1 //
   2 // Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20 // CA 95054 USA or visit www.sun.com if you need additional information or
  21 // have any questions.
  22 //
  23 //
  24 
  25 // X86 Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 
  32 register %{
  33 //----------Architecture Description Register Definitions----------------------
  34 // General Registers
  35 // "reg_def"  name ( register save type, C convention save type,
  36 //                   ideal register type, encoding );
  37 // Register Save Types:
  38 //
  39 // NS  = No-Save:       The register allocator assumes that these registers
  40 //                      can be used without saving upon entry to the method, &
  41 //                      that they do not need to be saved at call sites.
  42 //
  43 // SOC = Save-On-Call:  The register allocator assumes that these registers
  44 //                      can be used without saving upon entry to the method,
  45 //                      but that they must be saved at call sites.
  46 //
  47 // SOE = Save-On-Entry: The register allocator assumes that these registers
  48 //                      must be saved before using them upon entry to the
  49 //                      method, but they do not need to be saved at call
  50 //                      sites.
  51 //
  52 // AS  = Always-Save:   The register allocator assumes that these registers
  53 //                      must be saved before using them upon entry to the
  54 //                      method, & that they must be saved at call sites.
  55 //
  56 // Ideal Register Type is used to determine how to save & restore a
  57 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  58 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  59 //
  60 // The encoding number is the actual bit-pattern placed into the opcodes.
  61 
  62 // General Registers
  63 // Previously set EBX, ESI, and EDI as save-on-entry for java code
  64 // Turn off SOE in java-code due to frequent use of uncommon-traps.
  65 // Now that allocator is better, turn on ESI and EDI as SOE registers.
  66 
  67 reg_def EBX(SOC, SOE, Op_RegI, 3, rbx->as_VMReg());
  68 reg_def ECX(SOC, SOC, Op_RegI, 1, rcx->as_VMReg());
  69 reg_def ESI(SOC, SOE, Op_RegI, 6, rsi->as_VMReg());
  70 reg_def EDI(SOC, SOE, Op_RegI, 7, rdi->as_VMReg());
  71 // now that adapter frames are gone EBP is always saved and restored by the prolog/epilog code
  72 reg_def EBP(NS, SOE, Op_RegI, 5, rbp->as_VMReg());
  73 reg_def EDX(SOC, SOC, Op_RegI, 2, rdx->as_VMReg());
  74 reg_def EAX(SOC, SOC, Op_RegI, 0, rax->as_VMReg());
  75 reg_def ESP( NS,  NS, Op_RegI, 4, rsp->as_VMReg());
  76 
  77 // Special Registers
  78 reg_def EFLAGS(SOC, SOC, 0, 8, VMRegImpl::Bad());
  79 
  80 // Float registers.  We treat TOS/FPR0 special.  It is invisible to the
  81 // allocator, and only shows up in the encodings.
  82 reg_def FPR0L( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  83 reg_def FPR0H( SOC, SOC, Op_RegF, 0, VMRegImpl::Bad());
  84 // Ok so here's the trick FPR1 is really st(0) except in the midst
  85 // of emission of assembly for a machnode. During the emission the fpu stack
  86 // is pushed making FPR1 == st(1) temporarily. However at any safepoint
  87 // the stack will not have this element so FPR1 == st(0) from the
  88 // oopMap viewpoint. This same weirdness with numbering causes
  89 // instruction encoding to have to play games with the register
  90 // encode to correct for this 0/1 issue. See MachSpillCopyNode::implementation
  91 // where it does flt->flt moves to see an example
  92 //
  93 reg_def FPR1L( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg());
  94 reg_def FPR1H( SOC, SOC, Op_RegF, 1, as_FloatRegister(0)->as_VMReg()->next());
  95 reg_def FPR2L( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg());
  96 reg_def FPR2H( SOC, SOC, Op_RegF, 2, as_FloatRegister(1)->as_VMReg()->next());
  97 reg_def FPR3L( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg());
  98 reg_def FPR3H( SOC, SOC, Op_RegF, 3, as_FloatRegister(2)->as_VMReg()->next());
  99 reg_def FPR4L( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg());
 100 reg_def FPR4H( SOC, SOC, Op_RegF, 4, as_FloatRegister(3)->as_VMReg()->next());
 101 reg_def FPR5L( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg());
 102 reg_def FPR5H( SOC, SOC, Op_RegF, 5, as_FloatRegister(4)->as_VMReg()->next());
 103 reg_def FPR6L( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg());
 104 reg_def FPR6H( SOC, SOC, Op_RegF, 6, as_FloatRegister(5)->as_VMReg()->next());
 105 reg_def FPR7L( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg());
 106 reg_def FPR7H( SOC, SOC, Op_RegF, 7, as_FloatRegister(6)->as_VMReg()->next());
 107 
 108 // XMM registers.  128-bit registers or 4 words each, labeled a-d.
 109 // Word a in each register holds a Float, words ab hold a Double.
 110 // We currently do not use the SIMD capabilities, so registers cd
 111 // are unused at the moment.
 112 reg_def XMM0a( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg());
 113 reg_def XMM0b( SOC, SOC, Op_RegF, 0, xmm0->as_VMReg()->next());
 114 reg_def XMM1a( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg());
 115 reg_def XMM1b( SOC, SOC, Op_RegF, 1, xmm1->as_VMReg()->next());
 116 reg_def XMM2a( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg());
 117 reg_def XMM2b( SOC, SOC, Op_RegF, 2, xmm2->as_VMReg()->next());
 118 reg_def XMM3a( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg());
 119 reg_def XMM3b( SOC, SOC, Op_RegF, 3, xmm3->as_VMReg()->next());
 120 reg_def XMM4a( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg());
 121 reg_def XMM4b( SOC, SOC, Op_RegF, 4, xmm4->as_VMReg()->next());
 122 reg_def XMM5a( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg());
 123 reg_def XMM5b( SOC, SOC, Op_RegF, 5, xmm5->as_VMReg()->next());
 124 reg_def XMM6a( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg());
 125 reg_def XMM6b( SOC, SOC, Op_RegF, 6, xmm6->as_VMReg()->next());
 126 reg_def XMM7a( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg());
 127 reg_def XMM7b( SOC, SOC, Op_RegF, 7, xmm7->as_VMReg()->next());
 128 
 129 // Specify priority of register selection within phases of register
 130 // allocation.  Highest priority is first.  A useful heuristic is to
 131 // give registers a low priority when they are required by machine
 132 // instructions, like EAX and EDX.  Registers which are used as
 133 // pairs must fall on an even boundry (witness the FPR#L's in this list).
 134 // For the Intel integer registers, the equivalent Long pairs are
 135 // EDX:EAX, EBX:ECX, and EDI:EBP.
 136 alloc_class chunk0( ECX,   EBX,   EBP,   EDI,   EAX,   EDX,   ESI, ESP,
 137                     FPR0L, FPR0H, FPR1L, FPR1H, FPR2L, FPR2H,
 138                     FPR3L, FPR3H, FPR4L, FPR4H, FPR5L, FPR5H,
 139                     FPR6L, FPR6H, FPR7L, FPR7H );
 140 
 141 alloc_class chunk1( XMM0a, XMM0b,
 142                     XMM1a, XMM1b,
 143                     XMM2a, XMM2b,
 144                     XMM3a, XMM3b,
 145                     XMM4a, XMM4b,
 146                     XMM5a, XMM5b,
 147                     XMM6a, XMM6b,
 148                     XMM7a, XMM7b, EFLAGS);
 149 
 150 
 151 //----------Architecture Description Register Classes--------------------------
 152 // Several register classes are automatically defined based upon information in
 153 // this architecture description.
 154 // 1) reg_class inline_cache_reg           ( /* as def'd in frame section */ )
 155 // 2) reg_class compiler_method_oop_reg    ( /* as def'd in frame section */ )
 156 // 2) reg_class interpreter_method_oop_reg ( /* as def'd in frame section */ )
 157 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 158 //
 159 // Class for all registers
 160 reg_class any_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX, ESP);
 161 // Class for general registers
 162 reg_class e_reg(EAX, EDX, EBP, EDI, ESI, ECX, EBX);
 163 // Class for general registers which may be used for implicit null checks on win95
 164 // Also safe for use by tailjump. We don't want to allocate in rbp,
 165 reg_class e_reg_no_rbp(EAX, EDX, EDI, ESI, ECX, EBX);
 166 // Class of "X" registers
 167 reg_class x_reg(EBX, ECX, EDX, EAX);
 168 // Class of registers that can appear in an address with no offset.
 169 // EBP and ESP require an extra instruction byte for zero offset.
 170 // Used in fast-unlock
 171 reg_class p_reg(EDX, EDI, ESI, EBX);
 172 // Class for general registers not including ECX
 173 reg_class ncx_reg(EAX, EDX, EBP, EDI, ESI, EBX);
 174 // Class for general registers not including EAX
 175 reg_class nax_reg(EDX, EDI, ESI, ECX, EBX);
 176 // Class for general registers not including EAX or EBX.
 177 reg_class nabx_reg(EDX, EDI, ESI, ECX, EBP);
 178 // Class of EAX (for multiply and divide operations)
 179 reg_class eax_reg(EAX);
 180 // Class of EBX (for atomic add)
 181 reg_class ebx_reg(EBX);
 182 // Class of ECX (for shift and JCXZ operations and cmpLTMask)
 183 reg_class ecx_reg(ECX);
 184 // Class of EDX (for multiply and divide operations)
 185 reg_class edx_reg(EDX);
 186 // Class of EDI (for synchronization)
 187 reg_class edi_reg(EDI);
 188 // Class of ESI (for synchronization)
 189 reg_class esi_reg(ESI);
 190 // Singleton class for interpreter's stack pointer
 191 reg_class ebp_reg(EBP);
 192 // Singleton class for stack pointer
 193 reg_class sp_reg(ESP);
 194 // Singleton class for instruction pointer
 195 // reg_class ip_reg(EIP);
 196 // Singleton class for condition codes
 197 reg_class int_flags(EFLAGS);
 198 // Class of integer register pairs
 199 reg_class long_reg( EAX,EDX, ECX,EBX, EBP,EDI );
 200 // Class of integer register pairs that aligns with calling convention
 201 reg_class eadx_reg( EAX,EDX );
 202 reg_class ebcx_reg( ECX,EBX );
 203 // Not AX or DX, used in divides
 204 reg_class nadx_reg( EBX,ECX,ESI,EDI,EBP );
 205 
 206 // Floating point registers.  Notice FPR0 is not a choice.
 207 // FPR0 is not ever allocated; we use clever encodings to fake
 208 // a 2-address instructions out of Intels FP stack.
 209 reg_class flt_reg( FPR1L,FPR2L,FPR3L,FPR4L,FPR5L,FPR6L,FPR7L );
 210 
 211 // make a register class for SSE registers
 212 reg_class xmm_reg(XMM0a, XMM1a, XMM2a, XMM3a, XMM4a, XMM5a, XMM6a, XMM7a);
 213 
 214 // make a double register class for SSE2 registers
 215 reg_class xdb_reg(XMM0a,XMM0b, XMM1a,XMM1b, XMM2a,XMM2b, XMM3a,XMM3b,
 216                   XMM4a,XMM4b, XMM5a,XMM5b, XMM6a,XMM6b, XMM7a,XMM7b );
 217 
 218 reg_class dbl_reg( FPR1L,FPR1H, FPR2L,FPR2H, FPR3L,FPR3H,
 219                    FPR4L,FPR4H, FPR5L,FPR5H, FPR6L,FPR6H,
 220                    FPR7L,FPR7H );
 221 
 222 reg_class flt_reg0( FPR1L );
 223 reg_class dbl_reg0( FPR1L,FPR1H );
 224 reg_class dbl_reg1( FPR2L,FPR2H );
 225 reg_class dbl_notreg0( FPR2L,FPR2H, FPR3L,FPR3H, FPR4L,FPR4H,
 226                        FPR5L,FPR5H, FPR6L,FPR6H, FPR7L,FPR7H );
 227 
 228 // XMM6 and XMM7 could be used as temporary registers for long, float and
 229 // double values for SSE2.
 230 reg_class xdb_reg6( XMM6a,XMM6b );
 231 reg_class xdb_reg7( XMM7a,XMM7b );
 232 %}
 233 
 234 
 235 //----------SOURCE BLOCK-------------------------------------------------------
 236 // This is a block of C++ code which provides values, functions, and
 237 // definitions necessary in the rest of the architecture description
 238 source %{
 239 #define   RELOC_IMM32    Assembler::imm_operand
 240 #define   RELOC_DISP32   Assembler::disp32_operand
 241 
 242 #define __ _masm.
 243 
 244 // How to find the high register of a Long pair, given the low register
 245 #define   HIGH_FROM_LOW(x) ((x)+2)
 246 
 247 // These masks are used to provide 128-bit aligned bitmasks to the XMM
 248 // instructions, to allow sign-masking or sign-bit flipping.  They allow
 249 // fast versions of NegF/NegD and AbsF/AbsD.
 250 
 251 // Note: 'double' and 'long long' have 32-bits alignment on x86.
 252 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
 253   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
 254   // of 128-bits operands for SSE instructions.
 255   jlong *operand = (jlong*)(((uintptr_t)adr)&((uintptr_t)(~0xF)));
 256   // Store the value to a 128-bits operand.
 257   operand[0] = lo;
 258   operand[1] = hi;
 259   return operand;
 260 }
 261 
 262 // Buffer for 128-bits masks used by SSE instructions.
 263 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
 264 
 265 // Static initialization during VM startup.
 266 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
 267 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
 268 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
 269 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
 270 
 271 // !!!!! Special hack to get all type of calls to specify the byte offset
 272 //       from the start of the call to the point where the return address
 273 //       will point.
 274 int MachCallStaticJavaNode::ret_addr_offset() {
 275   return 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 5 bytes from start of call to where return address points
 276 }
 277 
 278 int MachCallDynamicJavaNode::ret_addr_offset() {
 279   return 10 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);  // 10 bytes from start of call to where return address points
 280 }
 281 
 282 static int sizeof_FFree_Float_Stack_All = -1;
 283 
 284 int MachCallRuntimeNode::ret_addr_offset() {
 285   assert(sizeof_FFree_Float_Stack_All != -1, "must have been emitted already");
 286   return sizeof_FFree_Float_Stack_All + 5 + (Compile::current()->in_24_bit_fp_mode() ? 6 : 0);
 287 }
 288 
 289 // Indicate if the safepoint node needs the polling page as an input.
 290 // Since x86 does have absolute addressing, it doesn't.
 291 bool SafePointNode::needs_polling_address_input() {
 292   return false;
 293 }
 294 
 295 //
 296 // Compute padding required for nodes which need alignment
 297 //
 298 
 299 // The address of the call instruction needs to be 4-byte aligned to
 300 // ensure that it does not span a cache line so that it can be patched.
 301 int CallStaticJavaDirectNode::compute_padding(int current_offset) const {
 302   if (Compile::current()->in_24_bit_fp_mode())
 303     current_offset += 6;    // skip fldcw in pre_call_FPU, if any
 304   current_offset += 1;      // skip call opcode byte
 305   return round_to(current_offset, alignment_required()) - current_offset;
 306 }
 307 
 308 // The address of the call instruction needs to be 4-byte aligned to
 309 // ensure that it does not span a cache line so that it can be patched.
 310 int CallDynamicJavaDirectNode::compute_padding(int current_offset) const {
 311   if (Compile::current()->in_24_bit_fp_mode())
 312     current_offset += 6;    // skip fldcw in pre_call_FPU, if any
 313   current_offset += 5;      // skip MOV instruction
 314   current_offset += 1;      // skip call opcode byte
 315   return round_to(current_offset, alignment_required()) - current_offset;
 316 }
 317 
 318 #ifndef PRODUCT
 319 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream* st ) const {
 320   st->print("INT3");
 321 }
 322 #endif
 323 
 324 // EMIT_RM()
 325 void emit_rm(CodeBuffer &cbuf, int f1, int f2, int f3) {
 326   unsigned char c = (unsigned char)((f1 << 6) | (f2 << 3) | f3);
 327   *(cbuf.code_end()) = c;
 328   cbuf.set_code_end(cbuf.code_end() + 1);
 329 }
 330 
 331 // EMIT_CC()
 332 void emit_cc(CodeBuffer &cbuf, int f1, int f2) {
 333   unsigned char c = (unsigned char)( f1 | f2 );
 334   *(cbuf.code_end()) = c;
 335   cbuf.set_code_end(cbuf.code_end() + 1);
 336 }
 337 
 338 // EMIT_OPCODE()
 339 void emit_opcode(CodeBuffer &cbuf, int code) {
 340   *(cbuf.code_end()) = (unsigned char)code;
 341   cbuf.set_code_end(cbuf.code_end() + 1);
 342 }
 343 
 344 // EMIT_OPCODE() w/ relocation information
 345 void emit_opcode(CodeBuffer &cbuf, int code, relocInfo::relocType reloc, int offset = 0) {
 346   cbuf.relocate(cbuf.inst_mark() + offset, reloc);
 347   emit_opcode(cbuf, code);
 348 }
 349 
 350 // EMIT_D8()
 351 void emit_d8(CodeBuffer &cbuf, int d8) {
 352   *(cbuf.code_end()) = (unsigned char)d8;
 353   cbuf.set_code_end(cbuf.code_end() + 1);
 354 }
 355 
 356 // EMIT_D16()
 357 void emit_d16(CodeBuffer &cbuf, int d16) {
 358   *((short *)(cbuf.code_end())) = d16;
 359   cbuf.set_code_end(cbuf.code_end() + 2);
 360 }
 361 
 362 // EMIT_D32()
 363 void emit_d32(CodeBuffer &cbuf, int d32) {
 364   *((int *)(cbuf.code_end())) = d32;
 365   cbuf.set_code_end(cbuf.code_end() + 4);
 366 }
 367 
 368 // emit 32 bit value and construct relocation entry from relocInfo::relocType
 369 void emit_d32_reloc(CodeBuffer &cbuf, int d32, relocInfo::relocType reloc,
 370         int format) {
 371   cbuf.relocate(cbuf.inst_mark(), reloc, format);
 372 
 373   *((int *)(cbuf.code_end())) = d32;
 374   cbuf.set_code_end(cbuf.code_end() + 4);
 375 }
 376 
 377 // emit 32 bit value and construct relocation entry from RelocationHolder
 378 void emit_d32_reloc(CodeBuffer &cbuf, int d32, RelocationHolder const& rspec,
 379         int format) {
 380 #ifdef ASSERT
 381   if (rspec.reloc()->type() == relocInfo::oop_type && d32 != 0 && d32 != (int)Universe::non_oop_word()) {
 382     assert(oop(d32)->is_oop() && oop(d32)->is_perm(), "cannot embed non-perm oops in code");
 383   }
 384 #endif
 385   cbuf.relocate(cbuf.inst_mark(), rspec, format);
 386 
 387   *((int *)(cbuf.code_end())) = d32;
 388   cbuf.set_code_end(cbuf.code_end() + 4);
 389 }
 390 
 391 // Access stack slot for load or store
 392 void store_to_stackslot(CodeBuffer &cbuf, int opcode, int rm_field, int disp) {
 393   emit_opcode( cbuf, opcode );               // (e.g., FILD   [ESP+src])
 394   if( -128 <= disp && disp <= 127 ) {
 395     emit_rm( cbuf, 0x01, rm_field, ESP_enc );  // R/M byte
 396     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 397     emit_d8 (cbuf, disp);     // Displacement  // R/M byte
 398   } else {
 399     emit_rm( cbuf, 0x02, rm_field, ESP_enc );  // R/M byte
 400     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);    // SIB byte
 401     emit_d32(cbuf, disp);     // Displacement  // R/M byte
 402   }
 403 }
 404 
 405    // eRegI ereg, memory mem) %{    // emit_reg_mem
 406 void encode_RegMem( CodeBuffer &cbuf, int reg_encoding, int base, int index, int scale, int displace, bool displace_is_oop ) {
 407   // There is no index & no scale, use form without SIB byte
 408   if ((index == 0x4) &&
 409       (scale == 0) && (base != ESP_enc)) {
 410     // If no displacement, mode is 0x0; unless base is [EBP]
 411     if ( (displace == 0) && (base != EBP_enc) ) {
 412       emit_rm(cbuf, 0x0, reg_encoding, base);
 413     }
 414     else {                    // If 8-bit displacement, mode 0x1
 415       if ((displace >= -128) && (displace <= 127)
 416           && !(displace_is_oop) ) {
 417         emit_rm(cbuf, 0x1, reg_encoding, base);
 418         emit_d8(cbuf, displace);
 419       }
 420       else {                  // If 32-bit displacement
 421         if (base == -1) { // Special flag for absolute address
 422           emit_rm(cbuf, 0x0, reg_encoding, 0x5);
 423           // (manual lies; no SIB needed here)
 424           if ( displace_is_oop ) {
 425             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 426           } else {
 427             emit_d32      (cbuf, displace);
 428           }
 429         }
 430         else {                // Normal base + offset
 431           emit_rm(cbuf, 0x2, reg_encoding, base);
 432           if ( displace_is_oop ) {
 433             emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 434           } else {
 435             emit_d32      (cbuf, displace);
 436           }
 437         }
 438       }
 439     }
 440   }
 441   else {                      // Else, encode with the SIB byte
 442     // If no displacement, mode is 0x0; unless base is [EBP]
 443     if (displace == 0 && (base != EBP_enc)) {  // If no displacement
 444       emit_rm(cbuf, 0x0, reg_encoding, 0x4);
 445       emit_rm(cbuf, scale, index, base);
 446     }
 447     else {                    // If 8-bit displacement, mode 0x1
 448       if ((displace >= -128) && (displace <= 127)
 449           && !(displace_is_oop) ) {
 450         emit_rm(cbuf, 0x1, reg_encoding, 0x4);
 451         emit_rm(cbuf, scale, index, base);
 452         emit_d8(cbuf, displace);
 453       }
 454       else {                  // If 32-bit displacement
 455         if (base == 0x04 ) {
 456           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 457           emit_rm(cbuf, scale, index, 0x04);
 458         } else {
 459           emit_rm(cbuf, 0x2, reg_encoding, 0x4);
 460           emit_rm(cbuf, scale, index, base);
 461         }
 462         if ( displace_is_oop ) {
 463           emit_d32_reloc(cbuf, displace, relocInfo::oop_type, 1);
 464         } else {
 465           emit_d32      (cbuf, displace);
 466         }
 467       }
 468     }
 469   }
 470 }
 471 
 472 
 473 void encode_Copy( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 474   if( dst_encoding == src_encoding ) {
 475     // reg-reg copy, use an empty encoding
 476   } else {
 477     emit_opcode( cbuf, 0x8B );
 478     emit_rm(cbuf, 0x3, dst_encoding, src_encoding );
 479   }
 480 }
 481 
 482 void encode_CopyXD( CodeBuffer &cbuf, int dst_encoding, int src_encoding ) {
 483   if( dst_encoding == src_encoding ) {
 484     // reg-reg copy, use an empty encoding
 485   } else {
 486     MacroAssembler _masm(&cbuf);
 487 
 488     __ movdqa(as_XMMRegister(dst_encoding), as_XMMRegister(src_encoding));
 489   }
 490 }
 491 
 492 
 493 //=============================================================================
 494 #ifndef PRODUCT
 495 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 496   Compile* C = ra_->C;
 497   if( C->in_24_bit_fp_mode() ) {
 498     st->print("FLDCW  24 bit fpu control word");
 499     st->print_cr(""); st->print("\t");
 500   }
 501 
 502   int framesize = C->frame_slots() << LogBytesPerInt;
 503   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 504   // Remove two words for return addr and rbp,
 505   framesize -= 2*wordSize;
 506 
 507   // Calls to C2R adapters often do not accept exceptional returns.
 508   // We require that their callers must bang for them.  But be careful, because
 509   // some VM calls (such as call site linkage) can use several kilobytes of
 510   // stack.  But the stack safety zone should account for that.
 511   // See bugs 4446381, 4468289, 4497237.
 512   if (C->need_stack_bang(framesize)) {
 513     st->print_cr("# stack bang"); st->print("\t");
 514   }
 515   st->print_cr("PUSHL  EBP"); st->print("\t");
 516 
 517   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
 518     st->print("PUSH   0xBADB100D\t# Majik cookie for stack depth check");
 519     st->print_cr(""); st->print("\t");
 520     framesize -= wordSize;
 521   }
 522 
 523   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
 524     if (framesize) {
 525       st->print("SUB    ESP,%d\t# Create frame",framesize);
 526     }
 527   } else {
 528     st->print("SUB    ESP,%d\t# Create frame",framesize);
 529   }
 530 }
 531 #endif
 532 
 533 
 534 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 535   Compile* C = ra_->C;
 536 
 537   if (UseSSE >= 2 && VerifyFPU) {
 538     MacroAssembler masm(&cbuf);
 539     masm.verify_FPU(0, "FPU stack must be clean on entry");
 540   }
 541 
 542   // WARNING: Initial instruction MUST be 5 bytes or longer so that
 543   // NativeJump::patch_verified_entry will be able to patch out the entry
 544   // code safely. The fldcw is ok at 6 bytes, the push to verify stack
 545   // depth is ok at 5 bytes, the frame allocation can be either 3 or
 546   // 6 bytes. So if we don't do the fldcw or the push then we must
 547   // use the 6 byte frame allocation even if we have no frame. :-(
 548   // If method sets FPU control word do it now
 549   if( C->in_24_bit_fp_mode() ) {
 550     MacroAssembler masm(&cbuf);
 551     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 552   }
 553 
 554   int framesize = C->frame_slots() << LogBytesPerInt;
 555   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 556   // Remove two words for return addr and rbp,
 557   framesize -= 2*wordSize;
 558 
 559   // Calls to C2R adapters often do not accept exceptional returns.
 560   // We require that their callers must bang for them.  But be careful, because
 561   // some VM calls (such as call site linkage) can use several kilobytes of
 562   // stack.  But the stack safety zone should account for that.
 563   // See bugs 4446381, 4468289, 4497237.
 564   if (C->need_stack_bang(framesize)) {
 565     MacroAssembler masm(&cbuf);
 566     masm.generate_stack_overflow_check(framesize);
 567   }
 568 
 569   // We always push rbp, so that on return to interpreter rbp, will be
 570   // restored correctly and we can correct the stack.
 571   emit_opcode(cbuf, 0x50 | EBP_enc);
 572 
 573   if( VerifyStackAtCalls ) { // Majik cookie to verify stack depth
 574     emit_opcode(cbuf, 0x68); // push 0xbadb100d
 575     emit_d32(cbuf, 0xbadb100d);
 576     framesize -= wordSize;
 577   }
 578 
 579   if ((C->in_24_bit_fp_mode() || VerifyStackAtCalls ) && framesize < 128 ) {
 580     if (framesize) {
 581       emit_opcode(cbuf, 0x83);   // sub  SP,#framesize
 582       emit_rm(cbuf, 0x3, 0x05, ESP_enc);
 583       emit_d8(cbuf, framesize);
 584     }
 585   } else {
 586     emit_opcode(cbuf, 0x81);   // sub  SP,#framesize
 587     emit_rm(cbuf, 0x3, 0x05, ESP_enc);
 588     emit_d32(cbuf, framesize);
 589   }
 590   C->set_frame_complete(cbuf.code_end() - cbuf.code_begin());
 591 
 592 #ifdef ASSERT
 593   if (VerifyStackAtCalls) {
 594     Label L;
 595     MacroAssembler masm(&cbuf);
 596     masm.push(rax);
 597     masm.mov(rax, rsp);
 598     masm.andptr(rax, StackAlignmentInBytes-1);
 599     masm.cmpptr(rax, StackAlignmentInBytes-wordSize);
 600     masm.pop(rax);
 601     masm.jcc(Assembler::equal, L);
 602     masm.stop("Stack is not properly aligned!");
 603     masm.bind(L);
 604   }
 605 #endif
 606 
 607 }
 608 
 609 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
 610   return MachNode::size(ra_); // too many variables; just compute it the hard way
 611 }
 612 
 613 int MachPrologNode::reloc() const {
 614   return 0; // a large enough number
 615 }
 616 
 617 //=============================================================================
 618 #ifndef PRODUCT
 619 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
 620   Compile *C = ra_->C;
 621   int framesize = C->frame_slots() << LogBytesPerInt;
 622   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 623   // Remove two words for return addr and rbp,
 624   framesize -= 2*wordSize;
 625 
 626   if( C->in_24_bit_fp_mode() ) {
 627     st->print("FLDCW  standard control word");
 628     st->cr(); st->print("\t");
 629   }
 630   if( framesize ) {
 631     st->print("ADD    ESP,%d\t# Destroy frame",framesize);
 632     st->cr(); st->print("\t");
 633   }
 634   st->print_cr("POPL   EBP"); st->print("\t");
 635   if( do_polling() && C->is_method_compilation() ) {
 636     st->print("TEST   PollPage,EAX\t! Poll Safepoint");
 637     st->cr(); st->print("\t");
 638   }
 639 }
 640 #endif
 641 
 642 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 643   Compile *C = ra_->C;
 644 
 645   // If method set FPU control word, restore to standard control word
 646   if( C->in_24_bit_fp_mode() ) {
 647     MacroAssembler masm(&cbuf);
 648     masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 649   }
 650 
 651   int framesize = C->frame_slots() << LogBytesPerInt;
 652   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 653   // Remove two words for return addr and rbp,
 654   framesize -= 2*wordSize;
 655 
 656   // Note that VerifyStackAtCalls' Majik cookie does not change the frame size popped here
 657 
 658   if( framesize >= 128 ) {
 659     emit_opcode(cbuf, 0x81); // add  SP, #framesize
 660     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 661     emit_d32(cbuf, framesize);
 662   }
 663   else if( framesize ) {
 664     emit_opcode(cbuf, 0x83); // add  SP, #framesize
 665     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
 666     emit_d8(cbuf, framesize);
 667   }
 668 
 669   emit_opcode(cbuf, 0x58 | EBP_enc);
 670 
 671   if( do_polling() && C->is_method_compilation() ) {
 672     cbuf.relocate(cbuf.code_end(), relocInfo::poll_return_type, 0);
 673     emit_opcode(cbuf,0x85);
 674     emit_rm(cbuf, 0x0, EAX_enc, 0x5); // EAX
 675     emit_d32(cbuf, (intptr_t)os::get_polling_page());
 676   }
 677 }
 678 
 679 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
 680   Compile *C = ra_->C;
 681   // If method set FPU control word, restore to standard control word
 682   int size = C->in_24_bit_fp_mode() ? 6 : 0;
 683   if( do_polling() && C->is_method_compilation() ) size += 6;
 684 
 685   int framesize = C->frame_slots() << LogBytesPerInt;
 686   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
 687   // Remove two words for return addr and rbp,
 688   framesize -= 2*wordSize;
 689 
 690   size++; // popl rbp,
 691 
 692   if( framesize >= 128 ) {
 693     size += 6;
 694   } else {
 695     size += framesize ? 3 : 0;
 696   }
 697   return size;
 698 }
 699 
 700 int MachEpilogNode::reloc() const {
 701   return 0; // a large enough number
 702 }
 703 
 704 const Pipeline * MachEpilogNode::pipeline() const {
 705   return MachNode::pipeline_class();
 706 }
 707 
 708 int MachEpilogNode::safepoint_offset() const { return 0; }
 709 
 710 //=============================================================================
 711 
 712 enum RC { rc_bad, rc_int, rc_float, rc_xmm, rc_stack };
 713 static enum RC rc_class( OptoReg::Name reg ) {
 714 
 715   if( !OptoReg::is_valid(reg)  ) return rc_bad;
 716   if (OptoReg::is_stack(reg)) return rc_stack;
 717 
 718   VMReg r = OptoReg::as_VMReg(reg);
 719   if (r->is_Register()) return rc_int;
 720   if (r->is_FloatRegister()) {
 721     assert(UseSSE < 2, "shouldn't be used in SSE2+ mode");
 722     return rc_float;
 723   }
 724   assert(r->is_XMMRegister(), "must be");
 725   return rc_xmm;
 726 }
 727 
 728 static int impl_helper( CodeBuffer *cbuf, bool do_size, bool is_load, int offset, int reg,
 729                         int opcode, const char *op_str, int size, outputStream* st ) {
 730   if( cbuf ) {
 731     emit_opcode  (*cbuf, opcode );
 732     encode_RegMem(*cbuf, Matcher::_regEncode[reg], ESP_enc, 0x4, 0, offset, false);
 733 #ifndef PRODUCT
 734   } else if( !do_size ) {
 735     if( size != 0 ) st->print("\n\t");
 736     if( opcode == 0x8B || opcode == 0x89 ) { // MOV
 737       if( is_load ) st->print("%s   %s,[ESP + #%d]",op_str,Matcher::regName[reg],offset);
 738       else          st->print("%s   [ESP + #%d],%s",op_str,offset,Matcher::regName[reg]);
 739     } else { // FLD, FST, PUSH, POP
 740       st->print("%s [ESP + #%d]",op_str,offset);
 741     }
 742 #endif
 743   }
 744   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 745   return size+3+offset_size;
 746 }
 747 
 748 // Helper for XMM registers.  Extra opcode bits, limited syntax.
 749 static int impl_x_helper( CodeBuffer *cbuf, bool do_size, bool is_load,
 750                          int offset, int reg_lo, int reg_hi, int size, outputStream* st ) {
 751   if( cbuf ) {
 752     if( reg_lo+1 == reg_hi ) { // double move?
 753       if( is_load && !UseXmmLoadAndClearUpper )
 754         emit_opcode(*cbuf, 0x66 ); // use 'movlpd' for load
 755       else
 756         emit_opcode(*cbuf, 0xF2 ); // use 'movsd' otherwise
 757     } else {
 758       emit_opcode(*cbuf, 0xF3 );
 759     }
 760     emit_opcode(*cbuf, 0x0F );
 761     if( reg_lo+1 == reg_hi && is_load && !UseXmmLoadAndClearUpper )
 762       emit_opcode(*cbuf, 0x12 );   // use 'movlpd' for load
 763     else
 764       emit_opcode(*cbuf, is_load ? 0x10 : 0x11 );
 765     encode_RegMem(*cbuf, Matcher::_regEncode[reg_lo], ESP_enc, 0x4, 0, offset, false);
 766 #ifndef PRODUCT
 767   } else if( !do_size ) {
 768     if( size != 0 ) st->print("\n\t");
 769     if( reg_lo+1 == reg_hi ) { // double move?
 770       if( is_load ) st->print("%s %s,[ESP + #%d]",
 771                                UseXmmLoadAndClearUpper ? "MOVSD " : "MOVLPD",
 772                                Matcher::regName[reg_lo], offset);
 773       else          st->print("MOVSD  [ESP + #%d],%s",
 774                                offset, Matcher::regName[reg_lo]);
 775     } else {
 776       if( is_load ) st->print("MOVSS  %s,[ESP + #%d]",
 777                                Matcher::regName[reg_lo], offset);
 778       else          st->print("MOVSS  [ESP + #%d],%s",
 779                                offset, Matcher::regName[reg_lo]);
 780     }
 781 #endif
 782   }
 783   int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 784   return size+5+offset_size;
 785 }
 786 
 787 
 788 static int impl_movx_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int dst_lo,
 789                             int src_hi, int dst_hi, int size, outputStream* st ) {
 790   if( UseXmmRegToRegMoveAll ) {//Use movaps,movapd to move between xmm registers
 791     if( cbuf ) {
 792       if( (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ) {
 793         emit_opcode(*cbuf, 0x66 );
 794       }
 795       emit_opcode(*cbuf, 0x0F );
 796       emit_opcode(*cbuf, 0x28 );
 797       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
 798 #ifndef PRODUCT
 799     } else if( !do_size ) {
 800       if( size != 0 ) st->print("\n\t");
 801       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 802         st->print("MOVAPD %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 803       } else {
 804         st->print("MOVAPS %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 805       }
 806 #endif
 807     }
 808     return size + ((src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 4 : 3);
 809   } else {
 810     if( cbuf ) {
 811       emit_opcode(*cbuf, (src_lo+1 == src_hi && dst_lo+1 == dst_hi) ? 0xF2 : 0xF3 );
 812       emit_opcode(*cbuf, 0x0F );
 813       emit_opcode(*cbuf, 0x10 );
 814       emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst_lo], Matcher::_regEncode[src_lo] );
 815 #ifndef PRODUCT
 816     } else if( !do_size ) {
 817       if( size != 0 ) st->print("\n\t");
 818       if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double move?
 819         st->print("MOVSD  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 820       } else {
 821         st->print("MOVSS  %s,%s",Matcher::regName[dst_lo],Matcher::regName[src_lo]);
 822       }
 823 #endif
 824     }
 825     return size+4;
 826   }
 827 }
 828 
 829 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int size, outputStream* st ) {
 830   if( cbuf ) {
 831     emit_opcode(*cbuf, 0x8B );
 832     emit_rm    (*cbuf, 0x3, Matcher::_regEncode[dst], Matcher::_regEncode[src] );
 833 #ifndef PRODUCT
 834   } else if( !do_size ) {
 835     if( size != 0 ) st->print("\n\t");
 836     st->print("MOV    %s,%s",Matcher::regName[dst],Matcher::regName[src]);
 837 #endif
 838   }
 839   return size+2;
 840 }
 841 
 842 static int impl_fp_store_helper( CodeBuffer *cbuf, bool do_size, int src_lo, int src_hi, int dst_lo, int dst_hi,
 843                                  int offset, int size, outputStream* st ) {
 844   if( src_lo != FPR1L_num ) {      // Move value to top of FP stack, if not already there
 845     if( cbuf ) {
 846       emit_opcode( *cbuf, 0xD9 );  // FLD (i.e., push it)
 847       emit_d8( *cbuf, 0xC0-1+Matcher::_regEncode[src_lo] );
 848 #ifndef PRODUCT
 849     } else if( !do_size ) {
 850       if( size != 0 ) st->print("\n\t");
 851       st->print("FLD    %s",Matcher::regName[src_lo]);
 852 #endif
 853     }
 854     size += 2;
 855   }
 856 
 857   int st_op = (src_lo != FPR1L_num) ? EBX_num /*store & pop*/ : EDX_num /*store no pop*/;
 858   const char *op_str;
 859   int op;
 860   if( src_lo+1 == src_hi && dst_lo+1 == dst_hi ) { // double store?
 861     op_str = (src_lo != FPR1L_num) ? "FSTP_D" : "FST_D ";
 862     op = 0xDD;
 863   } else {                   // 32-bit store
 864     op_str = (src_lo != FPR1L_num) ? "FSTP_S" : "FST_S ";
 865     op = 0xD9;
 866     assert( !OptoReg::is_valid(src_hi) && !OptoReg::is_valid(dst_hi), "no non-adjacent float-stores" );
 867   }
 868 
 869   return impl_helper(cbuf,do_size,false,offset,st_op,op,op_str,size, st);
 870 }
 871 
 872 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream* st ) const {
 873   // Get registers to move
 874   OptoReg::Name src_second = ra_->get_reg_second(in(1));
 875   OptoReg::Name src_first = ra_->get_reg_first(in(1));
 876   OptoReg::Name dst_second = ra_->get_reg_second(this );
 877   OptoReg::Name dst_first = ra_->get_reg_first(this );
 878 
 879   enum RC src_second_rc = rc_class(src_second);
 880   enum RC src_first_rc = rc_class(src_first);
 881   enum RC dst_second_rc = rc_class(dst_second);
 882   enum RC dst_first_rc = rc_class(dst_first);
 883 
 884   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
 885 
 886   // Generate spill code!
 887   int size = 0;
 888 
 889   if( src_first == dst_first && src_second == dst_second )
 890     return size;            // Self copy, no move
 891 
 892   // --------------------------------------
 893   // Check for mem-mem move.  push/pop to move.
 894   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
 895     if( src_second == dst_first ) { // overlapping stack copy ranges
 896       assert( src_second_rc == rc_stack && dst_second_rc == rc_stack, "we only expect a stk-stk copy here" );
 897       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
 898       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
 899       src_second_rc = dst_second_rc = rc_bad;  // flag as already moved the second bits
 900     }
 901     // move low bits
 902     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),ESI_num,0xFF,"PUSH  ",size, st);
 903     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),EAX_num,0x8F,"POP   ",size, st);
 904     if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) { // mov second bits
 905       size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),ESI_num,0xFF,"PUSH  ",size, st);
 906       size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),EAX_num,0x8F,"POP   ",size, st);
 907     }
 908     return size;
 909   }
 910 
 911   // --------------------------------------
 912   // Check for integer reg-reg copy
 913   if( src_first_rc == rc_int && dst_first_rc == rc_int )
 914     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,size, st);
 915 
 916   // Check for integer store
 917   if( src_first_rc == rc_int && dst_first_rc == rc_stack )
 918     size = impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first,0x89,"MOV ",size, st);
 919 
 920   // Check for integer load
 921   if( dst_first_rc == rc_int && src_first_rc == rc_stack )
 922     size = impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first,0x8B,"MOV ",size, st);
 923 
 924   // --------------------------------------
 925   // Check for float reg-reg copy
 926   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
 927     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
 928             (src_first+1 == src_second && dst_first+1 == dst_second), "no non-adjacent float-moves" );
 929     if( cbuf ) {
 930 
 931       // Note the mucking with the register encode to compensate for the 0/1
 932       // indexing issue mentioned in a comment in the reg_def sections
 933       // for FPR registers many lines above here.
 934 
 935       if( src_first != FPR1L_num ) {
 936         emit_opcode  (*cbuf, 0xD9 );           // FLD    ST(i)
 937         emit_d8      (*cbuf, 0xC0+Matcher::_regEncode[src_first]-1 );
 938         emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
 939         emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
 940      } else {
 941         emit_opcode  (*cbuf, 0xDD );           // FST    ST(i)
 942         emit_d8      (*cbuf, 0xD0+Matcher::_regEncode[dst_first]-1 );
 943      }
 944 #ifndef PRODUCT
 945     } else if( !do_size ) {
 946       if( size != 0 ) st->print("\n\t");
 947       if( src_first != FPR1L_num ) st->print("FLD    %s\n\tFSTP   %s",Matcher::regName[src_first],Matcher::regName[dst_first]);
 948       else                      st->print(             "FST    %s",                            Matcher::regName[dst_first]);
 949 #endif
 950     }
 951     return size + ((src_first != FPR1L_num) ? 2+2 : 2);
 952   }
 953 
 954   // Check for float store
 955   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
 956     return impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,ra_->reg2offset(dst_first),size, st);
 957   }
 958 
 959   // Check for float load
 960   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
 961     int offset = ra_->reg2offset(src_first);
 962     const char *op_str;
 963     int op;
 964     if( src_first+1 == src_second && dst_first+1 == dst_second ) { // double load?
 965       op_str = "FLD_D";
 966       op = 0xDD;
 967     } else {                   // 32-bit load
 968       op_str = "FLD_S";
 969       op = 0xD9;
 970       assert( src_second_rc == rc_bad && dst_second_rc == rc_bad, "no non-adjacent float-loads" );
 971     }
 972     if( cbuf ) {
 973       emit_opcode  (*cbuf, op );
 974       encode_RegMem(*cbuf, 0x0, ESP_enc, 0x4, 0, offset, false);
 975       emit_opcode  (*cbuf, 0xDD );           // FSTP   ST(i)
 976       emit_d8      (*cbuf, 0xD8+Matcher::_regEncode[dst_first] );
 977 #ifndef PRODUCT
 978     } else if( !do_size ) {
 979       if( size != 0 ) st->print("\n\t");
 980       st->print("%s  ST,[ESP + #%d]\n\tFSTP   %s",op_str, offset,Matcher::regName[dst_first]);
 981 #endif
 982     }
 983     int offset_size = (offset == 0) ? 0 : ((offset <= 127) ? 1 : 4);
 984     return size + 3+offset_size+2;
 985   }
 986 
 987   // Check for xmm reg-reg copy
 988   if( src_first_rc == rc_xmm && dst_first_rc == rc_xmm ) {
 989     assert( (src_second_rc == rc_bad && dst_second_rc == rc_bad) ||
 990             (src_first+1 == src_second && dst_first+1 == dst_second),
 991             "no non-adjacent float-moves" );
 992     return impl_movx_helper(cbuf,do_size,src_first,dst_first,src_second, dst_second, size, st);
 993   }
 994 
 995   // Check for xmm store
 996   if( src_first_rc == rc_xmm && dst_first_rc == rc_stack ) {
 997     return impl_x_helper(cbuf,do_size,false,ra_->reg2offset(dst_first),src_first, src_second, size, st);
 998   }
 999 
1000   // Check for float xmm load
1001   if( dst_first_rc == rc_xmm && src_first_rc == rc_stack ) {
1002     return impl_x_helper(cbuf,do_size,true ,ra_->reg2offset(src_first),dst_first, dst_second, size, st);
1003   }
1004 
1005   // Copy from float reg to xmm reg
1006   if( dst_first_rc == rc_xmm && src_first_rc == rc_float ) {
1007     // copy to the top of stack from floating point reg
1008     // and use LEA to preserve flags
1009     if( cbuf ) {
1010       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP-8]
1011       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1012       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1013       emit_d8(*cbuf,0xF8);
1014 #ifndef PRODUCT
1015     } else if( !do_size ) {
1016       if( size != 0 ) st->print("\n\t");
1017       st->print("LEA    ESP,[ESP-8]");
1018 #endif
1019     }
1020     size += 4;
1021 
1022     size = impl_fp_store_helper(cbuf,do_size,src_first,src_second,dst_first,dst_second,0,size, st);
1023 
1024     // Copy from the temp memory to the xmm reg.
1025     size = impl_x_helper(cbuf,do_size,true ,0,dst_first, dst_second, size, st);
1026 
1027     if( cbuf ) {
1028       emit_opcode(*cbuf,0x8D);  // LEA  ESP,[ESP+8]
1029       emit_rm(*cbuf, 0x1, ESP_enc, 0x04);
1030       emit_rm(*cbuf, 0x0, 0x04, ESP_enc);
1031       emit_d8(*cbuf,0x08);
1032 #ifndef PRODUCT
1033     } else if( !do_size ) {
1034       if( size != 0 ) st->print("\n\t");
1035       st->print("LEA    ESP,[ESP+8]");
1036 #endif
1037     }
1038     size += 4;
1039     return size;
1040   }
1041 
1042   assert( size > 0, "missed a case" );
1043 
1044   // --------------------------------------------------------------------
1045   // Check for second bits still needing moving.
1046   if( src_second == dst_second )
1047     return size;               // Self copy; no move
1048   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1049 
1050   // Check for second word int-int move
1051   if( src_second_rc == rc_int && dst_second_rc == rc_int )
1052     return impl_mov_helper(cbuf,do_size,src_second,dst_second,size, st);
1053 
1054   // Check for second word integer store
1055   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1056     return impl_helper(cbuf,do_size,false,ra_->reg2offset(dst_second),src_second,0x89,"MOV ",size, st);
1057 
1058   // Check for second word integer load
1059   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1060     return impl_helper(cbuf,do_size,true ,ra_->reg2offset(src_second),dst_second,0x8B,"MOV ",size, st);
1061 
1062 
1063   Unimplemented();
1064 }
1065 
1066 #ifndef PRODUCT
1067 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1068   implementation( NULL, ra_, false, st );
1069 }
1070 #endif
1071 
1072 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1073   implementation( &cbuf, ra_, false, NULL );
1074 }
1075 
1076 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1077   return implementation( NULL, ra_, true, NULL );
1078 }
1079 
1080 //=============================================================================
1081 #ifndef PRODUCT
1082 void MachNopNode::format( PhaseRegAlloc *, outputStream* st ) const {
1083   st->print("NOP \t# %d bytes pad for loops and calls", _count);
1084 }
1085 #endif
1086 
1087 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1088   MacroAssembler _masm(&cbuf);
1089   __ nop(_count);
1090 }
1091 
1092 uint MachNopNode::size(PhaseRegAlloc *) const {
1093   return _count;
1094 }
1095 
1096 
1097 //=============================================================================
1098 #ifndef PRODUCT
1099 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1100   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1101   int reg = ra_->get_reg_first(this);
1102   st->print("LEA    %s,[ESP + #%d]",Matcher::regName[reg],offset);
1103 }
1104 #endif
1105 
1106 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1107   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1108   int reg = ra_->get_encode(this);
1109   if( offset >= 128 ) {
1110     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1111     emit_rm(cbuf, 0x2, reg, 0x04);
1112     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1113     emit_d32(cbuf, offset);
1114   }
1115   else {
1116     emit_opcode(cbuf, 0x8D);      // LEA  reg,[SP+offset]
1117     emit_rm(cbuf, 0x1, reg, 0x04);
1118     emit_rm(cbuf, 0x0, 0x04, ESP_enc);
1119     emit_d8(cbuf, offset);
1120   }
1121 }
1122 
1123 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1124   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1125   if( offset >= 128 ) {
1126     return 7;
1127   }
1128   else {
1129     return 4;
1130   }
1131 }
1132 
1133 //=============================================================================
1134 
1135 // emit call stub, compiled java to interpreter
1136 void emit_java_to_interp(CodeBuffer &cbuf ) {
1137   // Stub is fixed up when the corresponding call is converted from calling
1138   // compiled code to calling interpreted code.
1139   // mov rbx,0
1140   // jmp -1
1141 
1142   address mark = cbuf.inst_mark();  // get mark within main instrs section
1143 
1144   // Note that the code buffer's inst_mark is always relative to insts.
1145   // That's why we must use the macroassembler to generate a stub.
1146   MacroAssembler _masm(&cbuf);
1147 
1148   address base =
1149   __ start_a_stub(Compile::MAX_stubs_size);
1150   if (base == NULL)  return;  // CodeBuffer::expand failed
1151   // static stub relocation stores the instruction address of the call
1152   __ relocate(static_stub_Relocation::spec(mark), RELOC_IMM32);
1153   // static stub relocation also tags the methodOop in the code-stream.
1154   __ movoop(rbx, (jobject)NULL);  // method is zapped till fixup time
1155   // This is recognized as unresolved by relocs/nativeInst/ic code
1156   __ jump(RuntimeAddress(__ pc()));
1157 
1158   __ end_a_stub();
1159   // Update current stubs pointer and restore code_end.
1160 }
1161 // size of call stub, compiled java to interpretor
1162 uint size_java_to_interp() {
1163   return 10;  // movl; jmp
1164 }
1165 // relocation entries for call stub, compiled java to interpretor
1166 uint reloc_java_to_interp() {
1167   return 4;  // 3 in emit_java_to_interp + 1 in Java_Static_Call
1168 }
1169 
1170 //=============================================================================
1171 #ifndef PRODUCT
1172 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream* st ) const {
1173   st->print_cr(  "CMP    EAX,[ECX+4]\t# Inline cache check");
1174   st->print_cr("\tJNE    SharedRuntime::handle_ic_miss_stub");
1175   st->print_cr("\tNOP");
1176   st->print_cr("\tNOP");
1177   if( !OptoBreakpoint )
1178     st->print_cr("\tNOP");
1179 }
1180 #endif
1181 
1182 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1183   MacroAssembler masm(&cbuf);
1184 #ifdef ASSERT
1185   uint code_size = cbuf.code_size();
1186 #endif
1187   masm.cmpptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
1188   masm.jump_cc(Assembler::notEqual,
1189                RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1190   /* WARNING these NOPs are critical so that verified entry point is properly
1191      aligned for patching by NativeJump::patch_verified_entry() */
1192   int nops_cnt = 2;
1193   if( !OptoBreakpoint ) // Leave space for int3
1194      nops_cnt += 1;
1195   masm.nop(nops_cnt);
1196 
1197   assert(cbuf.code_size() - code_size == size(ra_), "checking code size of inline cache node");
1198 }
1199 
1200 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1201   return OptoBreakpoint ? 11 : 12;
1202 }
1203 
1204 
1205 //=============================================================================
1206 uint size_exception_handler() {
1207   // NativeCall instruction size is the same as NativeJump.
1208   // exception handler starts out as jump and can be patched to
1209   // a call be deoptimization.  (4932387)
1210   // Note that this value is also credited (in output.cpp) to
1211   // the size of the code section.
1212   return NativeJump::instruction_size;
1213 }
1214 
1215 // Emit exception handler code.  Stuff framesize into a register
1216 // and call a VM stub routine.
1217 int emit_exception_handler(CodeBuffer& cbuf) {
1218 
1219   // Note that the code buffer's inst_mark is always relative to insts.
1220   // That's why we must use the macroassembler to generate a handler.
1221   MacroAssembler _masm(&cbuf);
1222   address base =
1223   __ start_a_stub(size_exception_handler());
1224   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1225   int offset = __ offset();
1226   __ jump(RuntimeAddress(OptoRuntime::exception_blob()->instructions_begin()));
1227   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1228   __ end_a_stub();
1229   return offset;
1230 }
1231 
1232 uint size_deopt_handler() {
1233   // NativeCall instruction size is the same as NativeJump.
1234   // exception handler starts out as jump and can be patched to
1235   // a call be deoptimization.  (4932387)
1236   // Note that this value is also credited (in output.cpp) to
1237   // the size of the code section.
1238   return 5 + NativeJump::instruction_size; // pushl(); jmp;
1239 }
1240 
1241 // Emit deopt handler code.
1242 int emit_deopt_handler(CodeBuffer& cbuf) {
1243 
1244   // Note that the code buffer's inst_mark is always relative to insts.
1245   // That's why we must use the macroassembler to generate a handler.
1246   MacroAssembler _masm(&cbuf);
1247   address base =
1248   __ start_a_stub(size_exception_handler());
1249   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1250   int offset = __ offset();
1251   InternalAddress here(__ pc());
1252   __ pushptr(here.addr());
1253 
1254   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
1255   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1256   __ end_a_stub();
1257   return offset;
1258 }
1259 
1260 
1261 static void emit_double_constant(CodeBuffer& cbuf, double x) {
1262   int mark = cbuf.insts()->mark_off();
1263   MacroAssembler _masm(&cbuf);
1264   address double_address = __ double_constant(x);
1265   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1266   emit_d32_reloc(cbuf,
1267                  (int)double_address,
1268                  internal_word_Relocation::spec(double_address),
1269                  RELOC_DISP32);
1270 }
1271 
1272 static void emit_float_constant(CodeBuffer& cbuf, float x) {
1273   int mark = cbuf.insts()->mark_off();
1274   MacroAssembler _masm(&cbuf);
1275   address float_address = __ float_constant(x);
1276   cbuf.insts()->set_mark_off(mark);  // preserve mark across masm shift
1277   emit_d32_reloc(cbuf,
1278                  (int)float_address,
1279                  internal_word_Relocation::spec(float_address),
1280                  RELOC_DISP32);
1281 }
1282 
1283 
1284 int Matcher::regnum_to_fpu_offset(int regnum) {
1285   return regnum - 32; // The FP registers are in the second chunk
1286 }
1287 
1288 bool is_positive_zero_float(jfloat f) {
1289   return jint_cast(f) == jint_cast(0.0F);
1290 }
1291 
1292 bool is_positive_one_float(jfloat f) {
1293   return jint_cast(f) == jint_cast(1.0F);
1294 }
1295 
1296 bool is_positive_zero_double(jdouble d) {
1297   return jlong_cast(d) == jlong_cast(0.0);
1298 }
1299 
1300 bool is_positive_one_double(jdouble d) {
1301   return jlong_cast(d) == jlong_cast(1.0);
1302 }
1303 
1304 // This is UltraSparc specific, true just means we have fast l2f conversion
1305 const bool Matcher::convL2FSupported(void) {
1306   return true;
1307 }
1308 
1309 // Vector width in bytes
1310 const uint Matcher::vector_width_in_bytes(void) {
1311   return UseSSE >= 2 ? 8 : 0;
1312 }
1313 
1314 // Vector ideal reg
1315 const uint Matcher::vector_ideal_reg(void) {
1316   return Op_RegD;
1317 }
1318 
1319 // Is this branch offset short enough that a short branch can be used?
1320 //
1321 // NOTE: If the platform does not provide any short branch variants, then
1322 //       this method should return false for offset 0.
1323 bool Matcher::is_short_branch_offset(int rule, int offset) {
1324   // the short version of jmpConUCF2 contains multiple branches,
1325   // making the reach slightly less
1326   if (rule == jmpConUCF2_rule)
1327     return (-126 <= offset && offset <= 125);
1328   return (-128 <= offset && offset <= 127);
1329 }
1330 
1331 const bool Matcher::isSimpleConstant64(jlong value) {
1332   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1333   return false;
1334 }
1335 
1336 // The ecx parameter to rep stos for the ClearArray node is in dwords.
1337 const bool Matcher::init_array_count_is_in_bytes = false;
1338 
1339 // Threshold size for cleararray.
1340 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1341 
1342 // Should the Matcher clone shifts on addressing modes, expecting them to
1343 // be subsumed into complex addressing expressions or compute them into
1344 // registers?  True for Intel but false for most RISCs
1345 const bool Matcher::clone_shift_expressions = true;
1346 
1347 // Is it better to copy float constants, or load them directly from memory?
1348 // Intel can load a float constant from a direct address, requiring no
1349 // extra registers.  Most RISCs will have to materialize an address into a
1350 // register first, so they would do better to copy the constant from stack.
1351 const bool Matcher::rematerialize_float_constants = true;
1352 
1353 // If CPU can load and store mis-aligned doubles directly then no fixup is
1354 // needed.  Else we split the double into 2 integer pieces and move it
1355 // piece-by-piece.  Only happens when passing doubles into C code as the
1356 // Java calling convention forces doubles to be aligned.
1357 const bool Matcher::misaligned_doubles_ok = true;
1358 
1359 
1360 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1361   // Get the memory operand from the node
1362   uint numopnds = node->num_opnds();        // Virtual call for number of operands
1363   uint skipped  = node->oper_input_base();  // Sum of leaves skipped so far
1364   assert( idx >= skipped, "idx too low in pd_implicit_null_fixup" );
1365   uint opcnt     = 1;                 // First operand
1366   uint num_edges = node->_opnds[1]->num_edges(); // leaves for first operand
1367   while( idx >= skipped+num_edges ) {
1368     skipped += num_edges;
1369     opcnt++;                          // Bump operand count
1370     assert( opcnt < numopnds, "Accessing non-existent operand" );
1371     num_edges = node->_opnds[opcnt]->num_edges(); // leaves for next operand
1372   }
1373 
1374   MachOper *memory = node->_opnds[opcnt];
1375   MachOper *new_memory = NULL;
1376   switch (memory->opcode()) {
1377   case DIRECT:
1378   case INDOFFSET32X:
1379     // No transformation necessary.
1380     return;
1381   case INDIRECT:
1382     new_memory = new (C) indirect_win95_safeOper( );
1383     break;
1384   case INDOFFSET8:
1385     new_memory = new (C) indOffset8_win95_safeOper(memory->disp(NULL, NULL, 0));
1386     break;
1387   case INDOFFSET32:
1388     new_memory = new (C) indOffset32_win95_safeOper(memory->disp(NULL, NULL, 0));
1389     break;
1390   case INDINDEXOFFSET:
1391     new_memory = new (C) indIndexOffset_win95_safeOper(memory->disp(NULL, NULL, 0));
1392     break;
1393   case INDINDEXSCALE:
1394     new_memory = new (C) indIndexScale_win95_safeOper(memory->scale());
1395     break;
1396   case INDINDEXSCALEOFFSET:
1397     new_memory = new (C) indIndexScaleOffset_win95_safeOper(memory->scale(), memory->disp(NULL, NULL, 0));
1398     break;
1399   case LOAD_LONG_INDIRECT:
1400   case LOAD_LONG_INDOFFSET32:
1401     // Does not use EBP as address register, use { EDX, EBX, EDI, ESI}
1402     return;
1403   default:
1404     assert(false, "unexpected memory operand in pd_implicit_null_fixup()");
1405     return;
1406   }
1407   node->_opnds[opcnt] = new_memory;
1408 }
1409 
1410 // Advertise here if the CPU requires explicit rounding operations
1411 // to implement the UseStrictFP mode.
1412 const bool Matcher::strict_fp_requires_explicit_rounding = true;
1413 
1414 // Do floats take an entire double register or just half?
1415 const bool Matcher::float_in_double = true;
1416 // Do ints take an entire long register or just half?
1417 const bool Matcher::int_in_long = false;
1418 
1419 // Return whether or not this register is ever used as an argument.  This
1420 // function is used on startup to build the trampoline stubs in generateOptoStub.
1421 // Registers not mentioned will be killed by the VM call in the trampoline, and
1422 // arguments in those registers not be available to the callee.
1423 bool Matcher::can_be_java_arg( int reg ) {
1424   if(  reg == ECX_num   || reg == EDX_num   ) return true;
1425   if( (reg == XMM0a_num || reg == XMM1a_num) && UseSSE>=1 ) return true;
1426   if( (reg == XMM0b_num || reg == XMM1b_num) && UseSSE>=2 ) return true;
1427   return false;
1428 }
1429 
1430 bool Matcher::is_spillable_arg( int reg ) {
1431   return can_be_java_arg(reg);
1432 }
1433 
1434 // Register for DIVI projection of divmodI
1435 RegMask Matcher::divI_proj_mask() {
1436   return EAX_REG_mask;
1437 }
1438 
1439 // Register for MODI projection of divmodI
1440 RegMask Matcher::modI_proj_mask() {
1441   return EDX_REG_mask;
1442 }
1443 
1444 // Register for DIVL projection of divmodL
1445 RegMask Matcher::divL_proj_mask() {
1446   ShouldNotReachHere();
1447   return RegMask();
1448 }
1449 
1450 // Register for MODL projection of divmodL
1451 RegMask Matcher::modL_proj_mask() {
1452   ShouldNotReachHere();
1453   return RegMask();
1454 }
1455 
1456 %}
1457 
1458 //----------ENCODING BLOCK-----------------------------------------------------
1459 // This block specifies the encoding classes used by the compiler to output
1460 // byte streams.  Encoding classes generate functions which are called by
1461 // Machine Instruction Nodes in order to generate the bit encoding of the
1462 // instruction.  Operands specify their base encoding interface with the
1463 // interface keyword.  There are currently supported four interfaces,
1464 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1465 // operand to generate a function which returns its register number when
1466 // queried.   CONST_INTER causes an operand to generate a function which
1467 // returns the value of the constant when queried.  MEMORY_INTER causes an
1468 // operand to generate four functions which return the Base Register, the
1469 // Index Register, the Scale Value, and the Offset Value of the operand when
1470 // queried.  COND_INTER causes an operand to generate six functions which
1471 // return the encoding code (ie - encoding bits for the instruction)
1472 // associated with each basic boolean condition for a conditional instruction.
1473 // Instructions specify two basic values for encoding.  They use the
1474 // ins_encode keyword to specify their encoding class (which must be one of
1475 // the class names specified in the encoding block), and they use the
1476 // opcode keyword to specify, in order, their primary, secondary, and
1477 // tertiary opcode.  Only the opcode sections which a particular instruction
1478 // needs for encoding need to be specified.
1479 encode %{
1480   // Build emit functions for each basic byte or larger field in the intel
1481   // encoding scheme (opcode, rm, sib, immediate), and call them from C++
1482   // code in the enc_class source block.  Emit functions will live in the
1483   // main source block for now.  In future, we can generalize this by
1484   // adding a syntax that specifies the sizes of fields in an order,
1485   // so that the adlc can build the emit functions automagically
1486   enc_class OpcP %{             // Emit opcode
1487     emit_opcode(cbuf,$primary);
1488   %}
1489 
1490   enc_class OpcS %{             // Emit opcode
1491     emit_opcode(cbuf,$secondary);
1492   %}
1493 
1494   enc_class Opcode(immI d8 ) %{ // Emit opcode
1495     emit_opcode(cbuf,$d8$$constant);
1496   %}
1497 
1498   enc_class SizePrefix %{
1499     emit_opcode(cbuf,0x66);
1500   %}
1501 
1502   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
1503     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1504   %}
1505 
1506   enc_class OpcRegReg (immI opcode, eRegI dst, eRegI src) %{    // OpcRegReg(Many)
1507     emit_opcode(cbuf,$opcode$$constant);
1508     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1509   %}
1510 
1511   enc_class mov_r32_imm0( eRegI dst ) %{
1512     emit_opcode( cbuf, 0xB8 + $dst$$reg ); // 0xB8+ rd   -- MOV r32  ,imm32
1513     emit_d32   ( cbuf, 0x0  );             //                         imm32==0x0
1514   %}
1515 
1516   enc_class cdq_enc %{
1517     // Full implementation of Java idiv and irem; checks for
1518     // special case as described in JVM spec., p.243 & p.271.
1519     //
1520     //         normal case                           special case
1521     //
1522     // input : rax,: dividend                         min_int
1523     //         reg: divisor                          -1
1524     //
1525     // output: rax,: quotient  (= rax, idiv reg)       min_int
1526     //         rdx: remainder (= rax, irem reg)       0
1527     //
1528     //  Code sequnce:
1529     //
1530     //  81 F8 00 00 00 80    cmp         rax,80000000h
1531     //  0F 85 0B 00 00 00    jne         normal_case
1532     //  33 D2                xor         rdx,edx
1533     //  83 F9 FF             cmp         rcx,0FFh
1534     //  0F 84 03 00 00 00    je          done
1535     //                  normal_case:
1536     //  99                   cdq
1537     //  F7 F9                idiv        rax,ecx
1538     //                  done:
1539     //
1540     emit_opcode(cbuf,0x81); emit_d8(cbuf,0xF8);
1541     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);
1542     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x80);                     // cmp rax,80000000h
1543     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x85);
1544     emit_opcode(cbuf,0x0B); emit_d8(cbuf,0x00);
1545     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // jne normal_case
1546     emit_opcode(cbuf,0x33); emit_d8(cbuf,0xD2);                     // xor rdx,edx
1547     emit_opcode(cbuf,0x83); emit_d8(cbuf,0xF9); emit_d8(cbuf,0xFF); // cmp rcx,0FFh
1548     emit_opcode(cbuf,0x0F); emit_d8(cbuf,0x84);
1549     emit_opcode(cbuf,0x03); emit_d8(cbuf,0x00);
1550     emit_opcode(cbuf,0x00); emit_d8(cbuf,0x00);                     // je done
1551     // normal_case:
1552     emit_opcode(cbuf,0x99);                                         // cdq
1553     // idiv (note: must be emitted by the user of this rule)
1554     // normal:
1555   %}
1556 
1557   // Dense encoding for older common ops
1558   enc_class Opc_plus(immI opcode, eRegI reg) %{
1559     emit_opcode(cbuf, $opcode$$constant + $reg$$reg);
1560   %}
1561 
1562 
1563   // Opcde enc_class for 8/32 bit immediate instructions with sign-extension
1564   enc_class OpcSE (immI imm) %{ // Emit primary opcode and set sign-extend bit
1565     // Check for 8-bit immediate, and set sign extend bit in opcode
1566     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1567       emit_opcode(cbuf, $primary | 0x02);
1568     }
1569     else {                          // If 32-bit immediate
1570       emit_opcode(cbuf, $primary);
1571     }
1572   %}
1573 
1574   enc_class OpcSErm (eRegI dst, immI imm) %{    // OpcSEr/m
1575     // Emit primary opcode and set sign-extend bit
1576     // Check for 8-bit immediate, and set sign extend bit in opcode
1577     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1578       emit_opcode(cbuf, $primary | 0x02);    }
1579     else {                          // If 32-bit immediate
1580       emit_opcode(cbuf, $primary);
1581     }
1582     // Emit r/m byte with secondary opcode, after primary opcode.
1583     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1584   %}
1585 
1586   enc_class Con8or32 (immI imm) %{    // Con8or32(storeImmI), 8 or 32 bits
1587     // Check for 8-bit immediate, and set sign extend bit in opcode
1588     if (($imm$$constant >= -128) && ($imm$$constant <= 127)) {
1589       $$$emit8$imm$$constant;
1590     }
1591     else {                          // If 32-bit immediate
1592       // Output immediate
1593       $$$emit32$imm$$constant;
1594     }
1595   %}
1596 
1597   enc_class Long_OpcSErm_Lo(eRegL dst, immL imm) %{
1598     // Emit primary opcode and set sign-extend bit
1599     // Check for 8-bit immediate, and set sign extend bit in opcode
1600     int con = (int)$imm$$constant; // Throw away top bits
1601     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1602     // Emit r/m byte with secondary opcode, after primary opcode.
1603     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1604     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1605     else                               emit_d32(cbuf,con);
1606   %}
1607 
1608   enc_class Long_OpcSErm_Hi(eRegL dst, immL imm) %{
1609     // Emit primary opcode and set sign-extend bit
1610     // Check for 8-bit immediate, and set sign extend bit in opcode
1611     int con = (int)($imm$$constant >> 32); // Throw away bottom bits
1612     emit_opcode(cbuf, ((con >= -128) && (con <= 127)) ? ($primary | 0x02) : $primary);
1613     // Emit r/m byte with tertiary opcode, after primary opcode.
1614     emit_rm(cbuf, 0x3, $tertiary, HIGH_FROM_LOW($dst$$reg));
1615     if ((con >= -128) && (con <= 127)) emit_d8 (cbuf,con);
1616     else                               emit_d32(cbuf,con);
1617   %}
1618 
1619   enc_class Lbl (label labl) %{ // JMP, CALL
1620     Label *l = $labl$$label;
1621     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1622   %}
1623 
1624   enc_class LblShort (label labl) %{ // JMP, CALL
1625     Label *l = $labl$$label;
1626     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1627     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1628     emit_d8(cbuf, disp);
1629   %}
1630 
1631   enc_class OpcSReg (eRegI dst) %{    // BSWAP
1632     emit_cc(cbuf, $secondary, $dst$$reg );
1633   %}
1634 
1635   enc_class bswap_long_bytes(eRegL dst) %{ // BSWAP
1636     int destlo = $dst$$reg;
1637     int desthi = HIGH_FROM_LOW(destlo);
1638     // bswap lo
1639     emit_opcode(cbuf, 0x0F);
1640     emit_cc(cbuf, 0xC8, destlo);
1641     // bswap hi
1642     emit_opcode(cbuf, 0x0F);
1643     emit_cc(cbuf, 0xC8, desthi);
1644     // xchg lo and hi
1645     emit_opcode(cbuf, 0x87);
1646     emit_rm(cbuf, 0x3, destlo, desthi);
1647   %}
1648 
1649   enc_class RegOpc (eRegI div) %{    // IDIV, IMOD, JMP indirect, ...
1650     emit_rm(cbuf, 0x3, $secondary, $div$$reg );
1651   %}
1652 
1653   enc_class Jcc (cmpOp cop, label labl) %{    // JCC
1654     Label *l = $labl$$label;
1655     $$$emit8$primary;
1656     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1657     emit_d32(cbuf, l ? (l->loc_pos() - (cbuf.code_size()+4)) : 0);
1658   %}
1659 
1660   enc_class JccShort (cmpOp cop, label labl) %{    // JCC
1661     Label *l = $labl$$label;
1662     emit_cc(cbuf, $primary, $cop$$cmpcode);
1663     int disp = l ? (l->loc_pos() - (cbuf.code_size()+1)) : 0;
1664     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
1665     emit_d8(cbuf, disp);
1666   %}
1667 
1668   enc_class enc_cmov(cmpOp cop ) %{ // CMOV
1669     $$$emit8$primary;
1670     emit_cc(cbuf, $secondary, $cop$$cmpcode);
1671   %}
1672 
1673   enc_class enc_cmov_d(cmpOp cop, regD src ) %{ // CMOV
1674     int op = 0xDA00 + $cop$$cmpcode + ($src$$reg-1);
1675     emit_d8(cbuf, op >> 8 );
1676     emit_d8(cbuf, op & 255);
1677   %}
1678 
1679   // emulate a CMOV with a conditional branch around a MOV
1680   enc_class enc_cmov_branch( cmpOp cop, immI brOffs ) %{ // CMOV
1681     // Invert sense of branch from sense of CMOV
1682     emit_cc( cbuf, 0x70, ($cop$$cmpcode^1) );
1683     emit_d8( cbuf, $brOffs$$constant );
1684   %}
1685 
1686   enc_class enc_PartialSubtypeCheck( ) %{
1687     Register Redi = as_Register(EDI_enc); // result register
1688     Register Reax = as_Register(EAX_enc); // super class
1689     Register Recx = as_Register(ECX_enc); // killed
1690     Register Resi = as_Register(ESI_enc); // sub class
1691     Label hit, miss;
1692 
1693     MacroAssembler _masm(&cbuf);
1694     // Compare super with sub directly, since super is not in its own SSA.
1695     // The compiler used to emit this test, but we fold it in here,
1696     // to allow platform-specific tweaking on sparc.
1697     __ cmpptr(Reax, Resi);
1698     __ jcc(Assembler::equal, hit);
1699 #ifndef PRODUCT
1700     __ incrementl(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr));
1701 #endif //PRODUCT
1702     __ movptr(Redi,Address(Resi,sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes()));
1703     __ movl(Recx,Address(Redi,arrayOopDesc::length_offset_in_bytes()));
1704     __ addptr(Redi,arrayOopDesc::base_offset_in_bytes(T_OBJECT));
1705     __ repne_scan();
1706     __ jcc(Assembler::notEqual, miss);
1707     __ movptr(Address(Resi,sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()),Reax);
1708     __ bind(hit);
1709     if( $primary )
1710       __ xorptr(Redi,Redi);
1711     __ bind(miss);
1712   %}
1713 
1714   enc_class FFree_Float_Stack_All %{    // Free_Float_Stack_All
1715     MacroAssembler masm(&cbuf);
1716     int start = masm.offset();
1717     if (UseSSE >= 2) {
1718       if (VerifyFPU) {
1719         masm.verify_FPU(0, "must be empty in SSE2+ mode");
1720       }
1721     } else {
1722       // External c_calling_convention expects the FPU stack to be 'clean'.
1723       // Compiled code leaves it dirty.  Do cleanup now.
1724       masm.empty_FPU_stack();
1725     }
1726     if (sizeof_FFree_Float_Stack_All == -1) {
1727       sizeof_FFree_Float_Stack_All = masm.offset() - start;
1728     } else {
1729       assert(masm.offset() - start == sizeof_FFree_Float_Stack_All, "wrong size");
1730     }
1731   %}
1732 
1733   enc_class Verify_FPU_For_Leaf %{
1734     if( VerifyFPU ) {
1735       MacroAssembler masm(&cbuf);
1736       masm.verify_FPU( -3, "Returning from Runtime Leaf call");
1737     }
1738   %}
1739 
1740   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime, Java_To_Runtime_Leaf
1741     // This is the instruction starting address for relocation info.
1742     cbuf.set_inst_mark();
1743     $$$emit8$primary;
1744     // CALL directly to the runtime
1745     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1746                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1747 
1748     if (UseSSE >= 2) {
1749       MacroAssembler _masm(&cbuf);
1750       BasicType rt = tf()->return_type();
1751 
1752       if ((rt == T_FLOAT || rt == T_DOUBLE) && !return_value_is_used()) {
1753         // A C runtime call where the return value is unused.  In SSE2+
1754         // mode the result needs to be removed from the FPU stack.  It's
1755         // likely that this function call could be removed by the
1756         // optimizer if the C function is a pure function.
1757         __ ffree(0);
1758       } else if (rt == T_FLOAT) {
1759         __ lea(rsp, Address(rsp, -4));
1760         __ fstp_s(Address(rsp, 0));
1761         __ movflt(xmm0, Address(rsp, 0));
1762         __ lea(rsp, Address(rsp,  4));
1763       } else if (rt == T_DOUBLE) {
1764         __ lea(rsp, Address(rsp, -8));
1765         __ fstp_d(Address(rsp, 0));
1766         __ movdbl(xmm0, Address(rsp, 0));
1767         __ lea(rsp, Address(rsp,  8));
1768       }
1769     }
1770   %}
1771 
1772 
1773   enc_class pre_call_FPU %{
1774     // If method sets FPU control word restore it here
1775     if( Compile::current()->in_24_bit_fp_mode() ) {
1776       MacroAssembler masm(&cbuf);
1777       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1778     }
1779   %}
1780 
1781   enc_class post_call_FPU %{
1782     // If method sets FPU control word do it here also
1783     if( Compile::current()->in_24_bit_fp_mode() ) {
1784       MacroAssembler masm(&cbuf);
1785       masm.fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
1786     }
1787   %}
1788 
1789   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
1790     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1791     // who we intended to call.
1792     cbuf.set_inst_mark();
1793     $$$emit8$primary;
1794     if ( !_method ) {
1795       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1796                      runtime_call_Relocation::spec(), RELOC_IMM32 );
1797     } else if(_optimized_virtual) {
1798       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1799                      opt_virtual_call_Relocation::spec(), RELOC_IMM32 );
1800     } else {
1801       emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1802                      static_call_Relocation::spec(), RELOC_IMM32 );
1803     }
1804     if( _method ) {  // Emit stub for static call
1805       emit_java_to_interp(cbuf);
1806     }
1807   %}
1808 
1809   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
1810     // !!!!!
1811     // Generate  "Mov EAX,0x00", placeholder instruction to load oop-info
1812     // emit_call_dynamic_prologue( cbuf );
1813     cbuf.set_inst_mark();
1814     emit_opcode(cbuf, 0xB8 + EAX_enc);        // mov    EAX,-1
1815     emit_d32_reloc(cbuf, (int)Universe::non_oop_word(), oop_Relocation::spec_for_immediate(), RELOC_IMM32);
1816     address  virtual_call_oop_addr = cbuf.inst_mark();
1817     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
1818     // who we intended to call.
1819     cbuf.set_inst_mark();
1820     $$$emit8$primary;
1821     emit_d32_reloc(cbuf, ($meth$$method - (int)(cbuf.code_end()) - 4),
1822                 virtual_call_Relocation::spec(virtual_call_oop_addr), RELOC_IMM32 );
1823   %}
1824 
1825   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
1826     int disp = in_bytes(methodOopDesc::from_compiled_offset());
1827     assert( -128 <= disp && disp <= 127, "compiled_code_offset isn't small");
1828 
1829     // CALL *[EAX+in_bytes(methodOopDesc::from_compiled_code_entry_point_offset())]
1830     cbuf.set_inst_mark();
1831     $$$emit8$primary;
1832     emit_rm(cbuf, 0x01, $secondary, EAX_enc );  // R/M byte
1833     emit_d8(cbuf, disp);             // Displacement
1834 
1835   %}
1836 
1837   enc_class Xor_Reg (eRegI dst) %{
1838     emit_opcode(cbuf, 0x33);
1839     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
1840   %}
1841 
1842 //   Following encoding is no longer used, but may be restored if calling
1843 //   convention changes significantly.
1844 //   Became: Xor_Reg(EBP), Java_To_Runtime( labl )
1845 //
1846 //   enc_class Java_Interpreter_Call (label labl) %{    // JAVA INTERPRETER CALL
1847 //     // int ic_reg     = Matcher::inline_cache_reg();
1848 //     // int ic_encode  = Matcher::_regEncode[ic_reg];
1849 //     // int imo_reg    = Matcher::interpreter_method_oop_reg();
1850 //     // int imo_encode = Matcher::_regEncode[imo_reg];
1851 //
1852 //     // // Interpreter expects method_oop in EBX, currently a callee-saved register,
1853 //     // // so we load it immediately before the call
1854 //     // emit_opcode(cbuf, 0x8B);                     // MOV    imo_reg,ic_reg  # method_oop
1855 //     // emit_rm(cbuf, 0x03, imo_encode, ic_encode ); // R/M byte
1856 //
1857 //     // xor rbp,ebp
1858 //     emit_opcode(cbuf, 0x33);
1859 //     emit_rm(cbuf, 0x3, EBP_enc, EBP_enc);
1860 //
1861 //     // CALL to interpreter.
1862 //     cbuf.set_inst_mark();
1863 //     $$$emit8$primary;
1864 //     emit_d32_reloc(cbuf, ($labl$$label - (int)(cbuf.code_end()) - 4),
1865 //                 runtime_call_Relocation::spec(), RELOC_IMM32 );
1866 //   %}
1867 
1868   enc_class RegOpcImm (eRegI dst, immI8 shift) %{    // SHL, SAR, SHR
1869     $$$emit8$primary;
1870     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
1871     $$$emit8$shift$$constant;
1872   %}
1873 
1874   enc_class LdImmI (eRegI dst, immI src) %{    // Load Immediate
1875     // Load immediate does not have a zero or sign extended version
1876     // for 8-bit immediates
1877     emit_opcode(cbuf, 0xB8 + $dst$$reg);
1878     $$$emit32$src$$constant;
1879   %}
1880 
1881   enc_class LdImmP (eRegI dst, immI src) %{    // Load Immediate
1882     // Load immediate does not have a zero or sign extended version
1883     // for 8-bit immediates
1884     emit_opcode(cbuf, $primary + $dst$$reg);
1885     $$$emit32$src$$constant;
1886   %}
1887 
1888   enc_class LdImmL_Lo( eRegL dst, immL src) %{    // Load Immediate
1889     // Load immediate does not have a zero or sign extended version
1890     // for 8-bit immediates
1891     int dst_enc = $dst$$reg;
1892     int src_con = $src$$constant & 0x0FFFFFFFFL;
1893     if (src_con == 0) {
1894       // xor dst, dst
1895       emit_opcode(cbuf, 0x33);
1896       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1897     } else {
1898       emit_opcode(cbuf, $primary + dst_enc);
1899       emit_d32(cbuf, src_con);
1900     }
1901   %}
1902 
1903   enc_class LdImmL_Hi( eRegL dst, immL src) %{    // Load Immediate
1904     // Load immediate does not have a zero or sign extended version
1905     // for 8-bit immediates
1906     int dst_enc = $dst$$reg + 2;
1907     int src_con = ((julong)($src$$constant)) >> 32;
1908     if (src_con == 0) {
1909       // xor dst, dst
1910       emit_opcode(cbuf, 0x33);
1911       emit_rm(cbuf, 0x3, dst_enc, dst_enc);
1912     } else {
1913       emit_opcode(cbuf, $primary + dst_enc);
1914       emit_d32(cbuf, src_con);
1915     }
1916   %}
1917 
1918 
1919   enc_class LdImmD (immD src) %{    // Load Immediate
1920     if( is_positive_zero_double($src$$constant)) {
1921       // FLDZ
1922       emit_opcode(cbuf,0xD9);
1923       emit_opcode(cbuf,0xEE);
1924     } else if( is_positive_one_double($src$$constant)) {
1925       // FLD1
1926       emit_opcode(cbuf,0xD9);
1927       emit_opcode(cbuf,0xE8);
1928     } else {
1929       emit_opcode(cbuf,0xDD);
1930       emit_rm(cbuf, 0x0, 0x0, 0x5);
1931       emit_double_constant(cbuf, $src$$constant);
1932     }
1933   %}
1934 
1935 
1936   enc_class LdImmF (immF src) %{    // Load Immediate
1937     if( is_positive_zero_float($src$$constant)) {
1938       emit_opcode(cbuf,0xD9);
1939       emit_opcode(cbuf,0xEE);
1940     } else if( is_positive_one_float($src$$constant)) {
1941       emit_opcode(cbuf,0xD9);
1942       emit_opcode(cbuf,0xE8);
1943     } else {
1944       $$$emit8$primary;
1945       // Load immediate does not have a zero or sign extended version
1946       // for 8-bit immediates
1947       // First load to TOS, then move to dst
1948       emit_rm(cbuf, 0x0, 0x0, 0x5);
1949       emit_float_constant(cbuf, $src$$constant);
1950     }
1951   %}
1952 
1953   enc_class LdImmX (regX dst, immXF con) %{    // Load Immediate
1954     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1955     emit_float_constant(cbuf, $con$$constant);
1956   %}
1957 
1958   enc_class LdImmXD (regXD dst, immXD con) %{    // Load Immediate
1959     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1960     emit_double_constant(cbuf, $con$$constant);
1961   %}
1962 
1963   enc_class load_conXD (regXD dst, immXD con) %{ // Load double constant
1964     // UseXmmLoadAndClearUpper ? movsd(dst, con) : movlpd(dst, con)
1965     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
1966     emit_opcode(cbuf, 0x0F);
1967     emit_opcode(cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
1968     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
1969     emit_double_constant(cbuf, $con$$constant);
1970   %}
1971 
1972   enc_class Opc_MemImm_F(immF src) %{
1973     cbuf.set_inst_mark();
1974     $$$emit8$primary;
1975     emit_rm(cbuf, 0x0, $secondary, 0x5);
1976     emit_float_constant(cbuf, $src$$constant);
1977   %}
1978 
1979 
1980   enc_class MovI2X_reg(regX dst, eRegI src) %{
1981     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
1982     emit_opcode(cbuf, 0x0F );
1983     emit_opcode(cbuf, 0x6E );
1984     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
1985   %}
1986 
1987   enc_class MovX2I_reg(eRegI dst, regX src) %{
1988     emit_opcode(cbuf, 0x66 );     // MOVD dst,src
1989     emit_opcode(cbuf, 0x0F );
1990     emit_opcode(cbuf, 0x7E );
1991     emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
1992   %}
1993 
1994   enc_class MovL2XD_reg(regXD dst, eRegL src, regXD tmp) %{
1995     { // MOVD $dst,$src.lo
1996       emit_opcode(cbuf,0x66);
1997       emit_opcode(cbuf,0x0F);
1998       emit_opcode(cbuf,0x6E);
1999       emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2000     }
2001     { // MOVD $tmp,$src.hi
2002       emit_opcode(cbuf,0x66);
2003       emit_opcode(cbuf,0x0F);
2004       emit_opcode(cbuf,0x6E);
2005       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
2006     }
2007     { // PUNPCKLDQ $dst,$tmp
2008       emit_opcode(cbuf,0x66);
2009       emit_opcode(cbuf,0x0F);
2010       emit_opcode(cbuf,0x62);
2011       emit_rm(cbuf, 0x3, $dst$$reg, $tmp$$reg);
2012      }
2013   %}
2014 
2015   enc_class MovXD2L_reg(eRegL dst, regXD src, regXD tmp) %{
2016     { // MOVD $dst.lo,$src
2017       emit_opcode(cbuf,0x66);
2018       emit_opcode(cbuf,0x0F);
2019       emit_opcode(cbuf,0x7E);
2020       emit_rm(cbuf, 0x3, $src$$reg, $dst$$reg);
2021     }
2022     { // PSHUFLW $tmp,$src,0x4E  (01001110b)
2023       emit_opcode(cbuf,0xF2);
2024       emit_opcode(cbuf,0x0F);
2025       emit_opcode(cbuf,0x70);
2026       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
2027       emit_d8(cbuf, 0x4E);
2028     }
2029     { // MOVD $dst.hi,$tmp
2030       emit_opcode(cbuf,0x66);
2031       emit_opcode(cbuf,0x0F);
2032       emit_opcode(cbuf,0x7E);
2033       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
2034     }
2035   %}
2036 
2037 
2038   // Encode a reg-reg copy.  If it is useless, then empty encoding.
2039   enc_class enc_Copy( eRegI dst, eRegI src ) %{
2040     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2041   %}
2042 
2043   enc_class enc_CopyL_Lo( eRegI dst, eRegL src ) %{
2044     encode_Copy( cbuf, $dst$$reg, $src$$reg );
2045   %}
2046 
2047   // Encode xmm reg-reg copy.  If it is useless, then empty encoding.
2048   enc_class enc_CopyXD( RegXD dst, RegXD src ) %{
2049     encode_CopyXD( cbuf, $dst$$reg, $src$$reg );
2050   %}
2051 
2052   enc_class RegReg (eRegI dst, eRegI src) %{    // RegReg(Many)
2053     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2054   %}
2055 
2056   enc_class RegReg_Lo(eRegL dst, eRegL src) %{    // RegReg(Many)
2057     $$$emit8$primary;
2058     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2059   %}
2060 
2061   enc_class RegReg_Hi(eRegL dst, eRegL src) %{    // RegReg(Many)
2062     $$$emit8$secondary;
2063     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2064   %}
2065 
2066   enc_class RegReg_Lo2(eRegL dst, eRegL src) %{    // RegReg(Many)
2067     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2068   %}
2069 
2070   enc_class RegReg_Hi2(eRegL dst, eRegL src) %{    // RegReg(Many)
2071     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg));
2072   %}
2073 
2074   enc_class RegReg_HiLo( eRegL src, eRegI dst ) %{
2075     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($src$$reg));
2076   %}
2077 
2078   enc_class Con32 (immI src) %{    // Con32(storeImmI)
2079     // Output immediate
2080     $$$emit32$src$$constant;
2081   %}
2082 
2083   enc_class Con32F_as_bits(immF src) %{        // storeF_imm
2084     // Output Float immediate bits
2085     jfloat jf = $src$$constant;
2086     int    jf_as_bits = jint_cast( jf );
2087     emit_d32(cbuf, jf_as_bits);
2088   %}
2089 
2090   enc_class Con32XF_as_bits(immXF src) %{      // storeX_imm
2091     // Output Float immediate bits
2092     jfloat jf = $src$$constant;
2093     int    jf_as_bits = jint_cast( jf );
2094     emit_d32(cbuf, jf_as_bits);
2095   %}
2096 
2097   enc_class Con16 (immI src) %{    // Con16(storeImmI)
2098     // Output immediate
2099     $$$emit16$src$$constant;
2100   %}
2101 
2102   enc_class Con_d32(immI src) %{
2103     emit_d32(cbuf,$src$$constant);
2104   %}
2105 
2106   enc_class conmemref (eRegP t1) %{    // Con32(storeImmI)
2107     // Output immediate memory reference
2108     emit_rm(cbuf, 0x00, $t1$$reg, 0x05 );
2109     emit_d32(cbuf, 0x00);
2110   %}
2111 
2112   enc_class lock_prefix( ) %{
2113     if( os::is_MP() )
2114       emit_opcode(cbuf,0xF0);         // [Lock]
2115   %}
2116 
2117   // Cmp-xchg long value.
2118   // Note: we need to swap rbx, and rcx before and after the
2119   //       cmpxchg8 instruction because the instruction uses
2120   //       rcx as the high order word of the new value to store but
2121   //       our register encoding uses rbx,.
2122   enc_class enc_cmpxchg8(eSIRegP mem_ptr) %{
2123 
2124     // XCHG  rbx,ecx
2125     emit_opcode(cbuf,0x87);
2126     emit_opcode(cbuf,0xD9);
2127     // [Lock]
2128     if( os::is_MP() )
2129       emit_opcode(cbuf,0xF0);
2130     // CMPXCHG8 [Eptr]
2131     emit_opcode(cbuf,0x0F);
2132     emit_opcode(cbuf,0xC7);
2133     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2134     // XCHG  rbx,ecx
2135     emit_opcode(cbuf,0x87);
2136     emit_opcode(cbuf,0xD9);
2137   %}
2138 
2139   enc_class enc_cmpxchg(eSIRegP mem_ptr) %{
2140     // [Lock]
2141     if( os::is_MP() )
2142       emit_opcode(cbuf,0xF0);
2143 
2144     // CMPXCHG [Eptr]
2145     emit_opcode(cbuf,0x0F);
2146     emit_opcode(cbuf,0xB1);
2147     emit_rm( cbuf, 0x0, 1, $mem_ptr$$reg );
2148   %}
2149 
2150   enc_class enc_flags_ne_to_boolean( iRegI res ) %{
2151     int res_encoding = $res$$reg;
2152 
2153     // MOV  res,0
2154     emit_opcode( cbuf, 0xB8 + res_encoding);
2155     emit_d32( cbuf, 0 );
2156     // JNE,s  fail
2157     emit_opcode(cbuf,0x75);
2158     emit_d8(cbuf, 5 );
2159     // MOV  res,1
2160     emit_opcode( cbuf, 0xB8 + res_encoding);
2161     emit_d32( cbuf, 1 );
2162     // fail:
2163   %}
2164 
2165   enc_class set_instruction_start( ) %{
2166     cbuf.set_inst_mark();            // Mark start of opcode for reloc info in mem operand
2167   %}
2168 
2169   enc_class RegMem (eRegI ereg, memory mem) %{    // emit_reg_mem
2170     int reg_encoding = $ereg$$reg;
2171     int base  = $mem$$base;
2172     int index = $mem$$index;
2173     int scale = $mem$$scale;
2174     int displace = $mem$$disp;
2175     bool disp_is_oop = $mem->disp_is_oop();
2176     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2177   %}
2178 
2179   enc_class RegMem_Hi(eRegL ereg, memory mem) %{    // emit_reg_mem
2180     int reg_encoding = HIGH_FROM_LOW($ereg$$reg);  // Hi register of pair, computed from lo
2181     int base  = $mem$$base;
2182     int index = $mem$$index;
2183     int scale = $mem$$scale;
2184     int displace = $mem$$disp + 4;      // Offset is 4 further in memory
2185     assert( !$mem->disp_is_oop(), "Cannot add 4 to oop" );
2186     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, false/*disp_is_oop*/);
2187   %}
2188 
2189   enc_class move_long_small_shift( eRegL dst, immI_1_31 cnt ) %{
2190     int r1, r2;
2191     if( $tertiary == 0xA4 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2192     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2193     emit_opcode(cbuf,0x0F);
2194     emit_opcode(cbuf,$tertiary);
2195     emit_rm(cbuf, 0x3, r1, r2);
2196     emit_d8(cbuf,$cnt$$constant);
2197     emit_d8(cbuf,$primary);
2198     emit_rm(cbuf, 0x3, $secondary, r1);
2199     emit_d8(cbuf,$cnt$$constant);
2200   %}
2201 
2202   enc_class move_long_big_shift_sign( eRegL dst, immI_32_63 cnt ) %{
2203     emit_opcode( cbuf, 0x8B ); // Move
2204     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2205     emit_d8(cbuf,$primary);
2206     emit_rm(cbuf, 0x3, $secondary, $dst$$reg);
2207     emit_d8(cbuf,$cnt$$constant-32);
2208     emit_d8(cbuf,$primary);
2209     emit_rm(cbuf, 0x3, $secondary, HIGH_FROM_LOW($dst$$reg));
2210     emit_d8(cbuf,31);
2211   %}
2212 
2213   enc_class move_long_big_shift_clr( eRegL dst, immI_32_63 cnt ) %{
2214     int r1, r2;
2215     if( $secondary == 0x5 ) { r1 = $dst$$reg;  r2 = HIGH_FROM_LOW($dst$$reg); }
2216     else                    { r2 = $dst$$reg;  r1 = HIGH_FROM_LOW($dst$$reg); }
2217 
2218     emit_opcode( cbuf, 0x8B ); // Move r1,r2
2219     emit_rm(cbuf, 0x3, r1, r2);
2220     if( $cnt$$constant > 32 ) { // Shift, if not by zero
2221       emit_opcode(cbuf,$primary);
2222       emit_rm(cbuf, 0x3, $secondary, r1);
2223       emit_d8(cbuf,$cnt$$constant-32);
2224     }
2225     emit_opcode(cbuf,0x33);  // XOR r2,r2
2226     emit_rm(cbuf, 0x3, r2, r2);
2227   %}
2228 
2229   // Clone of RegMem but accepts an extra parameter to access each
2230   // half of a double in memory; it never needs relocation info.
2231   enc_class Mov_MemD_half_to_Reg (immI opcode, memory mem, immI disp_for_half, eRegI rm_reg) %{
2232     emit_opcode(cbuf,$opcode$$constant);
2233     int reg_encoding = $rm_reg$$reg;
2234     int base     = $mem$$base;
2235     int index    = $mem$$index;
2236     int scale    = $mem$$scale;
2237     int displace = $mem$$disp + $disp_for_half$$constant;
2238     bool disp_is_oop = false;
2239     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2240   %}
2241 
2242   // !!!!! Special Custom Code used by MemMove, and stack access instructions !!!!!
2243   //
2244   // Clone of RegMem except the RM-byte's reg/opcode field is an ADLC-time constant
2245   // and it never needs relocation information.
2246   // Frequently used to move data between FPU's Stack Top and memory.
2247   enc_class RMopc_Mem_no_oop (immI rm_opcode, memory mem) %{
2248     int rm_byte_opcode = $rm_opcode$$constant;
2249     int base     = $mem$$base;
2250     int index    = $mem$$index;
2251     int scale    = $mem$$scale;
2252     int displace = $mem$$disp;
2253     assert( !$mem->disp_is_oop(), "No oops here because no relo info allowed" );
2254     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, false);
2255   %}
2256 
2257   enc_class RMopc_Mem (immI rm_opcode, memory mem) %{
2258     int rm_byte_opcode = $rm_opcode$$constant;
2259     int base     = $mem$$base;
2260     int index    = $mem$$index;
2261     int scale    = $mem$$scale;
2262     int displace = $mem$$disp;
2263     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2264     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
2265   %}
2266 
2267   enc_class RegLea (eRegI dst, eRegI src0, immI src1 ) %{    // emit_reg_lea
2268     int reg_encoding = $dst$$reg;
2269     int base         = $src0$$reg;      // 0xFFFFFFFF indicates no base
2270     int index        = 0x04;            // 0x04 indicates no index
2271     int scale        = 0x00;            // 0x00 indicates no scale
2272     int displace     = $src1$$constant; // 0x00 indicates no displacement
2273     bool disp_is_oop = false;
2274     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2275   %}
2276 
2277   enc_class min_enc (eRegI dst, eRegI src) %{    // MIN
2278     // Compare dst,src
2279     emit_opcode(cbuf,0x3B);
2280     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2281     // jmp dst < src around move
2282     emit_opcode(cbuf,0x7C);
2283     emit_d8(cbuf,2);
2284     // move dst,src
2285     emit_opcode(cbuf,0x8B);
2286     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2287   %}
2288 
2289   enc_class max_enc (eRegI dst, eRegI src) %{    // MAX
2290     // Compare dst,src
2291     emit_opcode(cbuf,0x3B);
2292     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2293     // jmp dst > src around move
2294     emit_opcode(cbuf,0x7F);
2295     emit_d8(cbuf,2);
2296     // move dst,src
2297     emit_opcode(cbuf,0x8B);
2298     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
2299   %}
2300 
2301   enc_class enc_FP_store(memory mem, regD src) %{
2302     // If src is FPR1, we can just FST to store it.
2303     // Else we need to FLD it to FPR1, then FSTP to store/pop it.
2304     int reg_encoding = 0x2; // Just store
2305     int base  = $mem$$base;
2306     int index = $mem$$index;
2307     int scale = $mem$$scale;
2308     int displace = $mem$$disp;
2309     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
2310     if( $src$$reg != FPR1L_enc ) {
2311       reg_encoding = 0x3;  // Store & pop
2312       emit_opcode( cbuf, 0xD9 ); // FLD (i.e., push it)
2313       emit_d8( cbuf, 0xC0-1+$src$$reg );
2314     }
2315     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2316     emit_opcode(cbuf,$primary);
2317     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2318   %}
2319 
2320   enc_class neg_reg(eRegI dst) %{
2321     // NEG $dst
2322     emit_opcode(cbuf,0xF7);
2323     emit_rm(cbuf, 0x3, 0x03, $dst$$reg );
2324   %}
2325 
2326   enc_class setLT_reg(eCXRegI dst) %{
2327     // SETLT $dst
2328     emit_opcode(cbuf,0x0F);
2329     emit_opcode(cbuf,0x9C);
2330     emit_rm( cbuf, 0x3, 0x4, $dst$$reg );
2331   %}
2332 
2333   enc_class enc_cmpLTP(ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp) %{    // cadd_cmpLT
2334     int tmpReg = $tmp$$reg;
2335 
2336     // SUB $p,$q
2337     emit_opcode(cbuf,0x2B);
2338     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2339     // SBB $tmp,$tmp
2340     emit_opcode(cbuf,0x1B);
2341     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2342     // AND $tmp,$y
2343     emit_opcode(cbuf,0x23);
2344     emit_rm(cbuf, 0x3, tmpReg, $y$$reg);
2345     // ADD $p,$tmp
2346     emit_opcode(cbuf,0x03);
2347     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2348   %}
2349 
2350   enc_class enc_cmpLTP_mem(eRegI p, eRegI q, memory mem, eCXRegI tmp) %{    // cadd_cmpLT
2351     int tmpReg = $tmp$$reg;
2352 
2353     // SUB $p,$q
2354     emit_opcode(cbuf,0x2B);
2355     emit_rm(cbuf, 0x3, $p$$reg, $q$$reg);
2356     // SBB $tmp,$tmp
2357     emit_opcode(cbuf,0x1B);
2358     emit_rm(cbuf, 0x3, tmpReg, tmpReg);
2359     // AND $tmp,$y
2360     cbuf.set_inst_mark();       // Mark start of opcode for reloc info in mem operand
2361     emit_opcode(cbuf,0x23);
2362     int reg_encoding = tmpReg;
2363     int base  = $mem$$base;
2364     int index = $mem$$index;
2365     int scale = $mem$$scale;
2366     int displace = $mem$$disp;
2367     bool disp_is_oop = $mem->disp_is_oop();
2368     encode_RegMem(cbuf, reg_encoding, base, index, scale, displace, disp_is_oop);
2369     // ADD $p,$tmp
2370     emit_opcode(cbuf,0x03);
2371     emit_rm(cbuf, 0x3, $p$$reg, tmpReg);
2372   %}
2373 
2374   enc_class shift_left_long( eRegL dst, eCXRegI shift ) %{
2375     // TEST shift,32
2376     emit_opcode(cbuf,0xF7);
2377     emit_rm(cbuf, 0x3, 0, ECX_enc);
2378     emit_d32(cbuf,0x20);
2379     // JEQ,s small
2380     emit_opcode(cbuf, 0x74);
2381     emit_d8(cbuf, 0x04);
2382     // MOV    $dst.hi,$dst.lo
2383     emit_opcode( cbuf, 0x8B );
2384     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
2385     // CLR    $dst.lo
2386     emit_opcode(cbuf, 0x33);
2387     emit_rm(cbuf, 0x3, $dst$$reg, $dst$$reg);
2388 // small:
2389     // SHLD   $dst.hi,$dst.lo,$shift
2390     emit_opcode(cbuf,0x0F);
2391     emit_opcode(cbuf,0xA5);
2392     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg));
2393     // SHL    $dst.lo,$shift"
2394     emit_opcode(cbuf,0xD3);
2395     emit_rm(cbuf, 0x3, 0x4, $dst$$reg );
2396   %}
2397 
2398   enc_class shift_right_long( eRegL dst, eCXRegI shift ) %{
2399     // TEST shift,32
2400     emit_opcode(cbuf,0xF7);
2401     emit_rm(cbuf, 0x3, 0, ECX_enc);
2402     emit_d32(cbuf,0x20);
2403     // JEQ,s small
2404     emit_opcode(cbuf, 0x74);
2405     emit_d8(cbuf, 0x04);
2406     // MOV    $dst.lo,$dst.hi
2407     emit_opcode( cbuf, 0x8B );
2408     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2409     // CLR    $dst.hi
2410     emit_opcode(cbuf, 0x33);
2411     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($dst$$reg));
2412 // small:
2413     // SHRD   $dst.lo,$dst.hi,$shift
2414     emit_opcode(cbuf,0x0F);
2415     emit_opcode(cbuf,0xAD);
2416     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2417     // SHR    $dst.hi,$shift"
2418     emit_opcode(cbuf,0xD3);
2419     emit_rm(cbuf, 0x3, 0x5, HIGH_FROM_LOW($dst$$reg) );
2420   %}
2421 
2422   enc_class shift_right_arith_long( eRegL dst, eCXRegI shift ) %{
2423     // TEST shift,32
2424     emit_opcode(cbuf,0xF7);
2425     emit_rm(cbuf, 0x3, 0, ECX_enc);
2426     emit_d32(cbuf,0x20);
2427     // JEQ,s small
2428     emit_opcode(cbuf, 0x74);
2429     emit_d8(cbuf, 0x05);
2430     // MOV    $dst.lo,$dst.hi
2431     emit_opcode( cbuf, 0x8B );
2432     emit_rm(cbuf, 0x3, $dst$$reg, HIGH_FROM_LOW($dst$$reg) );
2433     // SAR    $dst.hi,31
2434     emit_opcode(cbuf, 0xC1);
2435     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW($dst$$reg) );
2436     emit_d8(cbuf, 0x1F );
2437 // small:
2438     // SHRD   $dst.lo,$dst.hi,$shift
2439     emit_opcode(cbuf,0x0F);
2440     emit_opcode(cbuf,0xAD);
2441     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg);
2442     // SAR    $dst.hi,$shift"
2443     emit_opcode(cbuf,0xD3);
2444     emit_rm(cbuf, 0x3, 0x7, HIGH_FROM_LOW($dst$$reg) );
2445   %}
2446 
2447 
2448   // ----------------- Encodings for floating point unit -----------------
2449   // May leave result in FPU-TOS or FPU reg depending on opcodes
2450   enc_class OpcReg_F (regF src) %{    // FMUL, FDIV
2451     $$$emit8$primary;
2452     emit_rm(cbuf, 0x3, $secondary, $src$$reg );
2453   %}
2454 
2455   // Pop argument in FPR0 with FSTP ST(0)
2456   enc_class PopFPU() %{
2457     emit_opcode( cbuf, 0xDD );
2458     emit_d8( cbuf, 0xD8 );
2459   %}
2460 
2461   // !!!!! equivalent to Pop_Reg_F
2462   enc_class Pop_Reg_D( regD dst ) %{
2463     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2464     emit_d8( cbuf, 0xD8+$dst$$reg );
2465   %}
2466 
2467   enc_class Push_Reg_D( regD dst ) %{
2468     emit_opcode( cbuf, 0xD9 );
2469     emit_d8( cbuf, 0xC0-1+$dst$$reg );   // FLD ST(i-1)
2470   %}
2471 
2472   enc_class strictfp_bias1( regD dst ) %{
2473     emit_opcode( cbuf, 0xDB );           // FLD m80real
2474     emit_opcode( cbuf, 0x2D );
2475     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias1() );
2476     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2477     emit_opcode( cbuf, 0xC8+$dst$$reg );
2478   %}
2479 
2480   enc_class strictfp_bias2( regD dst ) %{
2481     emit_opcode( cbuf, 0xDB );           // FLD m80real
2482     emit_opcode( cbuf, 0x2D );
2483     emit_d32( cbuf, (int)StubRoutines::addr_fpu_subnormal_bias2() );
2484     emit_opcode( cbuf, 0xDE );           // FMULP ST(dst), ST0
2485     emit_opcode( cbuf, 0xC8+$dst$$reg );
2486   %}
2487 
2488   // Special case for moving an integer register to a stack slot.
2489   enc_class OpcPRegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2490     store_to_stackslot( cbuf, $primary, $src$$reg, $dst$$disp );
2491   %}
2492 
2493   // Special case for moving a register to a stack slot.
2494   enc_class RegSS( stackSlotI dst, eRegI src ) %{ // RegSS
2495     // Opcode already emitted
2496     emit_rm( cbuf, 0x02, $src$$reg, ESP_enc );   // R/M byte
2497     emit_rm( cbuf, 0x00, ESP_enc, ESP_enc);          // SIB byte
2498     emit_d32(cbuf, $dst$$disp);   // Displacement
2499   %}
2500 
2501   // Push the integer in stackSlot 'src' onto FP-stack
2502   enc_class Push_Mem_I( memory src ) %{    // FILD   [ESP+src]
2503     store_to_stackslot( cbuf, $primary, $secondary, $src$$disp );
2504   %}
2505 
2506   // Push the float in stackSlot 'src' onto FP-stack
2507   enc_class Push_Mem_F( memory src ) %{    // FLD_S   [ESP+src]
2508     store_to_stackslot( cbuf, 0xD9, 0x00, $src$$disp );
2509   %}
2510 
2511   // Push the double in stackSlot 'src' onto FP-stack
2512   enc_class Push_Mem_D( memory src ) %{    // FLD_D   [ESP+src]
2513     store_to_stackslot( cbuf, 0xDD, 0x00, $src$$disp );
2514   %}
2515 
2516   // Push FPU's TOS float to a stack-slot, and pop FPU-stack
2517   enc_class Pop_Mem_F( stackSlotF dst ) %{ // FSTP_S [ESP+dst]
2518     store_to_stackslot( cbuf, 0xD9, 0x03, $dst$$disp );
2519   %}
2520 
2521   // Same as Pop_Mem_F except for opcode
2522   // Push FPU's TOS double to a stack-slot, and pop FPU-stack
2523   enc_class Pop_Mem_D( stackSlotD dst ) %{ // FSTP_D [ESP+dst]
2524     store_to_stackslot( cbuf, 0xDD, 0x03, $dst$$disp );
2525   %}
2526 
2527   enc_class Pop_Reg_F( regF dst ) %{
2528     emit_opcode( cbuf, 0xDD );           // FSTP   ST(i)
2529     emit_d8( cbuf, 0xD8+$dst$$reg );
2530   %}
2531 
2532   enc_class Push_Reg_F( regF dst ) %{
2533     emit_opcode( cbuf, 0xD9 );           // FLD    ST(i-1)
2534     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2535   %}
2536 
2537   // Push FPU's float to a stack-slot, and pop FPU-stack
2538   enc_class Pop_Mem_Reg_F( stackSlotF dst, regF src ) %{
2539     int pop = 0x02;
2540     if ($src$$reg != FPR1L_enc) {
2541       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2542       emit_d8( cbuf, 0xC0-1+$src$$reg );
2543       pop = 0x03;
2544     }
2545     store_to_stackslot( cbuf, 0xD9, pop, $dst$$disp ); // FST<P>_S  [ESP+dst]
2546   %}
2547 
2548   // Push FPU's double to a stack-slot, and pop FPU-stack
2549   enc_class Pop_Mem_Reg_D( stackSlotD dst, regD src ) %{
2550     int pop = 0x02;
2551     if ($src$$reg != FPR1L_enc) {
2552       emit_opcode( cbuf, 0xD9 );         // FLD    ST(i-1)
2553       emit_d8( cbuf, 0xC0-1+$src$$reg );
2554       pop = 0x03;
2555     }
2556     store_to_stackslot( cbuf, 0xDD, pop, $dst$$disp ); // FST<P>_D  [ESP+dst]
2557   %}
2558 
2559   // Push FPU's double to a FPU-stack-slot, and pop FPU-stack
2560   enc_class Pop_Reg_Reg_D( regD dst, regF src ) %{
2561     int pop = 0xD0 - 1; // -1 since we skip FLD
2562     if ($src$$reg != FPR1L_enc) {
2563       emit_opcode( cbuf, 0xD9 );         // FLD    ST(src-1)
2564       emit_d8( cbuf, 0xC0-1+$src$$reg );
2565       pop = 0xD8;
2566     }
2567     emit_opcode( cbuf, 0xDD );
2568     emit_d8( cbuf, pop+$dst$$reg );      // FST<P> ST(i)
2569   %}
2570 
2571 
2572   enc_class Mul_Add_F( regF dst, regF src, regF src1, regF src2 ) %{
2573     MacroAssembler masm(&cbuf);
2574     masm.fld_s(  $src1$$reg-1);   // nothing at TOS, load TOS from src1.reg
2575     masm.fmul(   $src2$$reg+0);   // value at TOS
2576     masm.fadd(   $src$$reg+0);    // value at TOS
2577     masm.fstp_d( $dst$$reg+0);    // value at TOS, popped off after store
2578   %}
2579 
2580 
2581   enc_class Push_Reg_Mod_D( regD dst, regD src) %{
2582     // load dst in FPR0
2583     emit_opcode( cbuf, 0xD9 );
2584     emit_d8( cbuf, 0xC0-1+$dst$$reg );
2585     if ($src$$reg != FPR1L_enc) {
2586       // fincstp
2587       emit_opcode (cbuf, 0xD9);
2588       emit_opcode (cbuf, 0xF7);
2589       // swap src with FPR1:
2590       // FXCH FPR1 with src
2591       emit_opcode(cbuf, 0xD9);
2592       emit_d8(cbuf, 0xC8-1+$src$$reg );
2593       // fdecstp
2594       emit_opcode (cbuf, 0xD9);
2595       emit_opcode (cbuf, 0xF6);
2596     }
2597   %}
2598 
2599   enc_class Push_ModD_encoding( regXD src0, regXD src1) %{
2600     // Allocate a word
2601     emit_opcode(cbuf,0x83);            // SUB ESP,8
2602     emit_opcode(cbuf,0xEC);
2603     emit_d8(cbuf,0x08);
2604 
2605     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src1
2606     emit_opcode  (cbuf, 0x0F );
2607     emit_opcode  (cbuf, 0x11 );
2608     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2609 
2610     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2611     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2612 
2613     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src0
2614     emit_opcode  (cbuf, 0x0F );
2615     emit_opcode  (cbuf, 0x11 );
2616     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2617 
2618     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2619     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2620 
2621   %}
2622 
2623   enc_class Push_ModX_encoding( regX src0, regX src1) %{
2624     // Allocate a word
2625     emit_opcode(cbuf,0x83);            // SUB ESP,4
2626     emit_opcode(cbuf,0xEC);
2627     emit_d8(cbuf,0x04);
2628 
2629     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src1
2630     emit_opcode  (cbuf, 0x0F );
2631     emit_opcode  (cbuf, 0x11 );
2632     encode_RegMem(cbuf, $src1$$reg, ESP_enc, 0x4, 0, 0, false);
2633 
2634     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2635     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2636 
2637     emit_opcode  (cbuf, 0xF3 );     // MOVSS [ESP], src0
2638     emit_opcode  (cbuf, 0x0F );
2639     emit_opcode  (cbuf, 0x11 );
2640     encode_RegMem(cbuf, $src0$$reg, ESP_enc, 0x4, 0, 0, false);
2641 
2642     emit_opcode(cbuf,0xD9 );      // FLD [ESP]
2643     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2644 
2645   %}
2646 
2647   enc_class Push_ResultXD(regXD dst) %{
2648     store_to_stackslot( cbuf, 0xDD, 0x03, 0 ); //FSTP [ESP]
2649 
2650     // UseXmmLoadAndClearUpper ? movsd dst,[esp] : movlpd dst,[esp]
2651     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
2652     emit_opcode  (cbuf, 0x0F );
2653     emit_opcode  (cbuf, UseXmmLoadAndClearUpper ? 0x10 : 0x12);
2654     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2655 
2656     emit_opcode(cbuf,0x83);    // ADD ESP,8
2657     emit_opcode(cbuf,0xC4);
2658     emit_d8(cbuf,0x08);
2659   %}
2660 
2661   enc_class Push_ResultX(regX dst, immI d8) %{
2662     store_to_stackslot( cbuf, 0xD9, 0x03, 0 ); //FSTP_S [ESP]
2663 
2664     emit_opcode  (cbuf, 0xF3 );     // MOVSS dst(xmm), [ESP]
2665     emit_opcode  (cbuf, 0x0F );
2666     emit_opcode  (cbuf, 0x10 );
2667     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
2668 
2669     emit_opcode(cbuf,0x83);    // ADD ESP,d8 (4 or 8)
2670     emit_opcode(cbuf,0xC4);
2671     emit_d8(cbuf,$d8$$constant);
2672   %}
2673 
2674   enc_class Push_SrcXD(regXD src) %{
2675     // Allocate a word
2676     emit_opcode(cbuf,0x83);            // SUB ESP,8
2677     emit_opcode(cbuf,0xEC);
2678     emit_d8(cbuf,0x08);
2679 
2680     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], src
2681     emit_opcode  (cbuf, 0x0F );
2682     emit_opcode  (cbuf, 0x11 );
2683     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
2684 
2685     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2686     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2687   %}
2688 
2689   enc_class push_stack_temp_qword() %{
2690     emit_opcode(cbuf,0x83);     // SUB ESP,8
2691     emit_opcode(cbuf,0xEC);
2692     emit_d8    (cbuf,0x08);
2693   %}
2694 
2695   enc_class pop_stack_temp_qword() %{
2696     emit_opcode(cbuf,0x83);     // ADD ESP,8
2697     emit_opcode(cbuf,0xC4);
2698     emit_d8    (cbuf,0x08);
2699   %}
2700 
2701   enc_class push_xmm_to_fpr1( regXD xmm_src ) %{
2702     emit_opcode  (cbuf, 0xF2 );     // MOVSD [ESP], xmm_src
2703     emit_opcode  (cbuf, 0x0F );
2704     emit_opcode  (cbuf, 0x11 );
2705     encode_RegMem(cbuf, $xmm_src$$reg, ESP_enc, 0x4, 0, 0, false);
2706 
2707     emit_opcode(cbuf,0xDD );      // FLD_D [ESP]
2708     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2709   %}
2710 
2711   // Compute X^Y using Intel's fast hardware instructions, if possible.
2712   // Otherwise return a NaN.
2713   enc_class pow_exp_core_encoding %{
2714     // FPR1 holds Y*ln2(X).  Compute FPR1 = 2^(Y*ln2(X))
2715     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xC0);  // fdup = fld st(0)          Q       Q
2716     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xFC);  // frndint               int(Q)      Q
2717     emit_opcode(cbuf,0xDC); emit_opcode(cbuf,0xE9);  // fsub st(1) -= st(0);  int(Q) frac(Q)
2718     emit_opcode(cbuf,0xDB);                          // FISTP [ESP]           frac(Q)
2719     emit_opcode(cbuf,0x1C);
2720     emit_d8(cbuf,0x24);
2721     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xF0);  // f2xm1                 2^frac(Q)-1
2722     emit_opcode(cbuf,0xD9); emit_opcode(cbuf,0xE8);  // fld1                  1 2^frac(Q)-1
2723     emit_opcode(cbuf,0xDE); emit_opcode(cbuf,0xC1);  // faddp                 2^frac(Q)
2724     emit_opcode(cbuf,0x8B);                          // mov rax,[esp+0]=int(Q)
2725     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 0, false);
2726     emit_opcode(cbuf,0xC7);                          // mov rcx,0xFFFFF800 - overflow mask
2727     emit_rm(cbuf, 0x3, 0x0, ECX_enc);
2728     emit_d32(cbuf,0xFFFFF800);
2729     emit_opcode(cbuf,0x81);                          // add rax,1023 - the double exponent bias
2730     emit_rm(cbuf, 0x3, 0x0, EAX_enc);
2731     emit_d32(cbuf,1023);
2732     emit_opcode(cbuf,0x8B);                          // mov rbx,eax
2733     emit_rm(cbuf, 0x3, EBX_enc, EAX_enc);
2734     emit_opcode(cbuf,0xC1);                          // shl rax,20 - Slide to exponent position
2735     emit_rm(cbuf,0x3,0x4,EAX_enc);
2736     emit_d8(cbuf,20);
2737     emit_opcode(cbuf,0x85);                          // test rbx,ecx - check for overflow
2738     emit_rm(cbuf, 0x3, EBX_enc, ECX_enc);
2739     emit_opcode(cbuf,0x0F); emit_opcode(cbuf,0x45);  // CMOVne rax,ecx - overflow; stuff NAN into EAX
2740     emit_rm(cbuf, 0x3, EAX_enc, ECX_enc);
2741     emit_opcode(cbuf,0x89);                          // mov [esp+4],eax - Store as part of double word
2742     encode_RegMem(cbuf, EAX_enc, ESP_enc, 0x4, 0, 4, false);
2743     emit_opcode(cbuf,0xC7);                          // mov [esp+0],0   - [ESP] = (double)(1<<int(Q)) = 2^int(Q)
2744     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
2745     emit_d32(cbuf,0);
2746     emit_opcode(cbuf,0xDC);                          // fmul dword st(0),[esp+0]; FPR1 = 2^int(Q)*2^frac(Q) = 2^Q
2747     encode_RegMem(cbuf, 0x1, ESP_enc, 0x4, 0, 0, false);
2748   %}
2749 
2750 //   enc_class Pop_Reg_Mod_D( regD dst, regD src)
2751 //   was replaced by Push_Result_Mod_D followed by Pop_Reg_X() or Pop_Mem_X()
2752 
2753   enc_class Push_Result_Mod_D( regD src) %{
2754     if ($src$$reg != FPR1L_enc) {
2755       // fincstp
2756       emit_opcode (cbuf, 0xD9);
2757       emit_opcode (cbuf, 0xF7);
2758       // FXCH FPR1 with src
2759       emit_opcode(cbuf, 0xD9);
2760       emit_d8(cbuf, 0xC8-1+$src$$reg );
2761       // fdecstp
2762       emit_opcode (cbuf, 0xD9);
2763       emit_opcode (cbuf, 0xF6);
2764     }
2765     // // following asm replaced with Pop_Reg_F or Pop_Mem_F
2766     // // FSTP   FPR$dst$$reg
2767     // emit_opcode( cbuf, 0xDD );
2768     // emit_d8( cbuf, 0xD8+$dst$$reg );
2769   %}
2770 
2771   enc_class fnstsw_sahf_skip_parity() %{
2772     // fnstsw ax
2773     emit_opcode( cbuf, 0xDF );
2774     emit_opcode( cbuf, 0xE0 );
2775     // sahf
2776     emit_opcode( cbuf, 0x9E );
2777     // jnp  ::skip
2778     emit_opcode( cbuf, 0x7B );
2779     emit_opcode( cbuf, 0x05 );
2780   %}
2781 
2782   enc_class emitModD() %{
2783     // fprem must be iterative
2784     // :: loop
2785     // fprem
2786     emit_opcode( cbuf, 0xD9 );
2787     emit_opcode( cbuf, 0xF8 );
2788     // wait
2789     emit_opcode( cbuf, 0x9b );
2790     // fnstsw ax
2791     emit_opcode( cbuf, 0xDF );
2792     emit_opcode( cbuf, 0xE0 );
2793     // sahf
2794     emit_opcode( cbuf, 0x9E );
2795     // jp  ::loop
2796     emit_opcode( cbuf, 0x0F );
2797     emit_opcode( cbuf, 0x8A );
2798     emit_opcode( cbuf, 0xF4 );
2799     emit_opcode( cbuf, 0xFF );
2800     emit_opcode( cbuf, 0xFF );
2801     emit_opcode( cbuf, 0xFF );
2802   %}
2803 
2804   enc_class fpu_flags() %{
2805     // fnstsw_ax
2806     emit_opcode( cbuf, 0xDF);
2807     emit_opcode( cbuf, 0xE0);
2808     // test ax,0x0400
2809     emit_opcode( cbuf, 0x66 );   // operand-size prefix for 16-bit immediate
2810     emit_opcode( cbuf, 0xA9 );
2811     emit_d16   ( cbuf, 0x0400 );
2812     // // // This sequence works, but stalls for 12-16 cycles on PPro
2813     // // test rax,0x0400
2814     // emit_opcode( cbuf, 0xA9 );
2815     // emit_d32   ( cbuf, 0x00000400 );
2816     //
2817     // jz exit (no unordered comparison)
2818     emit_opcode( cbuf, 0x74 );
2819     emit_d8    ( cbuf, 0x02 );
2820     // mov ah,1 - treat as LT case (set carry flag)
2821     emit_opcode( cbuf, 0xB4 );
2822     emit_d8    ( cbuf, 0x01 );
2823     // sahf
2824     emit_opcode( cbuf, 0x9E);
2825   %}
2826 
2827   enc_class cmpF_P6_fixup() %{
2828     // Fixup the integer flags in case comparison involved a NaN
2829     //
2830     // JNP exit (no unordered comparison, P-flag is set by NaN)
2831     emit_opcode( cbuf, 0x7B );
2832     emit_d8    ( cbuf, 0x03 );
2833     // MOV AH,1 - treat as LT case (set carry flag)
2834     emit_opcode( cbuf, 0xB4 );
2835     emit_d8    ( cbuf, 0x01 );
2836     // SAHF
2837     emit_opcode( cbuf, 0x9E);
2838     // NOP     // target for branch to avoid branch to branch
2839     emit_opcode( cbuf, 0x90);
2840   %}
2841 
2842 //     fnstsw_ax();
2843 //     sahf();
2844 //     movl(dst, nan_result);
2845 //     jcc(Assembler::parity, exit);
2846 //     movl(dst, less_result);
2847 //     jcc(Assembler::below, exit);
2848 //     movl(dst, equal_result);
2849 //     jcc(Assembler::equal, exit);
2850 //     movl(dst, greater_result);
2851 
2852 // less_result     =  1;
2853 // greater_result  = -1;
2854 // equal_result    = 0;
2855 // nan_result      = -1;
2856 
2857   enc_class CmpF_Result(eRegI dst) %{
2858     // fnstsw_ax();
2859     emit_opcode( cbuf, 0xDF);
2860     emit_opcode( cbuf, 0xE0);
2861     // sahf
2862     emit_opcode( cbuf, 0x9E);
2863     // movl(dst, nan_result);
2864     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2865     emit_d32( cbuf, -1 );
2866     // jcc(Assembler::parity, exit);
2867     emit_opcode( cbuf, 0x7A );
2868     emit_d8    ( cbuf, 0x13 );
2869     // movl(dst, less_result);
2870     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2871     emit_d32( cbuf, -1 );
2872     // jcc(Assembler::below, exit);
2873     emit_opcode( cbuf, 0x72 );
2874     emit_d8    ( cbuf, 0x0C );
2875     // movl(dst, equal_result);
2876     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2877     emit_d32( cbuf, 0 );
2878     // jcc(Assembler::equal, exit);
2879     emit_opcode( cbuf, 0x74 );
2880     emit_d8    ( cbuf, 0x05 );
2881     // movl(dst, greater_result);
2882     emit_opcode( cbuf, 0xB8 + $dst$$reg);
2883     emit_d32( cbuf, 1 );
2884   %}
2885 
2886 
2887   // XMM version of CmpF_Result. Because the XMM compare
2888   // instructions set the EFLAGS directly. It becomes simpler than
2889   // the float version above.
2890   enc_class CmpX_Result(eRegI dst) %{
2891     MacroAssembler _masm(&cbuf);
2892     Label nan, inc, done;
2893 
2894     __ jccb(Assembler::parity, nan);
2895     __ jccb(Assembler::equal,  done);
2896     __ jccb(Assembler::above,  inc);
2897     __ bind(nan);
2898     __ decrement(as_Register($dst$$reg)); // NO L qqq
2899     __ jmpb(done);
2900     __ bind(inc);
2901     __ increment(as_Register($dst$$reg)); // NO L qqq
2902     __ bind(done);
2903   %}
2904 
2905   // Compare the longs and set flags
2906   // BROKEN!  Do Not use as-is
2907   enc_class cmpl_test( eRegL src1, eRegL src2 ) %{
2908     // CMP    $src1.hi,$src2.hi
2909     emit_opcode( cbuf, 0x3B );
2910     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
2911     // JNE,s  done
2912     emit_opcode(cbuf,0x75);
2913     emit_d8(cbuf, 2 );
2914     // CMP    $src1.lo,$src2.lo
2915     emit_opcode( cbuf, 0x3B );
2916     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
2917 // done:
2918   %}
2919 
2920   enc_class convert_int_long( regL dst, eRegI src ) %{
2921     // mov $dst.lo,$src
2922     int dst_encoding = $dst$$reg;
2923     int src_encoding = $src$$reg;
2924     encode_Copy( cbuf, dst_encoding  , src_encoding );
2925     // mov $dst.hi,$src
2926     encode_Copy( cbuf, HIGH_FROM_LOW(dst_encoding), src_encoding );
2927     // sar $dst.hi,31
2928     emit_opcode( cbuf, 0xC1 );
2929     emit_rm(cbuf, 0x3, 7, HIGH_FROM_LOW(dst_encoding) );
2930     emit_d8(cbuf, 0x1F );
2931   %}
2932 
2933   enc_class convert_long_double( eRegL src ) %{
2934     // push $src.hi
2935     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2936     // push $src.lo
2937     emit_opcode(cbuf, 0x50+$src$$reg  );
2938     // fild 64-bits at [SP]
2939     emit_opcode(cbuf,0xdf);
2940     emit_d8(cbuf, 0x6C);
2941     emit_d8(cbuf, 0x24);
2942     emit_d8(cbuf, 0x00);
2943     // pop stack
2944     emit_opcode(cbuf, 0x83); // add  SP, #8
2945     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
2946     emit_d8(cbuf, 0x8);
2947   %}
2948 
2949   enc_class multiply_con_and_shift_high( eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr ) %{
2950     // IMUL   EDX:EAX,$src1
2951     emit_opcode( cbuf, 0xF7 );
2952     emit_rm( cbuf, 0x3, 0x5, $src1$$reg );
2953     // SAR    EDX,$cnt-32
2954     int shift_count = ((int)$cnt$$constant) - 32;
2955     if (shift_count > 0) {
2956       emit_opcode(cbuf, 0xC1);
2957       emit_rm(cbuf, 0x3, 7, $dst$$reg );
2958       emit_d8(cbuf, shift_count);
2959     }
2960   %}
2961 
2962   // this version doesn't have add sp, 8
2963   enc_class convert_long_double2( eRegL src ) %{
2964     // push $src.hi
2965     emit_opcode(cbuf, 0x50+HIGH_FROM_LOW($src$$reg));
2966     // push $src.lo
2967     emit_opcode(cbuf, 0x50+$src$$reg  );
2968     // fild 64-bits at [SP]
2969     emit_opcode(cbuf,0xdf);
2970     emit_d8(cbuf, 0x6C);
2971     emit_d8(cbuf, 0x24);
2972     emit_d8(cbuf, 0x00);
2973   %}
2974 
2975   enc_class long_int_multiply( eADXRegL dst, nadxRegI src) %{
2976     // Basic idea: long = (long)int * (long)int
2977     // IMUL EDX:EAX, src
2978     emit_opcode( cbuf, 0xF7 );
2979     emit_rm( cbuf, 0x3, 0x5, $src$$reg);
2980   %}
2981 
2982   enc_class long_uint_multiply( eADXRegL dst, nadxRegI src) %{
2983     // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
2984     // MUL EDX:EAX, src
2985     emit_opcode( cbuf, 0xF7 );
2986     emit_rm( cbuf, 0x3, 0x4, $src$$reg);
2987   %}
2988 
2989   enc_class long_multiply( eADXRegL dst, eRegL src, eRegI tmp ) %{
2990     // Basic idea: lo(result) = lo(x_lo * y_lo)
2991     //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
2992     // MOV    $tmp,$src.lo
2993     encode_Copy( cbuf, $tmp$$reg, $src$$reg );
2994     // IMUL   $tmp,EDX
2995     emit_opcode( cbuf, 0x0F );
2996     emit_opcode( cbuf, 0xAF );
2997     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
2998     // MOV    EDX,$src.hi
2999     encode_Copy( cbuf, HIGH_FROM_LOW($dst$$reg), HIGH_FROM_LOW($src$$reg) );
3000     // IMUL   EDX,EAX
3001     emit_opcode( cbuf, 0x0F );
3002     emit_opcode( cbuf, 0xAF );
3003     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $dst$$reg );
3004     // ADD    $tmp,EDX
3005     emit_opcode( cbuf, 0x03 );
3006     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3007     // MUL   EDX:EAX,$src.lo
3008     emit_opcode( cbuf, 0xF7 );
3009     emit_rm( cbuf, 0x3, 0x4, $src$$reg );
3010     // ADD    EDX,ESI
3011     emit_opcode( cbuf, 0x03 );
3012     emit_rm( cbuf, 0x3, HIGH_FROM_LOW($dst$$reg), $tmp$$reg );
3013   %}
3014 
3015   enc_class long_multiply_con( eADXRegL dst, immL_127 src, eRegI tmp ) %{
3016     // Basic idea: lo(result) = lo(src * y_lo)
3017     //             hi(result) = hi(src * y_lo) + lo(src * y_hi)
3018     // IMUL   $tmp,EDX,$src
3019     emit_opcode( cbuf, 0x6B );
3020     emit_rm( cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg) );
3021     emit_d8( cbuf, (int)$src$$constant );
3022     // MOV    EDX,$src
3023     emit_opcode(cbuf, 0xB8 + EDX_enc);
3024     emit_d32( cbuf, (int)$src$$constant );
3025     // MUL   EDX:EAX,EDX
3026     emit_opcode( cbuf, 0xF7 );
3027     emit_rm( cbuf, 0x3, 0x4, EDX_enc );
3028     // ADD    EDX,ESI
3029     emit_opcode( cbuf, 0x03 );
3030     emit_rm( cbuf, 0x3, EDX_enc, $tmp$$reg );
3031   %}
3032 
3033   enc_class long_div( eRegL src1, eRegL src2 ) %{
3034     // PUSH src1.hi
3035     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3036     // PUSH src1.lo
3037     emit_opcode(cbuf,               0x50+$src1$$reg  );
3038     // PUSH src2.hi
3039     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3040     // PUSH src2.lo
3041     emit_opcode(cbuf,               0x50+$src2$$reg  );
3042     // CALL directly to the runtime
3043     cbuf.set_inst_mark();
3044     emit_opcode(cbuf,0xE8);       // Call into runtime
3045     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::ldiv) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3046     // Restore stack
3047     emit_opcode(cbuf, 0x83); // add  SP, #framesize
3048     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3049     emit_d8(cbuf, 4*4);
3050   %}
3051 
3052   enc_class long_mod( eRegL src1, eRegL src2 ) %{
3053     // PUSH src1.hi
3054     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src1$$reg) );
3055     // PUSH src1.lo
3056     emit_opcode(cbuf,               0x50+$src1$$reg  );
3057     // PUSH src2.hi
3058     emit_opcode(cbuf, HIGH_FROM_LOW(0x50+$src2$$reg) );
3059     // PUSH src2.lo
3060     emit_opcode(cbuf,               0x50+$src2$$reg  );
3061     // CALL directly to the runtime
3062     cbuf.set_inst_mark();
3063     emit_opcode(cbuf,0xE8);       // Call into runtime
3064     emit_d32_reloc(cbuf, (CAST_FROM_FN_PTR(address, SharedRuntime::lrem ) - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3065     // Restore stack
3066     emit_opcode(cbuf, 0x83); // add  SP, #framesize
3067     emit_rm(cbuf, 0x3, 0x00, ESP_enc);
3068     emit_d8(cbuf, 4*4);
3069   %}
3070 
3071   enc_class long_cmp_flags0( eRegL src, eRegI tmp ) %{
3072     // MOV   $tmp,$src.lo
3073     emit_opcode(cbuf, 0x8B);
3074     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
3075     // OR    $tmp,$src.hi
3076     emit_opcode(cbuf, 0x0B);
3077     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg));
3078   %}
3079 
3080   enc_class long_cmp_flags1( eRegL src1, eRegL src2 ) %{
3081     // CMP    $src1.lo,$src2.lo
3082     emit_opcode( cbuf, 0x3B );
3083     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3084     // JNE,s  skip
3085     emit_cc(cbuf, 0x70, 0x5);
3086     emit_d8(cbuf,2);
3087     // CMP    $src1.hi,$src2.hi
3088     emit_opcode( cbuf, 0x3B );
3089     emit_rm(cbuf, 0x3, HIGH_FROM_LOW($src1$$reg), HIGH_FROM_LOW($src2$$reg) );
3090   %}
3091 
3092   enc_class long_cmp_flags2( eRegL src1, eRegL src2, eRegI tmp ) %{
3093     // CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits
3094     emit_opcode( cbuf, 0x3B );
3095     emit_rm(cbuf, 0x3, $src1$$reg, $src2$$reg );
3096     // MOV    $tmp,$src1.hi
3097     emit_opcode( cbuf, 0x8B );
3098     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src1$$reg) );
3099     // SBB   $tmp,$src2.hi\t! Compute flags for long compare
3100     emit_opcode( cbuf, 0x1B );
3101     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src2$$reg) );
3102   %}
3103 
3104   enc_class long_cmp_flags3( eRegL src, eRegI tmp ) %{
3105     // XOR    $tmp,$tmp
3106     emit_opcode(cbuf,0x33);  // XOR
3107     emit_rm(cbuf,0x3, $tmp$$reg, $tmp$$reg);
3108     // CMP    $tmp,$src.lo
3109     emit_opcode( cbuf, 0x3B );
3110     emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg );
3111     // SBB    $tmp,$src.hi
3112     emit_opcode( cbuf, 0x1B );
3113     emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($src$$reg) );
3114   %}
3115 
3116  // Sniff, sniff... smells like Gnu Superoptimizer
3117   enc_class neg_long( eRegL dst ) %{
3118     emit_opcode(cbuf,0xF7);    // NEG hi
3119     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3120     emit_opcode(cbuf,0xF7);    // NEG lo
3121     emit_rm    (cbuf,0x3, 0x3,               $dst$$reg );
3122     emit_opcode(cbuf,0x83);    // SBB hi,0
3123     emit_rm    (cbuf,0x3, 0x3, HIGH_FROM_LOW($dst$$reg));
3124     emit_d8    (cbuf,0 );
3125   %}
3126 
3127   enc_class movq_ld(regXD dst, memory mem) %{
3128     MacroAssembler _masm(&cbuf);
3129     Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
3130     __ movq(as_XMMRegister($dst$$reg), madr);
3131   %}
3132 
3133   enc_class movq_st(memory mem, regXD src) %{
3134     MacroAssembler _masm(&cbuf);
3135     Address madr = Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp);
3136     __ movq(madr, as_XMMRegister($src$$reg));
3137   %}
3138 
3139   enc_class pshufd_8x8(regX dst, regX src) %{
3140     MacroAssembler _masm(&cbuf);
3141 
3142     encode_CopyXD(cbuf, $dst$$reg, $src$$reg);
3143     __ punpcklbw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg));
3144     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($dst$$reg), 0x00);
3145   %}
3146 
3147   enc_class pshufd_4x16(regX dst, regX src) %{
3148     MacroAssembler _masm(&cbuf);
3149 
3150     __ pshuflw(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), 0x00);
3151   %}
3152 
3153   enc_class pshufd(regXD dst, regXD src, int mode) %{
3154     MacroAssembler _masm(&cbuf);
3155 
3156     __ pshufd(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg), $mode);
3157   %}
3158 
3159   enc_class pxor(regXD dst, regXD src) %{
3160     MacroAssembler _masm(&cbuf);
3161 
3162     __ pxor(as_XMMRegister($dst$$reg), as_XMMRegister($src$$reg));
3163   %}
3164 
3165   enc_class mov_i2x(regXD dst, eRegI src) %{
3166     MacroAssembler _masm(&cbuf);
3167 
3168     __ movdl(as_XMMRegister($dst$$reg), as_Register($src$$reg));
3169   %}
3170 
3171 
3172   // Because the transitions from emitted code to the runtime
3173   // monitorenter/exit helper stubs are so slow it's critical that
3174   // we inline both the stack-locking fast-path and the inflated fast path.
3175   //
3176   // See also: cmpFastLock and cmpFastUnlock.
3177   //
3178   // What follows is a specialized inline transliteration of the code
3179   // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
3180   // another option would be to emit TrySlowEnter and TrySlowExit methods
3181   // at startup-time.  These methods would accept arguments as
3182   // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
3183   // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
3184   // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
3185   // In practice, however, the # of lock sites is bounded and is usually small.
3186   // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
3187   // if the processor uses simple bimodal branch predictors keyed by EIP
3188   // Since the helper routines would be called from multiple synchronization
3189   // sites.
3190   //
3191   // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
3192   // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
3193   // to those specialized methods.  That'd give us a mostly platform-independent
3194   // implementation that the JITs could optimize and inline at their pleasure.
3195   // Done correctly, the only time we'd need to cross to native could would be
3196   // to park() or unpark() threads.  We'd also need a few more unsafe operators
3197   // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
3198   // (b) explicit barriers or fence operations.
3199   //
3200   // TODO:
3201   //
3202   // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
3203   //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
3204   //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
3205   //    the lock operators would typically be faster than reifying Self.
3206   //
3207   // *  Ideally I'd define the primitives as:
3208   //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
3209   //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
3210   //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
3211   //    Instead, we're stuck with a rather awkward and brittle register assignments below.
3212   //    Furthermore the register assignments are overconstrained, possibly resulting in
3213   //    sub-optimal code near the synchronization site.
3214   //
3215   // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
3216   //    Alternately, use a better sp-proximity test.
3217   //
3218   // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
3219   //    Either one is sufficient to uniquely identify a thread.
3220   //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
3221   //
3222   // *  Intrinsify notify() and notifyAll() for the common cases where the
3223   //    object is locked by the calling thread but the waitlist is empty.
3224   //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
3225   //
3226   // *  use jccb and jmpb instead of jcc and jmp to improve code density.
3227   //    But beware of excessive branch density on AMD Opterons.
3228   //
3229   // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
3230   //    or failure of the fast-path.  If the fast-path fails then we pass
3231   //    control to the slow-path, typically in C.  In Fast_Lock and
3232   //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
3233   //    will emit a conditional branch immediately after the node.
3234   //    So we have branches to branches and lots of ICC.ZF games.
3235   //    Instead, it might be better to have C2 pass a "FailureLabel"
3236   //    into Fast_Lock and Fast_Unlock.  In the case of success, control
3237   //    will drop through the node.  ICC.ZF is undefined at exit.
3238   //    In the case of failure, the node will branch directly to the
3239   //    FailureLabel
3240 
3241 
3242   // obj: object to lock
3243   // box: on-stack box address (displaced header location) - KILLED
3244   // rax,: tmp -- KILLED
3245   // scr: tmp -- KILLED
3246   enc_class Fast_Lock( eRegP obj, eRegP box, eAXRegI tmp, eRegP scr ) %{
3247 
3248     Register objReg = as_Register($obj$$reg);
3249     Register boxReg = as_Register($box$$reg);
3250     Register tmpReg = as_Register($tmp$$reg);
3251     Register scrReg = as_Register($scr$$reg);
3252 
3253     // Ensure the register assignents are disjoint
3254     guarantee (objReg != boxReg, "") ;
3255     guarantee (objReg != tmpReg, "") ;
3256     guarantee (objReg != scrReg, "") ;
3257     guarantee (boxReg != tmpReg, "") ;
3258     guarantee (boxReg != scrReg, "") ;
3259     guarantee (tmpReg == as_Register(EAX_enc), "") ;
3260 
3261     MacroAssembler masm(&cbuf);
3262 
3263     if (_counters != NULL) {
3264       masm.atomic_incl(ExternalAddress((address) _counters->total_entry_count_addr()));
3265     }
3266     if (EmitSync & 1) {
3267         // set box->dhw = unused_mark (3)
3268         // Force all sync thru slow-path: slow_enter() and slow_exit() 
3269         masm.movptr (Address(boxReg, 0), int32_t(markOopDesc::unused_mark())) ;             
3270         masm.cmpptr (rsp, (int32_t)0) ;                        
3271     } else 
3272     if (EmitSync & 2) { 
3273         Label DONE_LABEL ;           
3274         if (UseBiasedLocking) {
3275            // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
3276            masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3277         }
3278 
3279         masm.movptr(tmpReg, Address(objReg, 0)) ;          // fetch markword 
3280         masm.orptr (tmpReg, 0x1);
3281         masm.movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS 
3282         if (os::is_MP()) { masm.lock();  }
3283         masm.cmpxchgptr(boxReg, Address(objReg, 0));          // Updates tmpReg
3284         masm.jcc(Assembler::equal, DONE_LABEL);
3285         // Recursive locking
3286         masm.subptr(tmpReg, rsp);
3287         masm.andptr(tmpReg, (int32_t) 0xFFFFF003 );
3288         masm.movptr(Address(boxReg, 0), tmpReg);
3289         masm.bind(DONE_LABEL) ; 
3290     } else {  
3291       // Possible cases that we'll encounter in fast_lock 
3292       // ------------------------------------------------
3293       // * Inflated
3294       //    -- unlocked
3295       //    -- Locked
3296       //       = by self
3297       //       = by other
3298       // * biased
3299       //    -- by Self
3300       //    -- by other
3301       // * neutral
3302       // * stack-locked
3303       //    -- by self
3304       //       = sp-proximity test hits
3305       //       = sp-proximity test generates false-negative
3306       //    -- by other
3307       //
3308 
3309       Label IsInflated, DONE_LABEL, PopDone ;
3310 
3311       // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
3312       // order to reduce the number of conditional branches in the most common cases.
3313       // Beware -- there's a subtle invariant that fetch of the markword
3314       // at [FETCH], below, will never observe a biased encoding (*101b).
3315       // If this invariant is not held we risk exclusion (safety) failure.
3316       if (UseBiasedLocking && !UseOptoBiasInlining) {
3317         masm.biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, _counters);
3318       }
3319 
3320       masm.movptr(tmpReg, Address(objReg, 0)) ;         // [FETCH]
3321       masm.testptr(tmpReg, 0x02) ;                      // Inflated v (Stack-locked or neutral)
3322       masm.jccb  (Assembler::notZero, IsInflated) ;
3323 
3324       // Attempt stack-locking ...
3325       masm.orptr (tmpReg, 0x1);
3326       masm.movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
3327       if (os::is_MP()) { masm.lock();  }
3328       masm.cmpxchgptr(boxReg, Address(objReg, 0));           // Updates tmpReg
3329       if (_counters != NULL) {
3330         masm.cond_inc32(Assembler::equal,
3331                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3332       }
3333       masm.jccb (Assembler::equal, DONE_LABEL);
3334 
3335       // Recursive locking
3336       masm.subptr(tmpReg, rsp);
3337       masm.andptr(tmpReg, 0xFFFFF003 );
3338       masm.movptr(Address(boxReg, 0), tmpReg);
3339       if (_counters != NULL) {
3340         masm.cond_inc32(Assembler::equal,
3341                         ExternalAddress((address)_counters->fast_path_entry_count_addr()));
3342       }
3343       masm.jmp  (DONE_LABEL) ;
3344 
3345       masm.bind (IsInflated) ;
3346 
3347       // The object is inflated.
3348       //
3349       // TODO-FIXME: eliminate the ugly use of manifest constants:
3350       //   Use markOopDesc::monitor_value instead of "2".
3351       //   use markOop::unused_mark() instead of "3".
3352       // The tmpReg value is an objectMonitor reference ORed with
3353       // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
3354       // objectmonitor pointer by masking off the "2" bit or we can just
3355       // use tmpReg as an objectmonitor pointer but bias the objectmonitor
3356       // field offsets with "-2" to compensate for and annul the low-order tag bit.
3357       //
3358       // I use the latter as it avoids AGI stalls.
3359       // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
3360       // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
3361       //
3362       #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
3363 
3364       // boxReg refers to the on-stack BasicLock in the current frame.
3365       // We'd like to write:
3366       //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
3367       // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
3368       // additional latency as we have another ST in the store buffer that must drain.
3369 
3370       if (EmitSync & 8192) { 
3371          masm.movptr(Address(boxReg, 0), 3) ;            // results in ST-before-CAS penalty
3372          masm.get_thread (scrReg) ; 
3373          masm.movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2] 
3374          masm.movptr(tmpReg, 0);                         // consider: xor vs mov
3375          if (os::is_MP()) { masm.lock(); } 
3376          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3377       } else 
3378       if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
3379          masm.movptr(scrReg, boxReg) ; 
3380          masm.movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2] 
3381 
3382          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3383          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3384             // prefetchw [eax + Offset(_owner)-2]
3385             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3386          }
3387 
3388          if ((EmitSync & 64) == 0) {
3389            // Optimistic form: consider XORL tmpReg,tmpReg
3390            masm.movptr(tmpReg, 0 ) ; 
3391          } else { 
3392            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3393            // Test-And-CAS instead of CAS
3394            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3395            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3396            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3397          }
3398 
3399          // Appears unlocked - try to swing _owner from null to non-null.
3400          // Ideally, I'd manifest "Self" with get_thread and then attempt
3401          // to CAS the register containing Self into m->Owner.
3402          // But we don't have enough registers, so instead we can either try to CAS
3403          // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
3404          // we later store "Self" into m->Owner.  Transiently storing a stack address
3405          // (rsp or the address of the box) into  m->owner is harmless.
3406          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3407          if (os::is_MP()) { masm.lock();  }
3408          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ; 
3409          masm.movptr(Address(scrReg, 0), 3) ;          // box->_displaced_header = 3
3410          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3411          masm.get_thread (scrReg) ;                    // beware: clobbers ICCs
3412          masm.movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg) ; 
3413          masm.xorptr(boxReg, boxReg) ;                 // set icc.ZFlag = 1 to indicate success
3414                        
3415          // If the CAS fails we can either retry or pass control to the slow-path.  
3416          // We use the latter tactic.  
3417          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3418          // If the CAS was successful ...
3419          //   Self has acquired the lock
3420          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3421          // Intentional fall-through into DONE_LABEL ...
3422       } else {
3423          masm.movptr(Address(boxReg, 0), 3) ;       // results in ST-before-CAS penalty
3424          masm.movptr(boxReg, tmpReg) ; 
3425 
3426          // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
3427          if ((EmitSync & 2048) && VM_Version::supports_3dnow() && os::is_MP()) {
3428             // prefetchw [eax + Offset(_owner)-2]
3429             masm.prefetchw(Address(rax, ObjectMonitor::owner_offset_in_bytes()-2));
3430          }
3431 
3432          if ((EmitSync & 64) == 0) {
3433            // Optimistic form
3434            masm.xorptr  (tmpReg, tmpReg) ; 
3435          } else { 
3436            // Can suffer RTS->RTO upgrades on shared or cold $ lines
3437            masm.movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;   // rax, = m->_owner
3438            masm.testptr(tmpReg, tmpReg) ;                   // Locked ? 
3439            masm.jccb  (Assembler::notZero, DONE_LABEL) ;                   
3440          }
3441 
3442          // Appears unlocked - try to swing _owner from null to non-null.
3443          // Use either "Self" (in scr) or rsp as thread identity in _owner.
3444          // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
3445          masm.get_thread (scrReg) ;
3446          if (os::is_MP()) { masm.lock(); }
3447          masm.cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;
3448 
3449          // If the CAS fails we can either retry or pass control to the slow-path.
3450          // We use the latter tactic.
3451          // Pass the CAS result in the icc.ZFlag into DONE_LABEL
3452          // If the CAS was successful ...
3453          //   Self has acquired the lock
3454          //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
3455          // Intentional fall-through into DONE_LABEL ...
3456       }
3457 
3458       // DONE_LABEL is a hot target - we'd really like to place it at the
3459       // start of cache line by padding with NOPs.
3460       // See the AMD and Intel software optimization manuals for the
3461       // most efficient "long" NOP encodings.
3462       // Unfortunately none of our alignment mechanisms suffice.
3463       masm.bind(DONE_LABEL);
3464 
3465       // Avoid branch-to-branch on AMD processors
3466       // This appears to be superstition.
3467       if (EmitSync & 32) masm.nop() ;
3468 
3469 
3470       // At DONE_LABEL the icc ZFlag is set as follows ...
3471       // Fast_Unlock uses the same protocol.
3472       // ZFlag == 1 -> Success
3473       // ZFlag == 0 -> Failure - force control through the slow-path
3474     }
3475   %}
3476 
3477   // obj: object to unlock
3478   // box: box address (displaced header location), killed.  Must be EAX.
3479   // rbx,: killed tmp; cannot be obj nor box.
3480   //
3481   // Some commentary on balanced locking:
3482   //
3483   // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
3484   // Methods that don't have provably balanced locking are forced to run in the
3485   // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
3486   // The interpreter provides two properties:
3487   // I1:  At return-time the interpreter automatically and quietly unlocks any
3488   //      objects acquired the current activation (frame).  Recall that the
3489   //      interpreter maintains an on-stack list of locks currently held by
3490   //      a frame.
3491   // I2:  If a method attempts to unlock an object that is not held by the
3492   //      the frame the interpreter throws IMSX.
3493   //
3494   // Lets say A(), which has provably balanced locking, acquires O and then calls B().
3495   // B() doesn't have provably balanced locking so it runs in the interpreter.
3496   // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
3497   // is still locked by A().
3498   //
3499   // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
3500   // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
3501   // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
3502   // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
3503 
3504   enc_class Fast_Unlock( nabxRegP obj, eAXRegP box, eRegP tmp) %{
3505 
3506     Register objReg = as_Register($obj$$reg);
3507     Register boxReg = as_Register($box$$reg);
3508     Register tmpReg = as_Register($tmp$$reg);
3509 
3510     guarantee (objReg != boxReg, "") ;
3511     guarantee (objReg != tmpReg, "") ;
3512     guarantee (boxReg != tmpReg, "") ;
3513     guarantee (boxReg == as_Register(EAX_enc), "") ;
3514     MacroAssembler masm(&cbuf);
3515 
3516     if (EmitSync & 4) {
3517       // Disable - inhibit all inlining.  Force control through the slow-path
3518       masm.cmpptr (rsp, 0) ; 
3519     } else 
3520     if (EmitSync & 8) {
3521       Label DONE_LABEL ;
3522       if (UseBiasedLocking) {
3523          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3524       }
3525       // classic stack-locking code ...
3526       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3527       masm.testptr(tmpReg, tmpReg) ;
3528       masm.jcc   (Assembler::zero, DONE_LABEL) ;
3529       if (os::is_MP()) { masm.lock(); }
3530       masm.cmpxchgptr(tmpReg, Address(objReg, 0));          // Uses EAX which is box
3531       masm.bind(DONE_LABEL);
3532     } else {
3533       Label DONE_LABEL, Stacked, CheckSucc, Inflated ;
3534 
3535       // Critically, the biased locking test must have precedence over
3536       // and appear before the (box->dhw == 0) recursive stack-lock test.
3537       if (UseBiasedLocking && !UseOptoBiasInlining) {
3538          masm.biased_locking_exit(objReg, tmpReg, DONE_LABEL);
3539       }
3540       
3541       masm.cmpptr(Address(boxReg, 0), 0) ;            // Examine the displaced header
3542       masm.movptr(tmpReg, Address(objReg, 0)) ;       // Examine the object's markword
3543       masm.jccb  (Assembler::zero, DONE_LABEL) ;      // 0 indicates recursive stack-lock
3544 
3545       masm.testptr(tmpReg, 0x02) ;                     // Inflated? 
3546       masm.jccb  (Assembler::zero, Stacked) ;
3547 
3548       masm.bind  (Inflated) ;
3549       // It's inflated.
3550       // Despite our balanced locking property we still check that m->_owner == Self
3551       // as java routines or native JNI code called by this thread might
3552       // have released the lock.
3553       // Refer to the comments in synchronizer.cpp for how we might encode extra
3554       // state in _succ so we can avoid fetching EntryList|cxq.
3555       //
3556       // I'd like to add more cases in fast_lock() and fast_unlock() --
3557       // such as recursive enter and exit -- but we have to be wary of
3558       // I$ bloat, T$ effects and BP$ effects.
3559       //
3560       // If there's no contention try a 1-0 exit.  That is, exit without
3561       // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
3562       // we detect and recover from the race that the 1-0 exit admits.
3563       //
3564       // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
3565       // before it STs null into _owner, releasing the lock.  Updates
3566       // to data protected by the critical section must be visible before
3567       // we drop the lock (and thus before any other thread could acquire
3568       // the lock and observe the fields protected by the lock).
3569       // IA32's memory-model is SPO, so STs are ordered with respect to
3570       // each other and there's no need for an explicit barrier (fence).
3571       // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
3572 
3573       masm.get_thread (boxReg) ;
3574       if ((EmitSync & 4096) && VM_Version::supports_3dnow() && os::is_MP()) {
3575         // prefetchw [ebx + Offset(_owner)-2]
3576         masm.prefetchw(Address(rbx, ObjectMonitor::owner_offset_in_bytes()-2));
3577       }
3578 
3579       // Note that we could employ various encoding schemes to reduce
3580       // the number of loads below (currently 4) to just 2 or 3.
3581       // Refer to the comments in synchronizer.cpp.
3582       // In practice the chain of fetches doesn't seem to impact performance, however.
3583       if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
3584          // Attempt to reduce branch density - AMD's branch predictor.
3585          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3586          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3587          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3588          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3589          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3590          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ; 
3591          masm.jmpb  (DONE_LABEL) ; 
3592       } else { 
3593          masm.xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2)) ;  
3594          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2)) ;
3595          masm.jccb  (Assembler::notZero, DONE_LABEL) ; 
3596          masm.movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2)) ; 
3597          masm.orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2)) ; 
3598          masm.jccb  (Assembler::notZero, CheckSucc) ; 
3599          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ; 
3600          masm.jmpb  (DONE_LABEL) ; 
3601       }
3602 
3603       // The Following code fragment (EmitSync & 65536) improves the performance of
3604       // contended applications and contended synchronization microbenchmarks.
3605       // Unfortunately the emission of the code - even though not executed - causes regressions
3606       // in scimark and jetstream, evidently because of $ effects.  Replacing the code
3607       // with an equal number of never-executed NOPs results in the same regression.
3608       // We leave it off by default.
3609 
3610       if ((EmitSync & 65536) != 0) {
3611          Label LSuccess, LGoSlowPath ;
3612 
3613          masm.bind  (CheckSucc) ;
3614 
3615          // Optional pre-test ... it's safe to elide this
3616          if ((EmitSync & 16) == 0) { 
3617             masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3618             masm.jccb  (Assembler::zero, LGoSlowPath) ; 
3619          }
3620 
3621          // We have a classic Dekker-style idiom:
3622          //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
3623          // There are a number of ways to implement the barrier:
3624          // (1) lock:andl &m->_owner, 0
3625          //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
3626          //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
3627          //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
3628          // (2) If supported, an explicit MFENCE is appealing.
3629          //     In older IA32 processors MFENCE is slower than lock:add or xchg
3630          //     particularly if the write-buffer is full as might be the case if
3631          //     if stores closely precede the fence or fence-equivalent instruction.
3632          //     In more modern implementations MFENCE appears faster, however.
3633          // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
3634          //     The $lines underlying the top-of-stack should be in M-state.
3635          //     The locked add instruction is serializing, of course.
3636          // (4) Use xchg, which is serializing
3637          //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
3638          // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
3639          //     The integer condition codes will tell us if succ was 0.
3640          //     Since _succ and _owner should reside in the same $line and
3641          //     we just stored into _owner, it's likely that the $line
3642          //     remains in M-state for the lock:orl.
3643          //
3644          // We currently use (3), although it's likely that switching to (2)
3645          // is correct for the future.
3646             
3647          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), 0) ; 
3648          if (os::is_MP()) { 
3649             if (VM_Version::supports_sse2() && 1 == FenceInstruction) { 
3650               masm.mfence();
3651             } else { 
3652               masm.lock () ; masm.addptr(Address(rsp, 0), 0) ; 
3653             }
3654          }
3655          // Ratify _succ remains non-null
3656          masm.cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0) ; 
3657          masm.jccb  (Assembler::notZero, LSuccess) ; 
3658 
3659          masm.xorptr(boxReg, boxReg) ;                  // box is really EAX
3660          if (os::is_MP()) { masm.lock(); }
3661          masm.cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
3662          masm.jccb  (Assembler::notEqual, LSuccess) ;
3663          // Since we're low on registers we installed rsp as a placeholding in _owner.
3664          // Now install Self over rsp.  This is safe as we're transitioning from
3665          // non-null to non=null
3666          masm.get_thread (boxReg) ;
3667          masm.movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg) ;
3668          // Intentional fall-through into LGoSlowPath ...
3669 
3670          masm.bind  (LGoSlowPath) ; 
3671          masm.orptr(boxReg, 1) ;                      // set ICC.ZF=0 to indicate failure
3672          masm.jmpb  (DONE_LABEL) ; 
3673 
3674          masm.bind  (LSuccess) ; 
3675          masm.xorptr(boxReg, boxReg) ;                 // set ICC.ZF=1 to indicate success
3676          masm.jmpb  (DONE_LABEL) ; 
3677       }
3678 
3679       masm.bind (Stacked) ;
3680       // It's not inflated and it's not recursively stack-locked and it's not biased.
3681       // It must be stack-locked.
3682       // Try to reset the header to displaced header.
3683       // The "box" value on the stack is stable, so we can reload
3684       // and be assured we observe the same value as above.
3685       masm.movptr(tmpReg, Address(boxReg, 0)) ;
3686       if (os::is_MP()) {   masm.lock();    }
3687       masm.cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses EAX which is box
3688       // Intention fall-thru into DONE_LABEL
3689 
3690 
3691       // DONE_LABEL is a hot target - we'd really like to place it at the
3692       // start of cache line by padding with NOPs.
3693       // See the AMD and Intel software optimization manuals for the
3694       // most efficient "long" NOP encodings.
3695       // Unfortunately none of our alignment mechanisms suffice.
3696       if ((EmitSync & 65536) == 0) {
3697          masm.bind (CheckSucc) ;
3698       }
3699       masm.bind(DONE_LABEL);
3700 
3701       // Avoid branch to branch on AMD processors
3702       if (EmitSync & 32768) { masm.nop() ; }
3703     }
3704   %}
3705 
3706   enc_class enc_String_Compare() %{
3707     Label ECX_GOOD_LABEL, LENGTH_DIFF_LABEL,
3708           POP_LABEL, DONE_LABEL, CONT_LABEL,
3709           WHILE_HEAD_LABEL;
3710     MacroAssembler masm(&cbuf);
3711 
3712     // Get the first character position in both strings
3713     //         [8] char array, [12] offset, [16] count
3714     int value_offset  = java_lang_String::value_offset_in_bytes();
3715     int offset_offset = java_lang_String::offset_offset_in_bytes();
3716     int count_offset  = java_lang_String::count_offset_in_bytes();
3717     int base_offset   = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3718 
3719     masm.movptr(rax, Address(rsi, value_offset));
3720     masm.movl(rcx, Address(rsi, offset_offset));
3721     masm.lea(rax, Address(rax, rcx, Address::times_2, base_offset));
3722     masm.movptr(rbx, Address(rdi, value_offset));
3723     masm.movl(rcx, Address(rdi, offset_offset));
3724     masm.lea(rbx, Address(rbx, rcx, Address::times_2, base_offset));
3725 
3726     // Compute the minimum of the string lengths(rsi) and the
3727     // difference of the string lengths (stack)
3728 
3729 
3730     if (VM_Version::supports_cmov()) {
3731       masm.movl(rdi, Address(rdi, count_offset));
3732       masm.movl(rsi, Address(rsi, count_offset));
3733       masm.movl(rcx, rdi);
3734       masm.subl(rdi, rsi);
3735       masm.push(rdi);
3736       masm.cmovl(Assembler::lessEqual, rsi, rcx);
3737     } else {
3738       masm.movl(rdi, Address(rdi, count_offset));
3739       masm.movl(rcx, Address(rsi, count_offset));
3740       masm.movl(rsi, rdi);
3741       masm.subl(rdi, rcx);
3742       masm.push(rdi);
3743       masm.jcc(Assembler::lessEqual, ECX_GOOD_LABEL);
3744       masm.movl(rsi, rcx);
3745       // rsi holds min, rcx is unused
3746     }
3747 
3748     // Is the minimum length zero?
3749     masm.bind(ECX_GOOD_LABEL);
3750     masm.testl(rsi, rsi);
3751     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
3752 
3753     // Load first characters
3754     masm.load_unsigned_word(rcx, Address(rbx, 0));
3755     masm.load_unsigned_word(rdi, Address(rax, 0));
3756 
3757     // Compare first characters
3758     masm.subl(rcx, rdi);
3759     masm.jcc(Assembler::notZero,  POP_LABEL);
3760     masm.decrementl(rsi);
3761     masm.jcc(Assembler::zero, LENGTH_DIFF_LABEL);
3762 
3763     {
3764       // Check after comparing first character to see if strings are equivalent
3765       Label LSkip2;
3766       // Check if the strings start at same location
3767       masm.cmpptr(rbx,rax);
3768       masm.jcc(Assembler::notEqual, LSkip2);
3769 
3770       // Check if the length difference is zero (from stack)
3771       masm.cmpl(Address(rsp, 0), 0x0);
3772       masm.jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
3773 
3774       // Strings might not be equivalent
3775       masm.bind(LSkip2);
3776     }
3777 
3778     // Shift rax, and rbx, to the end of the arrays, negate min
3779     masm.lea(rax, Address(rax, rsi, Address::times_2, 2));
3780     masm.lea(rbx, Address(rbx, rsi, Address::times_2, 2));
3781     masm.negl(rsi);
3782 
3783     // Compare the rest of the characters
3784     masm.bind(WHILE_HEAD_LABEL);
3785     masm.load_unsigned_word(rcx, Address(rbx, rsi, Address::times_2, 0));
3786     masm.load_unsigned_word(rdi, Address(rax, rsi, Address::times_2, 0));
3787     masm.subl(rcx, rdi);
3788     masm.jcc(Assembler::notZero, POP_LABEL);
3789     masm.incrementl(rsi);
3790     masm.jcc(Assembler::notZero, WHILE_HEAD_LABEL);
3791 
3792     // Strings are equal up to min length.  Return the length difference.
3793     masm.bind(LENGTH_DIFF_LABEL);
3794     masm.pop(rcx);
3795     masm.jmp(DONE_LABEL);
3796 
3797     // Discard the stored length difference
3798     masm.bind(POP_LABEL);
3799     masm.addptr(rsp, 4);
3800        
3801     // That's it
3802     masm.bind(DONE_LABEL);
3803   %}
3804 
3805   enc_class enc_Array_Equals(eDIRegP ary1, eSIRegP ary2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result) %{
3806     Label TRUE_LABEL, FALSE_LABEL, DONE_LABEL, COMPARE_LOOP_HDR, COMPARE_LOOP;
3807     MacroAssembler masm(&cbuf);
3808 
3809     Register ary1Reg   = as_Register($ary1$$reg);
3810     Register ary2Reg   = as_Register($ary2$$reg);
3811     Register tmp1Reg   = as_Register($tmp1$$reg);
3812     Register tmp2Reg   = as_Register($tmp2$$reg);
3813     Register resultReg = as_Register($result$$reg);
3814 
3815     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3816     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3817 
3818     // Check the input args
3819     masm.cmpl(ary1Reg, ary2Reg);
3820     masm.jcc(Assembler::equal, TRUE_LABEL);
3821     masm.testl(ary1Reg, ary1Reg);
3822     masm.jcc(Assembler::zero, FALSE_LABEL);
3823     masm.testl(ary2Reg, ary2Reg);
3824     masm.jcc(Assembler::zero, FALSE_LABEL);
3825 
3826     // Check the lengths
3827     masm.movl(tmp2Reg, Address(ary1Reg, length_offset));
3828     masm.movl(resultReg, Address(ary2Reg, length_offset));
3829     masm.cmpl(tmp2Reg, resultReg);
3830     masm.jcc(Assembler::notEqual, FALSE_LABEL);
3831     masm.testl(resultReg, resultReg);
3832     masm.jcc(Assembler::zero, TRUE_LABEL);
3833 
3834     // Get the number of 4 byte vectors to compare
3835     masm.shrl(resultReg, 1);
3836 
3837     // Check for odd-length arrays
3838     masm.andl(tmp2Reg, 1);
3839     masm.testl(tmp2Reg, tmp2Reg);
3840     masm.jcc(Assembler::zero, COMPARE_LOOP_HDR);
3841 
3842     // Compare 2-byte "tail" at end of arrays
3843     masm.load_unsigned_word(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
3844     masm.load_unsigned_word(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
3845     masm.cmpl(tmp1Reg, tmp2Reg);
3846     masm.jcc(Assembler::notEqual, FALSE_LABEL);
3847     masm.testl(resultReg, resultReg);
3848     masm.jcc(Assembler::zero, TRUE_LABEL);
3849 
3850     // Setup compare loop
3851     masm.bind(COMPARE_LOOP_HDR);
3852     // Shift tmp1Reg and tmp2Reg to the last 4-byte boundary of the arrays
3853     masm.leal(tmp1Reg, Address(ary1Reg, resultReg, Address::times_4, base_offset));
3854     masm.leal(tmp2Reg, Address(ary2Reg, resultReg, Address::times_4, base_offset));
3855     masm.negl(resultReg);
3856 
3857     // 4-byte-wide compare loop
3858     masm.bind(COMPARE_LOOP);
3859     masm.movl(ary1Reg, Address(tmp1Reg, resultReg, Address::times_4, 0));
3860     masm.movl(ary2Reg, Address(tmp2Reg, resultReg, Address::times_4, 0));
3861     masm.cmpl(ary1Reg, ary2Reg);
3862     masm.jcc(Assembler::notEqual, FALSE_LABEL);
3863     masm.increment(resultReg);
3864     masm.jcc(Assembler::notZero, COMPARE_LOOP);
3865 
3866     masm.bind(TRUE_LABEL);
3867     masm.movl(resultReg, 1);   // return true
3868     masm.jmp(DONE_LABEL);
3869 
3870     masm.bind(FALSE_LABEL);
3871     masm.xorl(resultReg, resultReg); // return false
3872 
3873     // That's it
3874     masm.bind(DONE_LABEL);
3875   %}
3876 
3877   enc_class enc_pop_rdx() %{
3878     emit_opcode(cbuf,0x5A);
3879   %}
3880 
3881   enc_class enc_rethrow() %{
3882     cbuf.set_inst_mark();
3883     emit_opcode(cbuf, 0xE9);        // jmp    entry
3884     emit_d32_reloc(cbuf, (int)OptoRuntime::rethrow_stub() - ((int)cbuf.code_end())-4,
3885                    runtime_call_Relocation::spec(), RELOC_IMM32 );
3886   %}
3887 
3888 
3889   // Convert a double to an int.  Java semantics require we do complex
3890   // manglelations in the corner cases.  So we set the rounding mode to
3891   // 'zero', store the darned double down as an int, and reset the
3892   // rounding mode to 'nearest'.  The hardware throws an exception which
3893   // patches up the correct value directly to the stack.
3894   enc_class D2I_encoding( regD src ) %{
3895     // Flip to round-to-zero mode.  We attempted to allow invalid-op
3896     // exceptions here, so that a NAN or other corner-case value will
3897     // thrown an exception (but normal values get converted at full speed).
3898     // However, I2C adapters and other float-stack manglers leave pending
3899     // invalid-op exceptions hanging.  We would have to clear them before
3900     // enabling them and that is more expensive than just testing for the
3901     // invalid value Intel stores down in the corner cases.
3902     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3903     emit_opcode(cbuf,0x2D);
3904     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3905     // Allocate a word
3906     emit_opcode(cbuf,0x83);            // SUB ESP,4
3907     emit_opcode(cbuf,0xEC);
3908     emit_d8(cbuf,0x04);
3909     // Encoding assumes a double has been pushed into FPR0.
3910     // Store down the double as an int, popping the FPU stack
3911     emit_opcode(cbuf,0xDB);            // FISTP [ESP]
3912     emit_opcode(cbuf,0x1C);
3913     emit_d8(cbuf,0x24);
3914     // Restore the rounding mode; mask the exception
3915     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3916     emit_opcode(cbuf,0x2D);
3917     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3918         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3919         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3920 
3921     // Load the converted int; adjust CPU stack
3922     emit_opcode(cbuf,0x58);       // POP EAX
3923     emit_opcode(cbuf,0x3D);       // CMP EAX,imm
3924     emit_d32   (cbuf,0x80000000); //         0x80000000
3925     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3926     emit_d8    (cbuf,0x07);       // Size of slow_call
3927     // Push src onto stack slow-path
3928     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3929     emit_d8    (cbuf,0xC0-1+$src$$reg );
3930     // CALL directly to the runtime
3931     cbuf.set_inst_mark();
3932     emit_opcode(cbuf,0xE8);       // Call into runtime
3933     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3934     // Carry on here...
3935   %}
3936 
3937   enc_class D2L_encoding( regD src ) %{
3938     emit_opcode(cbuf,0xD9);            // FLDCW  trunc
3939     emit_opcode(cbuf,0x2D);
3940     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3941     // Allocate a word
3942     emit_opcode(cbuf,0x83);            // SUB ESP,8
3943     emit_opcode(cbuf,0xEC);
3944     emit_d8(cbuf,0x08);
3945     // Encoding assumes a double has been pushed into FPR0.
3946     // Store down the double as a long, popping the FPU stack
3947     emit_opcode(cbuf,0xDF);            // FISTP [ESP]
3948     emit_opcode(cbuf,0x3C);
3949     emit_d8(cbuf,0x24);
3950     // Restore the rounding mode; mask the exception
3951     emit_opcode(cbuf,0xD9);            // FLDCW   std/24-bit mode
3952     emit_opcode(cbuf,0x2D);
3953     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
3954         ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
3955         : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
3956 
3957     // Load the converted int; adjust CPU stack
3958     emit_opcode(cbuf,0x58);       // POP EAX
3959     emit_opcode(cbuf,0x5A);       // POP EDX
3960     emit_opcode(cbuf,0x81);       // CMP EDX,imm
3961     emit_d8    (cbuf,0xFA);       // rdx
3962     emit_d32   (cbuf,0x80000000); //         0x80000000
3963     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3964     emit_d8    (cbuf,0x07+4);     // Size of slow_call
3965     emit_opcode(cbuf,0x85);       // TEST EAX,EAX
3966     emit_opcode(cbuf,0xC0);       // 2/rax,/rax,
3967     emit_opcode(cbuf,0x75);       // JNE around_slow_call
3968     emit_d8    (cbuf,0x07);       // Size of slow_call
3969     // Push src onto stack slow-path
3970     emit_opcode(cbuf,0xD9 );      // FLD     ST(i)
3971     emit_d8    (cbuf,0xC0-1+$src$$reg );
3972     // CALL directly to the runtime
3973     cbuf.set_inst_mark();
3974     emit_opcode(cbuf,0xE8);       // Call into runtime
3975     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
3976     // Carry on here...
3977   %}
3978 
3979   enc_class X2L_encoding( regX src ) %{
3980     // Allocate a word
3981     emit_opcode(cbuf,0x83);      // SUB ESP,8
3982     emit_opcode(cbuf,0xEC);
3983     emit_d8(cbuf,0x08);
3984 
3985     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
3986     emit_opcode  (cbuf, 0x0F );
3987     emit_opcode  (cbuf, 0x11 );
3988     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
3989 
3990     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
3991     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
3992 
3993     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
3994     emit_opcode(cbuf,0x2D);
3995     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
3996 
3997     // Encoding assumes a double has been pushed into FPR0.
3998     // Store down the double as a long, popping the FPU stack
3999     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
4000     emit_opcode(cbuf,0x3C);
4001     emit_d8(cbuf,0x24);
4002 
4003     // Restore the rounding mode; mask the exception
4004     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
4005     emit_opcode(cbuf,0x2D);
4006     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
4007       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
4008       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
4009 
4010     // Load the converted int; adjust CPU stack
4011     emit_opcode(cbuf,0x58);      // POP EAX
4012 
4013     emit_opcode(cbuf,0x5A);      // POP EDX
4014 
4015     emit_opcode(cbuf,0x81);      // CMP EDX,imm
4016     emit_d8    (cbuf,0xFA);      // rdx
4017     emit_d32   (cbuf,0x80000000);//         0x80000000
4018 
4019     emit_opcode(cbuf,0x75);      // JNE around_slow_call
4020     emit_d8    (cbuf,0x13+4);    // Size of slow_call
4021 
4022     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
4023     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
4024 
4025     emit_opcode(cbuf,0x75);      // JNE around_slow_call
4026     emit_d8    (cbuf,0x13);      // Size of slow_call
4027 
4028     // Allocate a word
4029     emit_opcode(cbuf,0x83);      // SUB ESP,4
4030     emit_opcode(cbuf,0xEC);
4031     emit_d8(cbuf,0x04);
4032 
4033     emit_opcode  (cbuf, 0xF3 );  // MOVSS [ESP], src
4034     emit_opcode  (cbuf, 0x0F );
4035     emit_opcode  (cbuf, 0x11 );
4036     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4037 
4038     emit_opcode(cbuf,0xD9 );     // FLD_S [ESP]
4039     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4040 
4041     emit_opcode(cbuf,0x83);      // ADD ESP,4
4042     emit_opcode(cbuf,0xC4);
4043     emit_d8(cbuf,0x04);
4044 
4045     // CALL directly to the runtime
4046     cbuf.set_inst_mark();
4047     emit_opcode(cbuf,0xE8);       // Call into runtime
4048     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4049     // Carry on here...
4050   %}
4051 
4052   enc_class XD2L_encoding( regXD src ) %{
4053     // Allocate a word
4054     emit_opcode(cbuf,0x83);      // SUB ESP,8
4055     emit_opcode(cbuf,0xEC);
4056     emit_d8(cbuf,0x08);
4057 
4058     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
4059     emit_opcode  (cbuf, 0x0F );
4060     emit_opcode  (cbuf, 0x11 );
4061     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4062 
4063     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
4064     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4065 
4066     emit_opcode(cbuf,0xD9);      // FLDCW  trunc
4067     emit_opcode(cbuf,0x2D);
4068     emit_d32(cbuf,(int)StubRoutines::addr_fpu_cntrl_wrd_trunc());
4069 
4070     // Encoding assumes a double has been pushed into FPR0.
4071     // Store down the double as a long, popping the FPU stack
4072     emit_opcode(cbuf,0xDF);      // FISTP [ESP]
4073     emit_opcode(cbuf,0x3C);
4074     emit_d8(cbuf,0x24);
4075 
4076     // Restore the rounding mode; mask the exception
4077     emit_opcode(cbuf,0xD9);      // FLDCW   std/24-bit mode
4078     emit_opcode(cbuf,0x2D);
4079     emit_d32( cbuf, Compile::current()->in_24_bit_fp_mode()
4080       ? (int)StubRoutines::addr_fpu_cntrl_wrd_24()
4081       : (int)StubRoutines::addr_fpu_cntrl_wrd_std());
4082 
4083     // Load the converted int; adjust CPU stack
4084     emit_opcode(cbuf,0x58);      // POP EAX
4085 
4086     emit_opcode(cbuf,0x5A);      // POP EDX
4087 
4088     emit_opcode(cbuf,0x81);      // CMP EDX,imm
4089     emit_d8    (cbuf,0xFA);      // rdx
4090     emit_d32   (cbuf,0x80000000); //         0x80000000
4091 
4092     emit_opcode(cbuf,0x75);      // JNE around_slow_call
4093     emit_d8    (cbuf,0x13+4);    // Size of slow_call
4094 
4095     emit_opcode(cbuf,0x85);      // TEST EAX,EAX
4096     emit_opcode(cbuf,0xC0);      // 2/rax,/rax,
4097 
4098     emit_opcode(cbuf,0x75);      // JNE around_slow_call
4099     emit_d8    (cbuf,0x13);      // Size of slow_call
4100 
4101     // Push src onto stack slow-path
4102     // Allocate a word
4103     emit_opcode(cbuf,0x83);      // SUB ESP,8
4104     emit_opcode(cbuf,0xEC);
4105     emit_d8(cbuf,0x08);
4106 
4107     emit_opcode  (cbuf, 0xF2 );  // MOVSD [ESP], src
4108     emit_opcode  (cbuf, 0x0F );
4109     emit_opcode  (cbuf, 0x11 );
4110     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4111 
4112     emit_opcode(cbuf,0xDD );     // FLD_D [ESP]
4113     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4114 
4115     emit_opcode(cbuf,0x83);      // ADD ESP,8
4116     emit_opcode(cbuf,0xC4);
4117     emit_d8(cbuf,0x08);
4118 
4119     // CALL directly to the runtime
4120     cbuf.set_inst_mark();
4121     emit_opcode(cbuf,0xE8);      // Call into runtime
4122     emit_d32_reloc(cbuf, (StubRoutines::d2l_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4123     // Carry on here...
4124   %}
4125 
4126   enc_class D2X_encoding( regX dst, regD src ) %{
4127     // Allocate a word
4128     emit_opcode(cbuf,0x83);            // SUB ESP,4
4129     emit_opcode(cbuf,0xEC);
4130     emit_d8(cbuf,0x04);
4131     int pop = 0x02;
4132     if ($src$$reg != FPR1L_enc) {
4133       emit_opcode( cbuf, 0xD9 );       // FLD    ST(i-1)
4134       emit_d8( cbuf, 0xC0-1+$src$$reg );
4135       pop = 0x03;
4136     }
4137     store_to_stackslot( cbuf, 0xD9, pop, 0 ); // FST<P>_S  [ESP]
4138 
4139     emit_opcode  (cbuf, 0xF3 );        // MOVSS dst(xmm), [ESP]
4140     emit_opcode  (cbuf, 0x0F );
4141     emit_opcode  (cbuf, 0x10 );
4142     encode_RegMem(cbuf, $dst$$reg, ESP_enc, 0x4, 0, 0, false);
4143 
4144     emit_opcode(cbuf,0x83);            // ADD ESP,4
4145     emit_opcode(cbuf,0xC4);
4146     emit_d8(cbuf,0x04);
4147     // Carry on here...
4148   %}
4149 
4150   enc_class FX2I_encoding( regX src, eRegI dst ) %{
4151     emit_rm(cbuf, 0x3, $dst$$reg, $src$$reg);
4152 
4153     // Compare the result to see if we need to go to the slow path
4154     emit_opcode(cbuf,0x81);       // CMP dst,imm
4155     emit_rm    (cbuf,0x3,0x7,$dst$$reg);
4156     emit_d32   (cbuf,0x80000000); //         0x80000000
4157 
4158     emit_opcode(cbuf,0x75);       // JNE around_slow_call
4159     emit_d8    (cbuf,0x13);       // Size of slow_call
4160     // Store xmm to a temp memory
4161     // location and push it onto stack.
4162 
4163     emit_opcode(cbuf,0x83);  // SUB ESP,4
4164     emit_opcode(cbuf,0xEC);
4165     emit_d8(cbuf, $primary ? 0x8 : 0x4);
4166 
4167     emit_opcode  (cbuf, $primary ? 0xF2 : 0xF3 );   // MOVSS [ESP], xmm
4168     emit_opcode  (cbuf, 0x0F );
4169     emit_opcode  (cbuf, 0x11 );
4170     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4171 
4172     emit_opcode(cbuf, $primary ? 0xDD : 0xD9 );      // FLD [ESP]
4173     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4174 
4175     emit_opcode(cbuf,0x83);    // ADD ESP,4
4176     emit_opcode(cbuf,0xC4);
4177     emit_d8(cbuf, $primary ? 0x8 : 0x4);
4178 
4179     // CALL directly to the runtime
4180     cbuf.set_inst_mark();
4181     emit_opcode(cbuf,0xE8);       // Call into runtime
4182     emit_d32_reloc(cbuf, (StubRoutines::d2i_wrapper() - cbuf.code_end()) - 4, runtime_call_Relocation::spec(), RELOC_IMM32 );
4183 
4184     // Carry on here...
4185   %}
4186 
4187   enc_class X2D_encoding( regD dst, regX src ) %{
4188     // Allocate a word
4189     emit_opcode(cbuf,0x83);     // SUB ESP,4
4190     emit_opcode(cbuf,0xEC);
4191     emit_d8(cbuf,0x04);
4192 
4193     emit_opcode  (cbuf, 0xF3 ); // MOVSS [ESP], xmm
4194     emit_opcode  (cbuf, 0x0F );
4195     emit_opcode  (cbuf, 0x11 );
4196     encode_RegMem(cbuf, $src$$reg, ESP_enc, 0x4, 0, 0, false);
4197 
4198     emit_opcode(cbuf,0xD9 );    // FLD_S [ESP]
4199     encode_RegMem(cbuf, 0x0, ESP_enc, 0x4, 0, 0, false);
4200 
4201     emit_opcode(cbuf,0x83);     // ADD ESP,4
4202     emit_opcode(cbuf,0xC4);
4203     emit_d8(cbuf,0x04);
4204 
4205     // Carry on here...
4206   %}
4207 
4208   enc_class AbsXF_encoding(regX dst) %{
4209     address signmask_address=(address)float_signmask_pool;
4210     // andpd:\tANDPS  $dst,[signconst]
4211     emit_opcode(cbuf, 0x0F);
4212     emit_opcode(cbuf, 0x54);
4213     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4214     emit_d32(cbuf, (int)signmask_address);
4215   %}
4216 
4217   enc_class AbsXD_encoding(regXD dst) %{
4218     address signmask_address=(address)double_signmask_pool;
4219     // andpd:\tANDPD  $dst,[signconst]
4220     emit_opcode(cbuf, 0x66);
4221     emit_opcode(cbuf, 0x0F);
4222     emit_opcode(cbuf, 0x54);
4223     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4224     emit_d32(cbuf, (int)signmask_address);
4225   %}
4226 
4227   enc_class NegXF_encoding(regX dst) %{
4228     address signmask_address=(address)float_signflip_pool;
4229     // andpd:\tXORPS  $dst,[signconst]
4230     emit_opcode(cbuf, 0x0F);
4231     emit_opcode(cbuf, 0x57);
4232     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4233     emit_d32(cbuf, (int)signmask_address);
4234   %}
4235 
4236   enc_class NegXD_encoding(regXD dst) %{
4237     address signmask_address=(address)double_signflip_pool;
4238     // andpd:\tXORPD  $dst,[signconst]
4239     emit_opcode(cbuf, 0x66);
4240     emit_opcode(cbuf, 0x0F);
4241     emit_opcode(cbuf, 0x57);
4242     emit_rm(cbuf, 0x0, $dst$$reg, 0x5);
4243     emit_d32(cbuf, (int)signmask_address);
4244   %}
4245 
4246   enc_class FMul_ST_reg( eRegF src1 ) %{
4247     // Operand was loaded from memory into fp ST (stack top)
4248     // FMUL   ST,$src  /* D8 C8+i */
4249     emit_opcode(cbuf, 0xD8);
4250     emit_opcode(cbuf, 0xC8 + $src1$$reg);
4251   %}
4252 
4253   enc_class FAdd_ST_reg( eRegF src2 ) %{
4254     // FADDP  ST,src2  /* D8 C0+i */
4255     emit_opcode(cbuf, 0xD8);
4256     emit_opcode(cbuf, 0xC0 + $src2$$reg);
4257     //could use FADDP  src2,fpST  /* DE C0+i */
4258   %}
4259 
4260   enc_class FAddP_reg_ST( eRegF src2 ) %{
4261     // FADDP  src2,ST  /* DE C0+i */
4262     emit_opcode(cbuf, 0xDE);
4263     emit_opcode(cbuf, 0xC0 + $src2$$reg);
4264   %}
4265 
4266   enc_class subF_divF_encode( eRegF src1, eRegF src2) %{
4267     // Operand has been loaded into fp ST (stack top)
4268       // FSUB   ST,$src1
4269       emit_opcode(cbuf, 0xD8);
4270       emit_opcode(cbuf, 0xE0 + $src1$$reg);
4271 
4272       // FDIV
4273       emit_opcode(cbuf, 0xD8);
4274       emit_opcode(cbuf, 0xF0 + $src2$$reg);
4275   %}
4276 
4277   enc_class MulFAddF (eRegF src1, eRegF src2) %{
4278     // Operand was loaded from memory into fp ST (stack top)
4279     // FADD   ST,$src  /* D8 C0+i */
4280     emit_opcode(cbuf, 0xD8);
4281     emit_opcode(cbuf, 0xC0 + $src1$$reg);
4282 
4283     // FMUL  ST,src2  /* D8 C*+i */
4284     emit_opcode(cbuf, 0xD8);
4285     emit_opcode(cbuf, 0xC8 + $src2$$reg);
4286   %}
4287 
4288 
4289   enc_class MulFAddFreverse (eRegF src1, eRegF src2) %{
4290     // Operand was loaded from memory into fp ST (stack top)
4291     // FADD   ST,$src  /* D8 C0+i */
4292     emit_opcode(cbuf, 0xD8);
4293     emit_opcode(cbuf, 0xC0 + $src1$$reg);
4294 
4295     // FMULP  src2,ST  /* DE C8+i */
4296     emit_opcode(cbuf, 0xDE);
4297     emit_opcode(cbuf, 0xC8 + $src2$$reg);
4298   %}
4299 
4300   enc_class enc_membar_acquire %{
4301     // Doug Lea believes this is not needed with current Sparcs and TSO.
4302     // MacroAssembler masm(&cbuf);
4303     // masm.membar();
4304   %}
4305 
4306   enc_class enc_membar_release %{
4307     // Doug Lea believes this is not needed with current Sparcs and TSO.
4308     // MacroAssembler masm(&cbuf);
4309     // masm.membar();
4310   %}
4311 
4312   enc_class enc_membar_volatile %{
4313     MacroAssembler masm(&cbuf);
4314     masm.membar(Assembler::Membar_mask_bits(Assembler::StoreLoad |
4315                                             Assembler::StoreStore));
4316   %}
4317 
4318   // Atomically load the volatile long
4319   enc_class enc_loadL_volatile( memory mem, stackSlotL dst ) %{
4320     emit_opcode(cbuf,0xDF);
4321     int rm_byte_opcode = 0x05;
4322     int base     = $mem$$base;
4323     int index    = $mem$$index;
4324     int scale    = $mem$$scale;
4325     int displace = $mem$$disp;
4326     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4327     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4328     store_to_stackslot( cbuf, 0x0DF, 0x07, $dst$$disp );
4329   %}
4330 
4331   enc_class enc_loadLX_volatile( memory mem, stackSlotL dst, regXD tmp ) %{
4332     { // Atomic long load
4333       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4334       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4335       emit_opcode(cbuf,0x0F);
4336       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4337       int base     = $mem$$base;
4338       int index    = $mem$$index;
4339       int scale    = $mem$$scale;
4340       int displace = $mem$$disp;
4341       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4342       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4343     }
4344     { // MOVSD $dst,$tmp ! atomic long store
4345       emit_opcode(cbuf,0xF2);
4346       emit_opcode(cbuf,0x0F);
4347       emit_opcode(cbuf,0x11);
4348       int base     = $dst$$base;
4349       int index    = $dst$$index;
4350       int scale    = $dst$$scale;
4351       int displace = $dst$$disp;
4352       bool disp_is_oop = $dst->disp_is_oop(); // disp-as-oop when working with static globals
4353       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4354     }
4355   %}
4356 
4357   enc_class enc_loadLX_reg_volatile( memory mem, eRegL dst, regXD tmp ) %{
4358     { // Atomic long load
4359       // UseXmmLoadAndClearUpper ? movsd $tmp,$mem : movlpd $tmp,$mem
4360       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4361       emit_opcode(cbuf,0x0F);
4362       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4363       int base     = $mem$$base;
4364       int index    = $mem$$index;
4365       int scale    = $mem$$scale;
4366       int displace = $mem$$disp;
4367       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4368       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4369     }
4370     { // MOVD $dst.lo,$tmp
4371       emit_opcode(cbuf,0x66);
4372       emit_opcode(cbuf,0x0F);
4373       emit_opcode(cbuf,0x7E);
4374       emit_rm(cbuf, 0x3, $tmp$$reg, $dst$$reg);
4375     }
4376     { // PSRLQ $tmp,32
4377       emit_opcode(cbuf,0x66);
4378       emit_opcode(cbuf,0x0F);
4379       emit_opcode(cbuf,0x73);
4380       emit_rm(cbuf, 0x3, 0x02, $tmp$$reg);
4381       emit_d8(cbuf, 0x20);
4382     }
4383     { // MOVD $dst.hi,$tmp
4384       emit_opcode(cbuf,0x66);
4385       emit_opcode(cbuf,0x0F);
4386       emit_opcode(cbuf,0x7E);
4387       emit_rm(cbuf, 0x3, $tmp$$reg, HIGH_FROM_LOW($dst$$reg));
4388     }
4389   %}
4390 
4391   // Volatile Store Long.  Must be atomic, so move it into
4392   // the FP TOS and then do a 64-bit FIST.  Has to probe the
4393   // target address before the store (for null-ptr checks)
4394   // so the memory operand is used twice in the encoding.
4395   enc_class enc_storeL_volatile( memory mem, stackSlotL src ) %{
4396     store_to_stackslot( cbuf, 0x0DF, 0x05, $src$$disp );
4397     cbuf.set_inst_mark();            // Mark start of FIST in case $mem has an oop
4398     emit_opcode(cbuf,0xDF);
4399     int rm_byte_opcode = 0x07;
4400     int base     = $mem$$base;
4401     int index    = $mem$$index;
4402     int scale    = $mem$$scale;
4403     int displace = $mem$$disp;
4404     bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4405     encode_RegMem(cbuf, rm_byte_opcode, base, index, scale, displace, disp_is_oop);
4406   %}
4407 
4408   enc_class enc_storeLX_volatile( memory mem, stackSlotL src, regXD tmp) %{
4409     { // Atomic long load
4410       // UseXmmLoadAndClearUpper ? movsd $tmp,[$src] : movlpd $tmp,[$src]
4411       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0xF2 : 0x66);
4412       emit_opcode(cbuf,0x0F);
4413       emit_opcode(cbuf,UseXmmLoadAndClearUpper ? 0x10 : 0x12);
4414       int base     = $src$$base;
4415       int index    = $src$$index;
4416       int scale    = $src$$scale;
4417       int displace = $src$$disp;
4418       bool disp_is_oop = $src->disp_is_oop(); // disp-as-oop when working with static globals
4419       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4420     }
4421     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4422     { // MOVSD $mem,$tmp ! atomic long store
4423       emit_opcode(cbuf,0xF2);
4424       emit_opcode(cbuf,0x0F);
4425       emit_opcode(cbuf,0x11);
4426       int base     = $mem$$base;
4427       int index    = $mem$$index;
4428       int scale    = $mem$$scale;
4429       int displace = $mem$$disp;
4430       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4431       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4432     }
4433   %}
4434 
4435   enc_class enc_storeLX_reg_volatile( memory mem, eRegL src, regXD tmp, regXD tmp2) %{
4436     { // MOVD $tmp,$src.lo
4437       emit_opcode(cbuf,0x66);
4438       emit_opcode(cbuf,0x0F);
4439       emit_opcode(cbuf,0x6E);
4440       emit_rm(cbuf, 0x3, $tmp$$reg, $src$$reg);
4441     }
4442     { // MOVD $tmp2,$src.hi
4443       emit_opcode(cbuf,0x66);
4444       emit_opcode(cbuf,0x0F);
4445       emit_opcode(cbuf,0x6E);
4446       emit_rm(cbuf, 0x3, $tmp2$$reg, HIGH_FROM_LOW($src$$reg));
4447     }
4448     { // PUNPCKLDQ $tmp,$tmp2
4449       emit_opcode(cbuf,0x66);
4450       emit_opcode(cbuf,0x0F);
4451       emit_opcode(cbuf,0x62);
4452       emit_rm(cbuf, 0x3, $tmp$$reg, $tmp2$$reg);
4453     }
4454     cbuf.set_inst_mark();            // Mark start of MOVSD in case $mem has an oop
4455     { // MOVSD $mem,$tmp ! atomic long store
4456       emit_opcode(cbuf,0xF2);
4457       emit_opcode(cbuf,0x0F);
4458       emit_opcode(cbuf,0x11);
4459       int base     = $mem$$base;
4460       int index    = $mem$$index;
4461       int scale    = $mem$$scale;
4462       int displace = $mem$$disp;
4463       bool disp_is_oop = $mem->disp_is_oop(); // disp-as-oop when working with static globals
4464       encode_RegMem(cbuf, $tmp$$reg, base, index, scale, displace, disp_is_oop);
4465     }
4466   %}
4467 
4468   // Safepoint Poll.  This polls the safepoint page, and causes an
4469   // exception if it is not readable. Unfortunately, it kills the condition code
4470   // in the process
4471   // We current use TESTL [spp],EDI
4472   // A better choice might be TESTB [spp + pagesize() - CacheLineSize()],0
4473 
4474   enc_class Safepoint_Poll() %{
4475     cbuf.relocate(cbuf.inst_mark(), relocInfo::poll_type, 0);
4476     emit_opcode(cbuf,0x85);
4477     emit_rm (cbuf, 0x0, 0x7, 0x5);
4478     emit_d32(cbuf, (intptr_t)os::get_polling_page());
4479   %}
4480 %}
4481 
4482 
4483 //----------FRAME--------------------------------------------------------------
4484 // Definition of frame structure and management information.
4485 //
4486 //  S T A C K   L A Y O U T    Allocators stack-slot number
4487 //                             |   (to get allocators register number
4488 //  G  Owned by    |        |  v    add OptoReg::stack0())
4489 //  r   CALLER     |        |
4490 //  o     |        +--------+      pad to even-align allocators stack-slot
4491 //  w     V        |  pad0  |        numbers; owned by CALLER
4492 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
4493 //  h     ^        |   in   |  5
4494 //        |        |  args  |  4   Holes in incoming args owned by SELF
4495 //  |     |        |        |  3
4496 //  |     |        +--------+
4497 //  V     |        | old out|      Empty on Intel, window on Sparc
4498 //        |    old |preserve|      Must be even aligned.
4499 //        |     SP-+--------+----> Matcher::_old_SP, even aligned
4500 //        |        |   in   |  3   area for Intel ret address
4501 //     Owned by    |preserve|      Empty on Sparc.
4502 //       SELF      +--------+
4503 //        |        |  pad2  |  2   pad to align old SP
4504 //        |        +--------+  1
4505 //        |        | locks  |  0
4506 //        |        +--------+----> OptoReg::stack0(), even aligned
4507 //        |        |  pad1  | 11   pad to align new SP
4508 //        |        +--------+
4509 //        |        |        | 10
4510 //        |        | spills |  9   spills
4511 //        V        |        |  8   (pad0 slot for callee)
4512 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
4513 //        ^        |  out   |  7
4514 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
4515 //     Owned by    +--------+
4516 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
4517 //        |    new |preserve|      Must be even-aligned.
4518 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
4519 //        |        |        |
4520 //
4521 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
4522 //         known from SELF's arguments and the Java calling convention.
4523 //         Region 6-7 is determined per call site.
4524 // Note 2: If the calling convention leaves holes in the incoming argument
4525 //         area, those holes are owned by SELF.  Holes in the outgoing area
4526 //         are owned by the CALLEE.  Holes should not be nessecary in the
4527 //         incoming area, as the Java calling convention is completely under
4528 //         the control of the AD file.  Doubles can be sorted and packed to
4529 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
4530 //         varargs C calling conventions.
4531 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
4532 //         even aligned with pad0 as needed.
4533 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
4534 //         region 6-11 is even aligned; it may be padded out more so that
4535 //         the region from SP to FP meets the minimum stack alignment.
4536 
4537 frame %{
4538   // What direction does stack grow in (assumed to be same for C & Java)
4539   stack_direction(TOWARDS_LOW);
4540 
4541   // These three registers define part of the calling convention
4542   // between compiled code and the interpreter.
4543   inline_cache_reg(EAX);                // Inline Cache Register
4544   interpreter_method_oop_reg(EBX);      // Method Oop Register when calling interpreter
4545 
4546   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
4547   cisc_spilling_operand_name(indOffset32);
4548 
4549   // Number of stack slots consumed by locking an object
4550   sync_stack_slots(1);
4551 
4552   // Compiled code's Frame Pointer
4553   frame_pointer(ESP);
4554   // Interpreter stores its frame pointer in a register which is
4555   // stored to the stack by I2CAdaptors.
4556   // I2CAdaptors convert from interpreted java to compiled java.
4557   interpreter_frame_pointer(EBP);
4558 
4559   // Stack alignment requirement
4560   // Alignment size in bytes (128-bit -> 16 bytes)
4561   stack_alignment(StackAlignmentInBytes);
4562 
4563   // Number of stack slots between incoming argument block and the start of
4564   // a new frame.  The PROLOG must add this many slots to the stack.  The
4565   // EPILOG must remove this many slots.  Intel needs one slot for
4566   // return address and one for rbp, (must save rbp)
4567   in_preserve_stack_slots(2+VerifyStackAtCalls);
4568 
4569   // Number of outgoing stack slots killed above the out_preserve_stack_slots
4570   // for calls to C.  Supports the var-args backing area for register parms.
4571   varargs_C_out_slots_killed(0);
4572 
4573   // The after-PROLOG location of the return address.  Location of
4574   // return address specifies a type (REG or STACK) and a number
4575   // representing the register number (i.e. - use a register name) or
4576   // stack slot.
4577   // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
4578   // Otherwise, it is above the locks and verification slot and alignment word
4579   return_addr(STACK - 1 +
4580               round_to(1+VerifyStackAtCalls+
4581               Compile::current()->fixed_slots(),
4582               (StackAlignmentInBytes/wordSize)));
4583 
4584   // Body of function which returns an integer array locating
4585   // arguments either in registers or in stack slots.  Passed an array
4586   // of ideal registers called "sig" and a "length" count.  Stack-slot
4587   // offsets are based on outgoing arguments, i.e. a CALLER setting up
4588   // arguments for a CALLEE.  Incoming stack arguments are
4589   // automatically biased by the preserve_stack_slots field above.
4590   calling_convention %{
4591     // No difference between ingoing/outgoing just pass false
4592     SharedRuntime::java_calling_convention(sig_bt, regs, length, false);
4593   %}
4594 
4595 
4596   // Body of function which returns an integer array locating
4597   // arguments either in registers or in stack slots.  Passed an array
4598   // of ideal registers called "sig" and a "length" count.  Stack-slot
4599   // offsets are based on outgoing arguments, i.e. a CALLER setting up
4600   // arguments for a CALLEE.  Incoming stack arguments are
4601   // automatically biased by the preserve_stack_slots field above.
4602   c_calling_convention %{
4603     // This is obviously always outgoing
4604     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
4605   %}
4606 
4607   // Location of C & interpreter return values
4608   c_return_value %{
4609     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4610     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4611     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4612 
4613     // in SSE2+ mode we want to keep the FPU stack clean so pretend
4614     // that C functions return float and double results in XMM0.
4615     if( ideal_reg == Op_RegD && UseSSE>=2 )
4616       return OptoRegPair(XMM0b_num,XMM0a_num);
4617     if( ideal_reg == Op_RegF && UseSSE>=2 )
4618       return OptoRegPair(OptoReg::Bad,XMM0a_num);
4619 
4620     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4621   %}
4622 
4623   // Location of return values
4624   return_value %{
4625     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
4626     static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, EAX_num,      EAX_num,      FPR1L_num,    FPR1L_num, EAX_num };
4627     static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, FPR1H_num, EDX_num };
4628     if( ideal_reg == Op_RegD && UseSSE>=2 )
4629       return OptoRegPair(XMM0b_num,XMM0a_num);
4630     if( ideal_reg == Op_RegF && UseSSE>=1 )
4631       return OptoRegPair(OptoReg::Bad,XMM0a_num);
4632     return OptoRegPair(hi[ideal_reg],lo[ideal_reg]);
4633   %}
4634 
4635 %}
4636 
4637 //----------ATTRIBUTES---------------------------------------------------------
4638 //----------Operand Attributes-------------------------------------------------
4639 op_attrib op_cost(0);        // Required cost attribute
4640 
4641 //----------Instruction Attributes---------------------------------------------
4642 ins_attrib ins_cost(100);       // Required cost attribute
4643 ins_attrib ins_size(8);         // Required size attribute (in bits)
4644 ins_attrib ins_pc_relative(0);  // Required PC Relative flag
4645 ins_attrib ins_short_branch(0); // Required flag: is this instruction a
4646                                 // non-matching short branch variant of some
4647                                                             // long branch?
4648 ins_attrib ins_alignment(1);    // Required alignment attribute (must be a power of 2)
4649                                 // specifies the alignment that some part of the instruction (not
4650                                 // necessarily the start) requires.  If > 1, a compute_padding()
4651                                 // function must be provided for the instruction
4652 
4653 //----------OPERANDS-----------------------------------------------------------
4654 // Operand definitions must precede instruction definitions for correct parsing
4655 // in the ADLC because operands constitute user defined types which are used in
4656 // instruction definitions.
4657 
4658 //----------Simple Operands----------------------------------------------------
4659 // Immediate Operands
4660 // Integer Immediate
4661 operand immI() %{
4662   match(ConI);
4663 
4664   op_cost(10);
4665   format %{ %}
4666   interface(CONST_INTER);
4667 %}
4668 
4669 // Constant for test vs zero
4670 operand immI0() %{
4671   predicate(n->get_int() == 0);
4672   match(ConI);
4673 
4674   op_cost(0);
4675   format %{ %}
4676   interface(CONST_INTER);
4677 %}
4678 
4679 // Constant for increment
4680 operand immI1() %{
4681   predicate(n->get_int() == 1);
4682   match(ConI);
4683 
4684   op_cost(0);
4685   format %{ %}
4686   interface(CONST_INTER);
4687 %}
4688 
4689 // Constant for decrement
4690 operand immI_M1() %{
4691   predicate(n->get_int() == -1);
4692   match(ConI);
4693 
4694   op_cost(0);
4695   format %{ %}
4696   interface(CONST_INTER);
4697 %}
4698 
4699 // Valid scale values for addressing modes
4700 operand immI2() %{
4701   predicate(0 <= n->get_int() && (n->get_int() <= 3));
4702   match(ConI);
4703 
4704   format %{ %}
4705   interface(CONST_INTER);
4706 %}
4707 
4708 operand immI8() %{
4709   predicate((-128 <= n->get_int()) && (n->get_int() <= 127));
4710   match(ConI);
4711 
4712   op_cost(5);
4713   format %{ %}
4714   interface(CONST_INTER);
4715 %}
4716 
4717 operand immI16() %{
4718   predicate((-32768 <= n->get_int()) && (n->get_int() <= 32767));
4719   match(ConI);
4720 
4721   op_cost(10);
4722   format %{ %}
4723   interface(CONST_INTER);
4724 %}
4725 
4726 // Constant for long shifts
4727 operand immI_32() %{
4728   predicate( n->get_int() == 32 );
4729   match(ConI);
4730 
4731   op_cost(0);
4732   format %{ %}
4733   interface(CONST_INTER);
4734 %}
4735 
4736 operand immI_1_31() %{
4737   predicate( n->get_int() >= 1 && n->get_int() <= 31 );
4738   match(ConI);
4739 
4740   op_cost(0);
4741   format %{ %}
4742   interface(CONST_INTER);
4743 %}
4744 
4745 operand immI_32_63() %{
4746   predicate( n->get_int() >= 32 && n->get_int() <= 63 );
4747   match(ConI);
4748   op_cost(0);
4749 
4750   format %{ %}
4751   interface(CONST_INTER);
4752 %}
4753 
4754 operand immI_1() %{
4755   predicate( n->get_int() == 1 );
4756   match(ConI);
4757 
4758   op_cost(0);
4759   format %{ %}
4760   interface(CONST_INTER);
4761 %}
4762 
4763 operand immI_2() %{
4764   predicate( n->get_int() == 2 );
4765   match(ConI);
4766 
4767   op_cost(0);
4768   format %{ %}
4769   interface(CONST_INTER);
4770 %}
4771 
4772 operand immI_3() %{
4773   predicate( n->get_int() == 3 );
4774   match(ConI);
4775 
4776   op_cost(0);
4777   format %{ %}
4778   interface(CONST_INTER);
4779 %}
4780 
4781 // Pointer Immediate
4782 operand immP() %{
4783   match(ConP);
4784 
4785   op_cost(10);
4786   format %{ %}
4787   interface(CONST_INTER);
4788 %}
4789 
4790 // NULL Pointer Immediate
4791 operand immP0() %{
4792   predicate( n->get_ptr() == 0 );
4793   match(ConP);
4794   op_cost(0);
4795 
4796   format %{ %}
4797   interface(CONST_INTER);
4798 %}
4799 
4800 // Long Immediate
4801 operand immL() %{
4802   match(ConL);
4803 
4804   op_cost(20);
4805   format %{ %}
4806   interface(CONST_INTER);
4807 %}
4808 
4809 // Long Immediate zero
4810 operand immL0() %{
4811   predicate( n->get_long() == 0L );
4812   match(ConL);
4813   op_cost(0);
4814 
4815   format %{ %}
4816   interface(CONST_INTER);
4817 %}
4818 
4819 // Long Immediate zero
4820 operand immL_M1() %{
4821   predicate( n->get_long() == -1L );
4822   match(ConL);
4823   op_cost(0);
4824 
4825   format %{ %}
4826   interface(CONST_INTER);
4827 %}
4828 
4829 // Long immediate from 0 to 127.
4830 // Used for a shorter form of long mul by 10.
4831 operand immL_127() %{
4832   predicate((0 <= n->get_long()) && (n->get_long() <= 127));
4833   match(ConL);
4834   op_cost(0);
4835 
4836   format %{ %}
4837   interface(CONST_INTER);
4838 %}
4839 
4840 // Long Immediate: low 32-bit mask
4841 operand immL_32bits() %{
4842   predicate(n->get_long() == 0xFFFFFFFFL);
4843   match(ConL);
4844   op_cost(0);
4845 
4846   format %{ %}
4847   interface(CONST_INTER);
4848 %}
4849 
4850 // Long Immediate: low 32-bit mask
4851 operand immL32() %{
4852   predicate(n->get_long() == (int)(n->get_long()));
4853   match(ConL);
4854   op_cost(20);
4855 
4856   format %{ %}
4857   interface(CONST_INTER);
4858 %}
4859 
4860 //Double Immediate zero
4861 operand immD0() %{
4862   // Do additional (and counter-intuitive) test against NaN to work around VC++
4863   // bug that generates code such that NaNs compare equal to 0.0
4864   predicate( UseSSE<=1 && n->getd() == 0.0 && !g_isnan(n->getd()) );
4865   match(ConD);
4866 
4867   op_cost(5);
4868   format %{ %}
4869   interface(CONST_INTER);
4870 %}
4871 
4872 // Double Immediate
4873 operand immD1() %{
4874   predicate( UseSSE<=1 && n->getd() == 1.0 );
4875   match(ConD);
4876 
4877   op_cost(5);
4878   format %{ %}
4879   interface(CONST_INTER);
4880 %}
4881 
4882 // Double Immediate
4883 operand immD() %{
4884   predicate(UseSSE<=1);
4885   match(ConD);
4886 
4887   op_cost(5);
4888   format %{ %}
4889   interface(CONST_INTER);
4890 %}
4891 
4892 operand immXD() %{
4893   predicate(UseSSE>=2);
4894   match(ConD);
4895 
4896   op_cost(5);
4897   format %{ %}
4898   interface(CONST_INTER);
4899 %}
4900 
4901 // Double Immediate zero
4902 operand immXD0() %{
4903   // Do additional (and counter-intuitive) test against NaN to work around VC++
4904   // bug that generates code such that NaNs compare equal to 0.0 AND do not
4905   // compare equal to -0.0.
4906   predicate( UseSSE>=2 && jlong_cast(n->getd()) == 0 );
4907   match(ConD);
4908 
4909   format %{ %}
4910   interface(CONST_INTER);
4911 %}
4912 
4913 // Float Immediate zero
4914 operand immF0() %{
4915   predicate( UseSSE == 0 && n->getf() == 0.0 );
4916   match(ConF);
4917 
4918   op_cost(5);
4919   format %{ %}
4920   interface(CONST_INTER);
4921 %}
4922 
4923 // Float Immediate
4924 operand immF() %{
4925   predicate( UseSSE == 0 );
4926   match(ConF);
4927 
4928   op_cost(5);
4929   format %{ %}
4930   interface(CONST_INTER);
4931 %}
4932 
4933 // Float Immediate
4934 operand immXF() %{
4935   predicate(UseSSE >= 1);
4936   match(ConF);
4937 
4938   op_cost(5);
4939   format %{ %}
4940   interface(CONST_INTER);
4941 %}
4942 
4943 // Float Immediate zero.  Zero and not -0.0
4944 operand immXF0() %{
4945   predicate( UseSSE >= 1 && jint_cast(n->getf()) == 0 );
4946   match(ConF);
4947 
4948   op_cost(5);
4949   format %{ %}
4950   interface(CONST_INTER);
4951 %}
4952 
4953 // Immediates for special shifts (sign extend)
4954 
4955 // Constants for increment
4956 operand immI_16() %{
4957   predicate( n->get_int() == 16 );
4958   match(ConI);
4959 
4960   format %{ %}
4961   interface(CONST_INTER);
4962 %}
4963 
4964 operand immI_24() %{
4965   predicate( n->get_int() == 24 );
4966   match(ConI);
4967 
4968   format %{ %}
4969   interface(CONST_INTER);
4970 %}
4971 
4972 // Constant for byte-wide masking
4973 operand immI_255() %{
4974   predicate( n->get_int() == 255 );
4975   match(ConI);
4976 
4977   format %{ %}
4978   interface(CONST_INTER);
4979 %}
4980 
4981 // Register Operands
4982 // Integer Register
4983 operand eRegI() %{
4984   constraint(ALLOC_IN_RC(e_reg));
4985   match(RegI);
4986   match(xRegI);
4987   match(eAXRegI);
4988   match(eBXRegI);
4989   match(eCXRegI);
4990   match(eDXRegI);
4991   match(eDIRegI);
4992   match(eSIRegI);
4993 
4994   format %{ %}
4995   interface(REG_INTER);
4996 %}
4997 
4998 // Subset of Integer Register
4999 operand xRegI(eRegI reg) %{
5000   constraint(ALLOC_IN_RC(x_reg));
5001   match(reg);
5002   match(eAXRegI);
5003   match(eBXRegI);
5004   match(eCXRegI);
5005   match(eDXRegI);
5006 
5007   format %{ %}
5008   interface(REG_INTER);
5009 %}
5010 
5011 // Special Registers
5012 operand eAXRegI(xRegI reg) %{
5013   constraint(ALLOC_IN_RC(eax_reg));
5014   match(reg);
5015   match(eRegI);
5016 
5017   format %{ "EAX" %}
5018   interface(REG_INTER);
5019 %}
5020 
5021 // Special Registers
5022 operand eBXRegI(xRegI reg) %{
5023   constraint(ALLOC_IN_RC(ebx_reg));
5024   match(reg);
5025   match(eRegI);
5026 
5027   format %{ "EBX" %}
5028   interface(REG_INTER);
5029 %}
5030 
5031 operand eCXRegI(xRegI reg) %{
5032   constraint(ALLOC_IN_RC(ecx_reg));
5033   match(reg);
5034   match(eRegI);
5035 
5036   format %{ "ECX" %}
5037   interface(REG_INTER);
5038 %}
5039 
5040 operand eDXRegI(xRegI reg) %{
5041   constraint(ALLOC_IN_RC(edx_reg));
5042   match(reg);
5043   match(eRegI);
5044 
5045   format %{ "EDX" %}
5046   interface(REG_INTER);
5047 %}
5048 
5049 operand eDIRegI(xRegI reg) %{
5050   constraint(ALLOC_IN_RC(edi_reg));
5051   match(reg);
5052   match(eRegI);
5053 
5054   format %{ "EDI" %}
5055   interface(REG_INTER);
5056 %}
5057 
5058 operand naxRegI() %{
5059   constraint(ALLOC_IN_RC(nax_reg));
5060   match(RegI);
5061   match(eCXRegI);
5062   match(eDXRegI);
5063   match(eSIRegI);
5064   match(eDIRegI);
5065 
5066   format %{ %}
5067   interface(REG_INTER);
5068 %}
5069 
5070 operand nadxRegI() %{
5071   constraint(ALLOC_IN_RC(nadx_reg));
5072   match(RegI);
5073   match(eBXRegI);
5074   match(eCXRegI);
5075   match(eSIRegI);
5076   match(eDIRegI);
5077 
5078   format %{ %}
5079   interface(REG_INTER);
5080 %}
5081 
5082 operand ncxRegI() %{
5083   constraint(ALLOC_IN_RC(ncx_reg));
5084   match(RegI);
5085   match(eAXRegI);
5086   match(eDXRegI);
5087   match(eSIRegI);
5088   match(eDIRegI);
5089 
5090   format %{ %}
5091   interface(REG_INTER);
5092 %}
5093 
5094 // // This operand was used by cmpFastUnlock, but conflicted with 'object' reg
5095 // //
5096 operand eSIRegI(xRegI reg) %{
5097    constraint(ALLOC_IN_RC(esi_reg));
5098    match(reg);
5099    match(eRegI);
5100 
5101    format %{ "ESI" %}
5102    interface(REG_INTER);
5103 %}
5104 
5105 // Pointer Register
5106 operand anyRegP() %{
5107   constraint(ALLOC_IN_RC(any_reg));
5108   match(RegP);
5109   match(eAXRegP);
5110   match(eBXRegP);
5111   match(eCXRegP);
5112   match(eDIRegP);
5113   match(eRegP);
5114 
5115   format %{ %}
5116   interface(REG_INTER);
5117 %}
5118 
5119 operand eRegP() %{
5120   constraint(ALLOC_IN_RC(e_reg));
5121   match(RegP);
5122   match(eAXRegP);
5123   match(eBXRegP);
5124   match(eCXRegP);
5125   match(eDIRegP);
5126 
5127   format %{ %}
5128   interface(REG_INTER);
5129 %}
5130 
5131 // On windows95, EBP is not safe to use for implicit null tests.
5132 operand eRegP_no_EBP() %{
5133   constraint(ALLOC_IN_RC(e_reg_no_rbp));
5134   match(RegP);
5135   match(eAXRegP);
5136   match(eBXRegP);
5137   match(eCXRegP);
5138   match(eDIRegP);
5139 
5140   op_cost(100);
5141   format %{ %}
5142   interface(REG_INTER);
5143 %}
5144 
5145 operand naxRegP() %{
5146   constraint(ALLOC_IN_RC(nax_reg));
5147   match(RegP);
5148   match(eBXRegP);
5149   match(eDXRegP);
5150   match(eCXRegP);
5151   match(eSIRegP);
5152   match(eDIRegP);
5153 
5154   format %{ %}
5155   interface(REG_INTER);
5156 %}
5157 
5158 operand nabxRegP() %{
5159   constraint(ALLOC_IN_RC(nabx_reg));
5160   match(RegP);
5161   match(eCXRegP);
5162   match(eDXRegP);
5163   match(eSIRegP);
5164   match(eDIRegP);
5165 
5166   format %{ %}
5167   interface(REG_INTER);
5168 %}
5169 
5170 operand pRegP() %{
5171   constraint(ALLOC_IN_RC(p_reg));
5172   match(RegP);
5173   match(eBXRegP);
5174   match(eDXRegP);
5175   match(eSIRegP);
5176   match(eDIRegP);
5177 
5178   format %{ %}
5179   interface(REG_INTER);
5180 %}
5181 
5182 // Special Registers
5183 // Return a pointer value
5184 operand eAXRegP(eRegP reg) %{
5185   constraint(ALLOC_IN_RC(eax_reg));
5186   match(reg);
5187   format %{ "EAX" %}
5188   interface(REG_INTER);
5189 %}
5190 
5191 // Used in AtomicAdd
5192 operand eBXRegP(eRegP reg) %{
5193   constraint(ALLOC_IN_RC(ebx_reg));
5194   match(reg);
5195   format %{ "EBX" %}
5196   interface(REG_INTER);
5197 %}
5198 
5199 // Tail-call (interprocedural jump) to interpreter
5200 operand eCXRegP(eRegP reg) %{
5201   constraint(ALLOC_IN_RC(ecx_reg));
5202   match(reg);
5203   format %{ "ECX" %}
5204   interface(REG_INTER);
5205 %}
5206 
5207 operand eSIRegP(eRegP reg) %{
5208   constraint(ALLOC_IN_RC(esi_reg));
5209   match(reg);
5210   format %{ "ESI" %}
5211   interface(REG_INTER);
5212 %}
5213 
5214 // Used in rep stosw
5215 operand eDIRegP(eRegP reg) %{
5216   constraint(ALLOC_IN_RC(edi_reg));
5217   match(reg);
5218   format %{ "EDI" %}
5219   interface(REG_INTER);
5220 %}
5221 
5222 operand eBPRegP() %{
5223   constraint(ALLOC_IN_RC(ebp_reg));
5224   match(RegP);
5225   format %{ "EBP" %}
5226   interface(REG_INTER);
5227 %}
5228 
5229 operand eRegL() %{
5230   constraint(ALLOC_IN_RC(long_reg));
5231   match(RegL);
5232   match(eADXRegL);
5233 
5234   format %{ %}
5235   interface(REG_INTER);
5236 %}
5237 
5238 operand eADXRegL( eRegL reg ) %{
5239   constraint(ALLOC_IN_RC(eadx_reg));
5240   match(reg);
5241 
5242   format %{ "EDX:EAX" %}
5243   interface(REG_INTER);
5244 %}
5245 
5246 operand eBCXRegL( eRegL reg ) %{
5247   constraint(ALLOC_IN_RC(ebcx_reg));
5248   match(reg);
5249 
5250   format %{ "EBX:ECX" %}
5251   interface(REG_INTER);
5252 %}
5253 
5254 // Special case for integer high multiply
5255 operand eADXRegL_low_only() %{
5256   constraint(ALLOC_IN_RC(eadx_reg));
5257   match(RegL);
5258 
5259   format %{ "EAX" %}
5260   interface(REG_INTER);
5261 %}
5262 
5263 // Flags register, used as output of compare instructions
5264 operand eFlagsReg() %{
5265   constraint(ALLOC_IN_RC(int_flags));
5266   match(RegFlags);
5267 
5268   format %{ "EFLAGS" %}
5269   interface(REG_INTER);
5270 %}
5271 
5272 // Flags register, used as output of FLOATING POINT compare instructions
5273 operand eFlagsRegU() %{
5274   constraint(ALLOC_IN_RC(int_flags));
5275   match(RegFlags);
5276 
5277   format %{ "EFLAGS_U" %}
5278   interface(REG_INTER);
5279 %}
5280 
5281 operand eFlagsRegUCF() %{
5282   constraint(ALLOC_IN_RC(int_flags));
5283   match(RegFlags);
5284   predicate(false);
5285 
5286   format %{ "EFLAGS_U_CF" %}
5287   interface(REG_INTER);
5288 %}
5289 
5290 // Condition Code Register used by long compare
5291 operand flagsReg_long_LTGE() %{
5292   constraint(ALLOC_IN_RC(int_flags));
5293   match(RegFlags);
5294   format %{ "FLAGS_LTGE" %}
5295   interface(REG_INTER);
5296 %}
5297 operand flagsReg_long_EQNE() %{
5298   constraint(ALLOC_IN_RC(int_flags));
5299   match(RegFlags);
5300   format %{ "FLAGS_EQNE" %}
5301   interface(REG_INTER);
5302 %}
5303 operand flagsReg_long_LEGT() %{
5304   constraint(ALLOC_IN_RC(int_flags));
5305   match(RegFlags);
5306   format %{ "FLAGS_LEGT" %}
5307   interface(REG_INTER);
5308 %}
5309 
5310 // Float register operands
5311 operand regD() %{
5312   predicate( UseSSE < 2 );
5313   constraint(ALLOC_IN_RC(dbl_reg));
5314   match(RegD);
5315   match(regDPR1);
5316   match(regDPR2);
5317   format %{ %}
5318   interface(REG_INTER);
5319 %}
5320 
5321 operand regDPR1(regD reg) %{
5322   predicate( UseSSE < 2 );
5323   constraint(ALLOC_IN_RC(dbl_reg0));
5324   match(reg);
5325   format %{ "FPR1" %}
5326   interface(REG_INTER);
5327 %}
5328 
5329 operand regDPR2(regD reg) %{
5330   predicate( UseSSE < 2 );
5331   constraint(ALLOC_IN_RC(dbl_reg1));
5332   match(reg);
5333   format %{ "FPR2" %}
5334   interface(REG_INTER);
5335 %}
5336 
5337 operand regnotDPR1(regD reg) %{
5338   predicate( UseSSE < 2 );
5339   constraint(ALLOC_IN_RC(dbl_notreg0));
5340   match(reg);
5341   format %{ %}
5342   interface(REG_INTER);
5343 %}
5344 
5345 // XMM Double register operands
5346 operand regXD() %{
5347   predicate( UseSSE>=2 );
5348   constraint(ALLOC_IN_RC(xdb_reg));
5349   match(RegD);
5350   match(regXD6);
5351   match(regXD7);
5352   format %{ %}
5353   interface(REG_INTER);
5354 %}
5355 
5356 // XMM6 double register operands
5357 operand regXD6(regXD reg) %{
5358   predicate( UseSSE>=2 );
5359   constraint(ALLOC_IN_RC(xdb_reg6));
5360   match(reg);
5361   format %{ "XMM6" %}
5362   interface(REG_INTER);
5363 %}
5364 
5365 // XMM7 double register operands
5366 operand regXD7(regXD reg) %{
5367   predicate( UseSSE>=2 );
5368   constraint(ALLOC_IN_RC(xdb_reg7));
5369   match(reg);
5370   format %{ "XMM7" %}
5371   interface(REG_INTER);
5372 %}
5373 
5374 // Float register operands
5375 operand regF() %{
5376   predicate( UseSSE < 2 );
5377   constraint(ALLOC_IN_RC(flt_reg));
5378   match(RegF);
5379   match(regFPR1);
5380   format %{ %}
5381   interface(REG_INTER);
5382 %}
5383 
5384 // Float register operands
5385 operand regFPR1(regF reg) %{
5386   predicate( UseSSE < 2 );
5387   constraint(ALLOC_IN_RC(flt_reg0));
5388   match(reg);
5389   format %{ "FPR1" %}
5390   interface(REG_INTER);
5391 %}
5392 
5393 // XMM register operands
5394 operand regX() %{
5395   predicate( UseSSE>=1 );
5396   constraint(ALLOC_IN_RC(xmm_reg));
5397   match(RegF);
5398   format %{ %}
5399   interface(REG_INTER);
5400 %}
5401 
5402 
5403 //----------Memory Operands----------------------------------------------------
5404 // Direct Memory Operand
5405 operand direct(immP addr) %{
5406   match(addr);
5407 
5408   format %{ "[$addr]" %}
5409   interface(MEMORY_INTER) %{
5410     base(0xFFFFFFFF);
5411     index(0x4);
5412     scale(0x0);
5413     disp($addr);
5414   %}
5415 %}
5416 
5417 // Indirect Memory Operand
5418 operand indirect(eRegP reg) %{
5419   constraint(ALLOC_IN_RC(e_reg));
5420   match(reg);
5421 
5422   format %{ "[$reg]" %}
5423   interface(MEMORY_INTER) %{
5424     base($reg);
5425     index(0x4);
5426     scale(0x0);
5427     disp(0x0);
5428   %}
5429 %}
5430 
5431 // Indirect Memory Plus Short Offset Operand
5432 operand indOffset8(eRegP reg, immI8 off) %{
5433   match(AddP reg off);
5434 
5435   format %{ "[$reg + $off]" %}
5436   interface(MEMORY_INTER) %{
5437     base($reg);
5438     index(0x4);
5439     scale(0x0);
5440     disp($off);
5441   %}
5442 %}
5443 
5444 // Indirect Memory Plus Long Offset Operand
5445 operand indOffset32(eRegP reg, immI off) %{
5446   match(AddP reg off);
5447 
5448   format %{ "[$reg + $off]" %}
5449   interface(MEMORY_INTER) %{
5450     base($reg);
5451     index(0x4);
5452     scale(0x0);
5453     disp($off);
5454   %}
5455 %}
5456 
5457 // Indirect Memory Plus Long Offset Operand
5458 operand indOffset32X(eRegI reg, immP off) %{
5459   match(AddP off reg);
5460 
5461   format %{ "[$reg + $off]" %}
5462   interface(MEMORY_INTER) %{
5463     base($reg);
5464     index(0x4);
5465     scale(0x0);
5466     disp($off);
5467   %}
5468 %}
5469 
5470 // Indirect Memory Plus Index Register Plus Offset Operand
5471 operand indIndexOffset(eRegP reg, eRegI ireg, immI off) %{
5472   match(AddP (AddP reg ireg) off);
5473 
5474   op_cost(10);
5475   format %{"[$reg + $off + $ireg]" %}
5476   interface(MEMORY_INTER) %{
5477     base($reg);
5478     index($ireg);
5479     scale(0x0);
5480     disp($off);
5481   %}
5482 %}
5483 
5484 // Indirect Memory Plus Index Register Plus Offset Operand
5485 operand indIndex(eRegP reg, eRegI ireg) %{
5486   match(AddP reg ireg);
5487 
5488   op_cost(10);
5489   format %{"[$reg + $ireg]" %}
5490   interface(MEMORY_INTER) %{
5491     base($reg);
5492     index($ireg);
5493     scale(0x0);
5494     disp(0x0);
5495   %}
5496 %}
5497 
5498 // // -------------------------------------------------------------------------
5499 // // 486 architecture doesn't support "scale * index + offset" with out a base
5500 // // -------------------------------------------------------------------------
5501 // // Scaled Memory Operands
5502 // // Indirect Memory Times Scale Plus Offset Operand
5503 // operand indScaleOffset(immP off, eRegI ireg, immI2 scale) %{
5504 //   match(AddP off (LShiftI ireg scale));
5505 //
5506 //   op_cost(10);
5507 //   format %{"[$off + $ireg << $scale]" %}
5508 //   interface(MEMORY_INTER) %{
5509 //     base(0x4);
5510 //     index($ireg);
5511 //     scale($scale);
5512 //     disp($off);
5513 //   %}
5514 // %}
5515 
5516 // Indirect Memory Times Scale Plus Index Register
5517 operand indIndexScale(eRegP reg, eRegI ireg, immI2 scale) %{
5518   match(AddP reg (LShiftI ireg scale));
5519 
5520   op_cost(10);
5521   format %{"[$reg + $ireg << $scale]" %}
5522   interface(MEMORY_INTER) %{
5523     base($reg);
5524     index($ireg);
5525     scale($scale);
5526     disp(0x0);
5527   %}
5528 %}
5529 
5530 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5531 operand indIndexScaleOffset(eRegP reg, immI off, eRegI ireg, immI2 scale) %{
5532   match(AddP (AddP reg (LShiftI ireg scale)) off);
5533 
5534   op_cost(10);
5535   format %{"[$reg + $off + $ireg << $scale]" %}
5536   interface(MEMORY_INTER) %{
5537     base($reg);
5538     index($ireg);
5539     scale($scale);
5540     disp($off);
5541   %}
5542 %}
5543 
5544 //----------Load Long Memory Operands------------------------------------------
5545 // The load-long idiom will use it's address expression again after loading
5546 // the first word of the long.  If the load-long destination overlaps with
5547 // registers used in the addressing expression, the 2nd half will be loaded
5548 // from a clobbered address.  Fix this by requiring that load-long use
5549 // address registers that do not overlap with the load-long target.
5550 
5551 // load-long support
5552 operand load_long_RegP() %{
5553   constraint(ALLOC_IN_RC(esi_reg));
5554   match(RegP);
5555   match(eSIRegP);
5556   op_cost(100);
5557   format %{  %}
5558   interface(REG_INTER);
5559 %}
5560 
5561 // Indirect Memory Operand Long
5562 operand load_long_indirect(load_long_RegP reg) %{
5563   constraint(ALLOC_IN_RC(esi_reg));
5564   match(reg);
5565 
5566   format %{ "[$reg]" %}
5567   interface(MEMORY_INTER) %{
5568     base($reg);
5569     index(0x4);
5570     scale(0x0);
5571     disp(0x0);
5572   %}
5573 %}
5574 
5575 // Indirect Memory Plus Long Offset Operand
5576 operand load_long_indOffset32(load_long_RegP reg, immI off) %{
5577   match(AddP reg off);
5578 
5579   format %{ "[$reg + $off]" %}
5580   interface(MEMORY_INTER) %{
5581     base($reg);
5582     index(0x4);
5583     scale(0x0);
5584     disp($off);
5585   %}
5586 %}
5587 
5588 opclass load_long_memory(load_long_indirect, load_long_indOffset32);
5589 
5590 
5591 //----------Special Memory Operands--------------------------------------------
5592 // Stack Slot Operand - This operand is used for loading and storing temporary
5593 //                      values on the stack where a match requires a value to
5594 //                      flow through memory.
5595 operand stackSlotP(sRegP reg) %{
5596   constraint(ALLOC_IN_RC(stack_slots));
5597   // No match rule because this operand is only generated in matching
5598   format %{ "[$reg]" %}
5599   interface(MEMORY_INTER) %{
5600     base(0x4);   // ESP
5601     index(0x4);  // No Index
5602     scale(0x0);  // No Scale
5603     disp($reg);  // Stack Offset
5604   %}
5605 %}
5606 
5607 operand stackSlotI(sRegI reg) %{
5608   constraint(ALLOC_IN_RC(stack_slots));
5609   // No match rule because this operand is only generated in matching
5610   format %{ "[$reg]" %}
5611   interface(MEMORY_INTER) %{
5612     base(0x4);   // ESP
5613     index(0x4);  // No Index
5614     scale(0x0);  // No Scale
5615     disp($reg);  // Stack Offset
5616   %}
5617 %}
5618 
5619 operand stackSlotF(sRegF reg) %{
5620   constraint(ALLOC_IN_RC(stack_slots));
5621   // No match rule because this operand is only generated in matching
5622   format %{ "[$reg]" %}
5623   interface(MEMORY_INTER) %{
5624     base(0x4);   // ESP
5625     index(0x4);  // No Index
5626     scale(0x0);  // No Scale
5627     disp($reg);  // Stack Offset
5628   %}
5629 %}
5630 
5631 operand stackSlotD(sRegD reg) %{
5632   constraint(ALLOC_IN_RC(stack_slots));
5633   // No match rule because this operand is only generated in matching
5634   format %{ "[$reg]" %}
5635   interface(MEMORY_INTER) %{
5636     base(0x4);   // ESP
5637     index(0x4);  // No Index
5638     scale(0x0);  // No Scale
5639     disp($reg);  // Stack Offset
5640   %}
5641 %}
5642 
5643 operand stackSlotL(sRegL reg) %{
5644   constraint(ALLOC_IN_RC(stack_slots));
5645   // No match rule because this operand is only generated in matching
5646   format %{ "[$reg]" %}
5647   interface(MEMORY_INTER) %{
5648     base(0x4);   // ESP
5649     index(0x4);  // No Index
5650     scale(0x0);  // No Scale
5651     disp($reg);  // Stack Offset
5652   %}
5653 %}
5654 
5655 //----------Memory Operands - Win95 Implicit Null Variants----------------
5656 // Indirect Memory Operand
5657 operand indirect_win95_safe(eRegP_no_EBP reg)
5658 %{
5659   constraint(ALLOC_IN_RC(e_reg));
5660   match(reg);
5661 
5662   op_cost(100);
5663   format %{ "[$reg]" %}
5664   interface(MEMORY_INTER) %{
5665     base($reg);
5666     index(0x4);
5667     scale(0x0);
5668     disp(0x0);
5669   %}
5670 %}
5671 
5672 // Indirect Memory Plus Short Offset Operand
5673 operand indOffset8_win95_safe(eRegP_no_EBP reg, immI8 off)
5674 %{
5675   match(AddP reg off);
5676 
5677   op_cost(100);
5678   format %{ "[$reg + $off]" %}
5679   interface(MEMORY_INTER) %{
5680     base($reg);
5681     index(0x4);
5682     scale(0x0);
5683     disp($off);
5684   %}
5685 %}
5686 
5687 // Indirect Memory Plus Long Offset Operand
5688 operand indOffset32_win95_safe(eRegP_no_EBP reg, immI off)
5689 %{
5690   match(AddP reg off);
5691 
5692   op_cost(100);
5693   format %{ "[$reg + $off]" %}
5694   interface(MEMORY_INTER) %{
5695     base($reg);
5696     index(0x4);
5697     scale(0x0);
5698     disp($off);
5699   %}
5700 %}
5701 
5702 // Indirect Memory Plus Index Register Plus Offset Operand
5703 operand indIndexOffset_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI off)
5704 %{
5705   match(AddP (AddP reg ireg) off);
5706 
5707   op_cost(100);
5708   format %{"[$reg + $off + $ireg]" %}
5709   interface(MEMORY_INTER) %{
5710     base($reg);
5711     index($ireg);
5712     scale(0x0);
5713     disp($off);
5714   %}
5715 %}
5716 
5717 // Indirect Memory Times Scale Plus Index Register
5718 operand indIndexScale_win95_safe(eRegP_no_EBP reg, eRegI ireg, immI2 scale)
5719 %{
5720   match(AddP reg (LShiftI ireg scale));
5721 
5722   op_cost(100);
5723   format %{"[$reg + $ireg << $scale]" %}
5724   interface(MEMORY_INTER) %{
5725     base($reg);
5726     index($ireg);
5727     scale($scale);
5728     disp(0x0);
5729   %}
5730 %}
5731 
5732 // Indirect Memory Times Scale Plus Index Register Plus Offset Operand
5733 operand indIndexScaleOffset_win95_safe(eRegP_no_EBP reg, immI off, eRegI ireg, immI2 scale)
5734 %{
5735   match(AddP (AddP reg (LShiftI ireg scale)) off);
5736 
5737   op_cost(100);
5738   format %{"[$reg + $off + $ireg << $scale]" %}
5739   interface(MEMORY_INTER) %{
5740     base($reg);
5741     index($ireg);
5742     scale($scale);
5743     disp($off);
5744   %}
5745 %}
5746 
5747 //----------Conditional Branch Operands----------------------------------------
5748 // Comparison Op  - This is the operation of the comparison, and is limited to
5749 //                  the following set of codes:
5750 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
5751 //
5752 // Other attributes of the comparison, such as unsignedness, are specified
5753 // by the comparison instruction that sets a condition code flags register.
5754 // That result is represented by a flags operand whose subtype is appropriate
5755 // to the unsignedness (etc.) of the comparison.
5756 //
5757 // Later, the instruction which matches both the Comparison Op (a Bool) and
5758 // the flags (produced by the Cmp) specifies the coding of the comparison op
5759 // by matching a specific subtype of Bool operand below, such as cmpOpU.
5760 
5761 // Comparision Code
5762 operand cmpOp() %{
5763   match(Bool);
5764 
5765   format %{ "" %}
5766   interface(COND_INTER) %{
5767     equal(0x4, "e");
5768     not_equal(0x5, "ne");
5769     less(0xC, "l");
5770     greater_equal(0xD, "ge");
5771     less_equal(0xE, "le");
5772     greater(0xF, "g");
5773   %}
5774 %}
5775 
5776 // Comparison Code, unsigned compare.  Used by FP also, with
5777 // C2 (unordered) turned into GT or LT already.  The other bits
5778 // C0 and C3 are turned into Carry & Zero flags.
5779 operand cmpOpU() %{
5780   match(Bool);
5781 
5782   format %{ "" %}
5783   interface(COND_INTER) %{
5784     equal(0x4, "e");
5785     not_equal(0x5, "ne");
5786     less(0x2, "b");
5787     greater_equal(0x3, "nb");
5788     less_equal(0x6, "be");
5789     greater(0x7, "nbe");
5790   %}
5791 %}
5792 
5793 // Floating comparisons that don't require any fixup for the unordered case
5794 operand cmpOpUCF() %{
5795   match(Bool);
5796   predicate(n->as_Bool()->_test._test == BoolTest::lt ||
5797             n->as_Bool()->_test._test == BoolTest::ge ||
5798             n->as_Bool()->_test._test == BoolTest::le ||
5799             n->as_Bool()->_test._test == BoolTest::gt);
5800   format %{ "" %}
5801   interface(COND_INTER) %{
5802     equal(0x4, "e");
5803     not_equal(0x5, "ne");
5804     less(0x2, "b");
5805     greater_equal(0x3, "nb");
5806     less_equal(0x6, "be");
5807     greater(0x7, "nbe");
5808   %}
5809 %}
5810 
5811 
5812 // Floating comparisons that can be fixed up with extra conditional jumps
5813 operand cmpOpUCF2() %{
5814   match(Bool);
5815   predicate(n->as_Bool()->_test._test == BoolTest::ne ||
5816             n->as_Bool()->_test._test == BoolTest::eq);
5817   format %{ "" %}
5818   interface(COND_INTER) %{
5819     equal(0x4, "e");
5820     not_equal(0x5, "ne");
5821     less(0x2, "b");
5822     greater_equal(0x3, "nb");
5823     less_equal(0x6, "be");
5824     greater(0x7, "nbe");
5825   %}
5826 %}
5827 
5828 // Comparison Code for FP conditional move
5829 operand cmpOp_fcmov() %{
5830   match(Bool);
5831 
5832   format %{ "" %}
5833   interface(COND_INTER) %{
5834     equal        (0x0C8);
5835     not_equal    (0x1C8);
5836     less         (0x0C0);
5837     greater_equal(0x1C0);
5838     less_equal   (0x0D0);
5839     greater      (0x1D0);
5840   %}
5841 %}
5842 
5843 // Comparision Code used in long compares
5844 operand cmpOp_commute() %{
5845   match(Bool);
5846 
5847   format %{ "" %}
5848   interface(COND_INTER) %{
5849     equal(0x4, "e");
5850     not_equal(0x5, "ne");
5851     less(0xF, "g");
5852     greater_equal(0xE, "le");
5853     less_equal(0xD, "ge");
5854     greater(0xC, "l");
5855   %}
5856 %}
5857 
5858 //----------OPERAND CLASSES----------------------------------------------------
5859 // Operand Classes are groups of operands that are used as to simplify
5860 // instruction definitions by not requiring the AD writer to specify seperate
5861 // instructions for every form of operand when the instruction accepts
5862 // multiple operand types with the same basic encoding and format.  The classic
5863 // case of this is memory operands.
5864 
5865 opclass memory(direct, indirect, indOffset8, indOffset32, indOffset32X, indIndexOffset,
5866                indIndex, indIndexScale, indIndexScaleOffset);
5867 
5868 // Long memory operations are encoded in 2 instructions and a +4 offset.
5869 // This means some kind of offset is always required and you cannot use
5870 // an oop as the offset (done when working on static globals).
5871 opclass long_memory(direct, indirect, indOffset8, indOffset32, indIndexOffset,
5872                     indIndex, indIndexScale, indIndexScaleOffset);
5873 
5874 
5875 //----------PIPELINE-----------------------------------------------------------
5876 // Rules which define the behavior of the target architectures pipeline.
5877 pipeline %{
5878 
5879 //----------ATTRIBUTES---------------------------------------------------------
5880 attributes %{
5881   variable_size_instructions;        // Fixed size instructions
5882   max_instructions_per_bundle = 3;   // Up to 3 instructions per bundle
5883   instruction_unit_size = 1;         // An instruction is 1 bytes long
5884   instruction_fetch_unit_size = 16;  // The processor fetches one line
5885   instruction_fetch_units = 1;       // of 16 bytes
5886 
5887   // List of nop instructions
5888   nops( MachNop );
5889 %}
5890 
5891 //----------RESOURCES----------------------------------------------------------
5892 // Resources are the functional units available to the machine
5893 
5894 // Generic P2/P3 pipeline
5895 // 3 decoders, only D0 handles big operands; a "bundle" is the limit of
5896 // 3 instructions decoded per cycle.
5897 // 2 load/store ops per cycle, 1 branch, 1 FPU,
5898 // 2 ALU op, only ALU0 handles mul/div instructions.
5899 resources( D0, D1, D2, DECODE = D0 | D1 | D2,
5900            MS0, MS1, MEM = MS0 | MS1,
5901            BR, FPU,
5902            ALU0, ALU1, ALU = ALU0 | ALU1 );
5903 
5904 //----------PIPELINE DESCRIPTION-----------------------------------------------
5905 // Pipeline Description specifies the stages in the machine's pipeline
5906 
5907 // Generic P2/P3 pipeline
5908 pipe_desc(S0, S1, S2, S3, S4, S5);
5909 
5910 //----------PIPELINE CLASSES---------------------------------------------------
5911 // Pipeline Classes describe the stages in which input and output are
5912 // referenced by the hardware pipeline.
5913 
5914 // Naming convention: ialu or fpu
5915 // Then: _reg
5916 // Then: _reg if there is a 2nd register
5917 // Then: _long if it's a pair of instructions implementing a long
5918 // Then: _fat if it requires the big decoder
5919 //   Or: _mem if it requires the big decoder and a memory unit.
5920 
5921 // Integer ALU reg operation
5922 pipe_class ialu_reg(eRegI dst) %{
5923     single_instruction;
5924     dst    : S4(write);
5925     dst    : S3(read);
5926     DECODE : S0;        // any decoder
5927     ALU    : S3;        // any alu
5928 %}
5929 
5930 // Long ALU reg operation
5931 pipe_class ialu_reg_long(eRegL dst) %{
5932     instruction_count(2);
5933     dst    : S4(write);
5934     dst    : S3(read);
5935     DECODE : S0(2);     // any 2 decoders
5936     ALU    : S3(2);     // both alus
5937 %}
5938 
5939 // Integer ALU reg operation using big decoder
5940 pipe_class ialu_reg_fat(eRegI dst) %{
5941     single_instruction;
5942     dst    : S4(write);
5943     dst    : S3(read);
5944     D0     : S0;        // big decoder only
5945     ALU    : S3;        // any alu
5946 %}
5947 
5948 // Long ALU reg operation using big decoder
5949 pipe_class ialu_reg_long_fat(eRegL dst) %{
5950     instruction_count(2);
5951     dst    : S4(write);
5952     dst    : S3(read);
5953     D0     : S0(2);     // big decoder only; twice
5954     ALU    : S3(2);     // any 2 alus
5955 %}
5956 
5957 // Integer ALU reg-reg operation
5958 pipe_class ialu_reg_reg(eRegI dst, eRegI src) %{
5959     single_instruction;
5960     dst    : S4(write);
5961     src    : S3(read);
5962     DECODE : S0;        // any decoder
5963     ALU    : S3;        // any alu
5964 %}
5965 
5966 // Long ALU reg-reg operation
5967 pipe_class ialu_reg_reg_long(eRegL dst, eRegL src) %{
5968     instruction_count(2);
5969     dst    : S4(write);
5970     src    : S3(read);
5971     DECODE : S0(2);     // any 2 decoders
5972     ALU    : S3(2);     // both alus
5973 %}
5974 
5975 // Integer ALU reg-reg operation
5976 pipe_class ialu_reg_reg_fat(eRegI dst, memory src) %{
5977     single_instruction;
5978     dst    : S4(write);
5979     src    : S3(read);
5980     D0     : S0;        // big decoder only
5981     ALU    : S3;        // any alu
5982 %}
5983 
5984 // Long ALU reg-reg operation
5985 pipe_class ialu_reg_reg_long_fat(eRegL dst, eRegL src) %{
5986     instruction_count(2);
5987     dst    : S4(write);
5988     src    : S3(read);
5989     D0     : S0(2);     // big decoder only; twice
5990     ALU    : S3(2);     // both alus
5991 %}
5992 
5993 // Integer ALU reg-mem operation
5994 pipe_class ialu_reg_mem(eRegI dst, memory mem) %{
5995     single_instruction;
5996     dst    : S5(write);
5997     mem    : S3(read);
5998     D0     : S0;        // big decoder only
5999     ALU    : S4;        // any alu
6000     MEM    : S3;        // any mem
6001 %}
6002 
6003 // Long ALU reg-mem operation
6004 pipe_class ialu_reg_long_mem(eRegL dst, load_long_memory mem) %{
6005     instruction_count(2);
6006     dst    : S5(write);
6007     mem    : S3(read);
6008     D0     : S0(2);     // big decoder only; twice
6009     ALU    : S4(2);     // any 2 alus
6010     MEM    : S3(2);     // both mems
6011 %}
6012 
6013 // Integer mem operation (prefetch)
6014 pipe_class ialu_mem(memory mem)
6015 %{
6016     single_instruction;
6017     mem    : S3(read);
6018     D0     : S0;        // big decoder only
6019     MEM    : S3;        // any mem
6020 %}
6021 
6022 // Integer Store to Memory
6023 pipe_class ialu_mem_reg(memory mem, eRegI src) %{
6024     single_instruction;
6025     mem    : S3(read);
6026     src    : S5(read);
6027     D0     : S0;        // big decoder only
6028     ALU    : S4;        // any alu
6029     MEM    : S3;
6030 %}
6031 
6032 // Long Store to Memory
6033 pipe_class ialu_mem_long_reg(memory mem, eRegL src) %{
6034     instruction_count(2);
6035     mem    : S3(read);
6036     src    : S5(read);
6037     D0     : S0(2);     // big decoder only; twice
6038     ALU    : S4(2);     // any 2 alus
6039     MEM    : S3(2);     // Both mems
6040 %}
6041 
6042 // Integer Store to Memory
6043 pipe_class ialu_mem_imm(memory mem) %{
6044     single_instruction;
6045     mem    : S3(read);
6046     D0     : S0;        // big decoder only
6047     ALU    : S4;        // any alu
6048     MEM    : S3;
6049 %}
6050 
6051 // Integer ALU0 reg-reg operation
6052 pipe_class ialu_reg_reg_alu0(eRegI dst, eRegI src) %{
6053     single_instruction;
6054     dst    : S4(write);
6055     src    : S3(read);
6056     D0     : S0;        // Big decoder only
6057     ALU0   : S3;        // only alu0
6058 %}
6059 
6060 // Integer ALU0 reg-mem operation
6061 pipe_class ialu_reg_mem_alu0(eRegI dst, memory mem) %{
6062     single_instruction;
6063     dst    : S5(write);
6064     mem    : S3(read);
6065     D0     : S0;        // big decoder only
6066     ALU0   : S4;        // ALU0 only
6067     MEM    : S3;        // any mem
6068 %}
6069 
6070 // Integer ALU reg-reg operation
6071 pipe_class ialu_cr_reg_reg(eFlagsReg cr, eRegI src1, eRegI src2) %{
6072     single_instruction;
6073     cr     : S4(write);
6074     src1   : S3(read);
6075     src2   : S3(read);
6076     DECODE : S0;        // any decoder
6077     ALU    : S3;        // any alu
6078 %}
6079 
6080 // Integer ALU reg-imm operation
6081 pipe_class ialu_cr_reg_imm(eFlagsReg cr, eRegI src1) %{
6082     single_instruction;
6083     cr     : S4(write);
6084     src1   : S3(read);
6085     DECODE : S0;        // any decoder
6086     ALU    : S3;        // any alu
6087 %}
6088 
6089 // Integer ALU reg-mem operation
6090 pipe_class ialu_cr_reg_mem(eFlagsReg cr, eRegI src1, memory src2) %{
6091     single_instruction;
6092     cr     : S4(write);
6093     src1   : S3(read);
6094     src2   : S3(read);
6095     D0     : S0;        // big decoder only
6096     ALU    : S4;        // any alu
6097     MEM    : S3;
6098 %}
6099 
6100 // Conditional move reg-reg
6101 pipe_class pipe_cmplt( eRegI p, eRegI q, eRegI y ) %{
6102     instruction_count(4);
6103     y      : S4(read);
6104     q      : S3(read);
6105     p      : S3(read);
6106     DECODE : S0(4);     // any decoder
6107 %}
6108 
6109 // Conditional move reg-reg
6110 pipe_class pipe_cmov_reg( eRegI dst, eRegI src, eFlagsReg cr ) %{
6111     single_instruction;
6112     dst    : S4(write);
6113     src    : S3(read);
6114     cr     : S3(read);
6115     DECODE : S0;        // any decoder
6116 %}
6117 
6118 // Conditional move reg-mem
6119 pipe_class pipe_cmov_mem( eFlagsReg cr, eRegI dst, memory src) %{
6120     single_instruction;
6121     dst    : S4(write);
6122     src    : S3(read);
6123     cr     : S3(read);
6124     DECODE : S0;        // any decoder
6125     MEM    : S3;
6126 %}
6127 
6128 // Conditional move reg-reg long
6129 pipe_class pipe_cmov_reg_long( eFlagsReg cr, eRegL dst, eRegL src) %{
6130     single_instruction;
6131     dst    : S4(write);
6132     src    : S3(read);
6133     cr     : S3(read);
6134     DECODE : S0(2);     // any 2 decoders
6135 %}
6136 
6137 // Conditional move double reg-reg
6138 pipe_class pipe_cmovD_reg( eFlagsReg cr, regDPR1 dst, regD src) %{
6139     single_instruction;
6140     dst    : S4(write);
6141     src    : S3(read);
6142     cr     : S3(read);
6143     DECODE : S0;        // any decoder
6144 %}
6145 
6146 // Float reg-reg operation
6147 pipe_class fpu_reg(regD dst) %{
6148     instruction_count(2);
6149     dst    : S3(read);
6150     DECODE : S0(2);     // any 2 decoders
6151     FPU    : S3;
6152 %}
6153 
6154 // Float reg-reg operation
6155 pipe_class fpu_reg_reg(regD dst, regD src) %{
6156     instruction_count(2);
6157     dst    : S4(write);
6158     src    : S3(read);
6159     DECODE : S0(2);     // any 2 decoders
6160     FPU    : S3;
6161 %}
6162 
6163 // Float reg-reg operation
6164 pipe_class fpu_reg_reg_reg(regD dst, regD src1, regD src2) %{
6165     instruction_count(3);
6166     dst    : S4(write);
6167     src1   : S3(read);
6168     src2   : S3(read);
6169     DECODE : S0(3);     // any 3 decoders
6170     FPU    : S3(2);
6171 %}
6172 
6173 // Float reg-reg operation
6174 pipe_class fpu_reg_reg_reg_reg(regD dst, regD src1, regD src2, regD src3) %{
6175     instruction_count(4);
6176     dst    : S4(write);
6177     src1   : S3(read);
6178     src2   : S3(read);
6179     src3   : S3(read);
6180     DECODE : S0(4);     // any 3 decoders
6181     FPU    : S3(2);
6182 %}
6183 
6184 // Float reg-reg operation
6185 pipe_class fpu_reg_mem_reg_reg(regD dst, memory src1, regD src2, regD src3) %{
6186     instruction_count(4);
6187     dst    : S4(write);
6188     src1   : S3(read);
6189     src2   : S3(read);
6190     src3   : S3(read);
6191     DECODE : S1(3);     // any 3 decoders
6192     D0     : S0;        // Big decoder only
6193     FPU    : S3(2);
6194     MEM    : S3;
6195 %}
6196 
6197 // Float reg-mem operation
6198 pipe_class fpu_reg_mem(regD dst, memory mem) %{
6199     instruction_count(2);
6200     dst    : S5(write);
6201     mem    : S3(read);
6202     D0     : S0;        // big decoder only
6203     DECODE : S1;        // any decoder for FPU POP
6204     FPU    : S4;
6205     MEM    : S3;        // any mem
6206 %}
6207 
6208 // Float reg-mem operation
6209 pipe_class fpu_reg_reg_mem(regD dst, regD src1, memory mem) %{
6210     instruction_count(3);
6211     dst    : S5(write);
6212     src1   : S3(read);
6213     mem    : S3(read);
6214     D0     : S0;        // big decoder only
6215     DECODE : S1(2);     // any decoder for FPU POP
6216     FPU    : S4;
6217     MEM    : S3;        // any mem
6218 %}
6219 
6220 // Float mem-reg operation
6221 pipe_class fpu_mem_reg(memory mem, regD src) %{
6222     instruction_count(2);
6223     src    : S5(read);
6224     mem    : S3(read);
6225     DECODE : S0;        // any decoder for FPU PUSH
6226     D0     : S1;        // big decoder only
6227     FPU    : S4;
6228     MEM    : S3;        // any mem
6229 %}
6230 
6231 pipe_class fpu_mem_reg_reg(memory mem, regD src1, regD src2) %{
6232     instruction_count(3);
6233     src1   : S3(read);
6234     src2   : S3(read);
6235     mem    : S3(read);
6236     DECODE : S0(2);     // any decoder for FPU PUSH
6237     D0     : S1;        // big decoder only
6238     FPU    : S4;
6239     MEM    : S3;        // any mem
6240 %}
6241 
6242 pipe_class fpu_mem_reg_mem(memory mem, regD src1, memory src2) %{
6243     instruction_count(3);
6244     src1   : S3(read);
6245     src2   : S3(read);
6246     mem    : S4(read);
6247     DECODE : S0;        // any decoder for FPU PUSH
6248     D0     : S0(2);     // big decoder only
6249     FPU    : S4;
6250     MEM    : S3(2);     // any mem
6251 %}
6252 
6253 pipe_class fpu_mem_mem(memory dst, memory src1) %{
6254     instruction_count(2);
6255     src1   : S3(read);
6256     dst    : S4(read);
6257     D0     : S0(2);     // big decoder only
6258     MEM    : S3(2);     // any mem
6259 %}
6260 
6261 pipe_class fpu_mem_mem_mem(memory dst, memory src1, memory src2) %{
6262     instruction_count(3);
6263     src1   : S3(read);
6264     src2   : S3(read);
6265     dst    : S4(read);
6266     D0     : S0(3);     // big decoder only
6267     FPU    : S4;
6268     MEM    : S3(3);     // any mem
6269 %}
6270 
6271 pipe_class fpu_mem_reg_con(memory mem, regD src1) %{
6272     instruction_count(3);
6273     src1   : S4(read);
6274     mem    : S4(read);
6275     DECODE : S0;        // any decoder for FPU PUSH
6276     D0     : S0(2);     // big decoder only
6277     FPU    : S4;
6278     MEM    : S3(2);     // any mem
6279 %}
6280 
6281 // Float load constant
6282 pipe_class fpu_reg_con(regD dst) %{
6283     instruction_count(2);
6284     dst    : S5(write);
6285     D0     : S0;        // big decoder only for the load
6286     DECODE : S1;        // any decoder for FPU POP
6287     FPU    : S4;
6288     MEM    : S3;        // any mem
6289 %}
6290 
6291 // Float load constant
6292 pipe_class fpu_reg_reg_con(regD dst, regD src) %{
6293     instruction_count(3);
6294     dst    : S5(write);
6295     src    : S3(read);
6296     D0     : S0;        // big decoder only for the load
6297     DECODE : S1(2);     // any decoder for FPU POP
6298     FPU    : S4;
6299     MEM    : S3;        // any mem
6300 %}
6301 
6302 // UnConditional branch
6303 pipe_class pipe_jmp( label labl ) %{
6304     single_instruction;
6305     BR   : S3;
6306 %}
6307 
6308 // Conditional branch
6309 pipe_class pipe_jcc( cmpOp cmp, eFlagsReg cr, label labl ) %{
6310     single_instruction;
6311     cr    : S1(read);
6312     BR    : S3;
6313 %}
6314 
6315 // Allocation idiom
6316 pipe_class pipe_cmpxchg( eRegP dst, eRegP heap_ptr ) %{
6317     instruction_count(1); force_serialization;
6318     fixed_latency(6);
6319     heap_ptr : S3(read);
6320     DECODE   : S0(3);
6321     D0       : S2;
6322     MEM      : S3;
6323     ALU      : S3(2);
6324     dst      : S5(write);
6325     BR       : S5;
6326 %}
6327 
6328 // Generic big/slow expanded idiom
6329 pipe_class pipe_slow(  ) %{
6330     instruction_count(10); multiple_bundles; force_serialization;
6331     fixed_latency(100);
6332     D0  : S0(2);
6333     MEM : S3(2);
6334 %}
6335 
6336 // The real do-nothing guy
6337 pipe_class empty( ) %{
6338     instruction_count(0);
6339 %}
6340 
6341 // Define the class for the Nop node
6342 define %{
6343    MachNop = empty;
6344 %}
6345 
6346 %}
6347 
6348 //----------INSTRUCTIONS-------------------------------------------------------
6349 //
6350 // match      -- States which machine-independent subtree may be replaced
6351 //               by this instruction.
6352 // ins_cost   -- The estimated cost of this instruction is used by instruction
6353 //               selection to identify a minimum cost tree of machine
6354 //               instructions that matches a tree of machine-independent
6355 //               instructions.
6356 // format     -- A string providing the disassembly for this instruction.
6357 //               The value of an instruction's operand may be inserted
6358 //               by referring to it with a '$' prefix.
6359 // opcode     -- Three instruction opcodes may be provided.  These are referred
6360 //               to within an encode class as $primary, $secondary, and $tertiary
6361 //               respectively.  The primary opcode is commonly used to
6362 //               indicate the type of machine instruction, while secondary
6363 //               and tertiary are often used for prefix options or addressing
6364 //               modes.
6365 // ins_encode -- A list of encode classes with parameters. The encode class
6366 //               name must have been defined in an 'enc_class' specification
6367 //               in the encode section of the architecture description.
6368 
6369 //----------BSWAP-Instruction--------------------------------------------------
6370 instruct bytes_reverse_int(eRegI dst) %{
6371   match(Set dst (ReverseBytesI dst));
6372 
6373   format %{ "BSWAP  $dst" %}
6374   opcode(0x0F, 0xC8);
6375   ins_encode( OpcP, OpcSReg(dst) );
6376   ins_pipe( ialu_reg );
6377 %}
6378 
6379 instruct bytes_reverse_long(eRegL dst) %{
6380   match(Set dst (ReverseBytesL dst));
6381 
6382   format %{ "BSWAP  $dst.lo\n\t"
6383             "BSWAP  $dst.hi\n\t"
6384             "XCHG   $dst.lo $dst.hi" %}
6385 
6386   ins_cost(125);
6387   ins_encode( bswap_long_bytes(dst) );
6388   ins_pipe( ialu_reg_reg);
6389 %}
6390 
6391 
6392 //----------Load/Store/Move Instructions---------------------------------------
6393 //----------Load Instructions--------------------------------------------------
6394 // Load Byte (8bit signed)
6395 instruct loadB(xRegI dst, memory mem) %{
6396   match(Set dst (LoadB mem));
6397 
6398   ins_cost(125);
6399   format %{ "MOVSX8 $dst,$mem" %}
6400   opcode(0xBE, 0x0F);
6401   ins_encode( OpcS, OpcP, RegMem(dst,mem));
6402   ins_pipe( ialu_reg_mem );
6403 %}
6404 
6405 // Load Byte (8bit UNsigned)
6406 instruct loadUB(xRegI dst, memory mem, immI_255 bytemask) %{
6407   match(Set dst (AndI (LoadB mem) bytemask));
6408 
6409   ins_cost(125);
6410   format %{ "MOVZX8 $dst,$mem" %}
6411   opcode(0xB6, 0x0F);
6412   ins_encode( OpcS, OpcP, RegMem(dst,mem));
6413   ins_pipe( ialu_reg_mem );
6414 %}
6415 
6416 // Load Char (16bit unsigned)
6417 instruct loadC(eRegI dst, memory mem) %{
6418   match(Set dst (LoadC mem));
6419 
6420   ins_cost(125);
6421   format %{ "MOVZX  $dst,$mem" %}
6422   opcode(0xB7, 0x0F);
6423   ins_encode( OpcS, OpcP, RegMem(dst,mem));
6424   ins_pipe( ialu_reg_mem );
6425 %}
6426 
6427 // Load Integer
6428 instruct loadI(eRegI dst, memory mem) %{
6429   match(Set dst (LoadI mem));
6430 
6431   ins_cost(125);
6432   format %{ "MOV    $dst,$mem" %}
6433   opcode(0x8B);
6434   ins_encode( OpcP, RegMem(dst,mem));
6435   ins_pipe( ialu_reg_mem );
6436 %}
6437 
6438 // Load Long.  Cannot clobber address while loading, so restrict address
6439 // register to ESI
6440 instruct loadL(eRegL dst, load_long_memory mem) %{
6441   predicate(!((LoadLNode*)n)->require_atomic_access());
6442   match(Set dst (LoadL mem));
6443 
6444   ins_cost(250);
6445   format %{ "MOV    $dst.lo,$mem\n\t"
6446             "MOV    $dst.hi,$mem+4" %}
6447   opcode(0x8B, 0x8B);
6448   ins_encode( OpcP, RegMem(dst,mem), OpcS, RegMem_Hi(dst,mem));
6449   ins_pipe( ialu_reg_long_mem );
6450 %}
6451 
6452 // Volatile Load Long.  Must be atomic, so do 64-bit FILD
6453 // then store it down to the stack and reload on the int
6454 // side.
6455 instruct loadL_volatile(stackSlotL dst, memory mem) %{
6456   predicate(UseSSE<=1 && ((LoadLNode*)n)->require_atomic_access());
6457   match(Set dst (LoadL mem));
6458 
6459   ins_cost(200);
6460   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
6461             "FISTp  $dst" %}
6462   ins_encode(enc_loadL_volatile(mem,dst));
6463   ins_pipe( fpu_reg_mem );
6464 %}
6465 
6466 instruct loadLX_volatile(stackSlotL dst, memory mem, regXD tmp) %{
6467   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6468   match(Set dst (LoadL mem));
6469   effect(TEMP tmp);
6470   ins_cost(180);
6471   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6472             "MOVSD  $dst,$tmp" %}
6473   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
6474   ins_pipe( pipe_slow );
6475 %}
6476 
6477 instruct loadLX_reg_volatile(eRegL dst, memory mem, regXD tmp) %{
6478   predicate(UseSSE>=2 && ((LoadLNode*)n)->require_atomic_access());
6479   match(Set dst (LoadL mem));
6480   effect(TEMP tmp);
6481   ins_cost(160);
6482   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
6483             "MOVD   $dst.lo,$tmp\n\t"
6484             "PSRLQ  $tmp,32\n\t"
6485             "MOVD   $dst.hi,$tmp" %}
6486   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
6487   ins_pipe( pipe_slow );
6488 %}
6489 
6490 // Load Range
6491 instruct loadRange(eRegI dst, memory mem) %{
6492   match(Set dst (LoadRange mem));
6493 
6494   ins_cost(125);
6495   format %{ "MOV    $dst,$mem" %}
6496   opcode(0x8B);
6497   ins_encode( OpcP, RegMem(dst,mem));
6498   ins_pipe( ialu_reg_mem );
6499 %}
6500 
6501 
6502 // Load Pointer
6503 instruct loadP(eRegP dst, memory mem) %{
6504   match(Set dst (LoadP mem));
6505 
6506   ins_cost(125);
6507   format %{ "MOV    $dst,$mem" %}
6508   opcode(0x8B);
6509   ins_encode( OpcP, RegMem(dst,mem));
6510   ins_pipe( ialu_reg_mem );
6511 %}
6512 
6513 // Load Klass Pointer
6514 instruct loadKlass(eRegP dst, memory mem) %{
6515   match(Set dst (LoadKlass mem));
6516 
6517   ins_cost(125);
6518   format %{ "MOV    $dst,$mem" %}
6519   opcode(0x8B);
6520   ins_encode( OpcP, RegMem(dst,mem));
6521   ins_pipe( ialu_reg_mem );
6522 %}
6523 
6524 // Load Short (16bit signed)
6525 instruct loadS(eRegI dst, memory mem) %{
6526   match(Set dst (LoadS mem));
6527 
6528   ins_cost(125);
6529   format %{ "MOVSX  $dst,$mem" %}
6530   opcode(0xBF, 0x0F);
6531   ins_encode( OpcS, OpcP, RegMem(dst,mem));
6532   ins_pipe( ialu_reg_mem );
6533 %}
6534 
6535 // Load Double
6536 instruct loadD(regD dst, memory mem) %{
6537   predicate(UseSSE<=1);
6538   match(Set dst (LoadD mem));
6539 
6540   ins_cost(150);
6541   format %{ "FLD_D  ST,$mem\n\t"
6542             "FSTP   $dst" %}
6543   opcode(0xDD);               /* DD /0 */
6544   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6545               Pop_Reg_D(dst) );
6546   ins_pipe( fpu_reg_mem );
6547 %}
6548 
6549 // Load Double to XMM
6550 instruct loadXD(regXD dst, memory mem) %{
6551   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
6552   match(Set dst (LoadD mem));
6553   ins_cost(145);
6554   format %{ "MOVSD  $dst,$mem" %}
6555   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6556   ins_pipe( pipe_slow );
6557 %}
6558 
6559 instruct loadXD_partial(regXD dst, memory mem) %{
6560   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
6561   match(Set dst (LoadD mem));
6562   ins_cost(145);
6563   format %{ "MOVLPD $dst,$mem" %}
6564   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,mem));
6565   ins_pipe( pipe_slow );
6566 %}
6567 
6568 // Load to XMM register (single-precision floating point)
6569 // MOVSS instruction
6570 instruct loadX(regX dst, memory mem) %{
6571   predicate(UseSSE>=1);
6572   match(Set dst (LoadF mem));
6573   ins_cost(145);
6574   format %{ "MOVSS  $dst,$mem" %}
6575   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,mem));
6576   ins_pipe( pipe_slow );
6577 %}
6578 
6579 // Load Float
6580 instruct loadF(regF dst, memory mem) %{
6581   predicate(UseSSE==0);
6582   match(Set dst (LoadF mem));
6583 
6584   ins_cost(150);
6585   format %{ "FLD_S  ST,$mem\n\t"
6586             "FSTP   $dst" %}
6587   opcode(0xD9);               /* D9 /0 */
6588   ins_encode( OpcP, RMopc_Mem(0x00,mem),
6589               Pop_Reg_F(dst) );
6590   ins_pipe( fpu_reg_mem );
6591 %}
6592 
6593 // Load Aligned Packed Byte to XMM register
6594 instruct loadA8B(regXD dst, memory mem) %{
6595   predicate(UseSSE>=1);
6596   match(Set dst (Load8B mem));
6597   ins_cost(125);
6598   format %{ "MOVQ  $dst,$mem\t! packed8B" %}
6599   ins_encode( movq_ld(dst, mem));
6600   ins_pipe( pipe_slow );
6601 %}
6602 
6603 // Load Aligned Packed Short to XMM register
6604 instruct loadA4S(regXD dst, memory mem) %{
6605   predicate(UseSSE>=1);
6606   match(Set dst (Load4S mem));
6607   ins_cost(125);
6608   format %{ "MOVQ  $dst,$mem\t! packed4S" %}
6609   ins_encode( movq_ld(dst, mem));
6610   ins_pipe( pipe_slow );
6611 %}
6612 
6613 // Load Aligned Packed Char to XMM register
6614 instruct loadA4C(regXD dst, memory mem) %{
6615   predicate(UseSSE>=1);
6616   match(Set dst (Load4C mem));
6617   ins_cost(125);
6618   format %{ "MOVQ  $dst,$mem\t! packed4C" %}
6619   ins_encode( movq_ld(dst, mem));
6620   ins_pipe( pipe_slow );
6621 %}
6622 
6623 // Load Aligned Packed Integer to XMM register
6624 instruct load2IU(regXD dst, memory mem) %{
6625   predicate(UseSSE>=1);
6626   match(Set dst (Load2I mem));
6627   ins_cost(125);
6628   format %{ "MOVQ  $dst,$mem\t! packed2I" %}
6629   ins_encode( movq_ld(dst, mem));
6630   ins_pipe( pipe_slow );
6631 %}
6632 
6633 // Load Aligned Packed Single to XMM
6634 instruct loadA2F(regXD dst, memory mem) %{
6635   predicate(UseSSE>=1);
6636   match(Set dst (Load2F mem));
6637   ins_cost(145);
6638   format %{ "MOVQ  $dst,$mem\t! packed2F" %}
6639   ins_encode( movq_ld(dst, mem));
6640   ins_pipe( pipe_slow );
6641 %}
6642 
6643 // Load Effective Address
6644 instruct leaP8(eRegP dst, indOffset8 mem) %{
6645   match(Set dst mem);
6646 
6647   ins_cost(110);
6648   format %{ "LEA    $dst,$mem" %}
6649   opcode(0x8D);
6650   ins_encode( OpcP, RegMem(dst,mem));
6651   ins_pipe( ialu_reg_reg_fat );
6652 %}
6653 
6654 instruct leaP32(eRegP dst, indOffset32 mem) %{
6655   match(Set dst mem);
6656 
6657   ins_cost(110);
6658   format %{ "LEA    $dst,$mem" %}
6659   opcode(0x8D);
6660   ins_encode( OpcP, RegMem(dst,mem));
6661   ins_pipe( ialu_reg_reg_fat );
6662 %}
6663 
6664 instruct leaPIdxOff(eRegP dst, indIndexOffset mem) %{
6665   match(Set dst mem);
6666 
6667   ins_cost(110);
6668   format %{ "LEA    $dst,$mem" %}
6669   opcode(0x8D);
6670   ins_encode( OpcP, RegMem(dst,mem));
6671   ins_pipe( ialu_reg_reg_fat );
6672 %}
6673 
6674 instruct leaPIdxScale(eRegP dst, indIndexScale mem) %{
6675   match(Set dst mem);
6676 
6677   ins_cost(110);
6678   format %{ "LEA    $dst,$mem" %}
6679   opcode(0x8D);
6680   ins_encode( OpcP, RegMem(dst,mem));
6681   ins_pipe( ialu_reg_reg_fat );
6682 %}
6683 
6684 instruct leaPIdxScaleOff(eRegP dst, indIndexScaleOffset mem) %{
6685   match(Set dst mem);
6686 
6687   ins_cost(110);
6688   format %{ "LEA    $dst,$mem" %}
6689   opcode(0x8D);
6690   ins_encode( OpcP, RegMem(dst,mem));
6691   ins_pipe( ialu_reg_reg_fat );
6692 %}
6693 
6694 // Load Constant
6695 instruct loadConI(eRegI dst, immI src) %{
6696   match(Set dst src);
6697 
6698   format %{ "MOV    $dst,$src" %}
6699   ins_encode( LdImmI(dst, src) );
6700   ins_pipe( ialu_reg_fat );
6701 %}
6702 
6703 // Load Constant zero
6704 instruct loadConI0(eRegI dst, immI0 src, eFlagsReg cr) %{
6705   match(Set dst src);
6706   effect(KILL cr);
6707 
6708   ins_cost(50);
6709   format %{ "XOR    $dst,$dst" %}
6710   opcode(0x33);  /* + rd */
6711   ins_encode( OpcP, RegReg( dst, dst ) );
6712   ins_pipe( ialu_reg );
6713 %}
6714 
6715 instruct loadConP(eRegP dst, immP src) %{
6716   match(Set dst src);
6717 
6718   format %{ "MOV    $dst,$src" %}
6719   opcode(0xB8);  /* + rd */
6720   ins_encode( LdImmP(dst, src) );
6721   ins_pipe( ialu_reg_fat );
6722 %}
6723 
6724 instruct loadConL(eRegL dst, immL src, eFlagsReg cr) %{
6725   match(Set dst src);
6726   effect(KILL cr);
6727   ins_cost(200);
6728   format %{ "MOV    $dst.lo,$src.lo\n\t"
6729             "MOV    $dst.hi,$src.hi" %}
6730   opcode(0xB8);
6731   ins_encode( LdImmL_Lo(dst, src), LdImmL_Hi(dst, src) );
6732   ins_pipe( ialu_reg_long_fat );
6733 %}
6734 
6735 instruct loadConL0(eRegL dst, immL0 src, eFlagsReg cr) %{
6736   match(Set dst src);
6737   effect(KILL cr);
6738   ins_cost(150);
6739   format %{ "XOR    $dst.lo,$dst.lo\n\t"
6740             "XOR    $dst.hi,$dst.hi" %}
6741   opcode(0x33,0x33);
6742   ins_encode( RegReg_Lo(dst,dst), RegReg_Hi(dst, dst) );
6743   ins_pipe( ialu_reg_long );
6744 %}
6745 
6746 // The instruction usage is guarded by predicate in operand immF().
6747 instruct loadConF(regF dst, immF src) %{
6748   match(Set dst src);
6749   ins_cost(125);
6750 
6751   format %{ "FLD_S  ST,$src\n\t"
6752             "FSTP   $dst" %}
6753   opcode(0xD9, 0x00);       /* D9 /0 */
6754   ins_encode(LdImmF(src), Pop_Reg_F(dst) );
6755   ins_pipe( fpu_reg_con );
6756 %}
6757 
6758 // The instruction usage is guarded by predicate in operand immXF().
6759 instruct loadConX(regX dst, immXF con) %{
6760   match(Set dst con);
6761   ins_cost(125);
6762   format %{ "MOVSS  $dst,[$con]" %}
6763   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), LdImmX(dst, con));
6764   ins_pipe( pipe_slow );
6765 %}
6766 
6767 // The instruction usage is guarded by predicate in operand immXF0().
6768 instruct loadConX0(regX dst, immXF0 src) %{
6769   match(Set dst src);
6770   ins_cost(100);
6771   format %{ "XORPS  $dst,$dst\t# float 0.0" %}
6772   ins_encode( Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
6773   ins_pipe( pipe_slow );
6774 %}
6775 
6776 // The instruction usage is guarded by predicate in operand immD().
6777 instruct loadConD(regD dst, immD src) %{
6778   match(Set dst src);
6779   ins_cost(125);
6780 
6781   format %{ "FLD_D  ST,$src\n\t"
6782             "FSTP   $dst" %}
6783   ins_encode(LdImmD(src), Pop_Reg_D(dst) );
6784   ins_pipe( fpu_reg_con );
6785 %}
6786 
6787 // The instruction usage is guarded by predicate in operand immXD().
6788 instruct loadConXD(regXD dst, immXD con) %{
6789   match(Set dst con);
6790   ins_cost(125);
6791   format %{ "MOVSD  $dst,[$con]" %}
6792   ins_encode(load_conXD(dst, con));
6793   ins_pipe( pipe_slow );
6794 %}
6795 
6796 // The instruction usage is guarded by predicate in operand immXD0().
6797 instruct loadConXD0(regXD dst, immXD0 src) %{
6798   match(Set dst src);
6799   ins_cost(100);
6800   format %{ "XORPD  $dst,$dst\t# double 0.0" %}
6801   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x57), RegReg(dst,dst));
6802   ins_pipe( pipe_slow );
6803 %}
6804 
6805 // Load Stack Slot
6806 instruct loadSSI(eRegI dst, stackSlotI src) %{
6807   match(Set dst src);
6808   ins_cost(125);
6809 
6810   format %{ "MOV    $dst,$src" %}
6811   opcode(0x8B);
6812   ins_encode( OpcP, RegMem(dst,src));
6813   ins_pipe( ialu_reg_mem );
6814 %}
6815 
6816 instruct loadSSL(eRegL dst, stackSlotL src) %{
6817   match(Set dst src);
6818 
6819   ins_cost(200);
6820   format %{ "MOV    $dst,$src.lo\n\t"
6821             "MOV    $dst+4,$src.hi" %}
6822   opcode(0x8B, 0x8B);
6823   ins_encode( OpcP, RegMem( dst, src ), OpcS, RegMem_Hi( dst, src ) );
6824   ins_pipe( ialu_mem_long_reg );
6825 %}
6826 
6827 // Load Stack Slot
6828 instruct loadSSP(eRegP dst, stackSlotP src) %{
6829   match(Set dst src);
6830   ins_cost(125);
6831 
6832   format %{ "MOV    $dst,$src" %}
6833   opcode(0x8B);
6834   ins_encode( OpcP, RegMem(dst,src));
6835   ins_pipe( ialu_reg_mem );
6836 %}
6837 
6838 // Load Stack Slot
6839 instruct loadSSF(regF dst, stackSlotF src) %{
6840   match(Set dst src);
6841   ins_cost(125);
6842 
6843   format %{ "FLD_S  $src\n\t"
6844             "FSTP   $dst" %}
6845   opcode(0xD9);               /* D9 /0, FLD m32real */
6846   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6847               Pop_Reg_F(dst) );
6848   ins_pipe( fpu_reg_mem );
6849 %}
6850 
6851 // Load Stack Slot
6852 instruct loadSSD(regD dst, stackSlotD src) %{
6853   match(Set dst src);
6854   ins_cost(125);
6855 
6856   format %{ "FLD_D  $src\n\t"
6857             "FSTP   $dst" %}
6858   opcode(0xDD);               /* DD /0, FLD m64real */
6859   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
6860               Pop_Reg_D(dst) );
6861   ins_pipe( fpu_reg_mem );
6862 %}
6863 
6864 // Prefetch instructions.
6865 // Must be safe to execute with invalid address (cannot fault).
6866 
6867 instruct prefetchr0( memory mem ) %{
6868   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
6869   match(PrefetchRead mem);
6870   ins_cost(0);
6871   size(0);
6872   format %{ "PREFETCHR (non-SSE is empty encoding)" %}
6873   ins_encode();
6874   ins_pipe(empty);
6875 %}
6876 
6877 instruct prefetchr( memory mem ) %{
6878   predicate(UseSSE==0 && VM_Version::supports_3dnow() || ReadPrefetchInstr==3);
6879   match(PrefetchRead mem);
6880   ins_cost(100);
6881 
6882   format %{ "PREFETCHR $mem\t! Prefetch into level 1 cache for read" %}
6883   opcode(0x0F, 0x0d);     /* Opcode 0F 0d /0 */
6884   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
6885   ins_pipe(ialu_mem);
6886 %}
6887 
6888 instruct prefetchrNTA( memory mem ) %{
6889   predicate(UseSSE>=1 && ReadPrefetchInstr==0);
6890   match(PrefetchRead mem);
6891   ins_cost(100);
6892 
6893   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for read" %}
6894   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
6895   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
6896   ins_pipe(ialu_mem);
6897 %}
6898 
6899 instruct prefetchrT0( memory mem ) %{
6900   predicate(UseSSE>=1 && ReadPrefetchInstr==1);
6901   match(PrefetchRead mem);
6902   ins_cost(100);
6903 
6904   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for read" %}
6905   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
6906   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
6907   ins_pipe(ialu_mem);
6908 %}
6909 
6910 instruct prefetchrT2( memory mem ) %{
6911   predicate(UseSSE>=1 && ReadPrefetchInstr==2);
6912   match(PrefetchRead mem);
6913   ins_cost(100);
6914 
6915   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for read" %}
6916   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
6917   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
6918   ins_pipe(ialu_mem);
6919 %}
6920 
6921 instruct prefetchw0( memory mem ) %{
6922   predicate(UseSSE==0 && !VM_Version::supports_3dnow());
6923   match(PrefetchWrite mem);
6924   ins_cost(0);
6925   size(0);
6926   format %{ "Prefetch (non-SSE is empty encoding)" %}
6927   ins_encode();
6928   ins_pipe(empty);
6929 %}
6930 
6931 instruct prefetchw( memory mem ) %{
6932   predicate(UseSSE==0 && VM_Version::supports_3dnow() || AllocatePrefetchInstr==3);
6933   match( PrefetchWrite mem );
6934   ins_cost(100);
6935 
6936   format %{ "PREFETCHW $mem\t! Prefetch into L1 cache and mark modified" %}
6937   opcode(0x0F, 0x0D);     /* Opcode 0F 0D /1 */
6938   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
6939   ins_pipe(ialu_mem);
6940 %}
6941 
6942 instruct prefetchwNTA( memory mem ) %{
6943   predicate(UseSSE>=1 && AllocatePrefetchInstr==0);
6944   match(PrefetchWrite mem);
6945   ins_cost(100);
6946 
6947   format %{ "PREFETCHNTA $mem\t! Prefetch into non-temporal cache for write" %}
6948   opcode(0x0F, 0x18);     /* Opcode 0F 18 /0 */
6949   ins_encode(OpcP, OpcS, RMopc_Mem(0x00,mem));
6950   ins_pipe(ialu_mem);
6951 %}
6952 
6953 instruct prefetchwT0( memory mem ) %{
6954   predicate(UseSSE>=1 && AllocatePrefetchInstr==1);
6955   match(PrefetchWrite mem);
6956   ins_cost(100);
6957 
6958   format %{ "PREFETCHT0 $mem\t! Prefetch into L1 and L2 caches for write" %}
6959   opcode(0x0F, 0x18);     /* Opcode 0F 18 /1 */
6960   ins_encode(OpcP, OpcS, RMopc_Mem(0x01,mem));
6961   ins_pipe(ialu_mem);
6962 %}
6963 
6964 instruct prefetchwT2( memory mem ) %{
6965   predicate(UseSSE>=1 && AllocatePrefetchInstr==2);
6966   match(PrefetchWrite mem);
6967   ins_cost(100);
6968 
6969   format %{ "PREFETCHT2 $mem\t! Prefetch into L2 cache for write" %}
6970   opcode(0x0F, 0x18);     /* Opcode 0F 18 /3 */
6971   ins_encode(OpcP, OpcS, RMopc_Mem(0x03,mem));
6972   ins_pipe(ialu_mem);
6973 %}
6974 
6975 //----------Store Instructions-------------------------------------------------
6976 
6977 // Store Byte
6978 instruct storeB(memory mem, xRegI src) %{
6979   match(Set mem (StoreB mem src));
6980 
6981   ins_cost(125);
6982   format %{ "MOV8   $mem,$src" %}
6983   opcode(0x88);
6984   ins_encode( OpcP, RegMem( src, mem ) );
6985   ins_pipe( ialu_mem_reg );
6986 %}
6987 
6988 // Store Char/Short
6989 instruct storeC(memory mem, eRegI src) %{
6990   match(Set mem (StoreC mem src));
6991 
6992   ins_cost(125);
6993   format %{ "MOV16  $mem,$src" %}
6994   opcode(0x89, 0x66);
6995   ins_encode( OpcS, OpcP, RegMem( src, mem ) );
6996   ins_pipe( ialu_mem_reg );
6997 %}
6998 
6999 // Store Integer
7000 instruct storeI(memory mem, eRegI src) %{
7001   match(Set mem (StoreI mem src));
7002 
7003   ins_cost(125);
7004   format %{ "MOV    $mem,$src" %}
7005   opcode(0x89);
7006   ins_encode( OpcP, RegMem( src, mem ) );
7007   ins_pipe( ialu_mem_reg );
7008 %}
7009 
7010 // Store Long
7011 instruct storeL(long_memory mem, eRegL src) %{
7012   predicate(!((StoreLNode*)n)->require_atomic_access());
7013   match(Set mem (StoreL mem src));
7014 
7015   ins_cost(200);
7016   format %{ "MOV    $mem,$src.lo\n\t"
7017             "MOV    $mem+4,$src.hi" %}
7018   opcode(0x89, 0x89);
7019   ins_encode( OpcP, RegMem( src, mem ), OpcS, RegMem_Hi( src, mem ) );
7020   ins_pipe( ialu_mem_long_reg );
7021 %}
7022 
7023 // Volatile Store Long.  Must be atomic, so move it into
7024 // the FP TOS and then do a 64-bit FIST.  Has to probe the
7025 // target address before the store (for null-ptr checks)
7026 // so the memory operand is used twice in the encoding.
7027 instruct storeL_volatile(memory mem, stackSlotL src, eFlagsReg cr ) %{
7028   predicate(UseSSE<=1 && ((StoreLNode*)n)->require_atomic_access());
7029   match(Set mem (StoreL mem src));
7030   effect( KILL cr );
7031   ins_cost(400);
7032   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7033             "FILD   $src\n\t"
7034             "FISTp  $mem\t # 64-bit atomic volatile long store" %}
7035   opcode(0x3B);
7036   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeL_volatile(mem,src));
7037   ins_pipe( fpu_reg_mem );
7038 %}
7039 
7040 instruct storeLX_volatile(memory mem, stackSlotL src, regXD tmp, eFlagsReg cr) %{
7041   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7042   match(Set mem (StoreL mem src));
7043   effect( TEMP tmp, KILL cr );
7044   ins_cost(380);
7045   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7046             "MOVSD  $tmp,$src\n\t"
7047             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7048   opcode(0x3B);
7049   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_volatile(mem, src, tmp));
7050   ins_pipe( pipe_slow );
7051 %}
7052 
7053 instruct storeLX_reg_volatile(memory mem, eRegL src, regXD tmp2, regXD tmp, eFlagsReg cr) %{
7054   predicate(UseSSE>=2 && ((StoreLNode*)n)->require_atomic_access());
7055   match(Set mem (StoreL mem src));
7056   effect( TEMP tmp2 , TEMP tmp, KILL cr );
7057   ins_cost(360);
7058   format %{ "CMP    $mem,EAX\t# Probe address for implicit null check\n\t"
7059             "MOVD   $tmp,$src.lo\n\t"
7060             "MOVD   $tmp2,$src.hi\n\t"
7061             "PUNPCKLDQ $tmp,$tmp2\n\t"
7062             "MOVSD  $mem,$tmp\t # 64-bit atomic volatile long store" %}
7063   opcode(0x3B);
7064   ins_encode( OpcP, RegMem( EAX, mem ), enc_storeLX_reg_volatile(mem, src, tmp, tmp2));
7065   ins_pipe( pipe_slow );
7066 %}
7067 
7068 // Store Pointer; for storing unknown oops and raw pointers
7069 instruct storeP(memory mem, anyRegP src) %{
7070   match(Set mem (StoreP mem src));
7071 
7072   ins_cost(125);
7073   format %{ "MOV    $mem,$src" %}
7074   opcode(0x89);
7075   ins_encode( OpcP, RegMem( src, mem ) );
7076   ins_pipe( ialu_mem_reg );
7077 %}
7078 
7079 // Store Integer Immediate
7080 instruct storeImmI(memory mem, immI src) %{
7081   match(Set mem (StoreI mem src));
7082 
7083   ins_cost(150);
7084   format %{ "MOV    $mem,$src" %}
7085   opcode(0xC7);               /* C7 /0 */
7086   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7087   ins_pipe( ialu_mem_imm );
7088 %}
7089 
7090 // Store Short/Char Immediate
7091 instruct storeImmI16(memory mem, immI16 src) %{
7092   predicate(UseStoreImmI16);
7093   match(Set mem (StoreC mem src));
7094 
7095   ins_cost(150);
7096   format %{ "MOV16  $mem,$src" %}
7097   opcode(0xC7);     /* C7 /0 Same as 32 store immediate with prefix */
7098   ins_encode( SizePrefix, OpcP, RMopc_Mem(0x00,mem),  Con16( src ));
7099   ins_pipe( ialu_mem_imm );
7100 %}
7101 
7102 // Store Pointer Immediate; null pointers or constant oops that do not
7103 // need card-mark barriers.
7104 instruct storeImmP(memory mem, immP src) %{
7105   match(Set mem (StoreP mem src));
7106 
7107   ins_cost(150);
7108   format %{ "MOV    $mem,$src" %}
7109   opcode(0xC7);               /* C7 /0 */
7110   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32( src ));
7111   ins_pipe( ialu_mem_imm );
7112 %}
7113 
7114 // Store Byte Immediate
7115 instruct storeImmB(memory mem, immI8 src) %{
7116   match(Set mem (StoreB mem src));
7117 
7118   ins_cost(150);
7119   format %{ "MOV8   $mem,$src" %}
7120   opcode(0xC6);               /* C6 /0 */
7121   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7122   ins_pipe( ialu_mem_imm );
7123 %}
7124 
7125 // Store Aligned Packed Byte XMM register to memory
7126 instruct storeA8B(memory mem, regXD src) %{
7127   predicate(UseSSE>=1);
7128   match(Set mem (Store8B mem src));
7129   ins_cost(145);
7130   format %{ "MOVQ  $mem,$src\t! packed8B" %}
7131   ins_encode( movq_st(mem, src));
7132   ins_pipe( pipe_slow );
7133 %}
7134 
7135 // Store Aligned Packed Char/Short XMM register to memory
7136 instruct storeA4C(memory mem, regXD src) %{
7137   predicate(UseSSE>=1);
7138   match(Set mem (Store4C mem src));
7139   ins_cost(145);
7140   format %{ "MOVQ  $mem,$src\t! packed4C" %}
7141   ins_encode( movq_st(mem, src));
7142   ins_pipe( pipe_slow );
7143 %}
7144 
7145 // Store Aligned Packed Integer XMM register to memory
7146 instruct storeA2I(memory mem, regXD src) %{
7147   predicate(UseSSE>=1);
7148   match(Set mem (Store2I mem src));
7149   ins_cost(145);
7150   format %{ "MOVQ  $mem,$src\t! packed2I" %}
7151   ins_encode( movq_st(mem, src));
7152   ins_pipe( pipe_slow );
7153 %}
7154 
7155 // Store CMS card-mark Immediate
7156 instruct storeImmCM(memory mem, immI8 src) %{
7157   match(Set mem (StoreCM mem src));
7158 
7159   ins_cost(150);
7160   format %{ "MOV8   $mem,$src\t! CMS card-mark imm0" %}
7161   opcode(0xC6);               /* C6 /0 */
7162   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con8or32( src ));
7163   ins_pipe( ialu_mem_imm );
7164 %}
7165 
7166 // Store Double
7167 instruct storeD( memory mem, regDPR1 src) %{
7168   predicate(UseSSE<=1);
7169   match(Set mem (StoreD mem src));
7170 
7171   ins_cost(100);
7172   format %{ "FST_D  $mem,$src" %}
7173   opcode(0xDD);       /* DD /2 */
7174   ins_encode( enc_FP_store(mem,src) );
7175   ins_pipe( fpu_mem_reg );
7176 %}
7177 
7178 // Store double does rounding on x86
7179 instruct storeD_rounded( memory mem, regDPR1 src) %{
7180   predicate(UseSSE<=1);
7181   match(Set mem (StoreD mem (RoundDouble src)));
7182 
7183   ins_cost(100);
7184   format %{ "FST_D  $mem,$src\t# round" %}
7185   opcode(0xDD);       /* DD /2 */
7186   ins_encode( enc_FP_store(mem,src) );
7187   ins_pipe( fpu_mem_reg );
7188 %}
7189 
7190 // Store XMM register to memory (double-precision floating points)
7191 // MOVSD instruction
7192 instruct storeXD(memory mem, regXD src) %{
7193   predicate(UseSSE>=2);
7194   match(Set mem (StoreD mem src));
7195   ins_cost(95);
7196   format %{ "MOVSD  $mem,$src" %}
7197   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7198   ins_pipe( pipe_slow );
7199 %}
7200 
7201 // Store XMM register to memory (single-precision floating point)
7202 // MOVSS instruction
7203 instruct storeX(memory mem, regX src) %{
7204   predicate(UseSSE>=1);
7205   match(Set mem (StoreF mem src));
7206   ins_cost(95);
7207   format %{ "MOVSS  $mem,$src" %}
7208   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, mem));
7209   ins_pipe( pipe_slow );
7210 %}
7211 
7212 // Store Aligned Packed Single Float XMM register to memory
7213 instruct storeA2F(memory mem, regXD src) %{
7214   predicate(UseSSE>=1);
7215   match(Set mem (Store2F mem src));
7216   ins_cost(145);
7217   format %{ "MOVQ  $mem,$src\t! packed2F" %}
7218   ins_encode( movq_st(mem, src));
7219   ins_pipe( pipe_slow );
7220 %}
7221 
7222 // Store Float
7223 instruct storeF( memory mem, regFPR1 src) %{
7224   predicate(UseSSE==0);
7225   match(Set mem (StoreF mem src));
7226 
7227   ins_cost(100);
7228   format %{ "FST_S  $mem,$src" %}
7229   opcode(0xD9);       /* D9 /2 */
7230   ins_encode( enc_FP_store(mem,src) );
7231   ins_pipe( fpu_mem_reg );
7232 %}
7233 
7234 // Store Float does rounding on x86
7235 instruct storeF_rounded( memory mem, regFPR1 src) %{
7236   predicate(UseSSE==0);
7237   match(Set mem (StoreF mem (RoundFloat src)));
7238 
7239   ins_cost(100);
7240   format %{ "FST_S  $mem,$src\t# round" %}
7241   opcode(0xD9);       /* D9 /2 */
7242   ins_encode( enc_FP_store(mem,src) );
7243   ins_pipe( fpu_mem_reg );
7244 %}
7245 
7246 // Store Float does rounding on x86
7247 instruct storeF_Drounded( memory mem, regDPR1 src) %{
7248   predicate(UseSSE<=1);
7249   match(Set mem (StoreF mem (ConvD2F src)));
7250 
7251   ins_cost(100);
7252   format %{ "FST_S  $mem,$src\t# D-round" %}
7253   opcode(0xD9);       /* D9 /2 */
7254   ins_encode( enc_FP_store(mem,src) );
7255   ins_pipe( fpu_mem_reg );
7256 %}
7257 
7258 // Store immediate Float value (it is faster than store from FPU register)
7259 // The instruction usage is guarded by predicate in operand immF().
7260 instruct storeF_imm( memory mem, immF src) %{
7261   match(Set mem (StoreF mem src));
7262 
7263   ins_cost(50);
7264   format %{ "MOV    $mem,$src\t# store float" %}
7265   opcode(0xC7);               /* C7 /0 */
7266   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32F_as_bits( src ));
7267   ins_pipe( ialu_mem_imm );
7268 %}
7269 
7270 // Store immediate Float value (it is faster than store from XMM register)
7271 // The instruction usage is guarded by predicate in operand immXF().
7272 instruct storeX_imm( memory mem, immXF src) %{
7273   match(Set mem (StoreF mem src));
7274 
7275   ins_cost(50);
7276   format %{ "MOV    $mem,$src\t# store float" %}
7277   opcode(0xC7);               /* C7 /0 */
7278   ins_encode( OpcP, RMopc_Mem(0x00,mem),  Con32XF_as_bits( src ));
7279   ins_pipe( ialu_mem_imm );
7280 %}
7281 
7282 // Store Integer to stack slot
7283 instruct storeSSI(stackSlotI dst, eRegI src) %{
7284   match(Set dst src);
7285 
7286   ins_cost(100);
7287   format %{ "MOV    $dst,$src" %}
7288   opcode(0x89);
7289   ins_encode( OpcPRegSS( dst, src ) );
7290   ins_pipe( ialu_mem_reg );
7291 %}
7292 
7293 // Store Integer to stack slot
7294 instruct storeSSP(stackSlotP dst, eRegP src) %{
7295   match(Set dst src);
7296 
7297   ins_cost(100);
7298   format %{ "MOV    $dst,$src" %}
7299   opcode(0x89);
7300   ins_encode( OpcPRegSS( dst, src ) );
7301   ins_pipe( ialu_mem_reg );
7302 %}
7303 
7304 // Store Long to stack slot
7305 instruct storeSSL(stackSlotL dst, eRegL src) %{
7306   match(Set dst src);
7307 
7308   ins_cost(200);
7309   format %{ "MOV    $dst,$src.lo\n\t"
7310             "MOV    $dst+4,$src.hi" %}
7311   opcode(0x89, 0x89);
7312   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
7313   ins_pipe( ialu_mem_long_reg );
7314 %}
7315 
7316 //----------MemBar Instructions-----------------------------------------------
7317 // Memory barrier flavors
7318 
7319 instruct membar_acquire() %{
7320   match(MemBarAcquire);
7321   ins_cost(400);
7322 
7323   size(0);
7324   format %{ "MEMBAR-acquire" %}
7325   ins_encode( enc_membar_acquire );
7326   ins_pipe(pipe_slow);
7327 %}
7328 
7329 instruct membar_acquire_lock() %{
7330   match(MemBarAcquire);
7331   predicate(Matcher::prior_fast_lock(n));
7332   ins_cost(0);
7333 
7334   size(0);
7335   format %{ "MEMBAR-acquire (prior CMPXCHG in FastLock so empty encoding)" %}
7336   ins_encode( );
7337   ins_pipe(empty);
7338 %}
7339 
7340 instruct membar_release() %{
7341   match(MemBarRelease);
7342   ins_cost(400);
7343 
7344   size(0);
7345   format %{ "MEMBAR-release" %}
7346   ins_encode( enc_membar_release );
7347   ins_pipe(pipe_slow);
7348 %}
7349 
7350 instruct membar_release_lock() %{
7351   match(MemBarRelease);
7352   predicate(Matcher::post_fast_unlock(n));
7353   ins_cost(0);
7354 
7355   size(0);
7356   format %{ "MEMBAR-release (a FastUnlock follows so empty encoding)" %}
7357   ins_encode( );
7358   ins_pipe(empty);
7359 %}
7360 
7361 instruct membar_volatile() %{
7362   match(MemBarVolatile);
7363   ins_cost(400);
7364 
7365   format %{ "MEMBAR-volatile" %}
7366   ins_encode( enc_membar_volatile );
7367   ins_pipe(pipe_slow);
7368 %}
7369 
7370 instruct unnecessary_membar_volatile() %{
7371   match(MemBarVolatile);
7372   predicate(Matcher::post_store_load_barrier(n));
7373   ins_cost(0);
7374 
7375   size(0);
7376   format %{ "MEMBAR-volatile (unnecessary so empty encoding)" %}
7377   ins_encode( );
7378   ins_pipe(empty);
7379 %}
7380 
7381 //----------Move Instructions--------------------------------------------------
7382 instruct castX2P(eAXRegP dst, eAXRegI src) %{
7383   match(Set dst (CastX2P src));
7384   format %{ "# X2P  $dst, $src" %}
7385   ins_encode( /*empty encoding*/ );
7386   ins_cost(0);
7387   ins_pipe(empty);
7388 %}
7389 
7390 instruct castP2X(eRegI dst, eRegP src ) %{
7391   match(Set dst (CastP2X src));
7392   ins_cost(50);
7393   format %{ "MOV    $dst, $src\t# CastP2X" %}
7394   ins_encode( enc_Copy( dst, src) );
7395   ins_pipe( ialu_reg_reg );
7396 %}
7397 
7398 //----------Conditional Move---------------------------------------------------
7399 // Conditional move
7400 instruct cmovI_reg(eRegI dst, eRegI src, eFlagsReg cr, cmpOp cop ) %{
7401   predicate(VM_Version::supports_cmov() );
7402   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7403   ins_cost(200);
7404   format %{ "CMOV$cop $dst,$src" %}
7405   opcode(0x0F,0x40);
7406   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7407   ins_pipe( pipe_cmov_reg );
7408 %}
7409 
7410 instruct cmovI_regU( cmpOpU cop, eFlagsRegU cr, eRegI dst, eRegI src ) %{
7411   predicate(VM_Version::supports_cmov() );
7412   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7413   ins_cost(200);
7414   format %{ "CMOV$cop $dst,$src" %}
7415   opcode(0x0F,0x40);
7416   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7417   ins_pipe( pipe_cmov_reg );
7418 %}
7419 
7420 instruct cmovI_regUCF( cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, eRegI src ) %{
7421   predicate(VM_Version::supports_cmov() );
7422   match(Set dst (CMoveI (Binary cop cr) (Binary dst src)));
7423   ins_cost(200);
7424   expand %{
7425     cmovI_regU(cop, cr, dst, src);
7426   %}
7427 %}
7428 
7429 // Conditional move
7430 instruct cmovI_mem(cmpOp cop, eFlagsReg cr, eRegI dst, memory src) %{
7431   predicate(VM_Version::supports_cmov() );
7432   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7433   ins_cost(250);
7434   format %{ "CMOV$cop $dst,$src" %}
7435   opcode(0x0F,0x40);
7436   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7437   ins_pipe( pipe_cmov_mem );
7438 %}
7439 
7440 // Conditional move
7441 instruct cmovI_memU(cmpOpU cop, eFlagsRegU cr, eRegI dst, memory src) %{
7442   predicate(VM_Version::supports_cmov() );
7443   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7444   ins_cost(250);
7445   format %{ "CMOV$cop $dst,$src" %}
7446   opcode(0x0F,0x40);
7447   ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7448   ins_pipe( pipe_cmov_mem );
7449 %}
7450 
7451 instruct cmovI_memUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegI dst, memory src) %{
7452   predicate(VM_Version::supports_cmov() );
7453   match(Set dst (CMoveI (Binary cop cr) (Binary dst (LoadI src))));
7454   ins_cost(250);
7455   expand %{
7456     cmovI_memU(cop, cr, dst, src);
7457   %}
7458 %}
7459 
7460 // Conditional move
7461 instruct cmovP_reg(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7462   predicate(VM_Version::supports_cmov() );
7463   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7464   ins_cost(200);
7465   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7466   opcode(0x0F,0x40);
7467   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7468   ins_pipe( pipe_cmov_reg );
7469 %}
7470 
7471 // Conditional move (non-P6 version)
7472 // Note:  a CMoveP is generated for  stubs and native wrappers
7473 //        regardless of whether we are on a P6, so we
7474 //        emulate a cmov here
7475 instruct cmovP_reg_nonP6(eRegP dst, eRegP src, eFlagsReg cr, cmpOp cop ) %{
7476   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7477   ins_cost(300);
7478   format %{ "Jn$cop   skip\n\t"
7479           "MOV    $dst,$src\t# pointer\n"
7480       "skip:" %}
7481   opcode(0x8b);
7482   ins_encode( enc_cmov_branch(cop, 0x2), OpcP, RegReg(dst, src));
7483   ins_pipe( pipe_cmov_reg );
7484 %}
7485 
7486 // Conditional move
7487 instruct cmovP_regU(cmpOpU cop, eFlagsRegU cr, eRegP dst, eRegP src ) %{
7488   predicate(VM_Version::supports_cmov() );
7489   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7490   ins_cost(200);
7491   format %{ "CMOV$cop $dst,$src\t# ptr" %}
7492   opcode(0x0F,0x40);
7493   ins_encode( enc_cmov(cop), RegReg( dst, src ) );
7494   ins_pipe( pipe_cmov_reg );
7495 %}
7496 
7497 instruct cmovP_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegP dst, eRegP src ) %{
7498   predicate(VM_Version::supports_cmov() );
7499   match(Set dst (CMoveP (Binary cop cr) (Binary dst src)));
7500   ins_cost(200);
7501   expand %{
7502     cmovP_regU(cop, cr, dst, src);
7503   %}
7504 %}
7505 
7506 // DISABLED: Requires the ADLC to emit a bottom_type call that
7507 // correctly meets the two pointer arguments; one is an incoming
7508 // register but the other is a memory operand.  ALSO appears to
7509 // be buggy with implicit null checks.
7510 //
7511 //// Conditional move
7512 //instruct cmovP_mem(cmpOp cop, eFlagsReg cr, eRegP dst, memory src) %{
7513 //  predicate(VM_Version::supports_cmov() );
7514 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7515 //  ins_cost(250);
7516 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7517 //  opcode(0x0F,0x40);
7518 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7519 //  ins_pipe( pipe_cmov_mem );
7520 //%}
7521 //
7522 //// Conditional move
7523 //instruct cmovP_memU(cmpOpU cop, eFlagsRegU cr, eRegP dst, memory src) %{
7524 //  predicate(VM_Version::supports_cmov() );
7525 //  match(Set dst (CMoveP (Binary cop cr) (Binary dst (LoadP src))));
7526 //  ins_cost(250);
7527 //  format %{ "CMOV$cop $dst,$src\t# ptr" %}
7528 //  opcode(0x0F,0x40);
7529 //  ins_encode( enc_cmov(cop), RegMem( dst, src ) );
7530 //  ins_pipe( pipe_cmov_mem );
7531 //%}
7532 
7533 // Conditional move
7534 instruct fcmovD_regU(cmpOp_fcmov cop, eFlagsRegU cr, regDPR1 dst, regD src) %{
7535   predicate(UseSSE<=1);
7536   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7537   ins_cost(200);
7538   format %{ "FCMOV$cop $dst,$src\t# double" %}
7539   opcode(0xDA);
7540   ins_encode( enc_cmov_d(cop,src) );
7541   ins_pipe( pipe_cmovD_reg );
7542 %}
7543 
7544 // Conditional move
7545 instruct fcmovF_regU(cmpOp_fcmov cop, eFlagsRegU cr, regFPR1 dst, regF src) %{
7546   predicate(UseSSE==0);
7547   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7548   ins_cost(200);
7549   format %{ "FCMOV$cop $dst,$src\t# float" %}
7550   opcode(0xDA);
7551   ins_encode( enc_cmov_d(cop,src) );
7552   ins_pipe( pipe_cmovD_reg );
7553 %}
7554 
7555 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7556 instruct fcmovD_regS(cmpOp cop, eFlagsReg cr, regD dst, regD src) %{
7557   predicate(UseSSE<=1);
7558   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7559   ins_cost(200);
7560   format %{ "Jn$cop   skip\n\t"
7561             "MOV    $dst,$src\t# double\n"
7562       "skip:" %}
7563   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7564   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_D(src), OpcP, RegOpc(dst) );
7565   ins_pipe( pipe_cmovD_reg );
7566 %}
7567 
7568 // Float CMOV on Intel doesn't handle *signed* compares, only unsigned.
7569 instruct fcmovF_regS(cmpOp cop, eFlagsReg cr, regF dst, regF src) %{
7570   predicate(UseSSE==0);
7571   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7572   ins_cost(200);
7573   format %{ "Jn$cop    skip\n\t"
7574             "MOV    $dst,$src\t# float\n"
7575       "skip:" %}
7576   opcode (0xdd, 0x3);     /* DD D8+i or DD /3 */
7577   ins_encode( enc_cmov_branch( cop, 0x4 ), Push_Reg_F(src), OpcP, RegOpc(dst) );
7578   ins_pipe( pipe_cmovD_reg );
7579 %}
7580 
7581 // No CMOVE with SSE/SSE2
7582 instruct fcmovX_regS(cmpOp cop, eFlagsReg cr, regX dst, regX src) %{
7583   predicate (UseSSE>=1);
7584   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7585   ins_cost(200);
7586   format %{ "Jn$cop   skip\n\t"
7587             "MOVSS  $dst,$src\t# float\n"
7588       "skip:" %}
7589   ins_encode %{
7590     Label skip;
7591     // Invert sense of branch from sense of CMOV
7592     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7593     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7594     __ bind(skip);
7595   %}
7596   ins_pipe( pipe_slow );
7597 %}
7598 
7599 // No CMOVE with SSE/SSE2
7600 instruct fcmovXD_regS(cmpOp cop, eFlagsReg cr, regXD dst, regXD src) %{
7601   predicate (UseSSE>=2);
7602   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7603   ins_cost(200);
7604   format %{ "Jn$cop   skip\n\t"
7605             "MOVSD  $dst,$src\t# float\n"
7606       "skip:" %}
7607   ins_encode %{
7608     Label skip;
7609     // Invert sense of branch from sense of CMOV
7610     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7611     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7612     __ bind(skip);
7613   %}
7614   ins_pipe( pipe_slow );
7615 %}
7616 
7617 // unsigned version
7618 instruct fcmovX_regU(cmpOpU cop, eFlagsRegU cr, regX dst, regX src) %{
7619   predicate (UseSSE>=1);
7620   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7621   ins_cost(200);
7622   format %{ "Jn$cop   skip\n\t"
7623             "MOVSS  $dst,$src\t# float\n"
7624       "skip:" %}
7625   ins_encode %{
7626     Label skip;
7627     // Invert sense of branch from sense of CMOV
7628     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7629     __ movflt($dst$$XMMRegister, $src$$XMMRegister);
7630     __ bind(skip);
7631   %}
7632   ins_pipe( pipe_slow );
7633 %}
7634 
7635 instruct fcmovX_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regX dst, regX src) %{
7636   predicate (UseSSE>=1);
7637   match(Set dst (CMoveF (Binary cop cr) (Binary dst src)));
7638   ins_cost(200);
7639   expand %{
7640     fcmovX_regU(cop, cr, dst, src);
7641   %}
7642 %}
7643 
7644 // unsigned version
7645 instruct fcmovXD_regU(cmpOpU cop, eFlagsRegU cr, regXD dst, regXD src) %{
7646   predicate (UseSSE>=2);
7647   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7648   ins_cost(200);
7649   format %{ "Jn$cop   skip\n\t"
7650             "MOVSD  $dst,$src\t# float\n"
7651       "skip:" %}
7652   ins_encode %{
7653     Label skip;
7654     // Invert sense of branch from sense of CMOV
7655     __ jccb((Assembler::Condition)($cop$$cmpcode^1), skip);
7656     __ movdbl($dst$$XMMRegister, $src$$XMMRegister);
7657     __ bind(skip);
7658   %}
7659   ins_pipe( pipe_slow );
7660 %}
7661 
7662 instruct fcmovXD_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, regXD dst, regXD src) %{
7663   predicate (UseSSE>=2);
7664   match(Set dst (CMoveD (Binary cop cr) (Binary dst src)));
7665   ins_cost(200);
7666   expand %{
7667     fcmovXD_regU(cop, cr, dst, src);
7668   %}
7669 %}
7670 
7671 instruct cmovL_reg(cmpOp cop, eFlagsReg cr, eRegL dst, eRegL src) %{
7672   predicate(VM_Version::supports_cmov() );
7673   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7674   ins_cost(200);
7675   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7676             "CMOV$cop $dst.hi,$src.hi" %}
7677   opcode(0x0F,0x40);
7678   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7679   ins_pipe( pipe_cmov_reg_long );
7680 %}
7681 
7682 instruct cmovL_regU(cmpOpU cop, eFlagsRegU cr, eRegL dst, eRegL src) %{
7683   predicate(VM_Version::supports_cmov() );
7684   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7685   ins_cost(200);
7686   format %{ "CMOV$cop $dst.lo,$src.lo\n\t"
7687             "CMOV$cop $dst.hi,$src.hi" %}
7688   opcode(0x0F,0x40);
7689   ins_encode( enc_cmov(cop), RegReg_Lo2( dst, src ), enc_cmov(cop), RegReg_Hi2( dst, src ) );
7690   ins_pipe( pipe_cmov_reg_long );
7691 %}
7692 
7693 instruct cmovL_regUCF(cmpOpUCF cop, eFlagsRegUCF cr, eRegL dst, eRegL src) %{
7694   predicate(VM_Version::supports_cmov() );
7695   match(Set dst (CMoveL (Binary cop cr) (Binary dst src)));
7696   ins_cost(200);
7697   expand %{
7698     cmovL_regU(cop, cr, dst, src);
7699   %}
7700 %}
7701 
7702 //----------Arithmetic Instructions--------------------------------------------
7703 //----------Addition Instructions----------------------------------------------
7704 // Integer Addition Instructions
7705 instruct addI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
7706   match(Set dst (AddI dst src));
7707   effect(KILL cr);
7708 
7709   size(2);
7710   format %{ "ADD    $dst,$src" %}
7711   opcode(0x03);
7712   ins_encode( OpcP, RegReg( dst, src) );
7713   ins_pipe( ialu_reg_reg );
7714 %}
7715 
7716 instruct addI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
7717   match(Set dst (AddI dst src));
7718   effect(KILL cr);
7719 
7720   format %{ "ADD    $dst,$src" %}
7721   opcode(0x81, 0x00); /* /0 id */
7722   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7723   ins_pipe( ialu_reg );
7724 %}
7725 
7726 instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
7727   predicate(UseIncDec);
7728   match(Set dst (AddI dst src));
7729   effect(KILL cr);
7730 
7731   size(1);
7732   format %{ "INC    $dst" %}
7733   opcode(0x40); /*  */
7734   ins_encode( Opc_plus( primary, dst ) );
7735   ins_pipe( ialu_reg );
7736 %}
7737 
7738 instruct leaI_eReg_immI(eRegI dst, eRegI src0, immI src1) %{
7739   match(Set dst (AddI src0 src1));
7740   ins_cost(110);
7741 
7742   format %{ "LEA    $dst,[$src0 + $src1]" %}
7743   opcode(0x8D); /* 0x8D /r */
7744   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7745   ins_pipe( ialu_reg_reg );
7746 %}
7747 
7748 instruct leaP_eReg_immI(eRegP dst, eRegP src0, immI src1) %{
7749   match(Set dst (AddP src0 src1));
7750   ins_cost(110);
7751 
7752   format %{ "LEA    $dst,[$src0 + $src1]\t# ptr" %}
7753   opcode(0x8D); /* 0x8D /r */
7754   ins_encode( OpcP, RegLea( dst, src0, src1 ) );
7755   ins_pipe( ialu_reg_reg );
7756 %}
7757 
7758 instruct decI_eReg(eRegI dst, immI_M1 src, eFlagsReg cr) %{
7759   predicate(UseIncDec);
7760   match(Set dst (AddI dst src));
7761   effect(KILL cr);
7762 
7763   size(1);
7764   format %{ "DEC    $dst" %}
7765   opcode(0x48); /*  */
7766   ins_encode( Opc_plus( primary, dst ) );
7767   ins_pipe( ialu_reg );
7768 %}
7769 
7770 instruct addP_eReg(eRegP dst, eRegI src, eFlagsReg cr) %{
7771   match(Set dst (AddP dst src));
7772   effect(KILL cr);
7773 
7774   size(2);
7775   format %{ "ADD    $dst,$src" %}
7776   opcode(0x03);
7777   ins_encode( OpcP, RegReg( dst, src) );
7778   ins_pipe( ialu_reg_reg );
7779 %}
7780 
7781 instruct addP_eReg_imm(eRegP dst, immI src, eFlagsReg cr) %{
7782   match(Set dst (AddP dst src));
7783   effect(KILL cr);
7784 
7785   format %{ "ADD    $dst,$src" %}
7786   opcode(0x81,0x00); /* Opcode 81 /0 id */
7787   // ins_encode( RegImm( dst, src) );
7788   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
7789   ins_pipe( ialu_reg );
7790 %}
7791 
7792 instruct addI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
7793   match(Set dst (AddI dst (LoadI src)));
7794   effect(KILL cr);
7795 
7796   ins_cost(125);
7797   format %{ "ADD    $dst,$src" %}
7798   opcode(0x03);
7799   ins_encode( OpcP, RegMem( dst, src) );
7800   ins_pipe( ialu_reg_mem );
7801 %}
7802 
7803 instruct addI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
7804   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7805   effect(KILL cr);
7806 
7807   ins_cost(150);
7808   format %{ "ADD    $dst,$src" %}
7809   opcode(0x01);  /* Opcode 01 /r */
7810   ins_encode( OpcP, RegMem( src, dst ) );
7811   ins_pipe( ialu_mem_reg );
7812 %}
7813 
7814 // Add Memory with Immediate
7815 instruct addI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
7816   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7817   effect(KILL cr);
7818 
7819   ins_cost(125);
7820   format %{ "ADD    $dst,$src" %}
7821   opcode(0x81);               /* Opcode 81 /0 id */
7822   ins_encode( OpcSE( src ), RMopc_Mem(0x00,dst), Con8or32( src ) );
7823   ins_pipe( ialu_mem_imm );
7824 %}
7825 
7826 instruct incI_mem(memory dst, immI1 src, eFlagsReg cr) %{
7827   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7828   effect(KILL cr);
7829 
7830   ins_cost(125);
7831   format %{ "INC    $dst" %}
7832   opcode(0xFF);               /* Opcode FF /0 */
7833   ins_encode( OpcP, RMopc_Mem(0x00,dst));
7834   ins_pipe( ialu_mem_imm );
7835 %}
7836 
7837 instruct decI_mem(memory dst, immI_M1 src, eFlagsReg cr) %{
7838   match(Set dst (StoreI dst (AddI (LoadI dst) src)));
7839   effect(KILL cr);
7840 
7841   ins_cost(125);
7842   format %{ "DEC    $dst" %}
7843   opcode(0xFF);               /* Opcode FF /1 */
7844   ins_encode( OpcP, RMopc_Mem(0x01,dst));
7845   ins_pipe( ialu_mem_imm );
7846 %}
7847 
7848 
7849 instruct checkCastPP( eRegP dst ) %{
7850   match(Set dst (CheckCastPP dst));
7851 
7852   size(0);
7853   format %{ "#checkcastPP of $dst" %}
7854   ins_encode( /*empty encoding*/ );
7855   ins_pipe( empty );
7856 %}
7857 
7858 instruct castPP( eRegP dst ) %{
7859   match(Set dst (CastPP dst));
7860   format %{ "#castPP of $dst" %}
7861   ins_encode( /*empty encoding*/ );
7862   ins_pipe( empty );
7863 %}
7864 
7865 instruct castII( eRegI dst ) %{
7866   match(Set dst (CastII dst));
7867   format %{ "#castII of $dst" %}
7868   ins_encode( /*empty encoding*/ );
7869   ins_cost(0);
7870   ins_pipe( empty );
7871 %}
7872 
7873 
7874 // Load-locked - same as a regular pointer load when used with compare-swap
7875 instruct loadPLocked(eRegP dst, memory mem) %{
7876   match(Set dst (LoadPLocked mem));
7877 
7878   ins_cost(125);
7879   format %{ "MOV    $dst,$mem\t# Load ptr. locked" %}
7880   opcode(0x8B);
7881   ins_encode( OpcP, RegMem(dst,mem));
7882   ins_pipe( ialu_reg_mem );
7883 %}
7884 
7885 // LoadLong-locked - same as a volatile long load when used with compare-swap
7886 instruct loadLLocked(stackSlotL dst, load_long_memory mem) %{
7887   predicate(UseSSE<=1);
7888   match(Set dst (LoadLLocked mem));
7889 
7890   ins_cost(200);
7891   format %{ "FILD   $mem\t# Atomic volatile long load\n\t"
7892             "FISTp  $dst" %}
7893   ins_encode(enc_loadL_volatile(mem,dst));
7894   ins_pipe( fpu_reg_mem );
7895 %}
7896 
7897 instruct loadLX_Locked(stackSlotL dst, load_long_memory mem, regXD tmp) %{
7898   predicate(UseSSE>=2);
7899   match(Set dst (LoadLLocked mem));
7900   effect(TEMP tmp);
7901   ins_cost(180);
7902   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
7903             "MOVSD  $dst,$tmp" %}
7904   ins_encode(enc_loadLX_volatile(mem, dst, tmp));
7905   ins_pipe( pipe_slow );
7906 %}
7907 
7908 instruct loadLX_reg_Locked(eRegL dst, load_long_memory mem, regXD tmp) %{
7909   predicate(UseSSE>=2);
7910   match(Set dst (LoadLLocked mem));
7911   effect(TEMP tmp);
7912   ins_cost(160);
7913   format %{ "MOVSD  $tmp,$mem\t# Atomic volatile long load\n\t"
7914             "MOVD   $dst.lo,$tmp\n\t"
7915             "PSRLQ  $tmp,32\n\t"
7916             "MOVD   $dst.hi,$tmp" %}
7917   ins_encode(enc_loadLX_reg_volatile(mem, dst, tmp));
7918   ins_pipe( pipe_slow );
7919 %}
7920 
7921 // Conditional-store of the updated heap-top.
7922 // Used during allocation of the shared heap.
7923 // Sets flags (EQ) on success.  Implemented with a CMPXCHG on Intel.
7924 instruct storePConditional( memory heap_top_ptr, eAXRegP oldval, eRegP newval, eFlagsReg cr ) %{
7925   match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
7926   // EAX is killed if there is contention, but then it's also unused.
7927   // In the common case of no contention, EAX holds the new oop address.
7928   format %{ "CMPXCHG $heap_top_ptr,$newval\t# If EAX==$heap_top_ptr Then store $newval into $heap_top_ptr" %}
7929   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval,heap_top_ptr) );
7930   ins_pipe( pipe_cmpxchg );
7931 %}
7932 
7933 // Conditional-store of an int value.
7934 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG on Intel.
7935 instruct storeIConditional( memory mem, eAXRegI oldval, eRegI newval, eFlagsReg cr ) %{
7936   match(Set cr (StoreIConditional mem (Binary oldval newval)));
7937   effect(KILL oldval);
7938   format %{ "CMPXCHG $mem,$newval\t# If EAX==$mem Then store $newval into $mem" %}
7939   ins_encode( lock_prefix, Opcode(0x0F), Opcode(0xB1), RegMem(newval, mem) );
7940   ins_pipe( pipe_cmpxchg );
7941 %}
7942 
7943 // Conditional-store of a long value.
7944 // ZF flag is set on success, reset otherwise.  Implemented with a CMPXCHG8 on Intel.
7945 instruct storeLConditional( memory mem, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7946   match(Set cr (StoreLConditional mem (Binary oldval newval)));
7947   effect(KILL oldval);
7948   format %{ "XCHG   EBX,ECX\t# correct order for CMPXCHG8 instruction\n\t"
7949             "CMPXCHG8 $mem,ECX:EBX\t# If EDX:EAX==$mem Then store ECX:EBX into $mem\n\t"
7950             "XCHG   EBX,ECX"
7951   %}
7952   ins_encode %{
7953     // Note: we need to swap rbx, and rcx before and after the
7954     //       cmpxchg8 instruction because the instruction uses
7955     //       rcx as the high order word of the new value to store but
7956     //       our register encoding uses rbx.
7957     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7958     if( os::is_MP() )
7959       __ lock();
7960     __ cmpxchg8(Address::make_raw($mem$$base, $mem$$index, $mem$$scale, $mem$$disp));
7961     __ xchgl(as_Register(EBX_enc), as_Register(ECX_enc));
7962   %}
7963   ins_pipe( pipe_cmpxchg );
7964 %}
7965 
7966 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7967 
7968 instruct compareAndSwapL( eRegI res, eSIRegP mem_ptr, eADXRegL oldval, eBCXRegL newval, eFlagsReg cr ) %{
7969   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7970   effect(KILL cr, KILL oldval);
7971   format %{ "CMPXCHG8 [$mem_ptr],$newval\t# If EDX:EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7972             "MOV    $res,0\n\t"
7973             "JNE,s  fail\n\t"
7974             "MOV    $res,1\n"
7975           "fail:" %}
7976   ins_encode( enc_cmpxchg8(mem_ptr),
7977               enc_flags_ne_to_boolean(res) );
7978   ins_pipe( pipe_cmpxchg );
7979 %}
7980 
7981 instruct compareAndSwapP( eRegI res,  pRegP mem_ptr, eAXRegP oldval, eCXRegP newval, eFlagsReg cr) %{
7982   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7983   effect(KILL cr, KILL oldval);
7984   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7985             "MOV    $res,0\n\t"
7986             "JNE,s  fail\n\t"
7987             "MOV    $res,1\n"
7988           "fail:" %}
7989   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
7990   ins_pipe( pipe_cmpxchg );
7991 %}
7992 
7993 instruct compareAndSwapI( eRegI res, pRegP mem_ptr, eAXRegI oldval, eCXRegI newval, eFlagsReg cr) %{
7994   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7995   effect(KILL cr, KILL oldval);
7996   format %{ "CMPXCHG [$mem_ptr],$newval\t# If EAX==[$mem_ptr] Then store $newval into [$mem_ptr]\n\t"
7997             "MOV    $res,0\n\t"
7998             "JNE,s  fail\n\t"
7999             "MOV    $res,1\n"
8000           "fail:" %}
8001   ins_encode( enc_cmpxchg(mem_ptr), enc_flags_ne_to_boolean(res) );
8002   ins_pipe( pipe_cmpxchg );
8003 %}
8004 
8005 //----------Subtraction Instructions-------------------------------------------
8006 // Integer Subtraction Instructions
8007 instruct subI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8008   match(Set dst (SubI dst src));
8009   effect(KILL cr);
8010 
8011   size(2);
8012   format %{ "SUB    $dst,$src" %}
8013   opcode(0x2B);
8014   ins_encode( OpcP, RegReg( dst, src) );
8015   ins_pipe( ialu_reg_reg );
8016 %}
8017 
8018 instruct subI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8019   match(Set dst (SubI dst src));
8020   effect(KILL cr);
8021 
8022   format %{ "SUB    $dst,$src" %}
8023   opcode(0x81,0x05);  /* Opcode 81 /5 */
8024   // ins_encode( RegImm( dst, src) );
8025   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8026   ins_pipe( ialu_reg );
8027 %}
8028 
8029 instruct subI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8030   match(Set dst (SubI dst (LoadI src)));
8031   effect(KILL cr);
8032 
8033   ins_cost(125);
8034   format %{ "SUB    $dst,$src" %}
8035   opcode(0x2B);
8036   ins_encode( OpcP, RegMem( dst, src) );
8037   ins_pipe( ialu_reg_mem );
8038 %}
8039 
8040 instruct subI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8041   match(Set dst (StoreI dst (SubI (LoadI dst) src)));
8042   effect(KILL cr);
8043 
8044   ins_cost(150);
8045   format %{ "SUB    $dst,$src" %}
8046   opcode(0x29);  /* Opcode 29 /r */
8047   ins_encode( OpcP, RegMem( src, dst ) );
8048   ins_pipe( ialu_mem_reg );
8049 %}
8050 
8051 // Subtract from a pointer
8052 instruct subP_eReg(eRegP dst, eRegI src, immI0 zero, eFlagsReg cr) %{
8053   match(Set dst (AddP dst (SubI zero src)));
8054   effect(KILL cr);
8055 
8056   size(2);
8057   format %{ "SUB    $dst,$src" %}
8058   opcode(0x2B);
8059   ins_encode( OpcP, RegReg( dst, src) );
8060   ins_pipe( ialu_reg_reg );
8061 %}
8062 
8063 instruct negI_eReg(eRegI dst, immI0 zero, eFlagsReg cr) %{
8064   match(Set dst (SubI zero dst));
8065   effect(KILL cr);
8066 
8067   size(2);
8068   format %{ "NEG    $dst" %}
8069   opcode(0xF7,0x03);  // Opcode F7 /3
8070   ins_encode( OpcP, RegOpc( dst ) );
8071   ins_pipe( ialu_reg );
8072 %}
8073 
8074 
8075 //----------Multiplication/Division Instructions-------------------------------
8076 // Integer Multiplication Instructions
8077 // Multiply Register
8078 instruct mulI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8079   match(Set dst (MulI dst src));
8080   effect(KILL cr);
8081 
8082   size(3);
8083   ins_cost(300);
8084   format %{ "IMUL   $dst,$src" %}
8085   opcode(0xAF, 0x0F);
8086   ins_encode( OpcS, OpcP, RegReg( dst, src) );
8087   ins_pipe( ialu_reg_reg_alu0 );
8088 %}
8089 
8090 // Multiply 32-bit Immediate
8091 instruct mulI_eReg_imm(eRegI dst, eRegI src, immI imm, eFlagsReg cr) %{
8092   match(Set dst (MulI src imm));
8093   effect(KILL cr);
8094 
8095   ins_cost(300);
8096   format %{ "IMUL   $dst,$src,$imm" %}
8097   opcode(0x69);  /* 69 /r id */
8098   ins_encode( OpcSE(imm), RegReg( dst, src ), Con8or32( imm ) );
8099   ins_pipe( ialu_reg_reg_alu0 );
8100 %}
8101 
8102 instruct loadConL_low_only(eADXRegL_low_only dst, immL32 src, eFlagsReg cr) %{
8103   match(Set dst src);
8104   effect(KILL cr);
8105 
8106   // Note that this is artificially increased to make it more expensive than loadConL
8107   ins_cost(250);
8108   format %{ "MOV    EAX,$src\t// low word only" %}
8109   opcode(0xB8);
8110   ins_encode( LdImmL_Lo(dst, src) );
8111   ins_pipe( ialu_reg_fat );
8112 %}
8113 
8114 // Multiply by 32-bit Immediate, taking the shifted high order results
8115 //  (special case for shift by 32)
8116 instruct mulI_imm_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32 cnt, eFlagsReg cr) %{
8117   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8118   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8119              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8120              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8121   effect(USE src1, KILL cr);
8122 
8123   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8124   ins_cost(0*100 + 1*400 - 150);
8125   format %{ "IMUL   EDX:EAX,$src1" %}
8126   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8127   ins_pipe( pipe_slow );
8128 %}
8129 
8130 // Multiply by 32-bit Immediate, taking the shifted high order results
8131 instruct mulI_imm_RShift_high(eDXRegI dst, nadxRegI src1, eADXRegL_low_only src2, immI_32_63 cnt, eFlagsReg cr) %{
8132   match(Set dst (ConvL2I (RShiftL (MulL (ConvI2L src1) src2) cnt)));
8133   predicate( _kids[0]->_kids[0]->_kids[1]->_leaf->Opcode() == Op_ConL &&
8134              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() >= min_jint &&
8135              _kids[0]->_kids[0]->_kids[1]->_leaf->as_Type()->type()->is_long()->get_con() <= max_jint );
8136   effect(USE src1, KILL cr);
8137 
8138   // Note that this is adjusted by 150 to compensate for the overcosting of loadConL_low_only
8139   ins_cost(1*100 + 1*400 - 150);
8140   format %{ "IMUL   EDX:EAX,$src1\n\t"
8141             "SAR    EDX,$cnt-32" %}
8142   ins_encode( multiply_con_and_shift_high( dst, src1, src2, cnt, cr ) );
8143   ins_pipe( pipe_slow );
8144 %}
8145 
8146 // Multiply Memory 32-bit Immediate
8147 instruct mulI_mem_imm(eRegI dst, memory src, immI imm, eFlagsReg cr) %{
8148   match(Set dst (MulI (LoadI src) imm));
8149   effect(KILL cr);
8150 
8151   ins_cost(300);
8152   format %{ "IMUL   $dst,$src,$imm" %}
8153   opcode(0x69);  /* 69 /r id */
8154   ins_encode( OpcSE(imm), RegMem( dst, src ), Con8or32( imm ) );
8155   ins_pipe( ialu_reg_mem_alu0 );
8156 %}
8157 
8158 // Multiply Memory
8159 instruct mulI(eRegI dst, memory src, eFlagsReg cr) %{
8160   match(Set dst (MulI dst (LoadI src)));
8161   effect(KILL cr);
8162 
8163   ins_cost(350);
8164   format %{ "IMUL   $dst,$src" %}
8165   opcode(0xAF, 0x0F);
8166   ins_encode( OpcS, OpcP, RegMem( dst, src) );
8167   ins_pipe( ialu_reg_mem_alu0 );
8168 %}
8169 
8170 // Multiply Register Int to Long
8171 instruct mulI2L(eADXRegL dst, eAXRegI src, nadxRegI src1, eFlagsReg flags) %{
8172   // Basic Idea: long = (long)int * (long)int
8173   match(Set dst (MulL (ConvI2L src) (ConvI2L src1)));
8174   effect(DEF dst, USE src, USE src1, KILL flags);
8175 
8176   ins_cost(300);
8177   format %{ "IMUL   $dst,$src1" %}
8178 
8179   ins_encode( long_int_multiply( dst, src1 ) );
8180   ins_pipe( ialu_reg_reg_alu0 );
8181 %}
8182 
8183 instruct mulIS_eReg(eADXRegL dst, immL_32bits mask, eFlagsReg flags, eAXRegI src, nadxRegI src1) %{
8184   // Basic Idea:  long = (int & 0xffffffffL) * (int & 0xffffffffL)
8185   match(Set dst (MulL (AndL (ConvI2L src) mask) (AndL (ConvI2L src1) mask)));
8186   effect(KILL flags);
8187 
8188   ins_cost(300);
8189   format %{ "MUL    $dst,$src1" %}
8190 
8191   ins_encode( long_uint_multiply(dst, src1) );
8192   ins_pipe( ialu_reg_reg_alu0 );
8193 %}
8194 
8195 // Multiply Register Long
8196 instruct mulL_eReg(eADXRegL dst, eRegL src, eRegI tmp, eFlagsReg cr) %{
8197   match(Set dst (MulL dst src));
8198   effect(KILL cr, TEMP tmp);
8199   ins_cost(4*100+3*400);
8200 // Basic idea: lo(result) = lo(x_lo * y_lo)
8201 //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
8202   format %{ "MOV    $tmp,$src.lo\n\t"
8203             "IMUL   $tmp,EDX\n\t"
8204             "MOV    EDX,$src.hi\n\t"
8205             "IMUL   EDX,EAX\n\t"
8206             "ADD    $tmp,EDX\n\t"
8207             "MUL    EDX:EAX,$src.lo\n\t"
8208             "ADD    EDX,$tmp" %}
8209   ins_encode( long_multiply( dst, src, tmp ) );
8210   ins_pipe( pipe_slow );
8211 %}
8212 
8213 // Multiply Register Long by small constant
8214 instruct mulL_eReg_con(eADXRegL dst, immL_127 src, eRegI tmp, eFlagsReg cr) %{
8215   match(Set dst (MulL dst src));
8216   effect(KILL cr, TEMP tmp);
8217   ins_cost(2*100+2*400);
8218   size(12);
8219 // Basic idea: lo(result) = lo(src * EAX)
8220 //             hi(result) = hi(src * EAX) + lo(src * EDX)
8221   format %{ "IMUL   $tmp,EDX,$src\n\t"
8222             "MOV    EDX,$src\n\t"
8223             "MUL    EDX\t# EDX*EAX -> EDX:EAX\n\t"
8224             "ADD    EDX,$tmp" %}
8225   ins_encode( long_multiply_con( dst, src, tmp ) );
8226   ins_pipe( pipe_slow );
8227 %}
8228 
8229 // Integer DIV with Register
8230 instruct divI_eReg(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8231   match(Set rax (DivI rax div));
8232   effect(KILL rdx, KILL cr);
8233   size(26);
8234   ins_cost(30*100+10*100);
8235   format %{ "CMP    EAX,0x80000000\n\t"
8236             "JNE,s  normal\n\t"
8237             "XOR    EDX,EDX\n\t"
8238             "CMP    ECX,-1\n\t"
8239             "JE,s   done\n"
8240     "normal: CDQ\n\t"
8241             "IDIV   $div\n\t"
8242     "done:"        %}
8243   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8244   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8245   ins_pipe( ialu_reg_reg_alu0 );
8246 %}
8247 
8248 // Divide Register Long
8249 instruct divL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8250   match(Set dst (DivL src1 src2));
8251   effect( KILL cr, KILL cx, KILL bx );
8252   ins_cost(10000);
8253   format %{ "PUSH   $src1.hi\n\t"
8254             "PUSH   $src1.lo\n\t"
8255             "PUSH   $src2.hi\n\t"
8256             "PUSH   $src2.lo\n\t"
8257             "CALL   SharedRuntime::ldiv\n\t"
8258             "ADD    ESP,16" %}
8259   ins_encode( long_div(src1,src2) );
8260   ins_pipe( pipe_slow );
8261 %}
8262 
8263 // Integer DIVMOD with Register, both quotient and mod results
8264 instruct divModI_eReg_divmod(eAXRegI rax, eDXRegI rdx, eCXRegI div, eFlagsReg cr) %{
8265   match(DivModI rax div);
8266   effect(KILL cr);
8267   size(26);
8268   ins_cost(30*100+10*100);
8269   format %{ "CMP    EAX,0x80000000\n\t"
8270             "JNE,s  normal\n\t"
8271             "XOR    EDX,EDX\n\t"
8272             "CMP    ECX,-1\n\t"
8273             "JE,s   done\n"
8274     "normal: CDQ\n\t"
8275             "IDIV   $div\n\t"
8276     "done:"        %}
8277   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8278   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8279   ins_pipe( pipe_slow );
8280 %}
8281 
8282 // Integer MOD with Register
8283 instruct modI_eReg(eDXRegI rdx, eAXRegI rax, eCXRegI div, eFlagsReg cr) %{
8284   match(Set rdx (ModI rax div));
8285   effect(KILL rax, KILL cr);
8286 
8287   size(26);
8288   ins_cost(300);
8289   format %{ "CDQ\n\t"
8290             "IDIV   $div" %}
8291   opcode(0xF7, 0x7);  /* Opcode F7 /7 */
8292   ins_encode( cdq_enc, OpcP, RegOpc(div) );
8293   ins_pipe( ialu_reg_reg_alu0 );
8294 %}
8295 
8296 // Remainder Register Long
8297 instruct modL_eReg( eADXRegL dst, eRegL src1, eRegL src2, eFlagsReg cr, eCXRegI cx, eBXRegI bx ) %{
8298   match(Set dst (ModL src1 src2));
8299   effect( KILL cr, KILL cx, KILL bx );
8300   ins_cost(10000);
8301   format %{ "PUSH   $src1.hi\n\t"
8302             "PUSH   $src1.lo\n\t"
8303             "PUSH   $src2.hi\n\t"
8304             "PUSH   $src2.lo\n\t"
8305             "CALL   SharedRuntime::lrem\n\t"
8306             "ADD    ESP,16" %}
8307   ins_encode( long_mod(src1,src2) );
8308   ins_pipe( pipe_slow );
8309 %}
8310 
8311 // Integer Shift Instructions
8312 // Shift Left by one
8313 instruct shlI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8314   match(Set dst (LShiftI dst shift));
8315   effect(KILL cr);
8316 
8317   size(2);
8318   format %{ "SHL    $dst,$shift" %}
8319   opcode(0xD1, 0x4);  /* D1 /4 */
8320   ins_encode( OpcP, RegOpc( dst ) );
8321   ins_pipe( ialu_reg );
8322 %}
8323 
8324 // Shift Left by 8-bit immediate
8325 instruct salI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8326   match(Set dst (LShiftI dst shift));
8327   effect(KILL cr);
8328 
8329   size(3);
8330   format %{ "SHL    $dst,$shift" %}
8331   opcode(0xC1, 0x4);  /* C1 /4 ib */
8332   ins_encode( RegOpcImm( dst, shift) );
8333   ins_pipe( ialu_reg );
8334 %}
8335 
8336 // Shift Left by variable
8337 instruct salI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8338   match(Set dst (LShiftI dst shift));
8339   effect(KILL cr);
8340 
8341   size(2);
8342   format %{ "SHL    $dst,$shift" %}
8343   opcode(0xD3, 0x4);  /* D3 /4 */
8344   ins_encode( OpcP, RegOpc( dst ) );
8345   ins_pipe( ialu_reg_reg );
8346 %}
8347 
8348 // Arithmetic shift right by one
8349 instruct sarI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8350   match(Set dst (RShiftI dst shift));
8351   effect(KILL cr);
8352 
8353   size(2);
8354   format %{ "SAR    $dst,$shift" %}
8355   opcode(0xD1, 0x7);  /* D1 /7 */
8356   ins_encode( OpcP, RegOpc( dst ) );
8357   ins_pipe( ialu_reg );
8358 %}
8359 
8360 // Arithmetic shift right by one
8361 instruct sarI_mem_1(memory dst, immI1 shift, eFlagsReg cr) %{
8362   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8363   effect(KILL cr);
8364   format %{ "SAR    $dst,$shift" %}
8365   opcode(0xD1, 0x7);  /* D1 /7 */
8366   ins_encode( OpcP, RMopc_Mem(secondary,dst) );
8367   ins_pipe( ialu_mem_imm );
8368 %}
8369 
8370 // Arithmetic Shift Right by 8-bit immediate
8371 instruct sarI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8372   match(Set dst (RShiftI dst shift));
8373   effect(KILL cr);
8374 
8375   size(3);
8376   format %{ "SAR    $dst,$shift" %}
8377   opcode(0xC1, 0x7);  /* C1 /7 ib */
8378   ins_encode( RegOpcImm( dst, shift ) );
8379   ins_pipe( ialu_mem_imm );
8380 %}
8381 
8382 // Arithmetic Shift Right by 8-bit immediate
8383 instruct sarI_mem_imm(memory dst, immI8 shift, eFlagsReg cr) %{
8384   match(Set dst (StoreI dst (RShiftI (LoadI dst) shift)));
8385   effect(KILL cr);
8386 
8387   format %{ "SAR    $dst,$shift" %}
8388   opcode(0xC1, 0x7);  /* C1 /7 ib */
8389   ins_encode( OpcP, RMopc_Mem(secondary, dst ), Con8or32( shift ) );
8390   ins_pipe( ialu_mem_imm );
8391 %}
8392 
8393 // Arithmetic Shift Right by variable
8394 instruct sarI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8395   match(Set dst (RShiftI dst shift));
8396   effect(KILL cr);
8397 
8398   size(2);
8399   format %{ "SAR    $dst,$shift" %}
8400   opcode(0xD3, 0x7);  /* D3 /7 */
8401   ins_encode( OpcP, RegOpc( dst ) );
8402   ins_pipe( ialu_reg_reg );
8403 %}
8404 
8405 // Logical shift right by one
8406 instruct shrI_eReg_1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8407   match(Set dst (URShiftI dst shift));
8408   effect(KILL cr);
8409 
8410   size(2);
8411   format %{ "SHR    $dst,$shift" %}
8412   opcode(0xD1, 0x5);  /* D1 /5 */
8413   ins_encode( OpcP, RegOpc( dst ) );
8414   ins_pipe( ialu_reg );
8415 %}
8416 
8417 // Logical Shift Right by 8-bit immediate
8418 instruct shrI_eReg_imm(eRegI dst, immI8 shift, eFlagsReg cr) %{
8419   match(Set dst (URShiftI dst shift));
8420   effect(KILL cr);
8421 
8422   size(3);
8423   format %{ "SHR    $dst,$shift" %}
8424   opcode(0xC1, 0x5);  /* C1 /5 ib */
8425   ins_encode( RegOpcImm( dst, shift) );
8426   ins_pipe( ialu_reg );
8427 %}
8428 
8429 
8430 // Logical Shift Right by 24, followed by Arithmetic Shift Left by 24.
8431 // This idiom is used by the compiler for the i2b bytecode.
8432 instruct i2b(eRegI dst, xRegI src, immI_24 twentyfour, eFlagsReg cr) %{
8433   match(Set dst (RShiftI (LShiftI src twentyfour) twentyfour));
8434   effect(KILL cr);
8435 
8436   size(3);
8437   format %{ "MOVSX  $dst,$src :8" %}
8438   opcode(0xBE, 0x0F);
8439   ins_encode( OpcS, OpcP, RegReg( dst, src));
8440   ins_pipe( ialu_reg_reg );
8441 %}
8442 
8443 // Logical Shift Right by 16, followed by Arithmetic Shift Left by 16.
8444 // This idiom is used by the compiler the i2s bytecode.
8445 instruct i2s(eRegI dst, xRegI src, immI_16 sixteen, eFlagsReg cr) %{
8446   match(Set dst (RShiftI (LShiftI src sixteen) sixteen));
8447   effect(KILL cr);
8448 
8449   size(3);
8450   format %{ "MOVSX  $dst,$src :16" %}
8451   opcode(0xBF, 0x0F);
8452   ins_encode( OpcS, OpcP, RegReg( dst, src));
8453   ins_pipe( ialu_reg_reg );
8454 %}
8455 
8456 
8457 // Logical Shift Right by variable
8458 instruct shrI_eReg_CL(eRegI dst, eCXRegI shift, eFlagsReg cr) %{
8459   match(Set dst (URShiftI dst shift));
8460   effect(KILL cr);
8461 
8462   size(2);
8463   format %{ "SHR    $dst,$shift" %}
8464   opcode(0xD3, 0x5);  /* D3 /5 */
8465   ins_encode( OpcP, RegOpc( dst ) );
8466   ins_pipe( ialu_reg_reg );
8467 %}
8468 
8469 
8470 //----------Logical Instructions-----------------------------------------------
8471 //----------Integer Logical Instructions---------------------------------------
8472 // And Instructions
8473 // And Register with Register
8474 instruct andI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8475   match(Set dst (AndI dst src));
8476   effect(KILL cr);
8477 
8478   size(2);
8479   format %{ "AND    $dst,$src" %}
8480   opcode(0x23);
8481   ins_encode( OpcP, RegReg( dst, src) );
8482   ins_pipe( ialu_reg_reg );
8483 %}
8484 
8485 // And Register with Immediate
8486 instruct andI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8487   match(Set dst (AndI dst src));
8488   effect(KILL cr);
8489 
8490   format %{ "AND    $dst,$src" %}
8491   opcode(0x81,0x04);  /* Opcode 81 /4 */
8492   // ins_encode( RegImm( dst, src) );
8493   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8494   ins_pipe( ialu_reg );
8495 %}
8496 
8497 // And Register with Memory
8498 instruct andI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8499   match(Set dst (AndI dst (LoadI src)));
8500   effect(KILL cr);
8501 
8502   ins_cost(125);
8503   format %{ "AND    $dst,$src" %}
8504   opcode(0x23);
8505   ins_encode( OpcP, RegMem( dst, src) );
8506   ins_pipe( ialu_reg_mem );
8507 %}
8508 
8509 // And Memory with Register
8510 instruct andI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8511   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8512   effect(KILL cr);
8513 
8514   ins_cost(150);
8515   format %{ "AND    $dst,$src" %}
8516   opcode(0x21);  /* Opcode 21 /r */
8517   ins_encode( OpcP, RegMem( src, dst ) );
8518   ins_pipe( ialu_mem_reg );
8519 %}
8520 
8521 // And Memory with Immediate
8522 instruct andI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8523   match(Set dst (StoreI dst (AndI (LoadI dst) src)));
8524   effect(KILL cr);
8525 
8526   ins_cost(125);
8527   format %{ "AND    $dst,$src" %}
8528   opcode(0x81, 0x4);  /* Opcode 81 /4 id */
8529   // ins_encode( MemImm( dst, src) );
8530   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8531   ins_pipe( ialu_mem_imm );
8532 %}
8533 
8534 // Or Instructions
8535 // Or Register with Register
8536 instruct orI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8537   match(Set dst (OrI dst src));
8538   effect(KILL cr);
8539 
8540   size(2);
8541   format %{ "OR     $dst,$src" %}
8542   opcode(0x0B);
8543   ins_encode( OpcP, RegReg( dst, src) );
8544   ins_pipe( ialu_reg_reg );
8545 %}
8546 
8547 instruct orI_eReg_castP2X(eRegI dst, eRegP src, eFlagsReg cr) %{
8548   match(Set dst (OrI dst (CastP2X src)));
8549   effect(KILL cr);
8550 
8551   size(2);
8552   format %{ "OR     $dst,$src" %}
8553   opcode(0x0B);
8554   ins_encode( OpcP, RegReg( dst, src) );
8555   ins_pipe( ialu_reg_reg );
8556 %}
8557 
8558 
8559 // Or Register with Immediate
8560 instruct orI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8561   match(Set dst (OrI dst src));
8562   effect(KILL cr);
8563 
8564   format %{ "OR     $dst,$src" %}
8565   opcode(0x81,0x01);  /* Opcode 81 /1 id */
8566   // ins_encode( RegImm( dst, src) );
8567   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8568   ins_pipe( ialu_reg );
8569 %}
8570 
8571 // Or Register with Memory
8572 instruct orI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8573   match(Set dst (OrI dst (LoadI src)));
8574   effect(KILL cr);
8575 
8576   ins_cost(125);
8577   format %{ "OR     $dst,$src" %}
8578   opcode(0x0B);
8579   ins_encode( OpcP, RegMem( dst, src) );
8580   ins_pipe( ialu_reg_mem );
8581 %}
8582 
8583 // Or Memory with Register
8584 instruct orI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8585   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8586   effect(KILL cr);
8587 
8588   ins_cost(150);
8589   format %{ "OR     $dst,$src" %}
8590   opcode(0x09);  /* Opcode 09 /r */
8591   ins_encode( OpcP, RegMem( src, dst ) );
8592   ins_pipe( ialu_mem_reg );
8593 %}
8594 
8595 // Or Memory with Immediate
8596 instruct orI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8597   match(Set dst (StoreI dst (OrI (LoadI dst) src)));
8598   effect(KILL cr);
8599 
8600   ins_cost(125);
8601   format %{ "OR     $dst,$src" %}
8602   opcode(0x81,0x1);  /* Opcode 81 /1 id */
8603   // ins_encode( MemImm( dst, src) );
8604   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8605   ins_pipe( ialu_mem_imm );
8606 %}
8607 
8608 // ROL/ROR
8609 // ROL expand
8610 instruct rolI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8611   effect(USE_DEF dst, USE shift, KILL cr);
8612 
8613   format %{ "ROL    $dst, $shift" %}
8614   opcode(0xD1, 0x0); /* Opcode D1 /0 */
8615   ins_encode( OpcP, RegOpc( dst ));
8616   ins_pipe( ialu_reg );
8617 %}
8618 
8619 instruct rolI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
8620   effect(USE_DEF dst, USE shift, KILL cr);
8621 
8622   format %{ "ROL    $dst, $shift" %}
8623   opcode(0xC1, 0x0); /*Opcode /C1  /0  */
8624   ins_encode( RegOpcImm(dst, shift) );
8625   ins_pipe(ialu_reg);
8626 %}
8627 
8628 instruct rolI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr) %{
8629   effect(USE_DEF dst, USE shift, KILL cr);
8630 
8631   format %{ "ROL    $dst, $shift" %}
8632   opcode(0xD3, 0x0);    /* Opcode D3 /0 */
8633   ins_encode(OpcP, RegOpc(dst));
8634   ins_pipe( ialu_reg_reg );
8635 %}
8636 // end of ROL expand
8637 
8638 // ROL 32bit by one once
8639 instruct rolI_eReg_i1(eRegI dst, immI1 lshift, immI_M1 rshift, eFlagsReg cr) %{
8640   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8641 
8642   expand %{
8643     rolI_eReg_imm1(dst, lshift, cr);
8644   %}
8645 %}
8646 
8647 // ROL 32bit var by imm8 once
8648 instruct rolI_eReg_i8(eRegI dst, immI8 lshift, immI8 rshift, eFlagsReg cr) %{
8649   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8650   match(Set dst ( OrI (LShiftI dst lshift) (URShiftI dst rshift)));
8651 
8652   expand %{
8653     rolI_eReg_imm8(dst, lshift, cr);
8654   %}
8655 %}
8656 
8657 // ROL 32bit var by var once
8658 instruct rolI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8659   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI zero shift))));
8660 
8661   expand %{
8662     rolI_eReg_CL(dst, shift, cr);
8663   %}
8664 %}
8665 
8666 // ROL 32bit var by var once
8667 instruct rolI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8668   match(Set dst ( OrI (LShiftI dst shift) (URShiftI dst (SubI c32 shift))));
8669 
8670   expand %{
8671     rolI_eReg_CL(dst, shift, cr);
8672   %}
8673 %}
8674 
8675 // ROR expand
8676 instruct rorI_eReg_imm1(eRegI dst, immI1 shift, eFlagsReg cr) %{
8677   effect(USE_DEF dst, USE shift, KILL cr);
8678 
8679   format %{ "ROR    $dst, $shift" %}
8680   opcode(0xD1,0x1);  /* Opcode D1 /1 */
8681   ins_encode( OpcP, RegOpc( dst ) );
8682   ins_pipe( ialu_reg );
8683 %}
8684 
8685 instruct rorI_eReg_imm8(eRegI dst, immI8 shift, eFlagsReg cr) %{
8686   effect (USE_DEF dst, USE shift, KILL cr);
8687 
8688   format %{ "ROR    $dst, $shift" %}
8689   opcode(0xC1, 0x1); /* Opcode /C1 /1 ib */
8690   ins_encode( RegOpcImm(dst, shift) );
8691   ins_pipe( ialu_reg );
8692 %}
8693 
8694 instruct rorI_eReg_CL(ncxRegI dst, eCXRegI shift, eFlagsReg cr)%{
8695   effect(USE_DEF dst, USE shift, KILL cr);
8696 
8697   format %{ "ROR    $dst, $shift" %}
8698   opcode(0xD3, 0x1);    /* Opcode D3 /1 */
8699   ins_encode(OpcP, RegOpc(dst));
8700   ins_pipe( ialu_reg_reg );
8701 %}
8702 // end of ROR expand
8703 
8704 // ROR right once
8705 instruct rorI_eReg_i1(eRegI dst, immI1 rshift, immI_M1 lshift, eFlagsReg cr) %{
8706   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8707 
8708   expand %{
8709     rorI_eReg_imm1(dst, rshift, cr);
8710   %}
8711 %}
8712 
8713 // ROR 32bit by immI8 once
8714 instruct rorI_eReg_i8(eRegI dst, immI8 rshift, immI8 lshift, eFlagsReg cr) %{
8715   predicate(  0 == ((n->in(1)->in(2)->get_int() + n->in(2)->in(2)->get_int()) & 0x1f));
8716   match(Set dst ( OrI (URShiftI dst rshift) (LShiftI dst lshift)));
8717 
8718   expand %{
8719     rorI_eReg_imm8(dst, rshift, cr);
8720   %}
8721 %}
8722 
8723 // ROR 32bit var by var once
8724 instruct rorI_eReg_Var_C0(ncxRegI dst, eCXRegI shift, immI0 zero, eFlagsReg cr) %{
8725   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI zero shift))));
8726 
8727   expand %{
8728     rorI_eReg_CL(dst, shift, cr);
8729   %}
8730 %}
8731 
8732 // ROR 32bit var by var once
8733 instruct rorI_eReg_Var_C32(ncxRegI dst, eCXRegI shift, immI_32 c32, eFlagsReg cr) %{
8734   match(Set dst ( OrI (URShiftI dst shift) (LShiftI dst (SubI c32 shift))));
8735 
8736   expand %{
8737     rorI_eReg_CL(dst, shift, cr);
8738   %}
8739 %}
8740 
8741 // Xor Instructions
8742 // Xor Register with Register
8743 instruct xorI_eReg(eRegI dst, eRegI src, eFlagsReg cr) %{
8744   match(Set dst (XorI dst src));
8745   effect(KILL cr);
8746 
8747   size(2);
8748   format %{ "XOR    $dst,$src" %}
8749   opcode(0x33);
8750   ins_encode( OpcP, RegReg( dst, src) );
8751   ins_pipe( ialu_reg_reg );
8752 %}
8753 
8754 // Xor Register with Immediate -1
8755 instruct xorI_eReg_im1(eRegI dst, immI_M1 imm) %{
8756   match(Set dst (XorI dst imm));  
8757 
8758   size(2);
8759   format %{ "NOT    $dst" %}  
8760   ins_encode %{
8761      __ notl($dst$$Register);
8762   %}
8763   ins_pipe( ialu_reg );
8764 %}
8765 
8766 // Xor Register with Immediate
8767 instruct xorI_eReg_imm(eRegI dst, immI src, eFlagsReg cr) %{
8768   match(Set dst (XorI dst src));
8769   effect(KILL cr);
8770 
8771   format %{ "XOR    $dst,$src" %}
8772   opcode(0x81,0x06);  /* Opcode 81 /6 id */
8773   // ins_encode( RegImm( dst, src) );
8774   ins_encode( OpcSErm( dst, src ), Con8or32( src ) );
8775   ins_pipe( ialu_reg );
8776 %}
8777 
8778 // Xor Register with Memory
8779 instruct xorI_eReg_mem(eRegI dst, memory src, eFlagsReg cr) %{
8780   match(Set dst (XorI dst (LoadI src)));
8781   effect(KILL cr);
8782 
8783   ins_cost(125);
8784   format %{ "XOR    $dst,$src" %}
8785   opcode(0x33);
8786   ins_encode( OpcP, RegMem(dst, src) );
8787   ins_pipe( ialu_reg_mem );
8788 %}
8789 
8790 // Xor Memory with Register
8791 instruct xorI_mem_eReg(memory dst, eRegI src, eFlagsReg cr) %{
8792   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8793   effect(KILL cr);
8794 
8795   ins_cost(150);
8796   format %{ "XOR    $dst,$src" %}
8797   opcode(0x31);  /* Opcode 31 /r */
8798   ins_encode( OpcP, RegMem( src, dst ) );
8799   ins_pipe( ialu_mem_reg );
8800 %}
8801 
8802 // Xor Memory with Immediate
8803 instruct xorI_mem_imm(memory dst, immI src, eFlagsReg cr) %{
8804   match(Set dst (StoreI dst (XorI (LoadI dst) src)));
8805   effect(KILL cr);
8806 
8807   ins_cost(125);
8808   format %{ "XOR    $dst,$src" %}
8809   opcode(0x81,0x6);  /* Opcode 81 /6 id */
8810   ins_encode( OpcSE( src ), RMopc_Mem(secondary, dst ), Con8or32( src ) );
8811   ins_pipe( ialu_mem_imm );
8812 %}
8813 
8814 //----------Convert Int to Boolean---------------------------------------------
8815 
8816 instruct movI_nocopy(eRegI dst, eRegI src) %{
8817   effect( DEF dst, USE src );
8818   format %{ "MOV    $dst,$src" %}
8819   ins_encode( enc_Copy( dst, src) );
8820   ins_pipe( ialu_reg_reg );
8821 %}
8822 
8823 instruct ci2b( eRegI dst, eRegI src, eFlagsReg cr ) %{
8824   effect( USE_DEF dst, USE src, KILL cr );
8825 
8826   size(4);
8827   format %{ "NEG    $dst\n\t"
8828             "ADC    $dst,$src" %}
8829   ins_encode( neg_reg(dst),
8830               OpcRegReg(0x13,dst,src) );
8831   ins_pipe( ialu_reg_reg_long );
8832 %}
8833 
8834 instruct convI2B( eRegI dst, eRegI src, eFlagsReg cr ) %{
8835   match(Set dst (Conv2B src));
8836 
8837   expand %{
8838     movI_nocopy(dst,src);
8839     ci2b(dst,src,cr);
8840   %}
8841 %}
8842 
8843 instruct movP_nocopy(eRegI dst, eRegP src) %{
8844   effect( DEF dst, USE src );
8845   format %{ "MOV    $dst,$src" %}
8846   ins_encode( enc_Copy( dst, src) );
8847   ins_pipe( ialu_reg_reg );
8848 %}
8849 
8850 instruct cp2b( eRegI dst, eRegP src, eFlagsReg cr ) %{
8851   effect( USE_DEF dst, USE src, KILL cr );
8852   format %{ "NEG    $dst\n\t"
8853             "ADC    $dst,$src" %}
8854   ins_encode( neg_reg(dst),
8855               OpcRegReg(0x13,dst,src) );
8856   ins_pipe( ialu_reg_reg_long );
8857 %}
8858 
8859 instruct convP2B( eRegI dst, eRegP src, eFlagsReg cr ) %{
8860   match(Set dst (Conv2B src));
8861 
8862   expand %{
8863     movP_nocopy(dst,src);
8864     cp2b(dst,src,cr);
8865   %}
8866 %}
8867 
8868 instruct cmpLTMask( eCXRegI dst, ncxRegI p, ncxRegI q, eFlagsReg cr ) %{
8869   match(Set dst (CmpLTMask p q));
8870   effect( KILL cr );
8871   ins_cost(400);
8872 
8873   // SETlt can only use low byte of EAX,EBX, ECX, or EDX as destination
8874   format %{ "XOR    $dst,$dst\n\t"
8875             "CMP    $p,$q\n\t"
8876             "SETlt  $dst\n\t"
8877             "NEG    $dst" %}
8878   ins_encode( OpcRegReg(0x33,dst,dst),
8879               OpcRegReg(0x3B,p,q),
8880               setLT_reg(dst), neg_reg(dst) );
8881   ins_pipe( pipe_slow );
8882 %}
8883 
8884 instruct cmpLTMask0( eRegI dst, immI0 zero, eFlagsReg cr ) %{
8885   match(Set dst (CmpLTMask dst zero));
8886   effect( DEF dst, KILL cr );
8887   ins_cost(100);
8888 
8889   format %{ "SAR    $dst,31" %}
8890   opcode(0xC1, 0x7);  /* C1 /7 ib */
8891   ins_encode( RegOpcImm( dst, 0x1F ) );
8892   ins_pipe( ialu_reg );
8893 %}
8894 
8895 
8896 instruct cadd_cmpLTMask( ncxRegI p, ncxRegI q, ncxRegI y, eCXRegI tmp, eFlagsReg cr ) %{
8897   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8898   effect( KILL tmp, KILL cr );
8899   ins_cost(400);
8900   // annoyingly, $tmp has no edges so you cant ask for it in
8901   // any format or encoding
8902   format %{ "SUB    $p,$q\n\t"
8903             "SBB    ECX,ECX\n\t"
8904             "AND    ECX,$y\n\t"
8905             "ADD    $p,ECX" %}
8906   ins_encode( enc_cmpLTP(p,q,y,tmp) );
8907   ins_pipe( pipe_cmplt );
8908 %}
8909 
8910 /* If I enable this, I encourage spilling in the inner loop of compress.
8911 instruct cadd_cmpLTMask_mem( ncxRegI p, ncxRegI q, memory y, eCXRegI tmp, eFlagsReg cr ) %{
8912   match(Set p (AddI (AndI (CmpLTMask p q) (LoadI y)) (SubI p q)));
8913   effect( USE_KILL tmp, KILL cr );
8914   ins_cost(400);
8915 
8916   format %{ "SUB    $p,$q\n\t"
8917             "SBB    ECX,ECX\n\t"
8918             "AND    ECX,$y\n\t"
8919             "ADD    $p,ECX" %}
8920   ins_encode( enc_cmpLTP_mem(p,q,y,tmp) );
8921 %}
8922 */
8923 
8924 //----------Long Instructions------------------------------------------------
8925 // Add Long Register with Register
8926 instruct addL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8927   match(Set dst (AddL dst src));
8928   effect(KILL cr);
8929   ins_cost(200);
8930   format %{ "ADD    $dst.lo,$src.lo\n\t"
8931             "ADC    $dst.hi,$src.hi" %}
8932   opcode(0x03, 0x13);
8933   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8934   ins_pipe( ialu_reg_reg_long );
8935 %}
8936 
8937 // Add Long Register with Immediate
8938 instruct addL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8939   match(Set dst (AddL dst src));
8940   effect(KILL cr);
8941   format %{ "ADD    $dst.lo,$src.lo\n\t"
8942             "ADC    $dst.hi,$src.hi" %}
8943   opcode(0x81,0x00,0x02);  /* Opcode 81 /0, 81 /2 */
8944   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8945   ins_pipe( ialu_reg_long );
8946 %}
8947 
8948 // Add Long Register with Memory
8949 instruct addL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8950   match(Set dst (AddL dst (LoadL mem)));
8951   effect(KILL cr);
8952   ins_cost(125);
8953   format %{ "ADD    $dst.lo,$mem\n\t"
8954             "ADC    $dst.hi,$mem+4" %}
8955   opcode(0x03, 0x13);
8956   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8957   ins_pipe( ialu_reg_long_mem );
8958 %}
8959 
8960 // Subtract Long Register with Register.
8961 instruct subL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
8962   match(Set dst (SubL dst src));
8963   effect(KILL cr);
8964   ins_cost(200);
8965   format %{ "SUB    $dst.lo,$src.lo\n\t"
8966             "SBB    $dst.hi,$src.hi" %}
8967   opcode(0x2B, 0x1B);
8968   ins_encode( RegReg_Lo(dst, src), RegReg_Hi(dst,src) );
8969   ins_pipe( ialu_reg_reg_long );
8970 %}
8971 
8972 // Subtract Long Register with Immediate
8973 instruct subL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
8974   match(Set dst (SubL dst src));
8975   effect(KILL cr);
8976   format %{ "SUB    $dst.lo,$src.lo\n\t"
8977             "SBB    $dst.hi,$src.hi" %}
8978   opcode(0x81,0x05,0x03);  /* Opcode 81 /5, 81 /3 */
8979   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
8980   ins_pipe( ialu_reg_long );
8981 %}
8982 
8983 // Subtract Long Register with Memory
8984 instruct subL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
8985   match(Set dst (SubL dst (LoadL mem)));
8986   effect(KILL cr);
8987   ins_cost(125);
8988   format %{ "SUB    $dst.lo,$mem\n\t"
8989             "SBB    $dst.hi,$mem+4" %}
8990   opcode(0x2B, 0x1B);
8991   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
8992   ins_pipe( ialu_reg_long_mem );
8993 %}
8994 
8995 instruct negL_eReg(eRegL dst, immL0 zero, eFlagsReg cr) %{
8996   match(Set dst (SubL zero dst));
8997   effect(KILL cr);
8998   ins_cost(300);
8999   format %{ "NEG    $dst.hi\n\tNEG    $dst.lo\n\tSBB    $dst.hi,0" %}
9000   ins_encode( neg_long(dst) );
9001   ins_pipe( ialu_reg_reg_long );
9002 %}
9003 
9004 // And Long Register with Register
9005 instruct andL_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9006   match(Set dst (AndL dst src));
9007   effect(KILL cr);
9008   format %{ "AND    $dst.lo,$src.lo\n\t"
9009             "AND    $dst.hi,$src.hi" %}
9010   opcode(0x23,0x23);
9011   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9012   ins_pipe( ialu_reg_reg_long );
9013 %}
9014 
9015 // And Long Register with Immediate
9016 instruct andL_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9017   match(Set dst (AndL dst src));
9018   effect(KILL cr);
9019   format %{ "AND    $dst.lo,$src.lo\n\t"
9020             "AND    $dst.hi,$src.hi" %}
9021   opcode(0x81,0x04,0x04);  /* Opcode 81 /4, 81 /4 */
9022   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9023   ins_pipe( ialu_reg_long );
9024 %}
9025 
9026 // And Long Register with Memory
9027 instruct andL_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9028   match(Set dst (AndL dst (LoadL mem)));
9029   effect(KILL cr);
9030   ins_cost(125);
9031   format %{ "AND    $dst.lo,$mem\n\t"
9032             "AND    $dst.hi,$mem+4" %}
9033   opcode(0x23, 0x23);
9034   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9035   ins_pipe( ialu_reg_long_mem );
9036 %}
9037 
9038 // Or Long Register with Register
9039 instruct orl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9040   match(Set dst (OrL dst src));
9041   effect(KILL cr);
9042   format %{ "OR     $dst.lo,$src.lo\n\t"
9043             "OR     $dst.hi,$src.hi" %}
9044   opcode(0x0B,0x0B);
9045   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9046   ins_pipe( ialu_reg_reg_long );
9047 %}
9048 
9049 // Or Long Register with Immediate
9050 instruct orl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9051   match(Set dst (OrL dst src));
9052   effect(KILL cr);
9053   format %{ "OR     $dst.lo,$src.lo\n\t"
9054             "OR     $dst.hi,$src.hi" %}
9055   opcode(0x81,0x01,0x01);  /* Opcode 81 /1, 81 /1 */
9056   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9057   ins_pipe( ialu_reg_long );
9058 %}
9059 
9060 // Or Long Register with Memory
9061 instruct orl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9062   match(Set dst (OrL dst (LoadL mem)));
9063   effect(KILL cr);
9064   ins_cost(125);
9065   format %{ "OR     $dst.lo,$mem\n\t"
9066             "OR     $dst.hi,$mem+4" %}
9067   opcode(0x0B,0x0B);
9068   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9069   ins_pipe( ialu_reg_long_mem );
9070 %}
9071 
9072 // Xor Long Register with Register
9073 instruct xorl_eReg(eRegL dst, eRegL src, eFlagsReg cr) %{
9074   match(Set dst (XorL dst src));
9075   effect(KILL cr);
9076   format %{ "XOR    $dst.lo,$src.lo\n\t"
9077             "XOR    $dst.hi,$src.hi" %}
9078   opcode(0x33,0x33);
9079   ins_encode( RegReg_Lo( dst, src), RegReg_Hi( dst, src) );
9080   ins_pipe( ialu_reg_reg_long );
9081 %}
9082 
9083 // Xor Long Register with Immediate -1
9084 instruct xorl_eReg_im1(eRegL dst, immL_M1 imm) %{
9085   match(Set dst (XorL dst imm));  
9086   format %{ "NOT    $dst.lo\n\t"
9087             "NOT    $dst.hi" %}
9088   ins_encode %{
9089      __ notl($dst$$Register);
9090      __ notl(HIGH_FROM_LOW($dst$$Register));
9091   %}
9092   ins_pipe( ialu_reg_long );
9093 %}
9094 
9095 // Xor Long Register with Immediate
9096 instruct xorl_eReg_imm(eRegL dst, immL src, eFlagsReg cr) %{
9097   match(Set dst (XorL dst src));
9098   effect(KILL cr);
9099   format %{ "XOR    $dst.lo,$src.lo\n\t"
9100             "XOR    $dst.hi,$src.hi" %}
9101   opcode(0x81,0x06,0x06);  /* Opcode 81 /6, 81 /6 */
9102   ins_encode( Long_OpcSErm_Lo( dst, src ), Long_OpcSErm_Hi( dst, src ) );
9103   ins_pipe( ialu_reg_long );
9104 %}
9105 
9106 // Xor Long Register with Memory
9107 instruct xorl_eReg_mem(eRegL dst, load_long_memory mem, eFlagsReg cr) %{
9108   match(Set dst (XorL dst (LoadL mem)));
9109   effect(KILL cr);
9110   ins_cost(125);
9111   format %{ "XOR    $dst.lo,$mem\n\t"
9112             "XOR    $dst.hi,$mem+4" %}
9113   opcode(0x33,0x33);
9114   ins_encode( OpcP, RegMem( dst, mem), OpcS, RegMem_Hi(dst,mem) );
9115   ins_pipe( ialu_reg_long_mem );
9116 %}
9117 
9118 // Shift Left Long by 1
9119 instruct shlL_eReg_1(eRegL dst, immI_1 cnt, eFlagsReg cr) %{
9120   predicate(UseNewLongLShift);
9121   match(Set dst (LShiftL dst cnt));
9122   effect(KILL cr);
9123   ins_cost(100);
9124   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9125             "ADC    $dst.hi,$dst.hi" %}
9126   ins_encode %{
9127     __ addl($dst$$Register,$dst$$Register);
9128     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9129   %}
9130   ins_pipe( ialu_reg_long );
9131 %}
9132 
9133 // Shift Left Long by 2
9134 instruct shlL_eReg_2(eRegL dst, immI_2 cnt, eFlagsReg cr) %{
9135   predicate(UseNewLongLShift);
9136   match(Set dst (LShiftL dst cnt));
9137   effect(KILL cr);
9138   ins_cost(100);
9139   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9140             "ADC    $dst.hi,$dst.hi\n\t" 
9141             "ADD    $dst.lo,$dst.lo\n\t"
9142             "ADC    $dst.hi,$dst.hi" %}
9143   ins_encode %{
9144     __ addl($dst$$Register,$dst$$Register);
9145     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9146     __ addl($dst$$Register,$dst$$Register);
9147     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9148   %}
9149   ins_pipe( ialu_reg_long );
9150 %}
9151 
9152 // Shift Left Long by 3
9153 instruct shlL_eReg_3(eRegL dst, immI_3 cnt, eFlagsReg cr) %{
9154   predicate(UseNewLongLShift);
9155   match(Set dst (LShiftL dst cnt));
9156   effect(KILL cr);
9157   ins_cost(100);
9158   format %{ "ADD    $dst.lo,$dst.lo\n\t"
9159             "ADC    $dst.hi,$dst.hi\n\t" 
9160             "ADD    $dst.lo,$dst.lo\n\t"
9161             "ADC    $dst.hi,$dst.hi\n\t" 
9162             "ADD    $dst.lo,$dst.lo\n\t"
9163             "ADC    $dst.hi,$dst.hi" %}
9164   ins_encode %{
9165     __ addl($dst$$Register,$dst$$Register);
9166     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9167     __ addl($dst$$Register,$dst$$Register);
9168     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9169     __ addl($dst$$Register,$dst$$Register);
9170     __ adcl(HIGH_FROM_LOW($dst$$Register),HIGH_FROM_LOW($dst$$Register));
9171   %}
9172   ins_pipe( ialu_reg_long );
9173 %}
9174 
9175 // Shift Left Long by 1-31
9176 instruct shlL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9177   match(Set dst (LShiftL dst cnt));
9178   effect(KILL cr);
9179   ins_cost(200);
9180   format %{ "SHLD   $dst.hi,$dst.lo,$cnt\n\t"
9181             "SHL    $dst.lo,$cnt" %}
9182   opcode(0xC1, 0x4, 0xA4);  /* 0F/A4, then C1 /4 ib */
9183   ins_encode( move_long_small_shift(dst,cnt) );
9184   ins_pipe( ialu_reg_long );
9185 %}
9186 
9187 // Shift Left Long by 32-63
9188 instruct shlL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9189   match(Set dst (LShiftL dst cnt));
9190   effect(KILL cr);
9191   ins_cost(300);
9192   format %{ "MOV    $dst.hi,$dst.lo\n"
9193           "\tSHL    $dst.hi,$cnt-32\n"
9194           "\tXOR    $dst.lo,$dst.lo" %}
9195   opcode(0xC1, 0x4);  /* C1 /4 ib */
9196   ins_encode( move_long_big_shift_clr(dst,cnt) );
9197   ins_pipe( ialu_reg_long );
9198 %}
9199 
9200 // Shift Left Long by variable
9201 instruct salL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9202   match(Set dst (LShiftL dst shift));
9203   effect(KILL cr);
9204   ins_cost(500+200);
9205   size(17);
9206   format %{ "TEST   $shift,32\n\t"
9207             "JEQ,s  small\n\t"
9208             "MOV    $dst.hi,$dst.lo\n\t"
9209             "XOR    $dst.lo,$dst.lo\n"
9210     "small:\tSHLD   $dst.hi,$dst.lo,$shift\n\t"
9211             "SHL    $dst.lo,$shift" %}
9212   ins_encode( shift_left_long( dst, shift ) );
9213   ins_pipe( pipe_slow );
9214 %}
9215 
9216 // Shift Right Long by 1-31
9217 instruct shrL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9218   match(Set dst (URShiftL dst cnt));
9219   effect(KILL cr);
9220   ins_cost(200);
9221   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9222             "SHR    $dst.hi,$cnt" %}
9223   opcode(0xC1, 0x5, 0xAC);  /* 0F/AC, then C1 /5 ib */
9224   ins_encode( move_long_small_shift(dst,cnt) );
9225   ins_pipe( ialu_reg_long );
9226 %}
9227 
9228 // Shift Right Long by 32-63
9229 instruct shrL_eReg_32_63(eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9230   match(Set dst (URShiftL dst cnt));
9231   effect(KILL cr);
9232   ins_cost(300);
9233   format %{ "MOV    $dst.lo,$dst.hi\n"
9234           "\tSHR    $dst.lo,$cnt-32\n"
9235           "\tXOR    $dst.hi,$dst.hi" %}
9236   opcode(0xC1, 0x5);  /* C1 /5 ib */
9237   ins_encode( move_long_big_shift_clr(dst,cnt) );
9238   ins_pipe( ialu_reg_long );
9239 %}
9240 
9241 // Shift Right Long by variable
9242 instruct shrL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9243   match(Set dst (URShiftL dst shift));
9244   effect(KILL cr);
9245   ins_cost(600);
9246   size(17);
9247   format %{ "TEST   $shift,32\n\t"
9248             "JEQ,s  small\n\t"
9249             "MOV    $dst.lo,$dst.hi\n\t"
9250             "XOR    $dst.hi,$dst.hi\n"
9251     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9252             "SHR    $dst.hi,$shift" %}
9253   ins_encode( shift_right_long( dst, shift ) );
9254   ins_pipe( pipe_slow );
9255 %}
9256 
9257 // Shift Right Long by 1-31
9258 instruct sarL_eReg_1_31(eRegL dst, immI_1_31 cnt, eFlagsReg cr) %{
9259   match(Set dst (RShiftL dst cnt));
9260   effect(KILL cr);
9261   ins_cost(200);
9262   format %{ "SHRD   $dst.lo,$dst.hi,$cnt\n\t"
9263             "SAR    $dst.hi,$cnt" %}
9264   opcode(0xC1, 0x7, 0xAC);  /* 0F/AC, then C1 /7 ib */
9265   ins_encode( move_long_small_shift(dst,cnt) );
9266   ins_pipe( ialu_reg_long );
9267 %}
9268 
9269 // Shift Right Long by 32-63
9270 instruct sarL_eReg_32_63( eRegL dst, immI_32_63 cnt, eFlagsReg cr) %{
9271   match(Set dst (RShiftL dst cnt));
9272   effect(KILL cr);
9273   ins_cost(300);
9274   format %{ "MOV    $dst.lo,$dst.hi\n"
9275           "\tSAR    $dst.lo,$cnt-32\n"
9276           "\tSAR    $dst.hi,31" %}
9277   opcode(0xC1, 0x7);  /* C1 /7 ib */
9278   ins_encode( move_long_big_shift_sign(dst,cnt) );
9279   ins_pipe( ialu_reg_long );
9280 %}
9281 
9282 // Shift Right arithmetic Long by variable
9283 instruct sarL_eReg_CL(eRegL dst, eCXRegI shift, eFlagsReg cr) %{
9284   match(Set dst (RShiftL dst shift));
9285   effect(KILL cr);
9286   ins_cost(600);
9287   size(18);
9288   format %{ "TEST   $shift,32\n\t"
9289             "JEQ,s  small\n\t"
9290             "MOV    $dst.lo,$dst.hi\n\t"
9291             "SAR    $dst.hi,31\n"
9292     "small:\tSHRD   $dst.lo,$dst.hi,$shift\n\t"
9293             "SAR    $dst.hi,$shift" %}
9294   ins_encode( shift_right_arith_long( dst, shift ) );
9295   ins_pipe( pipe_slow );
9296 %}
9297 
9298 
9299 //----------Double Instructions------------------------------------------------
9300 // Double Math
9301 
9302 // Compare & branch
9303 
9304 // P6 version of float compare, sets condition codes in EFLAGS
9305 instruct cmpD_cc_P6(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9306   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9307   match(Set cr (CmpD src1 src2));
9308   effect(KILL rax);
9309   ins_cost(150);
9310   format %{ "FLD    $src1\n\t"
9311             "FUCOMIP ST,$src2  // P6 instruction\n\t"
9312             "JNP    exit\n\t"
9313             "MOV    ah,1       // saw a NaN, set CF\n\t"
9314             "SAHF\n"
9315      "exit:\tNOP               // avoid branch to branch" %}
9316   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9317   ins_encode( Push_Reg_D(src1),
9318               OpcP, RegOpc(src2),
9319               cmpF_P6_fixup );
9320   ins_pipe( pipe_slow );
9321 %}
9322 
9323 instruct cmpD_cc_P6CF(eFlagsRegUCF cr, regD src1, regD src2) %{
9324   predicate(VM_Version::supports_cmov() && UseSSE <=1);
9325   match(Set cr (CmpD src1 src2));
9326   ins_cost(150);
9327   format %{ "FLD    $src1\n\t"
9328             "FUCOMIP ST,$src2  // P6 instruction" %}
9329   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
9330   ins_encode( Push_Reg_D(src1),
9331               OpcP, RegOpc(src2));
9332   ins_pipe( pipe_slow );
9333 %}
9334 
9335 // Compare & branch
9336 instruct cmpD_cc(eFlagsRegU cr, regD src1, regD src2, eAXRegI rax) %{
9337   predicate(UseSSE<=1);
9338   match(Set cr (CmpD src1 src2));
9339   effect(KILL rax);
9340   ins_cost(200);
9341   format %{ "FLD    $src1\n\t"
9342             "FCOMp  $src2\n\t"
9343             "FNSTSW AX\n\t"
9344             "TEST   AX,0x400\n\t"
9345             "JZ,s   flags\n\t"
9346             "MOV    AH,1\t# unordered treat as LT\n"
9347     "flags:\tSAHF" %}
9348   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9349   ins_encode( Push_Reg_D(src1),
9350               OpcP, RegOpc(src2),
9351               fpu_flags);
9352   ins_pipe( pipe_slow );
9353 %}
9354 
9355 // Compare vs zero into -1,0,1
9356 instruct cmpD_0(eRegI dst, regD src1, immD0 zero, eAXRegI rax, eFlagsReg cr) %{
9357   predicate(UseSSE<=1);
9358   match(Set dst (CmpD3 src1 zero));
9359   effect(KILL cr, KILL rax);
9360   ins_cost(280);
9361   format %{ "FTSTD  $dst,$src1" %}
9362   opcode(0xE4, 0xD9);
9363   ins_encode( Push_Reg_D(src1),
9364               OpcS, OpcP, PopFPU,
9365               CmpF_Result(dst));
9366   ins_pipe( pipe_slow );
9367 %}
9368 
9369 // Compare into -1,0,1
9370 instruct cmpD_reg(eRegI dst, regD src1, regD src2, eAXRegI rax, eFlagsReg cr) %{
9371   predicate(UseSSE<=1);
9372   match(Set dst (CmpD3 src1 src2));
9373   effect(KILL cr, KILL rax);
9374   ins_cost(300);
9375   format %{ "FCMPD  $dst,$src1,$src2" %}
9376   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
9377   ins_encode( Push_Reg_D(src1),
9378               OpcP, RegOpc(src2),
9379               CmpF_Result(dst));
9380   ins_pipe( pipe_slow );
9381 %}
9382 
9383 // float compare and set condition codes in EFLAGS by XMM regs
9384 instruct cmpXD_cc(eFlagsRegU cr, regXD dst, regXD src, eAXRegI rax) %{
9385   predicate(UseSSE>=2);
9386   match(Set cr (CmpD dst src));
9387   effect(KILL rax);
9388   ins_cost(125);
9389   format %{ "COMISD $dst,$src\n"
9390           "\tJNP    exit\n"
9391           "\tMOV    ah,1       // saw a NaN, set CF\n"
9392           "\tSAHF\n"
9393      "exit:\tNOP               // avoid branch to branch" %}
9394   opcode(0x66, 0x0F, 0x2F);
9395   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src), cmpF_P6_fixup);
9396   ins_pipe( pipe_slow );
9397 %}
9398 
9399 instruct cmpXD_ccCF(eFlagsRegUCF cr, regXD dst, regXD src) %{
9400   predicate(UseSSE>=2);
9401   match(Set cr (CmpD dst src));
9402   ins_cost(100);
9403   format %{ "COMISD $dst,$src" %}
9404   opcode(0x66, 0x0F, 0x2F);
9405   ins_encode(OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
9406   ins_pipe( pipe_slow );
9407 %}
9408 
9409 // float compare and set condition codes in EFLAGS by XMM regs
9410 instruct cmpXD_ccmem(eFlagsRegU cr, regXD dst, memory src, eAXRegI rax) %{
9411   predicate(UseSSE>=2);
9412   match(Set cr (CmpD dst (LoadD src)));
9413   effect(KILL rax);
9414   ins_cost(145);
9415   format %{ "COMISD $dst,$src\n"
9416           "\tJNP    exit\n"
9417           "\tMOV    ah,1       // saw a NaN, set CF\n"
9418           "\tSAHF\n"
9419      "exit:\tNOP               // avoid branch to branch" %}
9420   opcode(0x66, 0x0F, 0x2F);
9421   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src), cmpF_P6_fixup);
9422   ins_pipe( pipe_slow );
9423 %}
9424 
9425 instruct cmpXD_ccmemCF(eFlagsRegUCF cr, regXD dst, memory src) %{
9426   predicate(UseSSE>=2);
9427   match(Set cr (CmpD dst (LoadD src)));
9428   ins_cost(100);
9429   format %{ "COMISD $dst,$src" %}
9430   opcode(0x66, 0x0F, 0x2F);
9431   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(dst, src));
9432   ins_pipe( pipe_slow );
9433 %}
9434 
9435 // Compare into -1,0,1 in XMM
9436 instruct cmpXD_reg(eRegI dst, regXD src1, regXD src2, eFlagsReg cr) %{
9437   predicate(UseSSE>=2);
9438   match(Set dst (CmpD3 src1 src2));
9439   effect(KILL cr);
9440   ins_cost(255);
9441   format %{ "XOR    $dst,$dst\n"
9442           "\tCOMISD $src1,$src2\n"
9443           "\tJP,s   nan\n"
9444           "\tJEQ,s  exit\n"
9445           "\tJA,s   inc\n"
9446       "nan:\tDEC    $dst\n"
9447           "\tJMP,s  exit\n"
9448       "inc:\tINC    $dst\n"
9449       "exit:"
9450                 %}
9451   opcode(0x66, 0x0F, 0x2F);
9452   ins_encode(Xor_Reg(dst), OpcP, OpcS, Opcode(tertiary), RegReg(src1, src2),
9453              CmpX_Result(dst));
9454   ins_pipe( pipe_slow );
9455 %}
9456 
9457 // Compare into -1,0,1 in XMM and memory
9458 instruct cmpXD_regmem(eRegI dst, regXD src1, memory mem, eFlagsReg cr) %{
9459   predicate(UseSSE>=2);
9460   match(Set dst (CmpD3 src1 (LoadD mem)));
9461   effect(KILL cr);
9462   ins_cost(275);
9463   format %{ "COMISD $src1,$mem\n"
9464           "\tMOV    $dst,0\t\t# do not blow flags\n"
9465           "\tJP,s   nan\n"
9466           "\tJEQ,s  exit\n"
9467           "\tJA,s   inc\n"
9468       "nan:\tDEC    $dst\n"
9469           "\tJMP,s  exit\n"
9470       "inc:\tINC    $dst\n"
9471       "exit:"
9472                 %}
9473   opcode(0x66, 0x0F, 0x2F);
9474   ins_encode(OpcP, OpcS, Opcode(tertiary), RegMem(src1, mem),
9475              LdImmI(dst,0x0), CmpX_Result(dst));
9476   ins_pipe( pipe_slow );
9477 %}
9478 
9479 
9480 instruct subD_reg(regD dst, regD src) %{
9481   predicate (UseSSE <=1);
9482   match(Set dst (SubD dst src));
9483 
9484   format %{ "FLD    $src\n\t"
9485             "DSUBp  $dst,ST" %}
9486   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
9487   ins_cost(150);
9488   ins_encode( Push_Reg_D(src),
9489               OpcP, RegOpc(dst) );
9490   ins_pipe( fpu_reg_reg );
9491 %}
9492 
9493 instruct subD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9494   predicate (UseSSE <=1);
9495   match(Set dst (RoundDouble (SubD src1 src2)));
9496   ins_cost(250);
9497 
9498   format %{ "FLD    $src2\n\t"
9499             "DSUB   ST,$src1\n\t"
9500             "FSTP_D $dst\t# D-round" %}
9501   opcode(0xD8, 0x5);
9502   ins_encode( Push_Reg_D(src2),
9503               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
9504   ins_pipe( fpu_mem_reg_reg );
9505 %}
9506 
9507 
9508 instruct subD_reg_mem(regD dst, memory src) %{
9509   predicate (UseSSE <=1);
9510   match(Set dst (SubD dst (LoadD src)));
9511   ins_cost(150);
9512 
9513   format %{ "FLD    $src\n\t"
9514             "DSUBp  $dst,ST" %}
9515   opcode(0xDE, 0x5, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9516   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9517               OpcP, RegOpc(dst) );
9518   ins_pipe( fpu_reg_mem );
9519 %}
9520 
9521 instruct absD_reg(regDPR1 dst, regDPR1 src) %{
9522   predicate (UseSSE<=1);
9523   match(Set dst (AbsD src));
9524   ins_cost(100);
9525   format %{ "FABS" %}
9526   opcode(0xE1, 0xD9);
9527   ins_encode( OpcS, OpcP );
9528   ins_pipe( fpu_reg_reg );
9529 %}
9530 
9531 instruct absXD_reg( regXD dst ) %{
9532   predicate(UseSSE>=2);
9533   match(Set dst (AbsD dst));
9534   format %{ "ANDPD  $dst,[0x7FFFFFFFFFFFFFFF]\t# ABS D by sign masking" %}
9535   ins_encode( AbsXD_encoding(dst));
9536   ins_pipe( pipe_slow );
9537 %}
9538 
9539 instruct negD_reg(regDPR1 dst, regDPR1 src) %{
9540   predicate(UseSSE<=1);
9541   match(Set dst (NegD src));
9542   ins_cost(100);
9543   format %{ "FCHS" %}
9544   opcode(0xE0, 0xD9);
9545   ins_encode( OpcS, OpcP );
9546   ins_pipe( fpu_reg_reg );
9547 %}
9548 
9549 instruct negXD_reg( regXD dst ) %{
9550   predicate(UseSSE>=2);
9551   match(Set dst (NegD dst));
9552   format %{ "XORPD  $dst,[0x8000000000000000]\t# CHS D by sign flipping" %}
9553   ins_encode %{
9554      __ xorpd($dst$$XMMRegister,
9555               ExternalAddress((address)double_signflip_pool));
9556   %}
9557   ins_pipe( pipe_slow );
9558 %}
9559 
9560 instruct addD_reg(regD dst, regD src) %{
9561   predicate(UseSSE<=1);
9562   match(Set dst (AddD dst src));
9563   format %{ "FLD    $src\n\t"
9564             "DADD   $dst,ST" %}
9565   size(4);
9566   ins_cost(150);
9567   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
9568   ins_encode( Push_Reg_D(src),
9569               OpcP, RegOpc(dst) );
9570   ins_pipe( fpu_reg_reg );
9571 %}
9572 
9573 
9574 instruct addD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9575   predicate(UseSSE<=1);
9576   match(Set dst (RoundDouble (AddD src1 src2)));
9577   ins_cost(250);
9578 
9579   format %{ "FLD    $src2\n\t"
9580             "DADD   ST,$src1\n\t"
9581             "FSTP_D $dst\t# D-round" %}
9582   opcode(0xD8, 0x0); /* D8 C0+i or D8 /0*/
9583   ins_encode( Push_Reg_D(src2),
9584               OpcP, RegOpc(src1), Pop_Mem_D(dst) );
9585   ins_pipe( fpu_mem_reg_reg );
9586 %}
9587 
9588 
9589 instruct addD_reg_mem(regD dst, memory src) %{
9590   predicate(UseSSE<=1);
9591   match(Set dst (AddD dst (LoadD src)));
9592   ins_cost(150);
9593 
9594   format %{ "FLD    $src\n\t"
9595             "DADDp  $dst,ST" %}
9596   opcode(0xDE, 0x0, 0xDD); /* DE C0+i */  /* LoadD  DD /0 */
9597   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9598               OpcP, RegOpc(dst) );
9599   ins_pipe( fpu_reg_mem );
9600 %}
9601 
9602 // add-to-memory
9603 instruct addD_mem_reg(memory dst, regD src) %{
9604   predicate(UseSSE<=1);
9605   match(Set dst (StoreD dst (RoundDouble (AddD (LoadD dst) src))));
9606   ins_cost(150);
9607 
9608   format %{ "FLD_D  $dst\n\t"
9609             "DADD   ST,$src\n\t"
9610             "FST_D  $dst" %}
9611   opcode(0xDD, 0x0);
9612   ins_encode( Opcode(0xDD), RMopc_Mem(0x00,dst),
9613               Opcode(0xD8), RegOpc(src),
9614               set_instruction_start,
9615               Opcode(0xDD), RMopc_Mem(0x03,dst) );
9616   ins_pipe( fpu_reg_mem );
9617 %}
9618 
9619 instruct addD_reg_imm1(regD dst, immD1 src) %{
9620   predicate(UseSSE<=1);
9621   match(Set dst (AddD dst src));
9622   ins_cost(125);
9623   format %{ "FLD1\n\t"
9624             "DADDp  $dst,ST" %}
9625   opcode(0xDE, 0x00);
9626   ins_encode( LdImmD(src),
9627               OpcP, RegOpc(dst) );
9628   ins_pipe( fpu_reg );
9629 %}
9630 
9631 instruct addD_reg_imm(regD dst, immD src) %{
9632   predicate(UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9633   match(Set dst (AddD dst src));
9634   ins_cost(200);
9635   format %{ "FLD_D  [$src]\n\t"
9636             "DADDp  $dst,ST" %}
9637   opcode(0xDE, 0x00);       /* DE /0 */
9638   ins_encode( LdImmD(src),
9639               OpcP, RegOpc(dst));
9640   ins_pipe( fpu_reg_mem );
9641 %}
9642 
9643 instruct addD_reg_imm_round(stackSlotD dst, regD src, immD con) %{
9644   predicate(UseSSE<=1 && _kids[0]->_kids[1]->_leaf->getd() != 0.0 && _kids[0]->_kids[1]->_leaf->getd() != 1.0 );
9645   match(Set dst (RoundDouble (AddD src con)));
9646   ins_cost(200);
9647   format %{ "FLD_D  [$con]\n\t"
9648             "DADD   ST,$src\n\t"
9649             "FSTP_D $dst\t# D-round" %}
9650   opcode(0xD8, 0x00);       /* D8 /0 */
9651   ins_encode( LdImmD(con),
9652               OpcP, RegOpc(src), Pop_Mem_D(dst));
9653   ins_pipe( fpu_mem_reg_con );
9654 %}
9655 
9656 // Add two double precision floating point values in xmm
9657 instruct addXD_reg(regXD dst, regXD src) %{
9658   predicate(UseSSE>=2);
9659   match(Set dst (AddD dst src));
9660   format %{ "ADDSD  $dst,$src" %}
9661   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
9662   ins_pipe( pipe_slow );
9663 %}
9664 
9665 instruct addXD_imm(regXD dst, immXD con) %{
9666   predicate(UseSSE>=2);
9667   match(Set dst (AddD dst con));
9668   format %{ "ADDSD  $dst,[$con]" %}
9669   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), LdImmXD(dst, con) );
9670   ins_pipe( pipe_slow );
9671 %}
9672 
9673 instruct addXD_mem(regXD dst, memory mem) %{
9674   predicate(UseSSE>=2);
9675   match(Set dst (AddD dst (LoadD mem)));
9676   format %{ "ADDSD  $dst,$mem" %}
9677   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x58), RegMem(dst,mem));
9678   ins_pipe( pipe_slow );
9679 %}
9680 
9681 // Sub two double precision floating point values in xmm
9682 instruct subXD_reg(regXD dst, regXD src) %{
9683   predicate(UseSSE>=2);
9684   match(Set dst (SubD dst src));
9685   format %{ "SUBSD  $dst,$src" %}
9686   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
9687   ins_pipe( pipe_slow );
9688 %}
9689 
9690 instruct subXD_imm(regXD dst, immXD con) %{
9691   predicate(UseSSE>=2);
9692   match(Set dst (SubD dst con));
9693   format %{ "SUBSD  $dst,[$con]" %}
9694   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), LdImmXD(dst, con) );
9695   ins_pipe( pipe_slow );
9696 %}
9697 
9698 instruct subXD_mem(regXD dst, memory mem) %{
9699   predicate(UseSSE>=2);
9700   match(Set dst (SubD dst (LoadD mem)));
9701   format %{ "SUBSD  $dst,$mem" %}
9702   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
9703   ins_pipe( pipe_slow );
9704 %}
9705 
9706 // Mul two double precision floating point values in xmm
9707 instruct mulXD_reg(regXD dst, regXD src) %{
9708   predicate(UseSSE>=2);
9709   match(Set dst (MulD dst src));
9710   format %{ "MULSD  $dst,$src" %}
9711   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
9712   ins_pipe( pipe_slow );
9713 %}
9714 
9715 instruct mulXD_imm(regXD dst, immXD con) %{
9716   predicate(UseSSE>=2);
9717   match(Set dst (MulD dst con));
9718   format %{ "MULSD  $dst,[$con]" %}
9719   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), LdImmXD(dst, con) );
9720   ins_pipe( pipe_slow );
9721 %}
9722 
9723 instruct mulXD_mem(regXD dst, memory mem) %{
9724   predicate(UseSSE>=2);
9725   match(Set dst (MulD dst (LoadD mem)));
9726   format %{ "MULSD  $dst,$mem" %}
9727   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
9728   ins_pipe( pipe_slow );
9729 %}
9730 
9731 // Div two double precision floating point values in xmm
9732 instruct divXD_reg(regXD dst, regXD src) %{
9733   predicate(UseSSE>=2);
9734   match(Set dst (DivD dst src));
9735   format %{ "DIVSD  $dst,$src" %}
9736   opcode(0xF2, 0x0F, 0x5E);
9737   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
9738   ins_pipe( pipe_slow );
9739 %}
9740 
9741 instruct divXD_imm(regXD dst, immXD con) %{
9742   predicate(UseSSE>=2);
9743   match(Set dst (DivD dst con));
9744   format %{ "DIVSD  $dst,[$con]" %}
9745   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), LdImmXD(dst, con));
9746   ins_pipe( pipe_slow );
9747 %}
9748 
9749 instruct divXD_mem(regXD dst, memory mem) %{
9750   predicate(UseSSE>=2);
9751   match(Set dst (DivD dst (LoadD mem)));
9752   format %{ "DIVSD  $dst,$mem" %}
9753   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
9754   ins_pipe( pipe_slow );
9755 %}
9756 
9757 
9758 instruct mulD_reg(regD dst, regD src) %{
9759   predicate(UseSSE<=1);
9760   match(Set dst (MulD dst src));
9761   format %{ "FLD    $src\n\t"
9762             "DMULp  $dst,ST" %}
9763   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9764   ins_cost(150);
9765   ins_encode( Push_Reg_D(src),
9766               OpcP, RegOpc(dst) );
9767   ins_pipe( fpu_reg_reg );
9768 %}
9769 
9770 // Strict FP instruction biases argument before multiply then
9771 // biases result to avoid double rounding of subnormals.
9772 //
9773 // scale arg1 by multiplying arg1 by 2^(-15360)
9774 // load arg2
9775 // multiply scaled arg1 by arg2
9776 // rescale product by 2^(15360)
9777 //
9778 instruct strictfp_mulD_reg(regDPR1 dst, regnotDPR1 src) %{
9779   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9780   match(Set dst (MulD dst src));
9781   ins_cost(1);   // Select this instruction for all strict FP double multiplies
9782 
9783   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9784             "DMULp  $dst,ST\n\t"
9785             "FLD    $src\n\t"
9786             "DMULp  $dst,ST\n\t"
9787             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9788             "DMULp  $dst,ST\n\t" %}
9789   opcode(0xDE, 0x1); /* DE C8+i or DE /1*/
9790   ins_encode( strictfp_bias1(dst),
9791               Push_Reg_D(src),
9792               OpcP, RegOpc(dst),
9793               strictfp_bias2(dst) );
9794   ins_pipe( fpu_reg_reg );
9795 %}
9796 
9797 instruct mulD_reg_imm(regD dst, immD src) %{
9798   predicate( UseSSE<=1 && _kids[1]->_leaf->getd() != 0.0 && _kids[1]->_leaf->getd() != 1.0 );
9799   match(Set dst (MulD dst src));
9800   ins_cost(200);
9801   format %{ "FLD_D  [$src]\n\t"
9802             "DMULp  $dst,ST" %}
9803   opcode(0xDE, 0x1); /* DE /1 */
9804   ins_encode( LdImmD(src),
9805               OpcP, RegOpc(dst) );
9806   ins_pipe( fpu_reg_mem );
9807 %}
9808 
9809 
9810 instruct mulD_reg_mem(regD dst, memory src) %{
9811   predicate( UseSSE<=1 );
9812   match(Set dst (MulD dst (LoadD src)));
9813   ins_cost(200);
9814   format %{ "FLD_D  $src\n\t"
9815             "DMULp  $dst,ST" %}
9816   opcode(0xDE, 0x1, 0xDD); /* DE C8+i or DE /1*/  /* LoadD  DD /0 */
9817   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
9818               OpcP, RegOpc(dst) );
9819   ins_pipe( fpu_reg_mem );
9820 %}
9821 
9822 //
9823 // Cisc-alternate to reg-reg multiply
9824 instruct mulD_reg_mem_cisc(regD dst, regD src, memory mem) %{
9825   predicate( UseSSE<=1 );
9826   match(Set dst (MulD src (LoadD mem)));
9827   ins_cost(250);
9828   format %{ "FLD_D  $mem\n\t"
9829             "DMUL   ST,$src\n\t"
9830             "FSTP_D $dst" %}
9831   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadD D9 /0 */
9832   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem),
9833               OpcReg_F(src),
9834               Pop_Reg_D(dst) );
9835   ins_pipe( fpu_reg_reg_mem );
9836 %}
9837 
9838 
9839 // MACRO3 -- addD a mulD
9840 // This instruction is a '2-address' instruction in that the result goes
9841 // back to src2.  This eliminates a move from the macro; possibly the
9842 // register allocator will have to add it back (and maybe not).
9843 instruct addD_mulD_reg(regD src2, regD src1, regD src0) %{
9844   predicate( UseSSE<=1 );
9845   match(Set src2 (AddD (MulD src0 src1) src2));
9846   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9847             "DMUL   ST,$src1\n\t"
9848             "DADDp  $src2,ST" %}
9849   ins_cost(250);
9850   opcode(0xDD); /* LoadD DD /0 */
9851   ins_encode( Push_Reg_F(src0),
9852               FMul_ST_reg(src1),
9853               FAddP_reg_ST(src2) );
9854   ins_pipe( fpu_reg_reg_reg );
9855 %}
9856 
9857 
9858 // MACRO3 -- subD a mulD
9859 instruct subD_mulD_reg(regD src2, regD src1, regD src0) %{
9860   predicate( UseSSE<=1 );
9861   match(Set src2 (SubD (MulD src0 src1) src2));
9862   format %{ "FLD    $src0\t# ===MACRO3d===\n\t"
9863             "DMUL   ST,$src1\n\t"
9864             "DSUBRp $src2,ST" %}
9865   ins_cost(250);
9866   ins_encode( Push_Reg_F(src0),
9867               FMul_ST_reg(src1),
9868               Opcode(0xDE), Opc_plus(0xE0,src2));
9869   ins_pipe( fpu_reg_reg_reg );
9870 %}
9871 
9872 
9873 instruct divD_reg(regD dst, regD src) %{
9874   predicate( UseSSE<=1 );
9875   match(Set dst (DivD dst src));
9876 
9877   format %{ "FLD    $src\n\t"
9878             "FDIVp  $dst,ST" %}
9879   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9880   ins_cost(150);
9881   ins_encode( Push_Reg_D(src),
9882               OpcP, RegOpc(dst) );
9883   ins_pipe( fpu_reg_reg );
9884 %}
9885 
9886 // Strict FP instruction biases argument before division then
9887 // biases result, to avoid double rounding of subnormals.
9888 //
9889 // scale dividend by multiplying dividend by 2^(-15360)
9890 // load divisor
9891 // divide scaled dividend by divisor
9892 // rescale quotient by 2^(15360)
9893 //
9894 instruct strictfp_divD_reg(regDPR1 dst, regnotDPR1 src) %{
9895   predicate (UseSSE<=1);
9896   match(Set dst (DivD dst src));
9897   predicate( UseSSE<=1 && Compile::current()->has_method() && Compile::current()->method()->is_strict() );
9898   ins_cost(01);
9899 
9900   format %{ "FLD    StubRoutines::_fpu_subnormal_bias1\n\t"
9901             "DMULp  $dst,ST\n\t"
9902             "FLD    $src\n\t"
9903             "FDIVp  $dst,ST\n\t"
9904             "FLD    StubRoutines::_fpu_subnormal_bias2\n\t"
9905             "DMULp  $dst,ST\n\t" %}
9906   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
9907   ins_encode( strictfp_bias1(dst),
9908               Push_Reg_D(src),
9909               OpcP, RegOpc(dst),
9910               strictfp_bias2(dst) );
9911   ins_pipe( fpu_reg_reg );
9912 %}
9913 
9914 instruct divD_reg_round(stackSlotD dst, regD src1, regD src2) %{
9915   predicate( UseSSE<=1 && !(Compile::current()->has_method() && Compile::current()->method()->is_strict()) );
9916   match(Set dst (RoundDouble (DivD src1 src2)));
9917 
9918   format %{ "FLD    $src1\n\t"
9919             "FDIV   ST,$src2\n\t"
9920             "FSTP_D $dst\t# D-round" %}
9921   opcode(0xD8, 0x6); /* D8 F0+i or D8 /6 */
9922   ins_encode( Push_Reg_D(src1),
9923               OpcP, RegOpc(src2), Pop_Mem_D(dst) );
9924   ins_pipe( fpu_mem_reg_reg );
9925 %}
9926 
9927 
9928 instruct modD_reg(regD dst, regD src, eAXRegI rax, eFlagsReg cr) %{
9929   predicate(UseSSE<=1);
9930   match(Set dst (ModD dst src));
9931   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
9932 
9933   format %{ "DMOD   $dst,$src" %}
9934   ins_cost(250);
9935   ins_encode(Push_Reg_Mod_D(dst, src),
9936               emitModD(),
9937               Push_Result_Mod_D(src),
9938               Pop_Reg_D(dst));
9939   ins_pipe( pipe_slow );
9940 %}
9941 
9942 instruct modXD_reg(regXD dst, regXD src0, regXD src1, eAXRegI rax, eFlagsReg cr) %{
9943   predicate(UseSSE>=2);
9944   match(Set dst (ModD src0 src1));
9945   effect(KILL rax, KILL cr);
9946 
9947   format %{ "SUB    ESP,8\t # DMOD\n"
9948           "\tMOVSD  [ESP+0],$src1\n"
9949           "\tFLD_D  [ESP+0]\n"
9950           "\tMOVSD  [ESP+0],$src0\n"
9951           "\tFLD_D  [ESP+0]\n"
9952      "loop:\tFPREM\n"
9953           "\tFWAIT\n"
9954           "\tFNSTSW AX\n"
9955           "\tSAHF\n"
9956           "\tJP     loop\n"
9957           "\tFSTP_D [ESP+0]\n"
9958           "\tMOVSD  $dst,[ESP+0]\n"
9959           "\tADD    ESP,8\n"
9960           "\tFSTP   ST0\t # Restore FPU Stack"
9961     %}
9962   ins_cost(250);
9963   ins_encode( Push_ModD_encoding(src0, src1), emitModD(), Push_ResultXD(dst), PopFPU);
9964   ins_pipe( pipe_slow );
9965 %}
9966 
9967 instruct sinD_reg(regDPR1 dst, regDPR1 src) %{
9968   predicate (UseSSE<=1);
9969   match(Set dst (SinD src));
9970   ins_cost(1800);
9971   format %{ "DSIN   $dst" %}
9972   opcode(0xD9, 0xFE);
9973   ins_encode( OpcP, OpcS );
9974   ins_pipe( pipe_slow );
9975 %}
9976 
9977 instruct sinXD_reg(regXD dst, eFlagsReg cr) %{
9978   predicate (UseSSE>=2);
9979   match(Set dst (SinD dst));
9980   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
9981   ins_cost(1800);
9982   format %{ "DSIN   $dst" %}
9983   opcode(0xD9, 0xFE);
9984   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
9985   ins_pipe( pipe_slow );
9986 %}
9987 
9988 instruct cosD_reg(regDPR1 dst, regDPR1 src) %{
9989   predicate (UseSSE<=1);
9990   match(Set dst (CosD src));
9991   ins_cost(1800);
9992   format %{ "DCOS   $dst" %}
9993   opcode(0xD9, 0xFF);
9994   ins_encode( OpcP, OpcS );
9995   ins_pipe( pipe_slow );
9996 %}
9997 
9998 instruct cosXD_reg(regXD dst, eFlagsReg cr) %{
9999   predicate (UseSSE>=2);
10000   match(Set dst (CosD dst));
10001   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10002   ins_cost(1800);
10003   format %{ "DCOS   $dst" %}
10004   opcode(0xD9, 0xFF);
10005   ins_encode( Push_SrcXD(dst), OpcP, OpcS, Push_ResultXD(dst) );
10006   ins_pipe( pipe_slow );
10007 %}
10008 
10009 instruct tanD_reg(regDPR1 dst, regDPR1 src) %{
10010   predicate (UseSSE<=1);
10011   match(Set dst(TanD src));
10012   format %{ "DTAN   $dst" %}
10013   ins_encode( Opcode(0xD9), Opcode(0xF2),    // fptan
10014               Opcode(0xDD), Opcode(0xD8));   // fstp st
10015   ins_pipe( pipe_slow );
10016 %}
10017 
10018 instruct tanXD_reg(regXD dst, eFlagsReg cr) %{
10019   predicate (UseSSE>=2);
10020   match(Set dst(TanD dst));
10021   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10022   format %{ "DTAN   $dst" %}
10023   ins_encode( Push_SrcXD(dst),
10024               Opcode(0xD9), Opcode(0xF2),    // fptan
10025               Opcode(0xDD), Opcode(0xD8),   // fstp st
10026               Push_ResultXD(dst) );
10027   ins_pipe( pipe_slow );
10028 %}
10029 
10030 instruct atanD_reg(regD dst, regD src) %{
10031   predicate (UseSSE<=1);
10032   match(Set dst(AtanD dst src));
10033   format %{ "DATA   $dst,$src" %}
10034   opcode(0xD9, 0xF3);
10035   ins_encode( Push_Reg_D(src),
10036               OpcP, OpcS, RegOpc(dst) );
10037   ins_pipe( pipe_slow );
10038 %}
10039 
10040 instruct atanXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10041   predicate (UseSSE>=2);
10042   match(Set dst(AtanD dst src));
10043   effect(KILL cr); // Push_{Src|Result}XD() uses "{SUB|ADD} ESP,8"
10044   format %{ "DATA   $dst,$src" %}
10045   opcode(0xD9, 0xF3);
10046   ins_encode( Push_SrcXD(src),
10047               OpcP, OpcS, Push_ResultXD(dst) );
10048   ins_pipe( pipe_slow );
10049 %}
10050 
10051 instruct sqrtD_reg(regD dst, regD src) %{
10052   predicate (UseSSE<=1);
10053   match(Set dst (SqrtD src));
10054   format %{ "DSQRT  $dst,$src" %}
10055   opcode(0xFA, 0xD9);
10056   ins_encode( Push_Reg_D(src),
10057               OpcS, OpcP, Pop_Reg_D(dst) );
10058   ins_pipe( pipe_slow );
10059 %}
10060 
10061 instruct powD_reg(regD X, regDPR1 Y, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10062   predicate (UseSSE<=1);
10063   match(Set Y (PowD X Y));  // Raise X to the Yth power
10064   effect(KILL rax, KILL rbx, KILL rcx);
10065   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10066             "FLD_D  $X\n\t"
10067             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10068 
10069             "FDUP   \t\t\t# Q Q\n\t"
10070             "FRNDINT\t\t\t# int(Q) Q\n\t"
10071             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10072             "FISTP  dword [ESP]\n\t"
10073             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10074             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10075             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10076             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10077             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10078             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10079             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10080             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10081             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10082             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10083             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10084             "MOV    [ESP+0],0\n\t"
10085             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10086 
10087             "ADD    ESP,8"
10088              %}
10089   ins_encode( push_stack_temp_qword,
10090               Push_Reg_D(X),
10091               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10092               pow_exp_core_encoding,
10093               pop_stack_temp_qword);
10094   ins_pipe( pipe_slow );
10095 %}
10096 
10097 instruct powXD_reg(regXD dst, regXD src0, regXD src1, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx ) %{
10098   predicate (UseSSE>=2);
10099   match(Set dst (PowD src0 src1));  // Raise src0 to the src1'th power
10100   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx );
10101   format %{ "SUB    ESP,8\t\t# Fast-path POW encoding\n\t"
10102             "MOVSD  [ESP],$src1\n\t"
10103             "FLD    FPR1,$src1\n\t"
10104             "MOVSD  [ESP],$src0\n\t"
10105             "FLD    FPR1,$src0\n\t"
10106             "FYL2X  \t\t\t# Q=Y*ln2(X)\n\t"
10107 
10108             "FDUP   \t\t\t# Q Q\n\t"
10109             "FRNDINT\t\t\t# int(Q) Q\n\t"
10110             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10111             "FISTP  dword [ESP]\n\t"
10112             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10113             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10114             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10115             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10116             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10117             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10118             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10119             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10120             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10121             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10122             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10123             "MOV    [ESP+0],0\n\t"
10124             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10125 
10126             "FST_D  [ESP]\n\t"
10127             "MOVSD  $dst,[ESP]\n\t"
10128             "ADD    ESP,8"
10129              %}
10130   ins_encode( push_stack_temp_qword,
10131               push_xmm_to_fpr1(src1),
10132               push_xmm_to_fpr1(src0),
10133               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10134               pow_exp_core_encoding,
10135               Push_ResultXD(dst) );
10136   ins_pipe( pipe_slow );
10137 %}
10138 
10139 
10140 instruct expD_reg(regDPR1 dpr1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10141   predicate (UseSSE<=1);
10142   match(Set dpr1 (ExpD dpr1));
10143   effect(KILL rax, KILL rbx, KILL rcx);
10144   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding"
10145             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10146             "FMULP  \t\t\t# Q=X*log2(e)\n\t"
10147 
10148             "FDUP   \t\t\t# Q Q\n\t"
10149             "FRNDINT\t\t\t# int(Q) Q\n\t"
10150             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10151             "FISTP  dword [ESP]\n\t"
10152             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10153             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10154             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10155             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10156             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10157             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10158             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10159             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10160             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10161             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10162             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10163             "MOV    [ESP+0],0\n\t"
10164             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10165 
10166             "ADD    ESP,8"
10167              %}
10168   ins_encode( push_stack_temp_qword,
10169               Opcode(0xD9), Opcode(0xEA),   // fldl2e
10170               Opcode(0xDE), Opcode(0xC9),   // fmulp
10171               pow_exp_core_encoding,
10172               pop_stack_temp_qword);
10173   ins_pipe( pipe_slow );
10174 %}
10175 
10176 instruct expXD_reg(regXD dst, regXD src, regDPR1 tmp1, eAXRegI rax, eBXRegI rbx, eCXRegI rcx) %{
10177   predicate (UseSSE>=2);
10178   match(Set dst (ExpD src));
10179   effect(KILL tmp1, KILL rax, KILL rbx, KILL rcx);
10180   format %{ "SUB    ESP,8\t\t# Fast-path EXP encoding\n\t"
10181             "MOVSD  [ESP],$src\n\t"
10182             "FLDL2E \t\t\t# Ld log2(e) X\n\t"
10183             "FMULP  \t\t\t# Q=X*log2(e) X\n\t"
10184 
10185             "FDUP   \t\t\t# Q Q\n\t"
10186             "FRNDINT\t\t\t# int(Q) Q\n\t"
10187             "FSUB   ST(1),ST(0)\t# int(Q) frac(Q)\n\t"
10188             "FISTP  dword [ESP]\n\t"
10189             "F2XM1  \t\t\t# 2^frac(Q)-1 int(Q)\n\t"
10190             "FLD1   \t\t\t# 1 2^frac(Q)-1 int(Q)\n\t"
10191             "FADDP  \t\t\t# 2^frac(Q) int(Q)\n\t" // could use FADD [1.000] instead
10192             "MOV    EAX,[ESP]\t# Pick up int(Q)\n\t"
10193             "MOV    ECX,0xFFFFF800\t# Overflow mask\n\t"
10194             "ADD    EAX,1023\t\t# Double exponent bias\n\t"
10195             "MOV    EBX,EAX\t\t# Preshifted biased expo\n\t"
10196             "SHL    EAX,20\t\t# Shift exponent into place\n\t"
10197             "TEST   EBX,ECX\t\t# Check for overflow\n\t"
10198             "CMOVne EAX,ECX\t\t# If overflow, stuff NaN into EAX\n\t"
10199             "MOV    [ESP+4],EAX\t# Marshal 64-bit scaling double\n\t"
10200             "MOV    [ESP+0],0\n\t"
10201             "FMUL   ST(0),[ESP+0]\t# Scale\n\t"
10202 
10203             "FST_D  [ESP]\n\t"
10204             "MOVSD  $dst,[ESP]\n\t"
10205             "ADD    ESP,8"
10206              %}
10207   ins_encode( Push_SrcXD(src),
10208               Opcode(0xD9), Opcode(0xEA),   // fldl2e
10209               Opcode(0xDE), Opcode(0xC9),   // fmulp
10210               pow_exp_core_encoding,
10211               Push_ResultXD(dst) );
10212   ins_pipe( pipe_slow );
10213 %}
10214 
10215 
10216 
10217 instruct log10D_reg(regDPR1 dst, regDPR1 src) %{
10218   predicate (UseSSE<=1);
10219   // The source Double operand on FPU stack
10220   match(Set dst (Log10D src));
10221   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10222   // fxch         ; swap ST(0) with ST(1)
10223   // fyl2x        ; compute log_10(2) * log_2(x)
10224   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10225             "FXCH   \n\t"
10226             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10227          %}
10228   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10229               Opcode(0xD9), Opcode(0xC9),   // fxch
10230               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10231 
10232   ins_pipe( pipe_slow );
10233 %}
10234 
10235 instruct log10XD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10236   predicate (UseSSE>=2);
10237   effect(KILL cr);
10238   match(Set dst (Log10D src));
10239   // fldlg2       ; push log_10(2) on the FPU stack; full 80-bit number
10240   // fyl2x        ; compute log_10(2) * log_2(x)
10241   format %{ "FLDLG2 \t\t\t#Log10\n\t"
10242             "FYL2X  \t\t\t# Q=Log10*Log_2(x)"
10243          %}
10244   ins_encode( Opcode(0xD9), Opcode(0xEC),   // fldlg2
10245               Push_SrcXD(src),
10246               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10247               Push_ResultXD(dst));
10248 
10249   ins_pipe( pipe_slow );
10250 %}
10251 
10252 instruct logD_reg(regDPR1 dst, regDPR1 src) %{
10253   predicate (UseSSE<=1);
10254   // The source Double operand on FPU stack
10255   match(Set dst (LogD src));
10256   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10257   // fxch         ; swap ST(0) with ST(1)
10258   // fyl2x        ; compute log_e(2) * log_2(x)
10259   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10260             "FXCH   \n\t"
10261             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10262          %}
10263   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10264               Opcode(0xD9), Opcode(0xC9),   // fxch
10265               Opcode(0xD9), Opcode(0xF1));  // fyl2x
10266 
10267   ins_pipe( pipe_slow );
10268 %}
10269 
10270 instruct logXD_reg(regXD dst, regXD src, eFlagsReg cr) %{
10271   predicate (UseSSE>=2);
10272   effect(KILL cr);
10273   // The source and result Double operands in XMM registers
10274   match(Set dst (LogD src));
10275   // fldln2       ; push log_e(2) on the FPU stack; full 80-bit number
10276   // fyl2x        ; compute log_e(2) * log_2(x)
10277   format %{ "FLDLN2 \t\t\t#Log_e\n\t"
10278             "FYL2X  \t\t\t# Q=Log_e*Log_2(x)"
10279          %}
10280   ins_encode( Opcode(0xD9), Opcode(0xED),   // fldln2
10281               Push_SrcXD(src),
10282               Opcode(0xD9), Opcode(0xF1),   // fyl2x
10283               Push_ResultXD(dst));
10284   ins_pipe( pipe_slow );
10285 %}
10286 
10287 //-------------Float Instructions-------------------------------
10288 // Float Math
10289 
10290 // Code for float compare:
10291 //     fcompp();
10292 //     fwait(); fnstsw_ax();
10293 //     sahf();
10294 //     movl(dst, unordered_result);
10295 //     jcc(Assembler::parity, exit);
10296 //     movl(dst, less_result);
10297 //     jcc(Assembler::below, exit);
10298 //     movl(dst, equal_result);
10299 //     jcc(Assembler::equal, exit);
10300 //     movl(dst, greater_result);
10301 //   exit:
10302 
10303 // P6 version of float compare, sets condition codes in EFLAGS
10304 instruct cmpF_cc_P6(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10305   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10306   match(Set cr (CmpF src1 src2));
10307   effect(KILL rax);
10308   ins_cost(150);
10309   format %{ "FLD    $src1\n\t"
10310             "FUCOMIP ST,$src2  // P6 instruction\n\t"
10311             "JNP    exit\n\t"
10312             "MOV    ah,1       // saw a NaN, set CF (treat as LT)\n\t"
10313             "SAHF\n"
10314      "exit:\tNOP               // avoid branch to branch" %}
10315   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10316   ins_encode( Push_Reg_D(src1),
10317               OpcP, RegOpc(src2),
10318               cmpF_P6_fixup );
10319   ins_pipe( pipe_slow );
10320 %}
10321 
10322 instruct cmpF_cc_P6CF(eFlagsRegUCF cr, regF src1, regF src2) %{
10323   predicate(VM_Version::supports_cmov() && UseSSE == 0);
10324   match(Set cr (CmpF src1 src2));
10325   ins_cost(100);
10326   format %{ "FLD    $src1\n\t"
10327             "FUCOMIP ST,$src2  // P6 instruction" %}
10328   opcode(0xDF, 0x05); /* DF E8+i or DF /5 */
10329   ins_encode( Push_Reg_D(src1),
10330               OpcP, RegOpc(src2));
10331   ins_pipe( pipe_slow );
10332 %}
10333 
10334 
10335 // Compare & branch
10336 instruct cmpF_cc(eFlagsRegU cr, regF src1, regF src2, eAXRegI rax) %{
10337   predicate(UseSSE == 0);
10338   match(Set cr (CmpF src1 src2));
10339   effect(KILL rax);
10340   ins_cost(200);
10341   format %{ "FLD    $src1\n\t"
10342             "FCOMp  $src2\n\t"
10343             "FNSTSW AX\n\t"
10344             "TEST   AX,0x400\n\t"
10345             "JZ,s   flags\n\t"
10346             "MOV    AH,1\t# unordered treat as LT\n"
10347     "flags:\tSAHF" %}
10348   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10349   ins_encode( Push_Reg_D(src1),
10350               OpcP, RegOpc(src2),
10351               fpu_flags);
10352   ins_pipe( pipe_slow );
10353 %}
10354 
10355 // Compare vs zero into -1,0,1
10356 instruct cmpF_0(eRegI dst, regF src1, immF0 zero, eAXRegI rax, eFlagsReg cr) %{
10357   predicate(UseSSE == 0);
10358   match(Set dst (CmpF3 src1 zero));
10359   effect(KILL cr, KILL rax);
10360   ins_cost(280);
10361   format %{ "FTSTF  $dst,$src1" %}
10362   opcode(0xE4, 0xD9);
10363   ins_encode( Push_Reg_D(src1),
10364               OpcS, OpcP, PopFPU,
10365               CmpF_Result(dst));
10366   ins_pipe( pipe_slow );
10367 %}
10368 
10369 // Compare into -1,0,1
10370 instruct cmpF_reg(eRegI dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
10371   predicate(UseSSE == 0);
10372   match(Set dst (CmpF3 src1 src2));
10373   effect(KILL cr, KILL rax);
10374   ins_cost(300);
10375   format %{ "FCMPF  $dst,$src1,$src2" %}
10376   opcode(0xD8, 0x3); /* D8 D8+i or D8 /3 */
10377   ins_encode( Push_Reg_D(src1),
10378               OpcP, RegOpc(src2),
10379               CmpF_Result(dst));
10380   ins_pipe( pipe_slow );
10381 %}
10382 
10383 // float compare and set condition codes in EFLAGS by XMM regs
10384 instruct cmpX_cc(eFlagsRegU cr, regX dst, regX src, eAXRegI rax) %{
10385   predicate(UseSSE>=1);
10386   match(Set cr (CmpF dst src));
10387   effect(KILL rax);
10388   ins_cost(145);
10389   format %{ "COMISS $dst,$src\n"
10390           "\tJNP    exit\n"
10391           "\tMOV    ah,1       // saw a NaN, set CF\n"
10392           "\tSAHF\n"
10393      "exit:\tNOP               // avoid branch to branch" %}
10394   opcode(0x0F, 0x2F);
10395   ins_encode(OpcP, OpcS, RegReg(dst, src), cmpF_P6_fixup);
10396   ins_pipe( pipe_slow );
10397 %}
10398 
10399 instruct cmpX_ccCF(eFlagsRegUCF cr, regX dst, regX src) %{
10400   predicate(UseSSE>=1);
10401   match(Set cr (CmpF dst src));
10402   ins_cost(100);
10403   format %{ "COMISS $dst,$src" %}
10404   opcode(0x0F, 0x2F);
10405   ins_encode(OpcP, OpcS, RegReg(dst, src));
10406   ins_pipe( pipe_slow );
10407 %}
10408 
10409 // float compare and set condition codes in EFLAGS by XMM regs
10410 instruct cmpX_ccmem(eFlagsRegU cr, regX dst, memory src, eAXRegI rax) %{
10411   predicate(UseSSE>=1);
10412   match(Set cr (CmpF dst (LoadF src)));
10413   effect(KILL rax);
10414   ins_cost(165);
10415   format %{ "COMISS $dst,$src\n"
10416           "\tJNP    exit\n"
10417           "\tMOV    ah,1       // saw a NaN, set CF\n"
10418           "\tSAHF\n"
10419      "exit:\tNOP               // avoid branch to branch" %}
10420   opcode(0x0F, 0x2F);
10421   ins_encode(OpcP, OpcS, RegMem(dst, src), cmpF_P6_fixup);
10422   ins_pipe( pipe_slow );
10423 %}
10424 
10425 instruct cmpX_ccmemCF(eFlagsRegUCF cr, regX dst, memory src) %{
10426   predicate(UseSSE>=1);
10427   match(Set cr (CmpF dst (LoadF src)));
10428   ins_cost(100);
10429   format %{ "COMISS $dst,$src" %}
10430   opcode(0x0F, 0x2F);
10431   ins_encode(OpcP, OpcS, RegMem(dst, src));
10432   ins_pipe( pipe_slow );
10433 %}
10434 
10435 // Compare into -1,0,1 in XMM
10436 instruct cmpX_reg(eRegI dst, regX src1, regX src2, eFlagsReg cr) %{
10437   predicate(UseSSE>=1);
10438   match(Set dst (CmpF3 src1 src2));
10439   effect(KILL cr);
10440   ins_cost(255);
10441   format %{ "XOR    $dst,$dst\n"
10442           "\tCOMISS $src1,$src2\n"
10443           "\tJP,s   nan\n"
10444           "\tJEQ,s  exit\n"
10445           "\tJA,s   inc\n"
10446       "nan:\tDEC    $dst\n"
10447           "\tJMP,s  exit\n"
10448       "inc:\tINC    $dst\n"
10449       "exit:"
10450                 %}
10451   opcode(0x0F, 0x2F);
10452   ins_encode(Xor_Reg(dst), OpcP, OpcS, RegReg(src1, src2), CmpX_Result(dst));
10453   ins_pipe( pipe_slow );
10454 %}
10455 
10456 // Compare into -1,0,1 in XMM and memory
10457 instruct cmpX_regmem(eRegI dst, regX src1, memory mem, eFlagsReg cr) %{
10458   predicate(UseSSE>=1);
10459   match(Set dst (CmpF3 src1 (LoadF mem)));
10460   effect(KILL cr);
10461   ins_cost(275);
10462   format %{ "COMISS $src1,$mem\n"
10463           "\tMOV    $dst,0\t\t# do not blow flags\n"
10464           "\tJP,s   nan\n"
10465           "\tJEQ,s  exit\n"
10466           "\tJA,s   inc\n"
10467       "nan:\tDEC    $dst\n"
10468           "\tJMP,s  exit\n"
10469       "inc:\tINC    $dst\n"
10470       "exit:"
10471                 %}
10472   opcode(0x0F, 0x2F);
10473   ins_encode(OpcP, OpcS, RegMem(src1, mem), LdImmI(dst,0x0), CmpX_Result(dst));
10474   ins_pipe( pipe_slow );
10475 %}
10476 
10477 // Spill to obtain 24-bit precision
10478 instruct subF24_reg(stackSlotF dst, regF src1, regF src2) %{
10479   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10480   match(Set dst (SubF src1 src2));
10481 
10482   format %{ "FSUB   $dst,$src1 - $src2" %}
10483   opcode(0xD8, 0x4); /* D8 E0+i or D8 /4 mod==0x3 ;; result in TOS */
10484   ins_encode( Push_Reg_F(src1),
10485               OpcReg_F(src2),
10486               Pop_Mem_F(dst) );
10487   ins_pipe( fpu_mem_reg_reg );
10488 %}
10489 //
10490 // This instruction does not round to 24-bits
10491 instruct subF_reg(regF dst, regF src) %{
10492   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10493   match(Set dst (SubF dst src));
10494 
10495   format %{ "FSUB   $dst,$src" %}
10496   opcode(0xDE, 0x5); /* DE E8+i  or DE /5 */
10497   ins_encode( Push_Reg_F(src),
10498               OpcP, RegOpc(dst) );
10499   ins_pipe( fpu_reg_reg );
10500 %}
10501 
10502 // Spill to obtain 24-bit precision
10503 instruct addF24_reg(stackSlotF dst, regF src1, regF src2) %{
10504   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10505   match(Set dst (AddF src1 src2));
10506 
10507   format %{ "FADD   $dst,$src1,$src2" %}
10508   opcode(0xD8, 0x0); /* D8 C0+i */
10509   ins_encode( Push_Reg_F(src2),
10510               OpcReg_F(src1),
10511               Pop_Mem_F(dst) );
10512   ins_pipe( fpu_mem_reg_reg );
10513 %}
10514 //
10515 // This instruction does not round to 24-bits
10516 instruct addF_reg(regF dst, regF src) %{
10517   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10518   match(Set dst (AddF dst src));
10519 
10520   format %{ "FLD    $src\n\t"
10521             "FADDp  $dst,ST" %}
10522   opcode(0xDE, 0x0); /* DE C0+i or DE /0*/
10523   ins_encode( Push_Reg_F(src),
10524               OpcP, RegOpc(dst) );
10525   ins_pipe( fpu_reg_reg );
10526 %}
10527 
10528 // Add two single precision floating point values in xmm
10529 instruct addX_reg(regX dst, regX src) %{
10530   predicate(UseSSE>=1);
10531   match(Set dst (AddF dst src));
10532   format %{ "ADDSS  $dst,$src" %}
10533   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegReg(dst, src));
10534   ins_pipe( pipe_slow );
10535 %}
10536 
10537 instruct addX_imm(regX dst, immXF con) %{
10538   predicate(UseSSE>=1);
10539   match(Set dst (AddF dst con));
10540   format %{ "ADDSS  $dst,[$con]" %}
10541   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), LdImmX(dst, con) );
10542   ins_pipe( pipe_slow );
10543 %}
10544 
10545 instruct addX_mem(regX dst, memory mem) %{
10546   predicate(UseSSE>=1);
10547   match(Set dst (AddF dst (LoadF mem)));
10548   format %{ "ADDSS  $dst,$mem" %}
10549   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x58), RegMem(dst, mem));
10550   ins_pipe( pipe_slow );
10551 %}
10552 
10553 // Subtract two single precision floating point values in xmm
10554 instruct subX_reg(regX dst, regX src) %{
10555   predicate(UseSSE>=1);
10556   match(Set dst (SubF dst src));
10557   format %{ "SUBSS  $dst,$src" %}
10558   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegReg(dst, src));
10559   ins_pipe( pipe_slow );
10560 %}
10561 
10562 instruct subX_imm(regX dst, immXF con) %{
10563   predicate(UseSSE>=1);
10564   match(Set dst (SubF dst con));
10565   format %{ "SUBSS  $dst,[$con]" %}
10566   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), LdImmX(dst, con) );
10567   ins_pipe( pipe_slow );
10568 %}
10569 
10570 instruct subX_mem(regX dst, memory mem) %{
10571   predicate(UseSSE>=1);
10572   match(Set dst (SubF dst (LoadF mem)));
10573   format %{ "SUBSS  $dst,$mem" %}
10574   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5C), RegMem(dst,mem));
10575   ins_pipe( pipe_slow );
10576 %}
10577 
10578 // Multiply two single precision floating point values in xmm
10579 instruct mulX_reg(regX dst, regX src) %{
10580   predicate(UseSSE>=1);
10581   match(Set dst (MulF dst src));
10582   format %{ "MULSS  $dst,$src" %}
10583   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegReg(dst, src));
10584   ins_pipe( pipe_slow );
10585 %}
10586 
10587 instruct mulX_imm(regX dst, immXF con) %{
10588   predicate(UseSSE>=1);
10589   match(Set dst (MulF dst con));
10590   format %{ "MULSS  $dst,[$con]" %}
10591   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), LdImmX(dst, con) );
10592   ins_pipe( pipe_slow );
10593 %}
10594 
10595 instruct mulX_mem(regX dst, memory mem) %{
10596   predicate(UseSSE>=1);
10597   match(Set dst (MulF dst (LoadF mem)));
10598   format %{ "MULSS  $dst,$mem" %}
10599   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x59), RegMem(dst,mem));
10600   ins_pipe( pipe_slow );
10601 %}
10602 
10603 // Divide two single precision floating point values in xmm
10604 instruct divX_reg(regX dst, regX src) %{
10605   predicate(UseSSE>=1);
10606   match(Set dst (DivF dst src));
10607   format %{ "DIVSS  $dst,$src" %}
10608   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegReg(dst, src));
10609   ins_pipe( pipe_slow );
10610 %}
10611 
10612 instruct divX_imm(regX dst, immXF con) %{
10613   predicate(UseSSE>=1);
10614   match(Set dst (DivF dst con));
10615   format %{ "DIVSS  $dst,[$con]" %}
10616   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), LdImmX(dst, con) );
10617   ins_pipe( pipe_slow );
10618 %}
10619 
10620 instruct divX_mem(regX dst, memory mem) %{
10621   predicate(UseSSE>=1);
10622   match(Set dst (DivF dst (LoadF mem)));
10623   format %{ "DIVSS  $dst,$mem" %}
10624   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x5E), RegMem(dst,mem));
10625   ins_pipe( pipe_slow );
10626 %}
10627 
10628 // Get the square root of a single precision floating point values in xmm
10629 instruct sqrtX_reg(regX dst, regX src) %{
10630   predicate(UseSSE>=1);
10631   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
10632   format %{ "SQRTSS $dst,$src" %}
10633   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
10634   ins_pipe( pipe_slow );
10635 %}
10636 
10637 instruct sqrtX_mem(regX dst, memory mem) %{
10638   predicate(UseSSE>=1);
10639   match(Set dst (ConvD2F (SqrtD (ConvF2D (LoadF mem)))));
10640   format %{ "SQRTSS $dst,$mem" %}
10641   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
10642   ins_pipe( pipe_slow );
10643 %}
10644 
10645 // Get the square root of a double precision floating point values in xmm
10646 instruct sqrtXD_reg(regXD dst, regXD src) %{
10647   predicate(UseSSE>=2);
10648   match(Set dst (SqrtD src));
10649   format %{ "SQRTSD $dst,$src" %}
10650   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegReg(dst, src));
10651   ins_pipe( pipe_slow );
10652 %}
10653 
10654 instruct sqrtXD_mem(regXD dst, memory mem) %{
10655   predicate(UseSSE>=2);
10656   match(Set dst (SqrtD (LoadD mem)));
10657   format %{ "SQRTSD $dst,$mem" %}
10658   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x51), RegMem(dst, mem));
10659   ins_pipe( pipe_slow );
10660 %}
10661 
10662 instruct absF_reg(regFPR1 dst, regFPR1 src) %{
10663   predicate(UseSSE==0);
10664   match(Set dst (AbsF src));
10665   ins_cost(100);
10666   format %{ "FABS" %}
10667   opcode(0xE1, 0xD9);
10668   ins_encode( OpcS, OpcP );
10669   ins_pipe( fpu_reg_reg );
10670 %}
10671 
10672 instruct absX_reg(regX dst ) %{
10673   predicate(UseSSE>=1);
10674   match(Set dst (AbsF dst));
10675   format %{ "ANDPS  $dst,[0x7FFFFFFF]\t# ABS F by sign masking" %}
10676   ins_encode( AbsXF_encoding(dst));
10677   ins_pipe( pipe_slow );
10678 %}
10679 
10680 instruct negF_reg(regFPR1 dst, regFPR1 src) %{
10681   predicate(UseSSE==0);
10682   match(Set dst (NegF src));
10683   ins_cost(100);
10684   format %{ "FCHS" %}
10685   opcode(0xE0, 0xD9);
10686   ins_encode( OpcS, OpcP );
10687   ins_pipe( fpu_reg_reg );
10688 %}
10689 
10690 instruct negX_reg( regX dst ) %{
10691   predicate(UseSSE>=1);
10692   match(Set dst (NegF dst));
10693   format %{ "XORPS  $dst,[0x80000000]\t# CHS F by sign flipping" %}
10694   ins_encode( NegXF_encoding(dst));
10695   ins_pipe( pipe_slow );
10696 %}
10697 
10698 // Cisc-alternate to addF_reg
10699 // Spill to obtain 24-bit precision
10700 instruct addF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
10701   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10702   match(Set dst (AddF src1 (LoadF src2)));
10703 
10704   format %{ "FLD    $src2\n\t"
10705             "FADD   ST,$src1\n\t"
10706             "FSTP_S $dst" %}
10707   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10708   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10709               OpcReg_F(src1),
10710               Pop_Mem_F(dst) );
10711   ins_pipe( fpu_mem_reg_mem );
10712 %}
10713 //
10714 // Cisc-alternate to addF_reg
10715 // This instruction does not round to 24-bits
10716 instruct addF_reg_mem(regF dst, memory src) %{
10717   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10718   match(Set dst (AddF dst (LoadF src)));
10719 
10720   format %{ "FADD   $dst,$src" %}
10721   opcode(0xDE, 0x0, 0xD9); /* DE C0+i or DE /0*/  /* LoadF  D9 /0 */
10722   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src),
10723               OpcP, RegOpc(dst) );
10724   ins_pipe( fpu_reg_mem );
10725 %}
10726 
10727 // // Following two instructions for _222_mpegaudio
10728 // Spill to obtain 24-bit precision
10729 instruct addF24_mem_reg(stackSlotF dst, regF src2, memory src1 ) %{
10730   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10731   match(Set dst (AddF src1 src2));
10732 
10733   format %{ "FADD   $dst,$src1,$src2" %}
10734   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10735   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src1),
10736               OpcReg_F(src2),
10737               Pop_Mem_F(dst) );
10738   ins_pipe( fpu_mem_reg_mem );
10739 %}
10740 
10741 // Cisc-spill variant
10742 // Spill to obtain 24-bit precision
10743 instruct addF24_mem_cisc(stackSlotF dst, memory src1, memory src2) %{
10744   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10745   match(Set dst (AddF src1 (LoadF src2)));
10746 
10747   format %{ "FADD   $dst,$src1,$src2 cisc" %}
10748   opcode(0xD8, 0x0, 0xD9); /* D8 C0+i */  /* LoadF  D9 /0 */
10749   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10750               set_instruction_start,
10751               OpcP, RMopc_Mem(secondary,src1),
10752               Pop_Mem_F(dst) );
10753   ins_pipe( fpu_mem_mem_mem );
10754 %}
10755 
10756 // Spill to obtain 24-bit precision
10757 instruct addF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10758   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10759   match(Set dst (AddF src1 src2));
10760 
10761   format %{ "FADD   $dst,$src1,$src2" %}
10762   opcode(0xD8, 0x0, 0xD9); /* D8 /0 */  /* LoadF  D9 /0 */
10763   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10764               set_instruction_start,
10765               OpcP, RMopc_Mem(secondary,src1),
10766               Pop_Mem_F(dst) );
10767   ins_pipe( fpu_mem_mem_mem );
10768 %}
10769 
10770 
10771 // Spill to obtain 24-bit precision
10772 instruct addF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
10773   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10774   match(Set dst (AddF src1 src2));
10775   format %{ "FLD    $src1\n\t"
10776             "FADD   $src2\n\t"
10777             "FSTP_S $dst"  %}
10778   opcode(0xD8, 0x00);       /* D8 /0 */
10779   ins_encode( Push_Reg_F(src1),
10780               Opc_MemImm_F(src2),
10781               Pop_Mem_F(dst));
10782   ins_pipe( fpu_mem_reg_con );
10783 %}
10784 //
10785 // This instruction does not round to 24-bits
10786 instruct addF_reg_imm(regF dst, regF src1, immF src2) %{
10787   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10788   match(Set dst (AddF src1 src2));
10789   format %{ "FLD    $src1\n\t"
10790             "FADD   $src2\n\t"
10791             "FSTP_S $dst"  %}
10792   opcode(0xD8, 0x00);       /* D8 /0 */
10793   ins_encode( Push_Reg_F(src1),
10794               Opc_MemImm_F(src2),
10795               Pop_Reg_F(dst));
10796   ins_pipe( fpu_reg_reg_con );
10797 %}
10798 
10799 // Spill to obtain 24-bit precision
10800 instruct mulF24_reg(stackSlotF dst, regF src1, regF src2) %{
10801   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10802   match(Set dst (MulF src1 src2));
10803 
10804   format %{ "FLD    $src1\n\t"
10805             "FMUL   $src2\n\t"
10806             "FSTP_S $dst"  %}
10807   opcode(0xD8, 0x1); /* D8 C8+i or D8 /1 ;; result in TOS */
10808   ins_encode( Push_Reg_F(src1),
10809               OpcReg_F(src2),
10810               Pop_Mem_F(dst) );
10811   ins_pipe( fpu_mem_reg_reg );
10812 %}
10813 //
10814 // This instruction does not round to 24-bits
10815 instruct mulF_reg(regF dst, regF src1, regF src2) %{
10816   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10817   match(Set dst (MulF src1 src2));
10818 
10819   format %{ "FLD    $src1\n\t"
10820             "FMUL   $src2\n\t"
10821             "FSTP_S $dst"  %}
10822   opcode(0xD8, 0x1); /* D8 C8+i */
10823   ins_encode( Push_Reg_F(src2),
10824               OpcReg_F(src1),
10825               Pop_Reg_F(dst) );
10826   ins_pipe( fpu_reg_reg_reg );
10827 %}
10828 
10829 
10830 // Spill to obtain 24-bit precision
10831 // Cisc-alternate to reg-reg multiply
10832 instruct mulF24_reg_mem(stackSlotF dst, regF src1, memory src2) %{
10833   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10834   match(Set dst (MulF src1 (LoadF src2)));
10835 
10836   format %{ "FLD_S  $src2\n\t"
10837             "FMUL   $src1\n\t"
10838             "FSTP_S $dst"  %}
10839   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or DE /1*/  /* LoadF D9 /0 */
10840   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10841               OpcReg_F(src1),
10842               Pop_Mem_F(dst) );
10843   ins_pipe( fpu_mem_reg_mem );
10844 %}
10845 //
10846 // This instruction does not round to 24-bits
10847 // Cisc-alternate to reg-reg multiply
10848 instruct mulF_reg_mem(regF dst, regF src1, memory src2) %{
10849   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10850   match(Set dst (MulF src1 (LoadF src2)));
10851 
10852   format %{ "FMUL   $dst,$src1,$src2" %}
10853   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i */  /* LoadF D9 /0 */
10854   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10855               OpcReg_F(src1),
10856               Pop_Reg_F(dst) );
10857   ins_pipe( fpu_reg_reg_mem );
10858 %}
10859 
10860 // Spill to obtain 24-bit precision
10861 instruct mulF24_mem_mem(stackSlotF dst, memory src1, memory src2) %{
10862   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10863   match(Set dst (MulF src1 src2));
10864 
10865   format %{ "FMUL   $dst,$src1,$src2" %}
10866   opcode(0xD8, 0x1, 0xD9); /* D8 /1 */  /* LoadF D9 /0 */
10867   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,src2),
10868               set_instruction_start,
10869               OpcP, RMopc_Mem(secondary,src1),
10870               Pop_Mem_F(dst) );
10871   ins_pipe( fpu_mem_mem_mem );
10872 %}
10873 
10874 // Spill to obtain 24-bit precision
10875 instruct mulF24_reg_imm(stackSlotF dst, regF src1, immF src2) %{
10876   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10877   match(Set dst (MulF src1 src2));
10878 
10879   format %{ "FMULc $dst,$src1,$src2" %}
10880   opcode(0xD8, 0x1);  /* D8 /1*/
10881   ins_encode( Push_Reg_F(src1),
10882               Opc_MemImm_F(src2),
10883               Pop_Mem_F(dst));
10884   ins_pipe( fpu_mem_reg_con );
10885 %}
10886 //
10887 // This instruction does not round to 24-bits
10888 instruct mulF_reg_imm(regF dst, regF src1, immF src2) %{
10889   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10890   match(Set dst (MulF src1 src2));
10891 
10892   format %{ "FMULc $dst. $src1, $src2" %}
10893   opcode(0xD8, 0x1);  /* D8 /1*/
10894   ins_encode( Push_Reg_F(src1),
10895               Opc_MemImm_F(src2),
10896               Pop_Reg_F(dst));
10897   ins_pipe( fpu_reg_reg_con );
10898 %}
10899 
10900 
10901 //
10902 // MACRO1 -- subsume unshared load into mulF
10903 // This instruction does not round to 24-bits
10904 instruct mulF_reg_load1(regF dst, regF src, memory mem1 ) %{
10905   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10906   match(Set dst (MulF (LoadF mem1) src));
10907 
10908   format %{ "FLD    $mem1    ===MACRO1===\n\t"
10909             "FMUL   ST,$src\n\t"
10910             "FSTP   $dst" %}
10911   opcode(0xD8, 0x1, 0xD9); /* D8 C8+i or D8 /1 */  /* LoadF D9 /0 */
10912   ins_encode( Opcode(tertiary), RMopc_Mem(0x00,mem1),
10913               OpcReg_F(src),
10914               Pop_Reg_F(dst) );
10915   ins_pipe( fpu_reg_reg_mem );
10916 %}
10917 //
10918 // MACRO2 -- addF a mulF which subsumed an unshared load
10919 // This instruction does not round to 24-bits
10920 instruct addF_mulF_reg_load1(regF dst, memory mem1, regF src1, regF src2) %{
10921   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10922   match(Set dst (AddF (MulF (LoadF mem1) src1) src2));
10923   ins_cost(95);
10924 
10925   format %{ "FLD    $mem1     ===MACRO2===\n\t"
10926             "FMUL   ST,$src1  subsume mulF left load\n\t"
10927             "FADD   ST,$src2\n\t"
10928             "FSTP   $dst" %}
10929   opcode(0xD9); /* LoadF D9 /0 */
10930   ins_encode( OpcP, RMopc_Mem(0x00,mem1),
10931               FMul_ST_reg(src1),
10932               FAdd_ST_reg(src2),
10933               Pop_Reg_F(dst) );
10934   ins_pipe( fpu_reg_mem_reg_reg );
10935 %}
10936 
10937 // MACRO3 -- addF a mulF
10938 // This instruction does not round to 24-bits.  It is a '2-address'
10939 // instruction in that the result goes back to src2.  This eliminates
10940 // a move from the macro; possibly the register allocator will have
10941 // to add it back (and maybe not).
10942 instruct addF_mulF_reg(regF src2, regF src1, regF src0) %{
10943   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10944   match(Set src2 (AddF (MulF src0 src1) src2));
10945 
10946   format %{ "FLD    $src0     ===MACRO3===\n\t"
10947             "FMUL   ST,$src1\n\t"
10948             "FADDP  $src2,ST" %}
10949   opcode(0xD9); /* LoadF D9 /0 */
10950   ins_encode( Push_Reg_F(src0),
10951               FMul_ST_reg(src1),
10952               FAddP_reg_ST(src2) );
10953   ins_pipe( fpu_reg_reg_reg );
10954 %}
10955 
10956 // MACRO4 -- divF subF
10957 // This instruction does not round to 24-bits
10958 instruct subF_divF_reg(regF dst, regF src1, regF src2, regF src3) %{
10959   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10960   match(Set dst (DivF (SubF src2 src1) src3));
10961 
10962   format %{ "FLD    $src2   ===MACRO4===\n\t"
10963             "FSUB   ST,$src1\n\t"
10964             "FDIV   ST,$src3\n\t"
10965             "FSTP  $dst" %}
10966   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10967   ins_encode( Push_Reg_F(src2),
10968               subF_divF_encode(src1,src3),
10969               Pop_Reg_F(dst) );
10970   ins_pipe( fpu_reg_reg_reg_reg );
10971 %}
10972 
10973 // Spill to obtain 24-bit precision
10974 instruct divF24_reg(stackSlotF dst, regF src1, regF src2) %{
10975   predicate(UseSSE==0 && Compile::current()->select_24_bit_instr());
10976   match(Set dst (DivF src1 src2));
10977 
10978   format %{ "FDIV   $dst,$src1,$src2" %}
10979   opcode(0xD8, 0x6); /* D8 F0+i or DE /6*/
10980   ins_encode( Push_Reg_F(src1),
10981               OpcReg_F(src2),
10982               Pop_Mem_F(dst) );
10983   ins_pipe( fpu_mem_reg_reg );
10984 %}
10985 //
10986 // This instruction does not round to 24-bits
10987 instruct divF_reg(regF dst, regF src) %{
10988   predicate(UseSSE==0 && !Compile::current()->select_24_bit_instr());
10989   match(Set dst (DivF dst src));
10990 
10991   format %{ "FDIV   $dst,$src" %}
10992   opcode(0xDE, 0x7); /* DE F8+i or DE /7*/
10993   ins_encode( Push_Reg_F(src),
10994               OpcP, RegOpc(dst) );
10995   ins_pipe( fpu_reg_reg );
10996 %}
10997 
10998 
10999 // Spill to obtain 24-bit precision
11000 instruct modF24_reg(stackSlotF dst, regF src1, regF src2, eAXRegI rax, eFlagsReg cr) %{
11001   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11002   match(Set dst (ModF src1 src2));
11003   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11004 
11005   format %{ "FMOD   $dst,$src1,$src2" %}
11006   ins_encode( Push_Reg_Mod_D(src1, src2),
11007               emitModD(),
11008               Push_Result_Mod_D(src2),
11009               Pop_Mem_F(dst));
11010   ins_pipe( pipe_slow );
11011 %}
11012 //
11013 // This instruction does not round to 24-bits
11014 instruct modF_reg(regF dst, regF src, eAXRegI rax, eFlagsReg cr) %{
11015   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11016   match(Set dst (ModF dst src));
11017   effect(KILL rax, KILL cr); // emitModD() uses EAX and EFLAGS
11018 
11019   format %{ "FMOD   $dst,$src" %}
11020   ins_encode(Push_Reg_Mod_D(dst, src),
11021               emitModD(),
11022               Push_Result_Mod_D(src),
11023               Pop_Reg_F(dst));
11024   ins_pipe( pipe_slow );
11025 %}
11026 
11027 instruct modX_reg(regX dst, regX src0, regX src1, eAXRegI rax, eFlagsReg cr) %{
11028   predicate(UseSSE>=1);
11029   match(Set dst (ModF src0 src1));
11030   effect(KILL rax, KILL cr);
11031   format %{ "SUB    ESP,4\t # FMOD\n"
11032           "\tMOVSS  [ESP+0],$src1\n"
11033           "\tFLD_S  [ESP+0]\n"
11034           "\tMOVSS  [ESP+0],$src0\n"
11035           "\tFLD_S  [ESP+0]\n"
11036      "loop:\tFPREM\n"
11037           "\tFWAIT\n"
11038           "\tFNSTSW AX\n"
11039           "\tSAHF\n"
11040           "\tJP     loop\n"
11041           "\tFSTP_S [ESP+0]\n"
11042           "\tMOVSS  $dst,[ESP+0]\n"
11043           "\tADD    ESP,4\n"
11044           "\tFSTP   ST0\t # Restore FPU Stack"
11045     %}
11046   ins_cost(250);
11047   ins_encode( Push_ModX_encoding(src0, src1), emitModD(), Push_ResultX(dst,0x4), PopFPU);
11048   ins_pipe( pipe_slow );
11049 %}
11050 
11051 
11052 //----------Arithmetic Conversion Instructions---------------------------------
11053 // The conversions operations are all Alpha sorted.  Please keep it that way!
11054 
11055 instruct roundFloat_mem_reg(stackSlotF dst, regF src) %{
11056   predicate(UseSSE==0);
11057   match(Set dst (RoundFloat src));
11058   ins_cost(125);
11059   format %{ "FST_S  $dst,$src\t# F-round" %}
11060   ins_encode( Pop_Mem_Reg_F(dst, src) );
11061   ins_pipe( fpu_mem_reg );
11062 %}
11063 
11064 instruct roundDouble_mem_reg(stackSlotD dst, regD src) %{
11065   predicate(UseSSE<=1);
11066   match(Set dst (RoundDouble src));
11067   ins_cost(125);
11068   format %{ "FST_D  $dst,$src\t# D-round" %}
11069   ins_encode( Pop_Mem_Reg_D(dst, src) );
11070   ins_pipe( fpu_mem_reg );
11071 %}
11072 
11073 // Force rounding to 24-bit precision and 6-bit exponent
11074 instruct convD2F_reg(stackSlotF dst, regD src) %{
11075   predicate(UseSSE==0);
11076   match(Set dst (ConvD2F src));
11077   format %{ "FST_S  $dst,$src\t# F-round" %}
11078   expand %{
11079     roundFloat_mem_reg(dst,src);
11080   %}
11081 %}
11082 
11083 // Force rounding to 24-bit precision and 6-bit exponent
11084 instruct convD2X_reg(regX dst, regD src, eFlagsReg cr) %{
11085   predicate(UseSSE==1);
11086   match(Set dst (ConvD2F src));
11087   effect( KILL cr );
11088   format %{ "SUB    ESP,4\n\t"
11089             "FST_S  [ESP],$src\t# F-round\n\t"
11090             "MOVSS  $dst,[ESP]\n\t"
11091             "ADD ESP,4" %}
11092   ins_encode( D2X_encoding(dst, src) );
11093   ins_pipe( pipe_slow );
11094 %}
11095 
11096 // Force rounding double precision to single precision
11097 instruct convXD2X_reg(regX dst, regXD src) %{
11098   predicate(UseSSE>=2);
11099   match(Set dst (ConvD2F src));
11100   format %{ "CVTSD2SS $dst,$src\t# F-round" %}
11101   opcode(0xF2, 0x0F, 0x5A);
11102   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11103   ins_pipe( pipe_slow );
11104 %}
11105 
11106 instruct convF2D_reg_reg(regD dst, regF src) %{
11107   predicate(UseSSE==0);
11108   match(Set dst (ConvF2D src));
11109   format %{ "FST_S  $dst,$src\t# D-round" %}
11110   ins_encode( Pop_Reg_Reg_D(dst, src));
11111   ins_pipe( fpu_reg_reg );
11112 %}
11113 
11114 instruct convF2D_reg(stackSlotD dst, regF src) %{
11115   predicate(UseSSE==1);
11116   match(Set dst (ConvF2D src));
11117   format %{ "FST_D  $dst,$src\t# D-round" %}
11118   expand %{
11119     roundDouble_mem_reg(dst,src);
11120   %}
11121 %}
11122 
11123 instruct convX2D_reg(regD dst, regX src, eFlagsReg cr) %{
11124   predicate(UseSSE==1);
11125   match(Set dst (ConvF2D src));
11126   effect( KILL cr );
11127   format %{ "SUB    ESP,4\n\t"
11128             "MOVSS  [ESP] $src\n\t"
11129             "FLD_S  [ESP]\n\t"
11130             "ADD    ESP,4\n\t"
11131             "FSTP   $dst\t# D-round" %}
11132   ins_encode( X2D_encoding(dst, src), Pop_Reg_D(dst));
11133   ins_pipe( pipe_slow );
11134 %}
11135 
11136 instruct convX2XD_reg(regXD dst, regX src) %{
11137   predicate(UseSSE>=2);
11138   match(Set dst (ConvF2D src));
11139   format %{ "CVTSS2SD $dst,$src\t# D-round" %}
11140   opcode(0xF3, 0x0F, 0x5A);
11141   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11142   ins_pipe( pipe_slow );
11143 %}
11144 
11145 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11146 instruct convD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regD src, eFlagsReg cr ) %{
11147   predicate(UseSSE<=1);
11148   match(Set dst (ConvD2I src));
11149   effect( KILL tmp, KILL cr );
11150   format %{ "FLD    $src\t# Convert double to int \n\t"
11151             "FLDCW  trunc mode\n\t"
11152             "SUB    ESP,4\n\t"
11153             "FISTp  [ESP + #0]\n\t"
11154             "FLDCW  std/24-bit mode\n\t"
11155             "POP    EAX\n\t"
11156             "CMP    EAX,0x80000000\n\t"
11157             "JNE,s  fast\n\t"
11158             "FLD_D  $src\n\t"
11159             "CALL   d2i_wrapper\n"
11160       "fast:" %}
11161   ins_encode( Push_Reg_D(src), D2I_encoding(src) );
11162   ins_pipe( pipe_slow );
11163 %}
11164 
11165 // Convert a double to an int.  If the double is a NAN, stuff a zero in instead.
11166 instruct convXD2I_reg_reg( eAXRegI dst, eDXRegI tmp, regXD src, eFlagsReg cr ) %{
11167   predicate(UseSSE>=2);
11168   match(Set dst (ConvD2I src));
11169   effect( KILL tmp, KILL cr );
11170   format %{ "CVTTSD2SI $dst, $src\n\t"
11171             "CMP    $dst,0x80000000\n\t"
11172             "JNE,s  fast\n\t"
11173             "SUB    ESP, 8\n\t"
11174             "MOVSD  [ESP], $src\n\t"
11175             "FLD_D  [ESP]\n\t"
11176             "ADD    ESP, 8\n\t"
11177             "CALL   d2i_wrapper\n"
11178       "fast:" %}
11179   opcode(0x1); // double-precision conversion
11180   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11181   ins_pipe( pipe_slow );
11182 %}
11183 
11184 instruct convD2L_reg_reg( eADXRegL dst, regD src, eFlagsReg cr ) %{
11185   predicate(UseSSE<=1);
11186   match(Set dst (ConvD2L src));
11187   effect( KILL cr );
11188   format %{ "FLD    $src\t# Convert double to long\n\t"
11189             "FLDCW  trunc mode\n\t"
11190             "SUB    ESP,8\n\t"
11191             "FISTp  [ESP + #0]\n\t"
11192             "FLDCW  std/24-bit mode\n\t"
11193             "POP    EAX\n\t"
11194             "POP    EDX\n\t"
11195             "CMP    EDX,0x80000000\n\t"
11196             "JNE,s  fast\n\t"
11197             "TEST   EAX,EAX\n\t"
11198             "JNE,s  fast\n\t"
11199             "FLD    $src\n\t"
11200             "CALL   d2l_wrapper\n"
11201       "fast:" %}
11202   ins_encode( Push_Reg_D(src),  D2L_encoding(src) );
11203   ins_pipe( pipe_slow );
11204 %}
11205 
11206 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11207 instruct convXD2L_reg_reg( eADXRegL dst, regXD src, eFlagsReg cr ) %{
11208   predicate (UseSSE>=2);
11209   match(Set dst (ConvD2L src));
11210   effect( KILL cr );
11211   format %{ "SUB    ESP,8\t# Convert double to long\n\t"
11212             "MOVSD  [ESP],$src\n\t"
11213             "FLD_D  [ESP]\n\t"
11214             "FLDCW  trunc mode\n\t"
11215             "FISTp  [ESP + #0]\n\t"
11216             "FLDCW  std/24-bit mode\n\t"
11217             "POP    EAX\n\t"
11218             "POP    EDX\n\t"
11219             "CMP    EDX,0x80000000\n\t"
11220             "JNE,s  fast\n\t"
11221             "TEST   EAX,EAX\n\t"
11222             "JNE,s  fast\n\t"
11223             "SUB    ESP,8\n\t"
11224             "MOVSD  [ESP],$src\n\t"
11225             "FLD_D  [ESP]\n\t"
11226             "CALL   d2l_wrapper\n"
11227       "fast:" %}
11228   ins_encode( XD2L_encoding(src) );
11229   ins_pipe( pipe_slow );
11230 %}
11231 
11232 // Convert a double to an int.  Java semantics require we do complex
11233 // manglations in the corner cases.  So we set the rounding mode to
11234 // 'zero', store the darned double down as an int, and reset the
11235 // rounding mode to 'nearest'.  The hardware stores a flag value down
11236 // if we would overflow or converted a NAN; we check for this and
11237 // and go the slow path if needed.
11238 instruct convF2I_reg_reg(eAXRegI dst, eDXRegI tmp, regF src, eFlagsReg cr ) %{
11239   predicate(UseSSE==0);
11240   match(Set dst (ConvF2I src));
11241   effect( KILL tmp, KILL cr );
11242   format %{ "FLD    $src\t# Convert float to int \n\t"
11243             "FLDCW  trunc mode\n\t"
11244             "SUB    ESP,4\n\t"
11245             "FISTp  [ESP + #0]\n\t"
11246             "FLDCW  std/24-bit mode\n\t"
11247             "POP    EAX\n\t"
11248             "CMP    EAX,0x80000000\n\t"
11249             "JNE,s  fast\n\t"
11250             "FLD    $src\n\t"
11251             "CALL   d2i_wrapper\n"
11252       "fast:" %}
11253   // D2I_encoding works for F2I
11254   ins_encode( Push_Reg_F(src), D2I_encoding(src) );
11255   ins_pipe( pipe_slow );
11256 %}
11257 
11258 // Convert a float in xmm to an int reg.
11259 instruct convX2I_reg(eAXRegI dst, eDXRegI tmp, regX src, eFlagsReg cr ) %{
11260   predicate(UseSSE>=1);
11261   match(Set dst (ConvF2I src));
11262   effect( KILL tmp, KILL cr );
11263   format %{ "CVTTSS2SI $dst, $src\n\t"
11264             "CMP    $dst,0x80000000\n\t"
11265             "JNE,s  fast\n\t"
11266             "SUB    ESP, 4\n\t"
11267             "MOVSS  [ESP], $src\n\t"
11268             "FLD    [ESP]\n\t"
11269             "ADD    ESP, 4\n\t"
11270             "CALL   d2i_wrapper\n"
11271       "fast:" %}
11272   opcode(0x0); // single-precision conversion
11273   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x2C), FX2I_encoding(src,dst));
11274   ins_pipe( pipe_slow );
11275 %}
11276 
11277 instruct convF2L_reg_reg( eADXRegL dst, regF src, eFlagsReg cr ) %{
11278   predicate(UseSSE==0);
11279   match(Set dst (ConvF2L src));
11280   effect( KILL cr );
11281   format %{ "FLD    $src\t# Convert float to long\n\t"
11282             "FLDCW  trunc mode\n\t"
11283             "SUB    ESP,8\n\t"
11284             "FISTp  [ESP + #0]\n\t"
11285             "FLDCW  std/24-bit mode\n\t"
11286             "POP    EAX\n\t"
11287             "POP    EDX\n\t"
11288             "CMP    EDX,0x80000000\n\t"
11289             "JNE,s  fast\n\t"
11290             "TEST   EAX,EAX\n\t"
11291             "JNE,s  fast\n\t"
11292             "FLD    $src\n\t"
11293             "CALL   d2l_wrapper\n"
11294       "fast:" %}
11295   // D2L_encoding works for F2L
11296   ins_encode( Push_Reg_F(src), D2L_encoding(src) );
11297   ins_pipe( pipe_slow );
11298 %}
11299 
11300 // XMM lacks a float/double->long conversion, so use the old FPU stack.
11301 instruct convX2L_reg_reg( eADXRegL dst, regX src, eFlagsReg cr ) %{
11302   predicate (UseSSE>=1);
11303   match(Set dst (ConvF2L src));
11304   effect( KILL cr );
11305   format %{ "SUB    ESP,8\t# Convert float to long\n\t"
11306             "MOVSS  [ESP],$src\n\t"
11307             "FLD_S  [ESP]\n\t"
11308             "FLDCW  trunc mode\n\t"
11309             "FISTp  [ESP + #0]\n\t"
11310             "FLDCW  std/24-bit mode\n\t"
11311             "POP    EAX\n\t"
11312             "POP    EDX\n\t"
11313             "CMP    EDX,0x80000000\n\t"
11314             "JNE,s  fast\n\t"
11315             "TEST   EAX,EAX\n\t"
11316             "JNE,s  fast\n\t"
11317             "SUB    ESP,4\t# Convert float to long\n\t"
11318             "MOVSS  [ESP],$src\n\t"
11319             "FLD_S  [ESP]\n\t"
11320             "ADD    ESP,4\n\t"
11321             "CALL   d2l_wrapper\n"
11322       "fast:" %}
11323   ins_encode( X2L_encoding(src) );
11324   ins_pipe( pipe_slow );
11325 %}
11326 
11327 instruct convI2D_reg(regD dst, stackSlotI src) %{
11328   predicate( UseSSE<=1 );
11329   match(Set dst (ConvI2D src));
11330   format %{ "FILD   $src\n\t"
11331             "FSTP   $dst" %}
11332   opcode(0xDB, 0x0);  /* DB /0 */
11333   ins_encode(Push_Mem_I(src), Pop_Reg_D(dst));
11334   ins_pipe( fpu_reg_mem );
11335 %}
11336 
11337 instruct convI2XD_reg(regXD dst, eRegI src) %{
11338   predicate( UseSSE>=2 && !UseXmmI2D );
11339   match(Set dst (ConvI2D src));
11340   format %{ "CVTSI2SD $dst,$src" %}
11341   opcode(0xF2, 0x0F, 0x2A);
11342   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11343   ins_pipe( pipe_slow );
11344 %}
11345 
11346 instruct convI2XD_mem(regXD dst, memory mem) %{
11347   predicate( UseSSE>=2 );
11348   match(Set dst (ConvI2D (LoadI mem)));
11349   format %{ "CVTSI2SD $dst,$mem" %}
11350   opcode(0xF2, 0x0F, 0x2A);
11351   ins_encode( OpcP, OpcS, Opcode(tertiary), RegMem(dst, mem));
11352   ins_pipe( pipe_slow );
11353 %}
11354 
11355 instruct convXI2XD_reg(regXD dst, eRegI src)
11356 %{
11357   predicate( UseSSE>=2 && UseXmmI2D );
11358   match(Set dst (ConvI2D src));
11359 
11360   format %{ "MOVD  $dst,$src\n\t"
11361             "CVTDQ2PD $dst,$dst\t# i2d" %}
11362   ins_encode %{
11363     __ movdl($dst$$XMMRegister, $src$$Register);
11364     __ cvtdq2pd($dst$$XMMRegister, $dst$$XMMRegister);
11365   %}
11366   ins_pipe(pipe_slow); // XXX
11367 %}
11368 
11369 instruct convI2D_mem(regD dst, memory mem) %{
11370   predicate( UseSSE<=1 && !Compile::current()->select_24_bit_instr());
11371   match(Set dst (ConvI2D (LoadI mem)));
11372   format %{ "FILD   $mem\n\t"
11373             "FSTP   $dst" %}
11374   opcode(0xDB);      /* DB /0 */
11375   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11376               Pop_Reg_D(dst));
11377   ins_pipe( fpu_reg_mem );
11378 %}
11379 
11380 // Convert a byte to a float; no rounding step needed.
11381 instruct conv24I2F_reg(regF dst, stackSlotI src) %{
11382   predicate( UseSSE==0 && n->in(1)->Opcode() == Op_AndI && n->in(1)->in(2)->is_Con() && n->in(1)->in(2)->get_int() == 255 );
11383   match(Set dst (ConvI2F src));
11384   format %{ "FILD   $src\n\t"
11385             "FSTP   $dst" %}
11386 
11387   opcode(0xDB, 0x0);  /* DB /0 */
11388   ins_encode(Push_Mem_I(src), Pop_Reg_F(dst));
11389   ins_pipe( fpu_reg_mem );
11390 %}
11391 
11392 // In 24-bit mode, force exponent rounding by storing back out
11393 instruct convI2F_SSF(stackSlotF dst, stackSlotI src) %{
11394   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11395   match(Set dst (ConvI2F src));
11396   ins_cost(200);
11397   format %{ "FILD   $src\n\t"
11398             "FSTP_S $dst" %}
11399   opcode(0xDB, 0x0);  /* DB /0 */
11400   ins_encode( Push_Mem_I(src),
11401               Pop_Mem_F(dst));
11402   ins_pipe( fpu_mem_mem );
11403 %}
11404 
11405 // In 24-bit mode, force exponent rounding by storing back out
11406 instruct convI2F_SSF_mem(stackSlotF dst, memory mem) %{
11407   predicate( UseSSE==0 && Compile::current()->select_24_bit_instr());
11408   match(Set dst (ConvI2F (LoadI mem)));
11409   ins_cost(200);
11410   format %{ "FILD   $mem\n\t"
11411             "FSTP_S $dst" %}
11412   opcode(0xDB);  /* DB /0 */
11413   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11414               Pop_Mem_F(dst));
11415   ins_pipe( fpu_mem_mem );
11416 %}
11417 
11418 // This instruction does not round to 24-bits
11419 instruct convI2F_reg(regF dst, stackSlotI src) %{
11420   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11421   match(Set dst (ConvI2F src));
11422   format %{ "FILD   $src\n\t"
11423             "FSTP   $dst" %}
11424   opcode(0xDB, 0x0);  /* DB /0 */
11425   ins_encode( Push_Mem_I(src),
11426               Pop_Reg_F(dst));
11427   ins_pipe( fpu_reg_mem );
11428 %}
11429 
11430 // This instruction does not round to 24-bits
11431 instruct convI2F_mem(regF dst, memory mem) %{
11432   predicate( UseSSE==0 && !Compile::current()->select_24_bit_instr());
11433   match(Set dst (ConvI2F (LoadI mem)));
11434   format %{ "FILD   $mem\n\t"
11435             "FSTP   $dst" %}
11436   opcode(0xDB);      /* DB /0 */
11437   ins_encode( OpcP, RMopc_Mem(0x00,mem),
11438               Pop_Reg_F(dst));
11439   ins_pipe( fpu_reg_mem );
11440 %}
11441 
11442 // Convert an int to a float in xmm; no rounding step needed.
11443 instruct convI2X_reg(regX dst, eRegI src) %{
11444   predicate( UseSSE==1 || UseSSE>=2 && !UseXmmI2F );
11445   match(Set dst (ConvI2F src));
11446   format %{ "CVTSI2SS $dst, $src" %}
11447 
11448   opcode(0xF3, 0x0F, 0x2A);  /* F3 0F 2A /r */
11449   ins_encode( OpcP, OpcS, Opcode(tertiary), RegReg(dst, src));
11450   ins_pipe( pipe_slow );
11451 %}
11452 
11453  instruct convXI2X_reg(regX dst, eRegI src)
11454 %{
11455   predicate( UseSSE>=2 && UseXmmI2F );
11456   match(Set dst (ConvI2F src));
11457 
11458   format %{ "MOVD  $dst,$src\n\t"
11459             "CVTDQ2PS $dst,$dst\t# i2f" %}
11460   ins_encode %{
11461     __ movdl($dst$$XMMRegister, $src$$Register);
11462     __ cvtdq2ps($dst$$XMMRegister, $dst$$XMMRegister);
11463   %}
11464   ins_pipe(pipe_slow); // XXX
11465 %}
11466 
11467 instruct convI2L_reg( eRegL dst, eRegI src, eFlagsReg cr) %{
11468   match(Set dst (ConvI2L src));
11469   effect(KILL cr);
11470   format %{ "MOV    $dst.lo,$src\n\t"
11471             "MOV    $dst.hi,$src\n\t"
11472             "SAR    $dst.hi,31" %}
11473   ins_encode(convert_int_long(dst,src));
11474   ins_pipe( ialu_reg_reg_long );
11475 %}
11476 
11477 // Zero-extend convert int to long
11478 instruct convI2L_reg_zex(eRegL dst, eRegI src, immL_32bits mask, eFlagsReg flags ) %{
11479   match(Set dst (AndL (ConvI2L src) mask) );
11480   effect( KILL flags );
11481   format %{ "MOV    $dst.lo,$src\n\t"
11482             "XOR    $dst.hi,$dst.hi" %}
11483   opcode(0x33); // XOR
11484   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11485   ins_pipe( ialu_reg_reg_long );
11486 %}
11487 
11488 // Zero-extend long
11489 instruct zerox_long(eRegL dst, eRegL src, immL_32bits mask, eFlagsReg flags ) %{
11490   match(Set dst (AndL src mask) );
11491   effect( KILL flags );
11492   format %{ "MOV    $dst.lo,$src.lo\n\t"
11493             "XOR    $dst.hi,$dst.hi\n\t" %}
11494   opcode(0x33); // XOR
11495   ins_encode(enc_Copy(dst,src), OpcP, RegReg_Hi2(dst,dst) );
11496   ins_pipe( ialu_reg_reg_long );
11497 %}
11498 
11499 instruct convL2D_reg( stackSlotD dst, eRegL src, eFlagsReg cr) %{
11500   predicate (UseSSE<=1);
11501   match(Set dst (ConvL2D src));
11502   effect( KILL cr );
11503   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11504             "PUSH   $src.lo\n\t"
11505             "FILD   ST,[ESP + #0]\n\t"
11506             "ADD    ESP,8\n\t"
11507             "FSTP_D $dst\t# D-round" %}
11508   opcode(0xDF, 0x5);  /* DF /5 */
11509   ins_encode(convert_long_double(src), Pop_Mem_D(dst));
11510   ins_pipe( pipe_slow );
11511 %}
11512 
11513 instruct convL2XD_reg( regXD dst, eRegL src, eFlagsReg cr) %{
11514   predicate (UseSSE>=2);
11515   match(Set dst (ConvL2D src));
11516   effect( KILL cr );
11517   format %{ "PUSH   $src.hi\t# Convert long to double\n\t"
11518             "PUSH   $src.lo\n\t"
11519             "FILD_D [ESP]\n\t"
11520             "FSTP_D [ESP]\n\t"
11521             "MOVSD  $dst,[ESP]\n\t"
11522             "ADD    ESP,8" %}
11523   opcode(0xDF, 0x5);  /* DF /5 */
11524   ins_encode(convert_long_double2(src), Push_ResultXD(dst));
11525   ins_pipe( pipe_slow );
11526 %}
11527 
11528 instruct convL2X_reg( regX dst, eRegL src, eFlagsReg cr) %{
11529   predicate (UseSSE>=1);
11530   match(Set dst (ConvL2F src));
11531   effect( KILL cr );
11532   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11533             "PUSH   $src.lo\n\t"
11534             "FILD_D [ESP]\n\t"
11535             "FSTP_S [ESP]\n\t"
11536             "MOVSS  $dst,[ESP]\n\t"
11537             "ADD    ESP,8" %}
11538   opcode(0xDF, 0x5);  /* DF /5 */
11539   ins_encode(convert_long_double2(src), Push_ResultX(dst,0x8));
11540   ins_pipe( pipe_slow );
11541 %}
11542 
11543 instruct convL2F_reg( stackSlotF dst, eRegL src, eFlagsReg cr) %{
11544   match(Set dst (ConvL2F src));
11545   effect( KILL cr );
11546   format %{ "PUSH   $src.hi\t# Convert long to single float\n\t"
11547             "PUSH   $src.lo\n\t"
11548             "FILD   ST,[ESP + #0]\n\t"
11549             "ADD    ESP,8\n\t"
11550             "FSTP_S $dst\t# F-round" %}
11551   opcode(0xDF, 0x5);  /* DF /5 */
11552   ins_encode(convert_long_double(src), Pop_Mem_F(dst));
11553   ins_pipe( pipe_slow );
11554 %}
11555 
11556 instruct convL2I_reg( eRegI dst, eRegL src ) %{
11557   match(Set dst (ConvL2I src));
11558   effect( DEF dst, USE src );
11559   format %{ "MOV    $dst,$src.lo" %}
11560   ins_encode(enc_CopyL_Lo(dst,src));
11561   ins_pipe( ialu_reg_reg );
11562 %}
11563 
11564 
11565 instruct MoveF2I_stack_reg(eRegI dst, stackSlotF src) %{
11566   match(Set dst (MoveF2I src));
11567   effect( DEF dst, USE src );
11568   ins_cost(100);
11569   format %{ "MOV    $dst,$src\t# MoveF2I_stack_reg" %}
11570   opcode(0x8B);
11571   ins_encode( OpcP, RegMem(dst,src));
11572   ins_pipe( ialu_reg_mem );
11573 %}
11574 
11575 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
11576   predicate(UseSSE==0);
11577   match(Set dst (MoveF2I src));
11578   effect( DEF dst, USE src );
11579 
11580   ins_cost(125);
11581   format %{ "FST_S  $dst,$src\t# MoveF2I_reg_stack" %}
11582   ins_encode( Pop_Mem_Reg_F(dst, src) );
11583   ins_pipe( fpu_mem_reg );
11584 %}
11585 
11586 instruct MoveF2I_reg_stack_sse(stackSlotI dst, regX src) %{
11587   predicate(UseSSE>=1);
11588   match(Set dst (MoveF2I src));
11589   effect( DEF dst, USE src );
11590 
11591   ins_cost(95);
11592   format %{ "MOVSS  $dst,$src\t# MoveF2I_reg_stack_sse" %}
11593   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x11), RegMem(src, dst));
11594   ins_pipe( pipe_slow );
11595 %}
11596 
11597 instruct MoveF2I_reg_reg_sse(eRegI dst, regX src) %{
11598   predicate(UseSSE>=2);
11599   match(Set dst (MoveF2I src));
11600   effect( DEF dst, USE src );
11601   ins_cost(85);
11602   format %{ "MOVD   $dst,$src\t# MoveF2I_reg_reg_sse" %}
11603   ins_encode( MovX2I_reg(dst, src));
11604   ins_pipe( pipe_slow );
11605 %}
11606 
11607 instruct MoveI2F_reg_stack(stackSlotF dst, eRegI src) %{
11608   match(Set dst (MoveI2F src));
11609   effect( DEF dst, USE src );
11610 
11611   ins_cost(100);
11612   format %{ "MOV    $dst,$src\t# MoveI2F_reg_stack" %}
11613   opcode(0x89);
11614   ins_encode( OpcPRegSS( dst, src ) );
11615   ins_pipe( ialu_mem_reg );
11616 %}
11617 
11618 
11619 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
11620   predicate(UseSSE==0);
11621   match(Set dst (MoveI2F src));
11622   effect(DEF dst, USE src);
11623 
11624   ins_cost(125);
11625   format %{ "FLD_S  $src\n\t"
11626             "FSTP   $dst\t# MoveI2F_stack_reg" %}
11627   opcode(0xD9);               /* D9 /0, FLD m32real */
11628   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11629               Pop_Reg_F(dst) );
11630   ins_pipe( fpu_reg_mem );
11631 %}
11632 
11633 instruct MoveI2F_stack_reg_sse(regX dst, stackSlotI src) %{
11634   predicate(UseSSE>=1);
11635   match(Set dst (MoveI2F src));
11636   effect( DEF dst, USE src );
11637 
11638   ins_cost(95);
11639   format %{ "MOVSS  $dst,$src\t# MoveI2F_stack_reg_sse" %}
11640   ins_encode( Opcode(0xF3), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
11641   ins_pipe( pipe_slow );
11642 %}
11643 
11644 instruct MoveI2F_reg_reg_sse(regX dst, eRegI src) %{
11645   predicate(UseSSE>=2);
11646   match(Set dst (MoveI2F src));
11647   effect( DEF dst, USE src );
11648 
11649   ins_cost(85);
11650   format %{ "MOVD   $dst,$src\t# MoveI2F_reg_reg_sse" %}
11651   ins_encode( MovI2X_reg(dst, src) );
11652   ins_pipe( pipe_slow );
11653 %}
11654 
11655 instruct MoveD2L_stack_reg(eRegL dst, stackSlotD src) %{
11656   match(Set dst (MoveD2L src));
11657   effect(DEF dst, USE src);
11658 
11659   ins_cost(250);
11660   format %{ "MOV    $dst.lo,$src\n\t"
11661             "MOV    $dst.hi,$src+4\t# MoveD2L_stack_reg" %}
11662   opcode(0x8B, 0x8B);
11663   ins_encode( OpcP, RegMem(dst,src), OpcS, RegMem_Hi(dst,src));
11664   ins_pipe( ialu_mem_long_reg );
11665 %}
11666 
11667 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
11668   predicate(UseSSE<=1);
11669   match(Set dst (MoveD2L src));
11670   effect(DEF dst, USE src);
11671 
11672   ins_cost(125);
11673   format %{ "FST_D  $dst,$src\t# MoveD2L_reg_stack" %}
11674   ins_encode( Pop_Mem_Reg_D(dst, src) );
11675   ins_pipe( fpu_mem_reg );
11676 %}
11677 
11678 instruct MoveD2L_reg_stack_sse(stackSlotL dst, regXD src) %{
11679   predicate(UseSSE>=2);
11680   match(Set dst (MoveD2L src));
11681   effect(DEF dst, USE src);
11682   ins_cost(95);
11683 
11684   format %{ "MOVSD  $dst,$src\t# MoveD2L_reg_stack_sse" %}
11685   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x11), RegMem(src,dst));
11686   ins_pipe( pipe_slow );
11687 %}
11688 
11689 instruct MoveD2L_reg_reg_sse(eRegL dst, regXD src, regXD tmp) %{
11690   predicate(UseSSE>=2);
11691   match(Set dst (MoveD2L src));
11692   effect(DEF dst, USE src, TEMP tmp);
11693   ins_cost(85);
11694   format %{ "MOVD   $dst.lo,$src\n\t"
11695             "PSHUFLW $tmp,$src,0x4E\n\t"
11696             "MOVD   $dst.hi,$tmp\t# MoveD2L_reg_reg_sse" %}
11697   ins_encode( MovXD2L_reg(dst, src, tmp) );
11698   ins_pipe( pipe_slow );
11699 %}
11700 
11701 instruct MoveL2D_reg_stack(stackSlotD dst, eRegL src) %{
11702   match(Set dst (MoveL2D src));
11703   effect(DEF dst, USE src);
11704 
11705   ins_cost(200);
11706   format %{ "MOV    $dst,$src.lo\n\t"
11707             "MOV    $dst+4,$src.hi\t# MoveL2D_reg_stack" %}
11708   opcode(0x89, 0x89);
11709   ins_encode( OpcP, RegMem( src, dst ), OpcS, RegMem_Hi( src, dst ) );
11710   ins_pipe( ialu_mem_long_reg );
11711 %}
11712 
11713 
11714 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
11715   predicate(UseSSE<=1);
11716   match(Set dst (MoveL2D src));
11717   effect(DEF dst, USE src);
11718   ins_cost(125);
11719 
11720   format %{ "FLD_D  $src\n\t"
11721             "FSTP   $dst\t# MoveL2D_stack_reg" %}
11722   opcode(0xDD);               /* DD /0, FLD m64real */
11723   ins_encode( OpcP, RMopc_Mem_no_oop(0x00,src),
11724               Pop_Reg_D(dst) );
11725   ins_pipe( fpu_reg_mem );
11726 %}
11727 
11728 
11729 instruct MoveL2D_stack_reg_sse(regXD dst, stackSlotL src) %{
11730   predicate(UseSSE>=2 && UseXmmLoadAndClearUpper);
11731   match(Set dst (MoveL2D src));
11732   effect(DEF dst, USE src);
11733 
11734   ins_cost(95);
11735   format %{ "MOVSD  $dst,$src\t# MoveL2D_stack_reg_sse" %}
11736   ins_encode( Opcode(0xF2), Opcode(0x0F), Opcode(0x10), RegMem(dst,src));
11737   ins_pipe( pipe_slow );
11738 %}
11739 
11740 instruct MoveL2D_stack_reg_sse_partial(regXD dst, stackSlotL src) %{
11741   predicate(UseSSE>=2 && !UseXmmLoadAndClearUpper);
11742   match(Set dst (MoveL2D src));
11743   effect(DEF dst, USE src);
11744 
11745   ins_cost(95);
11746   format %{ "MOVLPD $dst,$src\t# MoveL2D_stack_reg_sse" %}
11747   ins_encode( Opcode(0x66), Opcode(0x0F), Opcode(0x12), RegMem(dst,src));
11748   ins_pipe( pipe_slow );
11749 %}
11750 
11751 instruct MoveL2D_reg_reg_sse(regXD dst, eRegL src, regXD tmp) %{
11752   predicate(UseSSE>=2);
11753   match(Set dst (MoveL2D src));
11754   effect(TEMP dst, USE src, TEMP tmp);
11755   ins_cost(85);
11756   format %{ "MOVD   $dst,$src.lo\n\t"
11757             "MOVD   $tmp,$src.hi\n\t"
11758             "PUNPCKLDQ $dst,$tmp\t# MoveL2D_reg_reg_sse" %}
11759   ins_encode( MovL2XD_reg(dst, src, tmp) );
11760   ins_pipe( pipe_slow );
11761 %}
11762 
11763 // Replicate scalar to packed byte (1 byte) values in xmm
11764 instruct Repl8B_reg(regXD dst, regXD src) %{
11765   predicate(UseSSE>=2);
11766   match(Set dst (Replicate8B src));
11767   format %{ "MOVDQA  $dst,$src\n\t"
11768             "PUNPCKLBW $dst,$dst\n\t"
11769             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
11770   ins_encode( pshufd_8x8(dst, src));
11771   ins_pipe( pipe_slow );
11772 %}
11773 
11774 // Replicate scalar to packed byte (1 byte) values in xmm
11775 instruct Repl8B_eRegI(regXD dst, eRegI src) %{
11776   predicate(UseSSE>=2);
11777   match(Set dst (Replicate8B src));
11778   format %{ "MOVD    $dst,$src\n\t"
11779             "PUNPCKLBW $dst,$dst\n\t"
11780             "PSHUFLW $dst,$dst,0x00\t! replicate8B" %}
11781   ins_encode( mov_i2x(dst, src), pshufd_8x8(dst, dst));
11782   ins_pipe( pipe_slow );
11783 %}
11784 
11785 // Replicate scalar zero to packed byte (1 byte) values in xmm
11786 instruct Repl8B_immI0(regXD dst, immI0 zero) %{
11787   predicate(UseSSE>=2);
11788   match(Set dst (Replicate8B zero));
11789   format %{ "PXOR  $dst,$dst\t! replicate8B" %}
11790   ins_encode( pxor(dst, dst));
11791   ins_pipe( fpu_reg_reg );
11792 %}
11793 
11794 // Replicate scalar to packed shore (2 byte) values in xmm
11795 instruct Repl4S_reg(regXD dst, regXD src) %{
11796   predicate(UseSSE>=2);
11797   match(Set dst (Replicate4S src));
11798   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4S" %}
11799   ins_encode( pshufd_4x16(dst, src));
11800   ins_pipe( fpu_reg_reg );
11801 %}
11802 
11803 // Replicate scalar to packed shore (2 byte) values in xmm
11804 instruct Repl4S_eRegI(regXD dst, eRegI src) %{
11805   predicate(UseSSE>=2);
11806   match(Set dst (Replicate4S src));
11807   format %{ "MOVD    $dst,$src\n\t"
11808             "PSHUFLW $dst,$dst,0x00\t! replicate4S" %}
11809   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
11810   ins_pipe( fpu_reg_reg );
11811 %}
11812 
11813 // Replicate scalar zero to packed short (2 byte) values in xmm
11814 instruct Repl4S_immI0(regXD dst, immI0 zero) %{
11815   predicate(UseSSE>=2);
11816   match(Set dst (Replicate4S zero));
11817   format %{ "PXOR  $dst,$dst\t! replicate4S" %}
11818   ins_encode( pxor(dst, dst));
11819   ins_pipe( fpu_reg_reg );
11820 %}
11821 
11822 // Replicate scalar to packed char (2 byte) values in xmm
11823 instruct Repl4C_reg(regXD dst, regXD src) %{
11824   predicate(UseSSE>=2);
11825   match(Set dst (Replicate4C src));
11826   format %{ "PSHUFLW $dst,$src,0x00\t! replicate4C" %}
11827   ins_encode( pshufd_4x16(dst, src));
11828   ins_pipe( fpu_reg_reg );
11829 %}
11830 
11831 // Replicate scalar to packed char (2 byte) values in xmm
11832 instruct Repl4C_eRegI(regXD dst, eRegI src) %{
11833   predicate(UseSSE>=2);
11834   match(Set dst (Replicate4C src));
11835   format %{ "MOVD    $dst,$src\n\t"
11836             "PSHUFLW $dst,$dst,0x00\t! replicate4C" %}
11837   ins_encode( mov_i2x(dst, src), pshufd_4x16(dst, dst));
11838   ins_pipe( fpu_reg_reg );
11839 %}
11840 
11841 // Replicate scalar zero to packed char (2 byte) values in xmm
11842 instruct Repl4C_immI0(regXD dst, immI0 zero) %{
11843   predicate(UseSSE>=2);
11844   match(Set dst (Replicate4C zero));
11845   format %{ "PXOR  $dst,$dst\t! replicate4C" %}
11846   ins_encode( pxor(dst, dst));
11847   ins_pipe( fpu_reg_reg );
11848 %}
11849 
11850 // Replicate scalar to packed integer (4 byte) values in xmm
11851 instruct Repl2I_reg(regXD dst, regXD src) %{
11852   predicate(UseSSE>=2);
11853   match(Set dst (Replicate2I src));
11854   format %{ "PSHUFD $dst,$src,0x00\t! replicate2I" %}
11855   ins_encode( pshufd(dst, src, 0x00));
11856   ins_pipe( fpu_reg_reg );
11857 %}
11858 
11859 // Replicate scalar to packed integer (4 byte) values in xmm
11860 instruct Repl2I_eRegI(regXD dst, eRegI src) %{
11861   predicate(UseSSE>=2);
11862   match(Set dst (Replicate2I src));
11863   format %{ "MOVD   $dst,$src\n\t"
11864             "PSHUFD $dst,$dst,0x00\t! replicate2I" %}
11865   ins_encode( mov_i2x(dst, src), pshufd(dst, dst, 0x00));
11866   ins_pipe( fpu_reg_reg );
11867 %}
11868 
11869 // Replicate scalar zero to packed integer (2 byte) values in xmm
11870 instruct Repl2I_immI0(regXD dst, immI0 zero) %{
11871   predicate(UseSSE>=2);
11872   match(Set dst (Replicate2I zero));
11873   format %{ "PXOR  $dst,$dst\t! replicate2I" %}
11874   ins_encode( pxor(dst, dst));
11875   ins_pipe( fpu_reg_reg );
11876 %}
11877 
11878 // Replicate scalar to packed single precision floating point values in xmm
11879 instruct Repl2F_reg(regXD dst, regXD src) %{
11880   predicate(UseSSE>=2);
11881   match(Set dst (Replicate2F src));
11882   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
11883   ins_encode( pshufd(dst, src, 0xe0));
11884   ins_pipe( fpu_reg_reg );
11885 %}
11886 
11887 // Replicate scalar to packed single precision floating point values in xmm
11888 instruct Repl2F_regX(regXD dst, regX src) %{
11889   predicate(UseSSE>=2);
11890   match(Set dst (Replicate2F src));
11891   format %{ "PSHUFD $dst,$src,0xe0\t! replicate2F" %}
11892   ins_encode( pshufd(dst, src, 0xe0));
11893   ins_pipe( fpu_reg_reg );
11894 %}
11895 
11896 // Replicate scalar to packed single precision floating point values in xmm
11897 instruct Repl2F_immXF0(regXD dst, immXF0 zero) %{
11898   predicate(UseSSE>=2);
11899   match(Set dst (Replicate2F zero));
11900   format %{ "PXOR  $dst,$dst\t! replicate2F" %}
11901   ins_encode( pxor(dst, dst));
11902   ins_pipe( fpu_reg_reg );
11903 %}
11904 
11905 
11906 
11907 // =======================================================================
11908 // fast clearing of an array
11909 
11910 instruct rep_stos(eCXRegI cnt, eDIRegP base, eAXRegI zero, Universe dummy, eFlagsReg cr) %{
11911   match(Set dummy (ClearArray cnt base));
11912   effect(USE_KILL cnt, USE_KILL base, KILL zero, KILL cr);
11913   format %{ "SHL    ECX,1\t# Convert doublewords to words\n\t"
11914             "XOR    EAX,EAX\n\t"
11915             "REP STOS\t# store EAX into [EDI++] while ECX--" %}
11916   opcode(0,0x4);
11917   ins_encode( Opcode(0xD1), RegOpc(ECX),
11918               OpcRegReg(0x33,EAX,EAX),
11919               Opcode(0xF3), Opcode(0xAB) );
11920   ins_pipe( pipe_slow );
11921 %}
11922 
11923 instruct string_compare(eDIRegP str1, eSIRegP str2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
11924   match(Set result (StrComp str1 str2));
11925   effect(USE_KILL str1, USE_KILL str2, KILL tmp1, KILL tmp2, KILL cr);
11926   //ins_cost(300);
11927 
11928   format %{ "String Compare $str1,$str2 -> $result    // KILL EAX, EBX" %}
11929   ins_encode( enc_String_Compare() );
11930   ins_pipe( pipe_slow );
11931 %}
11932 
11933 // fast array equals
11934 instruct array_equals(eDIRegP ary1, eSIRegP ary2, eAXRegI tmp1, eBXRegI tmp2, eCXRegI result, eFlagsReg cr) %{
11935   match(Set result (AryEq ary1 ary2));
11936   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL cr);
11937   //ins_cost(300);
11938 
11939   format %{ "Array Equals $ary1,$ary2 -> $result    // KILL EAX, EBX" %}
11940   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, tmp2, result) );
11941   ins_pipe( pipe_slow );
11942 %}
11943 
11944 //----------Control Flow Instructions------------------------------------------
11945 // Signed compare Instructions
11946 instruct compI_eReg(eFlagsReg cr, eRegI op1, eRegI op2) %{
11947   match(Set cr (CmpI op1 op2));
11948   effect( DEF cr, USE op1, USE op2 );
11949   format %{ "CMP    $op1,$op2" %}
11950   opcode(0x3B);  /* Opcode 3B /r */
11951   ins_encode( OpcP, RegReg( op1, op2) );
11952   ins_pipe( ialu_cr_reg_reg );
11953 %}
11954 
11955 instruct compI_eReg_imm(eFlagsReg cr, eRegI op1, immI op2) %{
11956   match(Set cr (CmpI op1 op2));
11957   effect( DEF cr, USE op1 );
11958   format %{ "CMP    $op1,$op2" %}
11959   opcode(0x81,0x07);  /* Opcode 81 /7 */
11960   // ins_encode( RegImm( op1, op2) );  /* Was CmpImm */
11961   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
11962   ins_pipe( ialu_cr_reg_imm );
11963 %}
11964 
11965 // Cisc-spilled version of cmpI_eReg
11966 instruct compI_eReg_mem(eFlagsReg cr, eRegI op1, memory op2) %{
11967   match(Set cr (CmpI op1 (LoadI op2)));
11968 
11969   format %{ "CMP    $op1,$op2" %}
11970   ins_cost(500);
11971   opcode(0x3B);  /* Opcode 3B /r */
11972   ins_encode( OpcP, RegMem( op1, op2) );
11973   ins_pipe( ialu_cr_reg_mem );
11974 %}
11975 
11976 instruct testI_reg( eFlagsReg cr, eRegI src, immI0 zero ) %{
11977   match(Set cr (CmpI src zero));
11978   effect( DEF cr, USE src );
11979 
11980   format %{ "TEST   $src,$src" %}
11981   opcode(0x85);
11982   ins_encode( OpcP, RegReg( src, src ) );
11983   ins_pipe( ialu_cr_reg_imm );
11984 %}
11985 
11986 instruct testI_reg_imm( eFlagsReg cr, eRegI src, immI con, immI0 zero ) %{
11987   match(Set cr (CmpI (AndI src con) zero));
11988 
11989   format %{ "TEST   $src,$con" %}
11990   opcode(0xF7,0x00);
11991   ins_encode( OpcP, RegOpc(src), Con32(con) );
11992   ins_pipe( ialu_cr_reg_imm );
11993 %}
11994 
11995 instruct testI_reg_mem( eFlagsReg cr, eRegI src, memory mem, immI0 zero ) %{
11996   match(Set cr (CmpI (AndI src mem) zero));
11997 
11998   format %{ "TEST   $src,$mem" %}
11999   opcode(0x85);
12000   ins_encode( OpcP, RegMem( src, mem ) );
12001   ins_pipe( ialu_cr_reg_mem );
12002 %}
12003 
12004 // Unsigned compare Instructions; really, same as signed except they
12005 // produce an eFlagsRegU instead of eFlagsReg.
12006 instruct compU_eReg(eFlagsRegU cr, eRegI op1, eRegI op2) %{
12007   match(Set cr (CmpU op1 op2));
12008 
12009   format %{ "CMPu   $op1,$op2" %}
12010   opcode(0x3B);  /* Opcode 3B /r */
12011   ins_encode( OpcP, RegReg( op1, op2) );
12012   ins_pipe( ialu_cr_reg_reg );
12013 %}
12014 
12015 instruct compU_eReg_imm(eFlagsRegU cr, eRegI op1, immI op2) %{
12016   match(Set cr (CmpU op1 op2));
12017 
12018   format %{ "CMPu   $op1,$op2" %}
12019   opcode(0x81,0x07);  /* Opcode 81 /7 */
12020   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12021   ins_pipe( ialu_cr_reg_imm );
12022 %}
12023 
12024 // // Cisc-spilled version of cmpU_eReg
12025 instruct compU_eReg_mem(eFlagsRegU cr, eRegI op1, memory op2) %{
12026   match(Set cr (CmpU op1 (LoadI op2)));
12027 
12028   format %{ "CMPu   $op1,$op2" %}
12029   ins_cost(500);
12030   opcode(0x3B);  /* Opcode 3B /r */
12031   ins_encode( OpcP, RegMem( op1, op2) );
12032   ins_pipe( ialu_cr_reg_mem );
12033 %}
12034 
12035 // // Cisc-spilled version of cmpU_eReg
12036 //instruct compU_mem_eReg(eFlagsRegU cr, memory op1, eRegI op2) %{
12037 //  match(Set cr (CmpU (LoadI op1) op2));
12038 //
12039 //  format %{ "CMPu   $op1,$op2" %}
12040 //  ins_cost(500);
12041 //  opcode(0x39);  /* Opcode 39 /r */
12042 //  ins_encode( OpcP, RegMem( op1, op2) );
12043 //%}
12044 
12045 instruct testU_reg( eFlagsRegU cr, eRegI src, immI0 zero ) %{
12046   match(Set cr (CmpU src zero));
12047 
12048   format %{ "TESTu  $src,$src" %}
12049   opcode(0x85);
12050   ins_encode( OpcP, RegReg( src, src ) );
12051   ins_pipe( ialu_cr_reg_imm );
12052 %}
12053 
12054 // Unsigned pointer compare Instructions
12055 instruct compP_eReg(eFlagsRegU cr, eRegP op1, eRegP op2) %{
12056   match(Set cr (CmpP op1 op2));
12057 
12058   format %{ "CMPu   $op1,$op2" %}
12059   opcode(0x3B);  /* Opcode 3B /r */
12060   ins_encode( OpcP, RegReg( op1, op2) );
12061   ins_pipe( ialu_cr_reg_reg );
12062 %}
12063 
12064 instruct compP_eReg_imm(eFlagsRegU cr, eRegP op1, immP op2) %{
12065   match(Set cr (CmpP op1 op2));
12066 
12067   format %{ "CMPu   $op1,$op2" %}
12068   opcode(0x81,0x07);  /* Opcode 81 /7 */
12069   ins_encode( OpcSErm( op1, op2 ), Con8or32( op2 ) );
12070   ins_pipe( ialu_cr_reg_imm );
12071 %}
12072 
12073 // // Cisc-spilled version of cmpP_eReg
12074 instruct compP_eReg_mem(eFlagsRegU cr, eRegP op1, memory op2) %{
12075   match(Set cr (CmpP op1 (LoadP op2)));
12076 
12077   format %{ "CMPu   $op1,$op2" %}
12078   ins_cost(500);
12079   opcode(0x3B);  /* Opcode 3B /r */
12080   ins_encode( OpcP, RegMem( op1, op2) );
12081   ins_pipe( ialu_cr_reg_mem );
12082 %}
12083 
12084 // // Cisc-spilled version of cmpP_eReg
12085 //instruct compP_mem_eReg(eFlagsRegU cr, memory op1, eRegP op2) %{
12086 //  match(Set cr (CmpP (LoadP op1) op2));
12087 //
12088 //  format %{ "CMPu   $op1,$op2" %}
12089 //  ins_cost(500);
12090 //  opcode(0x39);  /* Opcode 39 /r */
12091 //  ins_encode( OpcP, RegMem( op1, op2) );
12092 //%}
12093 
12094 // Compare raw pointer (used in out-of-heap check).
12095 // Only works because non-oop pointers must be raw pointers
12096 // and raw pointers have no anti-dependencies.
12097 instruct compP_mem_eReg( eFlagsRegU cr, eRegP op1, memory op2 ) %{
12098   predicate( !n->in(2)->in(2)->bottom_type()->isa_oop_ptr() );
12099   match(Set cr (CmpP op1 (LoadP op2)));
12100 
12101   format %{ "CMPu   $op1,$op2" %}
12102   opcode(0x3B);  /* Opcode 3B /r */
12103   ins_encode( OpcP, RegMem( op1, op2) );
12104   ins_pipe( ialu_cr_reg_mem );
12105 %}
12106 
12107 //
12108 // This will generate a signed flags result. This should be ok
12109 // since any compare to a zero should be eq/neq.
12110 instruct testP_reg( eFlagsReg cr, eRegP src, immP0 zero ) %{
12111   match(Set cr (CmpP src zero));
12112 
12113   format %{ "TEST   $src,$src" %}
12114   opcode(0x85);
12115   ins_encode( OpcP, RegReg( src, src ) );
12116   ins_pipe( ialu_cr_reg_imm );
12117 %}
12118 
12119 // Cisc-spilled version of testP_reg
12120 // This will generate a signed flags result. This should be ok
12121 // since any compare to a zero should be eq/neq.
12122 instruct testP_Reg_mem( eFlagsReg cr, memory op, immI0 zero ) %{
12123   match(Set cr (CmpP (LoadP op) zero));
12124 
12125   format %{ "TEST   $op,0xFFFFFFFF" %}
12126   ins_cost(500);
12127   opcode(0xF7);               /* Opcode F7 /0 */
12128   ins_encode( OpcP, RMopc_Mem(0x00,op), Con_d32(0xFFFFFFFF) );
12129   ins_pipe( ialu_cr_reg_imm );
12130 %}
12131 
12132 // Yanked all unsigned pointer compare operations.
12133 // Pointer compares are done with CmpP which is already unsigned.
12134 
12135 //----------Max and Min--------------------------------------------------------
12136 // Min Instructions
12137 ////
12138 //   *** Min and Max using the conditional move are slower than the
12139 //   *** branch version on a Pentium III.
12140 // // Conditional move for min
12141 //instruct cmovI_reg_lt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12142 //  effect( USE_DEF op2, USE op1, USE cr );
12143 //  format %{ "CMOVlt $op2,$op1\t! min" %}
12144 //  opcode(0x4C,0x0F);
12145 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12146 //  ins_pipe( pipe_cmov_reg );
12147 //%}
12148 //
12149 //// Min Register with Register (P6 version)
12150 //instruct minI_eReg_p6( eRegI op1, eRegI op2 ) %{
12151 //  predicate(VM_Version::supports_cmov() );
12152 //  match(Set op2 (MinI op1 op2));
12153 //  ins_cost(200);
12154 //  expand %{
12155 //    eFlagsReg cr;
12156 //    compI_eReg(cr,op1,op2);
12157 //    cmovI_reg_lt(op2,op1,cr);
12158 //  %}
12159 //%}
12160 
12161 // Min Register with Register (generic version)
12162 instruct minI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12163   match(Set dst (MinI dst src));
12164   effect(KILL flags);
12165   ins_cost(300);
12166 
12167   format %{ "MIN    $dst,$src" %}
12168   opcode(0xCC);
12169   ins_encode( min_enc(dst,src) );
12170   ins_pipe( pipe_slow );
12171 %}
12172 
12173 // Max Register with Register
12174 //   *** Min and Max using the conditional move are slower than the
12175 //   *** branch version on a Pentium III.
12176 // // Conditional move for max
12177 //instruct cmovI_reg_gt( eRegI op2, eRegI op1, eFlagsReg cr ) %{
12178 //  effect( USE_DEF op2, USE op1, USE cr );
12179 //  format %{ "CMOVgt $op2,$op1\t! max" %}
12180 //  opcode(0x4F,0x0F);
12181 //  ins_encode( OpcS, OpcP, RegReg( op2, op1 ) );
12182 //  ins_pipe( pipe_cmov_reg );
12183 //%}
12184 //
12185 // // Max Register with Register (P6 version)
12186 //instruct maxI_eReg_p6( eRegI op1, eRegI op2 ) %{
12187 //  predicate(VM_Version::supports_cmov() );
12188 //  match(Set op2 (MaxI op1 op2));
12189 //  ins_cost(200);
12190 //  expand %{
12191 //    eFlagsReg cr;
12192 //    compI_eReg(cr,op1,op2);
12193 //    cmovI_reg_gt(op2,op1,cr);
12194 //  %}
12195 //%}
12196 
12197 // Max Register with Register (generic version)
12198 instruct maxI_eReg(eRegI dst, eRegI src, eFlagsReg flags) %{
12199   match(Set dst (MaxI dst src));
12200   effect(KILL flags);
12201   ins_cost(300);
12202 
12203   format %{ "MAX    $dst,$src" %}
12204   opcode(0xCC);
12205   ins_encode( max_enc(dst,src) );
12206   ins_pipe( pipe_slow );
12207 %}
12208 
12209 // ============================================================================
12210 // Branch Instructions
12211 // Jump Table
12212 instruct jumpXtnd(eRegI switch_val) %{
12213   match(Jump switch_val);
12214   ins_cost(350);
12215 
12216   format %{  "JMP    [table_base](,$switch_val,1)\n\t" %}
12217 
12218   ins_encode %{
12219     address table_base  = __ address_table_constant(_index2label);
12220 
12221     // Jump to Address(table_base + switch_reg)
12222     InternalAddress table(table_base);
12223     Address index(noreg, $switch_val$$Register, Address::times_1);
12224     __ jump(ArrayAddress(table, index));
12225   %}
12226   ins_pc_relative(1);
12227   ins_pipe(pipe_jmp);
12228 %}
12229 
12230 // Jump Direct - Label defines a relative address from JMP+1
12231 instruct jmpDir(label labl) %{
12232   match(Goto);
12233   effect(USE labl);
12234 
12235   ins_cost(300);
12236   format %{ "JMP    $labl" %}
12237   size(5);
12238   opcode(0xE9);
12239   ins_encode( OpcP, Lbl( labl ) );
12240   ins_pipe( pipe_jmp );
12241   ins_pc_relative(1);
12242 %}
12243 
12244 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12245 instruct jmpCon(cmpOp cop, eFlagsReg cr, label labl) %{
12246   match(If cop cr);
12247   effect(USE labl);
12248 
12249   ins_cost(300);
12250   format %{ "J$cop    $labl" %}
12251   size(6);
12252   opcode(0x0F, 0x80);
12253   ins_encode( Jcc( cop, labl) );
12254   ins_pipe( pipe_jcc );
12255   ins_pc_relative(1);
12256 %}
12257 
12258 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12259 instruct jmpLoopEnd(cmpOp cop, eFlagsReg cr, label labl) %{
12260   match(CountedLoopEnd cop cr);
12261   effect(USE labl);
12262 
12263   ins_cost(300);
12264   format %{ "J$cop    $labl\t# Loop end" %}
12265   size(6);
12266   opcode(0x0F, 0x80);
12267   ins_encode( Jcc( cop, labl) );
12268   ins_pipe( pipe_jcc );
12269   ins_pc_relative(1);
12270 %}
12271 
12272 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12273 instruct jmpLoopEndU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12274   match(CountedLoopEnd cop cmp);
12275   effect(USE labl);
12276 
12277   ins_cost(300);
12278   format %{ "J$cop,u  $labl\t# Loop end" %}
12279   size(6);
12280   opcode(0x0F, 0x80);
12281   ins_encode( Jcc( cop, labl) );
12282   ins_pipe( pipe_jcc );
12283   ins_pc_relative(1);
12284 %}
12285 
12286 instruct jmpLoopEndUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12287   match(CountedLoopEnd cop cmp);
12288   effect(USE labl);
12289 
12290   ins_cost(200);
12291   format %{ "J$cop,u  $labl\t# Loop end" %}
12292   size(6);
12293   opcode(0x0F, 0x80);
12294   ins_encode( Jcc( cop, labl) );
12295   ins_pipe( pipe_jcc );
12296   ins_pc_relative(1);
12297 %}
12298 
12299 // Jump Direct Conditional - using unsigned comparison
12300 instruct jmpConU(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12301   match(If cop cmp);
12302   effect(USE labl);
12303 
12304   ins_cost(300);
12305   format %{ "J$cop,u  $labl" %}
12306   size(6);
12307   opcode(0x0F, 0x80);
12308   ins_encode(Jcc(cop, labl));
12309   ins_pipe(pipe_jcc);
12310   ins_pc_relative(1);
12311 %}
12312 
12313 instruct jmpConUCF(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12314   match(If cop cmp);
12315   effect(USE labl);
12316 
12317   ins_cost(200);
12318   format %{ "J$cop,u  $labl" %}
12319   size(6);
12320   opcode(0x0F, 0x80);
12321   ins_encode(Jcc(cop, labl));
12322   ins_pipe(pipe_jcc);
12323   ins_pc_relative(1);
12324 %}
12325 
12326 instruct jmpConUCF2(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12327   match(If cop cmp);
12328   effect(USE labl);
12329 
12330   ins_cost(200);
12331   format %{ $$template
12332     if ($cop$$cmpcode == Assembler::notEqual) {
12333       $$emit$$"JP,u   $labl\n\t"
12334       $$emit$$"J$cop,u   $labl"
12335     } else {
12336       $$emit$$"JP,u   done\n\t"
12337       $$emit$$"J$cop,u   $labl\n\t"
12338       $$emit$$"done:"
12339     }
12340   %}
12341   size(12);
12342   opcode(0x0F, 0x80);
12343   ins_encode %{
12344     Label* l = $labl$$label;
12345     $$$emit8$primary;
12346     emit_cc(cbuf, $secondary, Assembler::parity);
12347     int parity_disp = -1;
12348     bool ok = false;
12349     if ($cop$$cmpcode == Assembler::notEqual) {
12350        // the two jumps 6 bytes apart so the jump distances are too
12351        parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
12352     } else if ($cop$$cmpcode == Assembler::equal) {
12353        parity_disp = 6;
12354        ok = true;
12355     } else {
12356        ShouldNotReachHere();
12357     }
12358     emit_d32(cbuf, parity_disp);
12359     $$$emit8$primary;
12360     emit_cc(cbuf, $secondary, $cop$$cmpcode);
12361     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 4)) : 0;
12362     emit_d32(cbuf, disp);
12363   %}
12364   ins_pipe(pipe_jcc);
12365   ins_pc_relative(1);
12366 %}
12367 
12368 // ============================================================================
12369 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
12370 // array for an instance of the superklass.  Set a hidden internal cache on a
12371 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
12372 // NZ for a miss or zero for a hit.  The encoding ALSO sets flags.
12373 instruct partialSubtypeCheck( eDIRegP result, eSIRegP sub, eAXRegP super, eCXRegI rcx, eFlagsReg cr ) %{
12374   match(Set result (PartialSubtypeCheck sub super));
12375   effect( KILL rcx, KILL cr );
12376 
12377   ins_cost(1100);  // slightly larger than the next version
12378   format %{ "CMPL   EAX,ESI\n\t"
12379             "JEQ,s  hit\n\t"
12380             "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12381             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12382             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12383             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12384             "JNE,s  miss\t\t# Missed: EDI not-zero\n\t"
12385             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache\n\t"
12386      "hit:\n\t"
12387             "XOR    $result,$result\t\t Hit: EDI zero\n\t"
12388      "miss:\t" %}
12389 
12390   opcode(0x1); // Force a XOR of EDI
12391   ins_encode( enc_PartialSubtypeCheck() );
12392   ins_pipe( pipe_slow );
12393 %}
12394 
12395 instruct partialSubtypeCheck_vs_Zero( eFlagsReg cr, eSIRegP sub, eAXRegP super, eCXRegI rcx, eDIRegP result, immP0 zero ) %{
12396   match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
12397   effect( KILL rcx, KILL result );
12398 
12399   ins_cost(1000);
12400   format %{ "CMPL   EAX,ESI\n\t"
12401             "JEQ,s  miss\t# Actually a hit; we are done.\n\t"
12402             "MOV    EDI,[$sub+Klass::secondary_supers]\n\t"
12403             "MOV    ECX,[EDI+arrayKlass::length]\t# length to scan\n\t"
12404             "ADD    EDI,arrayKlass::base_offset\t# Skip to start of data; set NZ in case count is zero\n\t"
12405             "REPNE SCASD\t# Scan *EDI++ for a match with EAX while CX-- != 0\n\t"
12406             "JNE,s  miss\t\t# Missed: flags NZ\n\t"
12407             "MOV    [$sub+Klass::secondary_super_cache],$super\t# Hit: update cache, flags Z\n\t"
12408      "miss:\t" %}
12409 
12410   opcode(0x0);  // No need to XOR EDI
12411   ins_encode( enc_PartialSubtypeCheck() );
12412   ins_pipe( pipe_slow );
12413 %}
12414 
12415 // ============================================================================
12416 // Branch Instructions -- short offset versions
12417 //
12418 // These instructions are used to replace jumps of a long offset (the default
12419 // match) with jumps of a shorter offset.  These instructions are all tagged
12420 // with the ins_short_branch attribute, which causes the ADLC to suppress the
12421 // match rules in general matching.  Instead, the ADLC generates a conversion
12422 // method in the MachNode which can be used to do in-place replacement of the
12423 // long variant with the shorter variant.  The compiler will determine if a
12424 // branch can be taken by the is_short_branch_offset() predicate in the machine
12425 // specific code section of the file.
12426 
12427 // Jump Direct - Label defines a relative address from JMP+1
12428 instruct jmpDir_short(label labl) %{
12429   match(Goto);
12430   effect(USE labl);
12431 
12432   ins_cost(300);
12433   format %{ "JMP,s  $labl" %}
12434   size(2);
12435   opcode(0xEB);
12436   ins_encode( OpcP, LblShort( labl ) );
12437   ins_pipe( pipe_jmp );
12438   ins_pc_relative(1);
12439   ins_short_branch(1);
12440 %}
12441 
12442 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12443 instruct jmpCon_short(cmpOp cop, eFlagsReg cr, label labl) %{
12444   match(If cop cr);
12445   effect(USE labl);
12446 
12447   ins_cost(300);
12448   format %{ "J$cop,s  $labl" %}
12449   size(2);
12450   opcode(0x70);
12451   ins_encode( JccShort( cop, labl) );
12452   ins_pipe( pipe_jcc );
12453   ins_pc_relative(1);
12454   ins_short_branch(1);
12455 %}
12456 
12457 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12458 instruct jmpLoopEnd_short(cmpOp cop, eFlagsReg cr, label labl) %{
12459   match(CountedLoopEnd cop cr);
12460   effect(USE labl);
12461 
12462   ins_cost(300);
12463   format %{ "J$cop,s  $labl\t# Loop end" %}
12464   size(2);
12465   opcode(0x70);
12466   ins_encode( JccShort( cop, labl) );
12467   ins_pipe( pipe_jcc );
12468   ins_pc_relative(1);
12469   ins_short_branch(1);
12470 %}
12471 
12472 // Jump Direct Conditional - Label defines a relative address from Jcc+1
12473 instruct jmpLoopEndU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12474   match(CountedLoopEnd cop cmp);
12475   effect(USE labl);
12476 
12477   ins_cost(300);
12478   format %{ "J$cop,us $labl\t# Loop end" %}
12479   size(2);
12480   opcode(0x70);
12481   ins_encode( JccShort( cop, labl) );
12482   ins_pipe( pipe_jcc );
12483   ins_pc_relative(1);
12484   ins_short_branch(1);
12485 %}
12486 
12487 instruct jmpLoopEndUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12488   match(CountedLoopEnd cop cmp);
12489   effect(USE labl);
12490 
12491   ins_cost(300);
12492   format %{ "J$cop,us $labl\t# Loop end" %}
12493   size(2);
12494   opcode(0x70);
12495   ins_encode( JccShort( cop, labl) );
12496   ins_pipe( pipe_jcc );
12497   ins_pc_relative(1);
12498   ins_short_branch(1);
12499 %}
12500 
12501 // Jump Direct Conditional - using unsigned comparison
12502 instruct jmpConU_short(cmpOpU cop, eFlagsRegU cmp, label labl) %{
12503   match(If cop cmp);
12504   effect(USE labl);
12505 
12506   ins_cost(300);
12507   format %{ "J$cop,us $labl" %}
12508   size(2);
12509   opcode(0x70);
12510   ins_encode( JccShort( cop, labl) );
12511   ins_pipe( pipe_jcc );
12512   ins_pc_relative(1);
12513   ins_short_branch(1);
12514 %}
12515 
12516 instruct jmpConUCF_short(cmpOpUCF cop, eFlagsRegUCF cmp, label labl) %{
12517   match(If cop cmp);
12518   effect(USE labl);
12519 
12520   ins_cost(300);
12521   format %{ "J$cop,us $labl" %}
12522   size(2);
12523   opcode(0x70);
12524   ins_encode( JccShort( cop, labl) );
12525   ins_pipe( pipe_jcc );
12526   ins_pc_relative(1);
12527   ins_short_branch(1);
12528 %}
12529 
12530 instruct jmpConUCF2_short(cmpOpUCF2 cop, eFlagsRegUCF cmp, label labl) %{
12531   match(If cop cmp);
12532   effect(USE labl);
12533 
12534   ins_cost(300);
12535   format %{ $$template
12536     if ($cop$$cmpcode == Assembler::notEqual) {
12537       $$emit$$"JP,u,s   $labl\n\t"
12538       $$emit$$"J$cop,u,s   $labl"
12539     } else {
12540       $$emit$$"JP,u,s   done\n\t"
12541       $$emit$$"J$cop,u,s  $labl\n\t"
12542       $$emit$$"done:"
12543     }
12544   %}
12545   size(4);
12546   opcode(0x70);
12547   ins_encode %{
12548     Label* l = $labl$$label;
12549     emit_cc(cbuf, $primary, Assembler::parity);
12550     int parity_disp = -1;
12551     if ($cop$$cmpcode == Assembler::notEqual) {
12552       parity_disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
12553     } else if ($cop$$cmpcode == Assembler::equal) {
12554       parity_disp = 2;
12555     } else {
12556       ShouldNotReachHere();
12557     }
12558     emit_d8(cbuf, parity_disp);
12559     emit_cc(cbuf, $primary, $cop$$cmpcode);
12560     int disp = l ? (l->loc_pos() - (cbuf.code_size() + 1)) : 0;
12561     emit_d8(cbuf, disp);
12562     assert(-128 <= disp && disp <= 127, "Displacement too large for short jmp");
12563     assert(-128 <= parity_disp && parity_disp <= 127, "Displacement too large for short jmp");
12564   %}
12565   ins_pipe(pipe_jcc);
12566   ins_pc_relative(1);
12567   ins_short_branch(1);
12568 %}
12569 
12570 // ============================================================================
12571 // Long Compare
12572 //
12573 // Currently we hold longs in 2 registers.  Comparing such values efficiently
12574 // is tricky.  The flavor of compare used depends on whether we are testing
12575 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
12576 // The GE test is the negated LT test.  The LE test can be had by commuting
12577 // the operands (yielding a GE test) and then negating; negate again for the
12578 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
12579 // NE test is negated from that.
12580 
12581 // Due to a shortcoming in the ADLC, it mixes up expressions like:
12582 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
12583 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
12584 // are collapsed internally in the ADLC's dfa-gen code.  The match for
12585 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
12586 // foo match ends up with the wrong leaf.  One fix is to not match both
12587 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
12588 // both forms beat the trinary form of long-compare and both are very useful
12589 // on Intel which has so few registers.
12590 
12591 // Manifest a CmpL result in an integer register.  Very painful.
12592 // This is the test to avoid.
12593 instruct cmpL3_reg_reg(eSIRegI dst, eRegL src1, eRegL src2, eFlagsReg flags ) %{
12594   match(Set dst (CmpL3 src1 src2));
12595   effect( KILL flags );
12596   ins_cost(1000);
12597   format %{ "XOR    $dst,$dst\n\t"
12598             "CMP    $src1.hi,$src2.hi\n\t"
12599             "JLT,s  m_one\n\t"
12600             "JGT,s  p_one\n\t"
12601             "CMP    $src1.lo,$src2.lo\n\t"
12602             "JB,s   m_one\n\t"
12603             "JEQ,s  done\n"
12604     "p_one:\tINC    $dst\n\t"
12605             "JMP,s  done\n"
12606     "m_one:\tDEC    $dst\n"
12607      "done:" %}
12608   ins_encode %{
12609     Label p_one, m_one, done;
12610     __ xorptr($dst$$Register, $dst$$Register);
12611     __ cmpl(HIGH_FROM_LOW($src1$$Register), HIGH_FROM_LOW($src2$$Register));
12612     __ jccb(Assembler::less,    m_one);
12613     __ jccb(Assembler::greater, p_one);
12614     __ cmpl($src1$$Register, $src2$$Register);
12615     __ jccb(Assembler::below,   m_one);
12616     __ jccb(Assembler::equal,   done);
12617     __ bind(p_one);
12618     __ incrementl($dst$$Register);
12619     __ jmpb(done);
12620     __ bind(m_one);
12621     __ decrementl($dst$$Register);
12622     __ bind(done);
12623   %}
12624   ins_pipe( pipe_slow );
12625 %}
12626 
12627 //======
12628 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12629 // compares.  Can be used for LE or GT compares by reversing arguments.
12630 // NOT GOOD FOR EQ/NE tests.
12631 instruct cmpL_zero_flags_LTGE( flagsReg_long_LTGE flags, eRegL src, immL0 zero ) %{
12632   match( Set flags (CmpL src zero ));
12633   ins_cost(100);
12634   format %{ "TEST   $src.hi,$src.hi" %}
12635   opcode(0x85);
12636   ins_encode( OpcP, RegReg_Hi2( src, src ) );
12637   ins_pipe( ialu_cr_reg_reg );
12638 %}
12639 
12640 // Manifest a CmpL result in the normal flags.  Only good for LT or GE
12641 // compares.  Can be used for LE or GT compares by reversing arguments.
12642 // NOT GOOD FOR EQ/NE tests.
12643 instruct cmpL_reg_flags_LTGE( flagsReg_long_LTGE flags, eRegL src1, eRegL src2, eRegI tmp ) %{
12644   match( Set flags (CmpL src1 src2 ));
12645   effect( TEMP tmp );
12646   ins_cost(300);
12647   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12648             "MOV    $tmp,$src1.hi\n\t"
12649             "SBB    $tmp,$src2.hi\t! Compute flags for long compare" %}
12650   ins_encode( long_cmp_flags2( src1, src2, tmp ) );
12651   ins_pipe( ialu_cr_reg_reg );
12652 %}
12653 
12654 // Long compares reg < zero/req OR reg >= zero/req.
12655 // Just a wrapper for a normal branch, plus the predicate test.
12656 instruct cmpL_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, label labl) %{
12657   match(If cmp flags);
12658   effect(USE labl);
12659   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12660   expand %{
12661     jmpCon(cmp,flags,labl);    // JLT or JGE...
12662   %}
12663 %}
12664 
12665 // Compare 2 longs and CMOVE longs.
12666 instruct cmovLL_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, eRegL src) %{
12667   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12668   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12669   ins_cost(400);
12670   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12671             "CMOV$cmp $dst.hi,$src.hi" %}
12672   opcode(0x0F,0x40);
12673   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12674   ins_pipe( pipe_cmov_reg_long );
12675 %}
12676 
12677 instruct cmovLL_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegL dst, load_long_memory src) %{
12678   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12679   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12680   ins_cost(500);
12681   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12682             "CMOV$cmp $dst.hi,$src.hi" %}
12683   opcode(0x0F,0x40);
12684   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12685   ins_pipe( pipe_cmov_reg_long );
12686 %}
12687 
12688 // Compare 2 longs and CMOVE ints.
12689 instruct cmovII_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, eRegI src) %{
12690   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12691   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12692   ins_cost(200);
12693   format %{ "CMOV$cmp $dst,$src" %}
12694   opcode(0x0F,0x40);
12695   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12696   ins_pipe( pipe_cmov_reg );
12697 %}
12698 
12699 instruct cmovII_mem_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegI dst, memory src) %{
12700   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12701   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12702   ins_cost(250);
12703   format %{ "CMOV$cmp $dst,$src" %}
12704   opcode(0x0F,0x40);
12705   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12706   ins_pipe( pipe_cmov_mem );
12707 %}
12708 
12709 // Compare 2 longs and CMOVE ints.
12710 instruct cmovPP_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, eRegP dst, eRegP src) %{
12711   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge ));
12712   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12713   ins_cost(200);
12714   format %{ "CMOV$cmp $dst,$src" %}
12715   opcode(0x0F,0x40);
12716   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12717   ins_pipe( pipe_cmov_reg );
12718 %}
12719 
12720 // Compare 2 longs and CMOVE doubles
12721 instruct cmovDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regD dst, regD src) %{
12722   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12723   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12724   ins_cost(200);
12725   expand %{
12726     fcmovD_regS(cmp,flags,dst,src);
12727   %}
12728 %}
12729 
12730 // Compare 2 longs and CMOVE doubles
12731 instruct cmovXDD_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regXD dst, regXD src) %{
12732   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12733   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12734   ins_cost(200);
12735   expand %{
12736     fcmovXD_regS(cmp,flags,dst,src);
12737   %}
12738 %}
12739 
12740 instruct cmovFF_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regF dst, regF src) %{
12741   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12742   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12743   ins_cost(200);
12744   expand %{
12745     fcmovF_regS(cmp,flags,dst,src);
12746   %}
12747 %}
12748 
12749 instruct cmovXX_reg_LTGE(cmpOp cmp, flagsReg_long_LTGE flags, regX dst, regX src) %{
12750   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::lt || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ge );
12751   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12752   ins_cost(200);
12753   expand %{
12754     fcmovX_regS(cmp,flags,dst,src);
12755   %}
12756 %}
12757 
12758 //======
12759 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12760 instruct cmpL_zero_flags_EQNE( flagsReg_long_EQNE flags, eRegL src, immL0 zero, eRegI tmp ) %{
12761   match( Set flags (CmpL src zero ));
12762   effect(TEMP tmp);
12763   ins_cost(200);
12764   format %{ "MOV    $tmp,$src.lo\n\t"
12765             "OR     $tmp,$src.hi\t! Long is EQ/NE 0?" %}
12766   ins_encode( long_cmp_flags0( src, tmp ) );
12767   ins_pipe( ialu_reg_reg_long );
12768 %}
12769 
12770 // Manifest a CmpL result in the normal flags.  Only good for EQ/NE compares.
12771 instruct cmpL_reg_flags_EQNE( flagsReg_long_EQNE flags, eRegL src1, eRegL src2 ) %{
12772   match( Set flags (CmpL src1 src2 ));
12773   ins_cost(200+300);
12774   format %{ "CMP    $src1.lo,$src2.lo\t! Long compare; set flags for low bits\n\t"
12775             "JNE,s  skip\n\t"
12776             "CMP    $src1.hi,$src2.hi\n\t"
12777      "skip:\t" %}
12778   ins_encode( long_cmp_flags1( src1, src2 ) );
12779   ins_pipe( ialu_cr_reg_reg );
12780 %}
12781 
12782 // Long compare reg == zero/reg OR reg != zero/reg
12783 // Just a wrapper for a normal branch, plus the predicate test.
12784 instruct cmpL_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, label labl) %{
12785   match(If cmp flags);
12786   effect(USE labl);
12787   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12788   expand %{
12789     jmpCon(cmp,flags,labl);    // JEQ or JNE...
12790   %}
12791 %}
12792 
12793 // Compare 2 longs and CMOVE longs.
12794 instruct cmovLL_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, eRegL src) %{
12795   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12796   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12797   ins_cost(400);
12798   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12799             "CMOV$cmp $dst.hi,$src.hi" %}
12800   opcode(0x0F,0x40);
12801   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12802   ins_pipe( pipe_cmov_reg_long );
12803 %}
12804 
12805 instruct cmovLL_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegL dst, load_long_memory src) %{
12806   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12807   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12808   ins_cost(500);
12809   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12810             "CMOV$cmp $dst.hi,$src.hi" %}
12811   opcode(0x0F,0x40);
12812   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12813   ins_pipe( pipe_cmov_reg_long );
12814 %}
12815 
12816 // Compare 2 longs and CMOVE ints.
12817 instruct cmovII_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, eRegI src) %{
12818   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12819   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12820   ins_cost(200);
12821   format %{ "CMOV$cmp $dst,$src" %}
12822   opcode(0x0F,0x40);
12823   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12824   ins_pipe( pipe_cmov_reg );
12825 %}
12826 
12827 instruct cmovII_mem_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegI dst, memory src) %{
12828   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12829   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12830   ins_cost(250);
12831   format %{ "CMOV$cmp $dst,$src" %}
12832   opcode(0x0F,0x40);
12833   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12834   ins_pipe( pipe_cmov_mem );
12835 %}
12836 
12837 // Compare 2 longs and CMOVE ints.
12838 instruct cmovPP_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, eRegP dst, eRegP src) %{
12839   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne ));
12840   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12841   ins_cost(200);
12842   format %{ "CMOV$cmp $dst,$src" %}
12843   opcode(0x0F,0x40);
12844   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12845   ins_pipe( pipe_cmov_reg );
12846 %}
12847 
12848 // Compare 2 longs and CMOVE doubles
12849 instruct cmovDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regD dst, regD src) %{
12850   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12851   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12852   ins_cost(200);
12853   expand %{
12854     fcmovD_regS(cmp,flags,dst,src);
12855   %}
12856 %}
12857 
12858 // Compare 2 longs and CMOVE doubles
12859 instruct cmovXDD_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regXD dst, regXD src) %{
12860   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12861   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12862   ins_cost(200);
12863   expand %{
12864     fcmovXD_regS(cmp,flags,dst,src);
12865   %}
12866 %}
12867 
12868 instruct cmovFF_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regF dst, regF src) %{
12869   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12870   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12871   ins_cost(200);
12872   expand %{
12873     fcmovF_regS(cmp,flags,dst,src);
12874   %}
12875 %}
12876 
12877 instruct cmovXX_reg_EQNE(cmpOp cmp, flagsReg_long_EQNE flags, regX dst, regX src) %{
12878   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::eq || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::ne );
12879   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
12880   ins_cost(200);
12881   expand %{
12882     fcmovX_regS(cmp,flags,dst,src);
12883   %}
12884 %}
12885 
12886 //======
12887 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12888 // Same as cmpL_reg_flags_LEGT except must negate src
12889 instruct cmpL_zero_flags_LEGT( flagsReg_long_LEGT flags, eRegL src, immL0 zero, eRegI tmp ) %{
12890   match( Set flags (CmpL src zero ));
12891   effect( TEMP tmp );
12892   ins_cost(300);
12893   format %{ "XOR    $tmp,$tmp\t# Long compare for -$src < 0, use commuted test\n\t"
12894             "CMP    $tmp,$src.lo\n\t"
12895             "SBB    $tmp,$src.hi\n\t" %}
12896   ins_encode( long_cmp_flags3(src, tmp) );
12897   ins_pipe( ialu_reg_reg_long );
12898 %}
12899 
12900 // Manifest a CmpL result in the normal flags.  Only good for LE or GT compares.
12901 // Same as cmpL_reg_flags_LTGE except operands swapped.  Swapping operands
12902 // requires a commuted test to get the same result.
12903 instruct cmpL_reg_flags_LEGT( flagsReg_long_LEGT flags, eRegL src1, eRegL src2, eRegI tmp ) %{
12904   match( Set flags (CmpL src1 src2 ));
12905   effect( TEMP tmp );
12906   ins_cost(300);
12907   format %{ "CMP    $src2.lo,$src1.lo\t! Long compare, swapped operands, use with commuted test\n\t"
12908             "MOV    $tmp,$src2.hi\n\t"
12909             "SBB    $tmp,$src1.hi\t! Compute flags for long compare" %}
12910   ins_encode( long_cmp_flags2( src2, src1, tmp ) );
12911   ins_pipe( ialu_cr_reg_reg );
12912 %}
12913 
12914 // Long compares reg < zero/req OR reg >= zero/req.
12915 // Just a wrapper for a normal branch, plus the predicate test
12916 instruct cmpL_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, label labl) %{
12917   match(If cmp flags);
12918   effect(USE labl);
12919   predicate( _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt || _kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le );
12920   ins_cost(300);
12921   expand %{
12922     jmpCon(cmp,flags,labl);    // JGT or JLE...
12923   %}
12924 %}
12925 
12926 // Compare 2 longs and CMOVE longs.
12927 instruct cmovLL_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, eRegL src) %{
12928   match(Set dst (CMoveL (Binary cmp flags) (Binary dst src)));
12929   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12930   ins_cost(400);
12931   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12932             "CMOV$cmp $dst.hi,$src.hi" %}
12933   opcode(0x0F,0x40);
12934   ins_encode( enc_cmov(cmp), RegReg_Lo2( dst, src ), enc_cmov(cmp), RegReg_Hi2( dst, src ) );
12935   ins_pipe( pipe_cmov_reg_long );
12936 %}
12937 
12938 instruct cmovLL_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegL dst, load_long_memory src) %{
12939   match(Set dst (CMoveL (Binary cmp flags) (Binary dst (LoadL src))));
12940   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12941   ins_cost(500);
12942   format %{ "CMOV$cmp $dst.lo,$src.lo\n\t"
12943             "CMOV$cmp $dst.hi,$src.hi+4" %}
12944   opcode(0x0F,0x40);
12945   ins_encode( enc_cmov(cmp), RegMem(dst, src), enc_cmov(cmp), RegMem_Hi(dst, src) );
12946   ins_pipe( pipe_cmov_reg_long );
12947 %}
12948 
12949 // Compare 2 longs and CMOVE ints.
12950 instruct cmovII_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, eRegI src) %{
12951   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12952   match(Set dst (CMoveI (Binary cmp flags) (Binary dst src)));
12953   ins_cost(200);
12954   format %{ "CMOV$cmp $dst,$src" %}
12955   opcode(0x0F,0x40);
12956   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12957   ins_pipe( pipe_cmov_reg );
12958 %}
12959 
12960 instruct cmovII_mem_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegI dst, memory src) %{
12961   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12962   match(Set dst (CMoveI (Binary cmp flags) (Binary dst (LoadI src))));
12963   ins_cost(250);
12964   format %{ "CMOV$cmp $dst,$src" %}
12965   opcode(0x0F,0x40);
12966   ins_encode( enc_cmov(cmp), RegMem( dst, src ) );
12967   ins_pipe( pipe_cmov_mem );
12968 %}
12969 
12970 // Compare 2 longs and CMOVE ptrs.
12971 instruct cmovPP_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, eRegP dst, eRegP src) %{
12972   predicate(VM_Version::supports_cmov() && ( _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt ));
12973   match(Set dst (CMoveP (Binary cmp flags) (Binary dst src)));
12974   ins_cost(200);
12975   format %{ "CMOV$cmp $dst,$src" %}
12976   opcode(0x0F,0x40);
12977   ins_encode( enc_cmov(cmp), RegReg( dst, src ) );
12978   ins_pipe( pipe_cmov_reg );
12979 %}
12980 
12981 // Compare 2 longs and CMOVE doubles
12982 instruct cmovDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regD dst, regD src) %{
12983   predicate( UseSSE<=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12984   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12985   ins_cost(200);
12986   expand %{
12987     fcmovD_regS(cmp,flags,dst,src);
12988   %}
12989 %}
12990 
12991 // Compare 2 longs and CMOVE doubles
12992 instruct cmovXDD_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regXD dst, regXD src) %{
12993   predicate( UseSSE>=2 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
12994   match(Set dst (CMoveD (Binary cmp flags) (Binary dst src)));
12995   ins_cost(200);
12996   expand %{
12997     fcmovXD_regS(cmp,flags,dst,src);
12998   %}
12999 %}
13000 
13001 instruct cmovFF_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regF dst, regF src) %{
13002   predicate( UseSSE==0 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13003   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13004   ins_cost(200);
13005   expand %{
13006     fcmovF_regS(cmp,flags,dst,src);
13007   %}
13008 %}
13009 
13010 
13011 instruct cmovXX_reg_LEGT(cmpOp_commute cmp, flagsReg_long_LEGT flags, regX dst, regX src) %{
13012   predicate( UseSSE>=1 && _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::le || _kids[0]->_kids[0]->_leaf->as_Bool()->_test._test == BoolTest::gt );
13013   match(Set dst (CMoveF (Binary cmp flags) (Binary dst src)));
13014   ins_cost(200);
13015   expand %{
13016     fcmovX_regS(cmp,flags,dst,src);
13017   %}
13018 %}
13019 
13020 
13021 // ============================================================================
13022 // Procedure Call/Return Instructions
13023 // Call Java Static Instruction
13024 // Note: If this code changes, the corresponding ret_addr_offset() and
13025 //       compute_padding() functions will have to be adjusted.
13026 instruct CallStaticJavaDirect(method meth) %{
13027   match(CallStaticJava);
13028   effect(USE meth);
13029 
13030   ins_cost(300);
13031   format %{ "CALL,static " %}
13032   opcode(0xE8); /* E8 cd */
13033   ins_encode( pre_call_FPU,
13034               Java_Static_Call( meth ),
13035               call_epilog,
13036               post_call_FPU );
13037   ins_pipe( pipe_slow );
13038   ins_pc_relative(1);
13039   ins_alignment(4);
13040 %}
13041 
13042 // Call Java Dynamic Instruction
13043 // Note: If this code changes, the corresponding ret_addr_offset() and
13044 //       compute_padding() functions will have to be adjusted.
13045 instruct CallDynamicJavaDirect(method meth) %{
13046   match(CallDynamicJava);
13047   effect(USE meth);
13048 
13049   ins_cost(300);
13050   format %{ "MOV    EAX,(oop)-1\n\t"
13051             "CALL,dynamic" %}
13052   opcode(0xE8); /* E8 cd */
13053   ins_encode( pre_call_FPU,
13054               Java_Dynamic_Call( meth ),
13055               call_epilog,
13056               post_call_FPU );
13057   ins_pipe( pipe_slow );
13058   ins_pc_relative(1);
13059   ins_alignment(4);
13060 %}
13061 
13062 // Call Runtime Instruction
13063 instruct CallRuntimeDirect(method meth) %{
13064   match(CallRuntime );
13065   effect(USE meth);
13066 
13067   ins_cost(300);
13068   format %{ "CALL,runtime " %}
13069   opcode(0xE8); /* E8 cd */
13070   // Use FFREEs to clear entries in float stack
13071   ins_encode( pre_call_FPU,
13072               FFree_Float_Stack_All,
13073               Java_To_Runtime( meth ),
13074               post_call_FPU );
13075   ins_pipe( pipe_slow );
13076   ins_pc_relative(1);
13077 %}
13078 
13079 // Call runtime without safepoint
13080 instruct CallLeafDirect(method meth) %{
13081   match(CallLeaf);
13082   effect(USE meth);
13083 
13084   ins_cost(300);
13085   format %{ "CALL_LEAF,runtime " %}
13086   opcode(0xE8); /* E8 cd */
13087   ins_encode( pre_call_FPU,
13088               FFree_Float_Stack_All,
13089               Java_To_Runtime( meth ),
13090               Verify_FPU_For_Leaf, post_call_FPU );
13091   ins_pipe( pipe_slow );
13092   ins_pc_relative(1);
13093 %}
13094 
13095 instruct CallLeafNoFPDirect(method meth) %{
13096   match(CallLeafNoFP);
13097   effect(USE meth);
13098 
13099   ins_cost(300);
13100   format %{ "CALL_LEAF_NOFP,runtime " %}
13101   opcode(0xE8); /* E8 cd */
13102   ins_encode(Java_To_Runtime(meth));
13103   ins_pipe( pipe_slow );
13104   ins_pc_relative(1);
13105 %}
13106 
13107 
13108 // Return Instruction
13109 // Remove the return address & jump to it.
13110 instruct Ret() %{
13111   match(Return);
13112   format %{ "RET" %}
13113   opcode(0xC3);
13114   ins_encode(OpcP);
13115   ins_pipe( pipe_jmp );
13116 %}
13117 
13118 // Tail Call; Jump from runtime stub to Java code.
13119 // Also known as an 'interprocedural jump'.
13120 // Target of jump will eventually return to caller.
13121 // TailJump below removes the return address.
13122 instruct TailCalljmpInd(eRegP_no_EBP jump_target, eBXRegP method_oop) %{
13123   match(TailCall jump_target method_oop );
13124   ins_cost(300);
13125   format %{ "JMP    $jump_target \t# EBX holds method oop" %}
13126   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13127   ins_encode( OpcP, RegOpc(jump_target) );
13128   ins_pipe( pipe_jmp );
13129 %}
13130 
13131 
13132 // Tail Jump; remove the return address; jump to target.
13133 // TailCall above leaves the return address around.
13134 instruct tailjmpInd(eRegP_no_EBP jump_target, eAXRegP ex_oop) %{
13135   match( TailJump jump_target ex_oop );
13136   ins_cost(300);
13137   format %{ "POP    EDX\t# pop return address into dummy\n\t"
13138             "JMP    $jump_target " %}
13139   opcode(0xFF, 0x4);  /* Opcode FF /4 */
13140   ins_encode( enc_pop_rdx,
13141               OpcP, RegOpc(jump_target) );
13142   ins_pipe( pipe_jmp );
13143 %}
13144 
13145 // Create exception oop: created by stack-crawling runtime code.
13146 // Created exception is now available to this handler, and is setup
13147 // just prior to jumping to this handler.  No code emitted.
13148 instruct CreateException( eAXRegP ex_oop )
13149 %{
13150   match(Set ex_oop (CreateEx));
13151 
13152   size(0);
13153   // use the following format syntax
13154   format %{ "# exception oop is in EAX; no code emitted" %}
13155   ins_encode();
13156   ins_pipe( empty );
13157 %}
13158 
13159 
13160 // Rethrow exception:
13161 // The exception oop will come in the first argument position.
13162 // Then JUMP (not call) to the rethrow stub code.
13163 instruct RethrowException()
13164 %{
13165   match(Rethrow);
13166 
13167   // use the following format syntax
13168   format %{ "JMP    rethrow_stub" %}
13169   ins_encode(enc_rethrow);
13170   ins_pipe( pipe_jmp );
13171 %}
13172 
13173 // inlined locking and unlocking
13174 
13175 
13176 instruct cmpFastLock( eFlagsReg cr, eRegP object, eRegP box, eAXRegI tmp, eRegP scr) %{
13177   match( Set cr (FastLock object box) );
13178   effect( TEMP tmp, TEMP scr );
13179   ins_cost(300);
13180   format %{ "FASTLOCK $object, $box KILLS $tmp,$scr" %}
13181   ins_encode( Fast_Lock(object,box,tmp,scr) );
13182   ins_pipe( pipe_slow );
13183   ins_pc_relative(1);
13184 %}
13185 
13186 instruct cmpFastUnlock( eFlagsReg cr, eRegP object, eAXRegP box, eRegP tmp ) %{
13187   match( Set cr (FastUnlock object box) );
13188   effect( TEMP tmp );
13189   ins_cost(300);
13190   format %{ "FASTUNLOCK $object, $box, $tmp" %}
13191   ins_encode( Fast_Unlock(object,box,tmp) );
13192   ins_pipe( pipe_slow );
13193   ins_pc_relative(1);
13194 %}
13195 
13196 
13197 
13198 // ============================================================================
13199 // Safepoint Instruction
13200 instruct safePoint_poll(eFlagsReg cr) %{
13201   match(SafePoint);
13202   effect(KILL cr);
13203 
13204   // TODO-FIXME: we currently poll at offset 0 of the safepoint polling page.
13205   // On SPARC that might be acceptable as we can generate the address with
13206   // just a sethi, saving an or.  By polling at offset 0 we can end up
13207   // putting additional pressure on the index-0 in the D$.  Because of
13208   // alignment (just like the situation at hand) the lower indices tend
13209   // to see more traffic.  It'd be better to change the polling address
13210   // to offset 0 of the last $line in the polling page.
13211 
13212   format %{ "TSTL   #polladdr,EAX\t! Safepoint: poll for GC" %}
13213   ins_cost(125);
13214   size(6) ;
13215   ins_encode( Safepoint_Poll() );
13216   ins_pipe( ialu_reg_mem );
13217 %}
13218 
13219 //----------PEEPHOLE RULES-----------------------------------------------------
13220 // These must follow all instruction definitions as they use the names
13221 // defined in the instructions definitions.
13222 //
13223 // peepmatch ( root_instr_name [preceeding_instruction]* );
13224 //
13225 // peepconstraint %{
13226 // (instruction_number.operand_name relational_op instruction_number.operand_name
13227 //  [, ...] );
13228 // // instruction numbers are zero-based using left to right order in peepmatch
13229 //
13230 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
13231 // // provide an instruction_number.operand_name for each operand that appears
13232 // // in the replacement instruction's match rule
13233 //
13234 // ---------VM FLAGS---------------------------------------------------------
13235 //
13236 // All peephole optimizations can be turned off using -XX:-OptoPeephole
13237 //
13238 // Each peephole rule is given an identifying number starting with zero and
13239 // increasing by one in the order seen by the parser.  An individual peephole
13240 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
13241 // on the command-line.
13242 //
13243 // ---------CURRENT LIMITATIONS----------------------------------------------
13244 //
13245 // Only match adjacent instructions in same basic block
13246 // Only equality constraints
13247 // Only constraints between operands, not (0.dest_reg == EAX_enc)
13248 // Only one replacement instruction
13249 //
13250 // ---------EXAMPLE----------------------------------------------------------
13251 //
13252 // // pertinent parts of existing instructions in architecture description
13253 // instruct movI(eRegI dst, eRegI src) %{
13254 //   match(Set dst (CopyI src));
13255 // %}
13256 //
13257 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
13258 //   match(Set dst (AddI dst src));
13259 //   effect(KILL cr);
13260 // %}
13261 //
13262 // // Change (inc mov) to lea
13263 // peephole %{
13264 //   // increment preceeded by register-register move
13265 //   peepmatch ( incI_eReg movI );
13266 //   // require that the destination register of the increment
13267 //   // match the destination register of the move
13268 //   peepconstraint ( 0.dst == 1.dst );
13269 //   // construct a replacement instruction that sets
13270 //   // the destination to ( move's source register + one )
13271 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13272 // %}
13273 //
13274 // Implementation no longer uses movX instructions since
13275 // machine-independent system no longer uses CopyX nodes.
13276 //
13277 // peephole %{
13278 //   peepmatch ( incI_eReg movI );
13279 //   peepconstraint ( 0.dst == 1.dst );
13280 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13281 // %}
13282 //
13283 // peephole %{
13284 //   peepmatch ( decI_eReg movI );
13285 //   peepconstraint ( 0.dst == 1.dst );
13286 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13287 // %}
13288 //
13289 // peephole %{
13290 //   peepmatch ( addI_eReg_imm movI );
13291 //   peepconstraint ( 0.dst == 1.dst );
13292 //   peepreplace ( leaI_eReg_immI( 0.dst 1.src 0.src ) );
13293 // %}
13294 //
13295 // peephole %{
13296 //   peepmatch ( addP_eReg_imm movP );
13297 //   peepconstraint ( 0.dst == 1.dst );
13298 //   peepreplace ( leaP_eReg_immI( 0.dst 1.src 0.src ) );
13299 // %}
13300 
13301 // // Change load of spilled value to only a spill
13302 // instruct storeI(memory mem, eRegI src) %{
13303 //   match(Set mem (StoreI mem src));
13304 // %}
13305 //
13306 // instruct loadI(eRegI dst, memory mem) %{
13307 //   match(Set dst (LoadI mem));
13308 // %}
13309 //
13310 peephole %{
13311   peepmatch ( loadI storeI );
13312   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
13313   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
13314 %}
13315 
13316 //----------SMARTSPILL RULES---------------------------------------------------
13317 // These must follow all instruction definitions as they use the names
13318 // defined in the instructions definitions.