hotspot/src/cpu/x86/vm/nativeInst_x86.hpp

Print this page
rev 611 : Merge
   1 #ifdef USE_PRAGMA_IDENT_HDR
   2 #pragma ident "@(#)nativeInst_x86.hpp   1.81 07/09/17 09:28:55 JVM"
   3 #endif
   4 /*
   5  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  


  36 // - - NativeIllegalOpCode
  37 // - - NativeGeneralJump
  38 // - - NativeReturn   
  39 // - - NativeReturnX (return with argument)
  40 // - - NativePushConst
  41 // - - NativeTstRegMem
  42 
  43 // The base class for different kinds of native instruction abstractions.
  44 // Provides the primitive operations to manipulate code relative to this.
  45 
  46 class NativeInstruction VALUE_OBJ_CLASS_SPEC {
  47   friend class Relocation;
  48 
  49  public:
  50   enum Intel_specific_constants {
  51     nop_instruction_code        = 0x90,
  52     nop_instruction_size        =    1
  53   };
  54 
  55   bool is_nop()                        { return ubyte_at(0) == nop_instruction_code; }

  56   inline bool is_call();
  57   inline bool is_illegal();
  58   inline bool is_return();
  59   inline bool is_jump();
  60   inline bool is_cond_jump();
  61   inline bool is_safepoint_poll();
  62   inline bool is_mov_literal64();
  63 
  64  protected:
  65   address addr_at(int offset) const    { return address(this) + offset; }
  66 
  67   s_char sbyte_at(int offset) const    { return *(s_char*) addr_at(offset); }
  68   u_char ubyte_at(int offset) const    { return *(u_char*) addr_at(offset); }
  69   
  70   jint int_at(int offset) const         { return *(jint*) addr_at(offset); }
  71 
  72   intptr_t ptr_at(int offset) const    { return *(intptr_t*) addr_at(offset); }
  73 
  74   oop  oop_at (int offset) const       { return *(oop*) addr_at(offset); }
  75 


 220 
 221 inline NativeMovConstReg* nativeMovConstReg_before(address address) {
 222   NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
 223 #ifdef ASSERT
 224   test->verify();
 225 #endif
 226   return test;
 227 }
 228 
 229 class NativeMovConstRegPatching: public NativeMovConstReg {
 230  private:
 231     friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
 232     NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset);
 233     #ifdef ASSERT
 234       test->verify();
 235     #endif
 236     return test;
 237   }
 238 };
 239 
 240 #ifndef AMD64
 241 
 242 // An interface for accessing/manipulating native moves of the form:
 243 //      mov[b/w/l] [reg + offset], reg   (instruction_code_reg2mem)
 244 //      mov[b/w/l] reg, [reg+offset]     (instruction_code_mem2reg
 245 //      mov[s/z]x[w/b] [reg + offset], reg 
 246 //      fld_s  [reg+offset]
 247 //      fld_d  [reg+offset]
 248 //      fstp_s [reg + offset]
 249 //      fstp_d [reg + offset]

 250 //
 251 // Warning: These routines must be able to handle any instruction sequences
 252 // that are generated as a result of the load/store byte,word,long
 253 // macros.  For example: The load_unsigned_byte instruction generates
 254 // an xor reg,reg inst prior to generating the movb instruction.  This
 255 // class must skip the xor instruction.  
 256 
 257 class NativeMovRegMem: public NativeInstruction {
 258  public:
 259   enum Intel_specific_constants {


 260     instruction_code_xor                = 0x33,
 261     instruction_extended_prefix         = 0x0F,

 262     instruction_code_mem2reg_movzxb     = 0xB6,
 263     instruction_code_mem2reg_movsxb     = 0xBE,
 264     instruction_code_mem2reg_movzxw     = 0xB7,
 265     instruction_code_mem2reg_movsxw     = 0xBF,
 266     instruction_operandsize_prefix      = 0x66,
 267     instruction_code_reg2meml           = 0x89,
 268     instruction_code_mem2regl           = 0x8b,
 269     instruction_code_reg2memb           = 0x88,
 270     instruction_code_mem2regb           = 0x8a,
 271     instruction_code_float_s            = 0xd9,
 272     instruction_code_float_d            = 0xdd,
 273     instruction_code_long_volatile      = 0xdf,
 274     instruction_code_xmm_ss_prefix      = 0xf3,
 275     instruction_code_xmm_sd_prefix      = 0xf2,
 276     instruction_code_xmm_code           = 0x0f,
 277     instruction_code_xmm_load           = 0x10,
 278     instruction_code_xmm_store          = 0x11,
 279     instruction_code_xmm_lpd            = 0x12,
 280     
 281     instruction_size                    = 4,
 282     instruction_offset                  = 0,
 283     data_offset                         = 2,
 284     next_instruction_offset             = 4
 285   };
 286 
 287   address instruction_address() const { 
 288     if (*addr_at(instruction_offset)   == instruction_operandsize_prefix && 
 289         *addr_at(instruction_offset+1) != instruction_code_xmm_code) {
 290       return addr_at(instruction_offset+1); // Not SSE instructions
 291     }
 292     else if (*addr_at(instruction_offset) == instruction_extended_prefix) {
 293       return addr_at(instruction_offset+1);
 294     }
 295     else if (*addr_at(instruction_offset) == instruction_code_xor) {
 296       return addr_at(instruction_offset+2);
 297     }
 298     else return addr_at(instruction_offset);
 299   }
 300 
 301   address next_instruction_address() const {
 302     switch (*addr_at(instruction_offset)) {
 303     case instruction_operandsize_prefix:
 304       if (*addr_at(instruction_offset+1) == instruction_code_xmm_code)
 305         return instruction_address() + instruction_size; // SSE instructions
 306     case instruction_extended_prefix:
 307       return instruction_address() + instruction_size + 1;
 308     case instruction_code_reg2meml:
 309     case instruction_code_mem2regl:
 310     case instruction_code_reg2memb:
 311     case instruction_code_mem2regb:
 312     case instruction_code_xor:
 313       return instruction_address() + instruction_size + 2;
 314     default:
 315       return instruction_address() + instruction_size;
 316     }
 317   }
 318   int   offset() const{ 
 319     if (*addr_at(instruction_offset)   == instruction_operandsize_prefix && 
 320         *addr_at(instruction_offset+1) != instruction_code_xmm_code) {
 321       return int_at(data_offset+1); // Not SSE instructions
 322     }
 323     else if (*addr_at(instruction_offset) == instruction_extended_prefix) {
 324       return int_at(data_offset+1); 
 325     }
 326     else if (*addr_at(instruction_offset) == instruction_code_xor || 
 327              *addr_at(instruction_offset) == instruction_code_xmm_ss_prefix ||
 328              *addr_at(instruction_offset) == instruction_code_xmm_sd_prefix ||
 329              *addr_at(instruction_offset) == instruction_operandsize_prefix) {
 330       return int_at(data_offset+2); 
 331     }
 332     else return int_at(data_offset); 
 333   }
 334 
 335   void  set_offset(int x) {
 336     if (*addr_at(instruction_offset)   == instruction_operandsize_prefix && 
 337         *addr_at(instruction_offset+1) != instruction_code_xmm_code) {
 338       set_int_at(data_offset+1, x); // Not SSE instructions
 339     }
 340     else if (*addr_at(instruction_offset) == instruction_extended_prefix) {
 341       set_int_at(data_offset+1, x); 
 342     }
 343     else if (*addr_at(instruction_offset) == instruction_code_xor || 
 344              *addr_at(instruction_offset) == instruction_code_xmm_ss_prefix ||
 345              *addr_at(instruction_offset) == instruction_code_xmm_sd_prefix ||
 346              *addr_at(instruction_offset) == instruction_operandsize_prefix) {
 347       set_int_at(data_offset+2, x); 
 348     }
 349     else set_int_at(data_offset, x); 
 350   }
 351 
 352   void  add_offset_in_bytes(int add_offset)     { set_offset ( ( offset() + add_offset ) ); }
 353   void  copy_instruction_to(address new_instruction_address);
 354 
 355   void verify();
 356   void print ();
 357 
 358   // unit test stuff
 359   static void test() {}
 360 
 361  private:
 362   inline friend NativeMovRegMem* nativeMovRegMem_at (address address);
 363 };
 364 
 365 inline NativeMovRegMem* nativeMovRegMem_at (address address) {
 366   NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset);
 367 #ifdef ASSERT
 368   test->verify();
 369 #endif
 370   return test;
 371 }
 372 
 373 class NativeMovRegMemPatching: public NativeMovRegMem {
 374  private:
 375   friend NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address) {
 376     NativeMovRegMemPatching* test = (NativeMovRegMemPatching*)(address - instruction_offset);
 377     #ifdef ASSERT
 378       test->verify();
 379     #endif
 380     return test;
 381   }
 382 };
 383 
 384 
 385 
 386 // An interface for accessing/manipulating native leal instruction of form:
 387 //        leal reg, [reg + offset]
 388 
 389 class NativeLoadAddress: public NativeMovRegMem {







 390  public:
 391   enum Intel_specific_constants {
 392     instruction_code            = 0x8D



 393   };
 394 
 395   void verify();
 396   void print ();
 397 
 398   // unit test stuff
 399   static void test() {}
 400 
 401  private:
 402   friend NativeLoadAddress* nativeLoadAddress_at (address address) {
 403     NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
 404     #ifdef ASSERT
 405       test->verify();
 406     #endif
 407     return test;
 408   }
 409 };
 410 
 411 #endif // AMD64
 412 
 413 // jump rel32off
 414 
 415 class NativeJump: public NativeInstruction {
 416  public:
 417   enum Intel_specific_constants {
 418     instruction_code            = 0xe9,
 419     instruction_size            =    5,
 420     instruction_offset          =    0,
 421     data_offset                 =    1,
 422     next_instruction_offset     =    5
 423   };
 424 
 425   address instruction_address() const       { return addr_at(instruction_offset); }
 426   address next_instruction_address() const  { return addr_at(next_instruction_offset); }  
 427   address jump_destination() const          {
 428      address dest = (int_at(data_offset)+next_instruction_address());
 429 #ifdef AMD64 // What is this about?




 430      // return -1 if jump to self
 431     dest = (dest == (address) this) ? (address) -1 : dest;
 432 #endif // AMD64
 433     return dest;
 434   }
 435 
 436   void  set_jump_destination(address dest)  {
 437     intptr_t val = dest - next_instruction_address();
 438 #ifdef AMD64
 439     if (dest == (address) -1) { // can't encode jump to -1
 440       val = -5; // jump to self
 441     } else {
 442       assert((labs(val)  & 0xFFFFFFFF00000000) == 0,
 443              "must be 32bit offset");
 444     }


 445 #endif // AMD64
 446     set_int_at(data_offset, (jint)val);
 447   }
 448 
 449   // Creation
 450   inline friend NativeJump* nativeJump_at(address address);
 451 
 452   void verify();
 453 
 454   // Unit testing stuff
 455   static void test() {}
 456 
 457   // Insertion of native jump instruction
 458   static void insert(address code_pos, address entry);
 459   // MT-safe insertion of native jump at verified method entry
 460   static void check_verified_entry_alignment(address entry, address verified_entry);
 461   static void patch_verified_entry(address entry, address verified_entry, address dest);
 462 };
 463 
 464 inline NativeJump* nativeJump_at(address address) {


 553 };
 554 
 555 // Simple test vs memory
 556 class NativeTstRegMem: public NativeInstruction {
 557  public:
 558   enum Intel_specific_constants {
 559     instruction_code_memXregl   = 0x85
 560   };
 561 };
 562 
 563 inline bool NativeInstruction::is_illegal()      { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
 564 inline bool NativeInstruction::is_call()         { return ubyte_at(0) == NativeCall::instruction_code; }
 565 inline bool NativeInstruction::is_return()       { return ubyte_at(0) == NativeReturn::instruction_code ||
 566                                                           ubyte_at(0) == NativeReturnX::instruction_code; } 
 567 inline bool NativeInstruction::is_jump()         { return ubyte_at(0) == NativeJump::instruction_code ||
 568                                                           ubyte_at(0) == 0xEB; /* short jump */ }
 569 inline bool NativeInstruction::is_cond_jump()    { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
 570                                                           (ubyte_at(0) & 0xF0) == 0x70;  /* short jump */ }
 571 inline bool NativeInstruction::is_safepoint_poll() {
 572 #ifdef AMD64
 573   return ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
 574          ubyte_at(1) == 0x05 && // 00 rax 101
 575          ((intptr_t) addr_at(6)) + int_at(2) == (intptr_t) os::get_polling_page();




 576 #else
 577   return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2regl ||
 578            ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) &&
 579            (ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */
 580            (os::is_poll_address((address)int_at(2)));
 581 #endif // AMD64
 582 }
 583 
 584 inline bool NativeInstruction::is_mov_literal64() {
 585 #ifdef AMD64
 586   return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) &&
 587           (ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8);
 588 #else
 589   return false;
 590 #endif // AMD64
 591 }
 592 



   1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *


  33 // - - NativeIllegalOpCode
  34 // - - NativeGeneralJump
  35 // - - NativeReturn
  36 // - - NativeReturnX (return with argument)
  37 // - - NativePushConst
  38 // - - NativeTstRegMem
  39 
  40 // The base class for different kinds of native instruction abstractions.
  41 // Provides the primitive operations to manipulate code relative to this.
  42 
  43 class NativeInstruction VALUE_OBJ_CLASS_SPEC {
  44   friend class Relocation;
  45 
  46  public:
  47   enum Intel_specific_constants {
  48     nop_instruction_code        = 0x90,
  49     nop_instruction_size        =    1
  50   };
  51 
  52   bool is_nop()                        { return ubyte_at(0) == nop_instruction_code; }
  53   bool is_dtrace_trap();
  54   inline bool is_call();
  55   inline bool is_illegal();
  56   inline bool is_return();
  57   inline bool is_jump();
  58   inline bool is_cond_jump();
  59   inline bool is_safepoint_poll();
  60   inline bool is_mov_literal64();
  61 
  62  protected:
  63   address addr_at(int offset) const    { return address(this) + offset; }
  64 
  65   s_char sbyte_at(int offset) const    { return *(s_char*) addr_at(offset); }
  66   u_char ubyte_at(int offset) const    { return *(u_char*) addr_at(offset); }
  67 
  68   jint int_at(int offset) const         { return *(jint*) addr_at(offset); }
  69 
  70   intptr_t ptr_at(int offset) const    { return *(intptr_t*) addr_at(offset); }
  71 
  72   oop  oop_at (int offset) const       { return *(oop*) addr_at(offset); }
  73 


 218 
 219 inline NativeMovConstReg* nativeMovConstReg_before(address address) {
 220   NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
 221 #ifdef ASSERT
 222   test->verify();
 223 #endif
 224   return test;
 225 }
 226 
 227 class NativeMovConstRegPatching: public NativeMovConstReg {
 228  private:
 229     friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) {
 230     NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset);
 231     #ifdef ASSERT
 232       test->verify();
 233     #endif
 234     return test;
 235   }
 236 };
 237 


 238 // An interface for accessing/manipulating native moves of the form:
 239 //      mov[b/w/l/q] [reg + offset], reg   (instruction_code_reg2mem)
 240 //      mov[b/w/l/q] reg, [reg+offset]     (instruction_code_mem2reg
 241 //      mov[s/z]x[w/b/q] [reg + offset], reg
 242 //      fld_s  [reg+offset]
 243 //      fld_d  [reg+offset]
 244 //      fstp_s [reg + offset]
 245 //      fstp_d [reg + offset]
 246 //      mov_literal64  scratch,<pointer> ; mov[b/w/l/q] 0(scratch),reg | mov[b/w/l/q] reg,0(scratch)
 247 //
 248 // Warning: These routines must be able to handle any instruction sequences
 249 // that are generated as a result of the load/store byte,word,long
 250 // macros.  For example: The load_unsigned_byte instruction generates
 251 // an xor reg,reg inst prior to generating the movb instruction.  This
 252 // class must skip the xor instruction.
 253 
 254 class NativeMovRegMem: public NativeInstruction {
 255  public:
 256   enum Intel_specific_constants {
 257     instruction_prefix_wide_lo          = Assembler::REX,
 258     instruction_prefix_wide_hi          = Assembler::REX_WRXB,
 259     instruction_code_xor                = 0x33,
 260     instruction_extended_prefix         = 0x0F,
 261     instruction_code_mem2reg_movslq     = 0x63,
 262     instruction_code_mem2reg_movzxb     = 0xB6,
 263     instruction_code_mem2reg_movsxb     = 0xBE,
 264     instruction_code_mem2reg_movzxw     = 0xB7,
 265     instruction_code_mem2reg_movsxw     = 0xBF,
 266     instruction_operandsize_prefix      = 0x66,
 267     instruction_code_reg2mem            = 0x89,
 268     instruction_code_mem2reg            = 0x8b,
 269     instruction_code_reg2memb           = 0x88,
 270     instruction_code_mem2regb           = 0x8a,
 271     instruction_code_float_s            = 0xd9,
 272     instruction_code_float_d            = 0xdd,
 273     instruction_code_long_volatile      = 0xdf,
 274     instruction_code_xmm_ss_prefix      = 0xf3,
 275     instruction_code_xmm_sd_prefix      = 0xf2,
 276     instruction_code_xmm_code           = 0x0f,
 277     instruction_code_xmm_load           = 0x10,
 278     instruction_code_xmm_store          = 0x11,
 279     instruction_code_xmm_lpd            = 0x12,
 280 
 281     instruction_size                    = 4,
 282     instruction_offset                  = 0,
 283     data_offset                         = 2,
 284     next_instruction_offset             = 4
 285   };
 286 
 287   // helper
 288   int instruction_start() const;
 289 
 290   address instruction_address() const;
 291 
 292   address next_instruction_address() const;
 293 
 294   int   offset() const;
 295 
 296   void  set_offset(int x);






















































 297 
 298   void  add_offset_in_bytes(int add_offset)     { set_offset ( ( offset() + add_offset ) ); }

 299 
 300   void verify();
 301   void print ();
 302 
 303   // unit test stuff
 304   static void test() {}
 305 
 306  private:
 307   inline friend NativeMovRegMem* nativeMovRegMem_at (address address);
 308 };
 309 
 310 inline NativeMovRegMem* nativeMovRegMem_at (address address) {
 311   NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset);
 312 #ifdef ASSERT
 313   test->verify();
 314 #endif
 315   return test;
 316 }
 317 
 318 class NativeMovRegMemPatching: public NativeMovRegMem {
 319  private:
 320   friend NativeMovRegMemPatching* nativeMovRegMemPatching_at (address address) {
 321     NativeMovRegMemPatching* test = (NativeMovRegMemPatching*)(address - instruction_offset);
 322     #ifdef ASSERT
 323       test->verify();
 324     #endif
 325     return test;
 326   }
 327 };
 328 
 329 
 330 
 331 // An interface for accessing/manipulating native leal instruction of form:
 332 //        leal reg, [reg + offset]
 333 
 334 class NativeLoadAddress: public NativeMovRegMem {
 335 #ifdef AMD64
 336   static const bool has_rex = true;
 337   static const int rex_size = 1;
 338 #else
 339   static const bool has_rex = false;
 340   static const int rex_size = 0;
 341 #endif // AMD64
 342  public:
 343   enum Intel_specific_constants {
 344     instruction_prefix_wide             = Assembler::REX_W,
 345     instruction_prefix_wide_extended    = Assembler::REX_WB,
 346     lea_instruction_code                = 0x8D,
 347     mov64_instruction_code              = 0xB8
 348   };
 349 
 350   void verify();
 351   void print ();
 352 
 353   // unit test stuff
 354   static void test() {}
 355 
 356  private:
 357   friend NativeLoadAddress* nativeLoadAddress_at (address address) {
 358     NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset);
 359     #ifdef ASSERT
 360       test->verify();
 361     #endif
 362     return test;
 363   }
 364 };
 365 


 366 // jump rel32off
 367 
 368 class NativeJump: public NativeInstruction {
 369  public:
 370   enum Intel_specific_constants {
 371     instruction_code            = 0xe9,
 372     instruction_size            =    5,
 373     instruction_offset          =    0,
 374     data_offset                 =    1,
 375     next_instruction_offset     =    5
 376   };
 377 
 378   address instruction_address() const       { return addr_at(instruction_offset); }
 379   address next_instruction_address() const  { return addr_at(next_instruction_offset); }
 380   address jump_destination() const          {
 381      address dest = (int_at(data_offset)+next_instruction_address());
 382      // 32bit used to encode unresolved jmp as jmp -1
 383      // 64bit can't produce this so it used jump to self.
 384      // Now 32bit and 64bit use jump to self as the unresolved address
 385      // which the inline cache code (and relocs) know about
 386 
 387      // return -1 if jump to self
 388     dest = (dest == (address) this) ? (address) -1 : dest;

 389     return dest;
 390   }
 391 
 392   void  set_jump_destination(address dest)  {
 393     intptr_t val = dest - next_instruction_address();
 394     if (dest == (address) -1) {

 395       val = -5; // jump to self



 396     }
 397 #ifdef AMD64
 398     assert((labs(val)  & 0xFFFFFFFF00000000) == 0 || dest == (address)-1, "must be 32bit offset or -1");
 399 #endif // AMD64
 400     set_int_at(data_offset, (jint)val);
 401   }
 402 
 403   // Creation
 404   inline friend NativeJump* nativeJump_at(address address);
 405 
 406   void verify();
 407 
 408   // Unit testing stuff
 409   static void test() {}
 410 
 411   // Insertion of native jump instruction
 412   static void insert(address code_pos, address entry);
 413   // MT-safe insertion of native jump at verified method entry
 414   static void check_verified_entry_alignment(address entry, address verified_entry);
 415   static void patch_verified_entry(address entry, address verified_entry, address dest);
 416 };
 417 
 418 inline NativeJump* nativeJump_at(address address) {


 507 };
 508 
 509 // Simple test vs memory
 510 class NativeTstRegMem: public NativeInstruction {
 511  public:
 512   enum Intel_specific_constants {
 513     instruction_code_memXregl   = 0x85
 514   };
 515 };
 516 
 517 inline bool NativeInstruction::is_illegal()      { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; }
 518 inline bool NativeInstruction::is_call()         { return ubyte_at(0) == NativeCall::instruction_code; }
 519 inline bool NativeInstruction::is_return()       { return ubyte_at(0) == NativeReturn::instruction_code ||
 520                                                           ubyte_at(0) == NativeReturnX::instruction_code; }
 521 inline bool NativeInstruction::is_jump()         { return ubyte_at(0) == NativeJump::instruction_code ||
 522                                                           ubyte_at(0) == 0xEB; /* short jump */ }
 523 inline bool NativeInstruction::is_cond_jump()    { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ ||
 524                                                           (ubyte_at(0) & 0xF0) == 0x70;  /* short jump */ }
 525 inline bool NativeInstruction::is_safepoint_poll() {
 526 #ifdef AMD64
 527   if ( ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl &&
 528        ubyte_at(1) == 0x05 ) { // 00 rax 101
 529      address fault = addr_at(6) + int_at(2);
 530      return os::is_poll_address(fault);
 531   } else {
 532     return false;
 533   }
 534 #else
 535   return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2reg ||
 536            ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) &&
 537            (ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */
 538            (os::is_poll_address((address)int_at(2)));
 539 #endif // AMD64
 540 }
 541 
 542 inline bool NativeInstruction::is_mov_literal64() {
 543 #ifdef AMD64
 544   return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) &&
 545           (ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8);
 546 #else
 547   return false;
 548 #endif // AMD64
 549 }