1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)os_linux.cpp 1.259 08/11/24 12:20:22 JVM"
   3 #endif
   4 /*
   5  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // do not include  precompiled  header file
  29 # include "incls/_os_linux.cpp.incl"
  30 
  31 // put OS-includes here
  32 # include <sys/types.h>
  33 # include <sys/mman.h>
  34 # include <pthread.h>
  35 # include <signal.h>
  36 # include <errno.h>
  37 # include <dlfcn.h>
  38 # include <stdio.h>
  39 # include <unistd.h>
  40 # include <sys/resource.h>
  41 # include <pthread.h>
  42 # include <sys/stat.h>
  43 # include <sys/time.h>
  44 # include <sys/times.h>
  45 # include <sys/utsname.h>
  46 # include <sys/socket.h>
  47 # include <sys/wait.h>
  48 # include <pwd.h>
  49 # include <poll.h>
  50 # include <semaphore.h>
  51 # include <fcntl.h>
  52 # include <string.h>
  53 # include <syscall.h>
  54 # include <sys/sysinfo.h>
  55 # include <gnu/libc-version.h>
  56 # include <sys/ipc.h>
  57 # include <sys/shm.h>
  58 # include <link.h>
  59 
  60 #define MAX_PATH    (2 * K)
  61 
  62 // for timer info max values which include all bits
  63 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  64 #define SEC_IN_NANOSECS  1000000000LL
  65 
  66 ////////////////////////////////////////////////////////////////////////////////
  67 // global variables
  68 julong os::Linux::_physical_memory = 0;
  69 
  70 address   os::Linux::_initial_thread_stack_bottom = NULL;
  71 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
  72 
  73 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
  74 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
  75 Mutex* os::Linux::_createThread_lock = NULL;
  76 pthread_t os::Linux::_main_thread;
  77 int os::Linux::_page_size = -1;
  78 bool os::Linux::_is_floating_stack = false;
  79 bool os::Linux::_is_NPTL = false;
  80 bool os::Linux::_supports_fast_thread_cpu_time = false;
  81 const char * os::Linux::_glibc_version = NULL;
  82 const char * os::Linux::_libpthread_version = NULL;
  83 
  84 static jlong initial_time_count=0;
  85 
  86 static int clock_tics_per_sec = 100;
  87 
  88 // For diagnostics to print a message once. see run_periodic_checks
  89 static sigset_t check_signal_done;
  90 static bool check_signals = true;;
  91 
  92 static pid_t _initial_pid = 0;
  93 
  94 /* Signal number used to suspend/resume a thread */
  95 
  96 /* do not use any signal number less than SIGSEGV, see 4355769 */
  97 static int SR_signum = SIGUSR2;
  98 sigset_t SR_sigset;
  99 
 100 /* Used to protect dlsym() calls */
 101 static pthread_mutex_t dl_mutex;
 102 
 103 ////////////////////////////////////////////////////////////////////////////////
 104 // utility functions
 105 
 106 static int SR_initialize();
 107 static int SR_finalize();
 108 
 109 julong os::available_memory() {
 110   return Linux::available_memory();
 111 }
 112 
 113 julong os::Linux::available_memory() {
 114   // values in struct sysinfo are "unsigned long"
 115   struct sysinfo si;
 116   sysinfo(&si);
 117   
 118   return (julong)si.freeram * si.mem_unit;
 119 }
 120 
 121 julong os::physical_memory() {
 122   return Linux::physical_memory();
 123 }
 124 
 125 julong os::allocatable_physical_memory(julong size) {
 126 #ifdef _LP64
 127   return size;
 128 #else
 129   julong result = MIN2(size, (julong)3800*M);
 130    if (!is_allocatable(result)) {
 131      // See comments under solaris for alignment considerations
 132      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 133      result =  MIN2(size, reasonable_size);
 134    }
 135    return result;
 136 #endif // _LP64
 137 }
 138 
 139 ////////////////////////////////////////////////////////////////////////////////
 140 // environment support
 141 
 142 bool os::getenv(const char* name, char* buf, int len) {
 143   const char* val = ::getenv(name);
 144   if (val != NULL && strlen(val) < (size_t)len) {
 145     strcpy(buf, val);
 146     return true;
 147   }
 148   if (len > 0) buf[0] = 0;  // return a null string
 149   return false;
 150 }
 151 
 152 
 153 // Return true if user is running as root.
 154 
 155 bool os::have_special_privileges() {
 156   static bool init = false;
 157   static bool privileges = false;
 158   if (!init) {
 159     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 160     init = true;
 161   }
 162   return privileges;
 163 }
 164 
 165 
 166 #ifndef SYS_gettid
 167 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 168 #ifdef __ia64__
 169 #define SYS_gettid 1105     
 170 #elif __i386__
 171 #define SYS_gettid 224     
 172 #elif __amd64__
 173 #define SYS_gettid 186
 174 #elif __sparc__
 175 #define SYS_gettid 143
 176 #else 
 177 #error define gettid for the arch
 178 #endif
 179 #endif
 180 
 181 // Cpu architecture string
 182 #if   defined(IA64)
 183 static char cpu_arch[] = "ia64";
 184 #elif defined(IA32)
 185 static char cpu_arch[] = "i386";
 186 #elif defined(AMD64)
 187 static char cpu_arch[] = "amd64";
 188 #elif defined(SPARC)
 189 #  ifdef _LP64
 190 static char cpu_arch[] = "sparcv9";
 191 #  else
 192 static char cpu_arch[] = "sparc";
 193 #  endif
 194 #else
 195 #error Add appropriate cpu_arch setting
 196 #endif
 197 
 198 
 199 // pid_t gettid()
 200 //
 201 // Returns the kernel thread id of the currently running thread. Kernel
 202 // thread id is used to access /proc.
 203 //
 204 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 205 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 206 //
 207 pid_t os::Linux::gettid() {
 208   int rslt = syscall(SYS_gettid);
 209   if (rslt == -1) {        
 210      // old kernel, no NPTL support
 211      return getpid();
 212   } else {
 213      return (pid_t)rslt;
 214   }
 215 }
 216 
 217 // Most versions of linux have a bug where the number of processors are
 218 // determined by looking at the /proc file system.  In a chroot environment,
 219 // the system call returns 1.  This causes the VM to act as if it is
 220 // a single processor and elide locking (see is_MP() call).
 221 static bool unsafe_chroot_detected = false;
 222 static const char *unstable_chroot_error = "/proc file system not found.\n"
 223                      "Java may be unstable running multithreaded in a chroot "
 224                      "environment on Linux when /proc filesystem is not mounted.";
 225 
 226 void os::Linux::initialize_system_info() {
 227   _processor_count = sysconf(_SC_NPROCESSORS_CONF);
 228   if (_processor_count == 1) {
 229     pid_t pid = os::Linux::gettid();
 230     char fname[32];
 231     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 232     FILE *fp = fopen(fname, "r");
 233     if (fp == NULL) {
 234       unsafe_chroot_detected = true;
 235     } else {
 236       fclose(fp);
 237     }
 238   }
 239   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 240   assert(_processor_count > 0, "linux error");
 241 }
 242 
 243 void os::init_system_properties_values() {
 244 //  char arch[12];
 245 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 246 
 247   // The next steps are taken in the product version:
 248   //
 249   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 250   // This library should be located at:
 251   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 252   //
 253   // If "/jre/lib/" appears at the right place in the path, then we 
 254   // assume libjvm[_g].so is installed in a JDK and we use this path. 
 255   //
 256   // Otherwise exit with message: "Could not create the Java virtual machine."
 257   //
 258   // The following extra steps are taken in the debugging version:
 259   //
 260   // If "/jre/lib/" does NOT appear at the right place in the path
 261   // instead of exit check for $JAVA_HOME environment variable.
 262   //
 263   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 264   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 265   // it looks like libjvm[_g].so is installed there
 266   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 267   //
 268   // Otherwise exit. 
 269   //
 270   // Important note: if the location of libjvm.so changes this 
 271   // code needs to be changed accordingly.
 272 
 273   // The next few definitions allow the code to be verbatim:
 274 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n))
 275 #define getenv(n) ::getenv(n)
 276 
 277 /*
 278  * See ld(1):
 279  *      The linker uses the following search paths to locate required
 280  *      shared libraries:
 281  *        1: ...
 282  *        ...
 283  *        7: The default directories, normally /lib and /usr/lib.
 284  */
 285 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 286 
 287 #define EXTENSIONS_DIR  "/lib/ext"
 288 #define ENDORSED_DIR    "/lib/endorsed"
 289 #define REG_DIR         "/usr/java/packages"
 290 
 291   {
 292     /* sysclasspath, java_home, dll_dir */
 293     {
 294         char *home_path;
 295         char *dll_path;
 296         char *pslash;
 297         char buf[MAXPATHLEN];
 298         os::jvm_path(buf, sizeof(buf));
 299 
 300         // Found the full path to libjvm.so. 
 301         // Now cut the path to <java_home>/jre if we can. 
 302         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 303         pslash = strrchr(buf, '/');
 304         if (pslash != NULL)
 305             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 306         dll_path = malloc(strlen(buf) + 1);
 307         if (dll_path == NULL)
 308             return;
 309         strcpy(dll_path, buf);
 310         Arguments::set_dll_dir(dll_path);
 311 
 312         if (pslash != NULL) {
 313             pslash = strrchr(buf, '/');
 314             if (pslash != NULL) {
 315                 *pslash = '\0';       /* get rid of /<arch> */ 
 316                 pslash = strrchr(buf, '/');
 317                 if (pslash != NULL)
 318                     *pslash = '\0';   /* get rid of /lib */
 319             }
 320         }
 321 
 322         home_path = malloc(strlen(buf) + 1);
 323         if (home_path == NULL)
 324             return;
 325         strcpy(home_path, buf);
 326         Arguments::set_java_home(home_path);
 327 
 328         if (!set_boot_path('/', ':'))
 329             return;
 330     }
 331 
 332     /*
 333      * Where to look for native libraries
 334      *
 335      * Note: Due to a legacy implementation, most of the library path
 336      * is set in the launcher.  This was to accomodate linking restrictions
 337      * on legacy Linux implementations (which are no longer supported).
 338      * Eventually, all the library path setting will be done here.
 339      *
 340      * However, to prevent the proliferation of improperly built native
 341      * libraries, the new path component /usr/java/packages is added here.
 342      * Eventually, all the library path setting will be done here.
 343      */
 344     {
 345         char *ld_library_path;
 346 
 347         /*
 348          * Construct the invariant part of ld_library_path. Note that the
 349          * space for the colon and the trailing null are provided by the
 350          * nulls included by the sizeof operator (so actually we allocate
 351          * a byte more than necessary).
 352          */
 353         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 354             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 355         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 356 
 357         /*
 358          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 359          * should always exist (until the legacy problem cited above is
 360          * addressed).
 361          */
 362         char *v = getenv("LD_LIBRARY_PATH");
 363         if (v != NULL) {
 364             char *t = ld_library_path;
 365             /* That's +1 for the colon and +1 for the trailing '\0' */
 366             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 367             sprintf(ld_library_path, "%s:%s", v, t);
 368         }
 369         Arguments::set_library_path(ld_library_path);
 370     }
 371 
 372     /*
 373      * Extensions directories.
 374      *
 375      * Note that the space for the colon and the trailing null are provided
 376      * by the nulls included by the sizeof operator (so actually one byte more
 377      * than necessary is allocated).
 378      */
 379     {
 380         char *buf = malloc(strlen(Arguments::get_java_home()) +
 381             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 382         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 383             Arguments::get_java_home());
 384         Arguments::set_ext_dirs(buf);
 385     }
 386 
 387     /* Endorsed standards default directory. */
 388     {
 389         char * buf;
 390         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 391         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 392         Arguments::set_endorsed_dirs(buf);
 393     }
 394   }
 395 
 396 #undef malloc
 397 #undef getenv
 398 #undef EXTENSIONS_DIR
 399 #undef ENDORSED_DIR
 400 
 401   // Done
 402   return;
 403 }
 404 
 405 ////////////////////////////////////////////////////////////////////////////////
 406 // breakpoint support
 407 
 408 void os::breakpoint() {
 409   BREAKPOINT;
 410 }
 411 
 412 extern "C" void breakpoint() {
 413   // use debugger to set breakpoint here
 414 }
 415 
 416 ////////////////////////////////////////////////////////////////////////////////
 417 // signal support
 418 
 419 debug_only(static bool signal_sets_initialized = false);
 420 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 421 
 422 bool os::Linux::is_sig_ignored(int sig) {
 423       struct sigaction oact;
 424       sigaction(sig, (struct sigaction*)NULL, &oact);
 425       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 426                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 427       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 428            return true;
 429       else 
 430            return false;
 431 }
 432 
 433 void os::Linux::signal_sets_init() {
 434   // Should also have an assertion stating we are still single-threaded.
 435   assert(!signal_sets_initialized, "Already initialized");
 436   // Fill in signals that are necessarily unblocked for all threads in
 437   // the VM. Currently, we unblock the following signals:
 438   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 439   //                         by -Xrs (=ReduceSignalUsage));
 440   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 441   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 442   // the dispositions or masks wrt these signals.
 443   // Programs embedding the VM that want to use the above signals for their
 444   // own purposes must, at this time, use the "-Xrs" option to prevent
 445   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 446   // (See bug 4345157, and other related bugs).
 447   // In reality, though, unblocking these signals is really a nop, since
 448   // these signals are not blocked by default.
 449   sigemptyset(&unblocked_sigs);
 450   sigemptyset(&allowdebug_blocked_sigs);
 451   sigaddset(&unblocked_sigs, SIGILL);
 452   sigaddset(&unblocked_sigs, SIGSEGV);
 453   sigaddset(&unblocked_sigs, SIGBUS);
 454   sigaddset(&unblocked_sigs, SIGFPE);
 455   sigaddset(&unblocked_sigs, SR_signum);
 456 
 457   if (!ReduceSignalUsage) {
 458    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 459       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 460       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 461    }
 462    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 463       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 464       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 465    }
 466    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 469    }
 470   }
 471   // Fill in signals that are blocked by all but the VM thread.
 472   sigemptyset(&vm_sigs);
 473   if (!ReduceSignalUsage)
 474     sigaddset(&vm_sigs, BREAK_SIGNAL);
 475   debug_only(signal_sets_initialized = true);
 476 
 477 }
 478 
 479 // These are signals that are unblocked while a thread is running Java.
 480 // (For some reason, they get blocked by default.)
 481 sigset_t* os::Linux::unblocked_signals() {
 482   assert(signal_sets_initialized, "Not initialized");
 483   return &unblocked_sigs;
 484 }
 485 
 486 // These are the signals that are blocked while a (non-VM) thread is
 487 // running Java. Only the VM thread handles these signals.
 488 sigset_t* os::Linux::vm_signals() {
 489   assert(signal_sets_initialized, "Not initialized");
 490   return &vm_sigs;
 491 }
 492 
 493 // These are signals that are blocked during cond_wait to allow debugger in
 494 sigset_t* os::Linux::allowdebug_blocked_signals() {
 495   assert(signal_sets_initialized, "Not initialized");
 496   return &allowdebug_blocked_sigs;
 497 }
 498 
 499 void os::Linux::hotspot_sigmask(Thread* thread) {
 500 
 501   //Save caller's signal mask before setting VM signal mask
 502   sigset_t caller_sigmask;
 503   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 504  
 505   OSThread* osthread = thread->osthread();
 506   osthread->set_caller_sigmask(caller_sigmask);
 507 
 508   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 509 
 510   if (!ReduceSignalUsage) {
 511     if (thread->is_VM_thread()) {
 512       // Only the VM thread handles BREAK_SIGNAL ...
 513       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 514     } else {
 515       // ... all other threads block BREAK_SIGNAL
 516       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 517     }
 518   }
 519 }
 520 
 521 //////////////////////////////////////////////////////////////////////////////
 522 // detecting pthread library
 523 
 524 void os::Linux::libpthread_init() {
 525   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 526   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a 
 527   // generic name for earlier versions.
 528   // Define macros here so we can build HotSpot on old systems.
 529 # ifndef _CS_GNU_LIBC_VERSION
 530 # define _CS_GNU_LIBC_VERSION 2
 531 # endif
 532 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 533 # define _CS_GNU_LIBPTHREAD_VERSION 3
 534 # endif
 535 
 536   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 537   if (n > 0) {
 538      char *str = (char *)malloc(n);
 539      confstr(_CS_GNU_LIBC_VERSION, str, n);
 540      os::Linux::set_glibc_version(str);
 541   } else {
 542      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 543      static char _gnu_libc_version[32];
 544      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version), 
 545               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 546      os::Linux::set_glibc_version(_gnu_libc_version);
 547   }
 548 
 549   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 550   if (n > 0) {
 551      char *str = (char *)malloc(n);
 552      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 553      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 554      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 555      // is the case. LinuxThreads has a hard limit on max number of threads.
 556      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 557      // On the other hand, NPTL does not have such a limit, sysconf()
 558      // will return -1 and errno is not changed. Check if it is really NPTL.
 559      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 560          strstr(str, "NPTL") &&
 561          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 562        free(str);
 563        os::Linux::set_libpthread_version("linuxthreads");
 564      } else {
 565        os::Linux::set_libpthread_version(str);
 566      }
 567   } else {
 568     // glibc before 2.3.2 only has LinuxThreads.
 569     os::Linux::set_libpthread_version("linuxthreads");
 570   }
 571 
 572   if (strstr(libpthread_version(), "NPTL")) {
 573     os::Linux::set_is_NPTL();
 574   } else {
 575     os::Linux::set_is_LinuxThreads();
 576   }
 577   
 578   // LinuxThreads have two flavors: floating-stack mode, which allows variable 
 579   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 580   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 581     os::Linux::set_is_floating_stack();
 582   }
 583 }
 584 
 585 /////////////////////////////////////////////////////////////////////////////
 586 // thread stack
 587 
 588 // Force Linux kernel to expand current thread stack. If "bottom" is close
 589 // to the stack guard, caller should block all signals.
 590 //
 591 // MAP_GROWSDOWN:
 592 //   A special mmap() flag that is used to implement thread stacks. It tells 
 593 //   kernel that the memory region should extend downwards when needed. This 
 594 //   allows early versions of LinuxThreads to only mmap the first few pages 
 595 //   when creating a new thread. Linux kernel will automatically expand thread
 596 //   stack as needed (on page faults). 
 597 //
 598 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 599 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 600 //   region, it's hard to tell if the fault is due to a legitimate stack 
 601 //   access or because of reading/writing non-exist memory (e.g. buffer 
 602 //   overrun). As a rule, if the fault happens below current stack pointer, 
 603 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the 
 604 //   application (see Linux kernel fault.c).
 605 //
 606 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 607 //   stack overflow detection.
 608 //
 609 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do 
 610 //   not use this flag. However, the stack of initial thread is not created
 611 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though 
 612 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 613 //   and then attach the thread to JVM.
 614 //
 615 // To get around the problem and allow stack banging on Linux, we need to 
 616 // manually expand thread stack after receiving the SIGSEGV.
 617 //
 618 // There are two ways to expand thread stack to address "bottom", we used
 619 // both of them in JVM before 1.5:
 620 //   1. adjust stack pointer first so that it is below "bottom", and then
 621 //      touch "bottom"
 622 //   2. mmap() the page in question
 623 //
 624 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 625 // if current sp is already near the lower end of page 101, and we need to
 626 // call mmap() to map page 100, it is possible that part of the mmap() frame
 627 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 628 // That will destroy the mmap() frame and cause VM to crash.
 629 //
 630 // The following code works by adjusting sp first, then accessing the "bottom"
 631 // page to force a page fault. Linux kernel will then automatically expand the 
 632 // stack mapping. 
 633 //
 634 // _expand_stack_to() assumes its frame size is less than page size, which 
 635 // should always be true if the function is not inlined.
 636 
 637 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 638 #define NOINLINE
 639 #else
 640 #define NOINLINE __attribute__ ((noinline))
 641 #endif
 642 
 643 static void _expand_stack_to(address bottom) NOINLINE;
 644 
 645 static void _expand_stack_to(address bottom) {
 646   address sp;
 647   size_t size;
 648   volatile char *p;
 649 
 650   // Adjust bottom to point to the largest address within the same page, it
 651   // gives us a one-page buffer if alloca() allocates slightly more memory.
 652   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 653   bottom += os::Linux::page_size() - 1;
 654 
 655   // sp might be slightly above current stack pointer; if that's the case, we
 656   // will alloca() a little more space than necessary, which is OK. Don't use 
 657   // os::current_stack_pointer(), as its result can be slightly below current
 658   // stack pointer, causing us to not alloca enough to reach "bottom".
 659   sp = (address)&sp;
 660 
 661   if (sp > bottom) {
 662     size = sp - bottom;
 663     p = (volatile char *)alloca(size);
 664     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 665     p[0] = '\0';
 666   }
 667 }
 668 
 669 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 670   assert(t!=NULL, "just checking");
 671   assert(t->osthread()->expanding_stack(), "expand should be set");
 672   assert(t->stack_base() != NULL, "stack_base was not initialized");
 673 
 674   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 675     sigset_t mask_all, old_sigset;
 676     sigfillset(&mask_all);
 677     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 678     _expand_stack_to(addr);
 679     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 680     return true;
 681   }
 682   return false;
 683 }
 684 
 685 //////////////////////////////////////////////////////////////////////////////
 686 // create new thread
 687 
 688 static address highest_vm_reserved_address();
 689 
 690 // check if it's safe to start a new thread
 691 static bool _thread_safety_check(Thread* thread) {
 692   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 693     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 694     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 695     //   allocated (MAP_FIXED) from high address space. Every thread stack
 696     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 697     //   it to other values if they rebuild LinuxThreads). 
 698     //
 699     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 700     // the memory region has already been mmap'ed. That means if we have too 
 701     // many threads and/or very large heap, eventually thread stack will 
 702     // collide with heap.
 703     //
 704     // Here we try to prevent heap/stack collision by comparing current
 705     // stack bottom with the highest address that has been mmap'ed by JVM
 706     // plus a safety margin for memory maps created by native code.
 707     //
 708     // This feature can be disabled by setting ThreadSafetyMargin to 0
 709     //
 710     if (ThreadSafetyMargin > 0) {
 711       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 712 
 713       // not safe if our stack extends below the safety margin
 714       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 715     } else {
 716       return true;
 717     }
 718   } else {
 719     // Floating stack LinuxThreads or NPTL:
 720     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 721     //   there's not enough space left, pthread_create() will fail. If we come
 722     //   here, that means enough space has been reserved for stack.
 723     return true;
 724   }
 725 }
 726 
 727 // Thread start routine for all newly created threads
 728 static void *java_start(Thread *thread) {
 729   // Try to randomize the cache line index of hot stack frames.
 730   // This helps when threads of the same stack traces evict each other's
 731   // cache lines. The threads can be either from the same JVM instance, or
 732   // from different JVM instances. The benefit is especially true for
 733   // processors with hyperthreading technology.
 734   static int counter = 0;
 735   int pid = os::current_process_id();
 736   alloca(((pid ^ counter++) & 7) * 128);
 737 
 738   ThreadLocalStorage::set_thread(thread);
 739 
 740   OSThread* osthread = thread->osthread();
 741   Monitor* sync = osthread->startThread_lock();
 742 
 743   // non floating stack LinuxThreads needs extra check, see above
 744   if (!_thread_safety_check(thread)) {
 745     // notify parent thread
 746     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 747     osthread->set_state(ZOMBIE);
 748     sync->notify_all();
 749     return NULL;
 750   }
 751 
 752   // thread_id is kernel thread id (similar to Solaris LWP id)
 753   osthread->set_thread_id(os::Linux::gettid());
 754 
 755   if (UseNUMA) {
 756     int lgrp_id = os::numa_get_group_id();
 757     if (lgrp_id != -1) {
 758       thread->set_lgrp_id(lgrp_id);
 759     }
 760   }
 761   // initialize signal mask for this thread
 762   os::Linux::hotspot_sigmask(thread);
 763 
 764   // initialize floating point control register
 765   os::Linux::init_thread_fpu_state();
 766 
 767   // handshaking with parent thread
 768   {
 769     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 770 
 771     // notify parent thread
 772     osthread->set_state(INITIALIZED);
 773     sync->notify_all();
 774 
 775     // wait until os::start_thread()
 776     while (osthread->get_state() == INITIALIZED) {
 777       sync->wait(Mutex::_no_safepoint_check_flag);
 778     }
 779   }
 780 
 781   // call one more level start routine
 782   thread->run();
 783 
 784   return 0;
 785 }
 786 
 787 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 788   assert(thread->osthread() == NULL, "caller responsible");
 789 
 790   // Allocate the OSThread object
 791   OSThread* osthread = new OSThread(NULL, NULL);
 792   if (osthread == NULL) {
 793     return false;
 794   }
 795 
 796   // set the correct thread state
 797   osthread->set_thread_type(thr_type);
 798 
 799   // Initial state is ALLOCATED but not INITIALIZED
 800   osthread->set_state(ALLOCATED);
 801 
 802   thread->set_osthread(osthread);
 803 
 804   // init thread attributes
 805   pthread_attr_t attr;
 806   pthread_attr_init(&attr);
 807   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 808 
 809   // stack size
 810   if (os::Linux::supports_variable_stack_size()) {
 811     // calculate stack size if it's not specified by caller
 812     if (stack_size == 0) {
 813       stack_size = os::Linux::default_stack_size(thr_type);
 814 
 815       switch (thr_type) {
 816       case os::java_thread:
 817         // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 818         if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
 819         break;
 820       case os::compiler_thread:
 821         if (CompilerThreadStackSize > 0) {
 822           stack_size = (size_t)(CompilerThreadStackSize * K);
 823           break;
 824         } // else fall through:
 825           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 826       case os::vm_thread: 
 827       case os::pgc_thread: 
 828       case os::cgc_thread: 
 829       case os::watcher_thread: 
 830         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 831         break;
 832       }
 833     }
 834 
 835     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 836     pthread_attr_setstacksize(&attr, stack_size);
 837   } else {
 838     // let pthread_create() pick the default value.
 839   }
 840 
 841   // glibc guard page
 842   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 843 
 844   ThreadState state;
 845 
 846   {
 847     // Serialize thread creation if we are running with fixed stack LinuxThreads
 848     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 849     if (lock) {
 850       os::Linux::createThread_lock()->lock_without_safepoint_check();
 851     }
 852 
 853     pthread_t tid;
 854     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 855 
 856     pthread_attr_destroy(&attr);
 857 
 858     if (ret != 0) {
 859       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 860         perror("pthread_create()");
 861       }
 862       // Need to clean up stuff we've allocated so far
 863       thread->set_osthread(NULL);
 864       delete osthread;
 865       if (lock) os::Linux::createThread_lock()->unlock();
 866       return false;
 867     }
 868 
 869     // Store pthread info into the OSThread
 870     osthread->set_pthread_id(tid);
 871 
 872     // Wait until child thread is either initialized or aborted
 873     {
 874       Monitor* sync_with_child = osthread->startThread_lock();
 875       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 876       while ((state = osthread->get_state()) == ALLOCATED) {
 877         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 878       }
 879     }
 880 
 881     if (lock) {
 882       os::Linux::createThread_lock()->unlock();
 883     }
 884   }
 885 
 886   // Aborted due to thread limit being reached
 887   if (state == ZOMBIE) {
 888       thread->set_osthread(NULL);
 889       delete osthread;
 890       return false;
 891   }
 892 
 893   // The thread is returned suspended (in state INITIALIZED),
 894   // and is started higher up in the call chain
 895   assert(state == INITIALIZED, "race condition");
 896   return true;
 897 }
 898 
 899 /////////////////////////////////////////////////////////////////////////////
 900 // attach existing thread
 901 
 902 // bootstrap the main thread
 903 bool os::create_main_thread(JavaThread* thread) {
 904   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 905   return create_attached_thread(thread);
 906 }
 907 
 908 bool os::create_attached_thread(JavaThread* thread) {
 909 #ifdef ASSERT
 910     thread->verify_not_published();
 911 #endif
 912 
 913   // Allocate the OSThread object
 914   OSThread* osthread = new OSThread(NULL, NULL);
 915 
 916   if (osthread == NULL) {
 917     return false;
 918   }
 919 
 920   // Store pthread info into the OSThread
 921   osthread->set_thread_id(os::Linux::gettid());
 922   osthread->set_pthread_id(::pthread_self());
 923 
 924   // initialize floating point control register
 925   os::Linux::init_thread_fpu_state();
 926 
 927   // Initial thread state is RUNNABLE
 928   osthread->set_state(RUNNABLE);
 929 
 930   thread->set_osthread(osthread);
 931 
 932   if (UseNUMA) {
 933     int lgrp_id = os::numa_get_group_id();
 934     if (lgrp_id != -1) {
 935       thread->set_lgrp_id(lgrp_id);
 936     }
 937   }
 938 
 939   if (os::Linux::is_initial_thread()) {
 940     // If current thread is initial thread, its stack is mapped on demand,
 941     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 942     // the entire stack region to avoid SEGV in stack banging.
 943     // It is also useful to get around the heap-stack-gap problem on SuSE
 944     // kernel (see 4821821 for details). We first expand stack to the top
 945     // of yellow zone, then enable stack yellow zone (order is significant,
 946     // enabling yellow zone first will crash JVM on SuSE Linux), so there 
 947     // is no gap between the last two virtual memory regions.
 948 
 949     JavaThread *jt = (JavaThread *)thread;
 950     address addr = jt->stack_yellow_zone_base();
 951     assert(addr != NULL, "initialization problem?");
 952     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 953 
 954     osthread->set_expanding_stack();
 955     os::Linux::manually_expand_stack(jt, addr);
 956     osthread->clear_expanding_stack();
 957   }
 958 
 959   // initialize signal mask for this thread
 960   // and save the caller's signal mask
 961   os::Linux::hotspot_sigmask(thread);
 962 
 963   return true;
 964 }
 965 
 966 void os::pd_start_thread(Thread* thread) {
 967   OSThread * osthread = thread->osthread();
 968   assert(osthread->get_state() != INITIALIZED, "just checking");
 969   Monitor* sync_with_child = osthread->startThread_lock();
 970   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 971   sync_with_child->notify();
 972 }
 973 
 974 // Free Linux resources related to the OSThread
 975 void os::free_thread(OSThread* osthread) {
 976   assert(osthread != NULL, "osthread not set");
 977  
 978   if (Thread::current()->osthread() == osthread) {
 979     // Restore caller's signal mask
 980     sigset_t sigmask = osthread->caller_sigmask();
 981     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 982    }
 983  
 984   delete osthread;
 985 }
 986 
 987 //////////////////////////////////////////////////////////////////////////////
 988 // thread local storage
 989 
 990 int os::allocate_thread_local_storage() {
 991   pthread_key_t key;
 992   int rslt = pthread_key_create(&key, NULL);
 993   assert(rslt == 0, "cannot allocate thread local storage");
 994   return (int)key;
 995 }
 996 
 997 // Note: This is currently not used by VM, as we don't destroy TLS key
 998 // on VM exit.
 999 void os::free_thread_local_storage(int index) {
1000   int rslt = pthread_key_delete((pthread_key_t)index);
1001   assert(rslt == 0, "invalid index");
1002 }
1003 
1004 void os::thread_local_storage_at_put(int index, void* value) {
1005   int rslt = pthread_setspecific((pthread_key_t)index, value);
1006   assert(rslt == 0, "pthread_setspecific failed");
1007 }
1008 
1009 extern "C" Thread* get_thread() {
1010   return ThreadLocalStorage::thread();
1011 }
1012 
1013 //////////////////////////////////////////////////////////////////////////////
1014 // initial thread
1015 
1016 // Check if current thread is the initial thread, similar to Solaris thr_main.
1017 bool os::Linux::is_initial_thread(void) {
1018   char dummy;
1019   // If called before init complete, thread stack bottom will be null.
1020   // Can be called if fatal error occurs before initialization.
1021   if (initial_thread_stack_bottom() == NULL) return false;
1022   assert(initial_thread_stack_bottom() != NULL &&
1023          initial_thread_stack_size()   != 0,
1024          "os::init did not locate initial thread's stack region");
1025   if ((address)&dummy >= initial_thread_stack_bottom() &&
1026       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1027        return true;
1028   else return false;
1029 }
1030 
1031 // Find the virtual memory area that contains addr
1032 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1033   FILE *fp = fopen("/proc/self/maps", "r");
1034   if (fp) {
1035     address low, high;
1036     while (!feof(fp)) {
1037       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1038         if (low <= addr && addr < high) {
1039            if (vma_low)  *vma_low  = low;
1040            if (vma_high) *vma_high = high;
1041            fclose (fp);
1042            return true;
1043         }
1044       }
1045       for (;;) {
1046         int ch = fgetc(fp);
1047         if (ch == EOF || ch == (int)'\n') break;
1048       }
1049     }
1050     fclose(fp);
1051   }
1052   return false;
1053 }
1054 
1055 // Locate initial thread stack. This special handling of initial thread stack
1056 // is needed because pthread_getattr_np() on most (all?) Linux distros returns 
1057 // bogus value for initial thread.
1058 void os::Linux::capture_initial_stack(size_t max_size) {
1059   // stack size is the easy part, get it from RLIMIT_STACK
1060   size_t stack_size;
1061   struct rlimit rlim;
1062   getrlimit(RLIMIT_STACK, &rlim);
1063   stack_size = rlim.rlim_cur;
1064 
1065   // 6308388: a bug in ld.so will relocate its own .data section to the
1066   //   lower end of primordial stack; reduce ulimit -s value a little bit
1067   //   so we won't install guard page on ld.so's data section.
1068   stack_size -= 2 * page_size();
1069 
1070   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1071   //   7.1, in both cases we will get 2G in return value.
1072   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1073   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1074   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1075   //   in case other parts in glibc still assumes 2M max stack size.
1076   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1077 #ifndef IA64
1078   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1079 #else
1080   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1081   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1082 #endif
1083 
1084   // Try to figure out where the stack base (top) is. This is harder.
1085   //
1086   // When an application is started, glibc saves the initial stack pointer in
1087   // a global variable "__libc_stack_end", which is then used by system 
1088   // libraries. __libc_stack_end should be pretty close to stack top. The
1089   // variable is available since the very early days. However, because it is
1090   // a private interface, it could disappear in the future.
1091   //
1092   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1093   // to __libc_stack_end, it is very close to stack top, but isn't the real
1094   // stack top. Note that /proc may not exist if VM is running as a chroot 
1095   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1096   // /proc/<pid>/stat could change in the future (though unlikely).
1097   //
1098   // We try __libc_stack_end first. If that doesn't work, look for
1099   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1100   // as a hint, which should work well in most cases.
1101   
1102   uintptr_t stack_start;
1103 
1104   // try __libc_stack_end first
1105   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1106   if (p && *p) {
1107     stack_start = *p;
1108   } else {
1109     // see if we can get the start_stack field from /proc/self/stat
1110     FILE *fp;
1111     int pid;
1112     char state;
1113     int ppid;
1114     int pgrp;
1115     int session;
1116     int nr;
1117     int tpgrp;
1118     unsigned long flags;
1119     unsigned long minflt;
1120     unsigned long cminflt;
1121     unsigned long majflt;
1122     unsigned long cmajflt;
1123     unsigned long utime;
1124     unsigned long stime;
1125     long cutime;
1126     long cstime;
1127     long prio;
1128     long nice;
1129     long junk;
1130     long it_real;
1131     uintptr_t start;
1132     uintptr_t vsize;
1133     uintptr_t rss;
1134     unsigned long rsslim;
1135     uintptr_t scodes;
1136     uintptr_t ecode;
1137     int i;
1138 
1139     // Figure what the primordial thread stack base is. Code is inspired
1140     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1141     // followed by command name surrounded by parentheses, state, etc.
1142     char stat[2048];
1143     int statlen;
1144 
1145     fp = fopen("/proc/self/stat", "r");
1146     if (fp) {
1147       statlen = fread(stat, 1, 2047, fp);
1148       stat[statlen] = '\0';
1149       fclose(fp);
1150 
1151       // Skip pid and the command string. Note that we could be dealing with
1152       // weird command names, e.g. user could decide to rename java launcher
1153       // to "java 1.4.2 :)", then the stat file would look like
1154       //                1234 (java 1.4.2 :)) R ... ... 
1155       // We don't really need to know the command string, just find the last 
1156       // occurrence of ")" and then start parsing from there. See bug 4726580.
1157       char * s = strrchr(stat, ')');
1158 
1159       i = 0;
1160       if (s) {
1161         // Skip blank chars
1162         do s++; while (isspace(*s));
1163 
1164         /*                                     1   1   1   1   1   1   1   1   1   1   2   2   2   2   2   2   2   2   2 */
1165         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1   2   3   4   5   6   7   8 */
1166         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu", 
1167              &state,          /* 3  %c  */
1168              &ppid,           /* 4  %d  */
1169              &pgrp,           /* 5  %d  */
1170              &session,        /* 6  %d  */
1171              &nr,             /* 7  %d  */
1172              &tpgrp,          /* 8  %d  */
1173              &flags,          /* 9  %lu  */
1174              &minflt,         /* 10 %lu  */
1175              &cminflt,        /* 11 %lu  */
1176              &majflt,         /* 12 %lu  */
1177              &cmajflt,        /* 13 %lu  */
1178              &utime,          /* 14 %lu  */
1179              &stime,          /* 15 %lu  */
1180              &cutime,         /* 16 %ld  */
1181              &cstime,         /* 17 %ld  */
1182              &prio,           /* 18 %ld  */
1183              &nice,           /* 19 %ld  */
1184              &junk,           /* 20 %ld  */
1185              &it_real,        /* 21 %ld  */
1186              &start,          /* 22 %lu  */
1187              &vsize,          /* 23 %lu  */
1188              &rss,            /* 24 %ld  */
1189              &rsslim,         /* 25 %lu  */
1190              &scodes,         /* 26 %lu  */
1191              &ecode,          /* 27 %lu  */
1192              &stack_start);   /* 28 %lu  */
1193       }
1194 
1195       if (i != 28 - 2) {
1196          assert(false, "Bad conversion from /proc/self/stat");
1197          // product mode - assume we are the initial thread, good luck in the
1198          // embedded case.
1199          warning("Can't detect initial thread stack location - bad conversion");
1200          stack_start = (uintptr_t) &rlim;
1201       }
1202     } else {
1203       // For some reason we can't open /proc/self/stat (for example, running on
1204       // FreeBSD with a Linux emulator, or inside chroot), this should work for 
1205       // most cases, so don't abort:
1206       warning("Can't detect initial thread stack location - no /proc/self/stat");
1207       stack_start = (uintptr_t) &rlim;
1208     }
1209   }
1210 
1211   // Now we have a pointer (stack_start) very close to the stack top, the 
1212   // next thing to do is to figure out the exact location of stack top. We
1213   // can find out the virtual memory area that contains stack_start by 
1214   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1215   // and its upper limit is the real stack top. (again, this would fail if 
1216   // running inside chroot, because /proc may not exist.)
1217   
1218   uintptr_t stack_top;
1219   address low, high;
1220   if (find_vma((address)stack_start, &low, &high)) {
1221     // success, "high" is the true stack top. (ignore "low", because initial
1222     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1223     stack_top = (uintptr_t)high;
1224   } else {
1225     // failed, likely because /proc/self/maps does not exist
1226     warning("Can't detect initial thread stack location - find_vma failed");
1227     // best effort: stack_start is normally within a few pages below the real 
1228     // stack top, use it as stack top, and reduce stack size so we won't put
1229     // guard page outside stack.
1230     stack_top = stack_start;
1231     stack_size -= 16 * page_size();
1232   }
1233 
1234   // stack_top could be partially down the page so align it
1235   stack_top = align_size_up(stack_top, page_size());
1236 
1237   if (max_size && stack_size > max_size) {
1238      _initial_thread_stack_size = max_size;
1239   } else {
1240      _initial_thread_stack_size = stack_size;
1241   }
1242 
1243   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1244   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1245 }
1246 
1247 ////////////////////////////////////////////////////////////////////////////////
1248 // time support
1249 
1250 // Time since start-up in seconds to a fine granularity.
1251 // Used by VMSelfDestructTimer and the MemProfiler.
1252 double os::elapsedTime() {
1253 
1254   return (double)(os::elapsed_counter()) * 0.000001;
1255 }
1256 
1257 jlong os::elapsed_counter() {
1258   timeval time;
1259   int status = gettimeofday(&time, NULL);
1260   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1261 }
1262 
1263 jlong os::elapsed_frequency() {
1264   return (1000 * 1000);
1265 }
1266 
1267 // For now, we say that linux does not support vtime.  I have no idea
1268 // whether it can actually be made to (DLD, 9/13/05).
1269 
1270 bool os::supports_vtime() { return false; }
1271 bool os::enable_vtime()   { return false; }
1272 bool os::vtime_enabled()  { return false; }
1273 double os::elapsedVTime() {
1274   // better than nothing, but not much
1275   return elapsedTime();
1276 }
1277 
1278 jlong os::javaTimeMillis() {
1279   timeval time;
1280   int status = gettimeofday(&time, NULL);
1281   assert(status != -1, "linux error");
1282   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1283 }
1284 
1285 #ifndef CLOCK_MONOTONIC
1286 #define CLOCK_MONOTONIC (1)
1287 #endif
1288 
1289 void os::Linux::clock_init() {
1290   // we do dlopen's in this particular order due to bug in linux
1291   // dynamical loader (see 6348968) leading to crash on exit
1292   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1293   if (handle == NULL) {
1294     handle = dlopen("librt.so", RTLD_LAZY);
1295   }
1296 
1297   if (handle) {
1298     int (*clock_getres_func)(clockid_t, struct timespec*) = 
1299            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1300     int (*clock_gettime_func)(clockid_t, struct timespec*) = 
1301            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1302     if (clock_getres_func && clock_gettime_func) {
1303       // See if monotonic clock is supported by the kernel. Note that some
1304       // early implementations simply return kernel jiffies (updated every
1305       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1306       // for nano time (though the monotonic property is still nice to have).
1307       // It's fixed in newer kernels, however clock_getres() still returns
1308       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1309       // resolution for now. Hopefully as people move to new kernels, this
1310       // won't be a problem.
1311       struct timespec res;
1312       struct timespec tp;
1313       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1314           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1315         // yes, monotonic clock is supported
1316         _clock_gettime = clock_gettime_func;
1317       } else {
1318         // close librt if there is no monotonic clock
1319         dlclose(handle);
1320       }
1321     }
1322   }
1323 }
1324 
1325 #ifndef SYS_clock_getres
1326 
1327 #if defined(IA32) || defined(AMD64)
1328 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1329 #else
1330 #error Value of SYS_clock_getres not known on this platform
1331 #endif
1332 
1333 #endif
1334 
1335 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1336 
1337 void os::Linux::fast_thread_clock_init() {
1338   if (!UseLinuxPosixThreadCPUClocks) {
1339     return;
1340   }
1341   clockid_t clockid;
1342   struct timespec tp;
1343   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) = 
1344       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1345 
1346   // Switch to using fast clocks for thread cpu time if
1347   // the sys_clock_getres() returns 0 error code.
1348   // Note, that some kernels may support the current thread
1349   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1350   // returned by the pthread_getcpuclockid().
1351   // If the fast Posix clocks are supported then the sys_clock_getres()
1352   // must return at least tp.tv_sec == 0 which means a resolution
1353   // better than 1 sec. This is extra check for reliability.
1354 
1355   if(pthread_getcpuclockid_func &&
1356      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1357      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1358 
1359     _supports_fast_thread_cpu_time = true;
1360     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1361   }
1362 }
1363 
1364 jlong os::javaTimeNanos() {
1365   if (Linux::supports_monotonic_clock()) {
1366     struct timespec tp;
1367     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1368     assert(status == 0, "gettime error");
1369     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1370     return result;
1371   } else {
1372     timeval time;
1373     int status = gettimeofday(&time, NULL);
1374     assert(status != -1, "linux error");
1375     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1376     return 1000 * usecs;
1377   }
1378 }
1379 
1380 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1381   if (Linux::supports_monotonic_clock()) {
1382     info_ptr->max_value = ALL_64_BITS; 
1383 
1384     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1385     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1386     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1387   } else {
1388     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1389     info_ptr->max_value = ALL_64_BITS;  
1390 
1391     // gettimeofday is a real time clock so it skips
1392     info_ptr->may_skip_backward = true;  
1393     info_ptr->may_skip_forward = true; 
1394   }
1395 
1396   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1397 }
1398 
1399 // Return the real, user, and system times in seconds from an
1400 // arbitrary fixed point in the past.
1401 bool os::getTimesSecs(double* process_real_time,
1402                       double* process_user_time,
1403                       double* process_system_time) {
1404   struct tms ticks;
1405   clock_t real_ticks = times(&ticks);
1406 
1407   if (real_ticks == (clock_t) (-1)) {
1408     return false;
1409   } else {
1410     double ticks_per_second = (double) clock_tics_per_sec;
1411     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1412     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1413     *process_real_time = ((double) real_ticks) / ticks_per_second;
1414 
1415     return true;
1416   }
1417 }
1418 
1419 
1420 char * os::local_time_string(char *buf, size_t buflen) {
1421   struct tm t;
1422   time_t long_time;
1423   time(&long_time);
1424   localtime_r(&long_time, &t);
1425   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1426                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, 
1427                t.tm_hour, t.tm_min, t.tm_sec);
1428   return buf;
1429 }
1430 
1431 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1432   return localtime_r(clock, res);
1433 }
1434 
1435 ////////////////////////////////////////////////////////////////////////////////
1436 // runtime exit support
1437 
1438 // Note: os::shutdown() might be called very early during initialization, or
1439 // called from signal handler. Before adding something to os::shutdown(), make
1440 // sure it is async-safe and can handle partially initialized VM.
1441 void os::shutdown() {
1442 
1443   // allow PerfMemory to attempt cleanup of any persistent resources
1444   perfMemory_exit();
1445 
1446   // needs to remove object in file system
1447   AttachListener::abort();
1448 
1449   // flush buffered output, finish log files
1450   ostream_abort();
1451 
1452   // Check for abort hook
1453   abort_hook_t abort_hook = Arguments::abort_hook();
1454   if (abort_hook != NULL) {
1455     abort_hook();
1456   }
1457 
1458 }
1459 
1460 // Note: os::abort() might be called very early during initialization, or
1461 // called from signal handler. Before adding something to os::abort(), make
1462 // sure it is async-safe and can handle partially initialized VM.
1463 void os::abort(bool dump_core) {
1464   os::shutdown(); 
1465   if (dump_core) {
1466 #ifndef PRODUCT
1467     fdStream out(defaultStream::output_fd());
1468     out.print_raw("Current thread is ");
1469     char buf[16];
1470     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1471     out.print_raw_cr(buf);
1472     out.print_raw_cr("Dumping core ...");
1473 #endif
1474     ::abort(); // dump core
1475   }
1476 
1477   ::exit(1);
1478 }
1479 
1480 // Die immediately, no exit hook, no abort hook, no cleanup.
1481 void os::die() {
1482   // _exit() on LinuxThreads only kills current thread 
1483   ::abort();
1484 }
1485 
1486 // unused on linux for now.
1487 void os::set_error_file(const char *logfile) {}
1488 
1489 intx os::current_thread_id() { return (intx)pthread_self(); }
1490 int os::current_process_id() {
1491 
1492   // Under the old linux thread library, linux gives each thread 
1493   // its own process id. Because of this each thread will return 
1494   // a different pid if this method were to return the result 
1495   // of getpid(2). Linux provides no api that returns the pid 
1496   // of the launcher thread for the vm. This implementation 
1497   // returns a unique pid, the pid of the launcher thread 
1498   // that starts the vm 'process'.
1499 
1500   // Under the NPTL, getpid() returns the same pid as the 
1501   // launcher thread rather than a unique pid per thread. 
1502   // Use gettid() if you want the old pre NPTL behaviour.
1503 
1504   // if you are looking for the result of a call to getpid() that
1505   // returns a unique pid for the calling thread, then look at the
1506   // OSThread::thread_id() method in osThread_linux.hpp file
1507 
1508   return (int)(_initial_pid ? _initial_pid : getpid());
1509 }
1510 
1511 // DLL functions
1512 
1513 const char* os::dll_file_extension() { return ".so"; }
1514 
1515 const char* os::get_temp_directory() { return "/tmp/"; }
1516 
1517 static bool file_exists(const char* filename) {
1518   struct stat statbuf;
1519   if (filename == NULL || strlen(filename) == 0) {
1520     return false;
1521   }
1522   return os::stat(filename, &statbuf) == 0;
1523 }
1524 
1525 void os::dll_build_name(char* buffer, size_t buflen,
1526                         const char* pname, const char* fname) {
1527   // Copied from libhpi
1528   const size_t pnamelen = pname ? strlen(pname) : 0;
1529 
1530   // Quietly truncate on buffer overflow.  Should be an error.
1531   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1532     *buffer = '\0';
1533     return;
1534   }
1535 
1536   if (pnamelen == 0) {
1537     snprintf(buffer, buflen, "lib%s.so", fname);
1538   } else if (strchr(pname, *os::path_separator()) != NULL) {
1539     int n;
1540     char** pelements = split_path(pname, &n);
1541     for (int i = 0 ; i < n ; i++) {
1542       // Really shouldn't be NULL, but check can't hurt
1543       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1544         continue; // skip the empty path values
1545       }
1546       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1547       if (file_exists(buffer)) {
1548         break;
1549       }
1550     }
1551     // release the storage
1552     for (int i = 0 ; i < n ; i++) {
1553       if (pelements[i] != NULL) {
1554         FREE_C_HEAP_ARRAY(char, pelements[i]);
1555       }
1556     }
1557     if (pelements != NULL) {
1558       FREE_C_HEAP_ARRAY(char*, pelements);
1559     }
1560   } else {
1561     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1562   }
1563 }
1564 
1565 const char* os::get_current_directory(char *buf, int buflen) {
1566   return getcwd(buf, buflen);
1567 }
1568 
1569 // check if addr is inside libjvm[_g].so
1570 bool os::address_is_in_vm(address addr) {
1571   static address libjvm_base_addr;
1572   Dl_info dlinfo;
1573 
1574   if (libjvm_base_addr == NULL) {
1575     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1576     libjvm_base_addr = (address)dlinfo.dli_fbase;
1577     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1578   }
1579 
1580   if (dladdr((void *)addr, &dlinfo)) {
1581     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1582   }
1583 
1584   return false;
1585 }
1586 
1587 bool os::dll_address_to_function_name(address addr, char *buf,
1588                                       int buflen, int *offset) {
1589   Dl_info dlinfo;
1590 
1591   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1592     if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1593     if (offset) *offset = addr - (address)dlinfo.dli_saddr;
1594     return true;
1595   } else {
1596     if (buf) buf[0] = '\0';
1597     if (offset) *offset = -1;
1598     return false;
1599   }
1600 }
1601 
1602 struct _address_to_library_name {
1603   address addr;          // input : memory address
1604   size_t  buflen;        //         size of fname
1605   char*   fname;         // output: library name
1606   address base;          //         library base addr
1607 };
1608 
1609 static int address_to_library_name_callback(struct dl_phdr_info *info, 
1610                                             size_t size, void *data) {
1611   int i;
1612   bool found = false;
1613   address libbase = NULL;
1614   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1615 
1616   // iterate through all loadable segments
1617   for (i = 0; i < info->dlpi_phnum; i++) {
1618     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1619     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1620       // base address of a library is the lowest address of its loaded
1621       // segments.
1622       if (libbase == NULL || libbase > segbase) {
1623         libbase = segbase;
1624       }
1625       // see if 'addr' is within current segment
1626       if (segbase <= d->addr && 
1627           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1628         found = true;
1629       }
1630     }
1631   }
1632 
1633   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1634   // so dll_address_to_library_name() can fall through to use dladdr() which
1635   // can figure out executable name from argv[0].
1636   if (found && info->dlpi_name && info->dlpi_name[0]) {
1637     d->base = libbase;
1638     if (d->fname) {
1639       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1640     }
1641     return 1;
1642   }
1643   return 0;
1644 }
1645 
1646 bool os::dll_address_to_library_name(address addr, char* buf,
1647                                      int buflen, int* offset) {
1648   Dl_info dlinfo;
1649   struct _address_to_library_name data;
1650 
1651   // There is a bug in old glibc dladdr() implementation that it could resolve
1652   // to wrong library name if the .so file has a base address != NULL. Here
1653   // we iterate through the program headers of all loaded libraries to find
1654   // out which library 'addr' really belongs to. This workaround can be
1655   // removed once the minimum requirement for glibc is moved to 2.3.x.
1656   data.addr = addr;
1657   data.fname = buf;
1658   data.buflen = buflen;
1659   data.base = NULL;
1660   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1661 
1662   if (rslt) {
1663      // buf already contains library name
1664      if (offset) *offset = addr - data.base;
1665      return true;
1666   } else if (dladdr((void*)addr, &dlinfo)){
1667      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1668      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1669      return true;
1670   } else {
1671      if (buf) buf[0] = '\0';
1672      if (offset) *offset = -1;
1673      return false;
1674   }
1675 }
1676 
1677   // Loads .dll/.so and 
1678   // in case of error it checks if .dll/.so was built for the
1679   // same architecture as Hotspot is running on
1680 
1681 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1682 {
1683   void * result= ::dlopen(filename, RTLD_LAZY);
1684   if (result != NULL) {
1685     // Successful loading
1686     return result;
1687   }
1688 
1689   Elf32_Ehdr elf_head;
1690 
1691   // Read system error message into ebuf
1692   // It may or may not be overwritten below
1693   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1694   ebuf[ebuflen-1]='\0';
1695   int diag_msg_max_length=ebuflen-strlen(ebuf);
1696   char* diag_msg_buf=ebuf+strlen(ebuf);
1697 
1698   if (diag_msg_max_length==0) {
1699     // No more space in ebuf for additional diagnostics message
1700     return NULL;
1701   }
1702 
1703 
1704   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1705 
1706   if (file_descriptor < 0) {
1707     // Can't open library, report dlerror() message
1708     return NULL;
1709   }
1710 
1711   bool failed_to_read_elf_head=
1712     (sizeof(elf_head)!=
1713         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1714 
1715   ::close(file_descriptor);
1716   if (failed_to_read_elf_head) {
1717     // file i/o error - report dlerror() msg
1718     return NULL;
1719   }
1720 
1721   typedef struct {
1722     Elf32_Half  code;         // Actual value as defined in elf.h
1723     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1724     char        elf_class;    // 32 or 64 bit
1725     char        endianess;    // MSB or LSB
1726     char*       name;         // String representation
1727   } arch_t;
1728 
1729   #ifndef EM_486
1730   #define EM_486          6               /* Intel 80486 */
1731   #endif
1732 
1733   static const arch_t arch_array[]={ 
1734     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1735     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1736     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1737     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1738     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1739     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1740     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1741     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1742     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"}
1743   };
1744 
1745   #if  (defined IA32)
1746     static  Elf32_Half running_arch_code=EM_386; 
1747   #elif   (defined AMD64)
1748     static  Elf32_Half running_arch_code=EM_X86_64; 
1749   #elif  (defined IA64) 
1750     static  Elf32_Half running_arch_code=EM_IA_64; 
1751   #elif  (defined __sparc) && (defined _LP64)  
1752     static  Elf32_Half running_arch_code=EM_SPARCV9; 
1753   #elif  (defined __sparc) && (!defined _LP64)  
1754     static  Elf32_Half running_arch_code=EM_SPARC; 
1755   #elif  (defined __powerpc64__)  
1756     static  Elf32_Half running_arch_code=EM_PPC64; 
1757   #elif  (defined __powerpc__)  
1758     static  Elf32_Half running_arch_code=EM_PPC; 
1759   #else
1760     #error Method os::dll_load requires that one of following is defined:\
1761          IA32, AMD64, IA64, __sparc, __powerpc__
1762   #endif
1763 
1764   // Identify compatability class for VM's architecture and library's architecture
1765   // Obtain string descriptions for architectures
1766 
1767   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1768   int running_arch_index=-1;
1769 
1770   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1771     if (running_arch_code == arch_array[i].code) {
1772       running_arch_index    = i;
1773     }
1774     if (lib_arch.code == arch_array[i].code) {
1775       lib_arch.compat_class = arch_array[i].compat_class;
1776       lib_arch.name         = arch_array[i].name;
1777     }
1778   }
1779 
1780   assert(running_arch_index != -1, 
1781     "Didn't find running architecture code (running_arch_code) in arch_array");
1782   if (running_arch_index == -1) {
1783     // Even though running architecture detection failed
1784     // we may still continue with reporting dlerror() message
1785     return NULL; 
1786   }
1787 
1788   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1789     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1790     return NULL; 
1791   }
1792 
1793   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1794     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1795     return NULL; 
1796   }
1797 
1798   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1799     if ( lib_arch.name!=NULL ) {
1800       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1801         " (Possible cause: can't load %s-bit .so on a %s-bit platform)", 
1802         lib_arch.name, arch_array[running_arch_index].name);
1803     } else {
1804       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1805       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1806         lib_arch.code,
1807         arch_array[running_arch_index].name);
1808     }
1809   }
1810 
1811   return NULL;
1812 }
1813 
1814 /*
1815  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1816  * chances are you might want to run the generated bits against glibc-2.0
1817  * libdl.so, so always use locking for any version of glibc.
1818  */
1819 void* os::dll_lookup(void* handle, const char* name) {
1820   pthread_mutex_lock(&dl_mutex);
1821   void* res = dlsym(handle, name);
1822   pthread_mutex_unlock(&dl_mutex);
1823   return res;
1824 }
1825 
1826 
1827 bool _print_ascii_file(const char* filename, outputStream* st) {
1828   int fd = open(filename, O_RDONLY);
1829   if (fd == -1) {
1830      return false;
1831   }
1832 
1833   char buf[32];
1834   int bytes;
1835   while ((bytes = read(fd, buf, sizeof(buf))) > 0) {
1836     st->print_raw(buf, bytes);
1837   }
1838 
1839   close(fd);
1840 
1841   return true;
1842 }
1843 
1844 void os::print_dll_info(outputStream *st) {
1845    st->print_cr("Dynamic libraries:");
1846 
1847    char fname[32];
1848    pid_t pid = os::Linux::gettid();
1849 
1850    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1851 
1852    if (!_print_ascii_file(fname, st)) {
1853      st->print("Can not get library information for pid = %d\n", pid);
1854    }
1855 }
1856 
1857 
1858 void os::print_os_info(outputStream* st) {
1859   st->print("OS:");
1860 
1861   // Try to identify popular distros.
1862   // Most Linux distributions have /etc/XXX-release file, which contains
1863   // the OS version string. Some have more than one /etc/XXX-release file 
1864   // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
1865   // so the order is important.
1866   if (!_print_ascii_file("/etc/mandrake-release", st) &&
1867       !_print_ascii_file("/etc/sun-release", st) &&
1868       !_print_ascii_file("/etc/redhat-release", st) &&
1869       !_print_ascii_file("/etc/SuSE-release", st) &&
1870       !_print_ascii_file("/etc/turbolinux-release", st) &&
1871       !_print_ascii_file("/etc/gentoo-release", st) &&
1872       !_print_ascii_file("/etc/debian_version", st)) {
1873       st->print("Linux");
1874   }
1875   st->cr();
1876 
1877   // kernel
1878   st->print("uname:");
1879   struct utsname name;
1880   uname(&name);
1881   st->print(name.sysname); st->print(" ");
1882   st->print(name.release); st->print(" ");
1883   st->print(name.version); st->print(" ");
1884   st->print(name.machine);
1885   st->cr();
1886 
1887   // Print warning if unsafe chroot environment detected
1888   if (unsafe_chroot_detected) {
1889     st->print("WARNING!! ");
1890     st->print_cr(unstable_chroot_error);
1891   }
1892 
1893   // libc, pthread
1894   st->print("libc:");
1895   st->print(os::Linux::glibc_version()); st->print(" ");
1896   st->print(os::Linux::libpthread_version()); st->print(" ");
1897   if (os::Linux::is_LinuxThreads()) {
1898      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
1899   }
1900   st->cr();
1901 
1902   // rlimit
1903   st->print("rlimit:");
1904   struct rlimit rlim;
1905 
1906   st->print(" STACK ");
1907   getrlimit(RLIMIT_STACK, &rlim);
1908   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1909   else st->print("%uk", rlim.rlim_cur >> 10);
1910 
1911   st->print(", CORE ");
1912   getrlimit(RLIMIT_CORE, &rlim);
1913   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1914   else st->print("%uk", rlim.rlim_cur >> 10);
1915 
1916   st->print(", NPROC ");
1917   getrlimit(RLIMIT_NPROC, &rlim);
1918   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1919   else st->print("%d", rlim.rlim_cur);
1920 
1921   st->print(", NOFILE ");
1922   getrlimit(RLIMIT_NOFILE, &rlim);
1923   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1924   else st->print("%d", rlim.rlim_cur);
1925 
1926   st->print(", AS ");
1927   getrlimit(RLIMIT_AS, &rlim);
1928   if (rlim.rlim_cur == RLIM_INFINITY) st->print("infinity");
1929   else st->print("%uk", rlim.rlim_cur >> 10);
1930   st->cr();
1931 
1932   // load average
1933   st->print("load average:");
1934   double loadavg[3];
1935   os::loadavg(loadavg, 3);
1936   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1937   st->cr();
1938 }
1939 
1940 void os::print_memory_info(outputStream* st) {
1941     
1942   st->print("Memory:");
1943   st->print(" %dk page", os::vm_page_size()>>10);
1944 
1945   // values in struct sysinfo are "unsigned long"
1946   struct sysinfo si;
1947   sysinfo(&si);
1948   
1949   st->print(", physical " UINT64_FORMAT "k",
1950             os::physical_memory() >> 10);
1951   st->print("(" UINT64_FORMAT "k free)",
1952             os::available_memory() >> 10);
1953   st->print(", swap " UINT64_FORMAT "k",
1954             ((jlong)si.totalswap * si.mem_unit) >> 10);
1955   st->print("(" UINT64_FORMAT "k free)",
1956             ((jlong)si.freeswap * si.mem_unit) >> 10);
1957   st->cr();
1958 }
1959 
1960 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
1961 // but they're the same for all the linux arch that we support
1962 // and they're the same for solaris but there's no common place to put this.
1963 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
1964                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
1965                           "ILL_COPROC", "ILL_BADSTK" };
1966 
1967 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
1968                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
1969                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
1970 
1971 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
1972 
1973 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
1974 
1975 void os::print_siginfo(outputStream* st, void* siginfo) {
1976   st->print("siginfo:");
1977 
1978   const int buflen = 100;
1979   char buf[buflen];
1980   siginfo_t *si = (siginfo_t*)siginfo;
1981   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
1982   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
1983     st->print("si_errno=%s", buf);
1984   } else {
1985     st->print("si_errno=%d", si->si_errno);
1986   }
1987   const int c = si->si_code;
1988   assert(c > 0, "unexpected si_code");
1989   switch (si->si_signo) {
1990   case SIGILL:
1991     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
1992     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1993     break;
1994   case SIGFPE:
1995     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
1996     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
1997     break;
1998   case SIGSEGV:
1999     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2000     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2001     break;
2002   case SIGBUS:
2003     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2004     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2005     break;
2006   default:
2007     st->print(", si_code=%d", si->si_code);
2008     // no si_addr
2009   }
2010 
2011   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2012       UseSharedSpaces) {
2013     FileMapInfo* mapinfo = FileMapInfo::current_info();
2014     if (mapinfo->is_in_shared_space(si->si_addr)) {
2015       st->print("\n\nError accessing class data sharing archive."   \
2016                 " Mapped file inaccessible during execution, "      \
2017                 " possible disk/network problem.");
2018     }
2019   }
2020   st->cr();
2021 }
2022 
2023 
2024 static void print_signal_handler(outputStream* st, int sig, 
2025                                  char* buf, size_t buflen);
2026 
2027 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2028   st->print_cr("Signal Handlers:");
2029   print_signal_handler(st, SIGSEGV, buf, buflen);
2030   print_signal_handler(st, SIGBUS , buf, buflen);
2031   print_signal_handler(st, SIGFPE , buf, buflen);
2032   print_signal_handler(st, SIGPIPE, buf, buflen);
2033   print_signal_handler(st, SIGXFSZ, buf, buflen);
2034   print_signal_handler(st, SIGILL , buf, buflen);
2035   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2036   print_signal_handler(st, SR_signum, buf, buflen);
2037   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2038   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2039   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2040   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2041 }
2042 
2043 static char saved_jvm_path[MAXPATHLEN] = {0};
2044 
2045 // Find the full path to the current module, libjvm.so or libjvm_g.so
2046 void os::jvm_path(char *buf, jint len) {
2047   // Error checking.
2048   if (len < MAXPATHLEN) {
2049     assert(false, "must use a large-enough buffer");
2050     buf[0] = '\0';
2051     return;
2052   }
2053   // Lazy resolve the path to current module.
2054   if (saved_jvm_path[0] != 0) {
2055     strcpy(buf, saved_jvm_path);
2056     return;
2057   }
2058 
2059   char dli_fname[MAXPATHLEN];
2060   bool ret = dll_address_to_library_name(
2061                 CAST_FROM_FN_PTR(address, os::jvm_path),
2062                 dli_fname, sizeof(dli_fname), NULL);
2063   assert(ret != 0, "cannot locate libjvm");
2064   realpath(dli_fname, buf);
2065 
2066   if (strcmp(Arguments::sun_java_launcher(), "gamma") == 0) {
2067     // Support for the gamma launcher.  Typical value for buf is
2068     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2069     // the right place in the string, then assume we are installed in a JDK and
2070     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2071     // up the path so it looks like libjvm.so is installed there (append a
2072     // fake suffix hotspot/libjvm.so).
2073     const char *p = buf + strlen(buf) - 1;
2074     for (int count = 0; p > buf && count < 5; ++count) {
2075       for (--p; p > buf && *p != '/'; --p)
2076         /* empty */ ;
2077     }
2078 
2079     if (strncmp(p, "/jre/lib/", 9) != 0) {
2080       // Look for JAVA_HOME in the environment.
2081       char* java_home_var = ::getenv("JAVA_HOME");
2082       if (java_home_var != NULL && java_home_var[0] != 0) {
2083         // Check the current module name "libjvm.so" or "libjvm_g.so".
2084         p = strrchr(buf, '/');
2085         assert(strstr(p, "/libjvm") == p, "invalid library name");
2086         p = strstr(p, "_g") ? "_g" : "";
2087 
2088         realpath(java_home_var, buf);
2089         sprintf(buf + strlen(buf), "/jre/lib/%s", cpu_arch);
2090         if (0 == access(buf, F_OK)) {
2091           // Use current module name "libjvm[_g].so" instead of 
2092           // "libjvm"debug_only("_g")".so" since for fastdebug version
2093           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2094           // It is used when we are choosing the HPI library's name 
2095           // "libhpi[_g].so" in hpi::initialize_get_interface().
2096           sprintf(buf + strlen(buf), "/hotspot/libjvm%s.so", p);
2097         } else {
2098           // Go back to path of .so
2099           realpath(dli_fname, buf);
2100         }
2101       }
2102     } 
2103   }
2104 
2105   strcpy(saved_jvm_path, buf);
2106 }
2107 
2108 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2109   // no prefix required, not even "_"
2110 }
2111 
2112 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2113   // no suffix required
2114 }
2115 
2116 ////////////////////////////////////////////////////////////////////////////////
2117 // sun.misc.Signal support
2118 
2119 static volatile jint sigint_count = 0;
2120 
2121 static void
2122 UserHandler(int sig, void *siginfo, void *context) {
2123   // 4511530 - sem_post is serialized and handled by the manager thread. When
2124   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2125   // don't want to flood the manager thread with sem_post requests.
2126   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) 
2127       return;
2128 
2129   // Ctrl-C is pressed during error reporting, likely because the error 
2130   // handler fails to abort. Let VM die immediately.
2131   if (sig == SIGINT && is_error_reported()) {
2132      os::die();
2133   }
2134 
2135   os::signal_notify(sig);
2136 }
2137 
2138 void* os::user_handler() {
2139   return CAST_FROM_FN_PTR(void*, UserHandler);
2140 }
2141 
2142 extern "C" {
2143   typedef void (*sa_handler_t)(int);
2144   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2145 }
2146 
2147 void* os::signal(int signal_number, void* handler) {
2148   struct sigaction sigAct, oldSigAct;
2149 
2150   sigfillset(&(sigAct.sa_mask));
2151   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2152   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2153 
2154   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2155     // -1 means registration failed
2156     return (void *)-1;
2157   }
2158 
2159   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2160 }
2161 
2162 void os::signal_raise(int signal_number) {
2163   ::raise(signal_number);
2164 }
2165 
2166 /*
2167  * The following code is moved from os.cpp for making this
2168  * code platform specific, which it is by its very nature.
2169  */
2170 
2171 // Will be modified when max signal is changed to be dynamic
2172 int os::sigexitnum_pd() {
2173   return NSIG;
2174 }
2175 
2176 // a counter for each possible signal value
2177 static volatile jint pending_signals[NSIG+1] = { 0 };
2178 
2179 // Linux(POSIX) specific hand shaking semaphore.
2180 static sem_t sig_sem;
2181 
2182 void os::signal_init_pd() {
2183   // Initialize signal structures
2184   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2185 
2186   // Initialize signal semaphore
2187   ::sem_init(&sig_sem, 0, 0);
2188 }
2189 
2190 void os::signal_notify(int sig) {
2191   Atomic::inc(&pending_signals[sig]);
2192   ::sem_post(&sig_sem);
2193 }
2194 
2195 static int check_pending_signals(bool wait) {
2196   Atomic::store(0, &sigint_count);
2197   for (;;) {
2198     for (int i = 0; i < NSIG + 1; i++) {
2199       jint n = pending_signals[i];
2200       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2201         return i;
2202       }
2203     }
2204     if (!wait) {
2205       return -1;
2206     }
2207     JavaThread *thread = JavaThread::current();
2208     ThreadBlockInVM tbivm(thread);
2209 
2210     bool threadIsSuspended;
2211     do {
2212       thread->set_suspend_equivalent();
2213       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2214       ::sem_wait(&sig_sem);
2215 
2216       // were we externally suspended while we were waiting?
2217       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2218       if (threadIsSuspended) {
2219         //
2220         // The semaphore has been incremented, but while we were waiting
2221         // another thread suspended us. We don't want to continue running
2222         // while suspended because that would surprise the thread that
2223         // suspended us.
2224         //
2225         ::sem_post(&sig_sem);
2226 
2227         thread->java_suspend_self();
2228       }
2229     } while (threadIsSuspended);
2230   }
2231 }
2232 
2233 int os::signal_lookup() {
2234   return check_pending_signals(false);
2235 }
2236 
2237 int os::signal_wait() {
2238   return check_pending_signals(true);
2239 }
2240 
2241 ////////////////////////////////////////////////////////////////////////////////
2242 // Virtual Memory
2243 
2244 int os::vm_page_size() {
2245   // Seems redundant as all get out
2246   assert(os::Linux::page_size() != -1, "must call os::init");
2247   return os::Linux::page_size();
2248 }
2249 
2250 // Solaris allocates memory by pages.
2251 int os::vm_allocation_granularity() {
2252   assert(os::Linux::page_size() != -1, "must call os::init");
2253   return os::Linux::page_size();
2254 }
2255 
2256 // Rationale behind this function: 
2257 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2258 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2259 //  samples for JITted code. Here we create private executable mapping over the code cache
2260 //  and then we can use standard (well, almost, as mapping can change) way to provide
2261 //  info for the reporting script by storing timestamp and location of symbol
2262 void linux_wrap_code(char* base, size_t size) {
2263   static volatile jint cnt = 0;  
2264 
2265   if (!UseOprofile) {
2266     return;
2267   }
2268 
2269   char buf[40];
2270   int num = Atomic::add(1, &cnt);
2271 
2272   sprintf(buf, "/tmp/hs-vm-%d-%d", os::current_process_id(), num);
2273   unlink(buf);
2274  
2275   int fd = open(buf, O_CREAT | O_RDWR, S_IRWXU);
2276 
2277   if (fd != -1) {
2278     off_t rv = lseek(fd, size-2, SEEK_SET);
2279     if (rv != (off_t)-1) {
2280       if (write(fd, "", 1) == 1) {
2281         mmap(base, size,
2282              PROT_READ|PROT_WRITE|PROT_EXEC,
2283              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2284       }
2285     }
2286     close(fd);
2287     unlink(buf);
2288   }
2289 }
2290 
2291 // NOTE: Linux kernel does not really reserve the pages for us. 
2292 //       All it does is to check if there are enough free pages 
2293 //       left at the time of mmap(). This could be a potential  
2294 //       problem.                                               
2295 bool os::commit_memory(char* addr, size_t size) {
2296   uintptr_t res = (uintptr_t) ::mmap(addr, size,
2297                                    PROT_READ|PROT_WRITE|PROT_EXEC,
2298                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2299   return res != (uintptr_t) MAP_FAILED;
2300 }
2301 
2302 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
2303   return commit_memory(addr, size);
2304 }
2305 
2306 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2307 
2308 void os::free_memory(char *addr, size_t bytes) {
2309   uncommit_memory(addr, bytes);
2310 }
2311 
2312 void os::numa_make_global(char *addr, size_t bytes) {
2313   Linux::numa_interleave_memory(addr, bytes);
2314 }
2315 
2316 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2317   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2318 }
2319 
2320 bool os::numa_topology_changed()   { return false; }
2321 
2322 size_t os::numa_get_groups_num() {
2323   int max_node = Linux::numa_max_node();
2324   return max_node > 0 ? max_node + 1 : 1;
2325 }
2326 
2327 int os::numa_get_group_id() {
2328   int cpu_id = Linux::sched_getcpu();
2329   if (cpu_id != -1) {
2330     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2331     if (lgrp_id != -1) {
2332       return lgrp_id;
2333     }
2334   }
2335   return 0;
2336 }
2337 
2338 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2339   for (size_t i = 0; i < size; i++) {
2340     ids[i] = i;
2341   }
2342   return size;
2343 }
2344 
2345 bool os::get_page_info(char *start, page_info* info) {
2346   return false;
2347 }
2348 
2349 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2350   return end;
2351 }
2352 
2353 extern "C" void numa_warn(int number, char *where, ...) { }
2354 extern "C" void numa_error(char *where) { }
2355 
2356 bool os::Linux::libnuma_init() {
2357   // sched_getcpu() should be in libc.
2358   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2359                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2360 
2361   if (sched_getcpu() != -1) { // Does it work?
2362     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2363     if (handle != NULL) {
2364       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2365                                            dlsym(handle, "numa_node_to_cpus")));
2366       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2367                                        dlsym(handle, "numa_max_node")));
2368       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2369                                         dlsym(handle, "numa_available")));
2370       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2371                                             dlsym(handle, "numa_tonode_memory")));
2372       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2373                                             dlsym(handle, "numa_interleave_memory")));
2374 
2375 
2376       if (numa_available() != -1) {
2377         set_numa_all_nodes((unsigned long*)dlsym(handle, "numa_all_nodes"));
2378         // Create a cpu -> node mapping
2379         _cpu_to_node = new (ResourceObj::C_HEAP) GrowableArray<int>(0, true);
2380         rebuild_cpu_to_node_map();
2381         return true;
2382       }
2383     }
2384   }
2385   return false;
2386 }
2387 
2388 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2389 // The table is later used in get_node_by_cpu().
2390 void os::Linux::rebuild_cpu_to_node_map() {
2391   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2392                               // in libnuma (possible values are starting from 16,
2393                               // and continuing up with every other power of 2, but less
2394                               // than the maximum number of CPUs supported by kernel), and
2395                               // is a subject to change (in libnuma version 2 the requirements
2396                               // are more reasonable) we'll just hardcode the number they use
2397                               // in the library.
2398   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2399 
2400   size_t cpu_num = os::active_processor_count();
2401   size_t cpu_map_size = NCPUS / BitsPerCLong;
2402   size_t cpu_map_valid_size =
2403     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2404 
2405   cpu_to_node()->clear();
2406   cpu_to_node()->at_grow(cpu_num - 1);
2407   size_t node_num = numa_get_groups_num();
2408 
2409   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size);
2410   for (size_t i = 0; i < node_num; i++) {
2411     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2412       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2413         if (cpu_map[j] != 0) {
2414           for (size_t k = 0; k < BitsPerCLong; k++) {
2415             if (cpu_map[j] & (1UL << k)) {
2416               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2417             }
2418           }
2419         }
2420       }
2421     }
2422   }
2423   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2424 }
2425 
2426 int os::Linux::get_node_by_cpu(int cpu_id) {
2427   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2428     return cpu_to_node()->at(cpu_id);
2429   }
2430   return -1;
2431 }
2432 
2433 GrowableArray<int>* os::Linux::_cpu_to_node;
2434 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2435 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2436 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2437 os::Linux::numa_available_func_t os::Linux::_numa_available;
2438 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2439 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2440 unsigned long* os::Linux::_numa_all_nodes;
2441 
2442 bool os::uncommit_memory(char* addr, size_t size) {
2443   return ::mmap(addr, size,
2444                 PROT_READ|PROT_WRITE|PROT_EXEC,
2445                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0)
2446     != MAP_FAILED;
2447 }
2448 
2449 static address _highest_vm_reserved_address = NULL;
2450 
2451 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2452 // at 'requested_addr'. If there are existing memory mappings at the same
2453 // location, however, they will be overwritten. If 'fixed' is false,
2454 // 'requested_addr' is only treated as a hint, the return value may or
2455 // may not start from the requested address. Unlike Linux mmap(), this
2456 // function returns NULL to indicate failure.
2457 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2458   char * addr;
2459   int flags;
2460 
2461   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2462   if (fixed) {
2463     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2464     flags |= MAP_FIXED;
2465   }
2466 
2467   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE|PROT_EXEC,
2468                        flags, -1, 0);
2469 
2470   if (addr != MAP_FAILED) {
2471     // anon_mmap() should only get called during VM initialization,
2472     // don't need lock (actually we can skip locking even it can be called
2473     // from multiple threads, because _highest_vm_reserved_address is just a
2474     // hint about the upper limit of non-stack memory regions.)
2475     if ((address)addr + bytes > _highest_vm_reserved_address) {
2476       _highest_vm_reserved_address = (address)addr + bytes;
2477     }
2478   }
2479 
2480   return addr == MAP_FAILED ? NULL : addr;
2481 }
2482 
2483 // Don't update _highest_vm_reserved_address, because there might be memory
2484 // regions above addr + size. If so, releasing a memory region only creates
2485 // a hole in the address space, it doesn't help prevent heap-stack collision.
2486 // 
2487 static int anon_munmap(char * addr, size_t size) {
2488   return ::munmap(addr, size) == 0;
2489 }
2490 
2491 char* os::reserve_memory(size_t bytes, char* requested_addr,
2492                          size_t alignment_hint) {
2493   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2494 }
2495 
2496 bool os::release_memory(char* addr, size_t size) {
2497   return anon_munmap(addr, size);
2498 }
2499 
2500 static address highest_vm_reserved_address() {
2501   return _highest_vm_reserved_address;
2502 }
2503 
2504 static bool linux_mprotect(char* addr, size_t size, int prot) {
2505   // Linux wants the mprotect address argument to be page aligned.
2506   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2507 
2508   // According to SUSv3, mprotect() should only be used with mappings 
2509   // established by mmap(), and mmap() always maps whole pages. Unaligned
2510   // 'addr' likely indicates problem in the VM (e.g. trying to change 
2511   // protection of malloc'ed or statically allocated memory). Check the 
2512   // caller if you hit this assert.
2513   assert(addr == bottom, "sanity check");
2514 
2515   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2516   return ::mprotect(bottom, size, prot) == 0;
2517 }
2518 
2519 // Set protections specified
2520 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2521                         bool is_committed) {
2522   unsigned int p = 0;
2523   switch (prot) {
2524   case MEM_PROT_NONE: p = PROT_NONE; break;
2525   case MEM_PROT_READ: p = PROT_READ; break;
2526   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2527   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2528   default:
2529     ShouldNotReachHere();
2530   }
2531   // is_committed is unused.
2532   return linux_mprotect(addr, bytes, p);
2533 }
2534 
2535 bool os::guard_memory(char* addr, size_t size) {
2536   return linux_mprotect(addr, size, PROT_NONE);
2537 }
2538 
2539 bool os::unguard_memory(char* addr, size_t size) {
2540   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2541 }
2542 
2543 // Large page support
2544 
2545 static size_t _large_page_size = 0;
2546 
2547 bool os::large_page_init() {
2548   if (!UseLargePages) return false;
2549 
2550   if (LargePageSizeInBytes) {
2551     _large_page_size = LargePageSizeInBytes;
2552   } else {
2553     // large_page_size on Linux is used to round up heap size. x86 uses either
2554     // 2M or 4M page, depending on whether PAE (Physical Address Extensions) 
2555     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use 
2556     // page as large as 256M. 
2557     //
2558     // Here we try to figure out page size by parsing /proc/meminfo and looking
2559     // for a line with the following format:
2560     //    Hugepagesize:     2048 kB
2561     //
2562     // If we can't determine the value (e.g. /proc is not mounted, or the text
2563     // format has been changed), we'll use the largest page size supported by
2564     // the processor.
2565 
2566     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M);
2567 
2568     FILE *fp = fopen("/proc/meminfo", "r");
2569     if (fp) {
2570       while (!feof(fp)) {
2571         int x = 0;
2572         char buf[16];
2573         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
2574           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
2575             _large_page_size = x * K;
2576             break;
2577           }
2578         } else {
2579           // skip to next line
2580           for (;;) {
2581             int ch = fgetc(fp);
2582             if (ch == EOF || ch == (int)'\n') break;
2583           }
2584         }
2585       }
2586       fclose(fp);
2587     }
2588   }
2589 
2590   const size_t default_page_size = (size_t)Linux::page_size();
2591   if (_large_page_size > default_page_size) {
2592     _page_sizes[0] = _large_page_size;
2593     _page_sizes[1] = default_page_size;
2594     _page_sizes[2] = 0;
2595   }
2596 
2597   // Large page support is available on 2.6 or newer kernel, some vendors
2598   // (e.g. Redhat) have backported it to their 2.4 based distributions.
2599   // We optimistically assume the support is available. If later it turns out
2600   // not true, VM will automatically switch to use regular page size.
2601   return true;
2602 }
2603 
2604 #ifndef SHM_HUGETLB
2605 #define SHM_HUGETLB 04000
2606 #endif
2607 
2608 char* os::reserve_memory_special(size_t bytes) {
2609   assert(UseLargePages, "only for large pages");
2610 
2611   key_t key = IPC_PRIVATE;
2612   char *addr;
2613 
2614   bool warn_on_failure = UseLargePages && 
2615                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2616                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2617                         );
2618   char msg[128];
2619 
2620   // Create a large shared memory region to attach to based on size.
2621   // Currently, size is the total size of the heap
2622   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
2623   if (shmid == -1) {
2624      // Possible reasons for shmget failure:
2625      // 1. shmmax is too small for Java heap.
2626      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2627      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2628      // 2. not enough large page memory.
2629      //    > check available large pages: cat /proc/meminfo
2630      //    > increase amount of large pages:
2631      //          echo new_value > /proc/sys/vm/nr_hugepages
2632      //      Note 1: different Linux may use different name for this property,
2633      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2634      //      Note 2: it's possible there's enough physical memory available but
2635      //            they are so fragmented after a long run that they can't
2636      //            coalesce into large pages. Try to reserve large pages when 
2637      //            the system is still "fresh".
2638      if (warn_on_failure) {
2639        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2640        warning(msg);
2641      }
2642      return NULL;
2643   }
2644 
2645   // attach to the region
2646   addr = (char*)shmat(shmid, NULL, 0);
2647   int err = errno;
2648 
2649   // Remove shmid. If shmat() is successful, the actual shared memory segment
2650   // will be deleted when it's detached by shmdt() or when the process
2651   // terminates. If shmat() is not successful this will remove the shared
2652   // segment immediately.
2653   shmctl(shmid, IPC_RMID, NULL);
2654 
2655   if ((intptr_t)addr == -1) {
2656      if (warn_on_failure) {
2657        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2658        warning(msg);
2659      }
2660      return NULL;
2661   }
2662 
2663   return addr;
2664 }
2665 
2666 bool os::release_memory_special(char* base, size_t bytes) {
2667   // detaching the SHM segment will also delete it, see reserve_memory_special()
2668   int rslt = shmdt(base);
2669   return rslt == 0;
2670 }
2671 
2672 size_t os::large_page_size() {
2673   return _large_page_size;
2674 }
2675 
2676 // Linux does not support anonymous mmap with large page memory. The only way
2677 // to reserve large page memory without file backing is through SysV shared
2678 // memory API. The entire memory region is committed and pinned upfront. 
2679 // Hopefully this will change in the future...
2680 bool os::can_commit_large_page_memory() {
2681   return false;
2682 }
2683 
2684 bool os::can_execute_large_page_memory() {
2685   return false;
2686 }
2687 
2688 // Reserve memory at an arbitrary address, only if that area is
2689 // available (and not reserved for something else).
2690 
2691 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2692   const int max_tries = 10;
2693   char* base[max_tries];
2694   size_t size[max_tries];
2695   const size_t gap = 0x000000;
2696 
2697   // Assert only that the size is a multiple of the page size, since
2698   // that's all that mmap requires, and since that's all we really know
2699   // about at this low abstraction level.  If we need higher alignment,
2700   // we can either pass an alignment to this method or verify alignment
2701   // in one of the methods further up the call chain.  See bug 5044738.
2702   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2703 
2704   // Repeatedly allocate blocks until the block is allocated at the
2705   // right spot. Give up after max_tries. Note that reserve_memory() will 
2706   // automatically update _highest_vm_reserved_address if the call is 
2707   // successful. The variable tracks the highest memory address every reserved
2708   // by JVM. It is used to detect heap-stack collision if running with
2709   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
2710   // space than needed, it could confuse the collision detecting code. To 
2711   // solve the problem, save current _highest_vm_reserved_address and 
2712   // calculate the correct value before return.
2713   address old_highest = _highest_vm_reserved_address;
2714 
2715   // Linux mmap allows caller to pass an address as hint; give it a try first,
2716   // if kernel honors the hint then we can return immediately.
2717   char * addr = anon_mmap(requested_addr, bytes, false);
2718   if (addr == requested_addr) {
2719      return requested_addr;
2720   }
2721 
2722   if (addr != NULL) {
2723      // mmap() is successful but it fails to reserve at the requested address
2724      anon_munmap(addr, bytes);
2725   }
2726   
2727   int i;
2728   for (i = 0; i < max_tries; ++i) {
2729     base[i] = reserve_memory(bytes);
2730 
2731     if (base[i] != NULL) {
2732       // Is this the block we wanted?
2733       if (base[i] == requested_addr) {
2734         size[i] = bytes;
2735         break;
2736       }
2737 
2738       // Does this overlap the block we wanted? Give back the overlapped
2739       // parts and try again.
2740 
2741       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2742       if (top_overlap >= 0 && top_overlap < bytes) {
2743         unmap_memory(base[i], top_overlap);
2744         base[i] += top_overlap;
2745         size[i] = bytes - top_overlap;
2746       } else {
2747         size_t bottom_overlap = base[i] + bytes - requested_addr;
2748         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2749           unmap_memory(requested_addr, bottom_overlap);
2750           size[i] = bytes - bottom_overlap;
2751         } else {
2752           size[i] = bytes;
2753         }
2754       }
2755     }
2756   }
2757 
2758   // Give back the unused reserved pieces.
2759 
2760   for (int j = 0; j < i; ++j) {
2761     if (base[j] != NULL) {
2762       unmap_memory(base[j], size[j]);
2763     }
2764   }
2765 
2766   if (i < max_tries) {
2767     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2768     return requested_addr;
2769   } else {
2770     _highest_vm_reserved_address = old_highest;
2771     return NULL;
2772   }
2773 }
2774 
2775 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2776   return ::read(fd, buf, nBytes);
2777 }  
2778 
2779 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
2780 // Solaris uses poll(), linux uses park().  
2781 // Poll() is likely a better choice, assuming that Thread.interrupt()
2782 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
2783 // SIGSEGV, see 4355769.
2784 
2785 const int NANOSECS_PER_MILLISECS = 1000000;
2786 
2787 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
2788   assert(thread == Thread::current(),  "thread consistency check");
2789 
2790   ParkEvent * const slp = thread->_SleepEvent ;
2791   slp->reset() ; 
2792   OrderAccess::fence() ; 
2793 
2794   if (interruptible) {
2795     jlong prevtime = javaTimeNanos();
2796 
2797     for (;;) {
2798       if (os::is_interrupted(thread, true)) {
2799         return OS_INTRPT;
2800       }
2801 
2802       jlong newtime = javaTimeNanos();
2803 
2804       if (newtime - prevtime < 0) {
2805         // time moving backwards, should only happen if no monotonic clock
2806         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2807         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2808       } else {
2809         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2810       }
2811 
2812       if(millis <= 0) {
2813         return OS_OK;
2814       }
2815 
2816       prevtime = newtime;
2817 
2818       {
2819         assert(thread->is_Java_thread(), "sanity check");
2820         JavaThread *jt = (JavaThread *) thread;
2821         ThreadBlockInVM tbivm(jt);
2822         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
2823 
2824         jt->set_suspend_equivalent();
2825         // cleared by handle_special_suspend_equivalent_condition() or
2826         // java_suspend_self() via check_and_wait_while_suspended()
2827 
2828         slp->park(millis);
2829 
2830         // were we externally suspended while we were waiting?
2831         jt->check_and_wait_while_suspended();
2832       }
2833     }
2834   } else {
2835     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
2836     jlong prevtime = javaTimeNanos();
2837 
2838     for (;;) {
2839       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on 
2840       // the 1st iteration ...
2841       jlong newtime = javaTimeNanos();
2842 
2843       if (newtime - prevtime < 0) {
2844         // time moving backwards, should only happen if no monotonic clock
2845         // not a guarantee() because JVM should not abort on kernel/glibc bugs
2846         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
2847       } else {
2848         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISECS;
2849       }
2850 
2851       if(millis <= 0) break ; 
2852 
2853       prevtime = newtime;
2854       slp->park(millis);
2855     }
2856     return OS_OK ;
2857   }
2858 }
2859 
2860 int os::naked_sleep() {
2861   // %% make the sleep time an integer flag. for now use 1 millisec.
2862   return os::sleep(Thread::current(), 1, false);
2863 }
2864 
2865 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2866 void os::infinite_sleep() {
2867   while (true) {    // sleep forever ...
2868     ::sleep(100);   // ... 100 seconds at a time
2869   }
2870 }
2871 
2872 // Used to convert frequent JVM_Yield() to nops
2873 bool os::dont_yield() {
2874   return DontYieldALot;
2875 }
2876 
2877 void os::yield() {
2878   sched_yield();
2879 }
2880 
2881 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;} 
2882 
2883 void os::yield_all(int attempts) {
2884   // Yields to all threads, including threads with lower priorities
2885   // Threads on Linux are all with same priority. The Solaris style
2886   // os::yield_all() with nanosleep(1ms) is not necessary.
2887   sched_yield();
2888 }
2889 
2890 // Called from the tight loops to possibly influence time-sharing heuristics
2891 void os::loop_breaker(int attempts) {
2892   os::yield_all(attempts);
2893 }
2894 
2895 ////////////////////////////////////////////////////////////////////////////////
2896 // thread priority support
2897 
2898 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
2899 // only supports dynamic priority, static priority must be zero. For real-time
2900 // applications, Linux supports SCHED_RR which allows static priority (1-99).
2901 // However, for large multi-threaded applications, SCHED_RR is not only slower
2902 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2903 // of 5 runs - Sep 2005).
2904 //
2905 // The following code actually changes the niceness of kernel-thread/LWP. It
2906 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2907 // not the entire user process, and user level threads are 1:1 mapped to kernel
2908 // threads. It has always been the case, but could change in the future. For
2909 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2910 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2911 
2912 int os::java_to_os_priority[MaxPriority + 1] = {
2913   19,              // 0 Entry should never be used
2914 
2915    4,              // 1 MinPriority
2916    3,              // 2
2917    2,              // 3
2918 
2919    1,              // 4
2920    0,              // 5 NormPriority
2921   -1,              // 6
2922 
2923   -2,              // 7
2924   -3,              // 8
2925   -4,              // 9 NearMaxPriority
2926 
2927   -5               // 10 MaxPriority
2928 };
2929 
2930 static int prio_init() {
2931   if (ThreadPriorityPolicy == 1) {
2932     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2933     // if effective uid is not root. Perhaps, a more elegant way of doing
2934     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2935     if (geteuid() != 0) {
2936       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2937         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
2938       }
2939       ThreadPriorityPolicy = 0;
2940     }
2941   }
2942   return 0;
2943 }
2944 
2945 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2946   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2947 
2948   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2949   return (ret == 0) ? OS_OK : OS_ERR;
2950 }
2951 
2952 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2953   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2954     *priority_ptr = java_to_os_priority[NormPriority];
2955     return OS_OK;
2956   }
2957 
2958   errno = 0;
2959   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2960   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2961 }
2962 
2963 // Hint to the underlying OS that a task switch would not be good.
2964 // Void return because it's a hint and can fail.
2965 void os::hint_no_preempt() {}
2966 
2967 ////////////////////////////////////////////////////////////////////////////////
2968 // suspend/resume support
2969 
2970 //  the low-level signal-based suspend/resume support is a remnant from the
2971 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2972 //  within hotspot. Now there is a single use-case for this:
2973 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2974 //      that runs in the watcher thread.
2975 //  The remaining code is greatly simplified from the more general suspension
2976 //  code that used to be used.
2977 //
2978 //  The protocol is quite simple:
2979 //  - suspend: 
2980 //      - sends a signal to the target thread
2981 //      - polls the suspend state of the osthread using a yield loop
2982 //      - target thread signal handler (SR_handler) sets suspend state
2983 //        and blocks in sigsuspend until continued
2984 //  - resume:
2985 //      - sets target osthread state to continue
2986 //      - sends signal to end the sigsuspend loop in the SR_handler
2987 //
2988 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2989 // 
2990 
2991 static void resume_clear_context(OSThread *osthread) {
2992   osthread->set_ucontext(NULL);
2993   osthread->set_siginfo(NULL);
2994 
2995   // notify the suspend action is completed, we have now resumed
2996   osthread->sr.clear_suspended();
2997 }
2998 
2999 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3000   osthread->set_ucontext(context);
3001   osthread->set_siginfo(siginfo);
3002 }
3003 
3004 //
3005 // Handler function invoked when a thread's execution is suspended or
3006 // resumed. We have to be careful that only async-safe functions are
3007 // called here (Note: most pthread functions are not async safe and 
3008 // should be avoided.)
3009 //
3010 // Note: sigwait() is a more natural fit than sigsuspend() from an
3011 // interface point of view, but sigwait() prevents the signal hander
3012 // from being run. libpthread would get very confused by not having
3013 // its signal handlers run and prevents sigwait()'s use with the
3014 // mutex granting granting signal.
3015 //
3016 // Currently only ever called on the VMThread
3017 //
3018 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3019   // Save and restore errno to avoid confusing native code with EINTR
3020   // after sigsuspend.
3021   int old_errno = errno;
3022 
3023   Thread* thread = Thread::current();
3024   OSThread* osthread = thread->osthread();
3025   assert(thread->is_VM_thread(), "Must be VMThread");
3026   // read current suspend action
3027   int action = osthread->sr.suspend_action();
3028   if (action == SR_SUSPEND) {
3029     suspend_save_context(osthread, siginfo, context);
3030 
3031     // Notify the suspend action is about to be completed. do_suspend()
3032     // waits until SR_SUSPENDED is set and then returns. We will wait
3033     // here for a resume signal and that completes the suspend-other
3034     // action. do_suspend/do_resume is always called as a pair from
3035     // the same thread - so there are no races
3036 
3037     // notify the caller
3038     osthread->sr.set_suspended();
3039 
3040     sigset_t suspend_set;  // signals for sigsuspend()
3041 
3042     // get current set of blocked signals and unblock resume signal
3043     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3044     sigdelset(&suspend_set, SR_signum);
3045 
3046     // wait here until we are resumed
3047     do {
3048       sigsuspend(&suspend_set);
3049       // ignore all returns until we get a resume signal
3050     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3051 
3052     resume_clear_context(osthread);
3053 
3054   } else {
3055     assert(action == SR_CONTINUE, "unexpected sr action");
3056     // nothing special to do - just leave the handler
3057   }
3058 
3059   errno = old_errno;
3060 }
3061 
3062 
3063 static int SR_initialize() {
3064   struct sigaction act;
3065   char *s;
3066   /* Get signal number to use for suspend/resume */
3067   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3068     int sig = ::strtol(s, 0, 10);
3069     if (sig > 0 || sig < _NSIG) {
3070         SR_signum = sig;
3071     }
3072   }
3073 
3074   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3075         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3076 
3077   sigemptyset(&SR_sigset);
3078   sigaddset(&SR_sigset, SR_signum);
3079 
3080   /* Set up signal handler for suspend/resume */
3081   act.sa_flags = SA_RESTART|SA_SIGINFO;
3082   act.sa_handler = (void (*)(int)) SR_handler;
3083   
3084   // SR_signum is blocked by default.
3085   // 4528190 - We also need to block pthread restart signal (32 on all
3086   // supported Linux platforms). Note that LinuxThreads need to block
3087   // this signal for all threads to work properly. So we don't have
3088   // to use hard-coded signal number when setting up the mask.
3089   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3090 
3091   if (sigaction(SR_signum, &act, 0) == -1) {
3092     return -1;
3093   }
3094 
3095   // Save signal flag
3096   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3097   return 0;
3098 }
3099 
3100 static int SR_finalize() {
3101   return 0;
3102 }
3103 
3104 
3105 // returns true on success and false on error - really an error is fatal
3106 // but this seems the normal response to library errors
3107 static bool do_suspend(OSThread* osthread) {
3108   // mark as suspended and send signal
3109   osthread->sr.set_suspend_action(SR_SUSPEND);
3110   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3111   assert_status(status == 0, status, "pthread_kill");
3112 
3113   // check status and wait until notified of suspension
3114   if (status == 0) {
3115     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3116       os::yield_all(i);
3117     }
3118     osthread->sr.set_suspend_action(SR_NONE);
3119     return true;
3120   }
3121   else {
3122     osthread->sr.set_suspend_action(SR_NONE);
3123     return false;
3124   }
3125 }
3126 
3127 static void do_resume(OSThread* osthread) {
3128   assert(osthread->sr.is_suspended(), "thread should be suspended");
3129   osthread->sr.set_suspend_action(SR_CONTINUE);
3130 
3131   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3132   assert_status(status == 0, status, "pthread_kill");
3133   // check status and wait unit notified of resumption
3134   if (status == 0) {
3135     for (int i = 0; osthread->sr.is_suspended(); i++) {
3136       os::yield_all(i);
3137     }
3138   }
3139   osthread->sr.set_suspend_action(SR_NONE);
3140 }
3141 
3142 ////////////////////////////////////////////////////////////////////////////////
3143 // interrupt support
3144 
3145 void os::interrupt(Thread* thread) {
3146   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3147     "possibility of dangling Thread pointer");
3148 
3149   OSThread* osthread = thread->osthread();
3150 
3151   if (!osthread->interrupted()) {
3152     osthread->set_interrupted(true);
3153     // More than one thread can get here with the same value of osthread,
3154     // resulting in multiple notifications.  We do, however, want the store
3155     // to interrupted() to be visible to other threads before we execute unpark().
3156     OrderAccess::fence();
3157     ParkEvent * const slp = thread->_SleepEvent ; 
3158     if (slp != NULL) slp->unpark() ; 
3159   }
3160 
3161   // For JSR166. Unpark even if interrupt status already was set
3162   if (thread->is_Java_thread()) 
3163     ((JavaThread*)thread)->parker()->unpark();
3164 
3165   ParkEvent * ev = thread->_ParkEvent ; 
3166   if (ev != NULL) ev->unpark() ; 
3167 
3168 }
3169 
3170 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3171   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3172     "possibility of dangling Thread pointer");
3173 
3174   OSThread* osthread = thread->osthread();
3175 
3176   bool interrupted = osthread->interrupted();
3177 
3178   if (interrupted && clear_interrupted) {
3179     osthread->set_interrupted(false);
3180     // consider thread->_SleepEvent->reset() ... optional optimization
3181   }
3182 
3183   return interrupted;
3184 }
3185 
3186 ///////////////////////////////////////////////////////////////////////////////////
3187 // signal handling (except suspend/resume)
3188 
3189 // This routine may be used by user applications as a "hook" to catch signals.
3190 // The user-defined signal handler must pass unrecognized signals to this
3191 // routine, and if it returns true (non-zero), then the signal handler must
3192 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3193 // routine will never retun false (zero), but instead will execute a VM panic
3194 // routine kill the process.
3195 //
3196 // If this routine returns false, it is OK to call it again.  This allows
3197 // the user-defined signal handler to perform checks either before or after
3198 // the VM performs its own checks.  Naturally, the user code would be making
3199 // a serious error if it tried to handle an exception (such as a null check
3200 // or breakpoint) that the VM was generating for its own correct operation.
3201 //
3202 // This routine may recognize any of the following kinds of signals:
3203 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3204 // It should be consulted by handlers for any of those signals.
3205 //
3206 // The caller of this routine must pass in the three arguments supplied
3207 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3208 // field of the structure passed to sigaction().  This routine assumes that
3209 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3210 //
3211 // Note that the VM will print warnings if it detects conflicting signal
3212 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3213 //
3214 extern "C" int
3215 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3216                         void* ucontext, int abort_if_unrecognized);
3217 
3218 void signalHandler(int sig, siginfo_t* info, void* uc) {
3219   assert(info != NULL && uc != NULL, "it must be old kernel");
3220   JVM_handle_linux_signal(sig, info, uc, true);
3221 }
3222 
3223 
3224 // This boolean allows users to forward their own non-matching signals
3225 // to JVM_handle_linux_signal, harmlessly.
3226 bool os::Linux::signal_handlers_are_installed = false;
3227 
3228 // For signal-chaining
3229 struct sigaction os::Linux::sigact[MAXSIGNUM];
3230 unsigned int os::Linux::sigs = 0;
3231 bool os::Linux::libjsig_is_loaded = false;
3232 typedef struct sigaction *(*get_signal_t)(int);
3233 get_signal_t os::Linux::get_signal_action = NULL;
3234 
3235 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3236   struct sigaction *actp = NULL;
3237  
3238   if (libjsig_is_loaded) {
3239     // Retrieve the old signal handler from libjsig
3240     actp = (*get_signal_action)(sig);
3241   }
3242   if (actp == NULL) {
3243     // Retrieve the preinstalled signal handler from jvm
3244     actp = get_preinstalled_handler(sig);
3245   }
3246 
3247   return actp;
3248 }
3249 
3250 static bool call_chained_handler(struct sigaction *actp, int sig,
3251                                  siginfo_t *siginfo, void *context) {
3252   // Call the old signal handler
3253   if (actp->sa_handler == SIG_DFL) {
3254     // It's more reasonable to let jvm treat it as an unexpected exception
3255     // instead of taking the default action.
3256     return false;
3257   } else if (actp->sa_handler != SIG_IGN) {
3258     if ((actp->sa_flags & SA_NODEFER) == 0) {
3259       // automaticlly block the signal
3260       sigaddset(&(actp->sa_mask), sig);
3261     }
3262 
3263     sa_handler_t hand;
3264     sa_sigaction_t sa;
3265     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3266     // retrieve the chained handler
3267     if (siginfo_flag_set) {
3268       sa = actp->sa_sigaction;
3269     } else {
3270       hand = actp->sa_handler;
3271     }
3272 
3273     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3274       actp->sa_handler = SIG_DFL;
3275     }
3276 
3277     // try to honor the signal mask
3278     sigset_t oset;
3279     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3280 
3281     // call into the chained handler
3282     if (siginfo_flag_set) {
3283       (*sa)(sig, siginfo, context);
3284     } else {
3285       (*hand)(sig);
3286     }
3287 
3288     // restore the signal mask
3289     pthread_sigmask(SIG_SETMASK, &oset, 0);
3290   }
3291   // Tell jvm's signal handler the signal is taken care of.
3292   return true;
3293 }
3294 
3295 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3296   bool chained = false;
3297   // signal-chaining
3298   if (UseSignalChaining) {
3299     struct sigaction *actp = get_chained_signal_action(sig);
3300     if (actp != NULL) {
3301       chained = call_chained_handler(actp, sig, siginfo, context);
3302     }
3303   }
3304   return chained;
3305 }
3306 
3307 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3308   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3309     return &sigact[sig];
3310   }
3311   return NULL;
3312 }
3313 
3314 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3315   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3316   sigact[sig] = oldAct;
3317   sigs |= (unsigned int)1 << sig;
3318 }
3319 
3320 // for diagnostic
3321 int os::Linux::sigflags[MAXSIGNUM];
3322 
3323 int os::Linux::get_our_sigflags(int sig) {
3324   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3325   return sigflags[sig];
3326 }
3327 
3328 void os::Linux::set_our_sigflags(int sig, int flags) {
3329   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3330   sigflags[sig] = flags;
3331 }
3332 
3333 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3334   // Check for overwrite.
3335   struct sigaction oldAct;
3336   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3337 
3338   void* oldhand = oldAct.sa_sigaction
3339                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3340                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3341   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3342       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3343       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3344     if (AllowUserSignalHandlers || !set_installed) {
3345       // Do not overwrite; user takes responsibility to forward to us.
3346       return;
3347     } else if (UseSignalChaining) {
3348       // save the old handler in jvm
3349       save_preinstalled_handler(sig, oldAct);
3350       // libjsig also interposes the sigaction() call below and saves the
3351       // old sigaction on it own.
3352     } else {
3353       fatal2("Encountered unexpected pre-existing sigaction handler %#lx for signal %d.", (long)oldhand, sig);
3354     }
3355   }
3356 
3357   struct sigaction sigAct;
3358   sigfillset(&(sigAct.sa_mask));
3359   sigAct.sa_handler = SIG_DFL;
3360   if (!set_installed) {
3361     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3362   } else {
3363     sigAct.sa_sigaction = signalHandler;
3364     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3365   }
3366   // Save flags, which are set by ours
3367   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3368   sigflags[sig] = sigAct.sa_flags;
3369 
3370   int ret = sigaction(sig, &sigAct, &oldAct);
3371   assert(ret == 0, "check");
3372 
3373   void* oldhand2  = oldAct.sa_sigaction
3374                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3375                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3376   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3377 }
3378 
3379 // install signal handlers for signals that HotSpot needs to
3380 // handle in order to support Java-level exception handling.
3381 
3382 void os::Linux::install_signal_handlers() {
3383   if (!signal_handlers_are_installed) {
3384     signal_handlers_are_installed = true;
3385 
3386     // signal-chaining
3387     typedef void (*signal_setting_t)();
3388     signal_setting_t begin_signal_setting = NULL;
3389     signal_setting_t end_signal_setting = NULL;
3390     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3391                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3392     if (begin_signal_setting != NULL) {
3393       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3394                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3395       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3396                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3397       libjsig_is_loaded = true;
3398       assert(UseSignalChaining, "should enable signal-chaining");
3399     }
3400     if (libjsig_is_loaded) {
3401       // Tell libjsig jvm is setting signal handlers
3402       (*begin_signal_setting)();
3403     }
3404 
3405     set_signal_handler(SIGSEGV, true);
3406     set_signal_handler(SIGPIPE, true);
3407     set_signal_handler(SIGBUS, true);
3408     set_signal_handler(SIGILL, true);
3409     set_signal_handler(SIGFPE, true);
3410     set_signal_handler(SIGXFSZ, true);
3411 
3412     if (libjsig_is_loaded) {
3413       // Tell libjsig jvm finishes setting signal handlers
3414       (*end_signal_setting)();
3415     }
3416 
3417     // We don't activate signal checker if libjsig is in place, we trust ourselves
3418     // and if UserSignalHandler is installed all bets are off
3419     if (CheckJNICalls) {
3420       if (libjsig_is_loaded) {
3421         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3422         check_signals = false;
3423       }
3424       if (AllowUserSignalHandlers) {
3425         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3426         check_signals = false;
3427       }
3428     }      
3429   }
3430 }
3431 
3432 // This is the fastest way to get thread cpu time on Linux.
3433 // Returns cpu time (user+sys) for any thread, not only for current.
3434 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3435 // It might work on 2.6.10+ with a special kernel/glibc patch.
3436 // For reference, please, see IEEE Std 1003.1-2004:
3437 //   http://www.unix.org/single_unix_specification
3438 
3439 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3440   struct timespec tp;
3441   int rc = os::Linux::clock_gettime(clockid, &tp);
3442   assert(rc == 0, "clock_gettime is expected to return 0 code");
3443 
3444   return (tp.tv_sec * SEC_IN_NANOSECS) + tp.tv_nsec;
3445 }
3446 
3447 /////
3448 // glibc on Linux platform uses non-documented flag
3449 // to indicate, that some special sort of signal
3450 // trampoline is used.
3451 // We will never set this flag, and we should 
3452 // ignore this flag in our diagnostic
3453 #ifdef SIGNIFICANT_SIGNAL_MASK
3454 #undef SIGNIFICANT_SIGNAL_MASK
3455 #endif
3456 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3457 
3458 static const char* get_signal_handler_name(address handler, 
3459                                            char* buf, int buflen) {
3460   int offset;
3461   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3462   if (found) {
3463     // skip directory names
3464     const char *p1, *p2;
3465     p1 = buf;
3466     size_t len = strlen(os::file_separator());
3467     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3468     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3469   } else {
3470     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3471   }
3472   return buf;
3473 }
3474 
3475 static void print_signal_handler(outputStream* st, int sig, 
3476                                  char* buf, size_t buflen) {
3477   struct sigaction sa;
3478 
3479   sigaction(sig, NULL, &sa);
3480   
3481   // See comment for SIGNIFICANT_SIGNAL_MASK define
3482   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3483 
3484   st->print("%s: ", os::exception_name(sig, buf, buflen));
3485 
3486   address handler = (sa.sa_flags & SA_SIGINFO)
3487     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3488     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3489 
3490   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3491     st->print("SIG_DFL");
3492   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3493     st->print("SIG_IGN");
3494   } else {
3495     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3496   }
3497 
3498   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3499 
3500   address rh = VMError::get_resetted_sighandler(sig);
3501   // May be, handler was resetted by VMError?
3502   if(rh != NULL) {
3503     handler = rh;
3504     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3505   }
3506 
3507   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3508 
3509   // Check: is it our handler?
3510   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3511      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3512     // It is our signal handler
3513     // check for flags, reset system-used one!
3514     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3515       st->print(
3516                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3517                 os::Linux::get_our_sigflags(sig));
3518     }
3519   }
3520   st->cr();
3521 }
3522 
3523 
3524 #define DO_SIGNAL_CHECK(sig) \
3525   if (!sigismember(&check_signal_done, sig)) \
3526     os::Linux::check_signal_handler(sig)
3527 
3528 // This method is a periodic task to check for misbehaving JNI applications
3529 // under CheckJNI, we can add any periodic checks here
3530 
3531 void os::run_periodic_checks() {
3532 
3533   if (check_signals == false) return;
3534   
3535   // SEGV and BUS if overridden could potentially prevent 
3536   // generation of hs*.log in the event of a crash, debugging 
3537   // such a case can be very challenging, so we absolutely
3538   // check the following for a good measure:
3539   DO_SIGNAL_CHECK(SIGSEGV);
3540   DO_SIGNAL_CHECK(SIGILL);
3541   DO_SIGNAL_CHECK(SIGFPE);
3542   DO_SIGNAL_CHECK(SIGBUS);
3543   DO_SIGNAL_CHECK(SIGPIPE);
3544   DO_SIGNAL_CHECK(SIGXFSZ);
3545 
3546 
3547   // ReduceSignalUsage allows the user to override these handlers
3548   // see comments at the very top and jvm_solaris.h
3549   if (!ReduceSignalUsage) { 
3550     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3551     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3552     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3553     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3554   }
3555 
3556   DO_SIGNAL_CHECK(SR_signum);
3557   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3558 }
3559 
3560 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3561   
3562 static os_sigaction_t os_sigaction = NULL;
3563 
3564 void os::Linux::check_signal_handler(int sig) {
3565   char buf[O_BUFLEN];
3566   address jvmHandler = NULL; 
3567 
3568 
3569   struct sigaction act;
3570   if (os_sigaction == NULL) {
3571     // only trust the default sigaction, in case it has been interposed
3572     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3573     if (os_sigaction == NULL) return;
3574   }
3575  
3576   os_sigaction(sig, (struct sigaction*)NULL, &act);
3577 
3578 
3579   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3580  
3581   address thisHandler = (act.sa_flags & SA_SIGINFO) 
3582     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3583     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3584 
3585 
3586   switch(sig) {
3587   case SIGSEGV:
3588   case SIGBUS:
3589   case SIGFPE:
3590   case SIGPIPE:
3591   case SIGILL:
3592   case SIGXFSZ:
3593     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3594     break;
3595 
3596   case SHUTDOWN1_SIGNAL:
3597   case SHUTDOWN2_SIGNAL:
3598   case SHUTDOWN3_SIGNAL:
3599   case BREAK_SIGNAL:   
3600     jvmHandler = (address)user_handler();
3601     break;
3602 
3603   case INTERRUPT_SIGNAL:
3604     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3605     break;
3606 
3607   default:
3608     if (sig == SR_signum) {
3609       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3610     } else {
3611       return; 
3612     }
3613     break;
3614   } 
3615 
3616   if (thisHandler != jvmHandler) {
3617     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3618     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN)); 
3619     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN)); 
3620     // No need to check this sig any longer
3621     sigaddset(&check_signal_done, sig);
3622   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
3623     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3624     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
3625     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3626     // No need to check this sig any longer
3627     sigaddset(&check_signal_done, sig);
3628   }
3629 
3630   // Dump all the signal 
3631   if (sigismember(&check_signal_done, sig)) {
3632     print_signal_handlers(tty, buf, O_BUFLEN);
3633   }
3634 }
3635 
3636 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3637 
3638 extern bool signal_name(int signo, char* buf, size_t len);
3639 
3640 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3641   if (0 < exception_code && exception_code <= SIGRTMAX) {
3642     // signal
3643     if (!signal_name(exception_code, buf, size)) {
3644       jio_snprintf(buf, size, "SIG%d", exception_code);
3645     }
3646     return buf;
3647   } else {
3648     return NULL;
3649   }
3650 }
3651 
3652 // this is called _before_ the most of global arguments have been parsed
3653 void os::init(void) {
3654   char dummy;   /* used to get a guess on initial stack address */
3655 //  first_hrtime = gethrtime();
3656 
3657   // With LinuxThreads the JavaMain thread pid (primordial thread)
3658   // is different than the pid of the java launcher thread.
3659   // So, on Linux, the launcher thread pid is passed to the VM
3660   // via the sun.java.launcher.pid property.
3661   // Use this property instead of getpid() if it was correctly passed.
3662   // See bug 6351349.
3663   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3664 
3665   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3666 
3667   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3668 
3669   init_random(1234567);
3670 
3671   ThreadCritical::initialize();
3672 
3673   Linux::set_page_size(sysconf(_SC_PAGESIZE));
3674   if (Linux::page_size() == -1) {
3675     fatal1("os_linux.cpp: os::init: sysconf failed (%s)", strerror(errno));
3676   }
3677   init_page_sizes((size_t) Linux::page_size());
3678 
3679   Linux::initialize_system_info();
3680 
3681   // main_thread points to the aboriginal thread
3682   Linux::_main_thread = pthread_self();
3683 
3684   Linux::clock_init();
3685   initial_time_count = os::elapsed_counter();
3686   pthread_mutex_init(&dl_mutex, NULL);
3687 }
3688 
3689 // To install functions for atexit system call
3690 extern "C" {
3691   static void perfMemory_exit_helper() {
3692     perfMemory_exit();
3693   }
3694 }
3695 
3696 // this is called _after_ the global arguments have been parsed
3697 jint os::init_2(void)
3698 {
3699   Linux::fast_thread_clock_init();
3700 
3701   // Allocate a single page and mark it as readable for safepoint polling
3702   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3703   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3704 
3705   os::set_polling_page( polling_page );
3706 
3707 #ifndef PRODUCT
3708   if(Verbose && PrintMiscellaneous)
3709     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3710 #endif
3711 
3712   if (!UseMembar) {
3713     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3714     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
3715     os::set_memory_serialize_page( mem_serialize_page );
3716 
3717 #ifndef PRODUCT
3718     if(Verbose && PrintMiscellaneous)
3719       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3720 #endif
3721   }
3722 
3723   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3724 
3725   // initialize suspend/resume support - must do this before signal_sets_init()
3726   if (SR_initialize() != 0) {
3727     perror("SR_initialize failed");
3728     return JNI_ERR;
3729   }
3730 
3731   Linux::signal_sets_init();
3732   Linux::install_signal_handlers();
3733 
3734   size_t threadStackSizeInBytes = ThreadStackSize * K;
3735   if (threadStackSizeInBytes != 0 &&
3736       threadStackSizeInBytes < Linux::min_stack_allowed) {
3737         tty->print_cr("\nThe stack size specified is too small, "
3738                       "Specify at least %dk",
3739                       Linux::min_stack_allowed / K);
3740         return JNI_ERR;
3741   }
3742 
3743   // Make the stack size a multiple of the page size so that
3744   // the yellow/red zones can be guarded.
3745   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3746         vm_page_size()));
3747 
3748   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
3749 
3750   Linux::libpthread_init();
3751   if (PrintMiscellaneous && (Verbose || WizardMode)) {
3752      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n", 
3753           Linux::glibc_version(), Linux::libpthread_version(), 
3754           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
3755   }
3756 
3757   if (UseNUMA) {
3758     if (!Linux::libnuma_init()) {
3759       UseNUMA = false;
3760     } else {
3761       if ((Linux::numa_max_node() < 1)) {
3762         // There's only one node(they start from 0), disable NUMA.
3763         UseNUMA = false;
3764       }
3765     }
3766     if (!UseNUMA && ForceNUMA) {
3767       UseNUMA = true;
3768     }
3769   }
3770 
3771   if (MaxFDLimit) {
3772     // set the number of file descriptors to max. print out error
3773     // if getrlimit/setrlimit fails but continue regardless.
3774     struct rlimit nbr_files;
3775     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3776     if (status != 0) {
3777       if (PrintMiscellaneous && (Verbose || WizardMode))
3778         perror("os::init_2 getrlimit failed");
3779     } else {
3780       nbr_files.rlim_cur = nbr_files.rlim_max;
3781       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3782       if (status != 0) {
3783         if (PrintMiscellaneous && (Verbose || WizardMode))
3784           perror("os::init_2 setrlimit failed");
3785       }
3786     }
3787   }
3788 
3789   // Initialize lock used to serialize thread creation (see os::create_thread)
3790   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
3791 
3792   // Initialize HPI.
3793   jint hpi_result = hpi::initialize();
3794   if (hpi_result != JNI_OK) {
3795     tty->print_cr("There was an error trying to initialize the HPI library.");
3796     return hpi_result;
3797   }
3798 
3799   // at-exit methods are called in the reverse order of their registration.
3800   // atexit functions are called on return from main or as a result of a
3801   // call to exit(3C). There can be only 32 of these functions registered
3802   // and atexit() does not set errno.
3803 
3804   if (PerfAllowAtExitRegistration) {
3805     // only register atexit functions if PerfAllowAtExitRegistration is set.
3806     // atexit functions can be delayed until process exit time, which
3807     // can be problematic for embedded VM situations. Embedded VMs should
3808     // call DestroyJavaVM() to assure that VM resources are released.
3809 
3810     // note: perfMemory_exit_helper atexit function may be removed in
3811     // the future if the appropriate cleanup code can be added to the
3812     // VM_Exit VMOperation's doit method.
3813     if (atexit(perfMemory_exit_helper) != 0) {
3814       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3815     }
3816   }
3817 
3818   // initialize thread priority policy
3819   prio_init();
3820 
3821   return JNI_OK;
3822 }
3823 
3824 // Mark the polling page as unreadable
3825 void os::make_polling_page_unreadable(void) {
3826   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
3827     fatal("Could not disable polling page");
3828 };
3829 
3830 // Mark the polling page as readable
3831 void os::make_polling_page_readable(void) {
3832   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
3833     fatal("Could not enable polling page");
3834   }
3835 };
3836 
3837 int os::active_processor_count() {
3838   // Linux doesn't yet have a (official) notion of processor sets,
3839   // so just return the number of online processors.
3840   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3841   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3842   return online_cpus;
3843 }
3844 
3845 bool os::distribute_processes(uint length, uint* distribution) {
3846   // Not yet implemented.
3847   return false;
3848 }
3849 
3850 bool os::bind_to_processor(uint processor_id) {
3851   // Not yet implemented.
3852   return false;
3853 }
3854 
3855 /// 
3856 
3857 // Suspends the target using the signal mechanism and then grabs the PC before
3858 // resuming the target. Used by the flat-profiler only
3859 ExtendedPC os::get_thread_pc(Thread* thread) {
3860   // Make sure that it is called by the watcher for the VMThread
3861   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3862   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3863 
3864   ExtendedPC epc;
3865 
3866   OSThread* osthread = thread->osthread();
3867   if (do_suspend(osthread)) {
3868     if (osthread->ucontext() != NULL) {
3869       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
3870     } else {
3871       // NULL context is unexpected, double-check this is the VMThread
3872       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3873     }
3874     do_resume(osthread);
3875   }
3876   // failure means pthread_kill failed for some reason - arguably this is
3877   // a fatal problem, but such problems are ignored elsewhere
3878 
3879   return epc;
3880 }
3881 
3882 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3883 {
3884    if (is_NPTL()) {
3885       return pthread_cond_timedwait(_cond, _mutex, _abstime);
3886    } else {
3887 #ifndef IA64
3888       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
3889       // word back to default 64bit precision if condvar is signaled. Java
3890       // wants 53bit precision.  Save and restore current value.
3891       int fpu = get_fpu_control_word();
3892 #endif // IA64
3893       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
3894 #ifndef IA64
3895       set_fpu_control_word(fpu);
3896 #endif // IA64
3897       return status;
3898    }
3899 }
3900 
3901 ////////////////////////////////////////////////////////////////////////////////
3902 // debug support
3903 
3904 #ifndef PRODUCT
3905 static address same_page(address x, address y) {
3906   int page_bits = -os::vm_page_size();
3907   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
3908     return x;
3909   else if (x > y)
3910     return (address)(intptr_t(y) | ~page_bits) + 1;
3911   else
3912     return (address)(intptr_t(y) & page_bits);
3913 }
3914 
3915 bool os::find(address addr) {
3916   Dl_info dlinfo;
3917   memset(&dlinfo, 0, sizeof(dlinfo));
3918   if (dladdr(addr, &dlinfo)) {
3919     tty->print(PTR_FORMAT ": ", addr);
3920     if (dlinfo.dli_sname != NULL) {
3921       tty->print("%s+%#x", dlinfo.dli_sname,
3922                  addr - (intptr_t)dlinfo.dli_saddr);
3923     } else if (dlinfo.dli_fname) {
3924       tty->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3925     } else {
3926       tty->print("<absolute address>");
3927     }
3928     if (dlinfo.dli_fname) {
3929       tty->print(" in %s", dlinfo.dli_fname);
3930     }
3931     if (dlinfo.dli_fbase) {
3932       tty->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3933     }
3934     tty->cr();
3935 
3936     if (Verbose) {
3937       // decode some bytes around the PC
3938       address begin = same_page(addr-40, addr);
3939       address end   = same_page(addr+40, addr);
3940       address       lowest = (address) dlinfo.dli_sname;
3941       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3942       if (begin < lowest)  begin = lowest;
3943       Dl_info dlinfo2;
3944       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
3945           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3946         end = (address) dlinfo2.dli_saddr;
3947       Disassembler::decode(begin, end);
3948     }
3949     return true;
3950   }
3951   return false;
3952 }
3953 
3954 #endif
3955 
3956 ////////////////////////////////////////////////////////////////////////////////
3957 // misc
3958 
3959 // This does not do anything on Linux. This is basically a hook for being
3960 // able to use structured exception handling (thread-local exception filters)
3961 // on, e.g., Win32.
3962 void
3963 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3964                          JavaCallArguments* args, Thread* thread) {
3965   f(value, method, args, thread);
3966 }
3967 
3968 void os::print_statistics() {
3969 }
3970 
3971 int os::message_box(const char* title, const char* message) {
3972   int i;
3973   fdStream err(defaultStream::error_fd());
3974   for (i = 0; i < 78; i++) err.print_raw("=");
3975   err.cr();
3976   err.print_raw_cr(title);
3977   for (i = 0; i < 78; i++) err.print_raw("-");
3978   err.cr();
3979   err.print_raw_cr(message);
3980   for (i = 0; i < 78; i++) err.print_raw("=");
3981   err.cr();
3982 
3983   char buf[16];
3984   // Prevent process from exiting upon "read error" without consuming all CPU
3985   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3986 
3987   return buf[0] == 'y' || buf[0] == 'Y';
3988 }
3989 
3990 int os::stat(const char *path, struct stat *sbuf) {
3991   char pathbuf[MAX_PATH];
3992   if (strlen(path) > MAX_PATH - 1) {
3993     errno = ENAMETOOLONG;
3994     return -1;
3995   }
3996   hpi::native_path(strcpy(pathbuf, path));
3997   return ::stat(pathbuf, sbuf);
3998 }
3999 
4000 bool os::check_heap(bool force) {
4001   return true;
4002 }
4003 
4004 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4005   return ::vsnprintf(buf, count, format, args);
4006 }
4007 
4008 // Is a (classpath) directory empty?
4009 bool os::dir_is_empty(const char* path) {
4010   DIR *dir = NULL;
4011   struct dirent *ptr;
4012 
4013   dir = opendir(path);
4014   if (dir == NULL) return true;
4015 
4016   /* Scan the directory */
4017   bool result = true;
4018   char buf[sizeof(struct dirent) + MAX_PATH];
4019   while (result && (ptr = ::readdir(dir)) != NULL) {
4020     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4021       result = false;
4022     }
4023   }
4024   closedir(dir);
4025   return result;
4026 }
4027 
4028 // create binary file, rewriting existing file if required
4029 int os::create_binary_file(const char* path, bool rewrite_existing) {
4030   int oflags = O_WRONLY | O_CREAT;
4031   if (!rewrite_existing) {
4032     oflags |= O_EXCL;
4033   }
4034   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4035 }
4036 
4037 // return current position of file pointer
4038 jlong os::current_file_offset(int fd) {
4039   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4040 }
4041 
4042 // move file pointer to the specified offset
4043 jlong os::seek_to_file_offset(int fd, jlong offset) {
4044   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4045 }
4046 
4047 // Map a block of memory.
4048 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
4049                      char *addr, size_t bytes, bool read_only,
4050                      bool allow_exec) {
4051   int prot;
4052   int flags;
4053 
4054   if (read_only) {
4055     prot = PROT_READ;
4056     flags = MAP_SHARED;
4057   } else {
4058     prot = PROT_READ | PROT_WRITE;
4059     flags = MAP_PRIVATE;
4060   }
4061 
4062   if (allow_exec) {
4063     prot |= PROT_EXEC;
4064   }
4065 
4066   if (addr != NULL) {
4067     flags |= MAP_FIXED;
4068   }
4069 
4070   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4071                                      fd, file_offset);
4072   if (mapped_address == MAP_FAILED) {
4073     return NULL;
4074   }
4075   return mapped_address;
4076 }
4077 
4078 
4079 // Remap a block of memory.
4080 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
4081                        char *addr, size_t bytes, bool read_only,
4082                        bool allow_exec) {
4083   // same as map_memory() on this OS
4084   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4085                         allow_exec);
4086 }
4087 
4088 
4089 // Unmap a block of memory.
4090 bool os::unmap_memory(char* addr, size_t bytes) {
4091   return munmap(addr, bytes) == 0;
4092 }
4093 
4094 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4095 
4096 static clockid_t thread_cpu_clockid(Thread* thread) {
4097   pthread_t tid = thread->osthread()->pthread_id();
4098   clockid_t clockid;
4099 
4100   // Get thread clockid
4101   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4102   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4103   return clockid;
4104 }
4105 
4106 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool) 
4107 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4108 // of a thread.
4109 //
4110 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4111 // the fast estimate available on the platform.
4112 
4113 jlong os::current_thread_cpu_time() {
4114   if (os::Linux::supports_fast_thread_cpu_time()) {
4115     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4116   } else {
4117     // return user + sys since the cost is the same
4118     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4119   }
4120 }
4121 
4122 jlong os::thread_cpu_time(Thread* thread) {
4123   // consistent with what current_thread_cpu_time() returns
4124   if (os::Linux::supports_fast_thread_cpu_time()) {
4125     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4126   } else {
4127     return slow_thread_cpu_time(thread, true /* user + sys */);
4128   }
4129 }
4130 
4131 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4132   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4133     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4134   } else {
4135     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4136   }
4137 }
4138 
4139 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4140   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4141     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4142   } else {
4143     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4144   }
4145 }
4146 
4147 //
4148 //  -1 on error.
4149 // 
4150 
4151 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4152   static bool proc_pid_cpu_avail = true;
4153   static bool proc_task_unchecked = true;
4154   static const char *proc_stat_path = "/proc/%d/stat";
4155   pid_t  tid = thread->osthread()->thread_id();
4156   int i;
4157   char *s;
4158   char stat[2048];
4159   int statlen;
4160   char proc_name[64];
4161   int count;
4162   long sys_time, user_time;
4163   char string[64];
4164   int idummy;
4165   long ldummy;
4166   FILE *fp;
4167 
4168   // We first try accessing /proc/<pid>/cpu since this is faster to
4169   // process.  If this file is not present (linux kernels 2.5 and above)
4170   // then we open /proc/<pid>/stat.
4171   if ( proc_pid_cpu_avail ) {
4172     sprintf(proc_name, "/proc/%d/cpu", tid);
4173     fp =  fopen(proc_name, "r");
4174     if ( fp != NULL ) {
4175       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4176       fclose(fp);
4177       if ( count != 3 ) return -1;
4178 
4179       if (user_sys_cpu_time) {
4180         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4181       } else {
4182         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4183       }
4184     }
4185     else proc_pid_cpu_avail = false;
4186   }
4187 
4188   // The /proc/<tid>/stat aggregates per-process usage on
4189   // new Linux kernels 2.6+ where NPTL is supported.
4190   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4191   // See bug 6328462.
4192   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4193   // and possibly in some other cases, so we check its availability.
4194   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4195     // This is executed only once
4196     proc_task_unchecked = false;
4197     fp = fopen("/proc/self/task", "r");
4198     if (fp != NULL) {
4199       proc_stat_path = "/proc/self/task/%d/stat";
4200       fclose(fp);
4201     }
4202   }
4203 
4204   sprintf(proc_name, proc_stat_path, tid);
4205   fp = fopen(proc_name, "r");
4206   if ( fp == NULL ) return -1;
4207   statlen = fread(stat, 1, 2047, fp);
4208   stat[statlen] = '\0';
4209   fclose(fp);
4210 
4211   // Skip pid and the command string. Note that we could be dealing with
4212   // weird command names, e.g. user could decide to rename java launcher
4213   // to "java 1.4.2 :)", then the stat file would look like
4214   //                1234 (java 1.4.2 :)) R ... ...
4215   // We don't really need to know the command string, just find the last
4216   // occurrence of ")" and then start parsing from there. See bug 4726580.
4217   s = strrchr(stat, ')');
4218   i = 0;
4219   if (s == NULL ) return -1;
4220 
4221   // Skip blank chars
4222   do s++; while (isspace(*s));
4223 
4224   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu", 
4225                  &idummy, &idummy, &idummy, &idummy, &idummy, &idummy, 
4226                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy, 
4227                  &user_time, &sys_time);
4228   if ( count != 13 ) return -1;
4229   if (user_sys_cpu_time) {
4230     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4231   } else {
4232     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4233   }
4234 }
4235 
4236 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4237   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4238   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4239   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4240   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4241 }
4242 
4243 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4244   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4245   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4246   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4247   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4248 }
4249 
4250 bool os::is_thread_cpu_time_supported() {
4251   return true;
4252 }
4253 
4254 // System loadavg support.  Returns -1 if load average cannot be obtained.
4255 // Linux doesn't yet have a (official) notion of processor sets,
4256 // so just return the system wide load average.
4257 int os::loadavg(double loadavg[], int nelem) {
4258   return ::getloadavg(loadavg, nelem);
4259 }
4260 
4261 void os::pause() {
4262   char filename[MAX_PATH];
4263   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4264     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4265   } else {
4266     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4267   }
4268 
4269   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4270   if (fd != -1) {
4271     struct stat buf;
4272     close(fd);
4273     while (::stat(filename, &buf) == 0) {
4274       (void)::poll(NULL, 0, 100);
4275     }
4276   } else {
4277     jio_fprintf(stderr, 
4278       "Could not open pause file '%s', continuing immediately.\n", filename);
4279   }
4280 }
4281 
4282 extern "C" {
4283 
4284 /**
4285  * NOTE: the following code is to keep the green threads code
4286  * in the libjava.so happy. Once the green threads is removed,
4287  * these code will no longer be needed.
4288  */
4289 int
4290 jdk_waitpid(pid_t pid, int* status, int options) {
4291     return waitpid(pid, status, options);
4292 }
4293 
4294 int
4295 fork1() {
4296     return fork();
4297 }
4298 
4299 int
4300 jdk_sem_init(sem_t *sem, int pshared, unsigned int value) {
4301     return sem_init(sem, pshared, value);
4302 }
4303 
4304 int
4305 jdk_sem_post(sem_t *sem) {
4306     return sem_post(sem);
4307 }
4308 
4309 int
4310 jdk_sem_wait(sem_t *sem) {
4311     return sem_wait(sem);
4312 }
4313 
4314 int
4315 jdk_pthread_sigmask(int how , const sigset_t* newmask, sigset_t* oldmask) {
4316     return pthread_sigmask(how , newmask, oldmask);
4317 }
4318 
4319 }
4320 
4321 // Refer to the comments in os_solaris.cpp park-unpark.
4322 //
4323 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can 
4324 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.  
4325 // For specifics regarding the bug see GLIBC BUGID 261237 :
4326 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4327 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4328 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4329 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4330 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4331 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4332 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4333 // of libpthread avoids the problem, but isn't practical.  
4334 //
4335 // Possible remedies:
4336 //
4337 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4338 //      This is palliative and probabilistic, however.  If the thread is preempted
4339 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4340 //      than the minimum period may have passed, and the abstime may be stale (in the
4341 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4342 //      but the JVM is still vulnerable, particularly on heavily loaded systems.  
4343 //
4344 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead 
4345 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set 
4346 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4347 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4348 //      thread.  
4349 //      
4350 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4351 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4352 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4353 //      This also works well.  In fact it avoids kernel-level scalability impediments
4354 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4355 //      timers in a graceful fashion.  
4356 // 
4357 // 4.   When the abstime value is in the past it appears that control returns
4358 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4359 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4360 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4361 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4362 //      It may be possible to avoid reinitialization by checking the return
4363 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4364 //      condvar we must establish the invariant that cond_signal() is only called
4365 //      within critical sections protected by the adjunct mutex.  This prevents
4366 //      cond_signal() from "seeing" a condvar that's in the midst of being
4367 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4368 //      desirable signal-after-unlock optimization that avoids futile context switching. 
4369 //
4370 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4371 //      structure when a condvar is used or initialized.  cond_destroy()  would 
4372 //      release the helper structure.  Our reinitialize-after-timedwait fix
4373 //      put excessive stress on malloc/free and locks protecting the c-heap. 
4374 //
4375 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4376 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4377 // and only enabling the work-around for vulnerable environments. 
4378 
4379 // utility to compute the abstime argument to timedwait:
4380 // millis is the relative timeout time
4381 // abstime will be the absolute timeout time
4382 // TODO: replace compute_abstime() with unpackTime()
4383 
4384 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4385   if (millis < 0)  millis = 0;
4386   struct timeval now;
4387   int status = gettimeofday(&now, NULL);
4388   assert(status == 0, "gettimeofday");
4389   jlong seconds = millis / 1000;
4390   millis %= 1000;
4391   if (seconds > 50000000) { // see man cond_timedwait(3T)
4392     seconds = 50000000;
4393   }
4394   abstime->tv_sec = now.tv_sec  + seconds;
4395   long       usec = now.tv_usec + millis * 1000;
4396   if (usec >= 1000000) {
4397     abstime->tv_sec += 1;
4398     usec -= 1000000;
4399   }
4400   abstime->tv_nsec = usec * 1000;
4401   return abstime;
4402 }
4403 
4404   
4405 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4406 // Conceptually TryPark() should be equivalent to park(0).  
4407   
4408 int os::PlatformEvent::TryPark() { 
4409   for (;;) { 
4410     const int v = _Event ;
4411     guarantee ((v == 0) || (v == 1), "invariant") ;  
4412     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ; 
4413   }
4414 }
4415     
4416 void os::PlatformEvent::park() {       // AKA "down()"
4417   // Invariant: Only the thread associated with the Event/PlatformEvent
4418   // may call park().  
4419   // TODO: assert that _Assoc != NULL or _Assoc == Self
4420   int v ; 
4421   for (;;) { 
4422       v = _Event ; 
4423       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ; 
4424   }
4425   guarantee (v >= 0, "invariant") ; 
4426   if (v == 0) { 
4427      // Do this the hard way by blocking ...
4428      int status = pthread_mutex_lock(_mutex);
4429      assert_status(status == 0, status, "mutex_lock");
4430      guarantee (_nParked == 0, "invariant") ; 
4431      ++ _nParked ; 
4432      while (_Event < 0) {
4433         status = pthread_cond_wait(_cond, _mutex);
4434         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4435         // Treat this the same as if the wait was interrupted
4436         if (status == ETIME) { status = EINTR; } 
4437         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4438      }
4439      -- _nParked ; 
4440 
4441     // In theory we could move the ST of 0 into _Event past the unlock(),
4442     // but then we'd need a MEMBAR after the ST. 
4443     _Event = 0 ; 
4444      status = pthread_mutex_unlock(_mutex);
4445      assert_status(status == 0, status, "mutex_unlock");
4446   }
4447   guarantee (_Event >= 0, "invariant") ; 
4448 }
4449     
4450 int os::PlatformEvent::park(jlong millis) {
4451   guarantee (_nParked == 0, "invariant") ; 
4452 
4453   int v ; 
4454   for (;;) { 
4455       v = _Event ; 
4456       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ; 
4457   }
4458   guarantee (v >= 0, "invariant") ; 
4459   if (v != 0) return OS_OK ; 
4460 
4461   // We do this the hard way, by blocking the thread.
4462   // Consider enforcing a minimum timeout value.  
4463   struct timespec abst;
4464   compute_abstime(&abst, millis);
4465 
4466   int ret = OS_TIMEOUT;
4467   int status = pthread_mutex_lock(_mutex);
4468   assert_status(status == 0, status, "mutex_lock");
4469   guarantee (_nParked == 0, "invariant") ; 
4470   ++_nParked ;
4471 
4472   // Object.wait(timo) will return because of
4473   // (a) notification
4474   // (b) timeout
4475   // (c) thread.interrupt
4476   // 
4477   // Thread.interrupt and object.notify{All} both call Event::set.      
4478   // That is, we treat thread.interrupt as a special case of notification.  
4479   // The underlying Solaris implementation, cond_timedwait, admits 
4480   // spurious/premature wakeups, but the JLS/JVM spec prevents the
4481   // JVM from making those visible to Java code.  As such, we must
4482   // filter out spurious wakeups.  We assume all ETIME returns are valid. 
4483   //
4484   // TODO: properly differentiate simultaneous notify+interrupt. 
4485   // In that case, we should propagate the notify to another waiter. 
4486 
4487   while (_Event < 0) {               
4488     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
4489     if (status != 0 && WorkAroundNPTLTimedWaitHang) { 
4490       pthread_cond_destroy (_cond); 
4491       pthread_cond_init (_cond, NULL) ;
4492     }
4493     assert_status(status == 0 || status == EINTR || 
4494                   status == ETIME || status == ETIMEDOUT, 
4495                   status, "cond_timedwait");
4496     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4497     if (status == ETIME || status == ETIMEDOUT) break ; 
4498     // We consume and ignore EINTR and spurious wakeups.   
4499   }
4500   --_nParked ;
4501   if (_Event >= 0) {
4502      ret = OS_OK;
4503   }
4504   _Event = 0 ;
4505   status = pthread_mutex_unlock(_mutex);
4506   assert_status(status == 0, status, "mutex_unlock");
4507   assert (_nParked == 0, "invariant") ;  
4508   return ret;
4509 }
4510 
4511 void os::PlatformEvent::unpark() {
4512   int v, AnyWaiters ; 
4513   for (;;) { 
4514       v = _Event ; 
4515       if (v > 0) { 
4516          // The LD of _Event could have reordered or be satisfied
4517          // by a read-aside from this processor's write buffer.
4518          // To avoid problems execute a barrier and then
4519          // ratify the value.
4520          OrderAccess::fence() ; 
4521          if (_Event == v) return ; 
4522          continue ; 
4523       }
4524       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ; 
4525   }
4526   if (v < 0) {
4527      // Wait for the thread associated with the event to vacate
4528      int status = pthread_mutex_lock(_mutex);
4529      assert_status(status == 0, status, "mutex_lock");
4530      AnyWaiters = _nParked ; 
4531      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ; 
4532      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) { 
4533         AnyWaiters = 0 ; 
4534         pthread_cond_signal (_cond); 
4535      }
4536      status = pthread_mutex_unlock(_mutex);
4537      assert_status(status == 0, status, "mutex_unlock");
4538      if (AnyWaiters != 0) {
4539         status = pthread_cond_signal(_cond);
4540         assert_status(status == 0, status, "cond_signal");
4541      }
4542   }
4543 
4544   // Note that we signal() _after dropping the lock for "immortal" Events.  
4545   // This is safe and avoids a common class of  futile wakeups.  In rare 
4546   // circumstances this can cause a thread to return prematurely from 
4547   // cond_{timed}wait() but the spurious wakeup is benign and the victim will 
4548   // simply re-test the condition and re-park itself.  
4549 }
4550 
4551 
4552 // JSR166
4553 // -------------------------------------------------------
4554 
4555 /*
4556  * The solaris and linux implementations of park/unpark are fairly
4557  * conservative for now, but can be improved. They currently use a
4558  * mutex/condvar pair, plus a a count. 
4559  * Park decrements count if > 0, else does a condvar wait.  Unpark
4560  * sets count to 1 and signals condvar.  Only one thread ever waits 
4561  * on the condvar. Contention seen when trying to park implies that someone 
4562  * is unparking you, so don't wait. And spurious returns are fine, so there 
4563  * is no need to track notifications.
4564  */
4565 
4566 
4567 #define NANOSECS_PER_SEC 1000000000
4568 #define NANOSECS_PER_MILLISEC 1000000
4569 #define MAX_SECS 100000000
4570 /*
4571  * This code is common to linux and solaris and will be moved to a
4572  * common place in dolphin.
4573  *
4574  * The passed in time value is either a relative time in nanoseconds
4575  * or an absolute time in milliseconds. Either way it has to be unpacked
4576  * into suitable seconds and nanoseconds components and stored in the
4577  * given timespec structure. 
4578  * Given time is a 64-bit value and the time_t used in the timespec is only 
4579  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
4580  * overflow if times way in the future are given. Further on Solaris versions
4581  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4582  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4583  * As it will be 28 years before "now + 100000000" will overflow we can
4584  * ignore overflow and just impose a hard-limit on seconds using the value
4585  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4586  * years from "now".
4587  */
4588 
4589 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
4590   assert (time > 0, "convertTime");
4591 
4592   struct timeval now;
4593   int status = gettimeofday(&now, NULL);
4594   assert(status == 0, "gettimeofday");
4595 
4596   time_t max_secs = now.tv_sec + MAX_SECS;
4597 
4598   if (isAbsolute) {
4599     jlong secs = time / 1000;
4600     if (secs > max_secs) {
4601       absTime->tv_sec = max_secs;
4602     }
4603     else {
4604       absTime->tv_sec = secs;
4605     }
4606     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;   
4607   }
4608   else {
4609     jlong secs = time / NANOSECS_PER_SEC;
4610     if (secs >= MAX_SECS) {
4611       absTime->tv_sec = max_secs;
4612       absTime->tv_nsec = 0;
4613     }
4614     else {
4615       absTime->tv_sec = now.tv_sec + secs;
4616       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4617       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4618         absTime->tv_nsec -= NANOSECS_PER_SEC;
4619         ++absTime->tv_sec; // note: this must be <= max_secs
4620       }
4621     }
4622   }
4623   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4624   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4625   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4626   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4627 }
4628 
4629 void Parker::park(bool isAbsolute, jlong time) {
4630   // Optional fast-path check:
4631   // Return immediately if a permit is available.
4632   if (_counter > 0) { 
4633       _counter = 0 ;  
4634       return ;  
4635   }
4636 
4637   Thread* thread = Thread::current();
4638   assert(thread->is_Java_thread(), "Must be JavaThread");
4639   JavaThread *jt = (JavaThread *)thread;
4640 
4641   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4642   // Check interrupt before trying to wait
4643   if (Thread::is_interrupted(thread, false)) {
4644     return;
4645   }
4646 
4647   // Next, demultiplex/decode time arguments
4648   timespec absTime;
4649   if (time < 0) { // don't wait at all
4650     return; 
4651   }
4652   if (time > 0) {
4653     unpackTime(&absTime, isAbsolute, time);
4654   }
4655 
4656 
4657   // Enter safepoint region
4658   // Beware of deadlocks such as 6317397. 
4659   // The per-thread Parker:: mutex is a classic leaf-lock.
4660   // In particular a thread must never block on the Threads_lock while
4661   // holding the Parker:: mutex.  If safepoints are pending both the
4662   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.  
4663   ThreadBlockInVM tbivm(jt);
4664 
4665   // Don't wait if cannot get lock since interference arises from
4666   // unblocking.  Also. check interrupt before trying wait
4667   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4668     return;
4669   }
4670 
4671   int status ; 
4672   if (_counter > 0)  { // no wait needed
4673     _counter = 0;
4674     status = pthread_mutex_unlock(_mutex);
4675     assert (status == 0, "invariant") ; 
4676     return;
4677   }
4678 
4679 #ifdef ASSERT
4680   // Don't catch signals while blocked; let the running threads have the signals.
4681   // (This allows a debugger to break into the running thread.)
4682   sigset_t oldsigs;
4683   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
4684   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4685 #endif
4686   
4687   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4688   jt->set_suspend_equivalent();
4689   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4690   
4691   if (time == 0) {
4692     status = pthread_cond_wait (_cond, _mutex) ; 
4693   } else {
4694     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ; 
4695     if (status != 0 && WorkAroundNPTLTimedWaitHang) { 
4696       pthread_cond_destroy (_cond) ; 
4697       pthread_cond_init    (_cond, NULL); 
4698     }
4699   }
4700   assert_status(status == 0 || status == EINTR || 
4701                 status == ETIME || status == ETIMEDOUT, 
4702                 status, "cond_timedwait");
4703 
4704 #ifdef ASSERT
4705   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4706 #endif
4707 
4708   _counter = 0 ; 
4709   status = pthread_mutex_unlock(_mutex) ;
4710   assert_status(status == 0, status, "invariant") ; 
4711   // If externally suspended while waiting, re-suspend
4712   if (jt->handle_special_suspend_equivalent_condition()) {
4713     jt->java_suspend_self();
4714   }
4715 
4716 }
4717 
4718 void Parker::unpark() {
4719   int s, status ; 
4720   status = pthread_mutex_lock(_mutex);
4721   assert (status == 0, "invariant") ; 
4722   s = _counter;
4723   _counter = 1;
4724   if (s < 1) { 
4725      if (WorkAroundNPTLTimedWaitHang) { 
4726         status = pthread_cond_signal (_cond) ; 
4727         assert (status == 0, "invariant") ; 
4728         status = pthread_mutex_unlock(_mutex);
4729         assert (status == 0, "invariant") ; 
4730      } else {
4731         status = pthread_mutex_unlock(_mutex);
4732         assert (status == 0, "invariant") ; 
4733         status = pthread_cond_signal (_cond) ; 
4734         assert (status == 0, "invariant") ; 
4735      }
4736   } else {
4737     pthread_mutex_unlock(_mutex);
4738     assert (status == 0, "invariant") ; 
4739   }
4740 }
4741 
4742 
4743 extern char** environ;
4744 
4745 #ifndef __NR_fork
4746 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
4747 #endif
4748 
4749 #ifndef __NR_execve
4750 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
4751 #endif
4752 
4753 // Run the specified command in a separate process. Return its exit value,
4754 // or -1 on failure (e.g. can't fork a new process).
4755 // Unlike system(), this function can be called from signal handler. It
4756 // doesn't block SIGINT et al.
4757 int os::fork_and_exec(char* cmd) {
4758   const char * argv[4] = {"sh", "-c", cmd, NULL};
4759 
4760   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
4761   // pthread_atfork handlers and reset pthread library. All we need is a
4762   // separate process to execve. Make a direct syscall to fork process.
4763   // On IA64 there's no fork syscall, we have to use fork() and hope for
4764   // the best...
4765   pid_t pid = NOT_IA64(syscall(__NR_fork);) 
4766               IA64_ONLY(fork();)
4767 
4768   if (pid < 0) {
4769     // fork failed
4770     return -1;
4771 
4772   } else if (pid == 0) {
4773     // child process
4774 
4775     // execve() in LinuxThreads will call pthread_kill_other_threads_np() 
4776     // first to kill every thread on the thread list. Because this list is 
4777     // not reset by fork() (see notes above), execve() will instead kill 
4778     // every thread in the parent process. We know this is the only thread 
4779     // in the new process, so make a system call directly.
4780     // IA64 should use normal execve() from glibc to match the glibc fork() 
4781     // above.
4782     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
4783     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
4784 
4785     // execve failed
4786     _exit(-1);
4787 
4788   } else  {
4789     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4790     // care about the actual exit code, for now.
4791    
4792     int status;
4793 
4794     // Wait for the child process to exit.  This returns immediately if
4795     // the child has already exited. */
4796     while (waitpid(pid, &status, 0) < 0) {
4797         switch (errno) {
4798         case ECHILD: return 0;
4799         case EINTR: break;
4800         default: return -1;
4801         }
4802     }
4803 
4804     if (WIFEXITED(status)) {
4805        // The child exited normally; get its exit code.
4806        return WEXITSTATUS(status);
4807     } else if (WIFSIGNALED(status)) {
4808        // The child exited because of a signal
4809        // The best value to return is 0x80 + signal number,
4810        // because that is what all Unix shells do, and because
4811        // it allows callers to distinguish between process exit and
4812        // process death by signal.
4813        return 0x80 + WTERMSIG(status);
4814     } else {
4815        // Unknown exit code; pass it through
4816        return status;
4817     }
4818   }
4819 }