1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)dict2.cpp    1.19 07/05/05 17:04:59 JVM"
   3 #endif
   4 /*
   5  * Copyright 1998-2002 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // Dictionaries - An Abstract Data Type
  29 
  30 #include "adlc.hpp"
  31 
  32 // #include "dict.hpp"
  33 
  34 
  35 //------------------------------data-----------------------------------------
  36 // String hash tables
  37 #define MAXID 20
  38 static char initflag = 0;       // True after 1st initialization
  39 static char shft[MAXID] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6};
  40 static short xsum[MAXID + 1];
  41 
  42 //------------------------------bucket---------------------------------------
  43 class bucket {
  44 public:
  45   int          _cnt, _max;      // Size of bucket
  46   const void **_keyvals;        // Array of keys and values
  47 };
  48 
  49 //------------------------------Dict-----------------------------------------
  50 // The dictionary is kept has a hash table.  The hash table is a even power
  51 // of two, for nice modulo operations.  Each bucket in the hash table points
  52 // to a linear list of key-value pairs; each key & value is just a (void *).
  53 // The list starts with a count.  A hash lookup finds the list head, then a
  54 // simple linear scan finds the key.  If the table gets too full, it's
  55 // doubled in size; the total amount of EXTRA times all hash functions are
  56 // computed for the doubling is no more than the current size - thus the
  57 // doubling in size costs no more than a constant factor in speed.
  58 Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp), _arena(NULL) {
  59   init();
  60 }
  61 
  62 Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena) : _hash(inithash), _cmp(initcmp), _arena(arena) {
  63   init();
  64 }
  65 
  66 void Dict::init() {
  67   int i;
  68 
  69   // Precompute table of null character hashes
  70   if( !initflag ) {             // Not initializated yet?
  71     xsum[0] = (1<<shft[0])+1;     // Initialize
  72     for( i = 1; i < MAXID + 1; i++) {
  73       xsum[i] = (1<<shft[i])+1+xsum[i-1];
  74     }
  75     initflag = 1;               // Never again
  76   }
  77 
  78   _size = 16;                   // Size is a power of 2
  79   _cnt = 0;                     // Dictionary is empty
  80   _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
  81   memset(_bin,0,sizeof(bucket)*_size);
  82 }
  83 
  84 //------------------------------~Dict------------------------------------------
  85 // Delete an existing dictionary.
  86 Dict::~Dict() {  
  87 }
  88 
  89 //------------------------------Clear----------------------------------------
  90 // Zap to empty; ready for re-use
  91 void Dict::Clear() {
  92   _cnt = 0;                     // Empty contents
  93   for( int i=0; i<_size; i++ )
  94     _bin[i]._cnt = 0;           // Empty buckets, but leave allocated
  95   // Leave _size & _bin alone, under the assumption that dictionary will
  96   // grow to this size again.
  97 }
  98 
  99 //------------------------------doubhash---------------------------------------
 100 // Double hash table size.  If can't do so, just suffer.  If can, then run
 101 // thru old hash table, moving things to new table.  Note that since hash
 102 // table doubled, exactly 1 new bit is exposed in the mask - so everything
 103 // in the old table ends up on 1 of two lists in the new table; a hi and a
 104 // lo list depending on the value of the bit.
 105 void Dict::doubhash(void) {
 106   int oldsize = _size;
 107   _size <<= 1;                    // Double in size
 108   _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*oldsize, sizeof(bucket)*_size );
 109   memset( &_bin[oldsize], 0, oldsize*sizeof(bucket) );
 110   // Rehash things to spread into new table
 111   for( int i=0; i < oldsize; i++) { // For complete OLD table do
 112     bucket *b = &_bin[i];   // Handy shortcut for _bin[i]
 113     if( !b->_keyvals ) continue;     // Skip empties fast
 114 
 115     bucket *nb = &_bin[i+oldsize];  // New bucket shortcut
 116     int j = b->_max;             // Trim new bucket to nearest power of 2 
 117     while( j > b->_cnt ) j >>= 1;   // above old bucket _cnt
 118     if( !j ) j = 1;             // Handle zero-sized buckets
 119     nb->_max = j<<1;
 120     // Allocate worst case space for key-value pairs
 121     nb->_keyvals = (const void**)_arena->Amalloc_4( sizeof(void *)*nb->_max*2 );
 122     int nbcnt = 0;
 123 
 124     for( j=0; j<b->_cnt; j++ ) {  // Rehash all keys in this bucket
 125       const void *key = b->_keyvals[j+j];
 126       if( (_hash( key ) & (_size-1)) != i ) { // Moving to hi bucket?
 127         nb->_keyvals[nbcnt+nbcnt] = key;
 128         nb->_keyvals[nbcnt+nbcnt+1] = b->_keyvals[j+j+1];
 129         nb->_cnt = nbcnt = nbcnt+1;
 130         b->_cnt--;           // Remove key/value from lo bucket
 131         b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
 132         b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
 133         j--;                    // Hash compacted element also
 134       }
 135     } // End of for all key-value pairs in bucket
 136   } // End of for all buckets
 137 
 138 
 139 }
 140 
 141 //------------------------------Dict-----------------------------------------
 142 // Deep copy a dictionary.
 143 Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) {
 144   _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
 145   memcpy( _bin, d._bin, sizeof(bucket)*_size );
 146   for( int i=0; i<_size; i++ ) {
 147     if( !_bin[i]._keyvals ) continue;
 148     _bin[i]._keyvals=(const void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2);
 149     memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*));
 150   }
 151 }
 152 
 153 //------------------------------Dict-----------------------------------------
 154 // Deep copy a dictionary.
 155 Dict &Dict::operator =( const Dict &d ) {
 156   if( _size < d._size ) {    // If must have more buckets
 157     _arena = d._arena;
 158     _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size );
 159     memset( &_bin[_size], 0, (d._size-_size)*sizeof(bucket) );
 160     _size = d._size;
 161   }
 162   for( int i=0; i<_size; i++ ) // All buckets are empty
 163     _bin[i]._cnt = 0;           // But leave bucket allocations alone
 164   _cnt = d._cnt;
 165   *(Hash*)(&_hash) = d._hash;
 166   *(CmpKey*)(&_cmp) = d._cmp;
 167   for(int k=0; k<_size; k++ ) {
 168     bucket *b = &d._bin[k]; // Shortcut to source bucket
 169     for( int j=0; j<b->_cnt; j++ )
 170       Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] );
 171   }
 172   return *this;
 173 }
 174 
 175 //------------------------------Insert---------------------------------------
 176 // Insert or replace a key/value pair in the given dictionary.  If the
 177 // dictionary is too full, it's size is doubled.  The prior value being
 178 // replaced is returned (NULL if this is a 1st insertion of that key).  If
 179 // an old value is found, it's swapped with the prior key-value pair on the
 180 // list.  This moves a commonly searched-for value towards the list head.
 181 const void *Dict::Insert(const void *key, const void *val) {
 182   int hash = _hash( key );      // Get hash key
 183   int i = hash & (_size-1); // Get hash key, corrected for size
 184   bucket *b = &_bin[i];             // Handy shortcut
 185   for( int j=0; j<b->_cnt; j++ )
 186     if( !_cmp(key,b->_keyvals[j+j]) ) {
 187       const void *prior = b->_keyvals[j+j+1];
 188       b->_keyvals[j+j  ] = key;      // Insert current key-value
 189       b->_keyvals[j+j+1] = val;
 190       return prior;             // Return prior
 191     } 
 192 
 193   if( ++_cnt > _size ) {     // Hash table is full
 194     doubhash();                 // Grow whole table if too full
 195     i = hash & (_size-1);   // Rehash
 196     b = &_bin[i];           // Handy shortcut
 197   }
 198   if( b->_cnt == b->_max ) {      // Must grow bucket?
 199     if( !b->_keyvals ) {
 200       b->_max = 2;           // Initial bucket size
 201       b->_keyvals = (const void**)_arena->Amalloc_4( sizeof(void *)*b->_max*2 );
 202     } else {
 203       b->_keyvals = (const void**)_arena->Arealloc( b->_keyvals, sizeof(void *)*b->_max*2, sizeof(void *)*b->_max*4 );
 204       b->_max <<= 1;           // Double bucket
 205     }
 206   }
 207   b->_keyvals[b->_cnt+b->_cnt  ] = key;
 208   b->_keyvals[b->_cnt+b->_cnt+1] = val;
 209   b->_cnt++;
 210   return NULL;                  // Nothing found prior
 211 }
 212 
 213 //------------------------------Delete---------------------------------------
 214 // Find & remove a value from dictionary. Return old value.
 215 const void *Dict::Delete(void *key) {
 216   int i = _hash( key ) & (_size-1); // Get hash key, corrected for size
 217   bucket *b = &_bin[i];             // Handy shortcut
 218   for( int j=0; j<b->_cnt; j++ )
 219     if( !_cmp(key,b->_keyvals[j+j]) ) {
 220       const void *prior = b->_keyvals[j+j+1];
 221       b->_cnt--;             // Remove key/value from lo bucket
 222       b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
 223       b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
 224       _cnt--;                   // One less thing in table
 225       return prior;
 226     }
 227   return NULL;
 228 }
 229 
 230 //------------------------------FindDict-------------------------------------
 231 // Find a key-value pair in the given dictionary.  If not found, return NULL.
 232 // If found, move key-value pair towards head of list.
 233 const void *Dict::operator [](const void *key) const {
 234   int i = _hash( key ) & (_size-1); // Get hash key, corrected for size
 235   bucket *b = &_bin[i];             // Handy shortcut
 236   for( int j=0; j<b->_cnt; j++ )
 237     if( !_cmp(key,b->_keyvals[j+j]) ) 
 238       return b->_keyvals[j+j+1];
 239   return NULL;
 240 }
 241 
 242 //------------------------------CmpDict--------------------------------------
 243 // CmpDict compares two dictionaries; they must have the same keys (their
 244 // keys must match using CmpKey) and they must have the same values (pointer
 245 // comparison).  If so 1 is returned, if not 0 is returned.
 246 int Dict::operator ==(const Dict &d2) const {
 247   if( _cnt != d2._cnt ) return 0;
 248   if( _hash != d2._hash ) return 0;
 249   if( _cmp != d2._cmp ) return 0;
 250   for( int i=0; i < _size; i++) {    // For complete hash table do
 251     bucket *b = &_bin[i];   // Handy shortcut
 252     if( b->_cnt != d2._bin[i]._cnt ) return 0;
 253     if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) )
 254       return 0;                 // Key-value pairs must match
 255   }
 256   return 1;                     // All match, is OK
 257 }
 258 
 259 
 260 //------------------------------print----------------------------------------
 261 static void printvoid(const void* x) { printf("%p", x);  }
 262 void Dict::print() {
 263   print(printvoid, printvoid);
 264 }
 265 void Dict::print(PrintKeyOrValue print_key, PrintKeyOrValue print_value) {
 266   for( int i=0; i < _size; i++) {    // For complete hash table do
 267     bucket *b = &_bin[i];   // Handy shortcut
 268     for( int j=0; j<b->_cnt; j++ ) {
 269       print_key(  b->_keyvals[j+j  ]);
 270       printf(" -> ");
 271       print_value(b->_keyvals[j+j+1]);
 272       printf("\n");
 273     }
 274   }
 275 }
 276 
 277 //------------------------------Hashing Functions----------------------------
 278 // Convert string to hash key.  This algorithm implements a universal hash
 279 // function with the multipliers frozen (ok, so it's not universal).  The
 280 // multipliers (and allowable characters) are all odd, so the resultant sum
 281 // is odd - guarenteed not divisible by any power of two, so the hash tables
 282 // can be any power of two with good results.  Also, I choose multipliers
 283 // that have only 2 bits set (the low is always set to be odd) so
 284 // multiplication requires only shifts and adds.  Characters are required to
 285 // be in the range 0-127 (I double & add 1 to force oddness).  Keys are
 286 // limited to MAXID characters in length.  Experimental evidence on 150K of
 287 // C text shows excellent spreading of values for any size hash table.
 288 int hashstr(const void *t) {
 289   register char c, k = 0;
 290   register int sum = 0;
 291   register const char *s = (const char *)t;
 292 
 293   while( ((c = s[k]) != '\0') && (k < MAXID-1) ) { // Get characters till nul
 294     c = (c<<1)+1;         // Characters are always odd!
 295     sum += c + (c<<shft[k++]);    // Universal hash function
 296   }
 297   assert( k < (MAXID + 1), "Exceeded maximum name length");
 298   return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size
 299 }
 300 
 301 //------------------------------hashptr--------------------------------------
 302 // Slimey cheap hash function; no guarenteed performance.  Better than the
 303 // default for pointers, especially on MS-DOS machines.
 304 int hashptr(const void *key) {
 305 #ifdef __TURBOC__
 306     return (int)((intptr_t)key >> 16);
 307 #else  // __TURBOC__
 308     return (int)((intptr_t)key >> 2);
 309 #endif
 310 }
 311 
 312 // Slimey cheap hash function; no guarenteed performance.
 313 int hashkey(const void *key) {
 314   return (int)((intptr_t)key);
 315 }
 316 
 317 //------------------------------Key Comparator Functions---------------------
 318 int cmpstr(const void *k1, const void *k2) {
 319   return strcmp((const char *)k1,(const char *)k2);
 320 }
 321 
 322 // Slimey cheap key comparator.
 323 int cmpkey(const void *key1, const void *key2) {
 324   return (int)((intptr_t)key1 - (intptr_t)key2);
 325 }
 326 
 327 //=============================================================================
 328 //------------------------------reset------------------------------------------
 329 // Create an iterator and initialize the first variables.
 330 void DictI::reset( const Dict *dict ) {
 331   _d = dict;                    // The dictionary
 332   _i = (int)-1;         // Before the first bin
 333   _j = 0;                       // Nothing left in the current bin
 334   ++(*this);                    // Step to first real value
 335 }
 336 
 337 //------------------------------next-------------------------------------------
 338 // Find the next key-value pair in the dictionary, or return a NULL key and
 339 // value.
 340 void DictI::operator ++(void) {
 341   if( _j-- ) {                  // Still working in current bin?
 342     _key   = _d->_bin[_i]._keyvals[_j+_j];
 343     _value = _d->_bin[_i]._keyvals[_j+_j+1];
 344     return;
 345   }
 346 
 347   while( ++_i < _d->_size ) {     // Else scan for non-zero bucket
 348     _j = _d->_bin[_i]._cnt;
 349     if( !_j ) continue;
 350     _j--;
 351     _key   = _d->_bin[_i]._keyvals[_j+_j];
 352     _value = _d->_bin[_i]._keyvals[_j+_j+1];
 353     return;
 354   }
 355   _key = _value = NULL;
 356 }
 357 
 358