1 #ifdef USE_PRAGMA_IDENT_HDR
   2 #pragma ident "@(#)cppInterpreter_sparc.cpp     1.1 07/08/29 13:42:16 JVM"
   3 #endif
   4 /*
   5  * Copyright 2007 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 #include "incls/_precompiled.incl"
  29 #include "incls/_cppInterpreter_sparc.cpp.incl"
  30 
  31 #ifdef CC_INTERP
  32 
  33 // Routine exists to make tracebacks look decent in debugger
  34 // while "shadow" interpreter frames are on stack. It is also
  35 // used to distinguish interpreter frames.
  36 
  37 extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
  38   ShouldNotReachHere(); 
  39 }
  40 
  41 bool CppInterpreter::contains(address pc) { 
  42   return ( _code->contains(pc) ||
  43          ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
  44 }
  45 
  46 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  47 #define __ _masm->
  48 
  49 Label frame_manager_entry;  
  50 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
  51                                       // c++ interpreter entry point this holds that entry point label.
  52 
  53 static address unctrap_frame_manager_entry  = NULL;
  54 
  55 static address interpreter_return_address  = NULL;
  56 static address deopt_frame_manager_return_atos  = NULL;
  57 static address deopt_frame_manager_return_btos  = NULL;
  58 static address deopt_frame_manager_return_itos  = NULL;
  59 static address deopt_frame_manager_return_ltos  = NULL;
  60 static address deopt_frame_manager_return_ftos  = NULL;
  61 static address deopt_frame_manager_return_dtos  = NULL;
  62 static address deopt_frame_manager_return_vtos  = NULL;
  63 
  64 const Register prevState = G1_scratch;
  65 
  66 void InterpreterGenerator::save_native_result(void) {
  67   // result potentially in O0/O1: save it across calls
  68   __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  69 #ifdef _LP64
  70   __ stx(O0, STATE(_native_lresult));
  71 #else
  72   __ std(O0, STATE(_native_lresult));
  73 #endif
  74 }
  75 
  76 void InterpreterGenerator::restore_native_result(void) {
  77 
  78   // Restore any method result value
  79   __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
  80 #ifdef _LP64
  81   __ ldx(STATE(_native_lresult), O0);
  82 #else
  83   __ ldd(STATE(_native_lresult), O0);
  84 #endif
  85 }
  86 
  87 // A result handler converts/unboxes a native call result into
  88 // a java interpreter/compiler result. The current frame is an
  89 // interpreter frame. The activation frame unwind code must be
  90 // consistent with that of TemplateTable::_return(...). In the
  91 // case of native methods, the caller's SP was not modified.
  92 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
  93   address entry = __ pc();
  94   Register Itos_i  = Otos_i ->after_save();
  95   Register Itos_l  = Otos_l ->after_save();
  96   Register Itos_l1 = Otos_l1->after_save();
  97   Register Itos_l2 = Otos_l2->after_save();
  98   switch (type) {
  99     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
 100     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
 101     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
 102     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 103     case T_LONG   : 
 104 #ifndef _LP64
 105                     __ mov(O1, Itos_l2);  // move other half of long
 106 #endif              // ifdef or no ifdef, fall through to the T_INT case
 107     case T_INT    : __ mov(O0, Itos_i);                         break;
 108     case T_VOID   : /* nothing to do */                         break;
 109     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 110     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 111     case T_OBJECT : 
 112       __ ld_ptr(STATE(_oop_temp), Itos_i);
 113       __ verify_oop(Itos_i);
 114       break;
 115     default       : ShouldNotReachHere();
 116   }
 117   __ ret();                           // return from interpreter activation
 118   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 119   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
 120   return entry;
 121 }
 122 
 123 // tosca based result to c++ interpreter stack based result.
 124 // Result goes to address in L1_scratch
 125 
 126 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
 127   // A result is in the native abi result register from a native method call.
 128   // We need to return this result to the interpreter by pushing the result on the interpreter's
 129   // stack. This is relatively simple the destination is in L1_scratch
 130   // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
 131   // adjust L1_scratch
 132   address entry = __ pc();
 133   switch (type) {
 134     case T_BOOLEAN: 
 135       // !0 => true; 0 => false
 136       __ subcc(G0, O0, G0); 
 137       __ addc(G0, 0, O0); 
 138       __ st(O0, L1_scratch, 0); 
 139       __ sub(L1_scratch, wordSize, L1_scratch);
 140       break; 
 141 
 142     // cannot use and3, 0xFFFF too big as immediate value!
 143     case T_CHAR   : 
 144       __ sll(O0, 16, O0); 
 145       __ srl(O0, 16, O0);   
 146       __ st(O0, L1_scratch, 0); 
 147       __ sub(L1_scratch, wordSize, L1_scratch);
 148       break; 
 149 
 150     case T_BYTE   : 
 151       __ sll(O0, 24, O0); 
 152       __ sra(O0, 24, O0);   
 153       __ st(O0, L1_scratch, 0); 
 154       __ sub(L1_scratch, wordSize, L1_scratch);
 155       break;
 156 
 157     case T_SHORT  : 
 158       __ sll(O0, 16, O0); 
 159       __ sra(O0, 16, O0);   
 160       __ st(O0, L1_scratch, 0); 
 161       __ sub(L1_scratch, wordSize, L1_scratch);
 162       break;
 163     case T_LONG   : 
 164 #ifndef _LP64
 165 #if !defined(_LP64) && defined(COMPILER2) 
 166   // All return values are where we want them, except for Longs.  C2 returns
 167   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 168   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 169   // build even if we are returning from interpreted we just do a little
 170   // stupid shuffing. 
 171   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 172   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 173   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 174       __ stx(G1, L1_scratch, -wordSize);
 175 #else
 176       // native result is in O0, O1
 177       __ st(O1, L1_scratch, 0);                      // Low order
 178       __ st(O0, L1_scratch, -wordSize);              // High order
 179 #endif /* !_LP64 && COMPILER2 */
 180 #else
 181       __ stx(O0, L1_scratch, 0);
 182 __ breakpoint_trap();
 183 #endif
 184       __ sub(L1_scratch, 2*wordSize, L1_scratch);
 185       break;
 186 
 187     case T_INT    : 
 188       __ st(O0, L1_scratch, 0); 
 189       __ sub(L1_scratch, wordSize, L1_scratch);
 190       break;
 191 
 192     case T_VOID   : /* nothing to do */
 193       break;
 194 
 195     case T_FLOAT  : 
 196       __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);      
 197       __ sub(L1_scratch, wordSize, L1_scratch);
 198       break;
 199 
 200     case T_DOUBLE : 
 201       // Every stack slot is aligned on 64 bit, However is this
 202       // the correct stack slot on 64bit?? QQQ
 203       __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
 204       __ sub(L1_scratch, 2*wordSize, L1_scratch);
 205       break;
 206     case T_OBJECT :
 207       __ verify_oop(O0);
 208       __ st_ptr(O0, L1_scratch, 0);
 209       __ sub(L1_scratch, wordSize, L1_scratch);
 210       break;
 211     default       : ShouldNotReachHere();
 212   }
 213   __ retl();                          // return from interpreter activation
 214   __ delayed()->nop();                // schedule this better
 215   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
 216   return entry;
 217 }
 218 
 219 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
 220   // A result is in the java expression stack of the interpreted method that has just
 221   // returned. Place this result on the java expression stack of the caller.
 222   //
 223   // The current interpreter activation in Lstate is for the method just returning its
 224   // result. So we know that the result of this method is on the top of the current
 225   // execution stack (which is pre-pushed) and will be return to the top of the caller
 226   // stack. The top of the callers stack is the bottom of the locals of the current
 227   // activation.
 228   // Because of the way activation are managed by the frame manager the value of esp is
 229   // below both the stack top of the current activation and naturally the stack top
 230   // of the calling activation. This enable this routine to leave the return address
 231   // to the frame manager on the stack and do a vanilla return.
 232   //
 233   // On entry: O0 - points to source (callee stack top)
 234   //           O1 - points to destination (caller stack top [i.e. free location])
 235   // destroys O2, O3
 236   //
 237 
 238   address entry = __ pc();
 239   switch (type) {
 240     case T_VOID:  break;  
 241       break;
 242     case T_FLOAT  :
 243       __ breakpoint_trap(Assembler::zero);
 244     case T_BOOLEAN: 
 245     case T_CHAR   : 
 246     case T_BYTE   : 
 247     case T_SHORT  : 
 248     case T_INT    : 
 249       // 1 word result
 250       __ ld(O0, 0, O2);
 251       __ st(O2, O1, 0);
 252       __ sub(O1, wordSize, O1);
 253       break;
 254     case T_DOUBLE  :
 255     case T_LONG    : 
 256       // return top two words on current expression stack to caller's expression stack
 257       // The caller's expression stack is adjacent to the current frame manager's intepretState
 258       // except we allocated one extra word for this intepretState so we won't overwrite it
 259       // when we return a two word result.
 260 #ifdef _LP64
 261 __ breakpoint_trap();
 262       // Hmm now that longs are in one entry should "_ptr" really be "x"?
 263       __ ld_ptr(O0, 0, O2);
 264       __ ld_ptr(O0, wordSize, O3);
 265       __ st_ptr(O3, O1, 0);
 266       __ st_ptr(O2, O1, -wordSize);
 267 #else
 268       __ ld(O0, 0, O2);
 269       __ ld(O0, wordSize, O3);
 270       __ st(O3, O1, 0);
 271       __ st(O2, O1, -wordSize);
 272 #endif
 273       __ sub(O1, 2*wordSize, O1);
 274       break;
 275     case T_OBJECT :
 276       __ ld_ptr(O0, 0, O2);
 277       __ verify_oop(O2);                                               // verify it
 278       __ st_ptr(O2, O1, 0);
 279       __ sub(O1, wordSize, O1);
 280       break;
 281     default       : ShouldNotReachHere();
 282   }
 283   __ retl();
 284   __ delayed()->nop(); // QQ schedule this better
 285   return entry;
 286 }
 287 
 288 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
 289   // A result is in the java expression stack of the interpreted method that has just
 290   // returned. Place this result in the native abi that the caller expects.
 291   // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
 292   //
 293   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
 294   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
 295   // and so rather than return result onto caller's java expression stack we return the
 296   // result in the expected location based on the native abi.
 297   // On entry: O0 - source (stack top)
 298   // On exit result in expected output register
 299   // QQQ schedule this better
 300 
 301   address entry = __ pc();
 302   switch (type) {
 303     case T_VOID:  break;  
 304       break;
 305     case T_FLOAT  :
 306       __ ldf(FloatRegisterImpl::S, O0, 0, F0);
 307       break;
 308     case T_BOOLEAN: 
 309     case T_CHAR   : 
 310     case T_BYTE   : 
 311     case T_SHORT  : 
 312     case T_INT    : 
 313       // 1 word result
 314       __ ld(O0, 0, O0->after_save());
 315       break;
 316     case T_DOUBLE  :
 317       __ ldf(FloatRegisterImpl::D, O0, 0, F0);
 318       break;
 319     case T_LONG    : 
 320       // return top two words on current expression stack to caller's expression stack
 321       // The caller's expression stack is adjacent to the current frame manager's interpretState
 322       // except we allocated one extra word for this intepretState so we won't overwrite it
 323       // when we return a two word result.
 324 #ifdef _LP64
 325 __ breakpoint_trap();
 326       // Hmm now that longs are in one entry should "_ptr" really be "x"?
 327       __ ld_ptr(O0, 0, O0->after_save());
 328       __ ld_ptr(O0, wordSize, O1->after_save());
 329 #else
 330       __ ld(O0, wordSize, O1->after_save());
 331       __ ld(O0, 0, O0->after_save());
 332 #endif
 333 #if defined(COMPILER2) && !defined(_LP64)
 334       // C2 expects long results in G1 we can't tell if we're returning to interpreted
 335       // or compiled so just be safe use G1 and O0/O1
 336     
 337       // Shift bits into high (msb) of G1
 338       __ sllx(Otos_l1->after_save(), 32, G1);
 339       // Zero extend low bits
 340       __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
 341       __ or3 (Otos_l2->after_save(), G1, G1);           
 342 #endif /* COMPILER2 */
 343       break;
 344     case T_OBJECT :
 345       __ ld_ptr(O0, 0, O0->after_save());
 346       __ verify_oop(O0->after_save());                                               // verify it
 347       break;
 348     default       : ShouldNotReachHere();
 349   }
 350   __ retl();
 351   __ delayed()->nop();
 352   return entry;
 353 }
 354 
 355 address CppInterpreter::return_entry(TosState state, int length) {
 356   // make it look good in the debugger
 357   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
 358 }
 359 
 360 address CppInterpreter::deopt_entry(TosState state, int length) {
 361   address ret = NULL;
 362   if (length != 0) {
 363     switch (state) {
 364       case atos: ret = deopt_frame_manager_return_atos; break;
 365       case btos: ret = deopt_frame_manager_return_btos; break;
 366       case ctos:
 367       case stos:
 368       case itos: ret = deopt_frame_manager_return_itos; break;
 369       case ltos: ret = deopt_frame_manager_return_ltos; break;
 370       case ftos: ret = deopt_frame_manager_return_ftos; break;
 371       case dtos: ret = deopt_frame_manager_return_dtos; break;
 372       case vtos: ret = deopt_frame_manager_return_vtos; break;
 373     }
 374   } else {
 375     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
 376   }
 377   assert(ret != NULL, "Not initialized"); 
 378   return ret;
 379 }
 380 
 381 //
 382 // Helpers for commoning out cases in the various type of method entries.
 383 //
 384 
 385 // increment invocation count & check for overflow
 386 //
 387 // Note: checking for negative value instead of overflow
 388 //       so we have a 'sticky' overflow test
 389 //
 390 // Lmethod: method
 391 // ??: invocation counter
 392 //
 393 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 394   // Update standard invocation counters
 395   __ increment_invocation_counter(O0, G3_scratch);
 396   if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
 397     __ ld_ptr(STATE(_method), G3_scratch);
 398     Address interpreter_invocation_counter(G3_scratch, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
 399     __ ld(interpreter_invocation_counter, G3_scratch);
 400     __ inc(G3_scratch);
 401     __ st(G3_scratch, interpreter_invocation_counter);
 402   }
 403 
 404   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
 405   __ sethi(invocation_limit);
 406   __ ld(invocation_limit, G3_scratch);
 407   __ cmp(O0, G3_scratch);
 408   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
 409   __ delayed()->nop();
 410 
 411 }
 412 
 413 address InterpreterGenerator::generate_empty_entry(void) {
 414 
 415   // A method that does nothing but return...
 416 
 417   address entry = __ pc();
 418   Label slow_path;
 419 
 420   __ verify_oop(G5_method);
 421 
 422   // do nothing for empty methods (do not even increment invocation counter)
 423   if ( UseFastEmptyMethods) {
 424     // If we need a safepoint check, generate full interpreter entry.
 425     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 426     __ load_contents(sync_state, G3_scratch);
 427     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 428     __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
 429     __ delayed()->nop();
 430 
 431     // Code: _return
 432     __ retl();
 433     __ delayed()->mov(O5_savedSP, SP);
 434     return entry;
 435   }
 436   return NULL;
 437 }
 438 
 439 // Call an accessor method (assuming it is resolved, otherwise drop into
 440 // vanilla (slow path) entry
 441 
 442 // Generates code to elide accessor methods
 443 // Uses G3_scratch and G1_scratch as scratch
 444 address InterpreterGenerator::generate_accessor_entry(void) {
 445 
 446   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
 447   // parameter size = 1
 448   // Note: We can only use this code if the getfield has been resolved
 449   //       and if we don't have a null-pointer exception => check for
 450   //       these conditions first and use slow path if necessary.
 451   address entry = __ pc();
 452   Label slow_path;
 453 
 454   if ( UseFastAccessorMethods) {
 455     // Check if we need to reach a safepoint and generate full interpreter
 456     // frame if so.
 457     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 458     __ load_contents(sync_state, G3_scratch);
 459     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 460     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 461     __ delayed()->nop();
 462 
 463     // Check if local 0 != NULL
 464     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 465     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
 466     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
 467     __ delayed()->nop();
 468 
 469     
 470     // read first instruction word and extract bytecode @ 1 and index @ 2
 471     // get first 4 bytes of the bytecodes (big endian!)
 472     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch);
 473     __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch);
 474 
 475     // move index @ 2 far left then to the right most two bytes.
 476     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch); 
 477     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
 478                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
 479 
 480     // get constant pool cache
 481     __ ld_ptr(G5_method, in_bytes(methodOopDesc::constants_offset()), G3_scratch);
 482     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
 483 
 484     // get specific constant pool cache entry
 485     __ add(G3_scratch, G1_scratch, G3_scratch);
 486 
 487     // Check the constant Pool cache entry to see if it has been resolved.
 488     // If not, need the slow path.
 489     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
 490     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
 491     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
 492     __ and3(G1_scratch, 0xFF, G1_scratch);
 493     __ cmp(G1_scratch, Bytecodes::_getfield);
 494     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 495     __ delayed()->nop();
 496       
 497     // Get the type and return field offset from the constant pool cache
 498     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
 499     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
 500 
 501     Label xreturn_path;
 502     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 503     // because they are different sizes.
 504     // Get the type from the constant pool cache
 505     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
 506     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
 507     ConstantPoolCacheEntry::verify_tosBits();
 508     __ cmp(G1_scratch, atos );
 509     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 510     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
 511     __ cmp(G1_scratch, itos);
 512     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 513     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
 514     __ cmp(G1_scratch, stos);
 515     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 516     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
 517     __ cmp(G1_scratch, ctos);
 518     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 519     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
 520 #ifdef ASSERT
 521     __ cmp(G1_scratch, btos);
 522     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 523     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
 524     __ should_not_reach_here();
 525 #endif
 526     __ ldsb(Otos_i, G3_scratch, Otos_i);
 527     __ bind(xreturn_path);
 528 
 529     // _ireturn/_areturn
 530     __ retl();                      // return from leaf routine
 531     __ delayed()->mov(O5_savedSP, SP);
 532 
 533     // Generate regular method entry
 534     __ bind(slow_path);
 535     __ ba(false, fast_accessor_slow_entry_path);
 536     __ delayed()->nop();
 537     return entry;
 538   }
 539   return NULL;
 540 }
 541 
 542 //
 543 // Interpreter stub for calling a native method. (C++ interpreter)
 544 // This sets up a somewhat different looking stack for calling the native method
 545 // than the typical interpreter frame setup.
 546 //
 547 
 548 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 549   address entry = __ pc();
 550 
 551   // the following temporary registers are used during frame creation
 552   const Register Gtmp1 = G3_scratch ;
 553   const Register Gtmp2 = G1_scratch;
 554   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
 555 
 556   bool inc_counter  = UseCompiler || CountCompiledCalls;
 557 
 558   // make sure registers are different!
 559   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 560 
 561   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
 562 
 563   Label Lentry;
 564   __ bind(Lentry);
 565 
 566   __ verify_oop(G5_method);
 567 
 568   const Register Glocals_size = G3;
 569   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 570 
 571   // make sure method is native & not abstract
 572   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 573 #ifdef ASSERT
 574   __ ld(access_flags, Gtmp1);
 575   {
 576     Label L;
 577     __ btst(JVM_ACC_NATIVE, Gtmp1);
 578     __ br(Assembler::notZero, false, Assembler::pt, L);
 579     __ delayed()->nop();
 580     __ stop("tried to execute non-native method as native");
 581     __ bind(L);
 582   }
 583   { Label L;
 584     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 585     __ br(Assembler::zero, false, Assembler::pt, L);
 586     __ delayed()->nop();
 587     __ stop("tried to execute abstract method as non-abstract");
 588     __ bind(L);
 589   }
 590 #endif // ASSERT
 591 
 592   __ lduh(size_of_parameters, Gtmp1);
 593   __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
 594   __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
 595   // NEW
 596   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
 597   // generate the code to allocate the interpreter stack frame
 598   // NEW FRAME ALLOCATED HERE
 599   // save callers original sp
 600   // __ mov(SP, I5_savedSP->after_restore());
 601 
 602   generate_compute_interpreter_state(Lstate, G0, true);
 603 
 604   // At this point Lstate points to new interpreter state 
 605   //
 606 
 607   const Address do_not_unlock_if_synchronized(G2_thread, 0,
 608       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 609   // Since at this point in the method invocation the exception handler
 610   // would try to exit the monitor of synchronized methods which hasn't
 611   // been entered yet, we set the thread local variable
 612   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 613   // runtime, exception handling i.e. unlock_if_synchronized_method will
 614   // check this thread local flag.
 615   // This flag has two effects, one is to force an unwind in the topmost
 616   // interpreter frame and not perform an unlock while doing so.
 617 
 618   __ movbool(true, G3_scratch);
 619   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 620 
 621 
 622   // increment invocation counter and check for overflow
 623   //
 624   // Note: checking for negative value instead of overflow
 625   //       so we have a 'sticky' overflow test (may be of
 626   //       importance as soon as we have true MT/MP)
 627   Label invocation_counter_overflow; 
 628   if (inc_counter) {
 629     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 630   }
 631   Label Lcontinue;
 632   __ bind(Lcontinue);
 633 
 634   bang_stack_shadow_pages(true);
 635   // reset the _do_not_unlock_if_synchronized flag
 636   __ stbool(G0, do_not_unlock_if_synchronized);
 637 
 638   // check for synchronized methods
 639   // Must happen AFTER invocation_counter check, so method is not locked
 640   // if counter overflows.
 641 
 642   if (synchronized) {
 643     lock_method();
 644     // Don't see how G2_thread is preserved here...
 645     // __ verify_thread(); QQQ destroys L0,L1 can't use
 646   } else {
 647 #ifdef ASSERT
 648     { Label ok;
 649       __ ld_ptr(STATE(_method), G5_method);
 650       __ ld(access_flags, O0);
 651       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 652       __ br( Assembler::zero, false, Assembler::pt, ok);
 653       __ delayed()->nop();
 654       __ stop("method needs synchronization");
 655       __ bind(ok);
 656     }
 657 #endif // ASSERT
 658   }
 659 
 660   // start execution
 661 
 662 //   __ verify_thread(); kills L1,L2 can't  use at the moment
 663 
 664   // jvmti/jvmpi support 
 665   __ notify_method_entry();
 666 
 667   // native call
 668 
 669   // (note that O0 is never an oop--at most it is a handle)
 670   // It is important not to smash any handles created by this call,
 671   // until any oop handle in O0 is dereferenced.
 672 
 673   // (note that the space for outgoing params is preallocated)
 674 
 675   // get signature handler
 676 
 677   Label pending_exception_present;
 678 
 679   { Label L;
 680     __ ld_ptr(STATE(_method), G5_method);
 681     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
 682     __ tst(G3_scratch);
 683     __ brx(Assembler::notZero, false, Assembler::pt, L);
 684     __ delayed()->nop();
 685     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
 686     __ ld_ptr(STATE(_method), G5_method);
 687 
 688     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
 689     __ ld_ptr(exception_addr, G3_scratch);
 690     __ br_notnull(G3_scratch, false, Assembler::pn, pending_exception_present);
 691     __ delayed()->nop();
 692     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
 693     __ bind(L);
 694   }
 695 
 696   // Push a new frame so that the args will really be stored in
 697   // Copy a few locals across so the new frame has the variables
 698   // we need but these values will be dead at the jni call and
 699   // therefore not gc volatile like the values in the current
 700   // frame (Lstate in particular)
 701 
 702   // Flush the state pointer to the register save area
 703   // Which is the only register we need for a stack walk.
 704   __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 705 
 706   __ mov(Lstate, O1);         // Need to pass the state pointer across the frame
 707 
 708   // Calculate current frame size
 709   __ sub(SP, FP, O3);         // Calculate negative of current frame size 
 710   __ save(SP, O3, SP);        // Allocate an identical sized frame
 711 
 712   __ mov(I1, Lstate);          // In the "natural" register.
 713 
 714   // Note I7 has leftover trash. Slow signature handler will fill it in
 715   // should we get there. Normal jni call will set reasonable last_Java_pc
 716   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 717   // in it).
 718 
 719 
 720   // call signature handler
 721   __ ld_ptr(STATE(_method), Lmethod); 
 722   __ ld_ptr(STATE(_locals), Llocals);
 723 
 724   __ callr(G3_scratch, 0);
 725   __ delayed()->nop();
 726   __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)
 727 
 728   { Label not_static;
 729 
 730     __ ld_ptr(STATE(_method), G5_method);
 731     __ ld(access_flags, O0);
 732     __ btst(JVM_ACC_STATIC, O0);
 733     __ br( Assembler::zero, false, Assembler::pt, not_static);
 734     __ delayed()->
 735       // get native function entry point(O0 is a good temp until the very end)
 736        ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::native_function_offset())), O0);
 737     // for static methods insert the mirror argument
 738     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 739 
 740     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc:: constants_offset())), O1);
 741     __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1);
 742     __ ld_ptr(O1, mirror_offset, O1);
 743     // where the mirror handle body is allocated:
 744 #ifdef ASSERT
 745     if (!PrintSignatureHandlers)  // do not dirty the output with this
 746     { Label L;
 747       __ tst(O1);
 748       __ brx(Assembler::notZero, false, Assembler::pt, L);
 749       __ delayed()->nop();
 750       __ stop("mirror is missing");
 751       __ bind(L);
 752     }
 753 #endif // ASSERT
 754     __ st_ptr(O1, STATE(_oop_temp));
 755     __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
 756     __ bind(not_static);
 757   }
 758 
 759   // At this point, arguments have been copied off of stack into
 760   // their JNI positions, which are O1..O5 and SP[68..].
 761   // Oops are boxed in-place on the stack, with handles copied to arguments.
 762   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
 763 
 764 #ifdef ASSERT
 765   { Label L;
 766     __ tst(O0);
 767     __ brx(Assembler::notZero, false, Assembler::pt, L);
 768     __ delayed()->nop();
 769     __ stop("native entry point is missing");
 770     __ bind(L);
 771   }
 772 #endif // ASSERT
 773 
 774   //
 775   // setup the java frame anchor
 776   //
 777   // The scavenge function only needs to know that the PC of this frame is
 778   // in the interpreter method entry code, it doesn't need to know the exact
 779   // PC and hence we can use O7 which points to the return address from the
 780   // previous call in the code stream (signature handler function)
 781   //
 782   // The other trick is we set last_Java_sp to FP instead of the usual SP because
 783   // we have pushed the extra frame in order to protect the volatile register(s)
 784   // in that frame when we return from the jni call
 785   //
 786 
 787 
 788   __ set_last_Java_frame(FP, O7);
 789   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
 790                    // not meaningless information that'll confuse me.
 791 
 792   // flush the windows now. We don't care about the current (protection) frame
 793   // only the outer frames
 794 
 795   __ flush_windows(); 
 796 
 797   // mark windows as flushed
 798   Address flags(G2_thread,
 799                 0,
 800                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
 801   __ set(JavaFrameAnchor::flushed, G3_scratch);
 802   __ st(G3_scratch, flags);
 803 
 804   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
 805 
 806   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
 807 #ifdef ASSERT
 808   { Label L;
 809     __ ld(thread_state, G3_scratch);
 810     __ cmp(G3_scratch, _thread_in_Java);
 811     __ br(Assembler::equal, false, Assembler::pt, L);
 812     __ delayed()->nop();
 813     __ stop("Wrong thread state in native stub");
 814     __ bind(L);
 815   }
 816 #endif // ASSERT
 817   __ set(_thread_in_native, G3_scratch);
 818   __ st(G3_scratch, thread_state);
 819   
 820   // Call the jni method, using the delay slot to set the JNIEnv* argument.
 821   __ callr(O0, 0);
 822   __ delayed()->
 823      add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
 824   __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
 825 
 826   // must we block?
 827   
 828   // Block, if necessary, before resuming in _thread_in_Java state.
 829   // In order for GC to work, don't clear the last_Java_sp until after blocking.
 830   { Label no_block;
 831     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 832 
 833     // Switch thread to "native transition" state before reading the synchronization state.
 834     // This additional state is necessary because reading and testing the synchronization
 835     // state is not atomic w.r.t. GC, as this scenario demonstrates:
 836     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
 837     //     VM thread changes sync state to synchronizing and suspends threads for GC.
 838     //     Thread A is resumed to finish this native method, but doesn't block here since it
 839     //     didn't see any synchronization is progress, and escapes.
 840     __ set(_thread_in_native_trans, G3_scratch);
 841     __ st(G3_scratch, thread_state);
 842     if(os::is_MP()) { 
 843       // Write serialization page so VM thread can do a pseudo remote membar.
 844       // We use the current thread pointer to calculate a thread specific
 845       // offset to write to within the page. This minimizes bus traffic
 846       // due to cache line collision.
 847       __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
 848     }
 849     __ load_contents(sync_state, G3_scratch);
 850     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 851 
 852 
 853     Label L;
 854     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
 855     __ br(Assembler::notEqual, false, Assembler::pn, L);
 856     __ delayed()->
 857       ld(suspend_state, G3_scratch);
 858     __ cmp(G3_scratch, 0);
 859     __ br(Assembler::equal, false, Assembler::pt, no_block);
 860     __ delayed()->nop();
 861     __ bind(L);
 862 
 863     // Block.  Save any potential method result value before the operation and
 864     // use a leaf call to leave the last_Java_frame setup undisturbed.
 865     save_native_result();
 866     __ call_VM_leaf(noreg,
 867                     CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
 868                     G2_thread);
 869     __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
 870     // Restore any method result value
 871     restore_native_result();
 872     __ bind(no_block);
 873   }
 874 
 875   // Clear the frame anchor now
 876 
 877   __ reset_last_Java_frame();
 878 
 879   // Move the result handler address
 880   __ mov(Lscratch, G3_scratch);         
 881   // return possible result to the outer frame
 882 #ifndef __LP64
 883   __ mov(O0, I0);
 884   __ restore(O1, G0, O1);
 885 #else
 886   __ restore(O0, G0, O0);
 887 #endif /* __LP64 */
 888 
 889   // Move result handler to expected register
 890   __ mov(G3_scratch, Lscratch);  
 891 
 892 
 893   // thread state is thread_in_native_trans. Any safepoint blocking has
 894   // happened in the trampoline we are ready to switch to thread_in_Java.
 895 
 896   __ set(_thread_in_Java, G3_scratch);
 897   __ st(G3_scratch, thread_state);
 898 
 899   // If we have an oop result store it where it will be safe for any further gc
 900   // until we return now that we've released the handle it might be protected by
 901 
 902   {
 903     Label no_oop, store_result;
 904 
 905     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
 906     __ cmp(G3_scratch, Lscratch);
 907     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
 908     __ delayed()->nop();
 909     __ addcc(G0, O0, O0);
 910     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
 911     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
 912     __ mov(G0, O0);
 913 
 914     __ bind(store_result);
 915     // Store it where gc will look for it and result handler expects it.
 916     __ st_ptr(O0, STATE(_oop_temp));
 917 
 918     __ bind(no_oop);
 919 
 920   }
 921 
 922   // reset handle block
 923   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
 924   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
 925 
 926 
 927   // handle exceptions (exception handling will handle unlocking!)
 928   { Label L;
 929     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
 930 
 931     __ ld_ptr(exception_addr, Gtemp);
 932     __ tst(Gtemp);
 933     __ brx(Assembler::equal, false, Assembler::pt, L);
 934     __ delayed()->nop();
 935     __ bind(pending_exception_present);
 936     // With c++ interpreter we just leave it pending caller will do the correct thing. However...
 937     // Like x86 we ignore the result of the native call and leave the method locked. This
 938     // seems wrong to leave things locked.
 939 
 940     __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
 941     __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 942     
 943     __ bind(L);
 944   }
 945 
 946   // jvmdi/jvmpi support (preserves thread register) 
 947   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);  
 948 
 949   if (synchronized) {
 950     // save and restore any potential method result value around the unlocking operation
 951     save_native_result();
 952 
 953     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 954     // Get the initial monitor we allocated
 955     __ sub(Lstate, entry_size, O1);                        // initial monitor
 956     __ unlock_object(O1);
 957     restore_native_result();
 958   }
 959 
 960 #if defined(COMPILER2) && !defined(_LP64)
 961 
 962   // C2 expects long results in G1 we can't tell if we're returning to interpreted
 963   // or compiled so just be safe.
 964   
 965   __ sllx(O0, 32, G1);          // Shift bits into high G1
 966   __ srl (O1, 0, O1);           // Zero extend O1
 967   __ or3 (O1, G1, G1);          // OR 64 bits into G1
 968 
 969 #endif /* COMPILER2 && !_LP64 */
 970 
 971 #ifdef ASSERT
 972   {
 973     Label ok; 
 974     __ cmp(I5_savedSP, FP);
 975     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
 976     __ delayed()->nop();
 977     __ stop("bad I5_savedSP value");
 978     __ should_not_reach_here();
 979     __ bind(ok);
 980   }
 981 #endif
 982   // Calls result handler which POPS FRAME
 983   if (TraceJumps) {
 984     // Move target to register that is recordable
 985     __ mov(Lscratch, G3_scratch);  
 986     __ JMP(G3_scratch, 0);
 987   } else {
 988     __ jmp(Lscratch, 0);
 989   }
 990   __ delayed()->nop();
 991 
 992   if (inc_counter) {
 993     // handle invocation counter overflow
 994     __ bind(invocation_counter_overflow);
 995     generate_counter_overflow(Lcontinue);
 996   }
 997 
 998 
 999   return entry;
1000 }
1001 
1002 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state, 
1003                                                               const Register prev_state, 
1004                                                               bool native) {
1005 
1006   // On entry
1007   // G5_method - caller's method
1008   // Gargs - points to initial parameters (i.e. locals[0])
1009   // G2_thread - valid? (C1 only??)
1010   // "prev_state" - contains any previous frame manager state which we must save a link
1011   // 
1012   // On return
1013   // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
1014   // a new interpretState object and the method expression stack.
1015 
1016   assert_different_registers(state, prev_state);
1017   assert_different_registers(prev_state, G3_scratch);
1018   const Register Gtmp = G3_scratch;
1019   const Address constants         (G5_method, 0, in_bytes(methodOopDesc::constants_offset()));
1020   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
1021   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
1022   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
1023   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
1024 
1025   // slop factor is two extra slots on the expression stack so that
1026   // we always have room to store a result when returning from a call without parameters
1027   // that returns a result.
1028 
1029   const int slop_factor = 2*wordSize;
1030 
1031   const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
1032                          frame::memory_parameter_word_sp_offset +  // register save area + param window
1033                          (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
1034 
1035   // XXX G5_method valid
1036 
1037   // Now compute new frame size 
1038 
1039   if (native) {
1040     __ lduh( size_of_parameters, Gtmp );
1041     __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
1042   } else {
1043     __ lduh(max_stack, Gtmp);                // Full size expression stack
1044   }
1045   __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion
1046 
1047   __ neg(Gtmp);                               // negative space for stack/parameters in words
1048   __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
1049   __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes
1050 
1051   // Need to do stack size check here before we fault on large frames
1052 
1053   Label stack_ok;
1054 
1055   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
1056                                                                               (StackRedPages+StackYellowPages);
1057 
1058 
1059   __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
1060   __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
1061   // compute stack bottom
1062   __ sub(O0, O1, O0);
1063 
1064   // Avoid touching the guard pages
1065   // Also a fudge for frame size of BytecodeInterpreter::run
1066   // It varies from 1k->4k depending on build type
1067   const int fudge = 6 * K;
1068 
1069   __ set(fudge + (max_pages * os::vm_page_size()), O1);
1070 
1071   __ add(O0, O1, O0);
1072   __ sub(O0, Gtmp, O0);
1073   __ cmp(SP, O0);
1074   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
1075   __ delayed()->nop();
1076 
1077      // throw exception return address becomes throwing pc
1078 
1079   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
1080   __ stop("never reached");
1081 
1082   __ bind(stack_ok);
1083 
1084   __ save(SP, Gtmp, SP);                      // setup new frame and register window
1085 
1086   // New window I7 call_stub or previous activation
1087   // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
1088   // 
1089   __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
1090   __ add(state, STACK_BIAS, state );         // Account for 64bit bias
1091 
1092 #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
1093 
1094   // Initialize a new Interpreter state
1095   // orig_sp - caller's original sp
1096   // G2_thread - thread
1097   // Gargs - &locals[0] (unbiased?)
1098   // G5_method - method
1099   // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
1100 
1101 
1102   __ set(0xdead0004, O1);
1103 
1104 
1105   __ st_ptr(Gargs, XXX_STATE(_locals));
1106   __ st_ptr(G0, XXX_STATE(_oop_temp));
1107 
1108   __ st_ptr(state, XXX_STATE(_self_link));                // point to self
1109   __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
1110   __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread
1111 
1112   if (native) {
1113     __ st_ptr(G0, XXX_STATE(_bcp));
1114   } else {
1115     __ ld_ptr(G5_method, in_bytes(methodOopDesc::const_offset()), O2); // get constMethodOop
1116     __ add(O2, in_bytes(constMethodOopDesc::codes_offset()), O2);        // get bcp
1117     __ st_ptr(O2, XXX_STATE(_bcp));
1118   }
1119 
1120   __ st_ptr(G0, XXX_STATE(_mdx));
1121   __ st_ptr(G5_method, XXX_STATE(_method));
1122 
1123   __ set((int) BytecodeInterpreter::method_entry, O1);
1124   __ st(O1, XXX_STATE(_msg));
1125 
1126   __ ld_ptr(constants, O3);
1127   __ ld_ptr(O3, constantPoolOopDesc::cache_offset_in_bytes(), O2);
1128   __ st_ptr(O2, XXX_STATE(_constants));
1129 
1130   __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
1131 
1132   // Monitor base is just start of BytecodeInterpreter object;
1133   __ mov(state, O2);
1134   __ st_ptr(O2, XXX_STATE(_monitor_base));
1135 
1136   // Do we need a monitor for synchonized method?
1137   {
1138     __ ld(access_flags, O1);
1139     Label done;
1140     Label got_obj;
1141     __ btst(JVM_ACC_SYNCHRONIZED, O1);
1142     __ br( Assembler::zero, false, Assembler::pt, done);
1143 
1144     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
1145     __ delayed()->btst(JVM_ACC_STATIC, O1);
1146     __ ld_ptr(XXX_STATE(_locals), O1);
1147     __ br( Assembler::zero, true, Assembler::pt, got_obj);
1148     __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
1149     __ ld_ptr(constants, O1);
1150     __ ld_ptr( O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
1151     // lock the mirror, not the klassOop
1152     __ ld_ptr( O1, mirror_offset, O1);
1153 
1154     __ bind(got_obj);
1155 
1156   #ifdef ASSERT
1157     __ tst(O1);
1158     __ breakpoint_trap(Assembler::zero);
1159   #endif // ASSERT
1160 
1161     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
1162     __ sub(SP, entry_size, SP);                         // account for initial monitor
1163     __ sub(O2, entry_size, O2);                        // initial monitor
1164     __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
1165     __ bind(done);
1166   }
1167 
1168   // Remember initial frame bottom
1169 
1170   __ st_ptr(SP, XXX_STATE(_frame_bottom));
1171 
1172   __ st_ptr(O2, XXX_STATE(_stack_base));
1173 
1174   __ sub(O2, wordSize, O2);                    // prepush
1175   __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH
1176 
1177   __ lduh(max_stack, O3);                      // Full size expression stack
1178   __ sll(O3, LogBytesPerWord, O3);
1179   __ sub(O2, O3, O3);
1180 //  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
1181   __ st_ptr(O3, XXX_STATE(_stack_limit));
1182 
1183   if (!native) {
1184     //
1185     // Code to initialize locals
1186     //
1187     Register init_value = noreg;    // will be G0 if we must clear locals
1188     // Now zero locals 
1189     if (true /* zerolocals */ || ClearInterpreterLocals) {
1190       // explicitly initialize locals
1191       init_value = G0;
1192     } else {
1193     #ifdef ASSERT
1194       // initialize locals to a garbage pattern for better debugging
1195       init_value = O3;
1196       __ set( 0x0F0F0F0F, init_value );
1197     #endif // ASSERT
1198     }
1199     if (init_value != noreg) {
1200       Label clear_loop;
1201 
1202       // NOTE: If you change the frame layout, this code will need to
1203       // be updated!
1204       __ lduh( size_of_locals, O2 );
1205       __ lduh( size_of_parameters, O1 );
1206       __ sll( O2, LogBytesPerWord, O2);
1207       __ sll( O1, LogBytesPerWord, O1 );
1208       __ ld_ptr(XXX_STATE(_locals), L2_scratch);
1209       __ sub( L2_scratch, O2, O2 );
1210       __ sub( L2_scratch, O1, O1 );
1211 
1212       __ bind( clear_loop );
1213       __ inc( O2, wordSize );
1214 
1215       __ cmp( O2, O1 );
1216       __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1217       __ delayed()->st_ptr( init_value, O2, 0 );
1218     }
1219   }
1220 }
1221 // Find preallocated  monitor and lock method (C++ interpreter)
1222 // 
1223 void InterpreterGenerator::lock_method(void) {
1224 // Lock the current method. 
1225 // Destroys registers L2_scratch, L3_scratch, O0
1226 // 
1227 // Find everything relative to Lstate
1228 
1229 #ifdef ASSERT
1230   __ ld_ptr(STATE(_method), L2_scratch);
1231   __ ld(L2_scratch, in_bytes(methodOopDesc::access_flags_offset()), O0);
1232 
1233  { Label ok;
1234    __ btst(JVM_ACC_SYNCHRONIZED, O0);
1235    __ br( Assembler::notZero, false, Assembler::pt, ok);
1236    __ delayed()->nop();
1237    __ stop("method doesn't need synchronization");
1238    __ bind(ok);
1239   }
1240 #endif // ASSERT
1241 
1242   // monitor is already allocated at stack base
1243   // and the lockee is already present
1244   __ ld_ptr(STATE(_stack_base), L2_scratch);
1245   __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
1246   __ lock_object(L2_scratch, O0);
1247 
1248 }
1249 
1250 //  Generate code for handling resuming a deopted method
1251 void CppInterpreterGenerator::generate_deopt_handling() {
1252 
1253   Label return_from_deopt_common;
1254 
1255   // deopt needs to jump to here to enter the interpreter (return a result)
1256   deopt_frame_manager_return_atos  = __ pc();
1257 
1258   // O0/O1 live
1259   __ ba(false, return_from_deopt_common);
1260   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index
1261 
1262 
1263   // deopt needs to jump to here to enter the interpreter (return a result)
1264   deopt_frame_manager_return_btos  = __ pc();
1265 
1266   // O0/O1 live
1267   __ ba(false, return_from_deopt_common);
1268   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index
1269 
1270   // deopt needs to jump to here to enter the interpreter (return a result)
1271   deopt_frame_manager_return_itos  = __ pc();
1272 
1273   // O0/O1 live
1274   __ ba(false, return_from_deopt_common);
1275   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index
1276 
1277   // deopt needs to jump to here to enter the interpreter (return a result)
1278 
1279   deopt_frame_manager_return_ltos  = __ pc();
1280 #if !defined(_LP64) && defined(COMPILER2) 
1281   // All return values are where we want them, except for Longs.  C2 returns
1282   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
1283   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
1284   // build even if we are returning from interpreted we just do a little
1285   // stupid shuffing. 
1286   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
1287   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
1288   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
1289 
1290   __ srl (G1, 0,O1);
1291   __ srlx(G1,32,O0);
1292 #endif /* !_LP64 && COMPILER2 */
1293   // O0/O1 live
1294   __ ba(false, return_from_deopt_common);
1295   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index
1296 
1297   // deopt needs to jump to here to enter the interpreter (return a result)
1298 
1299   deopt_frame_manager_return_ftos  = __ pc();
1300   // O0/O1 live
1301   __ ba(false, return_from_deopt_common);
1302   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index
1303 
1304   // deopt needs to jump to here to enter the interpreter (return a result)
1305   deopt_frame_manager_return_dtos  = __ pc();
1306 
1307   // O0/O1 live
1308   __ ba(false, return_from_deopt_common);
1309   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index
1310 
1311   // deopt needs to jump to here to enter the interpreter (return a result)
1312   deopt_frame_manager_return_vtos  = __ pc();
1313 
1314   // O0/O1 live
1315   __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
1316 
1317   // Deopt return common 
1318   // an index is present that lets us move any possible result being
1319   // return to the interpreter's stack
1320   //
1321   __ bind(return_from_deopt_common);
1322 
1323   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1324   // stack is in the state that the  calling convention left it.
1325   // Copy the result from native abi result and place it on java expression stack.
1326 
1327   // Current interpreter state is present in Lstate
1328   
1329   // Get current pre-pushed top of interpreter stack
1330   // Any result (if any) is in native abi
1331   // result type index is in L3_scratch
1332 
1333   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1334 
1335   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1336   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1337   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
1338   __ jmpl(Lscratch, G0, O7);                                         // and convert it
1339   __ delayed()->nop();
1340 
1341   // L1_scratch points to top of stack (prepushed)
1342   __ st_ptr(L1_scratch, STATE(_stack));
1343 }
1344 
1345 // Generate the code to handle a more_monitors message from the c++ interpreter
1346 void CppInterpreterGenerator::generate_more_monitors() {
1347 
1348   Label entry, loop;
1349   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1350   // 1. compute new pointers                                // esp: old expression stack top
1351   __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
1352   __ sub(L4_scratch, entry_size, L4_scratch);
1353   __ st_ptr(L4_scratch, STATE(_stack_base));
1354 
1355   __ sub(SP, entry_size, SP);                  // Grow stack
1356   __ st_ptr(SP, STATE(_frame_bottom));
1357 
1358   __ ld_ptr(STATE(_stack_limit), L2_scratch);
1359   __ sub(L2_scratch, entry_size, L2_scratch);
1360   __ st_ptr(L2_scratch, STATE(_stack_limit));
1361 
1362   __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
1363   __ sub(L1_scratch, entry_size, L1_scratch);
1364   __ st_ptr(L1_scratch, STATE(_stack));
1365   __ ba(false, entry);
1366   __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)
1367  
1368   // 2. move expression stack
1369 
1370   __ bind(loop);
1371   __ st_ptr(L3_scratch, Address(L1_scratch, 0));
1372   __ add(L1_scratch, wordSize, L1_scratch);
1373   __ bind(entry);
1374   __ cmp(L1_scratch, L4_scratch);
1375   __ br(Assembler::notEqual, false, Assembler::pt, loop);
1376   __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
1377 
1378   // now zero the slot so we can find it.
1379   __ st(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
1380 
1381 }
1382 
1383 // Initial entry to C++ interpreter from the call_stub.
1384 // This entry point is called the frame manager since it handles the generation
1385 // of interpreter activation frames via requests directly from the vm (via call_stub)
1386 // and via requests from the interpreter. The requests from the call_stub happen
1387 // directly thru the entry point. Requests from the interpreter happen via returning
1388 // from the interpreter and examining the message the interpreter has returned to
1389 // the frame manager. The frame manager can take the following requests:
1390 
1391 // NO_REQUEST - error, should never happen.
1392 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1393 //                 allocate a new monitor.
1394 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1395 //               happens during entry during the entry via the call stub.
1396 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1397 //
1398 // Arguments:
1399 //
1400 // ebx: methodOop
1401 // ecx: receiver - unused (retrieved from stack as needed)
1402 // esi: previous frame manager state (NULL from the call_stub/c1/c2)
1403 //
1404 //
1405 // Stack layout at entry
1406 //
1407 // [ return address     ] <--- esp
1408 // [ parameter n        ]
1409 //   ...
1410 // [ parameter 1        ]
1411 // [ expression stack   ]
1412 //
1413 //
1414 // We are free to blow any registers we like because the call_stub which brought us here
1415 // initially has preserved the callee save registers already.
1416 //
1417 //
1418 
1419 static address interpreter_frame_manager = NULL;
1420 
1421 #ifdef ASSERT
1422   #define VALIDATE_STATE(scratch, marker)                         \
1423   {                                                               \
1424     Label skip;                                                   \
1425     __ ld_ptr(STATE(_self_link), scratch);                        \
1426     __ cmp(Lstate, scratch);                                      \
1427     __ brx(Assembler::equal, false, Assembler::pt, skip);         \
1428     __ delayed()->nop();                                          \
1429     __ breakpoint_trap();                                         \
1430     __ emit_long(marker);                                         \
1431     __ bind(skip);                                                \
1432   }
1433 #else
1434   #define VALIDATE_STATE(scratch, marker)
1435 #endif /* ASSERT */
1436 
1437 void CppInterpreterGenerator::adjust_callers_stack(Register args) {
1438 //
1439 // Adjust caller's stack so that all the locals can be contiguous with
1440 // the parameters. 
1441 // Worries about stack overflow make this a pain.
1442 //
1443 // Destroys args, G3_scratch, G3_scratch
1444 // In/Out O5_savedSP (sender's original SP)
1445 //
1446 //  assert_different_registers(state, prev_state);
1447   const Register Gtmp = G3_scratch;
1448   const Register tmp = O2;
1449   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
1450   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
1451 
1452   __ lduh(size_of_parameters, tmp);
1453   __ sll(tmp, LogBytesPerWord, Gtmp);       // parameter size in bytes
1454   __ add(args, Gtmp, Gargs);                // points to first local + BytesPerWord
1455   // NEW
1456   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
1457   // determine extra space for non-argument locals & adjust caller's SP
1458   // Gtmp1: parameter size in words
1459   __ lduh(size_of_locals, Gtmp);
1460   __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
1461 
1462 #if 1
1463   // c2i adapters place the final interpreter argument in the register save area for O0/I0
1464   // the call_stub will place the final interpreter argument at 
1465   // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
1466   // or c++ interpreter. However with the c++ interpreter when we do a recursive call
1467   // and try to make it look good in the debugger we will store the argument to
1468   // RecursiveInterpreterActivation in the register argument save area. Without allocating
1469   // extra space for the compiler this will overwrite locals in the local array of the
1470   // interpreter. 
1471   // QQQ still needed with frameless adapters???
1472   
1473   const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
1474 
1475   __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
1476 #endif // 1
1477 
1478 
1479   __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
1480 }
1481 
1482 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1483 
1484   // G5_method: methodOop
1485   // G2_thread: thread (unused)
1486   // Gargs:   bottom of args (sender_sp)
1487   // O5: sender's sp
1488 
1489   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1490   // the code is pretty much ready. Would need to change the test below and for good measure
1491   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1492   // routines. Not clear this is worth it yet.
1493 
1494   if (interpreter_frame_manager) {
1495     return interpreter_frame_manager;
1496   }
1497 
1498   __ bind(frame_manager_entry);
1499 
1500   // the following temporary registers are used during frame creation
1501   const Register Gtmp1 = G3_scratch;
1502   // const Register Lmirror = L1;     // native mirror (native calls only)
1503 
1504   const Address constants         (G5_method, 0, in_bytes(methodOopDesc::constants_offset()));
1505   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
1506   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
1507   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
1508   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
1509 
1510   address entry_point = __ pc();
1511   __ mov(G0, prevState);                                                 // no current activation
1512 
1513 
1514   Label re_dispatch;
1515 
1516   __ bind(re_dispatch);
1517 
1518   // Interpreter needs to have locals completely contiguous. In order to do that
1519   // We must adjust the caller's stack pointer for any locals beyond just the
1520   // parameters
1521   adjust_callers_stack(Gargs);
1522 
1523   // O5_savedSP still contains sender's sp
1524 
1525   // NEW FRAME
1526 
1527   generate_compute_interpreter_state(Lstate, prevState, false);
1528 
1529   // At this point a new interpreter frame and state object are created and initialized
1530   // Lstate has the pointer to the new activation
1531   // Any stack banging or limit check should already be done.
1532 
1533   Label call_interpreter;
1534 
1535   __ bind(call_interpreter);
1536 
1537 
1538 #if 1
1539   __ set(0xdead002, Lmirror);
1540   __ set(0xdead002, L2_scratch);
1541   __ set(0xdead003, L3_scratch);
1542   __ set(0xdead004, L4_scratch);
1543   __ set(0xdead005, Lscratch);
1544   __ set(0xdead006, Lscratch2);
1545   __ set(0xdead007, L7_scratch);
1546 
1547   __ set(0xdeaf002, O2);
1548   __ set(0xdeaf003, O3);
1549   __ set(0xdeaf004, O4);
1550   __ set(0xdeaf005, O5);
1551 #endif
1552 
1553   // Call interpreter (stack bang complete) enter here if message is
1554   // set and we know stack size is valid
1555 
1556   Label call_interpreter_2;
1557 
1558   __ bind(call_interpreter_2);
1559 
1560 #ifdef ASSERT
1561   {
1562     Label skip;
1563     __ ld_ptr(STATE(_frame_bottom), G3_scratch);
1564     __ cmp(G3_scratch, SP);
1565     __ brx(Assembler::equal, false, Assembler::pt, skip);
1566     __ delayed()->nop();
1567     __ stop("SP not restored to frame bottom");
1568     __ bind(skip);
1569   }
1570 #endif
1571 
1572   VALIDATE_STATE(G3_scratch, 4);
1573   __ set_last_Java_frame(SP, noreg);
1574   __ mov(Lstate, O0);                 // (arg) pointer to current state
1575 
1576   __ call(CAST_FROM_FN_PTR(address,
1577                            JvmtiExport::can_post_interpreter_events() ?
1578                                                                   BytecodeInterpreter::runWithChecks
1579                                                                 : BytecodeInterpreter::run),
1580          relocInfo::runtime_call_type);
1581 
1582   __ delayed()->nop();
1583 
1584   __ ld_ptr(STATE(_thread), G2_thread);
1585   __ reset_last_Java_frame();
1586 
1587   // examine msg from interpreter to determine next action
1588   __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread
1589   
1590   __ ld(STATE(_msg), L1_scratch);                                       // Get new message
1591 
1592   Label call_method;
1593   Label return_from_interpreted_method;
1594   Label throw_exception;
1595   Label do_OSR;
1596   Label bad_msg;
1597   Label resume_interpreter;
1598 
1599   __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
1600   __ br(Assembler::equal, false, Assembler::pt, call_method);
1601   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
1602   __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
1603   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
1604   __ br(Assembler::equal, false, Assembler::pt, throw_exception);
1605   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
1606   __ br(Assembler::equal, false, Assembler::pt, do_OSR);
1607   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
1608   __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
1609 
1610   // Allocate more monitor space, shuffle expression stack....
1611 
1612   generate_more_monitors();
1613 
1614   // new monitor slot allocated, resume the interpreter.
1615 
1616   __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
1617   VALIDATE_STATE(G3_scratch, 5);
1618   __ ba(false, call_interpreter);
1619   __ delayed()->st(L1_scratch, STATE(_msg));
1620 
1621   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1622   unctrap_frame_manager_entry  = __ pc();
1623 
1624   // QQQ what message do we send 
1625 
1626   __ ba(false, call_interpreter);
1627   __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame
1628 
1629   //=============================================================================
1630   // Returning from a compiled method into a deopted method. The bytecode at the
1631   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1632   // for the template based interpreter). Any stack space that was used by the
1633   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1634   // so all that we have to do is place any pending result on the expression stack
1635   // and resume execution on the next bytecode.
1636 
1637   generate_deopt_handling();
1638 
1639   // ready to resume the interpreter
1640 
1641   __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
1642   __ ba(false, call_interpreter);
1643   __ delayed()->st(L1_scratch, STATE(_msg));
1644 
1645   // Current frame has caught an exception we need to dispatch to the
1646   // handler. We can get here because a native interpreter frame caught
1647   // an exception in which case there is no handler and we must rethrow
1648   // If it is a vanilla interpreted frame the we simply drop into the
1649   // interpreter and let it do the lookup.
1650 
1651   Interpreter::_rethrow_exception_entry = __ pc();
1652 
1653   Label return_with_exception;
1654   Label unwind_and_forward;
1655 
1656   // O0: exception
1657   // O7: throwing pc
1658 
1659   // We want exception in the thread no matter what we ultimately decide about frame type.
1660 
1661   Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
1662   __ verify_thread();
1663   __ st_ptr(O0, exception_addr);
1664 
1665   // get the methodOop
1666   __ ld_ptr(STATE(_method), G5_method);
1667 
1668   // if this current frame vanilla or native?
1669 
1670   __ ld(access_flags, Gtmp1);
1671   __ btst(JVM_ACC_NATIVE, Gtmp1);
1672   __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
1673   __ delayed()->nop();
1674 
1675   // We drop thru to unwind a native interpreted frame with a pending exception
1676   // We jump here for the initial interpreter frame with exception pending 
1677   // We unwind the current acivation and forward it to our caller.
1678 
1679   __ bind(unwind_and_forward);
1680   
1681   // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
1682   // as expected by forward_exception.
1683 
1684   __ restore(FP, G0, SP);                  // unwind interpreter state frame
1685   __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1686   __ delayed()->mov(I5_savedSP->after_restore(), SP);
1687   
1688   // Return point from a call which returns a result in the native abi
1689   // (c1/c2/jni-native). This result must be processed onto the java
1690   // expression stack. 
1691   //
1692   // A pending exception may be present in which case there is no result present
1693 
1694   address return_from_native_method = __ pc();
1695 
1696   VALIDATE_STATE(G3_scratch, 6);
1697 
1698   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1699   // stack is in the state that the  calling convention left it.
1700   // Copy the result from native abi result and place it on java expression stack.
1701 
1702   // Current interpreter state is present in Lstate
1703 
1704   // Exception pending?
1705 
1706   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
1707   __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
1708   __ tst(Lscratch);                                                            // exception pending?
1709   __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
1710   __ delayed()->nop();
1711   
1712   // Process the native abi result to java expression stack
1713 
1714   __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
1715   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1716   __ lduh(L4_scratch, in_bytes(methodOopDesc::size_of_parameters_offset()), L2_scratch); // get parameter size
1717   __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
1718   __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
1719   __ ld_ptr(L4_scratch, in_bytes(methodOopDesc::result_index_offset()), L3_scratch); // called method result type index
1720 
1721   // tosca is really just native abi
1722   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1723   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1724   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
1725   __ jmpl(Lscratch, G0, O7);                                                   // and convert it
1726   __ delayed()->nop();
1727 
1728   // L1_scratch points to top of stack (prepushed)
1729 
1730   __ ba(false, resume_interpreter);
1731   __ delayed()->mov(L1_scratch, O1);
1732 
1733   // An exception is being caught on return to a vanilla interpreter frame.
1734   // Empty the stack and resume interpreter
1735 
1736   __ bind(return_with_exception);
1737 
1738   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
1739   __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
1740   __ ba(false, resume_interpreter);
1741   __ delayed()->sub(O1, wordSize, O1);                             // account for prepush
1742 
1743   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1744   // interpreter call, or native) and unwind this interpreter activation.
1745   // All monitors should be unlocked.
1746 
1747   __ bind(return_from_interpreted_method); 
1748 
1749   VALIDATE_STATE(G3_scratch, 7);
1750 
1751   Label return_to_initial_caller;
1752 
1753   // Interpreted result is on the top of the completed activation expression stack.
1754   // We must return it to the top of the callers stack if caller was interpreted
1755   // otherwise we convert to native abi result and return to call_stub/c1/c2 
1756   // The caller's expression stack was truncated by the call however the current activation
1757   // has enough stuff on the stack that we have usable space there no matter what. The
1758   // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
1759   // for the current activation
1760 
1761   __ ld_ptr(STATE(_prev_link), L1_scratch);
1762   __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
1763   __ ld_ptr(L2_scratch, in_bytes(methodOopDesc::result_index_offset()), L2_scratch);
1764   __ tst(L1_scratch);
1765   __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
1766   __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
1767 
1768   // Copy result to callers java stack
1769 
1770   __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
1771   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
1772   __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
1773   __ ld_ptr(STATE(_locals), O1);                                      // stack destination
1774 
1775   // O0 - will be source, O1 - will be destination (preserved)
1776   __ jmpl(Lscratch, G0, O7);                                          // and convert it
1777   __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)
1778 
1779   // O1 == &locals[0]
1780 
1781   // Result is now on caller's stack. Just unwind current activation and resume
1782 
1783   Label unwind_recursive_activation;
1784 
1785 
1786   __ bind(unwind_recursive_activation);
1787 
1788   // O1 == &locals[0] (really callers stacktop) for activation now returning
1789   // returning to interpreter method from "recursive" interpreter call
1790   // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
1791   // to. Now all we must do is unwind the state from the completed call
1792 
1793   // Must restore stack
1794   VALIDATE_STATE(G3_scratch, 8);
1795 
1796   // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
1797   // Result if any is already on the caller's stack. All we must do now is remove the now dead
1798   // frame and tell interpreter to resume.
1799 
1800 
1801   __ mov(O1, I1);                                                     // pass back new stack top across activation 
1802   // POP FRAME HERE ==================================
1803   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
1804   __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame
1805 
1806 
1807   // Resume the interpreter. The current frame contains the current interpreter
1808   // state object. 
1809   //
1810   // O1 == new java stack pointer
1811 
1812   __ bind(resume_interpreter);
1813   VALIDATE_STATE(G3_scratch, 10);
1814 
1815   // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry 
1816 
1817   __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
1818   __ st(L1_scratch, STATE(_msg));
1819   __ ba(false, call_interpreter_2);
1820   __ delayed()->st_ptr(O1, STATE(_stack));
1821 
1822 
1823   // Fast accessor methods share this entry point. 
1824   // This works because frame manager is in the same codelet
1825   // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
1826   // we need to do a little register fixup here once we distinguish the two of them
1827   if (UseFastAccessorMethods && !synchronized) {
1828   // Call stub_return address still in O7
1829     __ bind(fast_accessor_slow_entry_path);
1830     __ set((intptr_t)return_from_native_method - 8, Gtmp1);
1831     __ cmp(Gtmp1, O7);                                                // returning to interpreter?
1832     __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
1833     __ delayed()->nop();
1834     __ ba(false, re_dispatch);
1835     __ delayed()->mov(G0, prevState);                                   // initial entry
1836 
1837   }
1838 
1839   // interpreter returning to native code (call_stub/c1/c2) 
1840   // convert result and unwind initial activation
1841   // L2_scratch - scaled result type index
1842 
1843   __ bind(return_to_initial_caller);
1844 
1845   __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
1846   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
1847   __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
1848   __ jmpl(Lscratch, G0, O7);                                           // and convert it
1849   __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)
1850 
1851   Label unwind_initial_activation;
1852   __ bind(unwind_initial_activation); 
1853 
1854   // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
1855   // we can return here with an exception that wasn't handled by interpreted code
1856   // how does c1/c2 see it on return?
1857 
1858   // compute resulting sp before/after args popped depending upon calling convention
1859   // __ ld_ptr(STATE(_saved_sp), Gtmp1);
1860   // 
1861   // POP FRAME HERE ==================================
1862   __ restore(FP, G0, SP);
1863   __ retl();
1864   __ delayed()->mov(I5_savedSP->after_restore(), SP);
1865 
1866   // OSR request, unwind the current frame and transfer to the OSR entry
1867   // and enter OSR nmethod
1868 
1869   __ bind(do_OSR);
1870   Label remove_initial_frame;
1871   __ ld_ptr(STATE(_prev_link), L1_scratch);
1872   __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
1873 
1874   // We are going to pop this frame. Is there another interpreter frame underneath
1875   // it or is it callstub/compiled?
1876 
1877   __ tst(L1_scratch);
1878   __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
1879   __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
1880 
1881   // Frame underneath is an interpreter frame simply unwind
1882   // POP FRAME HERE ==================================
1883   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
1884   __ mov(I5_savedSP->after_restore(), SP);
1885 
1886   // Since we are now calling native need to change our "return address" from the
1887   // dummy RecursiveInterpreterActivation to a return from native
1888 
1889   __ set((intptr_t)return_from_native_method - 8, O7);
1890 
1891   __ jmpl(G3_scratch, G0, G0);
1892   __ delayed()->mov(G1_scratch, O0);
1893 
1894   __ bind(remove_initial_frame);
1895 
1896   // POP FRAME HERE ==================================
1897   __ restore(FP, G0, SP);
1898   __ mov(I5_savedSP->after_restore(), SP);
1899   __ jmpl(G3_scratch, G0, G0);
1900   __ delayed()->mov(G1_scratch, O0);
1901 
1902   // Call a new method. All we do is (temporarily) trim the expression stack
1903   // push a return address to bring us back to here and leap to the new entry.
1904   // At this point we have a topmost frame that was allocated by the frame manager
1905   // which contains the current method interpreted state. We trim this frame
1906   // of excess java expression stack entries and then recurse.
1907 
1908   __ bind(call_method);
1909 
1910   // stack points to next free location and not top element on expression stack
1911   // method expects sp to be pointing to topmost element
1912 
1913   __ ld_ptr(STATE(_thread), G2_thread);
1914   __ ld_ptr(STATE(_result._to_call._callee), G5_method);
1915 
1916 
1917   // SP already takes in to account the 2 extra words we use for slop
1918   // when we call a "static long no_params()" method. So if
1919   // we trim back sp by the amount of unused java expression stack
1920   // there will be automagically the 2 extra words we need.
1921   // We also have to worry about keeping SP aligned.
1922 
1923   __ ld_ptr(STATE(_stack), Gargs);
1924   __ ld_ptr(STATE(_stack_limit), L1_scratch);
1925 
1926   // compute the unused java stack size
1927   __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space
1928 
1929   // Round down the unused space to that stack is always aligned
1930   // by making the unused space a multiple of the size of a long.
1931 
1932   __ and3(L2_scratch, -BytesPerLong, L2_scratch);
1933 
1934   // Now trim the stack
1935   __ add(SP, L2_scratch, SP);
1936 
1937 
1938   // Now point to the final argument (account for prepush)
1939   __ add(Gargs, wordSize, Gargs);                         
1940 #ifdef ASSERT
1941   // Make sure we have space for the window
1942   __ sub(Gargs, SP, L1_scratch);
1943   __ cmp(L1_scratch, 16*wordSize);
1944   {
1945     Label skip;
1946     __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
1947     __ delayed()->nop();
1948     __ stop("killed stack");
1949     __ bind(skip);
1950   }
1951 #endif // ASSERT
1952 
1953   // Create a new frame where we can store values that make it look like the interpreter
1954   // really recursed.
1955 
1956   // prepare to recurse or call specialized entry
1957 
1958   // First link the registers we need
1959 
1960   // make the pc look good in debugger
1961   __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
1962   // argument too
1963   __ mov(Lstate, I0);
1964 
1965   // Record our sending SP
1966   __ mov(SP, O5_savedSP);
1967 
1968   __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
1969   __ set((intptr_t) entry_point, L1_scratch);
1970   __ cmp(L1_scratch, L2_scratch);
1971   __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
1972   __ delayed()->mov(Lstate, prevState);                                // link activations
1973    
1974   // method uses specialized entry, push a return so we look like call stub setup
1975   // this path will handle fact that result is returned in registers and not
1976   // on the java stack.
1977 
1978   __ set((intptr_t)return_from_native_method - 8, O7);
1979   __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
1980   __ delayed()->nop();
1981 
1982   //
1983   // Bad Message from interpreter
1984   //
1985   __ bind(bad_msg);
1986   __ stop("Bad message from interpreter");
1987 
1988   // Interpreted method "returned" with an exception pass it on...
1989   // Pass result, unwind activation and continue/return to interpreter/call_stub
1990   // We handle result (if any) differently based on return to interpreter or call_stub
1991 
1992   __ bind(throw_exception);
1993   __ ld_ptr(STATE(_prev_link), L1_scratch);
1994   __ tst(L1_scratch);
1995   __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
1996   __ delayed()->nop();
1997 
1998   __ ld_ptr(STATE(_locals), O1);                                   // get result of popping callee's args
1999   __ ba(false, unwind_recursive_activation);
2000   __ delayed()->nop();
2001 
2002   interpreter_frame_manager = entry_point;
2003   return entry_point;
2004 }
2005 
2006 InterpreterGenerator::InterpreterGenerator(StubQueue* code) 
2007  : CppInterpreterGenerator(code) {
2008    generate_all(); // down here so it can be "virtual"
2009 }
2010 
2011 
2012 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
2013 
2014   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
2015   // expression stack, the callee will have callee_extra_locals (so we can account for
2016   // frame extension) and monitor_size for monitors. Basically we need to calculate
2017   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
2018   //
2019   // 
2020   // The big complicating thing here is that we must ensure that the stack stays properly
2021   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
2022   // needs to be aligned for). We are given that the sp (fp) is already aligned by
2023   // the caller so we must ensure that it is properly aligned for our callee.
2024   //
2025   // Ths c++ interpreter always makes sure that we have a enough extra space on the
2026   // stack at all times to deal with the "stack long no_params()" method issue. This
2027   // is "slop_factor" here.
2028   const int slop_factor = 2;
2029   
2030   const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
2031                          frame::memory_parameter_word_sp_offset;   // register save area + param window
2032   return (round_to(max_stack + 
2033                    slop_factor + 
2034                    fixed_size +
2035                    monitor_size +
2036                    (callee_extra_locals * Interpreter::stackElementWords()), WordsPerLong));
2037 
2038 }
2039 
2040 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
2041 
2042   // See call_stub code
2043   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
2044                                  WordsPerLong);    // 7 + register save area
2045 
2046   // Save space for one monitor to get into the interpreted method in case
2047   // the method is synchronized
2048   int monitor_size    = method->is_synchronized() ?
2049                                 1*frame::interpreter_frame_monitor_size() : 0;
2050   return size_activation_helper(method->max_locals(), method->max_stack(),
2051                                  monitor_size) + call_stub_size;
2052 }
2053 
2054 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2055                                            frame* caller,
2056                                            frame* current,
2057                                            methodOop method,
2058                                            intptr_t* locals,
2059                                            intptr_t* stack,
2060                                            intptr_t* stack_base,
2061                                            intptr_t* monitor_base,
2062                                            intptr_t* frame_bottom,
2063                                            bool is_top_frame
2064                                            )
2065 {
2066   // What about any vtable?
2067   //
2068   to_fill->_thread = JavaThread::current();
2069   // This gets filled in later but make it something recognizable for now
2070   to_fill->_bcp = method->code_base();
2071   to_fill->_locals = locals;
2072   to_fill->_constants = method->constants()->cache();
2073   to_fill->_method = method;
2074   to_fill->_mdx = NULL;
2075   to_fill->_stack = stack;
2076   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2077     to_fill->_msg = deopt_resume2; 
2078   } else {
2079     to_fill->_msg = method_resume; 
2080   }
2081   to_fill->_result._to_call._bcp_advance = 0;
2082   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2083   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2084   to_fill->_prev_link = NULL;
2085 
2086   // Fill in the registers for the frame
2087 
2088   // Need to install _sender_sp. Actually not too hard in C++!
2089   // When the skeletal frames are layed out we fill in a value
2090   // for _sender_sp. That value is only correct for the oldest
2091   // skeletal frame constructed (because there is only a single
2092   // entry for "caller_adjustment". While the skeletal frames
2093   // exist that is good enough. We correct that calculation 
2094   // here and get all the frames correct.
2095   
2096   // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
2097 
2098   *current->register_addr(Lstate) = (intptr_t) to_fill;
2099   // skeletal already places a useful value here and this doesn't account
2100   // for alignment so don't bother.
2101   // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);
2102 
2103   if (caller->is_interpreted_frame()) {
2104     interpreterState prev  = caller->get_interpreterState();
2105     to_fill->_prev_link = prev;
2106     // Make the prev callee look proper
2107     prev->_result._to_call._callee = method;
2108     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2109       prev->_result._to_call._bcp_advance = 5;
2110     } else {
2111       prev->_result._to_call._bcp_advance = 3;
2112     }
2113   }
2114   to_fill->_oop_temp = NULL;
2115   to_fill->_stack_base = stack_base;
2116   // Need +1 here because stack_base points to the word just above the first expr stack entry
2117   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2118   // See generate_compute_interpreter_state.
2119   to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2120   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2121   
2122   // sparc specific
2123   to_fill->_frame_bottom = frame_bottom;
2124   to_fill->_self_link = to_fill;
2125 #ifdef ASSERT
2126   to_fill->_native_fresult = 123456.789;
2127   to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
2128 #endif
2129 }
2130 
2131 void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
2132   istate->_last_Java_pc = (intptr_t*) last_Java_pc;
2133 }
2134 
2135 
2136 int AbstractInterpreter::layout_activation(methodOop method, 
2137                                            int tempcount, // Number of slots on java expression stack in use
2138                                            int popframe_extra_args,
2139                                            int moncount,  // Number of active monitors
2140                                            int callee_param_size, 
2141                                            int callee_locals_size,
2142                                            frame* caller,
2143                                            frame* interpreter_frame,      
2144                                            bool is_top_frame) {
2145 
2146   assert(popframe_extra_args == 0, "NEED TO FIX");
2147   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2148   // does as far as allocating an interpreter frame.
2149   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
2150   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
2151   // as determined by a previous call to this method.
2152   // It is also guaranteed to be walkable even though it is in a skeletal state
2153   // NOTE: return size is in words not bytes
2154   // NOTE: tempcount is the current size of the java expression stack. For top most
2155   //       frames we will allocate a full sized expression stack and not the curback
2156   //       version that non-top frames have.
2157                                                   
2158   // Calculate the amount our frame will be adjust by the callee. For top frame
2159   // this is zero.
2160 
2161   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2162   // calculates the extra locals based on itself. Not what the callee does
2163   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2164   // as getting sender_sp correct.
2165 
2166   int extra_locals_size = callee_locals_size - callee_param_size;
2167   int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
2168   int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
2169   int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
2170   int frame_words = is_top_frame ? full_frame_words : short_frame_words;
2171                                                 
2172                                                 
2173   /*
2174     if we actually have a frame to layout we must now fill in all the pieces. This means both
2175     the interpreterState and the registers.
2176   */
2177   if (interpreter_frame != NULL) {
2178 
2179     // MUCHO HACK
2180 
2181     intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
2182 
2183     /* Now fillin the interpreterState object */
2184 
2185     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));
2186 
2187 
2188     intptr_t* locals;
2189 
2190     // Calculate the postion of locals[0]. This is painful because of
2191     // stack alignment (same as ia64). The problem is that we can
2192     // not compute the location of locals from fp(). fp() will account
2193     // for the extra locals but it also accounts for aligning the stack
2194     // and we can't determine if the locals[0] was misaligned but max_locals
2195     // was enough to have the 
2196     // calculate postion of locals. fp already accounts for extra locals.
2197     // +2 for the static long no_params() issue.
2198 
2199     if (caller->is_interpreted_frame()) {
2200       // locals must agree with the caller because it will be used to set the 
2201       // caller's tos when we return. 
2202       interpreterState prev  = caller->get_interpreterState();
2203       // stack() is prepushed.
2204       locals = prev->stack() + method->size_of_parameters();
2205     } else {
2206       // Lay out locals block in the caller adjacent to the register window save area.
2207       //
2208       // Compiled frames do not allocate a varargs area which is why this if
2209       // statement is needed. 
2210       //
2211       intptr_t* fp = interpreter_frame->fp();
2212       int local_words = method->max_locals() * Interpreter::stackElementWords();
2213 
2214       if (caller->is_compiled_frame()) {
2215         locals = fp + frame::register_save_words + local_words - 1;
2216       } else {
2217         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
2218       }
2219 
2220     }
2221     // END MUCHO HACK
2222 
2223     intptr_t* monitor_base = (intptr_t*) cur_state;
2224     intptr_t* stack_base =  monitor_base - monitor_size;
2225     /* +1 because stack is always prepushed */
2226     intptr_t* stack = stack_base - (tempcount + 1);
2227                              
2228 
2229     BytecodeInterpreter::layout_interpreterState(cur_state, 
2230                                           caller,
2231                                           interpreter_frame,
2232                                           method, 
2233                                           locals, 
2234                                           stack, 
2235                                           stack_base, 
2236                                           monitor_base, 
2237                                           frame_bottom,
2238                                           is_top_frame);
2239 
2240     BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2241 
2242   }
2243   return frame_words;
2244 }
2245 
2246 #endif // CC_INTERP 
2247