1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_nativeInst_x86.cpp.incl"
  27 
  28 void NativeInstruction::wrote(int offset) {
  29   ICache::invalidate_word(addr_at(offset));
  30 }
  31 
  32 
  33 void NativeCall::verify() {
  34   // Make sure code pattern is actually a call imm32 instruction.
  35   int inst = ubyte_at(0);
  36   if (inst != instruction_code) {
  37     tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", instruction_address(),
  38                                                         inst);
  39     fatal("not a call disp32");
  40   }
  41 }
  42 
  43 address NativeCall::destination() const {
  44   // Getting the destination of a call isn't safe because that call can
  45   // be getting patched while you're calling this.  There's only special
  46   // places where this can be called but not automatically verifiable by
  47   // checking which locks are held.  The solution is true atomic patching
  48   // on x86, nyi.
  49   return return_address() + displacement();
  50 }
  51 
  52 void NativeCall::print() {
  53   tty->print_cr(PTR_FORMAT ": call " PTR_FORMAT,
  54                 instruction_address(), destination());
  55 }
  56 
  57 // Inserts a native call instruction at a given pc
  58 void NativeCall::insert(address code_pos, address entry) {
  59   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
  60 #ifdef AMD64
  61   guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
  62 #endif // AMD64
  63   *code_pos = instruction_code;
  64   *((int32_t *)(code_pos+1)) = (int32_t) disp;
  65   ICache::invalidate_range(code_pos, instruction_size);
  66 }
  67 
  68 // MT-safe patching of a call instruction.
  69 // First patches first word of instruction to two jmp's that jmps to them
  70 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
  71 // the jmp's with the first 4 byte of the new instruction.
  72 void NativeCall::replace_mt_safe(address instr_addr, address code_buffer) {
  73   assert(Patching_lock->is_locked() ||
  74          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
  75   assert (instr_addr != NULL, "illegal address for code patching");
  76 
  77   NativeCall* n_call =  nativeCall_at (instr_addr); // checking that it is a call
  78   if (os::is_MP()) {
  79     guarantee((intptr_t)instr_addr % BytesPerWord == 0, "must be aligned");
  80   }
  81 
  82   // First patch dummy jmp in place
  83   unsigned char patch[4];
  84   assert(sizeof(patch)==sizeof(jint), "sanity check");
  85   patch[0] = 0xEB;       // jmp rel8
  86   patch[1] = 0xFE;       // jmp to self
  87   patch[2] = 0xEB;
  88   patch[3] = 0xFE;
  89 
  90   // First patch dummy jmp in place
  91   *(jint*)instr_addr = *(jint *)patch;
  92 
  93   // Invalidate.  Opteron requires a flush after every write.
  94   n_call->wrote(0);
  95 
  96   // Patch 4th byte
  97   instr_addr[4] = code_buffer[4];
  98 
  99   n_call->wrote(4);
 100 
 101   // Patch bytes 0-3
 102   *(jint*)instr_addr = *(jint *)code_buffer;
 103 
 104   n_call->wrote(0);
 105 
 106 #ifdef ASSERT
 107    // verify patching
 108    for ( int i = 0; i < instruction_size; i++) {
 109      address ptr = (address)((intptr_t)code_buffer + i);
 110      int a_byte = (*ptr) & 0xFF;
 111      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
 112    }
 113 #endif
 114 
 115 }
 116 
 117 
 118 // Similar to replace_mt_safe, but just changes the destination.  The
 119 // important thing is that free-running threads are able to execute this
 120 // call instruction at all times.  If the displacement field is aligned
 121 // we can simply rely on atomicity of 32-bit writes to make sure other threads
 122 // will see no intermediate states.  Otherwise, the first two bytes of the
 123 // call are guaranteed to be aligned, and can be atomically patched to a
 124 // self-loop to guard the instruction while we change the other bytes.
 125 
 126 // We cannot rely on locks here, since the free-running threads must run at
 127 // full speed.
 128 //
 129 // Used in the runtime linkage of calls; see class CompiledIC.
 130 // (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
 131 void NativeCall::set_destination_mt_safe(address dest) {
 132   debug_only(verify());
 133   // Make sure patching code is locked.  No two threads can patch at the same
 134   // time but one may be executing this code.
 135   assert(Patching_lock->is_locked() ||
 136          SafepointSynchronize::is_at_safepoint(), "concurrent code patching");
 137   // Both C1 and C2 should now be generating code which aligns the patched address
 138   // to be within a single cache line except that C1 does not do the alignment on
 139   // uniprocessor systems.
 140   bool is_aligned = ((uintptr_t)displacement_address() + 0) / cache_line_size ==
 141                     ((uintptr_t)displacement_address() + 3) / cache_line_size;
 142 
 143   guarantee(!os::is_MP() || is_aligned, "destination must be aligned");
 144 
 145   if (is_aligned) {
 146     // Simple case:  The destination lies within a single cache line.
 147     set_destination(dest);
 148   } else if ((uintptr_t)instruction_address() / cache_line_size ==
 149              ((uintptr_t)instruction_address()+1) / cache_line_size) {
 150     // Tricky case:  The instruction prefix lies within a single cache line.
 151     intptr_t disp = dest - return_address();
 152 #ifdef AMD64
 153     guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset");
 154 #endif // AMD64
 155 
 156     int call_opcode = instruction_address()[0];
 157 
 158     // First patch dummy jump in place:
 159     {
 160       u_char patch_jump[2];
 161       patch_jump[0] = 0xEB;       // jmp rel8
 162       patch_jump[1] = 0xFE;       // jmp to self
 163 
 164       assert(sizeof(patch_jump)==sizeof(short), "sanity check");
 165       *(short*)instruction_address() = *(short*)patch_jump;
 166     }
 167     // Invalidate.  Opteron requires a flush after every write.
 168     wrote(0);
 169 
 170     // (Note: We assume any reader which has already started to read
 171     // the unpatched call will completely read the whole unpatched call
 172     // without seeing the next writes we are about to make.)
 173 
 174     // Next, patch the last three bytes:
 175     u_char patch_disp[5];
 176     patch_disp[0] = call_opcode;
 177     *(int32_t*)&patch_disp[1] = (int32_t)disp;
 178     assert(sizeof(patch_disp)==instruction_size, "sanity check");
 179     for (int i = sizeof(short); i < instruction_size; i++)
 180       instruction_address()[i] = patch_disp[i];
 181 
 182     // Invalidate.  Opteron requires a flush after every write.
 183     wrote(sizeof(short));
 184 
 185     // (Note: We assume that any reader which reads the opcode we are
 186     // about to repatch will also read the writes we just made.)
 187 
 188     // Finally, overwrite the jump:
 189     *(short*)instruction_address() = *(short*)patch_disp;
 190     // Invalidate.  Opteron requires a flush after every write.
 191     wrote(0);
 192 
 193     debug_only(verify());
 194     guarantee(destination() == dest, "patch succeeded");
 195   } else {
 196     // Impossible:  One or the other must be atomically writable.
 197     ShouldNotReachHere();
 198   }
 199 }
 200 
 201 
 202 void NativeMovConstReg::verify() {
 203 #ifdef AMD64
 204   // make sure code pattern is actually a mov reg64, imm64 instruction
 205   if ((ubyte_at(0) != Assembler::REX_W && ubyte_at(0) != Assembler::REX_WB) ||
 206       (ubyte_at(1) & (0xff ^ register_mask)) != 0xB8) {
 207     print();
 208     fatal("not a REX.W[B] mov reg64, imm64");
 209   }
 210 #else
 211   // make sure code pattern is actually a mov reg, imm32 instruction
 212   u_char test_byte = *(u_char*)instruction_address();
 213   u_char test_byte_2 = test_byte & ( 0xff ^ register_mask);
 214   if (test_byte_2 != instruction_code) fatal("not a mov reg, imm32");
 215 #endif // AMD64
 216 }
 217 
 218 
 219 void NativeMovConstReg::print() {
 220   tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
 221                 instruction_address(), data());
 222 }
 223 
 224 //-------------------------------------------------------------------
 225 
 226 int NativeMovRegMem::instruction_start() const {
 227   int off = 0;
 228   u_char instr_0 = ubyte_at(off);
 229 
 230   // First check to see if we have a (prefixed or not) xor
 231   if ( instr_0 >= instruction_prefix_wide_lo &&      // 0x40
 232        instr_0 <= instruction_prefix_wide_hi) { // 0x4f
 233     off++;
 234     instr_0 = ubyte_at(off);
 235   }
 236 
 237   if (instr_0 == instruction_code_xor) {
 238     off += 2;
 239     instr_0 = ubyte_at(off);
 240   }
 241 
 242   // Now look for the real instruction and the many prefix/size specifiers.
 243 
 244   if (instr_0 == instruction_operandsize_prefix ) {  // 0x66
 245     off++; // Not SSE instructions
 246     instr_0 = ubyte_at(off);
 247   }
 248 
 249   if ( instr_0 == instruction_code_xmm_ss_prefix ||      // 0xf3
 250        instr_0 == instruction_code_xmm_sd_prefix) { // 0xf2
 251     off++;
 252     instr_0 = ubyte_at(off);
 253   }
 254 
 255   if ( instr_0 >= instruction_prefix_wide_lo &&      // 0x40
 256        instr_0 <= instruction_prefix_wide_hi) { // 0x4f
 257     off++;
 258     instr_0 = ubyte_at(off);
 259   }
 260 
 261 
 262   if (instr_0 == instruction_extended_prefix ) {  // 0x0f
 263     off++;
 264   }
 265 
 266   return off;
 267 }
 268 
 269 address NativeMovRegMem::instruction_address() const {
 270   return addr_at(instruction_start());
 271 }
 272 
 273 address NativeMovRegMem::next_instruction_address() const {
 274   address ret = instruction_address() + instruction_size;
 275   u_char instr_0 =  *(u_char*) instruction_address();
 276   switch (instr_0) {
 277   case instruction_operandsize_prefix:
 278 
 279     fatal("should have skipped instruction_operandsize_prefix");
 280     break;
 281 
 282   case instruction_extended_prefix:
 283     fatal("should have skipped instruction_extended_prefix");
 284     break;
 285 
 286   case instruction_code_mem2reg_movslq: // 0x63
 287   case instruction_code_mem2reg_movzxb: // 0xB6
 288   case instruction_code_mem2reg_movsxb: // 0xBE
 289   case instruction_code_mem2reg_movzxw: // 0xB7
 290   case instruction_code_mem2reg_movsxw: // 0xBF
 291   case instruction_code_reg2mem:        // 0x89 (q/l)
 292   case instruction_code_mem2reg:        // 0x8B (q/l)
 293   case instruction_code_reg2memb:       // 0x88
 294   case instruction_code_mem2regb:       // 0x8a
 295 
 296   case instruction_code_float_s:        // 0xd9 fld_s a
 297   case instruction_code_float_d:        // 0xdd fld_d a
 298 
 299   case instruction_code_xmm_load:       // 0x10
 300   case instruction_code_xmm_store:      // 0x11
 301   case instruction_code_xmm_lpd:        // 0x12
 302     {
 303       // If there is an SIB then instruction is longer than expected
 304       u_char mod_rm = *(u_char*)(instruction_address() + 1);
 305       if ((mod_rm & 7) == 0x4) {
 306         ret++;
 307       }
 308     }
 309   case instruction_code_xor:
 310     fatal("should have skipped xor lead in");
 311     break;
 312 
 313   default:
 314     fatal("not a NativeMovRegMem");
 315   }
 316   return ret;
 317 
 318 }
 319 
 320 int NativeMovRegMem::offset() const{
 321   int off = data_offset + instruction_start();
 322   u_char mod_rm = *(u_char*)(instruction_address() + 1);
 323   // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
 324   // the encoding to use an SIB byte. Which will have the nnnn
 325   // field off by one byte
 326   if ((mod_rm & 7) == 0x4) {
 327     off++;
 328   }
 329   return int_at(off);
 330 }
 331 
 332 void NativeMovRegMem::set_offset(int x) {
 333   int off = data_offset + instruction_start();
 334   u_char mod_rm = *(u_char*)(instruction_address() + 1);
 335   // nnnn(r12|rsp) isn't coded as simple mod/rm since that is
 336   // the encoding to use an SIB byte. Which will have the nnnn
 337   // field off by one byte
 338   if ((mod_rm & 7) == 0x4) {
 339     off++;
 340   }
 341   set_int_at(off, x);
 342 }
 343 
 344 void NativeMovRegMem::verify() {
 345   // make sure code pattern is actually a mov [reg+offset], reg instruction
 346   u_char test_byte = *(u_char*)instruction_address();
 347   switch (test_byte) {
 348     case instruction_code_reg2memb:  // 0x88 movb a, r
 349     case instruction_code_reg2mem:   // 0x89 movl a, r (can be movq in 64bit)
 350     case instruction_code_mem2regb:  // 0x8a movb r, a
 351     case instruction_code_mem2reg:   // 0x8b movl r, a (can be movq in 64bit)
 352       break;
 353 
 354     case instruction_code_mem2reg_movslq: // 0x63 movsql r, a
 355     case instruction_code_mem2reg_movzxb: // 0xb6 movzbl r, a (movzxb)
 356     case instruction_code_mem2reg_movzxw: // 0xb7 movzwl r, a (movzxw)
 357     case instruction_code_mem2reg_movsxb: // 0xbe movsbl r, a (movsxb)
 358     case instruction_code_mem2reg_movsxw: // 0xbf  movswl r, a (movsxw)
 359       break;
 360 
 361     case instruction_code_float_s:   // 0xd9 fld_s a
 362     case instruction_code_float_d:   // 0xdd fld_d a
 363     case instruction_code_xmm_load:  // 0x10 movsd xmm, a
 364     case instruction_code_xmm_store: // 0x11 movsd a, xmm
 365     case instruction_code_xmm_lpd:   // 0x12 movlpd xmm, a
 366       break;
 367 
 368     default:
 369           fatal ("not a mov [reg+offs], reg instruction");
 370   }
 371 }
 372 
 373 
 374 void NativeMovRegMem::print() {
 375   tty->print_cr("0x%x: mov reg, [reg + %x]", instruction_address(), offset());
 376 }
 377 
 378 //-------------------------------------------------------------------
 379 
 380 void NativeLoadAddress::verify() {
 381   // make sure code pattern is actually a mov [reg+offset], reg instruction
 382   u_char test_byte = *(u_char*)instruction_address();
 383 #ifdef _LP64
 384   if ( (test_byte == instruction_prefix_wide ||
 385         test_byte == instruction_prefix_wide_extended) ) {
 386     test_byte = *(u_char*)(instruction_address() + 1);
 387   }
 388 #endif // _LP64
 389   if ( ! ((test_byte == lea_instruction_code)
 390           LP64_ONLY(|| (test_byte == mov64_instruction_code) ))) {
 391     fatal ("not a lea reg, [reg+offs] instruction");
 392   }
 393 }
 394 
 395 
 396 void NativeLoadAddress::print() {
 397   tty->print_cr("0x%x: lea [reg + %x], reg", instruction_address(), offset());
 398 }
 399 
 400 //--------------------------------------------------------------------------------
 401 
 402 void NativeJump::verify() {
 403   if (*(u_char*)instruction_address() != instruction_code) {
 404     fatal("not a jump instruction");
 405   }
 406 }
 407 
 408 
 409 void NativeJump::insert(address code_pos, address entry) {
 410   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
 411 #ifdef AMD64
 412   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
 413 #endif // AMD64
 414 
 415   *code_pos = instruction_code;
 416   *((int32_t*)(code_pos + 1)) = (int32_t)disp;
 417 
 418   ICache::invalidate_range(code_pos, instruction_size);
 419 }
 420 
 421 void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
 422   // Patching to not_entrant can happen while activations of the method are
 423   // in use. The patching in that instance must happen only when certain
 424   // alignment restrictions are true. These guarantees check those
 425   // conditions.
 426 #ifdef AMD64
 427   const int linesize = 64;
 428 #else
 429   const int linesize = 32;
 430 #endif // AMD64
 431 
 432   // Must be wordSize aligned
 433   guarantee(((uintptr_t) verified_entry & (wordSize -1)) == 0,
 434             "illegal address for code patching 2");
 435   // First 5 bytes must be within the same cache line - 4827828
 436   guarantee((uintptr_t) verified_entry / linesize ==
 437             ((uintptr_t) verified_entry + 4) / linesize,
 438             "illegal address for code patching 3");
 439 }
 440 
 441 
 442 // MT safe inserting of a jump over an unknown instruction sequence (used by nmethod::makeZombie)
 443 // The problem: jmp <dest> is a 5-byte instruction. Atomical write can be only with 4 bytes.
 444 // First patches the first word atomically to be a jump to itself.
 445 // Then patches the last byte  and then atomically patches the first word (4-bytes),
 446 // thus inserting the desired jump
 447 // This code is mt-safe with the following conditions: entry point is 4 byte aligned,
 448 // entry point is in same cache line as unverified entry point, and the instruction being
 449 // patched is >= 5 byte (size of patch).
 450 //
 451 // In C2 the 5+ byte sized instruction is enforced by code in MachPrologNode::emit.
 452 // In C1 the restriction is enforced by CodeEmitter::method_entry
 453 //
 454 void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
 455   // complete jump instruction (to be inserted) is in code_buffer;
 456   unsigned char code_buffer[5];
 457   code_buffer[0] = instruction_code;
 458   intptr_t disp = (intptr_t)dest - ((intptr_t)verified_entry + 1 + 4);
 459 #ifdef AMD64
 460   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
 461 #endif // AMD64
 462   *(int32_t*)(code_buffer + 1) = (int32_t)disp;
 463 
 464   check_verified_entry_alignment(entry, verified_entry);
 465 
 466   // Can't call nativeJump_at() because it's asserts jump exists
 467   NativeJump* n_jump = (NativeJump*) verified_entry;
 468 
 469   //First patch dummy jmp in place
 470 
 471   unsigned char patch[4];
 472   assert(sizeof(patch)==sizeof(int32_t), "sanity check");
 473   patch[0] = 0xEB;       // jmp rel8
 474   patch[1] = 0xFE;       // jmp to self
 475   patch[2] = 0xEB;
 476   patch[3] = 0xFE;
 477 
 478   // First patch dummy jmp in place
 479   *(int32_t*)verified_entry = *(int32_t *)patch;
 480 
 481   n_jump->wrote(0);
 482 
 483   // Patch 5th byte (from jump instruction)
 484   verified_entry[4] = code_buffer[4];
 485 
 486   n_jump->wrote(4);
 487 
 488   // Patch bytes 0-3 (from jump instruction)
 489   *(int32_t*)verified_entry = *(int32_t *)code_buffer;
 490   // Invalidate.  Opteron requires a flush after every write.
 491   n_jump->wrote(0);
 492 
 493 }
 494 
 495 void NativePopReg::insert(address code_pos, Register reg) {
 496   assert(reg->encoding() < 8, "no space for REX");
 497   assert(NativePopReg::instruction_size == sizeof(char), "right address unit for update");
 498   *code_pos = (u_char)(instruction_code | reg->encoding());
 499   ICache::invalidate_range(code_pos, instruction_size);
 500 }
 501 
 502 
 503 void NativeIllegalInstruction::insert(address code_pos) {
 504   assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
 505   *(short *)code_pos = instruction_code;
 506   ICache::invalidate_range(code_pos, instruction_size);
 507 }
 508 
 509 void NativeGeneralJump::verify() {
 510   assert(((NativeInstruction *)this)->is_jump() ||
 511          ((NativeInstruction *)this)->is_cond_jump(), "not a general jump instruction");
 512 }
 513 
 514 
 515 void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
 516   intptr_t disp = (intptr_t)entry - ((intptr_t)code_pos + 1 + 4);
 517 #ifdef AMD64
 518   guarantee(disp == (intptr_t)(int32_t)disp, "must be 32-bit offset");
 519 #endif // AMD64
 520 
 521   *code_pos = unconditional_long_jump;
 522   *((int32_t *)(code_pos+1)) = (int32_t) disp;
 523   ICache::invalidate_range(code_pos, instruction_size);
 524 }
 525 
 526 
 527 // MT-safe patching of a long jump instruction.
 528 // First patches first word of instruction to two jmp's that jmps to them
 529 // selfs (spinlock). Then patches the last byte, and then atomicly replaces
 530 // the jmp's with the first 4 byte of the new instruction.
 531 void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
 532    assert (instr_addr != NULL, "illegal address for code patching (4)");
 533    NativeGeneralJump* n_jump =  nativeGeneralJump_at (instr_addr); // checking that it is a jump
 534 
 535    // Temporary code
 536    unsigned char patch[4];
 537    assert(sizeof(patch)==sizeof(int32_t), "sanity check");
 538    patch[0] = 0xEB;       // jmp rel8
 539    patch[1] = 0xFE;       // jmp to self
 540    patch[2] = 0xEB;
 541    patch[3] = 0xFE;
 542 
 543    // First patch dummy jmp in place
 544    *(int32_t*)instr_addr = *(int32_t *)patch;
 545     n_jump->wrote(0);
 546 
 547    // Patch 4th byte
 548    instr_addr[4] = code_buffer[4];
 549 
 550     n_jump->wrote(4);
 551 
 552    // Patch bytes 0-3
 553    *(jint*)instr_addr = *(jint *)code_buffer;
 554 
 555     n_jump->wrote(0);
 556 
 557 #ifdef ASSERT
 558    // verify patching
 559    for ( int i = 0; i < instruction_size; i++) {
 560      address ptr = (address)((intptr_t)code_buffer + i);
 561      int a_byte = (*ptr) & 0xFF;
 562      assert(*((address)((intptr_t)instr_addr + i)) == a_byte, "mt safe patching failed");
 563    }
 564 #endif
 565 
 566 }
 567 
 568 
 569 
 570 address NativeGeneralJump::jump_destination() const {
 571   int op_code = ubyte_at(0);
 572   bool is_rel32off = (op_code == 0xE9 || op_code == 0x0F);
 573   int  offset  = (op_code == 0x0F)  ? 2 : 1;
 574   int  length  = offset + ((is_rel32off) ? 4 : 1);
 575 
 576   if (is_rel32off)
 577     return addr_at(0) + length + int_at(offset);
 578   else
 579     return addr_at(0) + length + sbyte_at(offset);
 580 }
 581 
 582 bool NativeInstruction::is_dtrace_trap() {
 583   return (*(int32_t*)this & 0xff) == 0xcc;
 584 }