1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)os_linux_x86.cpp     1.98 07/11/15 11:29:19 JVM"
   3 #endif
   4 /*
   5  * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // do not include  precompiled  header file
  29 # include "incls/_os_linux_x86.cpp.incl"
  30 
  31 // put OS-includes here
  32 # include <sys/types.h>
  33 # include <sys/mman.h>
  34 # include <pthread.h>
  35 # include <signal.h>
  36 # include <errno.h>
  37 # include <dlfcn.h>
  38 # include <stdlib.h>
  39 # include <stdio.h>
  40 # include <unistd.h>
  41 # include <sys/resource.h>
  42 # include <pthread.h>
  43 # include <sys/stat.h>
  44 # include <sys/time.h>
  45 # include <sys/utsname.h>
  46 # include <sys/socket.h>
  47 # include <sys/wait.h>
  48 # include <pwd.h>
  49 # include <poll.h>
  50 # include <ucontext.h>
  51 # include <fpu_control.h>
  52 
  53 #ifdef AMD64
  54 #define REG_SP REG_RSP
  55 #define REG_PC REG_RIP
  56 #define REG_FP REG_RBP
  57 #define SPELL_REG_SP "rsp"
  58 #define SPELL_REG_FP "rbp"
  59 #else
  60 #define REG_SP REG_UESP
  61 #define REG_PC REG_EIP
  62 #define REG_FP REG_EBP
  63 #define SPELL_REG_SP "esp"
  64 #define SPELL_REG_FP "ebp"
  65 #endif // AMD64
  66 
  67 address os::current_stack_pointer() {
  68   register void *esp __asm__ (SPELL_REG_SP);
  69   return (address) esp;
  70 }
  71 
  72 char* os::non_memory_address_word() {
  73   // Must never look like an address returned by reserve_memory,
  74   // even in its subfields (as defined by the CPU immediate fields,
  75   // if the CPU splits constants across multiple instructions).
  76 
  77   return (char*) -1;
  78 }
  79 
  80 void os::initialize_thread() {
  81 // Nothing to do.
  82 }
  83 
  84 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
  85   return (address)uc->uc_mcontext.gregs[REG_PC];
  86 }
  87 
  88 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
  89   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
  90 }
  91 
  92 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
  93   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
  94 }
  95 
  96 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
  97 // is currently interrupted by SIGPROF.
  98 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
  99 // frames. Currently we don't do that on Linux, so it's the same as 
 100 // os::fetch_frame_from_context().
 101 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 102   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 103 
 104   assert(thread != NULL, "just checking");
 105   assert(ret_sp != NULL, "just checking");
 106   assert(ret_fp != NULL, "just checking");
 107 
 108   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 109 }
 110 
 111 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 112                     intptr_t** ret_sp, intptr_t** ret_fp) {
 113 
 114   ExtendedPC  epc;
 115   ucontext_t* uc = (ucontext_t*)ucVoid;
 116 
 117   if (uc != NULL) {
 118     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 119     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 120     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 121   } else {
 122     // construct empty ExtendedPC for return value checking
 123     epc = ExtendedPC(NULL);
 124     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 125     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 126   }
 127 
 128   return epc;
 129 }
 130 
 131 frame os::fetch_frame_from_context(void* ucVoid) {
 132   intptr_t* sp;
 133   intptr_t* fp;
 134   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 135   return frame(sp, fp, epc.pc());
 136 }
 137 
 138 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 139 // turned off by -fomit-frame-pointer,
 140 frame os::get_sender_for_C_frame(frame* fr) {
 141   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 142 }
 143 
 144 intptr_t* _get_previous_fp() {
 145   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 146   return (intptr_t*) *ebp;   // we want what it points to.
 147 }
 148 
 149 
 150 frame os::current_frame() {
 151   intptr_t* fp = _get_previous_fp();
 152   frame myframe((intptr_t*)os::current_stack_pointer(), 
 153                 (intptr_t*)fp,
 154                 CAST_FROM_FN_PTR(address, os::current_frame));
 155   if (os::is_first_C_frame(&myframe)) {
 156     // stack is not walkable
 157     return frame(NULL, NULL, NULL);
 158   } else {
 159     return os::get_sender_for_C_frame(&myframe);
 160   }
 161 }
 162 
 163 // Utility functions
 164 
 165 // From IA32 System Programming Guide
 166 enum {
 167   trap_page_fault = 0xE
 168 };
 169 
 170 extern "C" void Fetch32PFI () ; 
 171 extern "C" void Fetch32Resume () ; 
 172 #ifdef AMD64
 173 extern "C" void FetchNPFI () ;
 174 extern "C" void FetchNResume () ;
 175 #endif // AMD64
 176 
 177 extern "C" int 
 178 JVM_handle_linux_signal(int sig,
 179                         siginfo_t* info,
 180                         void* ucVoid,
 181                         int abort_if_unrecognized) {
 182   ucontext_t* uc = (ucontext_t*) ucVoid;
 183 
 184   Thread* t = ThreadLocalStorage::get_thread_slow();
 185 
 186   SignalHandlerMark shm(t);
 187 
 188   // Note: it's not uncommon that JNI code uses signal/sigset to install
 189   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 190   // or have a SIGILL handler when detecting CPU type). When that happens,
 191   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To 
 192   // avoid unnecessary crash when libjsig is not preloaded, try handle signals 
 193   // that do not require siginfo/ucontext first.
 194 
 195   if (sig == SIGPIPE || sig == SIGXFSZ) {
 196     // allow chained handler to go first
 197     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 198       return true;
 199     } else {
 200       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 201         char buf[64];
 202         warning("Ignoring %s - see bugs 4229104 or 646499219", 
 203                 os::exception_name(sig, buf, sizeof(buf)));
 204       }
 205       return true;
 206     }
 207   }
 208 
 209   JavaThread* thread = NULL;
 210   VMThread* vmthread = NULL;
 211   if (os::Linux::signal_handlers_are_installed) {
 212     if (t != NULL ){
 213       if(t->is_Java_thread()) {
 214         thread = (JavaThread*)t;
 215       }
 216       else if(t->is_VM_thread()){
 217         vmthread = (VMThread *)t;
 218       }
 219     }
 220   }
 221 /*
 222   NOTE: does not seem to work on linux.
 223   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 224     // can't decode this kind of signal
 225     info = NULL;
 226   } else {
 227     assert(sig == info->si_signo, "bad siginfo");
 228   }
 229 */
 230   // decide if this trap can be handled by a stub
 231   address stub = NULL;
 232 
 233   address pc          = NULL;
 234 
 235   //%note os_trap_1
 236   if (info != NULL && uc != NULL && thread != NULL) {
 237     pc = (address) os::Linux::ucontext_get_pc(uc);
 238 
 239     if (pc == (address) Fetch32PFI) { 
 240        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ; 
 241        return 1 ;  
 242     }
 243 #ifdef AMD64
 244     if (pc == (address) FetchNPFI) { 
 245        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ; 
 246        return 1 ; 
 247     } 
 248 #endif // AMD64
 249 
 250     // Handle ALL stack overflow variations here
 251     if (sig == SIGSEGV) {
 252       address addr = (address) info->si_addr;
 253 
 254       // check if fault address is within thread stack
 255       if (addr < thread->stack_base() &&
 256           addr >= thread->stack_base() - thread->stack_size()) {
 257         // stack overflow
 258         if (thread->in_stack_yellow_zone(addr)) {
 259           thread->disable_stack_yellow_zone();
 260           if (thread->thread_state() == _thread_in_Java) {
 261             // Throw a stack overflow exception.  Guard pages will be reenabled
 262             // while unwinding the stack.
 263             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 264           } else {
 265             // Thread was in the vm or native code.  Return and try to finish.
 266             return 1;
 267           }
 268         } else if (thread->in_stack_red_zone(addr)) {
 269           // Fatal red zone violation.  Disable the guard pages and fall through
 270           // to handle_unexpected_exception way down below.
 271           thread->disable_stack_red_zone();
 272           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 273         } else {
 274           // Accessing stack address below sp may cause SEGV if current
 275           // thread has MAP_GROWSDOWN stack. This should only happen when
 276           // current thread was created by user code with MAP_GROWSDOWN flag
 277           // and then attached to VM. See notes in os_linux.cpp.
 278           if (thread->osthread()->expanding_stack() == 0) {
 279              thread->osthread()->set_expanding_stack();
 280              if (os::Linux::manually_expand_stack(thread, addr)) {
 281                thread->osthread()->clear_expanding_stack();
 282                return 1;
 283              }
 284              thread->osthread()->clear_expanding_stack();
 285           } else {
 286              fatal("recursive segv. expanding stack.");
 287           }
 288         }
 289       }
 290     }
 291 
 292     if (thread->thread_state() == _thread_in_Java) {
 293       // Java thread running in Java code => find exception handler if any
 294       // a fault inside compiled code, the interpreter, or a stub
 295 
 296       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 297         stub = SharedRuntime::get_poll_stub(pc);
 298       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 299         // BugId 4454115: A read from a MappedByteBuffer can fault
 300         // here if the underlying file has been truncated.
 301         // Do not crash the VM in such a case.
 302         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 303         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 304         if (nm != NULL && nm->has_unsafe_access()) {
 305           stub = StubRoutines::handler_for_unsafe_access();
 306         }
 307       }
 308       else
 309 
 310 #ifdef AMD64
 311       if (sig == SIGFPE  && 
 312           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 313         stub = 
 314           SharedRuntime::
 315           continuation_for_implicit_exception(thread,
 316                                               pc, 
 317                                               SharedRuntime::
 318                                               IMPLICIT_DIVIDE_BY_ZERO);
 319 #else
 320       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 321         // HACK: si_code does not work on linux 2.2.12-20!!!
 322         int op = pc[0];
 323         if (op == 0xDB) {
 324           // FIST
 325           // TODO: The encoding of D2I in i486.ad can cause an exception
 326           // prior to the fist instruction if there was an invalid operation
 327           // pending. We want to dismiss that exception. From the win_32
 328           // side it also seems that if it really was the fist causing
 329           // the exception that we do the d2i by hand with different
 330           // rounding. Seems kind of weird.
 331           // NOTE: that we take the exception at the NEXT floating point instruction.
 332           assert(pc[0] == 0xDB, "not a FIST opcode");
 333           assert(pc[1] == 0x14, "not a FIST opcode");
 334           assert(pc[2] == 0x24, "not a FIST opcode");
 335           return true;
 336         } else if (op == 0xF7) {
 337           // IDIV
 338           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 339         } else {
 340           // TODO: handle more cases if we are using other x86 instructions
 341           //   that can generate SIGFPE signal on linux.
 342           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 343           fatal("please update this code.");
 344         }
 345 #endif // AMD64
 346       } else if (sig == SIGSEGV &&
 347                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 348           // Determination of interpreter/vtable stub/compiled code null exception
 349           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 350       }
 351     } else if (thread->thread_state() == _thread_in_vm &&
 352                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 353                thread->doing_unsafe_access()) {
 354         stub = StubRoutines::handler_for_unsafe_access(); 
 355     }
 356 
 357     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 358     // and the heap gets shrunk before the field access.
 359     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 360       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 361       if (addr != (address)-1) {
 362         stub = addr;
 363       }
 364     }
 365 
 366     // Check to see if we caught the safepoint code in the
 367     // process of write protecting the memory serialization page.
 368     // It write enables the page immediately after protecting it
 369     // so we can just return to retry the write.
 370     if ((sig == SIGSEGV) &&
 371         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 372       // Block current thread until the memory serialize page permission restored.
 373       os::block_on_serialize_page_trap();
 374       return true;
 375     }
 376   }
 377 
 378 #ifndef AMD64
 379   // Execution protection violation
 380   //
 381   // This should be kept as the last step in the triage.  We don't
 382   // have a dedicated trap number for a no-execute fault, so be
 383   // conservative and allow other handlers the first shot.
 384   //
 385   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 386   // this si_code is so generic that it is almost meaningless; and
 387   // the si_code for this condition may change in the future.
 388   // Furthermore, a false-positive should be harmless.
 389   if (UnguardOnExecutionViolation > 0 &&
 390       (sig == SIGSEGV || sig == SIGBUS) &&
 391       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 392     int page_size = os::vm_page_size();
 393     address addr = (address) info->si_addr;
 394     address pc = os::Linux::ucontext_get_pc(uc);
 395     // Make sure the pc and the faulting address are sane.
 396     //
 397     // If an instruction spans a page boundary, and the page containing
 398     // the beginning of the instruction is executable but the following
 399     // page is not, the pc and the faulting address might be slightly
 400     // different - we still want to unguard the 2nd page in this case.
 401     //
 402     // 15 bytes seems to be a (very) safe value for max instruction size.
 403     bool pc_is_near_addr = 
 404       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 405     bool instr_spans_page_boundary =
 406       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 407                        (intptr_t) page_size) > 0);
 408     
 409     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 410       static volatile address last_addr =
 411         (address) os::non_memory_address_word();
 412       
 413       // In conservative mode, don't unguard unless the address is in the VM
 414       if (addr != last_addr &&
 415           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 416         
 417         // Unguard and retry
 418         address page_start =
 419           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 420         bool res = os::unguard_memory((char*) page_start, page_size);
 421 
 422         if (PrintMiscellaneous && Verbose) {
 423           char buf[256];
 424           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 425                        "at " INTPTR_FORMAT
 426                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 427                        page_start, (res ? "success" : "failed"), errno);
 428           tty->print_raw_cr(buf);
 429         }
 430         stub = pc;
 431 
 432         // Set last_addr so if we fault again at the same address, we don't end
 433         // up in an endless loop.
 434         // 
 435         // There are two potential complications here.  Two threads trapping at
 436         // the same address at the same time could cause one of the threads to
 437         // think it already unguarded, and abort the VM.  Likely very rare.
 438         // 
 439         // The other race involves two threads alternately trapping at
 440         // different addresses and failing to unguard the page, resulting in
 441         // an endless loop.  This condition is probably even more unlikely than
 442         // the first.
 443         //
 444         // Although both cases could be avoided by using locks or thread local
 445         // last_addr, these solutions are unnecessary complication: this
 446         // handler is a best-effort safety net, not a complete solution.  It is
 447         // disabled by default and should only be used as a workaround in case
 448         // we missed any no-execute-unsafe VM code.
 449 
 450         last_addr = addr;
 451       }
 452     }
 453   }
 454 #endif // !AMD64
 455 
 456   if (stub != NULL) {
 457     // save all thread context in case we need to restore it
 458     if (thread != NULL) thread->set_saved_exception_pc(pc);
 459 
 460     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
 461     return true;
 462   }
 463 
 464   // signal-chaining
 465   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 466      return true;
 467   }
 468 
 469   if (!abort_if_unrecognized) {
 470     // caller wants another chance, so give it to him
 471     return false;
 472   }
 473 
 474   if (pc == NULL && uc != NULL) {
 475     pc = os::Linux::ucontext_get_pc(uc);
 476   }
 477 
 478   // unmask current signal
 479   sigset_t newset;
 480   sigemptyset(&newset);
 481   sigaddset(&newset, sig);
 482   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 483 
 484   VMError err(t, sig, pc, info, ucVoid);
 485   err.report_and_die();
 486 
 487   ShouldNotReachHere();
 488 }
 489 
 490 void os::Linux::init_thread_fpu_state(void) {
 491 #ifndef AMD64
 492   // set fpu to 53 bit precision
 493   set_fpu_control_word(0x27f);
 494 #endif // !AMD64
 495 }
 496 
 497 int os::Linux::get_fpu_control_word(void) {
 498 #ifdef AMD64
 499   return 0;
 500 #else
 501   int fpu_control;
 502   _FPU_GETCW(fpu_control);
 503   return fpu_control & 0xffff;
 504 #endif // AMD64
 505 }
 506 
 507 void os::Linux::set_fpu_control_word(int fpu_control) {
 508 #ifndef AMD64
 509   _FPU_SETCW(fpu_control);
 510 #endif // !AMD64
 511 }
 512 
 513 // Check that the linux kernel version is 2.4 or higher since earlier
 514 // versions do not support SSE without patches.
 515 bool os::supports_sse() {
 516 #ifdef AMD64
 517   return true;
 518 #else
 519   struct utsname uts;
 520   if( uname(&uts) != 0 ) return false; // uname fails?
 521   char *minor_string;
 522   int major = strtol(uts.release,&minor_string,10);
 523   int minor = strtol(minor_string+1,NULL,10);
 524   bool result = (major > 2 || (major==2 && minor >= 4));
 525 #ifndef PRODUCT
 526   if (PrintMiscellaneous && Verbose) {
 527     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
 528                major,minor, result ? "DOES" : "does NOT");
 529   }
 530 #endif
 531   return result;
 532 #endif // AMD64
 533 }
 534 
 535 bool os::is_allocatable(size_t bytes) {
 536 #ifdef AMD64
 537   // unused on amd64?
 538   return true;
 539 #else
 540 
 541   if (bytes < 2 * G) {
 542     return true;
 543   }
 544 
 545   char* addr = reserve_memory(bytes, NULL);
 546 
 547   if (addr != NULL) {
 548     release_memory(addr, bytes);
 549   }
 550 
 551   return addr != NULL;
 552 #endif // AMD64
 553 }
 554 
 555 ////////////////////////////////////////////////////////////////////////////////
 556 // thread stack
 557 
 558 #ifdef AMD64
 559 size_t os::Linux::min_stack_allowed  = 64 * K;
 560 
 561 // amd64: pthread on amd64 is always in floating stack mode
 562 bool os::Linux::supports_variable_stack_size() {  return true; }
 563 #else
 564 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 565 
 566 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
 567 
 568 // Test if pthread library can support variable thread stack size. LinuxThreads
 569 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads 
 570 // in floating stack mode and NPTL support variable stack size.
 571 bool os::Linux::supports_variable_stack_size() {
 572   if (os::Linux::is_NPTL()) {
 573      // NPTL, yes
 574      return true;
 575 
 576   } else {
 577     // Note: We can't control default stack size when creating a thread.
 578     // If we use non-default stack size (pthread_attr_setstacksize), both 
 579     // floating stack and non-floating stack LinuxThreads will return the 
 580     // same value. This makes it impossible to implement this function by
 581     // detecting thread stack size directly.
 582     // 
 583     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
 584     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
 585     // %gs (either as LDT selector or GDT selector, depending on kernel)
 586     // to access thread specific data. 
 587     //
 588     // Note that %gs is a reserved glibc register since early 2001, so 
 589     // applications are not allowed to change its value (Ulrich Drepper from 
 590     // Redhat confirmed that all known offenders have been modified to use
 591     // either %fs or TSD). In the worst case scenario, when VM is embedded in 
 592     // a native application that plays with %gs, we might see non-zero %gs 
 593     // even LinuxThreads is running in fixed stack mode. As the result, we'll 
 594     // return true and skip _thread_safety_check(), so we may not be able to 
 595     // detect stack-heap collisions. But otherwise it's harmless.
 596     //
 597     return (GET_GS() != 0);
 598   }
 599 }
 600 #endif // AMD64
 601 
 602 // return default stack size for thr_type
 603 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 604   // default stack size (compiler thread needs larger stack)
 605 #ifdef AMD64
 606   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 607 #else
 608   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 609 #endif // AMD64
 610   return s;
 611 } 
 612   
 613 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 614   // Creating guard page is very expensive. Java thread has HotSpot
 615   // guard page, only enable glibc guard page for non-Java threads.
 616   return (thr_type == java_thread ? 0 : page_size());
 617 }
 618   
 619 // Java thread:
 620 //
 621 //   Low memory addresses
 622 //    +------------------------+
 623 //    |                        |\  JavaThread created by VM does not have glibc
 624 //    |    glibc guard page    | - guard, attached Java thread usually has
 625 //    |                        |/  1 page glibc guard.
 626 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 627 //    |                        |\
 628 //    |  HotSpot Guard Pages   | - red and yellow pages
 629 //    |                        |/
 630 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 631 //    |                        |\
 632 //    |      Normal Stack      | -
 633 //    |                        |/
 634 // P2 +------------------------+ Thread::stack_base()
 635 //
 636 // Non-Java thread:
 637 //
 638 //   Low memory addresses
 639 //    +------------------------+
 640 //    |                        |\
 641 //    |  glibc guard page      | - usually 1 page
 642 //    |                        |/
 643 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 644 //    |                        |\
 645 //    |      Normal Stack      | -
 646 //    |                        |/
 647 // P2 +------------------------+ Thread::stack_base()
 648 //
 649 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 650 //    pthread_attr_getstack()
 651 
 652 static void current_stack_region(address * bottom, size_t * size) {
 653   if (os::Linux::is_initial_thread()) {
 654      // initial thread needs special handling because pthread_getattr_np()
 655      // may return bogus value.
 656      *bottom = os::Linux::initial_thread_stack_bottom();
 657      *size   = os::Linux::initial_thread_stack_size();
 658   } else {
 659      pthread_attr_t attr;
 660 
 661      int rslt = pthread_getattr_np(pthread_self(), &attr);
 662 
 663      // JVM needs to know exact stack location, abort if it fails
 664      if (rslt != 0) {
 665        if (rslt == ENOMEM) {
 666          vm_exit_out_of_memory(0, "pthread_getattr_np");
 667        } else {
 668          fatal1("pthread_getattr_np failed with errno = %d", rslt);
 669        }
 670      }
 671 
 672      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 673          fatal("Can not locate current stack attributes!");
 674      }
 675 
 676      pthread_attr_destroy(&attr);
 677 
 678   }
 679   assert(os::current_stack_pointer() >= *bottom &&
 680          os::current_stack_pointer() < *bottom + *size, "just checking");
 681 }
 682 
 683 address os::current_stack_base() {
 684   address bottom;
 685   size_t size;
 686   current_stack_region(&bottom, &size);
 687   return (bottom + size);
 688 }
 689 
 690 size_t os::current_stack_size() {
 691   // stack size includes normal stack and HotSpot guard pages
 692   address bottom;
 693   size_t size;
 694   current_stack_region(&bottom, &size);
 695   return size;
 696 }
 697 
 698 /////////////////////////////////////////////////////////////////////////////
 699 // helper functions for fatal error handler
 700 
 701 void os::print_context(outputStream *st, void *context) {
 702   if (context == NULL) return;
 703 
 704   ucontext_t *uc = (ucontext_t*)context;
 705   st->print_cr("Registers:");
 706 #ifdef AMD64
 707   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 708   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 709   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 710   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 711   st->cr();
 712   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 713   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 714   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 715   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 716   st->cr();
 717   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 718   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 719   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 720   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 721   st->cr();
 722   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 723   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 724   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 725   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 726   st->cr();
 727   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 728   st->print(", EFL=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 729   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
 730   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
 731   st->cr();
 732   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
 733 #else
 734   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 735   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 736   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 737   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 738   st->cr();
 739   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 740   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 741   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 742   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 743   st->cr();
 744   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 745   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
 746   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 747 #endif // AMD64
 748   st->cr();
 749   st->cr();
 750 
 751   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 752   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 753   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 754   st->cr();
 755 
 756   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 757   // point to garbage if entry point in an nmethod is corrupted. Leave
 758   // this at the end, and hope for the best.
 759   address pc = os::Linux::ucontext_get_pc(uc);
 760   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 761   print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
 762 }
 763 
 764 void os::setup_fpu() {
 765 #ifndef AMD64
 766   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 767   __asm__ volatile (  "fldcw (%0)" :
 768                       : "r" (fpu_cntrl) : "memory");
 769 #endif // !AMD64
 770 }