1 /*
   2  * Copyright 2007-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_cppInterpreter_x86.cpp.incl"
  27 
  28 #ifdef CC_INTERP
  29 
  30 // Routine exists to make tracebacks look decent in debugger
  31 // while we are recursed in the frame manager/c++ interpreter.
  32 // We could use an address in the frame manager but having
  33 // frames look natural in the debugger is a plus.
  34 extern "C" void RecursiveInterpreterActivation(interpreterState istate )
  35 {
  36   //
  37   ShouldNotReachHere();
  38 }
  39 
  40 
  41 #define __ _masm->
  42 #define STATE(field_name) (Address(state, byte_offset_of(BytecodeInterpreter, field_name)))
  43 
  44 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
  45                                       // c++ interpreter entry point this holds that entry point label.
  46 
  47 // default registers for state and sender_sp
  48 // state and sender_sp are the same on 32bit because we have no choice.
  49 // state could be rsi on 64bit but it is an arg reg and not callee save
  50 // so r13 is better choice.
  51 
  52 const Register state = NOT_LP64(rsi) LP64_ONLY(r13);
  53 const Register sender_sp_on_entry = NOT_LP64(rsi) LP64_ONLY(r13);
  54 
  55 // NEEDED for JVMTI?
  56 // address AbstractInterpreter::_remove_activation_preserving_args_entry;
  57 
  58 static address unctrap_frame_manager_entry  = NULL;
  59 
  60 static address deopt_frame_manager_return_atos  = NULL;
  61 static address deopt_frame_manager_return_btos  = NULL;
  62 static address deopt_frame_manager_return_itos  = NULL;
  63 static address deopt_frame_manager_return_ltos  = NULL;
  64 static address deopt_frame_manager_return_ftos  = NULL;
  65 static address deopt_frame_manager_return_dtos  = NULL;
  66 static address deopt_frame_manager_return_vtos  = NULL;
  67 
  68 int AbstractInterpreter::BasicType_as_index(BasicType type) {
  69   int i = 0;
  70   switch (type) {
  71     case T_BOOLEAN: i = 0; break;
  72     case T_CHAR   : i = 1; break;
  73     case T_BYTE   : i = 2; break;
  74     case T_SHORT  : i = 3; break;
  75     case T_INT    : i = 4; break;
  76     case T_VOID   : i = 5; break;
  77     case T_FLOAT  : i = 8; break;
  78     case T_LONG   : i = 9; break;
  79     case T_DOUBLE : i = 6; break;
  80     case T_OBJECT : // fall through
  81     case T_ARRAY  : i = 7; break;
  82     default       : ShouldNotReachHere();
  83   }
  84   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
  85   return i;
  86 }
  87 
  88 // Is this pc anywhere within code owned by the interpreter?
  89 // This only works for pc that might possibly be exposed to frame
  90 // walkers. It clearly misses all of the actual c++ interpreter
  91 // implementation
  92 bool CppInterpreter::contains(address pc)            {
  93     return (_code->contains(pc) ||
  94             pc == CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
  95 }
  96 
  97 
  98 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
  99   address entry = __ pc();
 100   switch (type) {
 101     case T_BOOLEAN: __ c2bool(rax);            break;
 102     case T_CHAR   : __ andl(rax, 0xFFFF);      break;
 103     case T_BYTE   : __ sign_extend_byte (rax); break;
 104     case T_SHORT  : __ sign_extend_short(rax); break;
 105     case T_VOID   : // fall thru
 106     case T_LONG   : // fall thru
 107     case T_INT    : /* nothing to do */        break;
 108 
 109     case T_DOUBLE :
 110     case T_FLOAT  :
 111       {
 112         const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 113         __ pop(t);                            // remove return address first
 114         // Must return a result for interpreter or compiler. In SSE
 115         // mode, results are returned in xmm0 and the FPU stack must
 116         // be empty.
 117         if (type == T_FLOAT && UseSSE >= 1) {
 118 #ifndef _LP64
 119           // Load ST0
 120           __ fld_d(Address(rsp, 0));
 121           // Store as float and empty fpu stack
 122           __ fstp_s(Address(rsp, 0));
 123 #endif // !_LP64
 124           // and reload
 125           __ movflt(xmm0, Address(rsp, 0));
 126         } else if (type == T_DOUBLE && UseSSE >= 2 ) {
 127           __ movdbl(xmm0, Address(rsp, 0));
 128         } else {
 129           // restore ST0
 130           __ fld_d(Address(rsp, 0));
 131         }
 132         // and pop the temp
 133         __ addptr(rsp, 2 * wordSize);
 134         __ push(t);                            // restore return address
 135       }
 136       break;
 137     case T_OBJECT :
 138       // retrieve result from frame
 139       __ movptr(rax, STATE(_oop_temp));
 140       // and verify it
 141       __ verify_oop(rax);
 142       break;
 143     default       : ShouldNotReachHere();
 144   }
 145   __ ret(0);                                   // return from result handler
 146   return entry;
 147 }
 148 
 149 // tosca based result to c++ interpreter stack based result.
 150 // Result goes to top of native stack.
 151 
 152 #undef EXTEND  // SHOULD NOT BE NEEDED
 153 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
 154   // A result is in the tosca (abi result) from either a native method call or compiled
 155   // code. Place this result on the java expression stack so C++ interpreter can use it.
 156   address entry = __ pc();
 157 
 158   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 159   __ pop(t);                            // remove return address first
 160   switch (type) {
 161     case T_VOID:
 162        break;
 163     case T_BOOLEAN:
 164 #ifdef EXTEND
 165       __ c2bool(rax);
 166 #endif
 167       __ push(rax);
 168       break;
 169     case T_CHAR   :
 170 #ifdef EXTEND
 171       __ andl(rax, 0xFFFF);
 172 #endif
 173       __ push(rax);
 174       break;
 175     case T_BYTE   :
 176 #ifdef EXTEND
 177       __ sign_extend_byte (rax);
 178 #endif
 179       __ push(rax);
 180       break;
 181     case T_SHORT  :
 182 #ifdef EXTEND
 183       __ sign_extend_short(rax);
 184 #endif
 185       __ push(rax);
 186       break;
 187     case T_LONG    :
 188       __ push(rdx);                             // pushes useless junk on 64bit
 189       __ push(rax);
 190       break;
 191     case T_INT    :
 192       __ push(rax);
 193       break;
 194     case T_FLOAT  :
 195       // Result is in ST(0)/xmm0
 196       __ subptr(rsp, wordSize);
 197       if ( UseSSE < 1) {
 198         __ fstp_s(Address(rsp, 0));
 199       } else {
 200         __ movflt(Address(rsp, 0), xmm0);
 201       }
 202       break;
 203     case T_DOUBLE  :
 204       __ subptr(rsp, 2*wordSize);
 205       if ( UseSSE < 2 ) {
 206         __ fstp_d(Address(rsp, 0));
 207       } else {
 208         __ movdbl(Address(rsp, 0), xmm0);
 209       }
 210       break;
 211     case T_OBJECT :
 212       __ verify_oop(rax);                      // verify it
 213       __ push(rax);
 214       break;
 215     default       : ShouldNotReachHere();
 216   }
 217   __ jmp(t);                                   // return from result handler
 218   return entry;
 219 }
 220 
 221 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
 222   // A result is in the java expression stack of the interpreted method that has just
 223   // returned. Place this result on the java expression stack of the caller.
 224   //
 225   // The current interpreter activation in rsi/r13 is for the method just returning its
 226   // result. So we know that the result of this method is on the top of the current
 227   // execution stack (which is pre-pushed) and will be return to the top of the caller
 228   // stack. The top of the callers stack is the bottom of the locals of the current
 229   // activation.
 230   // Because of the way activation are managed by the frame manager the value of rsp is
 231   // below both the stack top of the current activation and naturally the stack top
 232   // of the calling activation. This enable this routine to leave the return address
 233   // to the frame manager on the stack and do a vanilla return.
 234   //
 235   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
 236   // On Return: rsi/r13 - unchanged
 237   //            rax - new stack top for caller activation (i.e. activation in _prev_link)
 238   //
 239   // Can destroy rdx, rcx.
 240   //
 241 
 242   address entry = __ pc();
 243   const Register t = InterpreterRuntime::SignatureHandlerGenerator::temp();
 244   switch (type) {
 245     case T_VOID:
 246       __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
 247       __ addptr(rax, wordSize);                                         // account for prepush before we return
 248       break;
 249     case T_FLOAT  :
 250     case T_BOOLEAN:
 251     case T_CHAR   :
 252     case T_BYTE   :
 253     case T_SHORT  :
 254     case T_INT    :
 255       // 1 word result
 256       __ movptr(rdx, STATE(_stack));
 257       __ movptr(rax, STATE(_locals));                                   // address for result
 258       __ movl(rdx, Address(rdx, wordSize));                             // get result
 259       __ movptr(Address(rax, 0), rdx);                                  // and store it
 260       break;
 261     case T_LONG    :
 262     case T_DOUBLE  :
 263       // return top two words on current expression stack to caller's expression stack
 264       // The caller's expression stack is adjacent to the current frame manager's intepretState
 265       // except we allocated one extra word for this intepretState so we won't overwrite it
 266       // when we return a two word result.
 267 
 268       __ movptr(rax, STATE(_locals));                                   // address for result
 269       __ movptr(rcx, STATE(_stack));
 270       __ subptr(rax, wordSize);                                         // need addition word besides locals[0]
 271       __ movptr(rdx, Address(rcx, 2*wordSize));                         // get result word (junk in 64bit)
 272       __ movptr(Address(rax, wordSize), rdx);                           // and store it
 273       __ movptr(rdx, Address(rcx, wordSize));                           // get result word
 274       __ movptr(Address(rax, 0), rdx);                                  // and store it
 275       break;
 276     case T_OBJECT :
 277       __ movptr(rdx, STATE(_stack));
 278       __ movptr(rax, STATE(_locals));                                   // address for result
 279       __ movptr(rdx, Address(rdx, wordSize));                           // get result
 280       __ verify_oop(rdx);                                               // verify it
 281       __ movptr(Address(rax, 0), rdx);                                  // and store it
 282       break;
 283     default       : ShouldNotReachHere();
 284   }
 285   __ ret(0);
 286   return entry;
 287 }
 288 
 289 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
 290   // A result is in the java expression stack of the interpreted method that has just
 291   // returned. Place this result in the native abi that the caller expects.
 292   //
 293   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
 294   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
 295   // and so rather than return result onto caller's java expression stack we return the
 296   // result in the expected location based on the native abi.
 297   // On entry: rsi/r13 - interpreter state of activation returning a (potential) result
 298   // On Return: rsi/r13 - unchanged
 299   // Other registers changed [rax/rdx/ST(0) as needed for the result returned]
 300 
 301   address entry = __ pc();
 302   switch (type) {
 303     case T_VOID:
 304        break;
 305     case T_BOOLEAN:
 306     case T_CHAR   :
 307     case T_BYTE   :
 308     case T_SHORT  :
 309     case T_INT    :
 310       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 311       __ movl(rax, Address(rdx, wordSize));                             // get result word 1
 312       break;
 313     case T_LONG    :
 314       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 315       __ movptr(rax, Address(rdx, wordSize));                           // get result low word
 316       NOT_LP64(__ movl(rdx, Address(rdx, 2*wordSize));)                 // get result high word
 317       break;
 318     case T_FLOAT  :
 319       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 320       if ( UseSSE >= 1) {
 321         __ movflt(xmm0, Address(rdx, wordSize));
 322       } else {
 323         __ fld_s(Address(rdx, wordSize));                               // pushd float result
 324       }
 325       break;
 326     case T_DOUBLE  :
 327       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 328       if ( UseSSE > 1) {
 329         __ movdbl(xmm0, Address(rdx, wordSize));
 330       } else {
 331         __ fld_d(Address(rdx, wordSize));                               // push double result
 332       }
 333       break;
 334     case T_OBJECT :
 335       __ movptr(rdx, STATE(_stack));                                    // get top of stack
 336       __ movptr(rax, Address(rdx, wordSize));                           // get result word 1
 337       __ verify_oop(rax);                                               // verify it
 338       break;
 339     default       : ShouldNotReachHere();
 340   }
 341   __ ret(0);
 342   return entry;
 343 }
 344 
 345 address CppInterpreter::return_entry(TosState state, int length) {
 346   // make it look good in the debugger
 347   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation);
 348 }
 349 
 350 address CppInterpreter::deopt_entry(TosState state, int length) {
 351   address ret = NULL;
 352   if (length != 0) {
 353     switch (state) {
 354       case atos: ret = deopt_frame_manager_return_atos; break;
 355       case btos: ret = deopt_frame_manager_return_btos; break;
 356       case ctos:
 357       case stos:
 358       case itos: ret = deopt_frame_manager_return_itos; break;
 359       case ltos: ret = deopt_frame_manager_return_ltos; break;
 360       case ftos: ret = deopt_frame_manager_return_ftos; break;
 361       case dtos: ret = deopt_frame_manager_return_dtos; break;
 362       case vtos: ret = deopt_frame_manager_return_vtos; break;
 363     }
 364   } else {
 365     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
 366   }
 367   assert(ret != NULL, "Not initialized");
 368   return ret;
 369 }
 370 
 371 // C++ Interpreter
 372 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
 373                                                                  const Register locals,
 374                                                                  const Register sender_sp,
 375                                                                  bool native) {
 376 
 377   // On entry the "locals" argument points to locals[0] (or where it would be in case no locals in
 378   // a static method). "state" contains any previous frame manager state which we must save a link
 379   // to in the newly generated state object. On return "state" is a pointer to the newly allocated
 380   // state object. We must allocate and initialize a new interpretState object and the method
 381   // expression stack. Because the returned result (if any) of the method will be placed on the caller's
 382   // expression stack and this will overlap with locals[0] (and locals[1] if double/long) we must
 383   // be sure to leave space on the caller's stack so that this result will not overwrite values when
 384   // locals[0] and locals[1] do not exist (and in fact are return address and saved rbp). So when
 385   // we are non-native we in essence ensure that locals[0-1] exist. We play an extra trick in
 386   // non-product builds and initialize this last local with the previous interpreterState as
 387   // this makes things look real nice in the debugger.
 388 
 389   // State on entry
 390   // Assumes locals == &locals[0]
 391   // Assumes state == any previous frame manager state (assuming call path from c++ interpreter)
 392   // Assumes rax = return address
 393   // rcx == senders_sp
 394   // rbx == method
 395   // Modifies rcx, rdx, rax
 396   // Returns:
 397   // state == address of new interpreterState
 398   // rsp == bottom of method's expression stack.
 399 
 400   const Address const_offset      (rbx, methodOopDesc::const_offset());
 401 
 402 
 403   // On entry sp is the sender's sp. This includes the space for the arguments
 404   // that the sender pushed. If the sender pushed no args (a static) and the
 405   // caller returns a long then we need two words on the sender's stack which
 406   // are not present (although when we return a restore full size stack the
 407   // space will be present). If we didn't allocate two words here then when
 408   // we "push" the result of the caller's stack we would overwrite the return
 409   // address and the saved rbp. Not good. So simply allocate 2 words now
 410   // just to be safe. This is the "static long no_params() method" issue.
 411   // See Lo.java for a testcase.
 412   // We don't need this for native calls because they return result in
 413   // register and the stack is expanded in the caller before we store
 414   // the results on the stack.
 415 
 416   if (!native) {
 417 #ifdef PRODUCT
 418     __ subptr(rsp, 2*wordSize);
 419 #else /* PRODUCT */
 420     __ push((int32_t)NULL_WORD);
 421     __ push(state);                         // make it look like a real argument
 422 #endif /* PRODUCT */
 423   }
 424 
 425   // Now that we are assure of space for stack result, setup typical linkage
 426 
 427   __ push(rax);
 428   __ enter();
 429 
 430   __ mov(rax, state);                                  // save current state
 431 
 432   __ lea(rsp, Address(rsp, -(int)sizeof(BytecodeInterpreter)));
 433   __ mov(state, rsp);
 434 
 435   // rsi/r13 == state/locals rax == prevstate
 436 
 437   // initialize the "shadow" frame so that use since C++ interpreter not directly
 438   // recursive. Simpler to recurse but we can't trim expression stack as we call
 439   // new methods.
 440   __ movptr(STATE(_locals), locals);                    // state->_locals = locals()
 441   __ movptr(STATE(_self_link), state);                  // point to self
 442   __ movptr(STATE(_prev_link), rax);                    // state->_link = state on entry (NULL or previous state)
 443   __ movptr(STATE(_sender_sp), sender_sp);              // state->_sender_sp = sender_sp
 444 #ifdef _LP64
 445   __ movptr(STATE(_thread), r15_thread);                // state->_bcp = codes()
 446 #else
 447   __ get_thread(rax);                                   // get vm's javathread*
 448   __ movptr(STATE(_thread), rax);                       // state->_bcp = codes()
 449 #endif // _LP64
 450   __ movptr(rdx, Address(rbx, methodOopDesc::const_offset())); // get constantMethodOop
 451   __ lea(rdx, Address(rdx, constMethodOopDesc::codes_offset())); // get code base
 452   if (native) {
 453     __ movptr(STATE(_bcp), (int32_t)NULL_WORD);         // state->_bcp = NULL
 454   } else {
 455     __ movptr(STATE(_bcp), rdx);                        // state->_bcp = codes()
 456   }
 457   __ xorptr(rdx, rdx);
 458   __ movptr(STATE(_oop_temp), rdx);                     // state->_oop_temp = NULL (only really needed for native)
 459   __ movptr(STATE(_mdx), rdx);                          // state->_mdx = NULL
 460   __ movptr(rdx, Address(rbx, methodOopDesc::constants_offset()));
 461   __ movptr(rdx, Address(rdx, constantPoolOopDesc::cache_offset_in_bytes()));
 462   __ movptr(STATE(_constants), rdx);                    // state->_constants = constants()
 463 
 464   __ movptr(STATE(_method), rbx);                       // state->_method = method()
 465   __ movl(STATE(_msg), (int32_t) BytecodeInterpreter::method_entry);   // state->_msg = initial method entry
 466   __ movptr(STATE(_result._to_call._callee), (int32_t) NULL_WORD); // state->_result._to_call._callee_callee = NULL
 467 
 468 
 469   __ movptr(STATE(_monitor_base), rsp);                 // set monitor block bottom (grows down) this would point to entry [0]
 470                                                         // entries run from -1..x where &monitor[x] ==
 471 
 472   {
 473     // Must not attempt to lock method until we enter interpreter as gc won't be able to find the
 474     // initial frame. However we allocate a free monitor so we don't have to shuffle the expression stack
 475     // immediately.
 476 
 477     // synchronize method
 478     const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 479     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 480     Label not_synced;
 481 
 482     __ movl(rax, access_flags);
 483     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 484     __ jcc(Assembler::zero, not_synced);
 485 
 486     // Allocate initial monitor and pre initialize it
 487     // get synchronization object
 488 
 489     Label done;
 490     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 491     __ movl(rax, access_flags);
 492     __ testl(rax, JVM_ACC_STATIC);
 493     __ movptr(rax, Address(locals, 0));                   // get receiver (assume this is frequent case)
 494     __ jcc(Assembler::zero, done);
 495     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
 496     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
 497     __ movptr(rax, Address(rax, mirror_offset));
 498     __ bind(done);
 499     // add space for monitor & lock
 500     __ subptr(rsp, entry_size);                                           // add space for a monitor entry
 501     __ movptr(Address(rsp, BasicObjectLock::obj_offset_in_bytes()), rax); // store object
 502     __ bind(not_synced);
 503   }
 504 
 505   __ movptr(STATE(_stack_base), rsp);                                     // set expression stack base ( == &monitors[-count])
 506   if (native) {
 507     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
 508     __ movptr(STATE(_stack_limit), rsp);
 509   } else {
 510     __ subptr(rsp, wordSize);                                             // pre-push stack
 511     __ movptr(STATE(_stack), rsp);                                        // set current expression stack tos
 512 
 513     // compute full expression stack limit
 514 
 515     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
 516     __ load_unsigned_word(rdx, size_of_stack);                            // get size of expression stack in words
 517     __ negptr(rdx);                                                       // so we can subtract in next step
 518     // Allocate expression stack
 519     __ lea(rsp, Address(rsp, rdx, Address::times_ptr));
 520     __ movptr(STATE(_stack_limit), rsp);
 521   }
 522 
 523 #ifdef _LP64
 524   // Make sure stack is properly aligned and sized for the abi
 525   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
 526   __ andptr(rsp, -16); // must be 16 byte boundry (see amd64 ABI)
 527 #endif // _LP64
 528 
 529 
 530 
 531 }
 532 
 533 // Helpers for commoning out cases in the various type of method entries.
 534 //
 535 
 536 // increment invocation count & check for overflow
 537 //
 538 // Note: checking for negative value instead of overflow
 539 //       so we have a 'sticky' overflow test
 540 //
 541 // rbx,: method
 542 // rcx: invocation counter
 543 //
 544 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 545 
 546   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
 547   const Address backedge_counter  (rbx, methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset());
 548 
 549   if (ProfileInterpreter) { // %%% Merge this into methodDataOop
 550     __ incrementl(Address(rbx,methodOopDesc::interpreter_invocation_counter_offset()));
 551   }
 552   // Update standard invocation counters
 553   __ movl(rax, backedge_counter);               // load backedge counter
 554 
 555   __ increment(rcx, InvocationCounter::count_increment);
 556   __ andl(rax, InvocationCounter::count_mask_value);  // mask out the status bits
 557 
 558   __ movl(invocation_counter, rcx);             // save invocation count
 559   __ addl(rcx, rax);                            // add both counters
 560 
 561   // profile_method is non-null only for interpreted method so
 562   // profile_method != NULL == !native_call
 563   // BytecodeInterpreter only calls for native so code is elided.
 564 
 565   __ cmp32(rcx,
 566            ExternalAddress((address)&InvocationCounter::InterpreterInvocationLimit));
 567   __ jcc(Assembler::aboveEqual, *overflow);
 568 
 569 }
 570 
 571 void InterpreterGenerator::generate_counter_overflow(Label* do_continue) {
 572 
 573   // C++ interpreter on entry
 574   // rsi/r13 - new interpreter state pointer
 575   // rbp - interpreter frame pointer
 576   // rbx - method
 577 
 578   // On return (i.e. jump to entry_point) [ back to invocation of interpreter ]
 579   // rbx, - method
 580   // rcx - rcvr (assuming there is one)
 581   // top of stack return address of interpreter caller
 582   // rsp - sender_sp
 583 
 584   // C++ interpreter only
 585   // rsi/r13 - previous interpreter state pointer
 586 
 587   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
 588 
 589   // InterpreterRuntime::frequency_counter_overflow takes one argument
 590   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
 591   // The call returns the address of the verified entry point for the method or NULL
 592   // if the compilation did not complete (either went background or bailed out).
 593   __ movptr(rax, (int32_t)false);
 594   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rax);
 595 
 596   // for c++ interpreter can rsi really be munged?
 597   __ lea(state, Address(rbp, -sizeof(BytecodeInterpreter)));                               // restore state
 598   __ movptr(rbx, Address(state, byte_offset_of(BytecodeInterpreter, _method)));            // restore method
 599   __ movptr(rdi, Address(state, byte_offset_of(BytecodeInterpreter, _locals)));            // get locals pointer
 600 
 601   __ jmp(*do_continue, relocInfo::none);
 602 
 603 }
 604 
 605 void InterpreterGenerator::generate_stack_overflow_check(void) {
 606   // see if we've got enough room on the stack for locals plus overhead.
 607   // the expression stack grows down incrementally, so the normal guard
 608   // page mechanism will work for that.
 609   //
 610   // Registers live on entry:
 611   //
 612   // Asm interpreter
 613   // rdx: number of additional locals this frame needs (what we must check)
 614   // rbx,: methodOop
 615 
 616   // C++ Interpreter
 617   // rsi/r13: previous interpreter frame state object
 618   // rdi: &locals[0]
 619   // rcx: # of locals
 620   // rdx: number of additional locals this frame needs (what we must check)
 621   // rbx: methodOop
 622 
 623   // destroyed on exit
 624   // rax,
 625 
 626   // NOTE:  since the additional locals are also always pushed (wasn't obvious in
 627   // generate_method_entry) so the guard should work for them too.
 628   //
 629 
 630   // monitor entry size: see picture of stack set (generate_method_entry) and frame_i486.hpp
 631   const int entry_size    = frame::interpreter_frame_monitor_size() * wordSize;
 632 
 633   // total overhead size: entry_size + (saved rbp, thru expr stack bottom).
 634   // be sure to change this if you add/subtract anything to/from the overhead area
 635   const int overhead_size = (int)sizeof(BytecodeInterpreter);
 636 
 637   const int page_size = os::vm_page_size();
 638 
 639   Label after_frame_check;
 640 
 641   // compute rsp as if this were going to be the last frame on
 642   // the stack before the red zone
 643 
 644   Label after_frame_check_pop;
 645 
 646   // save rsi == caller's bytecode ptr (c++ previous interp. state)
 647   // QQQ problem here?? rsi overload????
 648   __ push(state);
 649 
 650   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rsi);
 651 
 652   NOT_LP64(__ get_thread(thread));
 653 
 654   const Address stack_base(thread, Thread::stack_base_offset());
 655   const Address stack_size(thread, Thread::stack_size_offset());
 656 
 657   // locals + overhead, in bytes
 658     const Address size_of_stack    (rbx, methodOopDesc::max_stack_offset());
 659     // Always give one monitor to allow us to start interp if sync method.
 660     // Any additional monitors need a check when moving the expression stack
 661     const one_monitor = frame::interpreter_frame_monitor_size() * wordSize;
 662   __ load_unsigned_word(rax, size_of_stack);                            // get size of expression stack in words
 663   __ lea(rax, Address(noreg, rax, Interpreter::stackElementScale(), one_monitor));
 664   __ lea(rax, Address(rax, rdx, Interpreter::stackElementScale(), overhead_size));
 665 
 666 #ifdef ASSERT
 667   Label stack_base_okay, stack_size_okay;
 668   // verify that thread stack base is non-zero
 669   __ cmpptr(stack_base, (int32_t)0);
 670   __ jcc(Assembler::notEqual, stack_base_okay);
 671   __ stop("stack base is zero");
 672   __ bind(stack_base_okay);
 673   // verify that thread stack size is non-zero
 674   __ cmpptr(stack_size, (int32_t)0);
 675   __ jcc(Assembler::notEqual, stack_size_okay);
 676   __ stop("stack size is zero");
 677   __ bind(stack_size_okay);
 678 #endif
 679 
 680   // Add stack base to locals and subtract stack size
 681   __ addptr(rax, stack_base);
 682   __ subptr(rax, stack_size);
 683 
 684   // We should have a magic number here for the size of the c++ interpreter frame.
 685   // We can't actually tell this ahead of time. The debug version size is around 3k
 686   // product is 1k and fastdebug is 4k
 687   const int slop = 6 * K;
 688 
 689   // Use the maximum number of pages we might bang.
 690   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
 691                                                                               (StackRedPages+StackYellowPages);
 692   // Only need this if we are stack banging which is temporary while
 693   // we're debugging.
 694   __ addptr(rax, slop + 2*max_pages * page_size);
 695 
 696   // check against the current stack bottom
 697   __ cmpptr(rsp, rax);
 698   __ jcc(Assembler::above, after_frame_check_pop);
 699 
 700   __ pop(state);  //  get c++ prev state.
 701 
 702      // throw exception return address becomes throwing pc
 703   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 704 
 705   // all done with frame size check
 706   __ bind(after_frame_check_pop);
 707   __ pop(state);
 708 
 709   __ bind(after_frame_check);
 710 }
 711 
 712 // Find preallocated  monitor and lock method (C++ interpreter)
 713 // rbx - methodOop
 714 //
 715 void InterpreterGenerator::lock_method(void) {
 716   // assumes state == rsi/r13 == pointer to current interpreterState
 717   // minimally destroys rax, rdx|c_rarg1, rdi
 718   //
 719   // synchronize method
 720   const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 721   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 722 
 723   const Register monitor  = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
 724 
 725   // find initial monitor i.e. monitors[-1]
 726   __ movptr(monitor, STATE(_monitor_base));                                   // get monitor bottom limit
 727   __ subptr(monitor, entry_size);                                             // point to initial monitor
 728 
 729 #ifdef ASSERT
 730   { Label L;
 731     __ movl(rax, access_flags);
 732     __ testl(rax, JVM_ACC_SYNCHRONIZED);
 733     __ jcc(Assembler::notZero, L);
 734     __ stop("method doesn't need synchronization");
 735     __ bind(L);
 736   }
 737 #endif // ASSERT
 738   // get synchronization object
 739   { Label done;
 740     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 741     __ movl(rax, access_flags);
 742     __ movptr(rdi, STATE(_locals));                                     // prepare to get receiver (assume common case)
 743     __ testl(rax, JVM_ACC_STATIC);
 744     __ movptr(rax, Address(rdi, 0));                                    // get receiver (assume this is frequent case)
 745     __ jcc(Assembler::zero, done);
 746     __ movptr(rax, Address(rbx, methodOopDesc::constants_offset()));
 747     __ movptr(rax, Address(rax, constantPoolOopDesc::pool_holder_offset_in_bytes()));
 748     __ movptr(rax, Address(rax, mirror_offset));
 749     __ bind(done);
 750   }
 751 #ifdef ASSERT
 752   { Label L;
 753     __ cmpptr(rax, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));   // correct object?
 754     __ jcc(Assembler::equal, L);
 755     __ stop("wrong synchronization lobject");
 756     __ bind(L);
 757   }
 758 #endif // ASSERT
 759   // can destroy rax, rdx|c_rarg1, rcx, and (via call_VM) rdi!
 760   __ lock_object(monitor);
 761 }
 762 
 763 // Call an accessor method (assuming it is resolved, otherwise drop into vanilla (slow path) entry
 764 
 765 address InterpreterGenerator::generate_accessor_entry(void) {
 766 
 767   // rbx: methodOop
 768 
 769   // rsi/r13: senderSP must preserved for slow path, set SP to it on fast path
 770 
 771   Label xreturn_path;
 772 
 773   // do fastpath for resolved accessor methods
 774   if (UseFastAccessorMethods) {
 775 
 776     address entry_point = __ pc();
 777 
 778     Label slow_path;
 779     // If we need a safepoint check, generate full interpreter entry.
 780     ExternalAddress state(SafepointSynchronize::address_of_state());
 781     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
 782              SafepointSynchronize::_not_synchronized);
 783 
 784     __ jcc(Assembler::notEqual, slow_path);
 785     // ASM/C++ Interpreter
 786     // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof; parameter size = 1
 787     // Note: We can only use this code if the getfield has been resolved
 788     //       and if we don't have a null-pointer exception => check for
 789     //       these conditions first and use slow path if necessary.
 790     // rbx,: method
 791     // rcx: receiver
 792     __ movptr(rax, Address(rsp, wordSize));
 793 
 794     // check if local 0 != NULL and read field
 795     __ testptr(rax, rax);
 796     __ jcc(Assembler::zero, slow_path);
 797 
 798     __ movptr(rdi, Address(rbx, methodOopDesc::constants_offset()));
 799     // read first instruction word and extract bytecode @ 1 and index @ 2
 800     __ movptr(rdx, Address(rbx, methodOopDesc::const_offset()));
 801     __ movl(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
 802     // Shift codes right to get the index on the right.
 803     // The bytecode fetched looks like <index><0xb4><0x2a>
 804     __ shrl(rdx, 2*BitsPerByte);
 805     __ shll(rdx, exact_log2(in_words(ConstantPoolCacheEntry::size())));
 806     __ movptr(rdi, Address(rdi, constantPoolOopDesc::cache_offset_in_bytes()));
 807 
 808     // rax,: local 0
 809     // rbx,: method
 810     // rcx: receiver - do not destroy since it is needed for slow path!
 811     // rcx: scratch
 812     // rdx: constant pool cache index
 813     // rdi: constant pool cache
 814     // rsi/r13: sender sp
 815 
 816     // check if getfield has been resolved and read constant pool cache entry
 817     // check the validity of the cache entry by testing whether _indices field
 818     // contains Bytecode::_getfield in b1 byte.
 819     assert(in_words(ConstantPoolCacheEntry::size()) == 4, "adjust shift below");
 820     __ movl(rcx,
 821             Address(rdi,
 822                     rdx,
 823                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 824     __ shrl(rcx, 2*BitsPerByte);
 825     __ andl(rcx, 0xFF);
 826     __ cmpl(rcx, Bytecodes::_getfield);
 827     __ jcc(Assembler::notEqual, slow_path);
 828 
 829     // Note: constant pool entry is not valid before bytecode is resolved
 830     __ movptr(rcx,
 831             Address(rdi,
 832                     rdx,
 833                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset()));
 834     __ movl(rdx,
 835             Address(rdi,
 836                     rdx,
 837                     Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 838 
 839     Label notByte, notShort, notChar;
 840     const Address field_address (rax, rcx, Address::times_1);
 841 
 842     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 843     // because they are different sizes.
 844     // Use the type from the constant pool cache
 845     __ shrl(rdx, ConstantPoolCacheEntry::tosBits);
 846     // Make sure we don't need to mask rdx for tosBits after the above shift
 847     ConstantPoolCacheEntry::verify_tosBits();
 848 #ifdef _LP64
 849     Label notObj;
 850     __ cmpl(rdx, atos);
 851     __ jcc(Assembler::notEqual, notObj);
 852     // atos
 853     __ movptr(rax, field_address);
 854     __ jmp(xreturn_path);
 855 
 856     __ bind(notObj);
 857 #endif // _LP64
 858     __ cmpl(rdx, btos);
 859     __ jcc(Assembler::notEqual, notByte);
 860     __ load_signed_byte(rax, field_address);
 861     __ jmp(xreturn_path);
 862 
 863     __ bind(notByte);
 864     __ cmpl(rdx, stos);
 865     __ jcc(Assembler::notEqual, notShort);
 866     __ load_signed_word(rax, field_address);
 867     __ jmp(xreturn_path);
 868 
 869     __ bind(notShort);
 870     __ cmpl(rdx, ctos);
 871     __ jcc(Assembler::notEqual, notChar);
 872     __ load_unsigned_word(rax, field_address);
 873     __ jmp(xreturn_path);
 874 
 875     __ bind(notChar);
 876 #ifdef ASSERT
 877     Label okay;
 878 #ifndef _LP64
 879     __ cmpl(rdx, atos);
 880     __ jcc(Assembler::equal, okay);
 881 #endif // _LP64
 882     __ cmpl(rdx, itos);
 883     __ jcc(Assembler::equal, okay);
 884     __ stop("what type is this?");
 885     __ bind(okay);
 886 #endif // ASSERT
 887     // All the rest are a 32 bit wordsize
 888     __ movl(rax, field_address);
 889 
 890     __ bind(xreturn_path);
 891 
 892     // _ireturn/_areturn
 893     __ pop(rdi);                               // get return address
 894     __ mov(rsp, sender_sp_on_entry);           // set sp to sender sp
 895     __ jmp(rdi);
 896 
 897     // generate a vanilla interpreter entry as the slow path
 898     __ bind(slow_path);
 899     // We will enter c++ interpreter looking like it was
 900     // called by the call_stub this will cause it to return
 901     // a tosca result to the invoker which might have been
 902     // the c++ interpreter itself.
 903 
 904     __ jmp(fast_accessor_slow_entry_path);
 905     return entry_point;
 906 
 907   } else {
 908     return NULL;
 909   }
 910 
 911 }
 912 
 913 //
 914 // C++ Interpreter stub for calling a native method.
 915 // This sets up a somewhat different looking stack for calling the native method
 916 // than the typical interpreter frame setup but still has the pointer to
 917 // an interpreter state.
 918 //
 919 
 920 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 921   // determine code generation flags
 922   bool inc_counter  = UseCompiler || CountCompiledCalls;
 923 
 924   // rbx: methodOop
 925   // rcx: receiver (unused)
 926   // rsi/r13: previous interpreter state (if called from C++ interpreter) must preserve
 927   //      in any case. If called via c1/c2/call_stub rsi/r13 is junk (to use) but harmless
 928   //      to save/restore.
 929   address entry_point = __ pc();
 930 
 931   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
 932   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
 933   const Address invocation_counter(rbx, methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset());
 934   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
 935 
 936   // rsi/r13 == state/locals rdi == prevstate
 937   const Register locals = rdi;
 938 
 939   // get parameter size (always needed)
 940   __ load_unsigned_word(rcx, size_of_parameters);
 941 
 942   // rbx: methodOop
 943   // rcx: size of parameters
 944   __ pop(rax);                                       // get return address
 945   // for natives the size of locals is zero
 946 
 947   // compute beginning of parameters /locals
 948   __ lea(locals, Address(rsp, rcx, Address::times_ptr, -wordSize));
 949 
 950   // initialize fixed part of activation frame
 951 
 952   // Assumes rax = return address
 953 
 954   // allocate and initialize new interpreterState and method expression stack
 955   // IN(locals) ->  locals
 956   // IN(state) -> previous frame manager state (NULL from stub/c1/c2)
 957   // destroys rax, rcx, rdx
 958   // OUT (state) -> new interpreterState
 959   // OUT(rsp) -> bottom of methods expression stack
 960 
 961   // save sender_sp
 962   __ mov(rcx, sender_sp_on_entry);
 963   // start with NULL previous state
 964   __ movptr(state, (int32_t)NULL_WORD);
 965   generate_compute_interpreter_state(state, locals, rcx, true);
 966 
 967 #ifdef ASSERT
 968   { Label L;
 969     __ movptr(rax, STATE(_stack_base));
 970 #ifdef _LP64
 971     // duplicate the alignment rsp got after setting stack_base
 972     __ subptr(rax, frame::arg_reg_save_area_bytes); // windows
 973     __ andptr(rax, -16); // must be 16 byte boundry (see amd64 ABI)
 974 #endif // _LP64
 975     __ cmpptr(rax, rsp);
 976     __ jcc(Assembler::equal, L);
 977     __ stop("broken stack frame setup in interpreter");
 978     __ bind(L);
 979   }
 980 #endif
 981 
 982   if (inc_counter) __ movl(rcx, invocation_counter);  // (pre-)fetch invocation count
 983 
 984   const Register unlock_thread = LP64_ONLY(r15_thread) NOT_LP64(rax);
 985   NOT_LP64(__ movptr(unlock_thread, STATE(_thread));) // get thread
 986   // Since at this point in the method invocation the exception handler
 987   // would try to exit the monitor of synchronized methods which hasn't
 988   // been entered yet, we set the thread local variable
 989   // _do_not_unlock_if_synchronized to true. The remove_activation will
 990   // check this flag.
 991 
 992   const Address do_not_unlock_if_synchronized(unlock_thread,
 993         in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 994   __ movbool(do_not_unlock_if_synchronized, true);
 995 
 996   // make sure method is native & not abstract
 997 #ifdef ASSERT
 998   __ movl(rax, access_flags);
 999   {
1000     Label L;
1001     __ testl(rax, JVM_ACC_NATIVE);
1002     __ jcc(Assembler::notZero, L);
1003     __ stop("tried to execute non-native method as native");
1004     __ bind(L);
1005   }
1006   { Label L;
1007     __ testl(rax, JVM_ACC_ABSTRACT);
1008     __ jcc(Assembler::zero, L);
1009     __ stop("tried to execute abstract method in interpreter");
1010     __ bind(L);
1011   }
1012 #endif
1013 
1014 
1015   // increment invocation count & check for overflow
1016   Label invocation_counter_overflow;
1017   if (inc_counter) {
1018     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1019   }
1020 
1021   Label continue_after_compile;
1022 
1023   __ bind(continue_after_compile);
1024 
1025   bang_stack_shadow_pages(true);
1026 
1027   // reset the _do_not_unlock_if_synchronized flag
1028   NOT_LP64(__ movl(rax, STATE(_thread));)                       // get thread
1029   __ movbool(do_not_unlock_if_synchronized, false);
1030 
1031 
1032   // check for synchronized native methods
1033   //
1034   // Note: This must happen *after* invocation counter check, since
1035   //       when overflow happens, the method should not be locked.
1036   if (synchronized) {
1037     // potentially kills rax, rcx, rdx, rdi
1038     lock_method();
1039   } else {
1040     // no synchronization necessary
1041 #ifdef ASSERT
1042       { Label L;
1043         __ movl(rax, access_flags);
1044         __ testl(rax, JVM_ACC_SYNCHRONIZED);
1045         __ jcc(Assembler::zero, L);
1046         __ stop("method needs synchronization");
1047         __ bind(L);
1048       }
1049 #endif
1050   }
1051 
1052   // start execution
1053 
1054   // jvmti support
1055   __ notify_method_entry();
1056 
1057   // work registers
1058   const Register method = rbx;
1059   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rdi);
1060   const Register t      = InterpreterRuntime::SignatureHandlerGenerator::temp();    // rcx|rscratch1
1061 
1062   // allocate space for parameters
1063   __ movptr(method, STATE(_method));
1064   __ verify_oop(method);
1065   __ load_unsigned_word(t, Address(method, methodOopDesc::size_of_parameters_offset()));
1066   __ shll(t, 2);
1067 #ifdef _LP64
1068   __ subptr(rsp, t);
1069   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1070   __ andptr(rsp, -16); // must be 16 byte boundry (see amd64 ABI)
1071 #else
1072   __ addptr(t, 2*wordSize);     // allocate two more slots for JNIEnv and possible mirror
1073   __ subptr(rsp, t);
1074   __ andptr(rsp, -(StackAlignmentInBytes)); // gcc needs 16 byte aligned stacks to do XMM intrinsics
1075 #endif // _LP64
1076 
1077   // get signature handler
1078     Label pending_exception_present;
1079 
1080   { Label L;
1081     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
1082     __ testptr(t, t);
1083     __ jcc(Assembler::notZero, L);
1084     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method, false);
1085     __ movptr(method, STATE(_method));
1086     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1087     __ jcc(Assembler::notEqual, pending_exception_present);
1088     __ verify_oop(method);
1089     __ movptr(t, Address(method, methodOopDesc::signature_handler_offset()));
1090     __ bind(L);
1091   }
1092 #ifdef ASSERT
1093   {
1094     Label L;
1095     __ push(t);
1096     __ get_thread(t);                                   // get vm's javathread*
1097     __ cmpptr(t, STATE(_thread));
1098     __ jcc(Assembler::equal, L);
1099     __ int3();
1100     __ bind(L);
1101     __ pop(t);
1102   }
1103 #endif //
1104 
1105   const Register from_ptr = InterpreterRuntime::SignatureHandlerGenerator::from();
1106   // call signature handler
1107   assert(InterpreterRuntime::SignatureHandlerGenerator::to  () == rsp, "adjust this code");
1108 
1109   // The generated handlers do not touch RBX (the method oop).
1110   // However, large signatures cannot be cached and are generated
1111   // each time here.  The slow-path generator will blow RBX
1112   // sometime, so we must reload it after the call.
1113   __ movptr(from_ptr, STATE(_locals));  // get the from pointer
1114   __ call(t);
1115   __ movptr(method, STATE(_method));
1116   __ verify_oop(method);
1117 
1118   // result handler is in rax
1119   // set result handler
1120   __ movptr(STATE(_result_handler), rax);
1121 
1122 
1123   // get native function entry point
1124   { Label L;
1125     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
1126     __ testptr(rax, rax);
1127     __ jcc(Assembler::notZero, L);
1128     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), method);
1129     __ movptr(method, STATE(_method));
1130     __ verify_oop(method);
1131     __ movptr(rax, Address(method, methodOopDesc::native_function_offset()));
1132     __ bind(L);
1133   }
1134 
1135   // pass mirror handle if static call
1136   { Label L;
1137     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
1138     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1139     __ testl(t, JVM_ACC_STATIC);
1140     __ jcc(Assembler::zero, L);
1141     // get mirror
1142     __ movptr(t, Address(method, methodOopDesc:: constants_offset()));
1143     __ movptr(t, Address(t, constantPoolOopDesc::pool_holder_offset_in_bytes()));
1144     __ movptr(t, Address(t, mirror_offset));
1145     // copy mirror into activation object
1146     __ movptr(STATE(_oop_temp), t);
1147     // pass handle to mirror
1148 #ifdef _LP64
1149     __ lea(c_rarg1, STATE(_oop_temp));
1150 #else
1151     __ lea(t, STATE(_oop_temp));
1152     __ movptr(Address(rsp, wordSize), t);
1153 #endif // _LP64
1154     __ bind(L);
1155   }
1156 #ifdef ASSERT
1157   {
1158     Label L;
1159     __ push(t);
1160     __ get_thread(t);                                   // get vm's javathread*
1161     __ cmpptr(t, STATE(_thread));
1162     __ jcc(Assembler::equal, L);
1163     __ int3();
1164     __ bind(L);
1165     __ pop(t);
1166   }
1167 #endif //
1168 
1169   // pass JNIEnv
1170 #ifdef _LP64
1171   __ lea(c_rarg0, Address(thread, JavaThread::jni_environment_offset()));
1172 #else
1173   __ movptr(thread, STATE(_thread));          // get thread
1174   __ lea(t, Address(thread, JavaThread::jni_environment_offset()));
1175 
1176   __ movptr(Address(rsp, 0), t);
1177 #endif // _LP64
1178 
1179 #ifdef ASSERT
1180   {
1181     Label L;
1182     __ push(t);
1183     __ get_thread(t);                                   // get vm's javathread*
1184     __ cmpptr(t, STATE(_thread));
1185     __ jcc(Assembler::equal, L);
1186     __ int3();
1187     __ bind(L);
1188     __ pop(t);
1189   }
1190 #endif //
1191 
1192 #ifdef ASSERT
1193   { Label L;
1194     __ movl(t, Address(thread, JavaThread::thread_state_offset()));
1195     __ cmpl(t, _thread_in_Java);
1196     __ jcc(Assembler::equal, L);
1197     __ stop("Wrong thread state in native stub");
1198     __ bind(L);
1199   }
1200 #endif
1201 
1202   // Change state to native (we save the return address in the thread, since it might not
1203   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1204   // points into the right code segment. It does not have to be the correct return pc.
1205 
1206   __ set_last_Java_frame(thread, noreg, rbp, __ pc());
1207 
1208   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1209 
1210   __ call(rax);
1211 
1212   // result potentially in rdx:rax or ST0
1213   __ movptr(method, STATE(_method));
1214   NOT_LP64(__ movptr(thread, STATE(_thread));)                  // get thread
1215 
1216   // The potential result is in ST(0) & rdx:rax
1217   // With C++ interpreter we leave any possible result in ST(0) until we are in result handler and then
1218   // we do the appropriate stuff for returning the result. rdx:rax must always be saved because just about
1219   // anything we do here will destroy it, st(0) is only saved if we re-enter the vm where it would
1220   // be destroyed.
1221   // It is safe to do these pushes because state is _thread_in_native and return address will be found
1222   // via _last_native_pc and not via _last_jave_sp
1223 
1224     // Must save the value of ST(0)/xmm0 since it could be destroyed before we get to result handler
1225     { Label Lpush, Lskip;
1226       ExternalAddress float_handler(AbstractInterpreter::result_handler(T_FLOAT));
1227       ExternalAddress double_handler(AbstractInterpreter::result_handler(T_DOUBLE));
1228       __ cmpptr(STATE(_result_handler), float_handler.addr());
1229       __ jcc(Assembler::equal, Lpush);
1230       __ cmpptr(STATE(_result_handler), double_handler.addr());
1231       __ jcc(Assembler::notEqual, Lskip);
1232       __ bind(Lpush);
1233       __ subptr(rsp, 2*wordSize);
1234       if ( UseSSE < 2 ) {
1235         __ fstp_d(Address(rsp, 0));
1236       } else {
1237         __ movdbl(Address(rsp, 0), xmm0);
1238       }
1239       __ bind(Lskip);
1240     }
1241 
1242   // save rax:rdx for potential use by result handler.
1243   __ push(rax);
1244 #ifndef _LP64
1245   __ push(rdx);
1246 #endif // _LP64
1247 
1248   // Either restore the MXCSR register after returning from the JNI Call
1249   // or verify that it wasn't changed.
1250   if (VM_Version::supports_sse()) {
1251     if (RestoreMXCSROnJNICalls) {
1252       __ ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
1253     }
1254     else if (CheckJNICalls ) {
1255       __ call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
1256     }
1257   }
1258 
1259 #ifndef _LP64
1260   // Either restore the x87 floating pointer control word after returning
1261   // from the JNI call or verify that it wasn't changed.
1262   if (CheckJNICalls) {
1263     __ call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
1264   }
1265 #endif // _LP64
1266 
1267 
1268   // change thread state
1269   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1270   if(os::is_MP()) {
1271     // Write serialization page so VM thread can do a pseudo remote membar.
1272     // We use the current thread pointer to calculate a thread specific
1273     // offset to write to within the page. This minimizes bus traffic
1274     // due to cache line collision.
1275     __ serialize_memory(thread, rcx);
1276   }
1277 
1278   // check for safepoint operation in progress and/or pending suspend requests
1279   { Label Continue;
1280 
1281     __ cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
1282              SafepointSynchronize::_not_synchronized);
1283 
1284     // threads running native code and they are expected to self-suspend
1285     // when leaving the _thread_in_native state. We need to check for
1286     // pending suspend requests here.
1287     Label L;
1288     __ jcc(Assembler::notEqual, L);
1289     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1290     __ jcc(Assembler::equal, Continue);
1291     __ bind(L);
1292 
1293     // Don't use call_VM as it will see a possible pending exception and forward it
1294     // and never return here preventing us from clearing _last_native_pc down below.
1295     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1296     // preserved and correspond to the bcp/locals pointers.
1297     //
1298 
1299     ((MacroAssembler*)_masm)->call_VM_leaf(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1300                           thread);
1301     __ increment(rsp, wordSize);
1302 
1303     __ movptr(method, STATE(_method));
1304     __ verify_oop(method);
1305     __ movptr(thread, STATE(_thread));                       // get thread
1306 
1307     __ bind(Continue);
1308   }
1309 
1310   // change thread state
1311   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1312 
1313   __ reset_last_Java_frame(thread, true, true);
1314 
1315   // reset handle block
1316   __ movptr(t, Address(thread, JavaThread::active_handles_offset()));
1317   __ movptr(Address(t, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
1318 
1319   // If result was an oop then unbox and save it in the frame
1320   { Label L;
1321     Label no_oop, store_result;
1322       ExternalAddress oop_handler(AbstractInterpreter::result_handler(T_OBJECT));
1323     __ cmpptr(STATE(_result_handler), oop_handler.addr());
1324     __ jcc(Assembler::notEqual, no_oop);
1325 #ifndef _LP64
1326     __ pop(rdx);
1327 #endif // _LP64
1328     __ pop(rax);
1329     __ testptr(rax, rax);
1330     __ jcc(Assembler::zero, store_result);
1331     // unbox
1332     __ movptr(rax, Address(rax, 0));
1333     __ bind(store_result);
1334     __ movptr(STATE(_oop_temp), rax);
1335     // keep stack depth as expected by pushing oop which will eventually be discarded
1336     __ push(rax);
1337 #ifndef _LP64
1338     __ push(rdx);
1339 #endif // _LP64
1340     __ bind(no_oop);
1341   }
1342 
1343   {
1344      Label no_reguard;
1345      __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1346      __ jcc(Assembler::notEqual, no_reguard);
1347 
1348      __ pusha();
1349      __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1350      __ popa();
1351 
1352      __ bind(no_reguard);
1353    }
1354 
1355 
1356   // QQQ Seems like for native methods we simply return and the caller will see the pending
1357   // exception and do the right thing. Certainly the interpreter will, don't know about
1358   // compiled methods.
1359   // Seems that the answer to above is no this is wrong. The old code would see the exception
1360   // and forward it before doing the unlocking and notifying jvmdi that method has exited.
1361   // This seems wrong need to investigate the spec.
1362 
1363   // handle exceptions (exception handling will handle unlocking!)
1364   { Label L;
1365     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1366     __ jcc(Assembler::zero, L);
1367     __ bind(pending_exception_present);
1368 
1369     // There are potential results on the stack (rax/rdx, ST(0)) we ignore these and simply
1370     // return and let caller deal with exception. This skips the unlocking here which
1371     // seems wrong but seems to be what asm interpreter did. Can't find this in the spec.
1372     // Note: must preverve method in rbx
1373     //
1374 
1375     // remove activation
1376 
1377     __ movptr(t, STATE(_sender_sp));
1378     __ leave();                                  // remove frame anchor
1379     __ pop(rdi);                                 // get return address
1380     __ movptr(state, STATE(_prev_link));         // get previous state for return
1381     __ mov(rsp, t);                              // set sp to sender sp
1382     __ push(rdi);                                // push throwing pc
1383     // The skips unlocking!! This seems to be what asm interpreter does but seems
1384     // very wrong. Not clear if this violates the spec.
1385     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1386     __ bind(L);
1387   }
1388 
1389   // do unlocking if necessary
1390   { Label L;
1391     __ movl(t, Address(method, methodOopDesc::access_flags_offset()));
1392     __ testl(t, JVM_ACC_SYNCHRONIZED);
1393     __ jcc(Assembler::zero, L);
1394     // the code below should be shared with interpreter macro assembler implementation
1395     { Label unlock;
1396     const Register monitor = NOT_LP64(rdx) LP64_ONLY(c_rarg1);
1397       // BasicObjectLock will be first in list, since this is a synchronized method. However, need
1398       // to check that the object has not been unlocked by an explicit monitorexit bytecode.
1399       __ movptr(monitor, STATE(_monitor_base));
1400       __ subptr(monitor, frame::interpreter_frame_monitor_size() * wordSize);  // address of initial monitor
1401 
1402       __ movptr(t, Address(monitor, BasicObjectLock::obj_offset_in_bytes()));
1403       __ testptr(t, t);
1404       __ jcc(Assembler::notZero, unlock);
1405 
1406       // Entry already unlocked, need to throw exception
1407       __ MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1408       __ should_not_reach_here();
1409 
1410       __ bind(unlock);
1411       __ unlock_object(monitor);
1412       // unlock can blow rbx so restore it for path that needs it below
1413       __ movptr(method, STATE(_method));
1414     }
1415     __ bind(L);
1416   }
1417 
1418   // jvmti support
1419   // Note: This must happen _after_ handling/throwing any exceptions since
1420   //       the exception handler code notifies the runtime of method exits
1421   //       too. If this happens before, method entry/exit notifications are
1422   //       not properly paired (was bug - gri 11/22/99).
1423   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
1424 
1425   // restore potential result in rdx:rax, call result handler to restore potential result in ST0 & handle result
1426 #ifndef _LP64
1427   __ pop(rdx);
1428 #endif // _LP64
1429   __ pop(rax);
1430   __ movptr(t, STATE(_result_handler));       // get result handler
1431   __ call(t);                                 // call result handler to convert to tosca form
1432 
1433   // remove activation
1434 
1435   __ movptr(t, STATE(_sender_sp));
1436 
1437   __ leave();                                  // remove frame anchor
1438   __ pop(rdi);                                 // get return address
1439   __ movptr(state, STATE(_prev_link));         // get previous state for return (if c++ interpreter was caller)
1440   __ mov(rsp, t);                              // set sp to sender sp
1441   __ jmp(rdi);
1442 
1443   // invocation counter overflow
1444   if (inc_counter) {
1445     // Handle overflow of counter and compile method
1446     __ bind(invocation_counter_overflow);
1447     generate_counter_overflow(&continue_after_compile);
1448   }
1449 
1450   return entry_point;
1451 }
1452 
1453 // Generate entries that will put a result type index into rcx
1454 void CppInterpreterGenerator::generate_deopt_handling() {
1455 
1456   Label return_from_deopt_common;
1457 
1458   // Generate entries that will put a result type index into rcx
1459   // deopt needs to jump to here to enter the interpreter (return a result)
1460   deopt_frame_manager_return_atos  = __ pc();
1461 
1462   // rax is live here
1463   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_OBJECT));    // Result stub address array index
1464   __ jmp(return_from_deopt_common);
1465 
1466 
1467   // deopt needs to jump to here to enter the interpreter (return a result)
1468   deopt_frame_manager_return_btos  = __ pc();
1469 
1470   // rax is live here
1471   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_BOOLEAN));    // Result stub address array index
1472   __ jmp(return_from_deopt_common);
1473 
1474   // deopt needs to jump to here to enter the interpreter (return a result)
1475   deopt_frame_manager_return_itos  = __ pc();
1476 
1477   // rax is live here
1478   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_INT));    // Result stub address array index
1479   __ jmp(return_from_deopt_common);
1480 
1481   // deopt needs to jump to here to enter the interpreter (return a result)
1482 
1483   deopt_frame_manager_return_ltos  = __ pc();
1484   // rax,rdx are live here
1485   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_LONG));    // Result stub address array index
1486   __ jmp(return_from_deopt_common);
1487 
1488   // deopt needs to jump to here to enter the interpreter (return a result)
1489 
1490   deopt_frame_manager_return_ftos  = __ pc();
1491   // st(0) is live here
1492   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1493   __ jmp(return_from_deopt_common);
1494 
1495   // deopt needs to jump to here to enter the interpreter (return a result)
1496   deopt_frame_manager_return_dtos  = __ pc();
1497 
1498   // st(0) is live here
1499   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1500   __ jmp(return_from_deopt_common);
1501 
1502   // deopt needs to jump to here to enter the interpreter (return a result)
1503   deopt_frame_manager_return_vtos  = __ pc();
1504 
1505   __ movl(rcx, AbstractInterpreter::BasicType_as_index(T_VOID));
1506 
1507   // Deopt return common
1508   // an index is present in rcx that lets us move any possible result being
1509   // return to the interpreter's stack
1510   //
1511   // Because we have a full sized interpreter frame on the youngest
1512   // activation the stack is pushed too deep to share the tosca to
1513   // stack converters directly. We shrink the stack to the desired
1514   // amount and then push result and then re-extend the stack.
1515   // We could have the code in size_activation layout a short
1516   // frame for the top activation but that would look different
1517   // than say sparc (which needs a full size activation because
1518   // the windows are in the way. Really it could be short? QQQ
1519   //
1520   __ bind(return_from_deopt_common);
1521 
1522   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1523 
1524   // setup rsp so we can push the "result" as needed.
1525   __ movptr(rsp, STATE(_stack));                                   // trim stack (is prepushed)
1526   __ addptr(rsp, wordSize);                                        // undo prepush
1527 
1528   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1529   // Address index(noreg, rcx, Address::times_ptr);
1530   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1531   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1532   __ call(rcx);                                                   // call result converter
1533 
1534   __ movl(STATE(_msg), (int)BytecodeInterpreter::deopt_resume);
1535   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
1536   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
1537                                                                    // result if any on stack already )
1538   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1539 }
1540 
1541 // Generate the code to handle a more_monitors message from the c++ interpreter
1542 void CppInterpreterGenerator::generate_more_monitors() {
1543 
1544 
1545   Label entry, loop;
1546   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1547   // 1. compute new pointers                     // rsp: old expression stack top
1548   __ movptr(rdx, STATE(_stack_base));            // rdx: old expression stack bottom
1549   __ subptr(rsp, entry_size);                    // move expression stack top limit
1550   __ subptr(STATE(_stack), entry_size);          // update interpreter stack top
1551   __ subptr(STATE(_stack_limit), entry_size);    // inform interpreter
1552   __ subptr(rdx, entry_size);                    // move expression stack bottom
1553   __ movptr(STATE(_stack_base), rdx);            // inform interpreter
1554   __ movptr(rcx, STATE(_stack));                 // set start value for copy loop
1555   __ jmp(entry);
1556   // 2. move expression stack contents
1557   __ bind(loop);
1558   __ movptr(rbx, Address(rcx, entry_size));      // load expression stack word from old location
1559   __ movptr(Address(rcx, 0), rbx);               // and store it at new location
1560   __ addptr(rcx, wordSize);                      // advance to next word
1561   __ bind(entry);
1562   __ cmpptr(rcx, rdx);                           // check if bottom reached
1563   __ jcc(Assembler::notEqual, loop);             // if not at bottom then copy next word
1564   // now zero the slot so we can find it.
1565   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
1566   __ movl(STATE(_msg), (int)BytecodeInterpreter::got_monitors);
1567 }
1568 
1569 
1570 // Initial entry to C++ interpreter from the call_stub.
1571 // This entry point is called the frame manager since it handles the generation
1572 // of interpreter activation frames via requests directly from the vm (via call_stub)
1573 // and via requests from the interpreter. The requests from the call_stub happen
1574 // directly thru the entry point. Requests from the interpreter happen via returning
1575 // from the interpreter and examining the message the interpreter has returned to
1576 // the frame manager. The frame manager can take the following requests:
1577 
1578 // NO_REQUEST - error, should never happen.
1579 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1580 //                 allocate a new monitor.
1581 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1582 //               happens during entry during the entry via the call stub.
1583 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1584 //
1585 // Arguments:
1586 //
1587 // rbx: methodOop
1588 // rcx: receiver - unused (retrieved from stack as needed)
1589 // rsi/r13: previous frame manager state (NULL from the call_stub/c1/c2)
1590 //
1591 //
1592 // Stack layout at entry
1593 //
1594 // [ return address     ] <--- rsp
1595 // [ parameter n        ]
1596 //   ...
1597 // [ parameter 1        ]
1598 // [ expression stack   ]
1599 //
1600 //
1601 // We are free to blow any registers we like because the call_stub which brought us here
1602 // initially has preserved the callee save registers already.
1603 //
1604 //
1605 
1606 static address interpreter_frame_manager = NULL;
1607 
1608 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1609 
1610   // rbx: methodOop
1611   // rsi/r13: sender sp
1612 
1613   // Because we redispatch "recursive" interpreter entries thru this same entry point
1614   // the "input" register usage is a little strange and not what you expect coming
1615   // from the call_stub. From the call stub rsi/rdi (current/previous) interpreter
1616   // state are NULL but on "recursive" dispatches they are what you'd expect.
1617   // rsi: current interpreter state (C++ interpreter) must preserve (null from call_stub/c1/c2)
1618 
1619 
1620   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1621   // the code is pretty much ready. Would need to change the test below and for good measure
1622   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1623   // routines. Not clear this is worth it yet.
1624 
1625   if (interpreter_frame_manager) return interpreter_frame_manager;
1626 
1627   address entry_point = __ pc();
1628 
1629   // Fast accessor methods share this entry point.
1630   // This works because frame manager is in the same codelet
1631   if (UseFastAccessorMethods && !synchronized) __ bind(fast_accessor_slow_entry_path);
1632 
1633   Label dispatch_entry_2;
1634   __ movptr(rcx, sender_sp_on_entry);
1635   __ movptr(state, (int32_t)NULL_WORD);                              // no current activation
1636 
1637   __ jmp(dispatch_entry_2);
1638 
1639   const Register locals  = rdi;
1640 
1641   Label re_dispatch;
1642 
1643   __ bind(re_dispatch);
1644 
1645   // save sender sp (doesn't include return address
1646   __ lea(rcx, Address(rsp, wordSize));
1647 
1648   __ bind(dispatch_entry_2);
1649 
1650   // save sender sp
1651   __ push(rcx);
1652 
1653   const Address size_of_parameters(rbx, methodOopDesc::size_of_parameters_offset());
1654   const Address size_of_locals    (rbx, methodOopDesc::size_of_locals_offset());
1655   const Address access_flags      (rbx, methodOopDesc::access_flags_offset());
1656 
1657   // const Address monitor_block_top (rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1658   // const Address monitor_block_bot (rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
1659   // const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
1660 
1661   // get parameter size (always needed)
1662   __ load_unsigned_word(rcx, size_of_parameters);
1663 
1664   // rbx: methodOop
1665   // rcx: size of parameters
1666   __ load_unsigned_word(rdx, size_of_locals);                      // get size of locals in words
1667 
1668   __ subptr(rdx, rcx);                                             // rdx = no. of additional locals
1669 
1670   // see if we've got enough room on the stack for locals plus overhead.
1671   generate_stack_overflow_check();                                 // C++
1672 
1673   // c++ interpreter does not use stack banging or any implicit exceptions
1674   // leave for now to verify that check is proper.
1675   bang_stack_shadow_pages(false);
1676 
1677 
1678 
1679   // compute beginning of parameters (rdi)
1680   __ lea(locals, Address(rsp, rcx, Address::times_ptr, wordSize));
1681 
1682   // save sender's sp
1683   // __ movl(rcx, rsp);
1684 
1685   // get sender's sp
1686   __ pop(rcx);
1687 
1688   // get return address
1689   __ pop(rax);
1690 
1691   // rdx - # of additional locals
1692   // allocate space for locals
1693   // explicitly initialize locals
1694   {
1695     Label exit, loop;
1696     __ testl(rdx, rdx);                               // (32bit ok)
1697     __ jcc(Assembler::lessEqual, exit);               // do nothing if rdx <= 0
1698     __ bind(loop);
1699     __ push((int32_t)NULL_WORD);                      // initialize local variables
1700     __ decrement(rdx);                                // until everything initialized
1701     __ jcc(Assembler::greater, loop);
1702     __ bind(exit);
1703   }
1704 
1705 
1706   // Assumes rax = return address
1707 
1708   // allocate and initialize new interpreterState and method expression stack
1709   // IN(locals) ->  locals
1710   // IN(state) -> any current interpreter activation
1711   // destroys rax, rcx, rdx, rdi
1712   // OUT (state) -> new interpreterState
1713   // OUT(rsp) -> bottom of methods expression stack
1714 
1715   generate_compute_interpreter_state(state, locals, rcx, false);
1716 
1717   // Call interpreter
1718 
1719   Label call_interpreter;
1720   __ bind(call_interpreter);
1721 
1722   // c++ interpreter does not use stack banging or any implicit exceptions
1723   // leave for now to verify that check is proper.
1724   bang_stack_shadow_pages(false);
1725 
1726 
1727   // Call interpreter enter here if message is
1728   // set and we know stack size is valid
1729 
1730   Label call_interpreter_2;
1731 
1732   __ bind(call_interpreter_2);
1733 
1734   {
1735     const Register thread  = NOT_LP64(rcx) LP64_ONLY(r15_thread);
1736 
1737 #ifdef _LP64
1738     __ mov(c_rarg0, state);
1739 #else
1740     __ push(state);                                                 // push arg to interpreter
1741     __ movptr(thread, STATE(_thread));
1742 #endif // _LP64
1743 
1744     // We can setup the frame anchor with everything we want at this point
1745     // as we are thread_in_Java and no safepoints can occur until we go to
1746     // vm mode. We do have to clear flags on return from vm but that is it
1747     //
1748     __ movptr(Address(thread, JavaThread::last_Java_fp_offset()), rbp);
1749     __ movptr(Address(thread, JavaThread::last_Java_sp_offset()), rsp);
1750 
1751     // Call the interpreter
1752 
1753     RuntimeAddress normal(CAST_FROM_FN_PTR(address, BytecodeInterpreter::run));
1754     RuntimeAddress checking(CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks));
1755 
1756     __ call(JvmtiExport::can_post_interpreter_events() ? checking : normal);
1757     NOT_LP64(__ pop(rax);)                                          // discard parameter to run
1758     //
1759     // state is preserved since it is callee saved
1760     //
1761 
1762     // reset_last_Java_frame
1763 
1764     NOT_LP64(__ movl(thread, STATE(_thread));)
1765     __ reset_last_Java_frame(thread, true, true);
1766   }
1767 
1768   // examine msg from interpreter to determine next action
1769 
1770   __ movl(rdx, STATE(_msg));                                       // Get new message
1771 
1772   Label call_method;
1773   Label return_from_interpreted_method;
1774   Label throw_exception;
1775   Label bad_msg;
1776   Label do_OSR;
1777 
1778   __ cmpl(rdx, (int32_t)BytecodeInterpreter::call_method);
1779   __ jcc(Assembler::equal, call_method);
1780   __ cmpl(rdx, (int32_t)BytecodeInterpreter::return_from_method);
1781   __ jcc(Assembler::equal, return_from_interpreted_method);
1782   __ cmpl(rdx, (int32_t)BytecodeInterpreter::do_osr);
1783   __ jcc(Assembler::equal, do_OSR);
1784   __ cmpl(rdx, (int32_t)BytecodeInterpreter::throwing_exception);
1785   __ jcc(Assembler::equal, throw_exception);
1786   __ cmpl(rdx, (int32_t)BytecodeInterpreter::more_monitors);
1787   __ jcc(Assembler::notEqual, bad_msg);
1788 
1789   // Allocate more monitor space, shuffle expression stack....
1790 
1791   generate_more_monitors();
1792 
1793   __ jmp(call_interpreter);
1794 
1795   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1796   unctrap_frame_manager_entry  = __ pc();
1797   //
1798   // Load the registers we need.
1799   __ lea(state, Address(rbp, -(int)sizeof(BytecodeInterpreter)));
1800   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
1801   __ jmp(call_interpreter_2);
1802 
1803 
1804 
1805   //=============================================================================
1806   // Returning from a compiled method into a deopted method. The bytecode at the
1807   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1808   // for the template based interpreter). Any stack space that was used by the
1809   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1810   // so all that we have to do is place any pending result on the expression stack
1811   // and resume execution on the next bytecode.
1812 
1813 
1814   generate_deopt_handling();
1815   __ jmp(call_interpreter);
1816 
1817 
1818   // Current frame has caught an exception we need to dispatch to the
1819   // handler. We can get here because a native interpreter frame caught
1820   // an exception in which case there is no handler and we must rethrow
1821   // If it is a vanilla interpreted frame the we simply drop into the
1822   // interpreter and let it do the lookup.
1823 
1824   Interpreter::_rethrow_exception_entry = __ pc();
1825   // rax: exception
1826   // rdx: return address/pc that threw exception
1827 
1828   Label return_with_exception;
1829   Label unwind_and_forward;
1830 
1831   // restore state pointer.
1832   __ lea(state, Address(rbp,  -sizeof(BytecodeInterpreter)));
1833 
1834   __ movptr(rbx, STATE(_method));                       // get method
1835 #ifdef _LP64
1836   __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
1837 #else
1838   __ movl(rcx, STATE(_thread));                       // get thread
1839 
1840   // Store exception with interpreter will expect it
1841   __ movptr(Address(rcx, Thread::pending_exception_offset()), rax);
1842 #endif // _LP64
1843 
1844   // is current frame vanilla or native?
1845 
1846   __ movl(rdx, access_flags);
1847   __ testl(rdx, JVM_ACC_NATIVE);
1848   __ jcc(Assembler::zero, return_with_exception);     // vanilla interpreted frame, handle directly
1849 
1850   // We drop thru to unwind a native interpreted frame with a pending exception
1851   // We jump here for the initial interpreter frame with exception pending
1852   // We unwind the current acivation and forward it to our caller.
1853 
1854   __ bind(unwind_and_forward);
1855 
1856   // unwind rbp, return stack to unextended value and re-push return address
1857 
1858   __ movptr(rcx, STATE(_sender_sp));
1859   __ leave();
1860   __ pop(rdx);
1861   __ mov(rsp, rcx);
1862   __ push(rdx);
1863   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1864 
1865   // Return point from a call which returns a result in the native abi
1866   // (c1/c2/jni-native). This result must be processed onto the java
1867   // expression stack.
1868   //
1869   // A pending exception may be present in which case there is no result present
1870 
1871   Label resume_interpreter;
1872   Label do_float;
1873   Label do_double;
1874   Label done_conv;
1875 
1876   address compiled_entry = __ pc();
1877 
1878   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
1879   if (UseSSE < 2) {
1880     __ lea(state, Address(rbp,  -sizeof(BytecodeInterpreter)));
1881     __ movptr(rbx, STATE(_result._to_call._callee));                   // get method just executed
1882     __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
1883     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_FLOAT));    // Result stub address array index
1884     __ jcc(Assembler::equal, do_float);
1885     __ cmpl(rcx, AbstractInterpreter::BasicType_as_index(T_DOUBLE));    // Result stub address array index
1886     __ jcc(Assembler::equal, do_double);
1887 #ifdef COMPILER2
1888     __ empty_FPU_stack();
1889 #endif // COMPILER2
1890     __ jmp(done_conv);
1891 
1892     __ bind(do_float);
1893 #ifdef COMPILER2
1894     for (int i = 1; i < 8; i++) {
1895       __ ffree(i);
1896     }
1897 #endif // COMPILER2
1898     __ jmp(done_conv);
1899     __ bind(do_double);
1900 #ifdef COMPILER2
1901     for (int i = 1; i < 8; i++) {
1902       __ ffree(i);
1903     }
1904 #endif // COMPILER2
1905     __ jmp(done_conv);
1906   } else {
1907     __ MacroAssembler::verify_FPU(0, "generate_return_entry_for compiled");
1908     __ jmp(done_conv);
1909   }
1910 
1911 #if 0
1912   // emit a sentinel we can test for when converting an interpreter
1913   // entry point to a compiled entry point.
1914   __ a_long(Interpreter::return_sentinel);
1915   __ a_long((int)compiled_entry);
1916 #endif
1917 
1918   // Return point to interpreter from compiled/native method
1919 
1920   InternalAddress return_from_native_method(__ pc());
1921 
1922   __ bind(done_conv);
1923 
1924 
1925   // Result if any is in tosca. The java expression stack is in the state that the
1926   // calling convention left it (i.e. params may or may not be present)
1927   // Copy the result from tosca and place it on java expression stack.
1928 
1929   // Restore rsi/r13 as compiled code may not preserve it
1930 
1931   __ lea(state, Address(rbp,  -sizeof(BytecodeInterpreter)));
1932 
1933   // restore stack to what we had when we left (in case i2c extended it)
1934 
1935   __ movptr(rsp, STATE(_stack));
1936   __ lea(rsp, Address(rsp, wordSize));
1937 
1938   // If there is a pending exception then we don't really have a result to process
1939 
1940 #ifdef _LP64
1941   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1942 #else
1943   __ movptr(rcx, STATE(_thread));                       // get thread
1944   __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
1945 #endif / __LP64
1946   __ jcc(Assembler::notZero, return_with_exception);
1947 
1948   // get method just executed
1949   __ movptr(rbx, STATE(_result._to_call._callee));
1950 
1951   // callee left args on top of expression stack, remove them
1952   __ load_unsigned_word(rcx, Address(rbx, methodOopDesc::size_of_parameters_offset()));
1953   __ lea(rsp, Address(rsp, rcx, Address::times_ptr));
1954 
1955   __ movl(rcx, Address(rbx, methodOopDesc::result_index_offset()));
1956   ExternalAddress tosca_to_stack((address)CppInterpreter::_tosca_to_stack);
1957   // Address index(noreg, rax, Address::times_ptr);
1958   __ movptr(rcx, ArrayAddress(tosca_to_stack, Address(noreg, rcx, Address::times_ptr)));
1959   // __ movl(rcx, Address(noreg, rcx, Address::times_ptr, int(AbstractInterpreter::_tosca_to_stack)));
1960   __ call(rcx);                                               // call result converter
1961   __ jmp(resume_interpreter);
1962 
1963   // An exception is being caught on return to a vanilla interpreter frame.
1964   // Empty the stack and resume interpreter
1965 
1966   __ bind(return_with_exception);
1967 
1968   // Exception present, empty stack
1969   __ movptr(rsp, STATE(_stack_base));
1970   __ jmp(resume_interpreter);
1971 
1972   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1973   // interpreter call, or native) and unwind this interpreter activation.
1974   // All monitors should be unlocked.
1975 
1976   __ bind(return_from_interpreted_method);
1977 
1978   Label return_to_initial_caller;
1979 
1980   __ movptr(rbx, STATE(_method));                                   // get method just executed
1981   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from "recursive" interpreter call?
1982   __ movl(rax, Address(rbx, methodOopDesc::result_index_offset())); // get result type index
1983   __ jcc(Assembler::equal, return_to_initial_caller);               // back to native code (call_stub/c1/c2)
1984 
1985   // Copy result to callers java stack
1986   ExternalAddress stack_to_stack((address)CppInterpreter::_stack_to_stack);
1987   // Address index(noreg, rax, Address::times_ptr);
1988 
1989   __ movptr(rax, ArrayAddress(stack_to_stack, Address(noreg, rax, Address::times_ptr)));
1990   // __ movl(rax, Address(noreg, rax, Address::times_ptr, int(AbstractInterpreter::_stack_to_stack)));
1991   __ call(rax);                                                     // call result converter
1992 
1993   Label unwind_recursive_activation;
1994   __ bind(unwind_recursive_activation);
1995 
1996   // returning to interpreter method from "recursive" interpreter call
1997   // result converter left rax pointing to top of the java stack for method we are returning
1998   // to. Now all we must do is unwind the state from the completed call
1999 
2000   __ movptr(state, STATE(_prev_link));                              // unwind state
2001   __ leave();                                                       // pop the frame
2002   __ mov(rsp, rax);                                                 // unwind stack to remove args
2003 
2004   // Resume the interpreter. The current frame contains the current interpreter
2005   // state object.
2006   //
2007 
2008   __ bind(resume_interpreter);
2009 
2010   // state == interpreterState object for method we are resuming
2011 
2012   __ movl(STATE(_msg), (int)BytecodeInterpreter::method_resume);
2013   __ lea(rsp, Address(rsp, -wordSize));                            // prepush stack (result if any already present)
2014   __ movptr(STATE(_stack), rsp);                                   // inform interpreter of new stack depth (parameters removed,
2015                                                                    // result if any on stack already )
2016   __ movptr(rsp, STATE(_stack_limit));                             // restore expression stack to full depth
2017   __ jmp(call_interpreter_2);                                      // No need to bang
2018 
2019   // interpreter returning to native code (call_stub/c1/c2)
2020   // convert result and unwind initial activation
2021   // rax - result index
2022 
2023   __ bind(return_to_initial_caller);
2024   ExternalAddress stack_to_native((address)CppInterpreter::_stack_to_native_abi);
2025   // Address index(noreg, rax, Address::times_ptr);
2026 
2027   __ movptr(rax, ArrayAddress(stack_to_native, Address(noreg, rax, Address::times_ptr)));
2028   __ call(rax);                                                    // call result converter
2029 
2030   Label unwind_initial_activation;
2031   __ bind(unwind_initial_activation);
2032 
2033   // RETURN TO CALL_STUB/C1/C2 code (result if any in rax/rdx ST(0))
2034 
2035   /* Current stack picture
2036 
2037         [ incoming parameters ]
2038         [ extra locals ]
2039         [ return address to CALL_STUB/C1/C2]
2040   fp -> [ CALL_STUB/C1/C2 fp ]
2041         BytecodeInterpreter object
2042         expression stack
2043   sp ->
2044 
2045   */
2046 
2047   // return restoring the stack to the original sender_sp value
2048 
2049   __ movptr(rcx, STATE(_sender_sp));
2050   __ leave();
2051   __ pop(rdi);                                                        // get return address
2052   // set stack to sender's sp
2053   __ mov(rsp, rcx);
2054   __ jmp(rdi);                                                        // return to call_stub
2055 
2056   // OSR request, adjust return address to make current frame into adapter frame
2057   // and enter OSR nmethod
2058 
2059   __ bind(do_OSR);
2060 
2061   Label remove_initial_frame;
2062 
2063   // We are going to pop this frame. Is there another interpreter frame underneath
2064   // it or is it callstub/compiled?
2065 
2066   // Move buffer to the expected parameter location
2067   __ movptr(rcx, STATE(_result._osr._osr_buf));
2068 
2069   __ movptr(rax, STATE(_result._osr._osr_entry));
2070 
2071   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);            // returning from "recursive" interpreter call?
2072   __ jcc(Assembler::equal, remove_initial_frame);              // back to native code (call_stub/c1/c2)
2073 
2074   __ movptr(sender_sp_on_entry, STATE(_sender_sp));            // get sender's sp in expected register
2075   __ leave();                                                  // pop the frame
2076   __ mov(rsp, sender_sp_on_entry);                             // trim any stack expansion
2077 
2078 
2079   // We know we are calling compiled so push specialized return
2080   // method uses specialized entry, push a return so we look like call stub setup
2081   // this path will handle fact that result is returned in registers and not
2082   // on the java stack.
2083 
2084   __ pushptr(return_from_native_method.addr());
2085 
2086   __ jmp(rax);
2087 
2088   __ bind(remove_initial_frame);
2089 
2090   __ movptr(rdx, STATE(_sender_sp));
2091   __ leave();
2092   // get real return
2093   __ pop(rsi);
2094   // set stack to sender's sp
2095   __ mov(rsp, rdx);
2096   // repush real return
2097   __ push(rsi);
2098   // Enter OSR nmethod
2099   __ jmp(rax);
2100 
2101 
2102 
2103 
2104   // Call a new method. All we do is (temporarily) trim the expression stack
2105   // push a return address to bring us back to here and leap to the new entry.
2106 
2107   __ bind(call_method);
2108 
2109   // stack points to next free location and not top element on expression stack
2110   // method expects sp to be pointing to topmost element
2111 
2112   __ movptr(rsp, STATE(_stack));                                     // pop args to c++ interpreter, set sp to java stack top
2113   __ lea(rsp, Address(rsp, wordSize));
2114 
2115   __ movptr(rbx, STATE(_result._to_call._callee));                   // get method to execute
2116 
2117   // don't need a return address if reinvoking interpreter
2118 
2119   // Make it look like call_stub calling conventions
2120 
2121   // Get (potential) receiver
2122   __ load_unsigned_word(rcx, size_of_parameters);                     // get size of parameters in words
2123 
2124   ExternalAddress recursive(CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation));
2125   __ pushptr(recursive.addr());                                      // make it look good in the debugger
2126 
2127   InternalAddress entry(entry_point);
2128   __ cmpptr(STATE(_result._to_call._callee_entry_point), entry.addr()); // returning to interpreter?
2129   __ jcc(Assembler::equal, re_dispatch);                             // yes
2130 
2131   __ pop(rax);                                                       // pop dummy address
2132 
2133 
2134   // get specialized entry
2135   __ movptr(rax, STATE(_result._to_call._callee_entry_point));
2136   // set sender SP
2137   __ mov(sender_sp_on_entry, rsp);
2138 
2139   // method uses specialized entry, push a return so we look like call stub setup
2140   // this path will handle fact that result is returned in registers and not
2141   // on the java stack.
2142 
2143   __ pushptr(return_from_native_method.addr());
2144 
2145   __ jmp(rax);
2146 
2147   __ bind(bad_msg);
2148   __ stop("Bad message from interpreter");
2149 
2150   // Interpreted method "returned" with an exception pass it on...
2151   // Pass result, unwind activation and continue/return to interpreter/call_stub
2152   // We handle result (if any) differently based on return to interpreter or call_stub
2153 
2154   Label unwind_initial_with_pending_exception;
2155 
2156   __ bind(throw_exception);
2157   __ cmpptr(STATE(_prev_link), (int32_t)NULL_WORD);                 // returning from recursive interpreter call?
2158   __ jcc(Assembler::equal, unwind_initial_with_pending_exception);  // no, back to native code (call_stub/c1/c2)
2159   __ movptr(rax, STATE(_locals));                                   // pop parameters get new stack value
2160   __ addptr(rax, wordSize);                                         // account for prepush before we return
2161   __ jmp(unwind_recursive_activation);
2162 
2163   __ bind(unwind_initial_with_pending_exception);
2164 
2165   // We will unwind the current (initial) interpreter frame and forward
2166   // the exception to the caller. We must put the exception in the
2167   // expected register and clear pending exception and then forward.
2168 
2169   __ jmp(unwind_and_forward);
2170 
2171   interpreter_frame_manager = entry_point;
2172   return entry_point;
2173 }
2174 
2175 address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter::MethodKind kind) {
2176   // determine code generation flags
2177   bool synchronized = false;
2178   address entry_point = NULL;
2179 
2180   switch (kind) {
2181     case Interpreter::zerolocals             :                                                                             break;
2182     case Interpreter::zerolocals_synchronized: synchronized = true;                                                        break;
2183     case Interpreter::native                 : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false);  break;
2184     case Interpreter::native_synchronized    : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true);   break;
2185     case Interpreter::empty                  : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry();        break;
2186     case Interpreter::accessor               : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry();     break;
2187     case Interpreter::abstract               : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry();     break;
2188 
2189     case Interpreter::java_lang_math_sin     : // fall thru
2190     case Interpreter::java_lang_math_cos     : // fall thru
2191     case Interpreter::java_lang_math_tan     : // fall thru
2192     case Interpreter::java_lang_math_abs     : // fall thru
2193     case Interpreter::java_lang_math_log     : // fall thru
2194     case Interpreter::java_lang_math_log10   : // fall thru
2195     case Interpreter::java_lang_math_sqrt    : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind);     break;
2196     default                                  : ShouldNotReachHere();                                                       break;
2197   }
2198 
2199   if (entry_point) return entry_point;
2200 
2201   return ((InterpreterGenerator*)this)->generate_normal_entry(synchronized);
2202 
2203 }
2204 
2205 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
2206  : CppInterpreterGenerator(code) {
2207    generate_all(); // down here so it can be "virtual"
2208 }
2209 
2210 // Deoptimization helpers for C++ interpreter
2211 
2212 // How much stack a method activation needs in words.
2213 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
2214 
2215   const int stub_code = 4;  // see generate_call_stub
2216   // Save space for one monitor to get into the interpreted method in case
2217   // the method is synchronized
2218   int monitor_size    = method->is_synchronized() ?
2219                                 1*frame::interpreter_frame_monitor_size() : 0;
2220 
2221   // total static overhead size. Account for interpreter state object, return
2222   // address, saved rbp and 2 words for a "static long no_params() method" issue.
2223 
2224   const int overhead_size = sizeof(BytecodeInterpreter)/wordSize +
2225     ( frame::sender_sp_offset - frame::link_offset) + 2;
2226 
2227   const int method_stack = (method->max_locals() + method->max_stack()) *
2228                            Interpreter::stackElementWords();
2229   return overhead_size + method_stack + stub_code;
2230 }
2231 
2232 // returns the activation size.
2233 static int size_activation_helper(int extra_locals_size, int monitor_size) {
2234   return (extra_locals_size +                  // the addition space for locals
2235           2*BytesPerWord +                     // return address and saved rbp
2236           2*BytesPerWord +                     // "static long no_params() method" issue
2237           sizeof(BytecodeInterpreter) +               // interpreterState
2238           monitor_size);                       // monitors
2239 }
2240 
2241 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2242                                            frame* caller,
2243                                            frame* current,
2244                                            methodOop method,
2245                                            intptr_t* locals,
2246                                            intptr_t* stack,
2247                                            intptr_t* stack_base,
2248                                            intptr_t* monitor_base,
2249                                            intptr_t* frame_bottom,
2250                                            bool is_top_frame
2251                                            )
2252 {
2253   // What about any vtable?
2254   //
2255   to_fill->_thread = JavaThread::current();
2256   // This gets filled in later but make it something recognizable for now
2257   to_fill->_bcp = method->code_base();
2258   to_fill->_locals = locals;
2259   to_fill->_constants = method->constants()->cache();
2260   to_fill->_method = method;
2261   to_fill->_mdx = NULL;
2262   to_fill->_stack = stack;
2263   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2264     to_fill->_msg = deopt_resume2;
2265   } else {
2266     to_fill->_msg = method_resume;
2267   }
2268   to_fill->_result._to_call._bcp_advance = 0;
2269   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2270   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2271   to_fill->_prev_link = NULL;
2272 
2273   to_fill->_sender_sp = caller->unextended_sp();
2274 
2275   if (caller->is_interpreted_frame()) {
2276     interpreterState prev  = caller->get_interpreterState();
2277     to_fill->_prev_link = prev;
2278     // *current->register_addr(GR_Iprev_state) = (intptr_t) prev;
2279     // Make the prev callee look proper
2280     prev->_result._to_call._callee = method;
2281     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2282       prev->_result._to_call._bcp_advance = 5;
2283     } else {
2284       prev->_result._to_call._bcp_advance = 3;
2285     }
2286   }
2287   to_fill->_oop_temp = NULL;
2288   to_fill->_stack_base = stack_base;
2289   // Need +1 here because stack_base points to the word just above the first expr stack entry
2290   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2291   // See generate_compute_interpreter_state.
2292   to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2293   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2294 
2295   to_fill->_self_link = to_fill;
2296   assert(stack >= to_fill->_stack_limit && stack < to_fill->_stack_base,
2297          "Stack top out of range");
2298 }
2299 
2300 int AbstractInterpreter::layout_activation(methodOop method,
2301                                                 int tempcount,  //
2302                                                 int popframe_extra_args,
2303                                                 int moncount,
2304                                                 int callee_param_count,
2305                                                 int callee_locals,
2306                                                 frame* caller,
2307                                                 frame* interpreter_frame,
2308                                                 bool is_top_frame) {
2309 
2310   assert(popframe_extra_args == 0, "FIX ME");
2311   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2312   // does as far as allocating an interpreter frame.
2313   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
2314   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
2315   // as determined by a previous call to this method.
2316   // It is also guaranteed to be walkable even though it is in a skeletal state
2317   // NOTE: return size is in words not bytes
2318   // NOTE: tempcount is the current size of the java expression stack. For top most
2319   //       frames we will allocate a full sized expression stack and not the curback
2320   //       version that non-top frames have.
2321 
2322   // Calculate the amount our frame will be adjust by the callee. For top frame
2323   // this is zero.
2324 
2325   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2326   // calculates the extra locals based on itself. Not what the callee does
2327   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2328   // as getting sender_sp correct.
2329 
2330   int extra_locals_size = (callee_locals - callee_param_count) * BytesPerWord;
2331   int monitor_size = sizeof(BasicObjectLock) * moncount;
2332 
2333   // First calculate the frame size without any java expression stack
2334   int short_frame_size = size_activation_helper(extra_locals_size,
2335                                                 monitor_size);
2336 
2337   // Now with full size expression stack
2338   int full_frame_size = short_frame_size + method->max_stack() * BytesPerWord;
2339 
2340   // and now with only live portion of the expression stack
2341   short_frame_size = short_frame_size + tempcount * BytesPerWord;
2342 
2343   // the size the activation is right now. Only top frame is full size
2344   int frame_size = (is_top_frame ? full_frame_size : short_frame_size);
2345 
2346   if (interpreter_frame != NULL) {
2347 #ifdef ASSERT
2348     assert(caller->unextended_sp() == interpreter_frame->interpreter_frame_sender_sp(), "Frame not properly walkable");
2349 #endif
2350 
2351     // MUCHO HACK
2352 
2353     intptr_t* frame_bottom = (intptr_t*) ((intptr_t)interpreter_frame->sp() - (full_frame_size - frame_size));
2354 
2355     /* Now fillin the interpreterState object */
2356 
2357     // The state object is the first thing on the frame and easily located
2358 
2359     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
2360 
2361 
2362     // Find the locals pointer. This is rather simple on x86 because there is no
2363     // confusing rounding at the callee to account for. We can trivially locate
2364     // our locals based on the current fp().
2365     // Note: the + 2 is for handling the "static long no_params() method" issue.
2366     // (too bad I don't really remember that issue well...)
2367 
2368     intptr_t* locals;
2369     // If the caller is interpreted we need to make sure that locals points to the first
2370     // argument that the caller passed and not in an area where the stack might have been extended.
2371     // because the stack to stack to converter needs a proper locals value in order to remove the
2372     // arguments from the caller and place the result in the proper location. Hmm maybe it'd be
2373     // simpler if we simply stored the result in the BytecodeInterpreter object and let the c++ code
2374     // adjust the stack?? HMMM QQQ
2375     //
2376     if (caller->is_interpreted_frame()) {
2377       // locals must agree with the caller because it will be used to set the
2378       // caller's tos when we return.
2379       interpreterState prev  = caller->get_interpreterState();
2380       // stack() is prepushed.
2381       locals = prev->stack() + method->size_of_parameters();
2382       // locals = caller->unextended_sp() + (method->size_of_parameters() - 1);
2383       if (locals != interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2) {
2384         // os::breakpoint();
2385       }
2386     } else {
2387       // this is where a c2i would have placed locals (except for the +2)
2388       locals = interpreter_frame->fp() + frame::sender_sp_offset + (method->max_locals() - 1) + 2;
2389     }
2390 
2391     intptr_t* monitor_base = (intptr_t*) cur_state;
2392     intptr_t* stack_base = (intptr_t*) ((intptr_t) monitor_base - monitor_size);
2393     /* +1 because stack is always prepushed */
2394     intptr_t* stack = (intptr_t*) ((intptr_t) stack_base - (tempcount + 1) * BytesPerWord);
2395 
2396 
2397     BytecodeInterpreter::layout_interpreterState(cur_state,
2398                                           caller,
2399                                           interpreter_frame,
2400                                           method,
2401                                           locals,
2402                                           stack,
2403                                           stack_base,
2404                                           monitor_base,
2405                                           frame_bottom,
2406                                           is_top_frame);
2407 
2408     // BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2409   }
2410   return frame_size/BytesPerWord;
2411 }
2412 
2413 #endif // CC_INTERP (all)