FILE *, const z_crc_t FAR *));
  85 #endif /* MAKECRCH */
  86 /*
  87   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
  88   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
  89 
  90   Polynomials over GF(2) are represented in binary, one bit per coefficient,
  91   with the lowest powers in the most significant bit.  Then adding polynomials
  92   is just exclusive-or, and multiplying a polynomial by x is a right shift by
  93   one.  If we call the above polynomial p, and represent a byte as the
  94   polynomial q, also with the lowest power in the most significant bit (so the
  95   byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
  96   where a mod b means the remainder after dividing a by b.
  97 
  98   This calculation is done using the shift-register method of multiplying and
  99   taking the remainder.  The register is initialized to zero, and for each
 100   incoming bit, x^32 is added mod p to the register if the bit is a one (where
 101   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
 102   x (which is shifting right by one and adding x^32 mod p if the bit shifted
 103   out is a one).  We start with the highest power (least significant bit) of
 104   q and repeat for all eight bits of q.
 105 
 106   The first table is simply the CRC of all possible eight bit values.  This is
 107   all the information needed to generate CRCs on data a byte at a time for all
 108   combinations of CRC register values and incoming bytes.  The remaining tables
 109   allow for word-at-a-time CRC calculation for both big-endian and little-
 110   endian machines, where a word is four bytes.
 111 */
 112 local void make_crc_table()
 113 {
 114     z_crc_t c;
 115     int n, k;
 116     z_crc_t poly;                       /* polynomial exclusive-or pattern */
 117     /* terms of polynomial defining this crc (except x^32): */
 118     static volatile int first = 1;      /* flag to limit concurrent making */
 119     static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
 120 
 121     /* See if another task is already doing this (not thread-safe, but better
 122        than nothing -- significantly reduces duration of vulnerability in
 123        case the advice about DYNAMIC_CRC_TABLE is ignored) */
 124     if (first) {
 125         first = 0;
 126 
 127         /* make exclusive-or pattern from polynomial (0xedb88320UL) */
 128         poly = 0;
 129         for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
 130             poly |= (z_crc_t)1 << (31 - p[n]);
 131 
 132         /* generate a crc for every 8-bit value */
 133         for (n = 0; n < 256; n++) {
 134             c = (z_crc_t)n;
 135             for (k = 0; k < 8; k++)
 136                 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
 137             crc_table[0][n] = c;
 138         }
 139 
 140 #ifdef BYFOUR
 141         /* generate crc for each value followed by one, two, and three zeros,
 142            and then the byte reversal of those as well as the first table */
 143         for (n = 0; n < 256; n++) {
 144             c = crc_table[0][n];
 145             crc_table[4][n] = ZSWAP32(c);
 146             for (k = 1; k < 4; k++) {
 147                 c = crc_table[0][c & 0xff] ^ (c >> 8);
 148                 crc_table[k][n] = c;
 149                 crc_table[k + 4][n] = ZSWAP32(c);
 150             }
 151         }
 152 #endif /* BYFOUR */
 153 
 154         crc_table_empty = 0;
 155     }
 156     else {      /* not first */
 157         /* wait for the other guy to finish (not efficient, but rare) */
 158         while (crc_table_empty)
 159             ;
 160     }
 161 
 162 #ifdef MAKECRCH
 163     /* write out CRC tables to crc32.h */
 164     {
 165         FILE *out;
 166 
 167         out = fopen("crc32.h", "w");
 168         if (out == NULL) return;
 169         fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
 170         fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
 171         fprintf(out, "local const z_crc_t FAR ");
 172         fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
 173         write_table(out, crc_table[0]);
 174 #  ifdef BYFOUR
 175         fprintf(out, "#ifdef BYFOUR\n");
 176         for (k = 1; k < 8; k++) {
 177             fprintf(out, "  },\n  {\n");
 178             write_table(out, crc_table[k]);
 179         }
 180         fprintf(out, "#endif\n");
 181 #  endif /* BYFOUR */
 182         fprintf(out, "  }\n};\n");
 183         fclose(out);
 184     }
 185 #endif /* MAKECRCH */
 186 }
 187 
 188 #ifdef MAKECRCH
 189 local void write_table(out, table)
 190     FILE *out;
 191     const z_crc_t FAR *table;
 192 {
 193     int n;
 194 
 195     for (n = 0; n < 256; n++)
 196         fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
 197                 (unsigned long)(table[n]),
 198                 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
 199 }
 200 #endif /* MAKECRCH */
 201 
 202 #else /* !DYNAMIC_CRC_TABLE */
 203 /* ========================================================================
 204  * Tables of CRC-32s of all single-byte values, made by make_crc_table().
 205  */
 206 #include "crc32.h"
 207 #endif /* DYNAMIC_CRC_TABLE */
 208 
 209 /* =========================================================================
 210  * This function can be used by asm versions of crc32()
 211  */
 212 const z_crc_t FAR * ZEXPORT get_crc_table()
 213 {
 214 #ifdef DYNAMIC_CRC_TABLE
 215     if (crc_table_empty)
 216         make_crc_table();
 217 #endif /* DYNAMIC_CRC_TABLE */
 218     return (const z_crc_t FAR *)crc_table;
 219 }
 220 
 221 /* ========================================================================= */
 222 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
 223 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
 224 
 225 /* ========================================================================= */
 226 uLong ZEXPORT crc32_z(crc, buf, len)
 227     uLong crc;
 228     const unsigned char FAR *buf;
 229     z_size_t len;
 230 {
 231     if (buf == Z_NULL) return 0UL;
 232 
 233 #ifdef DYNAMIC_CRC_TABLE
 234     if (crc_table_empty)
 235         make_crc_table();
 236 #endif /* DYNAMIC_CRC_TABLE */
 237 
 238 #ifdef BYFOUR
 239     if (sizeof(void *) == sizeof(ptrdiff_t)) {
 240         z_crc_t endian;
 241 
 242         endian = 1;
 243         if (*((unsigned char *)(&endian)))
 244             return (uLong)crc32_little(crc, buf, len);
 245         else
 246             return (uLong)crc32_big(crc, buf, len);
 247     }
 248 #endif /* BYFOUR */
 249     crc = crc ^ 0xffffffffUL;
 250     while (len >= 8) {
 251         DO8;
 252         len -= 8;
 253     }
 254     if (len) do {
 255         DO1;
 256     } while (--len);
 257     return crc ^ 0xffffffffUL;
 258 }
 259 
 260 /* ========================================================================= */
 261 uLong ZEXPORT crc32(crc, buf, len)
 262     uLong crc;
 263     const unsigned char FAR *buf;
 264     uInt len;
 265 {
 266     return crc32_z(crc, buf, len);
 267 }
 268 
 269 #ifdef BYFOUR
 270 
 271 /*
 272    This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
 273    integer pointer type. This violates the strict aliasing rule, where a
 274    compiler can assume, for optimization purposes, that two pointers to
 275    fundamentally different types won't ever point to the same memory. This can
 276    manifest as a problem only if one of the pointers is written to. This code
 277    only reads from those pointers. So long as this code remains isolated in
 278    this compilation unit, there won't be a problem. For this reason, this code
 279    should not be copied and pasted into a compilation unit in which other code
 280    writes to the buffer that is passed to these routines.
 281  */
 282 
 283 /* ========================================================================= */
 284 #define DOLIT4 c ^= *buf4++; \
 285         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
 286             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
 287 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
 288 
 289 /* ========================================================================= */
 290 local unsigned long crc32_little(crc, buf, len)
 291     unsigned long crc;
 292     const unsigned char FAR *buf;
 293     z_size_t len;
 294 {
 295     register z_crc_t c;
 296     register const z_crc_t FAR *buf4;
 297 
 298     c = (z_crc_t)crc;
 299     c = ~c;
 300     while (len && ((ptrdiff_t)buf & 3)) {
 301         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
 302         len--;
 303     }
 304 
 305     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
 306     while (len >= 32) {
 307         DOLIT32;
 308         len -= 32;
 309     }
 310     while (len >= 4) {
 311         DOLIT4;
 312         len -= 4;
 313     }
 314     buf = (const unsigned char FAR *)buf4;
 315 
 316     if (len) do {
 317         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
 318     } while (--len);
 319     c = ~c;
 320     return (unsigned long)c;
 321 }
 322 
 323 /* ========================================================================= */
 324 #define DOBIG4 c ^= *buf4++; \
 325         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
 326             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
 327 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
 328 
 329 /* ========================================================================= */
 330 local unsigned long crc32_big(crc, buf, len)
 331     unsigned long crc;
 332     const unsigned char FAR *buf;
 333     z_size_t len;
 334 {
 335     register z_crc_t c;
 336     register const z_crc_t FAR *buf4;
 337 
 338     c = ZSWAP32((z_crc_t)crc);
 339     c = ~c;
 340     while (len && ((ptrdiff_t)buf & 3)) {
 341         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
 342         len--;
 343     }
 344 
 345     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
 346     while (len >= 32) {
 347         DOBIG32;
 348         len -= 32;
 349     }
 350     while (len >= 4) {
 351         DOBIG4;
 352         len -= 4;
 353     }
 354     buf = (const unsigned char FAR *)buf4;
 355 
 356     if (len) do {
 357         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
 358     } while (--len);
 359     c = ~c;
 360     return (unsigned long)(ZSWAP32(c));
 361 }
 362 
 363 #endif /* BYFOUR */
 364 
 365 #define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
 366 
 367 /* ========================================================================= */
 368 local unsigned long gf2_matrix_times(mat, vec)
 369     unsigned long *mat;
 370     unsigned long vec;
 371 {
 372     unsigned long sum;
 373 
 374     sum = 0;
 375     while (vec) {
 376         if (vec & 1)
 377             sum ^= *mat;
 378         vec >>= 1;
 379         mat++;
 380     }
 381     return sum;
 382 }
 383 
 384 /* ========================================================================= */
 385 local void gf2_matrix_square(square, mat)
 386     unsigned long *square;
 387     unsigned long *mat;
 388 {
 389     int n;
 390 
 391     for (n = 0; n < GF2_DIM; n++)
 392         square[n] = gf2_matrix_times(mat, mat[n]);
 393 }
 394 
 395 /* ========================================================================= */
 396 local uLong crc32_combine_(crc1, crc2, len2)
 397     uLong crc1;
 398     uLong crc2;
 399     z_off64_t len2;
 400 {
 401     int n;
 402     unsigned long row;
 403     unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
 404     unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
 405 
 406     /* degenerate case (also disallow negative lengths) */
 407     if (len2 <= 0)
 408         return crc1;
 409 
 410     /* put operator for one zero bit in odd */
 411     odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
 412     row = 1;
 413     for (n = 1; n < GF2_DIM; n++) {
 414         odd[n] = row;
 415         row <<= 1;
 416     }
 417 
 418     /* put operator for two zero bits in even */
 419     gf2_matrix_square(even, odd);
 420 
 421     /* put operator for four zero bits in odd */
 422     gf2_matrix_square(odd, even);
 423 
 424     /* apply len2 zeros to crc1 (first square will put the operator for one
 425        zero byte, eight zero bits, in even) */
 426     do {
 427         /* apply zeros operator for this bit of len2 */
 428         gf2_matrix_square(even, odd);
 429         if (len2 & 1)
 430             crc1 = gf2_matrix_times(even, crc1);
 431         len2 >>= 1;
 432 
 433         /* if no more bits set, then done */
 434         if (len2 == 0)
 435             break;
 436 
 437         /* another iteration of the loop with odd and even swapped */
 438         gf2_matrix_square(odd, even);
 439         if (len2 & 1)
 440             crc1 = gf2_matrix_times(odd, crc1);
 441         len2 >>= 1;
 442 
 443         /* if no more bits set, then done */
 444     } while (len2 != 0);
 445 
 446     /* return combined crc */
 447     crc1 ^= crc2;
 448     return crc1;
 449 }
 450 
 451 /* ========================================================================= */
 452 uLong ZEXPORT crc32_combine(crc1, crc2, len2)
 453     uLong crc1;
 454     uLong crc2;
 455     z_off_t len2;
 456 {
 457     return crc32_combine_(crc1, crc2, len2);
 458 }
 459 
 460 uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
 461     uLong crc1;
 462     uLong crc2;
 463     z_off64_t len2;
 464 {
 465     return crc32_combine_(crc1, crc2, len2);
 466 }