1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 class BiasedLockingCounters;
  26 
  27 // <sys/trap.h> promises that the system will not use traps 16-31
  28 #define ST_RESERVED_FOR_USER_0 0x10
  29 
  30 /* Written: David Ungar 4/19/97 */
  31 
  32 // Contains all the definitions needed for sparc assembly code generation.
  33 
  34 // Register aliases for parts of the system:
  35 
  36 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
  37 // across context switches in V8+ ABI.  Of course, there are no 64 bit regs
  38 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
  39 
  40 // g2-g4 are scratch registers called "application globals".  Their
  41 // meaning is reserved to the "compilation system"--which means us!
  42 // They are are not supposed to be touched by ordinary C code, although
  43 // highly-optimized C code might steal them for temps.  They are safe
  44 // across thread switches, and the ABI requires that they be safe
  45 // across function calls.
  46 //
  47 // g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
  48 // across func calls, and V8+ also allows g5 to be clobbered across
  49 // func calls.  Also, g1 and g5 can get touched while doing shared
  50 // library loading.
  51 //
  52 // We must not touch g7 (it is the thread-self register) and g6 is
  53 // reserved for certain tools.  g0, of course, is always zero.
  54 //
  55 // (Sources:  SunSoft Compilers Group, thread library engineers.)
  56 
  57 // %%%% The interpreter should be revisited to reduce global scratch regs.
  58 
  59 // This global always holds the current JavaThread pointer:
  60 
  61 REGISTER_DECLARATION(Register, G2_thread , G2);
  62 REGISTER_DECLARATION(Register, G6_heapbase , G6);
  63 
  64 // The following globals are part of the Java calling convention:
  65 
  66 REGISTER_DECLARATION(Register, G5_method             , G5);
  67 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
  68 REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
  69 
  70 // The following globals are used for the new C1 & interpreter calling convention:
  71 REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
  72 
  73 // This local is used to preserve G2_thread in the interpreter and in stubs:
  74 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
  75 
  76 // These globals are used as scratch registers in the interpreter:
  77 
  78 REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
  79 REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
  80 REGISTER_DECLARATION(Register, G3_scratch    , G3);
  81 REGISTER_DECLARATION(Register, G4_scratch    , G4);
  82 
  83 // These globals are used as short-lived scratch registers in the compiler:
  84 
  85 REGISTER_DECLARATION(Register, Gtemp  , G5);
  86 
  87 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
  88 // because a single patchable "set" instruction (NativeMovConstReg,
  89 // or NativeMovConstPatching for compiler1) instruction
  90 // serves to set up either quantity, depending on whether the compiled
  91 // call site is an inline cache or is megamorphic.  See the function
  92 // CompiledIC::set_to_megamorphic.
  93 //
  94 // On the other hand, G5_inline_cache_klass must differ from G5_method,
  95 // because both registers are needed for an inline cache that calls
  96 // an interpreted method.
  97 //
  98 // Note that G5_method is only the method-self for the interpreter,
  99 // and is logically unrelated to G5_megamorphic_method.
 100 //
 101 // Invariants on G2_thread (the JavaThread pointer):
 102 //  - it should not be used for any other purpose anywhere
 103 //  - it must be re-initialized by StubRoutines::call_stub()
 104 //  - it must be preserved around every use of call_VM
 105 
 106 // We can consider using g2/g3/g4 to cache more values than the
 107 // JavaThread, such as the card-marking base or perhaps pointers into
 108 // Eden.  It's something of a waste to use them as scratch temporaries,
 109 // since they are not supposed to be volatile.  (Of course, if we find
 110 // that Java doesn't benefit from application globals, then we can just
 111 // use them as ordinary temporaries.)
 112 //
 113 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
 114 // it makes sense to use them routinely for procedure linkage,
 115 // whenever the On registers are not applicable.  Examples:  G5_method,
 116 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
 117 // stubs.  This means that compiler stubs, etc., should be kept to a
 118 // maximum of two or three G-register arguments.
 119 
 120 
 121 // stub frames
 122 
 123 REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
 124 
 125 // Interpreter frames
 126 
 127 #ifdef CC_INTERP
 128 REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
 129 REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
 130 REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
 131 REGISTER_DECLARATION(Register, L2_scratch       , L2);
 132 REGISTER_DECLARATION(Register, L3_scratch       , L3);
 133 REGISTER_DECLARATION(Register, L4_scratch       , L4);
 134 REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
 135 REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
 136 REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
 137 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
 138 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
 139                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
 140                                                        // is added and removed as needed in the frame code.
 141 // Interface to signature handler
 142 REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
 143 REGISTER_DECLARATION(Register, Lmethod          , L6); // methodOop when calling signature handler
 144 
 145 #else
 146 REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
 147 REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
 148 REGISTER_DECLARATION(Register, Lmethod          , L2);
 149 REGISTER_DECLARATION(Register, Llocals          , L3);
 150 REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
 151                                                        // must match Llocals in asm interpreter
 152 REGISTER_DECLARATION(Register, Lmonitors        , L4);
 153 REGISTER_DECLARATION(Register, Lbyte_code       , L5);
 154 // When calling out from the interpreter we record SP so that we can remove any extra stack
 155 // space allocated during adapter transitions. This register is only live from the point
 156 // of the call until we return.
 157 REGISTER_DECLARATION(Register, Llast_SP         , L5);
 158 REGISTER_DECLARATION(Register, Lscratch         , L5);
 159 REGISTER_DECLARATION(Register, Lscratch2        , L6);
 160 REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
 161 
 162 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
 163 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
 164                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
 165                                                        // is added and removed as needed in the frame code.
 166 REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
 167 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
 168 REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
 169 #endif /* CC_INTERP */
 170 
 171 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
 172 //       the interpreter code. If Lscratch2 needs to be used for some
 173 //       purpose than LcpoolCache should be restore after that for
 174 //       the interpreter to work right
 175 // (These assignments must be compatible with L7_thread_cache; see above.)
 176 
 177 // Since Lbcp points into the middle of the method object,
 178 // it is temporarily converted into a "bcx" during GC.
 179 
 180 // Exception processing
 181 // These registers are passed into exception handlers.
 182 // All exception handlers require the exception object being thrown.
 183 // In addition, an nmethod's exception handler must be passed
 184 // the address of the call site within the nmethod, to allow
 185 // proper selection of the applicable catch block.
 186 // (Interpreter frames use their own bcp() for this purpose.)
 187 //
 188 // The Oissuing_pc value is not always needed.  When jumping to a
 189 // handler that is known to be interpreted, the Oissuing_pc value can be
 190 // omitted.  An actual catch block in compiled code receives (from its
 191 // nmethod's exception handler) the thrown exception in the Oexception,
 192 // but it doesn't need the Oissuing_pc.
 193 //
 194 // If an exception handler (either interpreted or compiled)
 195 // discovers there is no applicable catch block, it updates
 196 // the Oissuing_pc to the continuation PC of its own caller,
 197 // pops back to that caller's stack frame, and executes that
 198 // caller's exception handler.  Obviously, this process will
 199 // iterate until the control stack is popped back to a method
 200 // containing an applicable catch block.  A key invariant is
 201 // that the Oissuing_pc value is always a value local to
 202 // the method whose exception handler is currently executing.
 203 //
 204 // Note:  The issuing PC value is __not__ a raw return address (I7 value).
 205 // It is a "return pc", the address __following__ the call.
 206 // Raw return addresses are converted to issuing PCs by frame::pc(),
 207 // or by stubs.  Issuing PCs can be used directly with PC range tables.
 208 //
 209 REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
 210 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
 211 
 212 
 213 // These must occur after the declarations above
 214 #ifndef DONT_USE_REGISTER_DEFINES
 215 
 216 #define Gthread             AS_REGISTER(Register, Gthread)
 217 #define Gmethod             AS_REGISTER(Register, Gmethod)
 218 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
 219 #define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
 220 #define Gargs               AS_REGISTER(Register, Gargs)
 221 #define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
 222 #define Gframe_size         AS_REGISTER(Register, Gframe_size)
 223 #define Gtemp               AS_REGISTER(Register, Gtemp)
 224 
 225 #ifdef CC_INTERP
 226 #define Lstate              AS_REGISTER(Register, Lstate)
 227 #define Lesp                AS_REGISTER(Register, Lesp)
 228 #define L1_scratch          AS_REGISTER(Register, L1_scratch)
 229 #define Lmirror             AS_REGISTER(Register, Lmirror)
 230 #define L2_scratch          AS_REGISTER(Register, L2_scratch)
 231 #define L3_scratch          AS_REGISTER(Register, L3_scratch)
 232 #define L4_scratch          AS_REGISTER(Register, L4_scratch)
 233 #define Lscratch            AS_REGISTER(Register, Lscratch)
 234 #define Lscratch2           AS_REGISTER(Register, Lscratch2)
 235 #define L7_scratch          AS_REGISTER(Register, L7_scratch)
 236 #define Ostate              AS_REGISTER(Register, Ostate)
 237 #else
 238 #define Lesp                AS_REGISTER(Register, Lesp)
 239 #define Lbcp                AS_REGISTER(Register, Lbcp)
 240 #define Lmethod             AS_REGISTER(Register, Lmethod)
 241 #define Llocals             AS_REGISTER(Register, Llocals)
 242 #define Lmonitors           AS_REGISTER(Register, Lmonitors)
 243 #define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
 244 #define Lscratch            AS_REGISTER(Register, Lscratch)
 245 #define Lscratch2           AS_REGISTER(Register, Lscratch2)
 246 #define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
 247 #endif /* ! CC_INTERP */
 248 
 249 #define Lentry_args         AS_REGISTER(Register, Lentry_args)
 250 #define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
 251 #define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
 252 #define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
 253 #define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
 254 #define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
 255 
 256 #define Oexception          AS_REGISTER(Register, Oexception)
 257 #define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
 258 
 259 
 260 #endif
 261 
 262 // Address is an abstraction used to represent a memory location.
 263 //
 264 // Note: A register location is represented via a Register, not
 265 //       via an address for efficiency & simplicity reasons.
 266 
 267 class Address VALUE_OBJ_CLASS_SPEC {
 268  private:
 269   Register              _base;
 270 #ifdef _LP64
 271   int                   _hi32;          // bits 63::32
 272   int                   _low32;         // bits 31::0
 273 #endif
 274   int                   _hi;
 275   int                   _disp;
 276   RelocationHolder      _rspec;
 277 
 278   RelocationHolder rspec_from_rtype(relocInfo::relocType rt, address a = NULL) {
 279     switch (rt) {
 280     case relocInfo::external_word_type:
 281       return external_word_Relocation::spec(a);
 282     case relocInfo::internal_word_type:
 283       return internal_word_Relocation::spec(a);
 284 #ifdef _LP64
 285     case relocInfo::opt_virtual_call_type:
 286       return opt_virtual_call_Relocation::spec();
 287     case relocInfo::static_call_type:
 288       return static_call_Relocation::spec();
 289     case relocInfo::runtime_call_type:
 290       return runtime_call_Relocation::spec();
 291 #endif
 292     case relocInfo::none:
 293       return RelocationHolder();
 294     default:
 295       ShouldNotReachHere();
 296       return RelocationHolder();
 297     }
 298   }
 299 
 300  public:
 301   Address(Register b, address a, relocInfo::relocType rt = relocInfo::none)
 302     : _rspec(rspec_from_rtype(rt, a))
 303   {
 304     _base  = b;
 305 #ifdef _LP64
 306     _hi32  = (intptr_t)a >> 32;    // top 32 bits in 64 bit word
 307     _low32 = (intptr_t)a & ~0;     // low 32 bits in 64 bit word
 308 #endif
 309     _hi    = (intptr_t)a & ~0x3ff; // top    22 bits in low word
 310     _disp  = (intptr_t)a &  0x3ff; // bottom 10 bits
 311   }
 312 
 313   Address(Register b, address a, RelocationHolder const& rspec)
 314     : _rspec(rspec)
 315   {
 316     _base  = b;
 317 #ifdef _LP64
 318     _hi32  = (intptr_t)a >> 32;    // top 32 bits in 64 bit word
 319     _low32 = (intptr_t)a & ~0;     // low 32 bits in 64 bit word
 320 #endif
 321     _hi    = (intptr_t)a & ~0x3ff; // top    22 bits
 322     _disp  = (intptr_t)a &  0x3ff; // bottom 10 bits
 323   }
 324 
 325   Address(Register b, intptr_t h, intptr_t d, RelocationHolder const& rspec = RelocationHolder())
 326     : _rspec(rspec)
 327   {
 328     _base  = b;
 329 #ifdef _LP64
 330 // [RGV] Put in Assert to force me to check usage of this constructor
 331      assert( h == 0, "Check usage of this constructor" );
 332     _hi32  = h;
 333     _low32 = d;
 334     _hi    = h;
 335     _disp  = d;
 336 #else
 337     _hi    = h;
 338     _disp  = d;
 339 #endif
 340   }
 341 
 342   Address()
 343     : _rspec(RelocationHolder())
 344   {
 345     _base  = G0;
 346 #ifdef _LP64
 347     _hi32  = 0;
 348     _low32 = 0;
 349 #endif
 350     _hi    = 0;
 351     _disp  = 0;
 352   }
 353 
 354   // fancier constructors
 355 
 356   enum addr_type {
 357     extra_in_argument,  // in the In registers
 358     extra_out_argument  // in the Outs
 359   };
 360 
 361   Address( addr_type, int );
 362 
 363   // accessors
 364 
 365   Register               base() const { return _base; }
 366 #ifdef _LP64
 367   int                   hi32()  const { return _hi32; }
 368   int                   low32() const { return _low32; }
 369 #endif
 370   int                      hi() const { return _hi;  }
 371   int                    disp() const { return _disp; }
 372 #ifdef _LP64
 373   intptr_t              value() const { return ((intptr_t)_hi32 << 32) |
 374                                                 (intptr_t)(uint32_t)_low32; }
 375 #else
 376   int                   value() const { return _hi | _disp; }
 377 #endif
 378   const relocInfo::relocType  rtype() { return _rspec.type(); }
 379   const RelocationHolder&     rspec() { return _rspec; }
 380 
 381   RelocationHolder      rspec(int offset) const {
 382     return offset == 0 ? _rspec : _rspec.plus(offset);
 383   }
 384 
 385   inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
 386 
 387   Address split_disp() const {            // deal with disp overflow
 388     Address a = (*this);
 389     int hi_disp = _disp & ~0x3ff;
 390     if (hi_disp != 0) {
 391       a._disp -= hi_disp;
 392       a._hi   += hi_disp;
 393     }
 394     return a;
 395   }
 396 
 397   Address after_save() const {
 398     Address a = (*this);
 399     a._base = a._base->after_save();
 400     return a;
 401   }
 402 
 403   Address after_restore() const {
 404     Address a = (*this);
 405     a._base = a._base->after_restore();
 406     return a;
 407   }
 408 
 409   friend class Assembler;
 410 };
 411 
 412 
 413 inline Address RegisterImpl::address_in_saved_window() const {
 414    return (Address(SP, 0, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
 415 }
 416 
 417 
 418 
 419 // Argument is an abstraction used to represent an outgoing
 420 // actual argument or an incoming formal parameter, whether
 421 // it resides in memory or in a register, in a manner consistent
 422 // with the SPARC Application Binary Interface, or ABI.  This is
 423 // often referred to as the native or C calling convention.
 424 
 425 class Argument VALUE_OBJ_CLASS_SPEC {
 426  private:
 427   int _number;
 428   bool _is_in;
 429 
 430  public:
 431 #ifdef _LP64
 432   enum {
 433     n_register_parameters = 6,          // only 6 registers may contain integer parameters
 434     n_float_register_parameters = 16    // Can have up to 16 floating registers
 435   };
 436 #else
 437   enum {
 438     n_register_parameters = 6           // only 6 registers may contain integer parameters
 439   };
 440 #endif
 441 
 442   // creation
 443   Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
 444 
 445   int  number() const  { return _number;  }
 446   bool is_in()  const  { return _is_in;   }
 447   bool is_out() const  { return !is_in(); }
 448 
 449   Argument successor() const  { return Argument(number() + 1, is_in()); }
 450   Argument as_in()     const  { return Argument(number(), true ); }
 451   Argument as_out()    const  { return Argument(number(), false); }
 452 
 453   // locating register-based arguments:
 454   bool is_register() const { return _number < n_register_parameters; }
 455 
 456 #ifdef _LP64
 457   // locating Floating Point register-based arguments:
 458   bool is_float_register() const { return _number < n_float_register_parameters; }
 459 
 460   FloatRegister as_float_register() const {
 461     assert(is_float_register(), "must be a register argument");
 462     return as_FloatRegister(( number() *2 ) + 1);
 463   }
 464   FloatRegister as_double_register() const {
 465     assert(is_float_register(), "must be a register argument");
 466     return as_FloatRegister(( number() *2 ));
 467   }
 468 #endif
 469 
 470   Register as_register() const {
 471     assert(is_register(), "must be a register argument");
 472     return is_in() ? as_iRegister(number()) : as_oRegister(number());
 473   }
 474 
 475   // locating memory-based arguments
 476   Address as_address() const {
 477     assert(!is_register(), "must be a memory argument");
 478     return address_in_frame();
 479   }
 480 
 481   // When applied to a register-based argument, give the corresponding address
 482   // into the 6-word area "into which callee may store register arguments"
 483   // (This is a different place than the corresponding register-save area location.)
 484   Address address_in_frame() const {
 485     return Address( is_in()   ? Address::extra_in_argument
 486                               : Address::extra_out_argument,
 487                     _number );
 488   }
 489 
 490   // debugging
 491   const char* name() const;
 492 
 493   friend class Assembler;
 494 };
 495 
 496 
 497 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
 498 // level; i.e., what you write
 499 // is what you get. The Assembler is generating code into a CodeBuffer.
 500 
 501 class Assembler : public AbstractAssembler  {
 502  protected:
 503 
 504   static void print_instruction(int inst);
 505   static int  patched_branch(int dest_pos, int inst, int inst_pos);
 506   static int  branch_destination(int inst, int pos);
 507 
 508 
 509   friend class AbstractAssembler;
 510 
 511   // code patchers need various routines like inv_wdisp()
 512   friend class NativeInstruction;
 513   friend class NativeGeneralJump;
 514   friend class Relocation;
 515   friend class Label;
 516 
 517  public:
 518   // op carries format info; see page 62 & 267
 519 
 520   enum ops {
 521     call_op   = 1, // fmt 1
 522     branch_op = 0, // also sethi (fmt2)
 523     arith_op  = 2, // fmt 3, arith & misc
 524     ldst_op   = 3  // fmt 3, load/store
 525   };
 526 
 527   enum op2s {
 528     bpr_op2   = 3,
 529     fb_op2    = 6,
 530     fbp_op2   = 5,
 531     br_op2    = 2,
 532     bp_op2    = 1,
 533     cb_op2    = 7, // V8
 534     sethi_op2 = 4
 535   };
 536 
 537   enum op3s {
 538     // selected op3s
 539     add_op3      = 0x00,
 540     and_op3      = 0x01,
 541     or_op3       = 0x02,
 542     xor_op3      = 0x03,
 543     sub_op3      = 0x04,
 544     andn_op3     = 0x05,
 545     orn_op3      = 0x06,
 546     xnor_op3     = 0x07,
 547     addc_op3     = 0x08,
 548     mulx_op3     = 0x09,
 549     umul_op3     = 0x0a,
 550     smul_op3     = 0x0b,
 551     subc_op3     = 0x0c,
 552     udivx_op3    = 0x0d,
 553     udiv_op3     = 0x0e,
 554     sdiv_op3     = 0x0f,
 555 
 556     addcc_op3    = 0x10,
 557     andcc_op3    = 0x11,
 558     orcc_op3     = 0x12,
 559     xorcc_op3    = 0x13,
 560     subcc_op3    = 0x14,
 561     andncc_op3   = 0x15,
 562     orncc_op3    = 0x16,
 563     xnorcc_op3   = 0x17,
 564     addccc_op3   = 0x18,
 565     umulcc_op3   = 0x1a,
 566     smulcc_op3   = 0x1b,
 567     subccc_op3   = 0x1c,
 568     udivcc_op3   = 0x1e,
 569     sdivcc_op3   = 0x1f,
 570 
 571     taddcc_op3   = 0x20,
 572     tsubcc_op3   = 0x21,
 573     taddcctv_op3 = 0x22,
 574     tsubcctv_op3 = 0x23,
 575     mulscc_op3   = 0x24,
 576     sll_op3      = 0x25,
 577     sllx_op3     = 0x25,
 578     srl_op3      = 0x26,
 579     srlx_op3     = 0x26,
 580     sra_op3      = 0x27,
 581     srax_op3     = 0x27,
 582     rdreg_op3    = 0x28,
 583     membar_op3   = 0x28,
 584 
 585     flushw_op3   = 0x2b,
 586     movcc_op3    = 0x2c,
 587     sdivx_op3    = 0x2d,
 588     popc_op3     = 0x2e,
 589     movr_op3     = 0x2f,
 590 
 591     sir_op3      = 0x30,
 592     wrreg_op3    = 0x30,
 593     saved_op3    = 0x31,
 594 
 595     fpop1_op3    = 0x34,
 596     fpop2_op3    = 0x35,
 597     impdep1_op3  = 0x36,
 598     impdep2_op3  = 0x37,
 599     jmpl_op3     = 0x38,
 600     rett_op3     = 0x39,
 601     trap_op3     = 0x3a,
 602     flush_op3    = 0x3b,
 603     save_op3     = 0x3c,
 604     restore_op3  = 0x3d,
 605     done_op3     = 0x3e,
 606     retry_op3    = 0x3e,
 607 
 608     lduw_op3     = 0x00,
 609     ldub_op3     = 0x01,
 610     lduh_op3     = 0x02,
 611     ldd_op3      = 0x03,
 612     stw_op3      = 0x04,
 613     stb_op3      = 0x05,
 614     sth_op3      = 0x06,
 615     std_op3      = 0x07,
 616     ldsw_op3     = 0x08,
 617     ldsb_op3     = 0x09,
 618     ldsh_op3     = 0x0a,
 619     ldx_op3      = 0x0b,
 620 
 621     ldstub_op3   = 0x0d,
 622     stx_op3      = 0x0e,
 623     swap_op3     = 0x0f,
 624 
 625     lduwa_op3    = 0x10,
 626     ldxa_op3     = 0x1b,
 627 
 628     stwa_op3     = 0x14,
 629     stxa_op3     = 0x1e,
 630 
 631     ldf_op3      = 0x20,
 632     ldfsr_op3    = 0x21,
 633     ldqf_op3     = 0x22,
 634     lddf_op3     = 0x23,
 635     stf_op3      = 0x24,
 636     stfsr_op3    = 0x25,
 637     stqf_op3     = 0x26,
 638     stdf_op3     = 0x27,
 639 
 640     prefetch_op3 = 0x2d,
 641 
 642 
 643     ldc_op3      = 0x30,
 644     ldcsr_op3    = 0x31,
 645     lddc_op3     = 0x33,
 646     stc_op3      = 0x34,
 647     stcsr_op3    = 0x35,
 648     stdcq_op3    = 0x36,
 649     stdc_op3     = 0x37,
 650 
 651     casa_op3     = 0x3c,
 652     casxa_op3    = 0x3e,
 653 
 654     alt_bit_op3  = 0x10,
 655      cc_bit_op3  = 0x10
 656   };
 657 
 658   enum opfs {
 659     // selected opfs
 660     fmovs_opf   = 0x01,
 661     fmovd_opf   = 0x02,
 662 
 663     fnegs_opf   = 0x05,
 664     fnegd_opf   = 0x06,
 665 
 666     fadds_opf   = 0x41,
 667     faddd_opf   = 0x42,
 668     fsubs_opf   = 0x45,
 669     fsubd_opf   = 0x46,
 670 
 671     fmuls_opf   = 0x49,
 672     fmuld_opf   = 0x4a,
 673     fdivs_opf   = 0x4d,
 674     fdivd_opf   = 0x4e,
 675 
 676     fcmps_opf   = 0x51,
 677     fcmpd_opf   = 0x52,
 678 
 679     fstox_opf   = 0x81,
 680     fdtox_opf   = 0x82,
 681     fxtos_opf   = 0x84,
 682     fxtod_opf   = 0x88,
 683     fitos_opf   = 0xc4,
 684     fdtos_opf   = 0xc6,
 685     fitod_opf   = 0xc8,
 686     fstod_opf   = 0xc9,
 687     fstoi_opf   = 0xd1,
 688     fdtoi_opf   = 0xd2
 689   };
 690 
 691   enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7  };
 692 
 693   enum Condition {
 694      // for FBfcc & FBPfcc instruction
 695     f_never                     = 0,
 696     f_notEqual                  = 1,
 697     f_notZero                   = 1,
 698     f_lessOrGreater             = 2,
 699     f_unorderedOrLess           = 3,
 700     f_less                      = 4,
 701     f_unorderedOrGreater        = 5,
 702     f_greater                   = 6,
 703     f_unordered                 = 7,
 704     f_always                    = 8,
 705     f_equal                     = 9,
 706     f_zero                      = 9,
 707     f_unorderedOrEqual          = 10,
 708     f_greaterOrEqual            = 11,
 709     f_unorderedOrGreaterOrEqual = 12,
 710     f_lessOrEqual               = 13,
 711     f_unorderedOrLessOrEqual    = 14,
 712     f_ordered                   = 15,
 713 
 714     // V8 coproc, pp 123 v8 manual
 715 
 716     cp_always  = 8,
 717     cp_never   = 0,
 718     cp_3       = 7,
 719     cp_2       = 6,
 720     cp_2or3    = 5,
 721     cp_1       = 4,
 722     cp_1or3    = 3,
 723     cp_1or2    = 2,
 724     cp_1or2or3 = 1,
 725     cp_0       = 9,
 726     cp_0or3    = 10,
 727     cp_0or2    = 11,
 728     cp_0or2or3 = 12,
 729     cp_0or1    = 13,
 730     cp_0or1or3 = 14,
 731     cp_0or1or2 = 15,
 732 
 733 
 734     // for integers
 735 
 736     never                 =  0,
 737     equal                 =  1,
 738     zero                  =  1,
 739     lessEqual             =  2,
 740     less                  =  3,
 741     lessEqualUnsigned     =  4,
 742     lessUnsigned          =  5,
 743     carrySet              =  5,
 744     negative              =  6,
 745     overflowSet           =  7,
 746     always                =  8,
 747     notEqual              =  9,
 748     notZero               =  9,
 749     greater               =  10,
 750     greaterEqual          =  11,
 751     greaterUnsigned       =  12,
 752     greaterEqualUnsigned  =  13,
 753     carryClear            =  13,
 754     positive              =  14,
 755     overflowClear         =  15
 756   };
 757 
 758   enum CC {
 759     icc  = 0,  xcc  = 2,
 760     // ptr_cc is the correct condition code for a pointer or intptr_t:
 761     ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
 762     fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
 763   };
 764 
 765   enum PrefetchFcn {
 766     severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
 767   };
 768 
 769  public:
 770   // Helper functions for groups of instructions
 771 
 772   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
 773 
 774   enum Membar_mask_bits { // page 184, v9
 775     StoreStore = 1 << 3,
 776     LoadStore  = 1 << 2,
 777     StoreLoad  = 1 << 1,
 778     LoadLoad   = 1 << 0,
 779 
 780     Sync       = 1 << 6,
 781     MemIssue   = 1 << 5,
 782     Lookaside  = 1 << 4
 783   };
 784 
 785   // test if x is within signed immediate range for nbits
 786   static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 )  <= x   &&   x  <  ( 1 << nbits-1 ); }
 787 
 788   // test if -4096 <= x <= 4095
 789   static bool is_simm13(int x) { return is_simm(x, 13); }
 790 
 791   enum ASIs { // page 72, v9
 792     ASI_PRIMARY        = 0x80,
 793     ASI_PRIMARY_LITTLE = 0x88
 794     // add more from book as needed
 795   };
 796 
 797  protected:
 798   // helpers
 799 
 800   // x is supposed to fit in a field "nbits" wide
 801   // and be sign-extended. Check the range.
 802 
 803   static void assert_signed_range(intptr_t x, int nbits) {
 804     assert( nbits == 32
 805         ||  -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
 806       "value out of range");
 807   }
 808 
 809   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
 810     assert( (x & 3) == 0, "not word aligned");
 811     assert_signed_range(x, nbits + 2);
 812   }
 813 
 814   static void assert_unsigned_const(int x, int nbits) {
 815     assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
 816   }
 817 
 818   // fields: note bits numbered from LSB = 0,
 819   //  fields known by inclusive bit range
 820 
 821   static int fmask(juint hi_bit, juint lo_bit) {
 822     assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
 823     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
 824   }
 825 
 826   // inverse of u_field
 827 
 828   static int inv_u_field(int x, int hi_bit, int lo_bit) {
 829     juint r = juint(x) >> lo_bit;
 830     r &= fmask( hi_bit, lo_bit);
 831     return int(r);
 832   }
 833 
 834 
 835   // signed version: extract from field and sign-extend
 836 
 837   static int inv_s_field(int x, int hi_bit, int lo_bit) {
 838     int sign_shift = 31 - hi_bit;
 839     return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
 840   }
 841 
 842   // given a field that ranges from hi_bit to lo_bit (inclusive,
 843   // LSB = 0), and an unsigned value for the field,
 844   // shift it into the field
 845 
 846 #ifdef ASSERT
 847   static int u_field(int x, int hi_bit, int lo_bit) {
 848     assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
 849             "value out of range");
 850     int r = x << lo_bit;
 851     assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
 852     return r;
 853   }
 854 #else
 855   // make sure this is inlined as it will reduce code size significantly
 856   #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
 857 #endif
 858 
 859   static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
 860   static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
 861   static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
 862   static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
 863 
 864   static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
 865 
 866   static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
 867   static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
 868   static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
 869 
 870   static int op(       int         x)  { return  u_field(x,             31, 30); }
 871   static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
 872   static int fcn(      int         x)  { return  u_field(x,             29, 25); }
 873   static int op3(      int         x)  { return  u_field(x,             24, 19); }
 874   static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
 875   static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
 876   static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
 877   static int cond(     int         x)  { return  u_field(x,             28, 25); }
 878   static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
 879   static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
 880   static int op2(      int         x)  { return  u_field(x,             24, 22); }
 881   static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
 882   static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
 883   static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
 884   static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
 885   static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
 886   static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
 887   static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
 888   static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
 889   static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
 890   static int opf(      int         x)  { return  u_field(x,             13,  5); }
 891 
 892   static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
 893   static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
 894 
 895   static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
 896   static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
 897   static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
 898 
 899   // some float instructions use this encoding on the op3 field
 900   static int alt_op3(int op, FloatRegisterImpl::Width w) {
 901     int r;
 902     switch(w) {
 903      case FloatRegisterImpl::S: r = op + 0;  break;
 904      case FloatRegisterImpl::D: r = op + 3;  break;
 905      case FloatRegisterImpl::Q: r = op + 2;  break;
 906      default: ShouldNotReachHere(); break;
 907     }
 908     return op3(r);
 909   }
 910 
 911 
 912   // compute inverse of simm
 913   static int inv_simm(int x, int nbits) {
 914     return (int)(x << (32 - nbits)) >> (32 - nbits);
 915   }
 916 
 917   static int inv_simm13( int x ) { return inv_simm(x, 13); }
 918 
 919   // signed immediate, in low bits, nbits long
 920   static int simm(int x, int nbits) {
 921     assert_signed_range(x, nbits);
 922     return x  &  (( 1 << nbits ) - 1);
 923   }
 924 
 925   // compute inverse of wdisp16
 926   static intptr_t inv_wdisp16(int x, intptr_t pos) {
 927     int lo = x & (( 1 << 14 ) - 1);
 928     int hi = (x >> 20) & 3;
 929     if (hi >= 2) hi |= ~1;
 930     return (((hi << 14) | lo) << 2) + pos;
 931   }
 932 
 933   // word offset, 14 bits at LSend, 2 bits at B21, B20
 934   static int wdisp16(intptr_t x, intptr_t off) {
 935     intptr_t xx = x - off;
 936     assert_signed_word_disp_range(xx, 16);
 937     int r =  (xx >> 2) & ((1 << 14) - 1)
 938            |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
 939     assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
 940     return r;
 941   }
 942 
 943 
 944   // word displacement in low-order nbits bits
 945 
 946   static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
 947     int pre_sign_extend = x & (( 1 << nbits ) - 1);
 948     int r =  pre_sign_extend >= ( 1 << (nbits-1) )
 949        ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
 950        :   pre_sign_extend;
 951     return (r << 2) + pos;
 952   }
 953 
 954   static int wdisp( intptr_t x, intptr_t off, int nbits ) {
 955     intptr_t xx = x - off;
 956     assert_signed_word_disp_range(xx, nbits);
 957     int r =  (xx >> 2) & (( 1 << nbits ) - 1);
 958     assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
 959     return r;
 960   }
 961 
 962 
 963   // Extract the top 32 bits in a 64 bit word
 964   static int32_t hi32( int64_t x ) {
 965     int32_t r = int32_t( (uint64_t)x >> 32 );
 966     return r;
 967   }
 968 
 969   // given a sethi instruction, extract the constant, left-justified
 970   static int inv_hi22( int x ) {
 971     return x << 10;
 972   }
 973 
 974   // create an imm22 field, given a 32-bit left-justified constant
 975   static int hi22( int x ) {
 976     int r = int( juint(x) >> 10 );
 977     assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
 978     return r;
 979   }
 980 
 981   // create a low10 __value__ (not a field) for a given a 32-bit constant
 982   static int low10( int x ) {
 983     return x & ((1 << 10) - 1);
 984   }
 985 
 986   // instruction only in v9
 987   static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
 988 
 989   // instruction only in v8
 990   static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
 991 
 992   // instruction deprecated in v9
 993   static void v9_dep()  { } // do nothing for now
 994 
 995   // some float instructions only exist for single prec. on v8
 996   static void v8_s_only(FloatRegisterImpl::Width w)  { if (w != FloatRegisterImpl::S)  v9_only(); }
 997 
 998   // v8 has no CC field
 999   static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
1000 
1001  protected:
1002   // Simple delay-slot scheme:
1003   // In order to check the programmer, the assembler keeps track of deley slots.
1004   // It forbids CTIs in delay slots (conservative, but should be OK).
1005   // Also, when putting an instruction into a delay slot, you must say
1006   // asm->delayed()->add(...), in order to check that you don't omit
1007   // delay-slot instructions.
1008   // To implement this, we use a simple FSA
1009 
1010 #ifdef ASSERT
1011   #define CHECK_DELAY
1012 #endif
1013 #ifdef CHECK_DELAY
1014   enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
1015 #endif
1016 
1017  public:
1018   // Tells assembler next instruction must NOT be in delay slot.
1019   // Use at start of multinstruction macros.
1020   void assert_not_delayed() {
1021     // This is a separate overloading to avoid creation of string constants
1022     // in non-asserted code--with some compilers this pollutes the object code.
1023 #ifdef CHECK_DELAY
1024     assert_not_delayed("next instruction should not be a delay slot");
1025 #endif
1026   }
1027   void assert_not_delayed(const char* msg) {
1028 #ifdef CHECK_DELAY
1029     assert_msg ( delay_state == no_delay, msg);
1030 #endif
1031   }
1032 
1033  protected:
1034   // Delay slot helpers
1035   // cti is called when emitting control-transfer instruction,
1036   // BEFORE doing the emitting.
1037   // Only effective when assertion-checking is enabled.
1038   void cti() {
1039 #ifdef CHECK_DELAY
1040     assert_not_delayed("cti should not be in delay slot");
1041 #endif
1042   }
1043 
1044   // called when emitting cti with a delay slot, AFTER emitting
1045   void has_delay_slot() {
1046 #ifdef CHECK_DELAY
1047     assert_not_delayed("just checking");
1048     delay_state = at_delay_slot;
1049 #endif
1050   }
1051 
1052 public:
1053   // Tells assembler you know that next instruction is delayed
1054   Assembler* delayed() {
1055 #ifdef CHECK_DELAY
1056     assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
1057     delay_state = filling_delay_slot;
1058 #endif
1059     return this;
1060   }
1061 
1062   void flush() {
1063 #ifdef CHECK_DELAY
1064     assert ( delay_state == no_delay, "ending code with a delay slot");
1065 #endif
1066     AbstractAssembler::flush();
1067   }
1068 
1069   inline void emit_long(int);  // shadows AbstractAssembler::emit_long
1070   inline void emit_data(int x) { emit_long(x); }
1071   inline void emit_data(int, RelocationHolder const&);
1072   inline void emit_data(int, relocInfo::relocType rtype);
1073   // helper for above fcns
1074   inline void check_delay();
1075 
1076 
1077  public:
1078   // instructions, refer to page numbers in the SPARC Architecture Manual, V9
1079 
1080   // pp 135 (addc was addx in v8)
1081 
1082   inline void add(    Register s1, Register s2, Register d );
1083   inline void add(    Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
1084   inline void add(    Register s1, int simm13a, Register d, RelocationHolder const& rspec);
1085   inline void add(    const Address&  a,              Register d, int offset = 0);
1086 
1087   void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1088   void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1089   void addc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
1090   void addc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1091   void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1092   void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1093 
1094   // pp 136
1095 
1096   inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
1097   inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
1098 
1099  protected: // use MacroAssembler::br instead
1100 
1101   // pp 138
1102 
1103   inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1104   inline void fb( Condition c, bool a, Label& L );
1105 
1106   // pp 141
1107 
1108   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1109   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1110 
1111  public:
1112 
1113   // pp 144
1114 
1115   inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1116   inline void br( Condition c, bool a, Label& L );
1117 
1118   // pp 146
1119 
1120   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1121   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1122 
1123   // pp 121 (V8)
1124 
1125   inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1126   inline void cb( Condition c, bool a, Label& L );
1127 
1128   // pp 149
1129 
1130   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
1131   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
1132 
1133   // pp 150
1134 
1135   // These instructions compare the contents of s2 with the contents of
1136   // memory at address in s1. If the values are equal, the contents of memory
1137   // at address s1 is swapped with the data in d. If the values are not equal,
1138   // the the contents of memory at s1 is loaded into d, without the swap.
1139 
1140   void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
1141   void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
1142 
1143   // pp 152
1144 
1145   void udiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
1146   void udiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1147   void sdiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
1148   void sdiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1149   void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
1150   void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1151   void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
1152   void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1153 
1154   // pp 155
1155 
1156   void done()  { v9_only();  cti();  emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
1157   void retry() { v9_only();  cti();  emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
1158 
1159   // pp 156
1160 
1161   void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
1162   void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
1163 
1164   // pp 157
1165 
1166   void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
1167   void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
1168 
1169   // pp 159
1170 
1171   void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
1172   void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
1173 
1174   // pp 160
1175 
1176   void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
1177 
1178   // pp 161
1179 
1180   void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
1181   void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
1182 
1183   // pp 162
1184 
1185   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
1186 
1187   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
1188 
1189   // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
1190   // on v8 to do negation of single, double and quad precision floats.
1191 
1192   void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) |  opf(0x05) | fs2(sd, w)); }
1193 
1194   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
1195 
1196   // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
1197   // on v8 to do abs operation on single/double/quad precision floats.
1198 
1199   void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
1200 
1201   // pp 163
1202 
1203   void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
1204   void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
1205   void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
1206 
1207   // pp 164
1208 
1209   void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
1210 
1211   // pp 165
1212 
1213   inline void flush( Register s1, Register s2 );
1214   inline void flush( Register s1, int simm13a);
1215 
1216   // pp 167
1217 
1218   void flushw() { v9_only();  emit_long( op(arith_op) | op3(flushw_op3) ); }
1219 
1220   // pp 168
1221 
1222   void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
1223   // v8 unimp == illtrap(0)
1224 
1225   // pp 169
1226 
1227   void impdep1( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
1228   void impdep2( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
1229 
1230   // pp 149 (v8)
1231 
1232   void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
1233   void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
1234 
1235   // pp 170
1236 
1237   void jmpl( Register s1, Register s2, Register d );
1238   void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1239 
1240   inline void jmpl( Address& a, Register d, int offset = 0);
1241 
1242   // 171
1243 
1244   inline void ldf(    FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d );
1245   inline void ldf(    FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d );
1246 
1247   inline void ldf(    FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
1248 
1249 
1250   inline void ldfsr(  Register s1, Register s2 );
1251   inline void ldfsr(  Register s1, int simm13a);
1252   inline void ldxfsr( Register s1, Register s2 );
1253   inline void ldxfsr( Register s1, int simm13a);
1254 
1255   // pp 94 (v8)
1256 
1257   inline void ldc(   Register s1, Register s2, int crd );
1258   inline void ldc(   Register s1, int simm13a, int crd);
1259   inline void lddc(  Register s1, Register s2, int crd );
1260   inline void lddc(  Register s1, int simm13a, int crd);
1261   inline void ldcsr( Register s1, Register s2, int crd );
1262   inline void ldcsr( Register s1, int simm13a, int crd);
1263 
1264 
1265   // 173
1266 
1267   void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1268   void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1269 
1270   // pp 175, lduw is ld on v8
1271 
1272   inline void ldsb(  Register s1, Register s2, Register d );
1273   inline void ldsb(  Register s1, int simm13a, Register d);
1274   inline void ldsh(  Register s1, Register s2, Register d );
1275   inline void ldsh(  Register s1, int simm13a, Register d);
1276   inline void ldsw(  Register s1, Register s2, Register d );
1277   inline void ldsw(  Register s1, int simm13a, Register d);
1278   inline void ldub(  Register s1, Register s2, Register d );
1279   inline void ldub(  Register s1, int simm13a, Register d);
1280   inline void lduh(  Register s1, Register s2, Register d );
1281   inline void lduh(  Register s1, int simm13a, Register d);
1282   inline void lduw(  Register s1, Register s2, Register d );
1283   inline void lduw(  Register s1, int simm13a, Register d);
1284   inline void ldx(   Register s1, Register s2, Register d );
1285   inline void ldx(   Register s1, int simm13a, Register d);
1286   inline void ld(    Register s1, Register s2, Register d );
1287   inline void ld(    Register s1, int simm13a, Register d);
1288   inline void ldd(   Register s1, Register s2, Register d );
1289   inline void ldd(   Register s1, int simm13a, Register d);
1290 
1291   inline void ldsb( const Address& a, Register d, int offset = 0 );
1292   inline void ldsh( const Address& a, Register d, int offset = 0 );
1293   inline void ldsw( const Address& a, Register d, int offset = 0 );
1294   inline void ldub( const Address& a, Register d, int offset = 0 );
1295   inline void lduh( const Address& a, Register d, int offset = 0 );
1296   inline void lduw( const Address& a, Register d, int offset = 0 );
1297   inline void ldx(  const Address& a, Register d, int offset = 0 );
1298   inline void ld(   const Address& a, Register d, int offset = 0 );
1299   inline void ldd(  const Address& a, Register d, int offset = 0 );
1300 
1301   // pp 177
1302 
1303   void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1304   void ldsba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1305   void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1306   void ldsha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1307   void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1308   void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1309   void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1310   void lduba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1311   void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1312   void lduha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1313   void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1314   void lduwa(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1315   void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1316   void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1317   void ldda(   Register s1, Register s2, int ia, Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1318   void ldda(   Register s1, int simm13a,         Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1319 
1320   // pp 179
1321 
1322   inline void ldstub(  Register s1, Register s2, Register d );
1323   inline void ldstub(  Register s1, int simm13a, Register d);
1324 
1325   // pp 180
1326 
1327   void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1328   void ldstuba( Register s1, int simm13a,         Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1329 
1330   // pp 181
1331 
1332   void and3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3               ) | rs1(s1) | rs2(s2) ); }
1333   void and3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1334   void andcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1335   void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1336   void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
1337   void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1338   void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1339   void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1340   void or3(      Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
1341   void or3(      Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1342   void orcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1343   void orcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1344   void orn(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
1345   void orn(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1346   void orncc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1347   void orncc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1348   void xor3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
1349   void xor3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1350   void xorcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1351   void xorcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1352   void xnor(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
1353   void xnor(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1354   void xnorcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1355   void xnorcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1356 
1357   // pp 183
1358 
1359   void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
1360 
1361   // pp 185
1362 
1363   void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
1364 
1365   // pp 189
1366 
1367   void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
1368 
1369   // pp 191
1370 
1371   void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
1372   void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
1373 
1374   // pp 195
1375 
1376   void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
1377   void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
1378 
1379   // pp 196
1380 
1381   void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
1382   void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1383   void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
1384   void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1385   void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
1386   void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1387 
1388   // pp 197
1389 
1390   void umul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
1391   void umul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1392   void smul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
1393   void smul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1394   void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1395   void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1396   void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1397   void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1398 
1399   // pp 199
1400 
1401   void mulscc(   Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
1402   void mulscc(   Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1403 
1404   // pp 201
1405 
1406   void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
1407 
1408 
1409   // pp 202
1410 
1411   void popc( Register s,  Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
1412   void popc( int simm13a, Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
1413 
1414   // pp 203
1415 
1416   void prefetch(   Register s1, Register s2,         PrefetchFcn f);
1417   void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
1418   void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1419   void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1420 
1421   inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
1422 
1423   // pp 208
1424 
1425   // not implementing read privileged register
1426 
1427   inline void rdy(    Register d) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
1428   inline void rdccr(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
1429   inline void rdasi(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
1430   inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
1431   inline void rdpc(   Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
1432   inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
1433 
1434   // pp 213
1435 
1436   inline void rett( Register s1, Register s2);
1437   inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
1438 
1439   // pp 214
1440 
1441   void save(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
1442   void save(    Register s1, int simm13a, Register d ) {
1443     // make sure frame is at least large enough for the register save area
1444     assert(-simm13a >= 16 * wordSize, "frame too small");
1445     emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
1446   }
1447 
1448   void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
1449   void restore( Register s1,       int simm13a,      Register d      ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1450 
1451   // pp 216
1452 
1453   void saved()    { v9_only();  emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
1454   void restored() { v9_only();  emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
1455 
1456   // pp 217
1457 
1458   inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1459   // pp 218
1460 
1461   void sll(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1462   void sll(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1463   void srl(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1464   void srl(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1465   void sra(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1466   void sra(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1467 
1468   void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1469   void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1470   void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1471   void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1472   void srax( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1473   void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1474 
1475   // pp 220
1476 
1477   void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
1478 
1479   // pp 221
1480 
1481   void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
1482 
1483   // pp 222
1484 
1485   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2 );
1486   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
1487   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
1488 
1489   inline void stfsr(  Register s1, Register s2 );
1490   inline void stfsr(  Register s1, int simm13a);
1491   inline void stxfsr( Register s1, Register s2 );
1492   inline void stxfsr( Register s1, int simm13a);
1493 
1494   //  pp 224
1495 
1496   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1497   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1498 
1499   // p 226
1500 
1501   inline void stb(  Register d, Register s1, Register s2 );
1502   inline void stb(  Register d, Register s1, int simm13a);
1503   inline void sth(  Register d, Register s1, Register s2 );
1504   inline void sth(  Register d, Register s1, int simm13a);
1505   inline void stw(  Register d, Register s1, Register s2 );
1506   inline void stw(  Register d, Register s1, int simm13a);
1507   inline void st(   Register d, Register s1, Register s2 );
1508   inline void st(   Register d, Register s1, int simm13a);
1509   inline void stx(  Register d, Register s1, Register s2 );
1510   inline void stx(  Register d, Register s1, int simm13a);
1511   inline void std(  Register d, Register s1, Register s2 );
1512   inline void std(  Register d, Register s1, int simm13a);
1513 
1514   inline void stb(  Register d, const Address& a, int offset = 0 );
1515   inline void sth(  Register d, const Address& a, int offset = 0 );
1516   inline void stw(  Register d, const Address& a, int offset = 0 );
1517   inline void stx(  Register d, const Address& a, int offset = 0 );
1518   inline void st(   Register d, const Address& a, int offset = 0 );
1519   inline void std(  Register d, const Address& a, int offset = 0 );
1520 
1521   // pp 177
1522 
1523   void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1524   void stba(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1525   void stha(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1526   void stha(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1527   void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1528   void stwa(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1529   void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1530   void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1531   void stda(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1532   void stda(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1533 
1534   // pp 97 (v8)
1535 
1536   inline void stc(   int crd, Register s1, Register s2 );
1537   inline void stc(   int crd, Register s1, int simm13a);
1538   inline void stdc(  int crd, Register s1, Register s2 );
1539   inline void stdc(  int crd, Register s1, int simm13a);
1540   inline void stcsr( int crd, Register s1, Register s2 );
1541   inline void stcsr( int crd, Register s1, int simm13a);
1542   inline void stdcq( int crd, Register s1, Register s2 );
1543   inline void stdcq( int crd, Register s1, int simm13a);
1544 
1545   // pp 230
1546 
1547   void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
1548   void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1549   void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
1550   void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1551   void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
1552   void subc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1553   void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1554   void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1555 
1556   // pp 231
1557 
1558   inline void swap( Register s1, Register s2, Register d );
1559   inline void swap( Register s1, int simm13a, Register d);
1560   inline void swap( Address& a,               Register d, int offset = 0 );
1561 
1562   // pp 232
1563 
1564   void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1565   void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1566 
1567   // pp 234, note op in book is wrong, see pp 268
1568 
1569   void taddcc(    Register s1, Register s2, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
1570   void taddcc(    Register s1, int simm13a, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1571   void taddcctv(  Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
1572   void taddcctv(  Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1573 
1574   // pp 235
1575 
1576   void tsubcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
1577   void tsubcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1578   void tsubcctv(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
1579   void tsubcctv(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1580 
1581   // pp 237
1582 
1583   void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
1584   void trap( Condition c, CC cc, Register s1, int trapa   ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
1585   // simple uncond. trap
1586   void trap( int trapa ) { trap( always, icc, G0, trapa ); }
1587 
1588   // pp 239 omit write priv register for now
1589 
1590   inline void wry(    Register d) { v9_dep();  emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
1591   inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
1592   inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
1593                                                                            rs1(s) |
1594                                                                            op3(wrreg_op3) |
1595                                                                            u_field(2, 29, 25) |
1596                                                                            u_field(1, 13, 13) |
1597                                                                            simm(simm13a, 13)); }
1598   inline void wrasi(  Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
1599   inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
1600 
1601   // For a given register condition, return the appropriate condition code
1602   // Condition (the one you would use to get the same effect after "tst" on
1603   // the target register.)
1604   Assembler::Condition reg_cond_to_cc_cond(RCondition in);
1605 
1606 
1607   // Creation
1608   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
1609 #ifdef CHECK_DELAY
1610     delay_state = no_delay;
1611 #endif
1612   }
1613 
1614   // Testing
1615 #ifndef PRODUCT
1616   void test_v9();
1617   void test_v8_onlys();
1618 #endif
1619 };
1620 
1621 
1622 class RegistersForDebugging : public StackObj {
1623  public:
1624   intptr_t i[8], l[8], o[8], g[8];
1625   float    f[32];
1626   double   d[32];
1627 
1628   void print(outputStream* s);
1629 
1630   static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
1631   static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
1632   static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
1633   static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
1634   static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
1635   static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
1636 
1637   // gen asm code to save regs
1638   static void save_registers(MacroAssembler* a);
1639 
1640   // restore global registers in case C code disturbed them
1641   static void restore_registers(MacroAssembler* a, Register r);
1642 
1643 
1644 };
1645 
1646 
1647 // MacroAssembler extends Assembler by a few frequently used macros.
1648 //
1649 // Most of the standard SPARC synthetic ops are defined here.
1650 // Instructions for which a 'better' code sequence exists depending
1651 // on arguments should also go in here.
1652 
1653 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
1654 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
1655 #define JUMP(a, off)     jump(a, off, __FILE__, __LINE__)
1656 #define JUMPL(a, d, off) jumpl(a, d, off, __FILE__, __LINE__)
1657 
1658 
1659 class MacroAssembler: public Assembler {
1660  protected:
1661   // Support for VM calls
1662   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1663   // may customize this version by overriding it for its purposes (e.g., to save/restore
1664   // additional registers when doing a VM call).
1665 #ifdef CC_INTERP
1666   #define VIRTUAL
1667 #else
1668   #define VIRTUAL virtual
1669 #endif
1670 
1671   VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
1672 
1673   //
1674   // It is imperative that all calls into the VM are handled via the call_VM macros.
1675   // They make sure that the stack linkage is setup correctly. call_VM's correspond
1676   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1677   //
1678   // This is the base routine called by the different versions of call_VM. The interpreter
1679   // may customize this version by overriding it for its purposes (e.g., to save/restore
1680   // additional registers when doing a VM call).
1681   //
1682   // A non-volatile java_thread_cache register should be specified so
1683   // that the G2_thread value can be preserved across the call.
1684   // (If java_thread_cache is noreg, then a slow get_thread call
1685   // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
1686   // thread.
1687   //
1688   // If no last_java_sp is specified (noreg) than SP will be used instead.
1689 
1690   virtual void call_VM_base(
1691     Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
1692     Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
1693     Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
1694     address         entry_point,            // the entry point
1695     int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
1696     bool            check_exception=true    // flag which indicates if exception should be checked
1697   );
1698 
1699   // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1700   // The implementation is only non-empty for the InterpreterMacroAssembler,
1701   // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
1702   virtual void check_and_handle_popframe(Register scratch_reg);
1703   virtual void check_and_handle_earlyret(Register scratch_reg);
1704 
1705  public:
1706   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1707 
1708   // Support for NULL-checks
1709   //
1710   // Generates code that causes a NULL OS exception if the content of reg is NULL.
1711   // If the accessed location is M[reg + offset] and the offset is known, provide the
1712   // offset.  No explicit code generation is needed if the offset is within a certain
1713   // range (0 <= offset <= page_size).
1714   //
1715   // %%%%%% Currently not done for SPARC
1716 
1717   void null_check(Register reg, int offset = -1);
1718   static bool needs_explicit_null_check(intptr_t offset);
1719 
1720   // support for delayed instructions
1721   MacroAssembler* delayed() { Assembler::delayed();  return this; }
1722 
1723   // branches that use right instruction for v8 vs. v9
1724   inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1725   inline void br( Condition c, bool a, Predict p, Label& L );
1726   inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1727   inline void fb( Condition c, bool a, Predict p, Label& L );
1728 
1729   // compares register with zero and branches (V9 and V8 instructions)
1730   void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
1731   // Compares a pointer register with zero and branches on (not)null.
1732   // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1733   void br_null   ( Register s1, bool a, Predict p, Label& L );
1734   void br_notnull( Register s1, bool a, Predict p, Label& L );
1735 
1736   // These versions will do the most efficient thing on v8 and v9.  Perhaps
1737   // this is what the routine above was meant to do, but it didn't (and
1738   // didn't cover both target address kinds.)
1739   void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
1740   void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, Label& L);
1741 
1742   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1743   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1744 
1745   // Branch that tests xcc in LP64 and icc in !LP64
1746   inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1747   inline void brx( Condition c, bool a, Predict p, Label& L );
1748 
1749   // unconditional short branch
1750   inline void ba( bool a, Label& L );
1751 
1752   // Branch that tests fp condition codes
1753   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1754   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1755 
1756   // get PC the best way
1757   inline int get_pc( Register d );
1758 
1759   // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
1760   inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
1761   inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
1762 
1763   inline void jmp( Register s1, Register s2 );
1764   inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1765 
1766   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
1767   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
1768   inline void callr( Register s1, Register s2 );
1769   inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1770 
1771   // Emits nothing on V8
1772   inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
1773   inline void iprefetch( Label& L);
1774 
1775   inline void tst( Register s ) { orcc( G0, s, G0 ); }
1776 
1777 #ifdef PRODUCT
1778   inline void ret(  bool trace = TraceJumps )   { if (trace) {
1779                                                     mov(I7, O7); // traceable register
1780                                                     JMP(O7, 2 * BytesPerInstWord);
1781                                                   } else {
1782                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
1783                                                   }
1784                                                 }
1785 
1786   inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
1787                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
1788 #else
1789   void ret(  bool trace = TraceJumps );
1790   void retl( bool trace = TraceJumps );
1791 #endif /* PRODUCT */
1792 
1793   // Required platform-specific helpers for Label::patch_instructions.
1794   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1795   void pd_patch_instruction(address branch, address target);
1796 #ifndef PRODUCT
1797   static void pd_print_patched_instruction(address branch);
1798 #endif
1799 
1800   // sethi Macro handles optimizations and relocations
1801   void sethi( Address& a, bool ForceRelocatable = false );
1802   void sethi( intptr_t imm22a, Register d, bool ForceRelocatable = false, RelocationHolder const& rspec = RelocationHolder());
1803 
1804   // compute the size of a sethi/set
1805   static int  size_of_sethi( address a, bool worst_case = false );
1806   static int  worst_case_size_of_set();
1807 
1808   // set may be either setsw or setuw (high 32 bits may be zero or sign)
1809   void set(    intptr_t value, Register d, RelocationHolder const& rspec = RelocationHolder() );
1810   void setsw(  int value, Register d, RelocationHolder const& rspec = RelocationHolder() );
1811   void set64(  jlong value, Register d, Register tmp);
1812 
1813   // sign-extend 32 to 64
1814   inline void signx( Register s, Register d ) { sra( s, G0, d); }
1815   inline void signx( Register d )             { sra( d, G0, d); }
1816 
1817   inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
1818   inline void not1( Register d )             { xnor( d, G0, d ); }
1819 
1820   inline void neg( Register s, Register d ) { sub( G0, s, d ); }
1821   inline void neg( Register d )             { sub( G0, d, d ); }
1822 
1823   inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
1824   inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
1825   // Functions for isolating 64 bit atomic swaps for LP64
1826   // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
1827   inline void cas_ptr(  Register s1, Register s2, Register d) {
1828 #ifdef _LP64
1829     casx( s1, s2, d );
1830 #else
1831     cas( s1, s2, d );
1832 #endif
1833   }
1834 
1835   // Functions for isolating 64 bit shifts for LP64
1836   inline void sll_ptr( Register s1, Register s2, Register d );
1837   inline void sll_ptr( Register s1, int imm6a,   Register d );
1838   inline void srl_ptr( Register s1, Register s2, Register d );
1839   inline void srl_ptr( Register s1, int imm6a,   Register d );
1840 
1841   // little-endian
1842   inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
1843   inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
1844 
1845   inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
1846   inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
1847 
1848   inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
1849   inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
1850 
1851   inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
1852   inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
1853 
1854   inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
1855   inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
1856 
1857   inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
1858   inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
1859 
1860   inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
1861   inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
1862 
1863   inline void clr( Register d ) { or3( G0, G0, d ); }
1864 
1865   inline void clrb( Register s1, Register s2);
1866   inline void clrh( Register s1, Register s2);
1867   inline void clr(  Register s1, Register s2);
1868   inline void clrx( Register s1, Register s2);
1869 
1870   inline void clrb( Register s1, int simm13a);
1871   inline void clrh( Register s1, int simm13a);
1872   inline void clr(  Register s1, int simm13a);
1873   inline void clrx( Register s1, int simm13a);
1874 
1875   // copy & clear upper word
1876   inline void clruw( Register s, Register d ) { srl( s, G0, d); }
1877   // clear upper word
1878   inline void clruwu( Register d ) { srl( d, G0, d); }
1879 
1880   // membar psuedo instruction.  takes into account target memory model.
1881   inline void membar( Assembler::Membar_mask_bits const7a );
1882 
1883   // returns if membar generates anything.
1884   inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
1885 
1886   // mov pseudo instructions
1887   inline void mov( Register s,  Register d) {
1888     if ( s != d )    or3( G0, s, d);
1889     else             assert_not_delayed();  // Put something useful in the delay slot!
1890   }
1891 
1892   inline void mov_or_nop( Register s,  Register d) {
1893     if ( s != d )    or3( G0, s, d);
1894     else             nop();
1895   }
1896 
1897   inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
1898 
1899   // address pseudos: make these names unlike instruction names to avoid confusion
1900   inline void split_disp(    Address& a, Register temp );
1901   inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
1902   inline void load_address(  Address& a, int offset = 0 );
1903   inline void load_contents( Address& a, Register d, int offset = 0 );
1904   inline void load_ptr_contents( Address& a, Register d, int offset = 0 );
1905   inline void store_contents( Register s, Address& a, int offset = 0 );
1906   inline void store_ptr_contents( Register s, Address& a, int offset = 0 );
1907   inline void jumpl_to( Address& a, Register d, int offset = 0 );
1908   inline void jump_to(  Address& a,             int offset = 0 );
1909 
1910   // ring buffer traceable jumps
1911 
1912   void jmp2( Register r1, Register r2, const char* file, int line );
1913   void jmp ( Register r1, int offset,  const char* file, int line );
1914 
1915   void jumpl( Address& a, Register d, int offset, const char* file, int line );
1916   void jump ( Address& a,             int offset, const char* file, int line );
1917 
1918 
1919   // argument pseudos:
1920 
1921   inline void load_argument( Argument& a, Register  d );
1922   inline void store_argument( Register s, Argument& a );
1923   inline void store_ptr_argument( Register s, Argument& a );
1924   inline void store_float_argument( FloatRegister s, Argument& a );
1925   inline void store_double_argument( FloatRegister s, Argument& a );
1926   inline void store_long_argument( Register s, Argument& a );
1927 
1928   // handy macros:
1929 
1930   inline void round_to( Register r, int modulus ) {
1931     assert_not_delayed();
1932     inc( r, modulus - 1 );
1933     and3( r, -modulus, r );
1934   }
1935 
1936   // --------------------------------------------------
1937 
1938   // Functions for isolating 64 bit loads for LP64
1939   // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
1940   // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
1941   inline void ld_ptr(   Register s1, Register s2, Register d );
1942   inline void ld_ptr(   Register s1, int simm13a, Register d);
1943   inline void ld_ptr(  const Address& a, Register d, int offset = 0 );
1944   inline void st_ptr(  Register d, Register s1, Register s2 );
1945   inline void st_ptr(  Register d, Register s1, int simm13a);
1946   inline void st_ptr(  Register d, const Address& a, int offset = 0 );
1947 
1948   // ld_long will perform ld for 32 bit VM's and ldx for 64 bit VM's
1949   // st_long will perform st for 32 bit VM's and stx for 64 bit VM's
1950   inline void ld_long( Register s1, Register s2, Register d );
1951   inline void ld_long( Register s1, int simm13a, Register d );
1952   inline void ld_long( const Address& a, Register d, int offset = 0 );
1953   inline void st_long( Register d, Register s1, Register s2 );
1954   inline void st_long( Register d, Register s1, int simm13a );
1955   inline void st_long( Register d, const Address& a, int offset = 0 );
1956 
1957   // --------------------------------------------------
1958 
1959  public:
1960   // traps as per trap.h (SPARC ABI?)
1961 
1962   void breakpoint_trap();
1963   void breakpoint_trap(Condition c, CC cc = icc);
1964   void flush_windows_trap();
1965   void clean_windows_trap();
1966   void get_psr_trap();
1967   void set_psr_trap();
1968 
1969   // V8/V9 flush_windows
1970   void flush_windows();
1971 
1972   // Support for serializing memory accesses between threads
1973   void serialize_memory(Register thread, Register tmp1, Register tmp2);
1974 
1975   // Stack frame creation/removal
1976   void enter();
1977   void leave();
1978 
1979   // V8/V9 integer multiply
1980   void mult(Register s1, Register s2, Register d);
1981   void mult(Register s1, int simm13a, Register d);
1982 
1983   // V8/V9 read and write of condition codes.
1984   void read_ccr(Register d);
1985   void write_ccr(Register s);
1986 
1987   // Manipulation of C++ bools
1988   // These are idioms to flag the need for care with accessing bools but on
1989   // this platform we assume byte size
1990 
1991   inline void stbool( Register d, const Address& a, int offset = 0 ) { stb(d, a, offset); }
1992   inline void ldbool( const Address& a, Register d, int offset = 0 ) { ldsb( a, d, offset ); }
1993   inline void tstbool( Register s ) { tst(s); }
1994   inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
1995 
1996   // klass oop manipulations if compressed
1997   void load_klass(Register src_oop, Register klass);
1998   void store_klass(Register klass, Register dst_oop);
1999   void store_klass_gap(Register s, Register dst_oop);
2000 
2001    // oop manipulations
2002   void load_heap_oop(const Address& s, Register d, int offset = 0);
2003   void load_heap_oop(Register s1, Register s2, Register d);
2004   void load_heap_oop(Register s1, int simm13a, Register d);
2005   void store_heap_oop(Register d, Register s1, Register s2);
2006   void store_heap_oop(Register d, Register s1, int simm13a);
2007   void store_heap_oop(Register d, const Address& a, int offset = 0);
2008 
2009   void encode_heap_oop(Register src, Register dst);
2010   void encode_heap_oop(Register r) {
2011     encode_heap_oop(r, r);
2012   }
2013   void decode_heap_oop(Register src, Register dst);
2014   void decode_heap_oop(Register r) {
2015     decode_heap_oop(r, r);
2016   }
2017   void encode_heap_oop_not_null(Register r);
2018   void decode_heap_oop_not_null(Register r);
2019   void encode_heap_oop_not_null(Register src, Register dst);
2020   void decode_heap_oop_not_null(Register src, Register dst);
2021 
2022   // Support for managing the JavaThread pointer (i.e.; the reference to
2023   // thread-local information).
2024   void get_thread();                                // load G2_thread
2025   void verify_thread();                             // verify G2_thread contents
2026   void save_thread   (const Register threache); // save to cache
2027   void restore_thread(const Register thread_cache); // restore from cache
2028 
2029   // Support for last Java frame (but use call_VM instead where possible)
2030   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
2031   void reset_last_Java_frame(void);
2032 
2033   // Call into the VM.
2034   // Passes the thread pointer (in O0) as a prepended argument.
2035   // Makes sure oop return values are visible to the GC.
2036   void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
2037   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
2038   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2039   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2040 
2041   // these overloadings are not presently used on SPARC:
2042   void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
2043   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
2044   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2045   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2046 
2047   void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
2048   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
2049   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
2050   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
2051 
2052   void get_vm_result  (Register oop_result);
2053   void get_vm_result_2(Register oop_result);
2054 
2055   // vm result is currently getting hijacked to for oop preservation
2056   void set_vm_result(Register oop_result);
2057 
2058   // if call_VM_base was called with check_exceptions=false, then call
2059   // check_and_forward_exception to handle exceptions when it is safe
2060   void check_and_forward_exception(Register scratch_reg);
2061 
2062  private:
2063   // For V8
2064   void read_ccr_trap(Register ccr_save);
2065   void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
2066 
2067 #ifdef ASSERT
2068   // For V8 debugging.  Uses V8 instruction sequence and checks
2069   // result with V9 insturctions rdccr and wrccr.
2070   // Uses Gscatch and Gscatch2
2071   void read_ccr_v8_assert(Register ccr_save);
2072   void write_ccr_v8_assert(Register ccr_save);
2073 #endif // ASSERT
2074 
2075  public:
2076 
2077   // Write to card table for - register is destroyed afterwards.
2078   void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
2079 
2080   void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
2081 
2082 #ifndef SERIALGC
2083   // Array store and offset
2084   void g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs);
2085 
2086   void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
2087 
2088   // May do filtering, depending on the boolean arguments.
2089   void g1_card_table_write(jbyte* byte_map_base,
2090                            Register tmp, Register obj, Register new_val,
2091                            bool region_filter, bool null_filter);
2092 #endif // SERIALGC
2093 
2094   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
2095   void push_fTOS();
2096 
2097   // pops double TOS element from CPU stack and pushes on FPU stack
2098   void pop_fTOS();
2099 
2100   void empty_FPU_stack();
2101 
2102   void push_IU_state();
2103   void pop_IU_state();
2104 
2105   void push_FPU_state();
2106   void pop_FPU_state();
2107 
2108   void push_CPU_state();
2109   void pop_CPU_state();
2110 
2111   // if heap base register is used - reinit it with the correct value
2112   void reinit_heapbase();
2113 
2114   // Debugging
2115   void _verify_oop(Register reg, const char * msg, const char * file, int line);
2116   void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
2117 
2118 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
2119 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
2120 
2121         // only if +VerifyOops
2122   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
2123         // only if +VerifyFPU
2124   void stop(const char* msg);                          // prints msg, dumps registers and stops execution
2125   void warn(const char* msg);                          // prints msg, but don't stop
2126   void untested(const char* what = "");
2127   void unimplemented(const char* what = "")              { char* b = new char[1024];  sprintf(b, "unimplemented: %s", what);  stop(b); }
2128   void should_not_reach_here()                   { stop("should not reach here"); }
2129   void print_CPU_state();
2130 
2131   // oops in code
2132   Address allocate_oop_address( jobject obj, Register d ); // allocate_index
2133   Address constant_oop_address( jobject obj, Register d ); // find_index
2134   inline void set_oop         ( jobject obj, Register d ); // uses allocate_oop_address
2135   inline void set_oop_constant( jobject obj, Register d ); // uses constant_oop_address
2136   inline void set_oop         ( Address obj_addr );        // same as load_address
2137 
2138   void set_narrow_oop( jobject obj, Register d );
2139 
2140   // nop padding
2141   void align(int modulus);
2142 
2143   // declare a safepoint
2144   void safepoint();
2145 
2146   // factor out part of stop into subroutine to save space
2147   void stop_subroutine();
2148   // factor out part of verify_oop into subroutine to save space
2149   void verify_oop_subroutine();
2150 
2151   // side-door communication with signalHandler in os_solaris.cpp
2152   static address _verify_oop_implicit_branch[3];
2153 
2154 #ifndef PRODUCT
2155   static void test();
2156 #endif
2157 
2158   // convert an incoming arglist to varargs format; put the pointer in d
2159   void set_varargs( Argument a, Register d );
2160 
2161   int total_frame_size_in_bytes(int extraWords);
2162 
2163   // used when extraWords known statically
2164   void save_frame(int extraWords);
2165   void save_frame_c1(int size_in_bytes);
2166   // make a frame, and simultaneously pass up one or two register value
2167   // into the new register window
2168   void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
2169 
2170   // give no. (outgoing) params, calc # of words will need on frame
2171   void calc_mem_param_words(Register Rparam_words, Register Rresult);
2172 
2173   // used to calculate frame size dynamically
2174   // result is in bytes and must be negated for save inst
2175   void calc_frame_size(Register extraWords, Register resultReg);
2176 
2177   // calc and also save
2178   void calc_frame_size_and_save(Register extraWords, Register resultReg);
2179 
2180   static void debug(char* msg, RegistersForDebugging* outWindow);
2181 
2182   // implementations of bytecodes used by both interpreter and compiler
2183 
2184   void lcmp( Register Ra_hi, Register Ra_low,
2185              Register Rb_hi, Register Rb_low,
2186              Register Rresult);
2187 
2188   void lneg( Register Rhi, Register Rlow );
2189 
2190   void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
2191               Register Rout_high, Register Rout_low, Register Rtemp );
2192 
2193   void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
2194               Register Rout_high, Register Rout_low, Register Rtemp );
2195 
2196   void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
2197               Register Rout_high, Register Rout_low, Register Rtemp );
2198 
2199 #ifdef _LP64
2200   void lcmp( Register Ra, Register Rb, Register Rresult);
2201 #endif
2202 
2203   void float_cmp( bool is_float, int unordered_result,
2204                   FloatRegister Fa, FloatRegister Fb,
2205                   Register Rresult);
2206 
2207   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2208   void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
2209   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2210   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2211 
2212   void save_all_globals_into_locals();
2213   void restore_globals_from_locals();
2214 
2215   void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2216     address lock_addr=0, bool use_call_vm=false);
2217   void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2218     address lock_addr=0, bool use_call_vm=false);
2219   void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
2220 
2221   // These set the icc condition code to equal if the lock succeeded
2222   // and notEqual if it failed and requires a slow case
2223   void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
2224                             Register Rscratch,
2225                             BiasedLockingCounters* counters = NULL,
2226                             bool try_bias = UseBiasedLocking);
2227   void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
2228                               Register Rscratch,
2229                               bool try_bias = UseBiasedLocking);
2230 
2231   // Biased locking support
2232   // Upon entry, lock_reg must point to the lock record on the stack,
2233   // obj_reg must contain the target object, and mark_reg must contain
2234   // the target object's header.
2235   // Destroys mark_reg if an attempt is made to bias an anonymously
2236   // biased lock. In this case a failure will go either to the slow
2237   // case or fall through with the notEqual condition code set with
2238   // the expectation that the slow case in the runtime will be called.
2239   // In the fall-through case where the CAS-based lock is done,
2240   // mark_reg is not destroyed.
2241   void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
2242                             Label& done, Label* slow_case = NULL,
2243                             BiasedLockingCounters* counters = NULL);
2244   // Upon entry, the base register of mark_addr must contain the oop.
2245   // Destroys temp_reg.
2246 
2247   // If allow_delay_slot_filling is set to true, the next instruction
2248   // emitted after this one will go in an annulled delay slot if the
2249   // biased locking exit case failed.
2250   void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
2251 
2252   // allocation
2253   void eden_allocate(
2254     Register obj,                      // result: pointer to object after successful allocation
2255     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2256     int      con_size_in_bytes,        // object size in bytes if   known at compile time
2257     Register t1,                       // temp register
2258     Register t2,                       // temp register
2259     Label&   slow_case                 // continuation point if fast allocation fails
2260   );
2261   void tlab_allocate(
2262     Register obj,                      // result: pointer to object after successful allocation
2263     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2264     int      con_size_in_bytes,        // object size in bytes if   known at compile time
2265     Register t1,                       // temp register
2266     Label&   slow_case                 // continuation point if fast allocation fails
2267   );
2268   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
2269 
2270   // Stack overflow checking
2271 
2272   // Note: this clobbers G3_scratch
2273   void bang_stack_with_offset(int offset) {
2274     // stack grows down, caller passes positive offset
2275     assert(offset > 0, "must bang with negative offset");
2276     set((-offset)+STACK_BIAS, G3_scratch);
2277     st(G0, SP, G3_scratch);
2278   }
2279 
2280   // Writes to stack successive pages until offset reached to check for
2281   // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
2282   void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
2283 
2284   void verify_tlab();
2285 
2286   Condition negate_condition(Condition cond);
2287 
2288   // Helper functions for statistics gathering.
2289   // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
2290   void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
2291   // Unconditional increment.
2292   void inc_counter(address counter_addr, Register Rtemp1, Register Rtemp2);
2293 
2294 #undef VIRTUAL
2295 
2296 };
2297 
2298 /**
2299  * class SkipIfEqual:
2300  *
2301  * Instantiating this class will result in assembly code being output that will
2302  * jump around any code emitted between the creation of the instance and it's
2303  * automatic destruction at the end of a scope block, depending on the value of
2304  * the flag passed to the constructor, which will be checked at run-time.
2305  */
2306 class SkipIfEqual : public StackObj {
2307  private:
2308   MacroAssembler* _masm;
2309   Label _label;
2310 
2311  public:
2312    // 'temp' is a temp register that this object can use (and trash)
2313    SkipIfEqual(MacroAssembler*, Register temp,
2314                const bool* flag_addr, Assembler::Condition condition);
2315    ~SkipIfEqual();
2316 };
2317 
2318 #ifdef ASSERT
2319 // On RISC, there's no benefit to verifying instruction boundaries.
2320 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
2321 #endif