1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)formssel.cpp 1.185 07/09/28 10:23:26 JVM"
   3 #endif
   4 /*
   5  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // FORMS.CPP - Definitions for ADL Parser Forms Classes
  29 #include "adlc.hpp"
  30 
  31 //==============================Instructions===================================
  32 //------------------------------InstructForm-----------------------------------
  33 InstructForm::InstructForm(const char *id, bool ideal_only)
  34   : _ident(id), _ideal_only(ideal_only), 
  35     _localNames(cmpstr, hashstr, Form::arena),
  36     _effects(cmpstr, hashstr, Form::arena) {
  37       _ftype = Form::INS; 
  38 
  39       _matrule   = NULL;
  40       _insencode = NULL;
  41       _opcode    = NULL;
  42       _size      = NULL;
  43       _attribs   = NULL;
  44       _predicate = NULL;
  45       _exprule   = NULL;
  46       _rewrule   = NULL;
  47       _format    = NULL;
  48       _peephole  = NULL;
  49       _ins_pipe  = NULL;
  50       _uniq_idx  = NULL;
  51       _num_uniq  = 0;
  52       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
  53       _cisc_spill_alternate = NULL;            // possible cisc replacement
  54       _cisc_reg_mask_name = NULL;
  55       _is_cisc_alternate = false;
  56       _is_short_branch = false;
  57       _short_branch_form = NULL;
  58       _alignment = 1;
  59 }
  60 
  61 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
  62   : _ident(id), _ideal_only(false), 
  63     _localNames(instr->_localNames),
  64     _effects(instr->_effects) {
  65       _ftype = Form::INS; 
  66 
  67       _matrule   = rule;
  68       _insencode = instr->_insencode;
  69       _opcode    = instr->_opcode;
  70       _size      = instr->_size;
  71       _attribs   = instr->_attribs;
  72       _predicate = instr->_predicate;
  73       _exprule   = instr->_exprule;
  74       _rewrule   = instr->_rewrule;
  75       _format    = instr->_format;
  76       _peephole  = instr->_peephole;
  77       _ins_pipe  = instr->_ins_pipe;
  78       _uniq_idx  = instr->_uniq_idx;
  79       _num_uniq  = instr->_num_uniq;
  80       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
  81       _cisc_spill_alternate = NULL;            // possible cisc replacement
  82       _cisc_reg_mask_name = NULL;
  83       _is_cisc_alternate = false;
  84       _is_short_branch = false;
  85       _short_branch_form = NULL;
  86       _alignment = 1;
  87      // Copy parameters
  88      const char *name;
  89      instr->_parameters.reset();
  90      for (; (name = instr->_parameters.iter()) != NULL;)
  91        _parameters.addName(name);
  92 }
  93 
  94 InstructForm::~InstructForm() {
  95 }
  96 
  97 InstructForm *InstructForm::is_instruction() const {
  98   return (InstructForm*)this;
  99 }
 100 
 101 bool InstructForm::ideal_only() const {
 102   return _ideal_only;
 103 }
 104 
 105 bool InstructForm::sets_result() const {
 106   return (_matrule != NULL && _matrule->sets_result());
 107 }
 108 
 109 bool InstructForm::needs_projections() {
 110   _components.reset();
 111   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 112     if (comp->isa(Component::KILL)) {
 113       return true;
 114     }
 115   }
 116   return false;
 117 }
 118 
 119 
 120 bool InstructForm::has_temps() {
 121   if (_matrule) {
 122     // Examine each component to see if it is a TEMP
 123     _components.reset();
 124     // Skip the first component, if already handled as (SET dst (...))
 125     Component *comp = NULL;
 126     if (sets_result())  comp = _components.iter();
 127     while ((comp = _components.iter()) != NULL) {
 128       if (comp->isa(Component::TEMP)) {
 129         return true;
 130       }
 131     }
 132   }
 133 
 134   return false;
 135 }
 136 
 137 uint InstructForm::num_defs_or_kills() {
 138   uint   defs_or_kills = 0;
 139 
 140   _components.reset();
 141   for( Component *comp; (comp = _components.iter()) != NULL; ) {
 142     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
 143       ++defs_or_kills;
 144     }
 145   }
 146 
 147   return  defs_or_kills;
 148 }
 149 
 150 // This instruction has an expand rule?
 151 bool InstructForm::expands() const {
 152   return ( _exprule != NULL );
 153 }
 154 
 155 // This instruction has a peephole rule?
 156 Peephole *InstructForm::peepholes() const {
 157   return _peephole;
 158 }
 159 
 160 // This instruction has a peephole rule?
 161 void InstructForm::append_peephole(Peephole *peephole) {
 162   if( _peephole == NULL ) {
 163     _peephole = peephole;
 164   } else {
 165     _peephole->append_peephole(peephole);
 166   }
 167 }
 168 
 169 
 170 // ideal opcode enumeration
 171 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
 172   if( !_matrule ) return "Node"; // Something weird
 173   // Chain rules do not really have ideal Opcodes; use their source
 174   // operand ideal Opcode instead.
 175   if( is_simple_chain_rule(globalNames) ) {
 176     const char *src = _matrule->_rChild->_opType;
 177     OperandForm *src_op = globalNames[src]->is_operand();
 178     assert( src_op, "Not operand class of chain rule" );
 179     if( !src_op->_matrule ) return "Node";
 180     return src_op->_matrule->_opType;
 181   }
 182   // Operand chain rules do not really have ideal Opcodes
 183   if( _matrule->is_chain_rule(globalNames) ) 
 184     return "Node";
 185   return strcmp(_matrule->_opType,"Set") 
 186     ? _matrule->_opType
 187     : _matrule->_rChild->_opType;
 188 }
 189 
 190 // Recursive check on all operands' match rules in my match rule
 191 bool InstructForm::is_pinned(FormDict &globals) {
 192   if ( ! _matrule)  return false;
 193 
 194   int  index   = 0;
 195   if (_matrule->find_type("Goto",          index)) return true;
 196   if (_matrule->find_type("If",            index)) return true;
 197   if (_matrule->find_type("CountedLoopEnd",index)) return true;
 198   if (_matrule->find_type("Return",        index)) return true;
 199   if (_matrule->find_type("Rethrow",       index)) return true;
 200   if (_matrule->find_type("TailCall",      index)) return true;
 201   if (_matrule->find_type("TailJump",      index)) return true;
 202   if (_matrule->find_type("Halt",          index)) return true;
 203   if (_matrule->find_type("Jump",          index)) return true;
 204 
 205   return is_parm(globals);
 206 }
 207 
 208 // Recursive check on all operands' match rules in my match rule
 209 bool InstructForm::is_projection(FormDict &globals) {
 210   if ( ! _matrule)  return false;
 211 
 212   int  index   = 0;
 213   if (_matrule->find_type("Goto",    index)) return true;
 214   if (_matrule->find_type("Return",  index)) return true;
 215   if (_matrule->find_type("Rethrow", index)) return true;
 216   if (_matrule->find_type("TailCall",index)) return true;
 217   if (_matrule->find_type("TailJump",index)) return true;
 218   if (_matrule->find_type("Halt",    index)) return true;
 219 
 220   return false;
 221 }
 222 
 223 // Recursive check on all operands' match rules in my match rule
 224 bool InstructForm::is_parm(FormDict &globals) {
 225   if ( ! _matrule)  return false;
 226 
 227   int  index   = 0;
 228   if (_matrule->find_type("Parm",index)) return true;
 229 
 230   return false;
 231 }
 232 
 233 
 234 // Return 'true' if this instruction matches an ideal 'Copy*' node
 235 int InstructForm::is_ideal_copy() const {
 236   return _matrule ? _matrule->is_ideal_copy() : 0;
 237 }
 238 
 239 // Return 'true' if this instruction is too complex to rematerialize.
 240 int InstructForm::is_expensive() const {
 241   // We can prove it is cheap if it has an empty encoding.
 242   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
 243   if (is_empty_encoding())
 244     return 0;
 245 
 246   if (is_tls_instruction())
 247     return 1;
 248 
 249   if (_matrule == NULL)  return 0;
 250 
 251   return _matrule->is_expensive();
 252 }
 253 
 254 // Has an empty encoding if _size is a constant zero or there
 255 // are no ins_encode tokens.
 256 int InstructForm::is_empty_encoding() const {
 257   if (_insencode != NULL) {
 258     _insencode->reset();
 259     if (_insencode->encode_class_iter() == NULL) {
 260       return 1;
 261     }
 262   }
 263   if (_size != NULL && strcmp(_size, "0") == 0) {
 264     return 1;
 265   }
 266   return 0;
 267 }
 268 
 269 int InstructForm::is_tls_instruction() const {
 270   if (_ident != NULL &&
 271       ( ! strcmp( _ident,"tlsLoadP") ||
 272         ! strncmp(_ident,"tlsLoadP_",9)) ) {
 273     return 1;
 274   }
 275 
 276   if (_matrule != NULL && _insencode != NULL) {
 277     const char* opType = _matrule->_opType;
 278     if (strcmp(opType, "Set")==0)
 279       opType = _matrule->_rChild->_opType;
 280     if (strcmp(opType,"ThreadLocal")==0) {
 281       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
 282               (_ident == NULL ? "NULL" : _ident));
 283       return 1;
 284     }
 285   }
 286 
 287   return 0;
 288 }
 289 
 290 
 291 // Return 'true' if this instruction matches an ideal 'Copy*' node
 292 bool InstructForm::is_ideal_unlock() const {
 293   return _matrule ? _matrule->is_ideal_unlock() : false;
 294 }
 295 
 296 bool InstructForm::is_ideal_call_leaf() const {
 297   return _matrule ? _matrule->is_ideal_call_leaf() : false;
 298 }
 299 
 300 // Return 'true' if this instruction matches an ideal 'If' node
 301 bool InstructForm::is_ideal_if() const {
 302   if( _matrule == NULL ) return false;
 303 
 304   return _matrule->is_ideal_if();
 305 }
 306 
 307 // Return 'true' if this instruction matches an ideal 'FastLock' node
 308 bool InstructForm::is_ideal_fastlock() const {
 309   if( _matrule == NULL ) return false;
 310 
 311   return _matrule->is_ideal_fastlock();
 312 }
 313 
 314 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
 315 bool InstructForm::is_ideal_membar() const {
 316   if( _matrule == NULL ) return false;
 317 
 318   return _matrule->is_ideal_membar();
 319 }
 320 
 321 // Return 'true' if this instruction matches an ideal 'LoadPC' node
 322 bool InstructForm::is_ideal_loadPC() const {
 323   if( _matrule == NULL ) return false;
 324 
 325   return _matrule->is_ideal_loadPC();
 326 }
 327 
 328 // Return 'true' if this instruction matches an ideal 'Box' node
 329 bool InstructForm::is_ideal_box() const {
 330   if( _matrule == NULL ) return false;
 331 
 332   return _matrule->is_ideal_box();
 333 }
 334 
 335 // Return 'true' if this instruction matches an ideal 'Goto' node
 336 bool InstructForm::is_ideal_goto() const {
 337   if( _matrule == NULL ) return false;
 338 
 339   return _matrule->is_ideal_goto();
 340 }
 341 
 342 // Return 'true' if this instruction matches an ideal 'Jump' node
 343 bool InstructForm::is_ideal_jump() const {
 344   if( _matrule == NULL ) return false;
 345   
 346   return _matrule->is_ideal_jump();
 347 }
 348 
 349 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 
 350 //                    'CountedLoopEnd' | 'Jump'
 351 bool InstructForm::is_ideal_branch() const {
 352   if( _matrule == NULL ) return false;
 353 
 354   return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
 355 }
 356 
 357 
 358 // Return 'true' if this instruction matches an ideal 'Return' node
 359 bool InstructForm::is_ideal_return() const {
 360   if( _matrule == NULL ) return false;
 361 
 362   // Check MatchRule to see if the first entry is the ideal "Return" node
 363   int  index   = 0;
 364   if (_matrule->find_type("Return",index)) return true;
 365   if (_matrule->find_type("Rethrow",index)) return true;
 366   if (_matrule->find_type("TailCall",index)) return true;
 367   if (_matrule->find_type("TailJump",index)) return true;
 368 
 369   return false;
 370 }
 371 
 372 // Return 'true' if this instruction matches an ideal 'Halt' node
 373 bool InstructForm::is_ideal_halt() const {
 374   int  index   = 0;
 375   return _matrule && _matrule->find_type("Halt",index);
 376 }
 377 
 378 // Return 'true' if this instruction matches an ideal 'SafePoint' node
 379 bool InstructForm::is_ideal_safepoint() const {
 380   int  index   = 0;
 381   return _matrule && _matrule->find_type("SafePoint",index);
 382 }
 383 
 384 // Return 'true' if this instruction matches an ideal 'Nop' node
 385 bool InstructForm::is_ideal_nop() const {
 386   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
 387 }
 388 
 389 bool InstructForm::is_ideal_control() const {
 390   if ( ! _matrule)  return false;
 391 
 392   return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
 393 }
 394 
 395 // Return 'true' if this instruction matches an ideal 'Call' node
 396 Form::CallType InstructForm::is_ideal_call() const {
 397   if( _matrule == NULL ) return Form::invalid_type;
 398 
 399   // Check MatchRule to see if the first entry is the ideal "Call" node
 400   int  idx   = 0;
 401   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
 402   idx = 0;
 403   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
 404   idx = 0;
 405   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
 406   idx = 0;
 407   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
 408   idx = 0;
 409   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
 410   idx = 0;
 411   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
 412   idx = 0;
 413   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
 414   idx = 0;
 415 
 416   return Form::invalid_type;
 417 }
 418 
 419 // Return 'true' if this instruction matches an ideal 'Load?' node
 420 Form::DataType InstructForm::is_ideal_load() const {
 421   if( _matrule == NULL ) return Form::none;
 422 
 423   return  _matrule->is_ideal_load();
 424 }
 425 
 426 // Return 'true' if this instruction matches an ideal 'Load?' node
 427 Form::DataType InstructForm::is_ideal_store() const {
 428   if( _matrule == NULL ) return Form::none;
 429 
 430   return  _matrule->is_ideal_store();
 431 }
 432 
 433 // Return the input register that must match the output register
 434 // If this is not required, return 0
 435 uint InstructForm::two_address(FormDict &globals) {
 436   uint  matching_input = 0;
 437   if(_components.count() == 0) return 0;
 438 
 439   _components.reset();
 440   Component *comp = _components.iter();
 441   // Check if there is a DEF
 442   if( comp->isa(Component::DEF) ) {
 443     // Check that this is a register
 444     const char  *def_type = comp->_type;
 445     const Form  *form     = globals[def_type];
 446     OperandForm *op       = form->is_operand();
 447     if( op ) {
 448       if( op->constrained_reg_class() != NULL &&
 449           op->interface_type(globals) == Form::register_interface ) {
 450         // Remember the local name for equality test later
 451         const char *def_name = comp->_name;
 452         // Check if a component has the same name and is a USE
 453         do {
 454           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
 455             return operand_position_format(def_name);
 456           }
 457         } while( (comp = _components.iter()) != NULL);
 458       }
 459     }
 460   }
 461 
 462   return 0;
 463 }
 464 
 465 
 466 // when chaining a constant to an instruction, returns 'true' and sets opType
 467 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
 468   const char *dummy  = NULL;
 469   const char *dummy2 = NULL;
 470   return is_chain_of_constant(globals, dummy, dummy2);
 471 }
 472 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals, 
 473                 const char * &opTypeParam) {
 474   const char *result = NULL;
 475 
 476   return is_chain_of_constant(globals, opTypeParam, result);
 477 }
 478 
 479 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals, 
 480                 const char * &opTypeParam, const char * &resultParam) {
 481   Form::DataType  data_type = Form::none;
 482   if ( ! _matrule)  return data_type;
 483 
 484   // !!!!!
 485   // The source of the chain rule is 'position = 1'
 486   uint         position = 1;
 487   const char  *result   = NULL;
 488   const char  *name     = NULL;
 489   const char  *opType   = NULL;
 490   // Here base_operand is looking for an ideal type to be returned (opType).
 491   if ( _matrule->is_chain_rule(globals)
 492        && _matrule->base_operand(position, globals, result, name, opType) ) {
 493     data_type = ideal_to_const_type(opType);
 494 
 495     // if it isn't an ideal constant type, just return
 496     if ( data_type == Form::none ) return data_type;
 497 
 498     // Ideal constant types also adjust the opType parameter.
 499     resultParam = result;
 500     opTypeParam = opType;
 501     return data_type;
 502   }
 503 
 504   return data_type;
 505 }
 506 
 507 // Check if a simple chain rule
 508 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
 509   if( _matrule && _matrule->sets_result()
 510       && _matrule->_rChild->_lChild == NULL
 511       && globals[_matrule->_rChild->_opType]
 512       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
 513     return true;
 514   }
 515   return false;
 516 }
 517 
 518 // check for structural rematerialization
 519 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
 520   bool   rematerialize = false;
 521 
 522   Form::DataType data_type = is_chain_of_constant(globals);
 523   if( data_type != Form::none ) 
 524     rematerialize = true;
 525 
 526   // Constants
 527   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) ) 
 528     rematerialize = true;
 529 
 530   // Pseudo-constants (values easily available to the runtime)
 531   if (is_empty_encoding() && is_tls_instruction())
 532     rematerialize = true;
 533 
 534   // 1-input, 1-output, such as copies or increments.
 535   if( _components.count() == 2 && 
 536       _components[0]->is(Component::DEF) && 
 537       _components[1]->isa(Component::USE) ) 
 538     rematerialize = true;
 539 
 540   // Check for an ideal 'Load?' and eliminate rematerialize option
 541   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
 542        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
 543        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
 544     rematerialize = false;
 545   }
 546 
 547   // Always rematerialize the flags.  They are more expensive to save &
 548   // restore than to recompute (and possibly spill the compare's inputs).
 549   if( _components.count() >= 1 ) {
 550     Component *c = _components[0];
 551     const Form *form = globals[c->_type];
 552     OperandForm *opform = form->is_operand();
 553     if( opform ) {
 554       // Avoid the special stack_slots register classes
 555       const char *rc_name = opform->constrained_reg_class();
 556       if( rc_name ) {
 557         if( strcmp(rc_name,"stack_slots") ) {
 558           // Check for ideal_type of RegFlags
 559           const char *type = opform->ideal_type( globals, registers );
 560           if( !strcmp(type,"RegFlags") )
 561             rematerialize = true;
 562         } else
 563           rematerialize = false; // Do not rematerialize things target stk
 564       }
 565     }
 566   }
 567 
 568   return rematerialize;
 569 }
 570 
 571 // loads from memory, so must check for anti-dependence
 572 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
 573   // Machine independent loads must be checked for anti-dependences
 574   if( is_ideal_load() != Form::none )  return true;
 575 
 576   // !!!!! !!!!! !!!!!
 577   // TEMPORARY 
 578   // if( is_simple_chain_rule(globals) )  return false;
 579 
 580   // String-compare uses many memorys edges, but writes none
 581   if( _matrule && _matrule->_rChild &&
 582       strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) 
 583     return true;
 584 
 585   // Check if instruction has a USE of a memory operand class, but no defs
 586   bool USE_of_memory  = false;
 587   bool DEF_of_memory  = false;
 588   Component     *comp = NULL;
 589   ComponentList &components = (ComponentList &)_components;
 590 
 591   components.reset();
 592   while( (comp = components.iter()) != NULL ) {
 593     const Form  *form = globals[comp->_type];
 594     if( !form ) continue;
 595     OpClassForm *op   = form->is_opclass();
 596     if( !op ) continue;
 597     if( form->interface_type(globals) == Form::memory_interface ) {
 598       if( comp->isa(Component::USE) ) USE_of_memory = true;
 599       if( comp->isa(Component::DEF) ) {
 600         OperandForm *oper = form->is_operand();
 601         if( oper && oper->is_user_name_for_sReg() ) {
 602           // Stack slots are unaliased memory handled by allocator
 603           oper = oper;  // debug stopping point !!!!!
 604         } else {
 605           DEF_of_memory = true;
 606         }
 607       }
 608     }
 609   }
 610   return (USE_of_memory && !DEF_of_memory);
 611 }
 612 
 613 
 614 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
 615   if( _matrule == NULL ) return false;
 616   if( !_matrule->_opType ) return false;
 617 
 618   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
 619   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
 620 
 621   return false;
 622 }
 623 
 624 int InstructForm::memory_operand(FormDict &globals) const {
 625   // Machine independent loads must be checked for anti-dependences
 626   // Check if instruction has a USE of a memory operand class, or a def.
 627   int USE_of_memory  = 0;
 628   int DEF_of_memory  = 0;
 629   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
 630   Component     *unique          = NULL;
 631   Component     *comp            = NULL;
 632   ComponentList &components      = (ComponentList &)_components;
 633 
 634   components.reset();
 635   while( (comp = components.iter()) != NULL ) {
 636     const Form  *form = globals[comp->_type];
 637     if( !form ) continue;
 638     OpClassForm *op   = form->is_opclass();
 639     if( !op ) continue;
 640     if( op->stack_slots_only(globals) )  continue;
 641     if( form->interface_type(globals) == Form::memory_interface ) {
 642       if( comp->isa(Component::DEF) ) {
 643         last_memory_DEF = comp->_name;
 644         DEF_of_memory++;
 645         unique = comp;
 646       } else if( comp->isa(Component::USE) ) {
 647         if( last_memory_DEF != NULL ) {
 648           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
 649           last_memory_DEF = NULL;
 650         }
 651         USE_of_memory++;
 652         if (DEF_of_memory == 0)  // defs take precedence
 653           unique = comp;
 654       } else {
 655         assert(last_memory_DEF == NULL, "unpaired memory DEF");
 656       }
 657     }
 658   }
 659   assert(last_memory_DEF == NULL, "unpaired memory DEF");
 660   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
 661   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
 662   if( (USE_of_memory + DEF_of_memory) > 0 ) {
 663     if( is_simple_chain_rule(globals) ) {
 664       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
 665       //((InstructForm*)this)->dump();
 666       // Preceding code prints nothing on sparc and these insns on intel:
 667       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
 668       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
 669       return NO_MEMORY_OPERAND;
 670     }
 671 
 672     if( DEF_of_memory == 1 ) {
 673       assert(unique != NULL, "");
 674       if( USE_of_memory == 0 ) {
 675         // unique def, no uses
 676       } else {
 677         // // unique def, some uses
 678         // // must return bottom unless all uses match def
 679         // unique = NULL;
 680       }
 681     } else if( DEF_of_memory > 0 ) {
 682       // multiple defs, don't care about uses
 683       unique = NULL;
 684     } else if( USE_of_memory == 1) {
 685       // unique use, no defs
 686       assert(unique != NULL, "");
 687     } else if( USE_of_memory > 0 ) {
 688       // multiple uses, no defs
 689       unique = NULL;
 690     } else {
 691       assert(false, "bad case analysis");
 692     }
 693     // process the unique DEF or USE, if there is one
 694     if( unique == NULL ) {
 695       return MANY_MEMORY_OPERANDS;
 696     } else {
 697       int pos = components.operand_position(unique->_name);
 698       if( unique->isa(Component::DEF) ) {
 699         pos += 1;                // get corresponding USE from DEF
 700       }
 701       assert(pos >= 1, "I was just looking at it!");
 702       return pos;
 703     }
 704   }
 705 
 706   // missed the memory op??
 707   if( true ) {  // %%% should not be necessary
 708     if( is_ideal_store() != Form::none ) {
 709       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 710       ((InstructForm*)this)->dump();
 711       // pretend it has multiple defs and uses
 712       return MANY_MEMORY_OPERANDS;
 713     }
 714     if( is_ideal_load()  != Form::none ) {
 715       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
 716       ((InstructForm*)this)->dump();
 717       // pretend it has multiple uses and no defs
 718       return MANY_MEMORY_OPERANDS;
 719     }
 720   }
 721 
 722   return NO_MEMORY_OPERAND;
 723 }
 724 
 725 
 726 // This instruction captures the machine-independent bottom_type
 727 // Expected use is for pointer vs oop determination for LoadP
 728 bool InstructForm::captures_bottom_type() const {
 729   if( _matrule && _matrule->_rChild && 
 730        (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
 731         !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
 732         !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
 733         !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
 734         !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
 735         !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
 736         !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
 737         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
 738   else if ( is_ideal_load() == Form::idealP )                return true;
 739   else if ( is_ideal_store() != Form::none  )                return true;
 740 
 741   return  false;
 742 }
 743 
 744 
 745 // Access instr_cost attribute or return NULL.
 746 const char* InstructForm::cost() {
 747   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
 748     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
 749       return cur->_val;
 750     }
 751   }
 752   return NULL;
 753 }
 754 
 755 // Return count of top-level operands.
 756 uint InstructForm::num_opnds() {
 757   int  num_opnds = _components.num_operands();
 758 
 759   // Need special handling for matching some ideal nodes
 760   // i.e. Matching a return node 
 761   /*
 762   if( _matrule ) {
 763     if( strcmp(_matrule->_opType,"Return"   )==0 ||
 764         strcmp(_matrule->_opType,"Halt"     )==0 )
 765       return 3;
 766   }
 767     */
 768   return num_opnds;
 769 }
 770 
 771 // Return count of unmatched operands.
 772 uint InstructForm::num_post_match_opnds() {
 773   uint  num_post_match_opnds = _components.count();
 774   uint  num_match_opnds = _components.match_count();
 775   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
 776 
 777   return num_post_match_opnds;
 778 }
 779 
 780 // Return the number of leaves below this complex operand
 781 uint InstructForm::num_consts(FormDict &globals) const {
 782   if ( ! _matrule) return 0;
 783 
 784   // This is a recursive invocation on all operands in the matchrule
 785   return _matrule->num_consts(globals);
 786 }
 787 
 788 // Constants in match rule with specified type
 789 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
 790   if ( ! _matrule) return 0;
 791 
 792   // This is a recursive invocation on all operands in the matchrule
 793   return _matrule->num_consts(globals, type);
 794 }
 795 
 796 
 797 // Return the register class associated with 'leaf'.
 798 const char *InstructForm::out_reg_class(FormDict &globals) {
 799   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
 800 
 801   return NULL;
 802 }
 803 
 804 
 805 
 806 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
 807 uint InstructForm::oper_input_base(FormDict &globals) {
 808   if( !_matrule ) return 1;     // Skip control for most nodes
 809 
 810   // Need special handling for matching some ideal nodes
 811   // i.e. Matching a return node 
 812   if( strcmp(_matrule->_opType,"Return"    )==0 ||
 813       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
 814       strcmp(_matrule->_opType,"TailCall"  )==0 ||
 815       strcmp(_matrule->_opType,"TailJump"  )==0 ||
 816       strcmp(_matrule->_opType,"SafePoint" )==0 ||
 817       strcmp(_matrule->_opType,"Halt"      )==0 )
 818     return AdlcVMDeps::Parms;   // Skip the machine-state edges
 819 
 820   if( _matrule->_rChild &&
 821           strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) {
 822         // String compare takes 1 control and 4 memory edges.
 823     return 5;
 824   }
 825 
 826   // Check for handling of 'Memory' input/edge in the ideal world.
 827   // The AD file writer is shielded from knowledge of these edges.
 828   int base = 1;                 // Skip control
 829   base += _matrule->needs_ideal_memory_edge(globals);
 830 
 831   // Also skip the base-oop value for uses of derived oops.
 832   // The AD file writer is shielded from knowledge of these edges.
 833   base += needs_base_oop_edge(globals);
 834 
 835   return base;
 836 }
 837 
 838 // Implementation does not modify state of internal structures
 839 void InstructForm::build_components() {
 840   // Add top-level operands to the components
 841   if (_matrule)  _matrule->append_components(_localNames, _components);
 842 
 843   // Add parameters that "do not appear in match rule".
 844   bool has_temp = false;
 845   const char *name;
 846   const char *kill_name = NULL;
 847   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
 848     OperandForm *opForm = (OperandForm*)_localNames[name];
 849 
 850     const Form *form = _effects[name];
 851     Effect     *e    = form ? form->is_effect() : NULL;
 852     if (e != NULL) {
 853       has_temp |= e->is(Component::TEMP);
 854 
 855       // KILLs must be declared after any TEMPs because TEMPs are real
 856       // uses so their operand numbering must directly follow the real
 857       // inputs from the match rule.  Fixing the numbering seems
 858       // complex so simply enforce the restriction during parse.
 859       if (kill_name != NULL &&
 860           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
 861         OperandForm* kill = (OperandForm*)_localNames[kill_name];
 862         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
 863                              _ident, kill->_ident, kill_name);
 864       } else if (e->isa(Component::KILL)) {
 865         kill_name = name;
 866       }
 867 
 868       // TEMPs are real uses and need to be among the first parameters
 869       // listed, otherwise the numbering of operands and inputs gets
 870       // screwy, so enforce this restriction during parse.
 871       if (kill_name != NULL &&
 872           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
 873         OperandForm* kill = (OperandForm*)_localNames[kill_name];
 874         globalAD->syntax_err(_linenum, "%s: %s %s must follow %s %s in the argument list\n",
 875                              _ident, kill->_ident, kill_name, opForm->_ident, name);
 876       } else if (e->isa(Component::KILL)) {
 877         kill_name = name;
 878       }
 879     }
 880 
 881     const Component *component  = _components.search(name);
 882     if ( component  == NULL ) {
 883       if (e) {
 884         _components.insert(name, opForm->_ident, e->_use_def, false);
 885         component = _components.search(name);
 886         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
 887           const Form *form = globalAD->globalNames()[component->_type];
 888           assert( form, "component type must be a defined form");
 889           OperandForm *op   = form->is_operand();
 890           if (op->_interface && op->_interface->is_RegInterface()) {
 891             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 892                                  _ident, opForm->_ident, name);
 893           }
 894         }
 895       } else {
 896         // This would be a nice warning but it triggers in a few places in a benign way
 897         // if (_matrule != NULL && !expands()) {
 898         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
 899         //                        _ident, opForm->_ident, name);
 900         // }
 901         _components.insert(name, opForm->_ident, Component::INVALID, false);
 902       }
 903     }
 904     else if (e) {
 905       // Component was found in the list
 906       // Check if there is a new effect that requires an extra component.
 907       // This happens when adding 'USE' to a component that is not yet one.
 908       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
 909         if (component->isa(Component::USE) && _matrule) {
 910           const Form *form = globalAD->globalNames()[component->_type];
 911           assert( form, "component type must be a defined form");
 912           OperandForm *op   = form->is_operand();
 913           if (op->_interface && op->_interface->is_RegInterface()) {
 914             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
 915                                  _ident, opForm->_ident, name);
 916           }
 917         }
 918         _components.insert(name, opForm->_ident, e->_use_def, false);
 919       } else {
 920         Component  *comp = (Component*)component;
 921         comp->promote_use_def_info(e->_use_def);
 922       }
 923       // Component positions are zero based.
 924       int  pos  = _components.operand_position(name);
 925       assert( ! (component->isa(Component::DEF) && (pos >= 1)), 
 926               "Component::DEF can only occur in the first position");
 927     }
 928   }
 929 
 930   // Resolving the interactions between expand rules and TEMPs would
 931   // be complex so simply disallow it.
 932   if (_matrule == NULL && has_temp) {
 933     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
 934   }
 935 
 936   return;
 937 }
 938 
 939 // Return zero-based position in component list;  -1 if not in list.
 940 int   InstructForm::operand_position(const char *name, int usedef) {
 941   return unique_opnds_idx(_components.operand_position(name, usedef));
 942 }
 943 
 944 int   InstructForm::operand_position_format(const char *name) {
 945   return unique_opnds_idx(_components.operand_position_format(name));
 946 }
 947 
 948 // Return zero-based position in component list; -1 if not in list.
 949 int   InstructForm::label_position() {
 950   return unique_opnds_idx(_components.label_position());
 951 }
 952 
 953 int   InstructForm::method_position() {
 954   return unique_opnds_idx(_components.method_position());
 955 }
 956 
 957 // Return number of relocation entries needed for this instruction.
 958 uint  InstructForm::reloc(FormDict &globals) {
 959   uint reloc_entries  = 0;
 960   // Check for "Call" nodes
 961   if ( is_ideal_call() )      ++reloc_entries;
 962   if ( is_ideal_return() )    ++reloc_entries;
 963   if ( is_ideal_safepoint() ) ++reloc_entries;
 964 
 965 
 966   // Check if operands MAYBE oop pointers, by checking for ConP elements
 967   // Proceed through the leaves of the match-tree and check for ConPs
 968   if ( _matrule != NULL ) {
 969     uint         position = 0;
 970     const char  *result   = NULL;
 971     const char  *name     = NULL;
 972     const char  *opType   = NULL;
 973     while (_matrule->base_operand(position, globals, result, name, opType)) {
 974       if ( strcmp(opType,"ConP") == 0 ) {
 975 #ifdef SPARC
 976         reloc_entries += 2; // 1 for sethi + 1 for setlo
 977 #else
 978         ++reloc_entries;
 979 #endif
 980       }
 981       ++position;
 982     }
 983   }
 984 
 985   // Above is only a conservative estimate 
 986   // because it did not check contents of operand classes.
 987   // !!!!! !!!!!
 988   // Add 1 to reloc info for each operand class in the component list.
 989   Component  *comp;
 990   _components.reset();
 991   while ( (comp = _components.iter()) != NULL ) {
 992     const Form        *form = globals[comp->_type];
 993     assert( form, "Did not find component's type in global names");
 994     const OpClassForm *opc  = form->is_opclass();
 995     const OperandForm *oper = form->is_operand();
 996     if ( opc && (oper == NULL) ) {
 997       ++reloc_entries;
 998     } else if ( oper ) {
 999       // floats and doubles loaded out of method's constant pool require reloc info
1000       Form::DataType type = oper->is_base_constant(globals);
1001       if ( (type == Form::idealF) || (type == Form::idealD) ) {
1002         ++reloc_entries;
1003       }
1004     }
1005   }
1006 
1007   // Float and Double constants may come from the CodeBuffer table
1008   // and require relocatable addresses for access
1009   // !!!!!
1010   // Check for any component being an immediate float or double.
1011   Form::DataType data_type = is_chain_of_constant(globals);
1012   if( data_type==idealD || data_type==idealF ) {
1013 #ifdef SPARC 
1014     // sparc required more relocation entries for floating constants
1015     // (expires 9/98)
1016     reloc_entries += 6;
1017 #else
1018     reloc_entries++;
1019 #endif
1020   }
1021 
1022   return reloc_entries;
1023 }
1024 
1025 // Utility function defined in archDesc.cpp
1026 extern bool is_def(int usedef);
1027 
1028 // Return the result of reducing an instruction
1029 const char *InstructForm::reduce_result() {
1030   const char* result = "Universe";  // default
1031   _components.reset();
1032   Component *comp = _components.iter();
1033   if (comp != NULL && comp->isa(Component::DEF)) {
1034     result = comp->_type;
1035     // Override this if the rule is a store operation:
1036     if (_matrule && _matrule->_rChild && 
1037         is_store_to_memory(_matrule->_rChild->_opType))
1038       result = "Universe";
1039   }
1040   return result;
1041 }
1042 
1043 // Return the name of the operand on the right hand side of the binary match
1044 // Return NULL if there is no right hand side
1045 const char *InstructForm::reduce_right(FormDict &globals)  const {
1046   if( _matrule == NULL ) return NULL;
1047   return  _matrule->reduce_right(globals);
1048 }
1049 
1050 // Similar for left
1051 const char *InstructForm::reduce_left(FormDict &globals)   const {
1052   if( _matrule == NULL ) return NULL;
1053   return  _matrule->reduce_left(globals);
1054 }
1055 
1056 
1057 // Base class for this instruction, MachNode except for calls
1058 const char *InstructForm::mach_base_class()  const {
1059   if( is_ideal_call() == Form::JAVA_STATIC ) {
1060     return "MachCallStaticJavaNode";
1061   }
1062   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
1063     return "MachCallDynamicJavaNode";
1064   }
1065   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
1066     return "MachCallRuntimeNode";
1067   }
1068   else if( is_ideal_call() == Form::JAVA_LEAF ) {
1069     return "MachCallLeafNode";
1070   }
1071   else if (is_ideal_return()) {
1072     return "MachReturnNode";
1073   }
1074   else if (is_ideal_halt()) {
1075     return "MachHaltNode";
1076   }
1077   else if (is_ideal_safepoint()) {
1078     return "MachSafePointNode";
1079   }
1080   else if (is_ideal_if()) {
1081     return "MachIfNode";
1082   }
1083   else if (is_ideal_fastlock()) {
1084     return "MachFastLockNode";
1085   }
1086   else if (is_ideal_nop()) {
1087     return "MachNopNode";
1088   }
1089   else if (captures_bottom_type()) {
1090     return "MachTypeNode";
1091   } else {
1092     return "MachNode";
1093   }
1094   assert( false, "ShouldNotReachHere()");
1095   return NULL;
1096 }
1097 
1098 // Compare the instruction predicates for textual equality
1099 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
1100   const Predicate *pred1  = instr1->_predicate;
1101   const Predicate *pred2  = instr2->_predicate;
1102   if( pred1 == NULL && pred2 == NULL ) {
1103     // no predicates means they are identical
1104     return true;
1105   }
1106   if( pred1 != NULL && pred2 != NULL ) {
1107     // compare the predicates
1108     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
1109       return true;
1110     }
1111   }
1112 
1113   return false;
1114 }
1115 
1116 // Check if this instruction can cisc-spill to 'alternate'
1117 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
1118   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
1119   // Do not replace if a cisc-version has been found.
1120   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
1121 
1122   int         cisc_spill_operand = Maybe_cisc_spillable;
1123   char       *result             = NULL;
1124   char       *result2            = NULL;
1125   const char *op_name            = NULL;
1126   const char *reg_type           = NULL;
1127   FormDict   &globals            = AD.globalNames();
1128   cisc_spill_operand = _matrule->cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
1129   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
1130     cisc_spill_operand = operand_position(op_name, Component::USE);
1131     int def_oper  = operand_position(op_name, Component::DEF);
1132     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
1133       // Do not support cisc-spilling for destination operands and
1134       // make sure they have the same number of operands.
1135       _cisc_spill_alternate = instr;
1136       instr->set_cisc_alternate(true);
1137       if( AD._cisc_spill_debug ) {
1138         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
1139         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
1140       }
1141       // Record that a stack-version of the reg_mask is needed
1142       // !!!!! 
1143       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
1144       assert( oper != NULL, "cisc-spilling non operand");
1145       const char *reg_class_name = oper->constrained_reg_class();
1146       AD.set_stack_or_reg(reg_class_name);
1147       const char *reg_mask_name  = AD.reg_mask(*oper);
1148       set_cisc_reg_mask_name(reg_mask_name);
1149       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
1150     } else {
1151       cisc_spill_operand = Not_cisc_spillable;
1152     }
1153   } else {
1154     cisc_spill_operand = Not_cisc_spillable;
1155   }
1156       
1157   set_cisc_spill_operand(cisc_spill_operand);
1158   return (cisc_spill_operand != Not_cisc_spillable);
1159 }
1160 
1161 // Check to see if this instruction can be replaced with the short branch
1162 // instruction `short-branch'
1163 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
1164   if (_matrule != NULL &&
1165       this != short_branch &&   // Don't match myself
1166       !is_short_branch() &&     // Don't match another short branch variant
1167       reduce_result() != NULL &&       
1168       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
1169       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
1170     // The instructions are equivalent.
1171     if (AD._short_branch_debug) {
1172       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
1173     }
1174     _short_branch_form = short_branch;
1175     return true;
1176   }
1177   return false;
1178 }
1179 
1180 
1181 // --------------------------- FILE *output_routines
1182 // 
1183 // Generate the format call for the replacement variable
1184 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
1185   // Find replacement variable's type
1186   const Form *form   = _localNames[rep_var];
1187   if (form == NULL) {
1188     fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
1189     assert(false, "ShouldNotReachHere()");
1190   }
1191   OpClassForm *opc   = form->is_opclass();
1192   assert( opc, "replacement variable was not found in local names");
1193   // Lookup the index position of the replacement variable
1194   int idx  = operand_position_format(rep_var);
1195   if ( idx == -1 ) {
1196     assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
1197     assert( false, "ShouldNotReachHere()");
1198   }
1199 
1200   if (is_noninput_operand(idx)) {
1201     // This component isn't in the input array.  Print out the static
1202     // name of the register.
1203     OperandForm* oper = form->is_operand();
1204     if (oper != NULL && oper->is_bound_register()) {
1205       const RegDef* first = oper->get_RegClass()->find_first_elem();
1206       fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
1207     } else {
1208       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
1209     }
1210   } else {
1211     // Output the format call for this operand
1212     fprintf(fp,"opnd_array(%d)->",idx);
1213     if (idx == 0) 
1214       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
1215     else
1216       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
1217   }
1218 }
1219 
1220 // Seach through operands to determine parameters unique positions.
1221 void InstructForm::set_unique_opnds() {
1222   uint* uniq_idx = NULL;
1223   uint  nopnds = num_opnds();
1224   uint  num_uniq = nopnds;
1225   uint i;
1226   if ( nopnds > 0 ) {
1227     // Allocate index array with reserve.
1228     uniq_idx = (uint*) malloc(sizeof(uint)*(nopnds + 2));
1229     for( i = 0; i < nopnds+2; i++ ) {
1230       uniq_idx[i] = i;
1231     }
1232   }
1233   // Do it only if there is a match rule and no expand rule.  With an
1234   // expand rule it is done by creating new mach node in Expand()
1235   // method.
1236   if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
1237     const char *name;
1238     uint count;
1239     bool has_dupl_use = false;
1240     
1241     _parameters.reset();
1242     while( (name = _parameters.iter()) != NULL ) {
1243       count = 0;
1244       uint position = 0;
1245       uint uniq_position = 0;
1246       _components.reset();
1247       Component *comp = NULL;
1248       if( sets_result() ) {
1249         comp = _components.iter();
1250         position++;
1251       }
1252       // The next code is copied from the method operand_position().
1253       for (; (comp = _components.iter()) != NULL; ++position) {
1254         // When the first component is not a DEF, 
1255         // leave space for the result operand!
1256         if ( position==0 && (! comp->isa(Component::DEF)) ) {
1257           ++position;
1258         }
1259         if( strcmp(name, comp->_name)==0 ) {
1260           if( ++count > 1 ) {
1261             uniq_idx[position] = uniq_position;
1262             has_dupl_use = true;
1263           } else {
1264             uniq_position = position;
1265           }
1266         }
1267         if( comp->isa(Component::DEF)
1268             && comp->isa(Component::USE) ) {
1269           ++position;
1270           if( position != 1 )
1271             --position;   // only use two slots for the 1st USE_DEF
1272         }
1273       }
1274     }
1275     if( has_dupl_use ) {
1276       for( i = 1; i < nopnds; i++ )
1277         if( i != uniq_idx[i] )
1278           break;
1279       int  j = i;
1280       for( ; i < nopnds; i++ )
1281         if( i == uniq_idx[i] )
1282           uniq_idx[i] = j++;
1283       num_uniq = j;
1284     }
1285   }
1286   _uniq_idx = uniq_idx;
1287   _num_uniq = num_uniq;
1288 }
1289 
1290 // Generate index values needed for determing the operand position
1291 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
1292   uint  idx = 0;                  // position of operand in match rule
1293   int   cur_num_opnds = num_opnds();
1294 
1295   // Compute the index into vector of operand pointers:
1296   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
1297   // idx1 starts at oper_input_base()
1298   if ( cur_num_opnds >= 1 ) {
1299     fprintf(fp,"    // Start at oper_input_base() and count operands\n");
1300     fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
1301     fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
1302 
1303     // Generate starting points for other unique operands if they exist
1304     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
1305       if( *receiver == 0 ) {
1306         fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
1307                 prefix, idx, prefix, idx-1, idx-1 );
1308       } else {
1309         fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
1310                 prefix, idx, prefix, idx-1, receiver, idx-1 );
1311       }
1312     }
1313   }
1314   if( *receiver != 0 ) {
1315     // This value is used by generate_peepreplace when copying a node.
1316     // Don't emit it in other cases since it can hide bugs with the
1317     // use invalid idx's.
1318     fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
1319   }
1320 
1321 }
1322 
1323 // ---------------------------
1324 bool InstructForm::verify() {
1325   // !!!!! !!!!!
1326   // Check that a "label" operand occurs last in the operand list, if present
1327   return true;
1328 }
1329 
1330 void InstructForm::dump() {
1331   output(stderr);
1332 }
1333 
1334 void InstructForm::output(FILE *fp) {
1335   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
1336   if (_matrule)   _matrule->output(fp);
1337   if (_insencode) _insencode->output(fp);
1338   if (_opcode)    _opcode->output(fp);
1339   if (_attribs)   _attribs->output(fp);
1340   if (_predicate) _predicate->output(fp);
1341   if (_effects.Size()) {
1342     fprintf(fp,"Effects\n");
1343     _effects.dump();
1344   }
1345   if (_exprule)   _exprule->output(fp);
1346   if (_rewrule)   _rewrule->output(fp);
1347   if (_format)    _format->output(fp);
1348   if (_peephole)  _peephole->output(fp);
1349 }
1350 
1351 void MachNodeForm::dump() {
1352   output(stderr);
1353 }
1354 
1355 void MachNodeForm::output(FILE *fp) {
1356   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
1357 }
1358 
1359 //------------------------------build_predicate--------------------------------
1360 // Build instruction predicates.  If the user uses the same operand name
1361 // twice, we need to check that the operands are pointer-eequivalent in
1362 // the DFA during the labeling process.
1363 Predicate *InstructForm::build_predicate() {
1364   char buf[1024], *s=buf;
1365   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
1366 
1367   MatchNode *mnode = 
1368     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
1369   mnode->count_instr_names(names);
1370 
1371   uint first = 1;
1372   // Start with the predicate supplied in the .ad file.
1373   if( _predicate ) {
1374     if( first ) first=0;
1375     strcpy(s,"("); s += strlen(s);
1376     strcpy(s,_predicate->_pred);
1377     s += strlen(s);
1378     strcpy(s,")"); s += strlen(s);
1379   }
1380   for( DictI i(&names); i.test(); ++i ) {
1381     uintptr_t cnt = (uintptr_t)i._value;
1382     if( cnt > 1 ) {             // Need a predicate at all?
1383       assert( cnt == 2, "Unimplemented" );
1384       // Handle many pairs
1385       if( first ) first=0;
1386       else {                    // All tests must pass, so use '&&'
1387         strcpy(s," && ");  
1388         s += strlen(s);
1389       }
1390       // Add predicate to working buffer
1391       sprintf(s,"/*%s*/(",(char*)i._key);
1392       s += strlen(s);
1393       mnode->build_instr_pred(s,(char*)i._key,0);
1394       s += strlen(s);
1395       strcpy(s," == "); s += strlen(s);
1396       mnode->build_instr_pred(s,(char*)i._key,1);
1397       s += strlen(s);
1398       strcpy(s,")"); s += strlen(s);
1399     }
1400   }
1401   if( s == buf ) s = NULL;
1402   else {
1403     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
1404     s = strdup(buf);
1405   }
1406   return new Predicate(s);
1407 }
1408 
1409 //------------------------------EncodeForm-------------------------------------
1410 // Constructor
1411 EncodeForm::EncodeForm() 
1412   : _encClass(cmpstr,hashstr, Form::arena) {
1413 }
1414 EncodeForm::~EncodeForm() {
1415 }
1416 
1417 // record a new register class
1418 EncClass *EncodeForm::add_EncClass(const char *className) {
1419   EncClass *encClass = new EncClass(className);
1420   _eclasses.addName(className);
1421   _encClass.Insert(className,encClass);
1422   return encClass;
1423 }
1424 
1425 // Lookup the function body for an encoding class
1426 EncClass  *EncodeForm::encClass(const char *className) {
1427   assert( className != NULL, "Must provide a defined encoding name");
1428 
1429   EncClass *encClass = (EncClass*)_encClass[className];
1430   return encClass;
1431 }
1432 
1433 // Lookup the function body for an encoding class
1434 const char *EncodeForm::encClassBody(const char *className) {
1435   if( className == NULL ) return NULL;
1436 
1437   EncClass *encClass = (EncClass*)_encClass[className];
1438   assert( encClass != NULL, "Encode Class is missing.");
1439   encClass->_code.reset();
1440   const char *code = (const char*)encClass->_code.iter();
1441   assert( code != NULL, "Found an empty encode class body.");
1442   
1443   return code;
1444 }
1445 
1446 // Lookup the function body for an encoding class
1447 const char *EncodeForm::encClassPrototype(const char *className) {
1448   assert( className != NULL, "Encode class name must be non NULL.");
1449   
1450   return className;
1451 }
1452 
1453 void EncodeForm::dump() {                  // Debug printer
1454   output(stderr);
1455 }
1456 
1457 void EncodeForm::output(FILE *fp) {          // Write info to output files
1458   const char *name;
1459   fprintf(fp,"\n");
1460   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
1461   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
1462     ((EncClass*)_encClass[name])->output(fp);
1463   }
1464   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
1465 } 
1466 //------------------------------EncClass---------------------------------------
1467 EncClass::EncClass(const char *name) 
1468   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
1469 }
1470 EncClass::~EncClass() {
1471 }
1472 
1473 // Add a parameter <type,name> pair
1474 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
1475   _parameter_type.addName( parameter_type );
1476   _parameter_name.addName( parameter_name );
1477 }
1478 
1479 // Verify operand types in parameter list
1480 bool EncClass::check_parameter_types(FormDict &globals) {
1481   // !!!!!
1482   return false;
1483 }
1484 
1485 // Add the decomposed "code" sections of an encoding's code-block
1486 void EncClass::add_code(const char *code) {
1487   _code.addName(code);
1488 }
1489 
1490 // Add the decomposed "replacement variables" of an encoding's code-block
1491 void EncClass::add_rep_var(char *replacement_var) {
1492   _code.addName(NameList::_signal);
1493   _rep_vars.addName(replacement_var);
1494 }
1495 
1496 // Lookup the function body for an encoding class
1497 int EncClass::rep_var_index(const char *rep_var) {
1498   uint        position = 0;
1499   const char *name     = NULL;
1500 
1501   _parameter_name.reset();
1502   while ( (name = _parameter_name.iter()) != NULL ) {
1503     if ( strcmp(rep_var,name) == 0 ) return position;
1504     ++position;
1505   }
1506 
1507   return -1;
1508 }
1509 
1510 // Check after parsing
1511 bool EncClass::verify() {
1512   // 1!!!!
1513   // Check that each replacement variable, '$name' in architecture description
1514   // is actually a local variable for this encode class, or a reserved name
1515   // "primary, secondary, tertiary"
1516   return true;
1517 }
1518 
1519 void EncClass::dump() {
1520   output(stderr);
1521 }
1522 
1523 // Write info to output files
1524 void EncClass::output(FILE *fp) {
1525   fprintf(fp,"EncClass: %s", (_name ? _name : "")); 
1526 
1527   // Output the parameter list
1528   _parameter_type.reset();
1529   _parameter_name.reset();
1530   const char *type = _parameter_type.iter();
1531   const char *name = _parameter_name.iter();
1532   fprintf(fp, " ( ");
1533   for ( ; (type != NULL) && (name != NULL);
1534         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
1535     fprintf(fp, " %s %s,", type, name);
1536   }
1537   fprintf(fp, " ) ");
1538 
1539   // Output the code block
1540   _code.reset();
1541   _rep_vars.reset();
1542   const char *code;
1543   while ( (code = _code.iter()) != NULL ) {
1544     if ( _code.is_signal(code) ) {
1545       // A replacement variable
1546       const char *rep_var = _rep_vars.iter();
1547       fprintf(fp,"($%s)", rep_var);
1548     } else {
1549       // A section of code
1550       fprintf(fp,"%s", code);
1551     }
1552   }
1553 
1554 }
1555 
1556 //------------------------------Opcode-----------------------------------------
1557 Opcode::Opcode(char *primary, char *secondary, char *tertiary) 
1558   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
1559 }
1560 
1561 Opcode::~Opcode() {
1562 }
1563 
1564 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
1565   if( strcmp(param,"primary") == 0 ) {
1566     return Opcode::PRIMARY;
1567   }
1568   else if( strcmp(param,"secondary") == 0 ) {
1569     return Opcode::SECONDARY;
1570   }
1571   else if( strcmp(param,"tertiary") == 0 ) {
1572     return Opcode::TERTIARY;
1573   }
1574   return Opcode::NOT_AN_OPCODE;
1575 }
1576 
1577 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
1578   // Default values previously provided by MachNode::primary()...
1579   const char *description = NULL;
1580   const char *value       = NULL;
1581   // Check if user provided any opcode definitions
1582   if( this != NULL ) {
1583     // Update 'value' if user provided a definition in the instruction
1584     switch (desired_opcode) {
1585     case PRIMARY:
1586       description = "primary()";
1587       if( _primary   != NULL)  { value = _primary;     }
1588       break;
1589     case SECONDARY:
1590       description = "secondary()";
1591       if( _secondary != NULL ) { value = _secondary;   }
1592       break;
1593     case TERTIARY:
1594       description = "tertiary()";
1595       if( _tertiary  != NULL ) { value = _tertiary;    }
1596       break;
1597     default:
1598       assert( false, "ShouldNotReachHere();");
1599       break;
1600     }
1601   }
1602   if (value != NULL) {
1603     fprintf(fp, "(%s /*%s*/)", value, description);
1604   }
1605   return value != NULL;
1606 }
1607 
1608 void Opcode::dump() {
1609   output(stderr);
1610 }
1611 
1612 // Write info to output files
1613 void Opcode::output(FILE *fp) {
1614   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
1615   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
1616   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
1617 }
1618 
1619 //------------------------------InsEncode--------------------------------------
1620 InsEncode::InsEncode() {
1621 }
1622 InsEncode::~InsEncode() {
1623 }
1624 
1625 // Add "encode class name" and its parameters
1626 NameAndList *InsEncode::add_encode(char *encoding) {
1627   assert( encoding != NULL, "Must provide name for encoding");
1628 
1629   // add_parameter(NameList::_signal);
1630   NameAndList *encode = new NameAndList(encoding);
1631   _encoding.addName((char*)encode);
1632 
1633   return encode;
1634 }
1635 
1636 // Access the list of encodings 
1637 void InsEncode::reset() {
1638   _encoding.reset();
1639   // _parameter.reset();
1640 }
1641 const char* InsEncode::encode_class_iter() {
1642   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
1643   return  ( encode_class != NULL ? encode_class->name() : NULL );
1644 }
1645 // Obtain parameter name from zero based index
1646 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
1647   NameAndList *params = (NameAndList*)_encoding.current();
1648   assert( params != NULL, "Internal Error");
1649   const char *param = (*params)[param_no];
1650 
1651   // Remove '$' if parser placed it there.
1652   return ( param != NULL && *param == '$') ? (param+1) : param;
1653 }
1654   
1655 void InsEncode::dump() {
1656   output(stderr);
1657 }
1658 
1659 // Write info to output files
1660 void InsEncode::output(FILE *fp) {
1661   NameAndList *encoding  = NULL;
1662   const char  *parameter = NULL;
1663 
1664   fprintf(fp,"InsEncode: ");
1665   _encoding.reset();
1666 
1667   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
1668     // Output the encoding being used
1669     fprintf(fp,"%s(", encoding->name() );
1670 
1671     // Output its parameter list, if any
1672     bool first_param = true;
1673     encoding->reset();
1674     while (  (parameter = encoding->iter()) != 0 ) {
1675       // Output the ',' between parameters
1676       if ( ! first_param )  fprintf(fp,", ");
1677       first_param = false;
1678       // Output the parameter
1679       fprintf(fp,"%s", parameter);
1680     } // done with parameters
1681     fprintf(fp,")  ");
1682   } // done with encodings
1683 
1684   fprintf(fp,"\n");
1685 }
1686 
1687 //------------------------------Effect-----------------------------------------
1688 static int effect_lookup(const char *name) {
1689   if(!strcmp(name, "USE")) return Component::USE;
1690   if(!strcmp(name, "DEF")) return Component::DEF;
1691   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
1692   if(!strcmp(name, "KILL")) return Component::KILL;
1693   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
1694   if(!strcmp(name, "TEMP")) return Component::TEMP;
1695   if(!strcmp(name, "INVALID")) return Component::INVALID;
1696   assert( false,"Invalid effect name specified\n");
1697   return Component::INVALID;
1698 }
1699 
1700 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
1701   _ftype = Form::EFF;
1702 }
1703 Effect::~Effect() {
1704 }
1705 
1706 // Dynamic type check
1707 Effect *Effect::is_effect() const {
1708   return (Effect*)this;
1709 }
1710 
1711 
1712 // True if this component is equal to the parameter.
1713 bool Effect::is(int use_def_kill_enum) const {
1714   return (_use_def == use_def_kill_enum ? true : false);
1715 }
1716 // True if this component is used/def'd/kill'd as the parameter suggests.
1717 bool Effect::isa(int use_def_kill_enum) const {
1718   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
1719 }
1720 
1721 void Effect::dump() {
1722   output(stderr);
1723 }
1724 
1725 void Effect::output(FILE *fp) {          // Write info to output files
1726   fprintf(fp,"Effect: %s\n", (_name?_name:"")); 
1727 }
1728 
1729 //------------------------------ExpandRule-------------------------------------
1730 ExpandRule::ExpandRule() : _expand_instrs(),
1731                            _newopconst(cmpstr, hashstr, Form::arena) {
1732   _ftype = Form::EXP;
1733 }
1734 
1735 ExpandRule::~ExpandRule() {                  // Destructor
1736 }
1737 
1738 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
1739   _expand_instrs.addName((char*)instruction_name_and_operand_list);
1740 }
1741 
1742 void ExpandRule::reset_instructions() {
1743   _expand_instrs.reset();
1744 }
1745 
1746 NameAndList* ExpandRule::iter_instructions() {
1747   return (NameAndList*)_expand_instrs.iter();
1748 }
1749 
1750 
1751 void ExpandRule::dump() {
1752   output(stderr);
1753 }
1754 
1755 void ExpandRule::output(FILE *fp) {         // Write info to output files
1756   NameAndList *expand_instr = NULL;
1757   const char *opid = NULL;
1758 
1759   fprintf(fp,"\nExpand Rule:\n");
1760 
1761   // Iterate over the instructions 'node' expands into
1762   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
1763     fprintf(fp,"%s(", expand_instr->name());
1764 
1765     // iterate over the operand list
1766     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1767       fprintf(fp,"%s ", opid);
1768     }
1769     fprintf(fp,");\n");
1770   }
1771 } 
1772 
1773 //------------------------------RewriteRule------------------------------------
1774 RewriteRule::RewriteRule(char* params, char* block) 
1775   : _tempParams(params), _tempBlock(block) { };  // Constructor
1776 RewriteRule::~RewriteRule() {                 // Destructor
1777 }
1778 
1779 void RewriteRule::dump() {
1780   output(stderr);
1781 }
1782 
1783 void RewriteRule::output(FILE *fp) {         // Write info to output files
1784   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n", 
1785           (_tempParams?_tempParams:""),
1786           (_tempBlock?_tempBlock:""));
1787 }
1788 
1789 
1790 //==============================MachNodes======================================
1791 //------------------------------MachNodeForm-----------------------------------
1792 MachNodeForm::MachNodeForm(char *id)
1793   : _ident(id) {
1794 }
1795 
1796 MachNodeForm::~MachNodeForm() {
1797 }
1798 
1799 MachNodeForm *MachNodeForm::is_machnode() const {
1800   return (MachNodeForm*)this;
1801 }
1802 
1803 //==============================Operand Classes================================
1804 //------------------------------OpClassForm------------------------------------
1805 OpClassForm::OpClassForm(const char* id) : _ident(id) {
1806   _ftype = Form::OPCLASS;
1807 }
1808 
1809 OpClassForm::~OpClassForm() {
1810 }
1811 
1812 bool OpClassForm::ideal_only() const { return 0; }
1813 
1814 OpClassForm *OpClassForm::is_opclass() const {
1815   return (OpClassForm*)this;
1816 }
1817 
1818 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
1819   if( _oplst.count() == 0 ) return Form::no_interface;
1820 
1821   // Check that my operands have the same interface type
1822   Form::InterfaceType  interface;
1823   bool  first = true;
1824   NameList &op_list = (NameList &)_oplst;
1825   op_list.reset();
1826   const char *op_name;
1827   while( (op_name = op_list.iter()) != NULL ) {
1828     const Form  *form    = globals[op_name];
1829     OperandForm *operand = form->is_operand();
1830     assert( operand, "Entry in operand class that is not an operand");
1831     if( first ) {
1832       first     = false;
1833       interface = operand->interface_type(globals);
1834     } else {
1835       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
1836     }
1837   }
1838   return interface;
1839 }
1840 
1841 bool OpClassForm::stack_slots_only(FormDict &globals) const {
1842   if( _oplst.count() == 0 ) return false;  // how?
1843 
1844   NameList &op_list = (NameList &)_oplst;
1845   op_list.reset();
1846   const char *op_name;
1847   while( (op_name = op_list.iter()) != NULL ) {
1848     const Form  *form    = globals[op_name];
1849     OperandForm *operand = form->is_operand();
1850     assert( operand, "Entry in operand class that is not an operand");
1851     if( !operand->stack_slots_only(globals) )  return false;
1852   }
1853   return true;
1854 }
1855 
1856 
1857 void OpClassForm::dump() {
1858   output(stderr);
1859 }
1860 
1861 void OpClassForm::output(FILE *fp) {
1862   const char *name;
1863   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
1864   fprintf(fp,"\nCount = %d\n", _oplst.count());
1865   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
1866     fprintf(fp,"%s, ",name);
1867   }
1868   fprintf(fp,"\n");
1869 }
1870 
1871 
1872 //==============================Operands=======================================
1873 //------------------------------OperandForm------------------------------------
1874 OperandForm::OperandForm(const char* id)
1875   : OpClassForm(id), _ideal_only(false), 
1876     _localNames(cmpstr, hashstr, Form::arena) {
1877       _ftype = Form::OPER;
1878 
1879       _matrule   = NULL;
1880       _interface = NULL;
1881       _attribs   = NULL;
1882       _predicate = NULL;
1883       _constraint= NULL;
1884       _construct = NULL;
1885       _format    = NULL;
1886 }
1887 OperandForm::OperandForm(const char* id, bool ideal_only)
1888   : OpClassForm(id), _ideal_only(ideal_only), 
1889     _localNames(cmpstr, hashstr, Form::arena) {
1890       _ftype = Form::OPER;
1891 
1892       _matrule   = NULL;
1893       _interface = NULL;
1894       _attribs   = NULL;
1895       _predicate = NULL;
1896       _constraint= NULL;
1897       _construct = NULL;
1898       _format    = NULL;
1899 }
1900 OperandForm::~OperandForm() {
1901 }
1902 
1903 
1904 OperandForm *OperandForm::is_operand() const {
1905   return (OperandForm*)this;
1906 }
1907 
1908 bool OperandForm::ideal_only() const {
1909   return _ideal_only;
1910 }
1911 
1912 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
1913   if( _interface == NULL )  return Form::no_interface;
1914 
1915   return _interface->interface_type(globals);
1916 }
1917 
1918 
1919 bool OperandForm::stack_slots_only(FormDict &globals) const {
1920   if( _constraint == NULL )  return false;
1921   return _constraint->stack_slots_only();
1922 }
1923 
1924 
1925 // Access op_cost attribute or return NULL.
1926 const char* OperandForm::cost() {
1927   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
1928     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
1929       return cur->_val;
1930     }
1931   }
1932   return NULL;
1933 }
1934 
1935 // Return the number of leaves below this complex operand
1936 uint OperandForm::num_leaves() const {
1937   if ( ! _matrule) return 0;
1938 
1939   int num_leaves = _matrule->_numleaves;
1940   return num_leaves;
1941 }
1942 
1943 // Return the number of constants contained within this complex operand
1944 uint OperandForm::num_consts(FormDict &globals) const {
1945   if ( ! _matrule) return 0;
1946 
1947   // This is a recursive invocation on all operands in the matchrule
1948   return _matrule->num_consts(globals);
1949 }
1950 
1951 // Return the number of constants in match rule with specified type
1952 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
1953   if ( ! _matrule) return 0;
1954 
1955   // This is a recursive invocation on all operands in the matchrule
1956   return _matrule->num_consts(globals, type);
1957 }
1958 
1959 // Return the number of pointer constants contained within this complex operand
1960 uint OperandForm::num_const_ptrs(FormDict &globals) const {
1961   if ( ! _matrule) return 0;
1962 
1963   // This is a recursive invocation on all operands in the matchrule
1964   return _matrule->num_const_ptrs(globals);
1965 }
1966 
1967 uint OperandForm::num_edges(FormDict &globals) const {
1968   uint edges  = 0;
1969   uint leaves = num_leaves();
1970   uint consts = num_consts(globals);
1971 
1972   // If we are matching a constant directly, there are no leaves.
1973   edges = ( leaves > consts ) ? leaves - consts : 0;
1974 
1975   // !!!!!
1976   // Special case operands that do not have a corresponding ideal node.
1977   if( (edges == 0) && (consts == 0) ) {
1978     if( constrained_reg_class() != NULL ) {
1979       edges = 1;
1980     } else {
1981       if( _matrule
1982           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
1983         const Form *form = globals[_matrule->_opType];
1984         OperandForm *oper = form ? form->is_operand() : NULL;
1985         if( oper ) {
1986           return oper->num_edges(globals);
1987         }
1988       }
1989     }
1990   }
1991 
1992   return edges;
1993 }
1994   
1995 
1996 // Check if this operand is usable for cisc-spilling
1997 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
1998   const char *ideal = ideal_type(globals);
1999   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
2000   return is_cisc_reg;
2001 }
2002 
2003 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
2004   Form::InterfaceType my_interface = interface_type(globals);
2005   return (my_interface == memory_interface);
2006 }
2007 
2008 
2009 // node matches ideal 'Bool'
2010 bool OperandForm::is_ideal_bool() const {
2011   if( _matrule == NULL ) return false;
2012 
2013   return _matrule->is_ideal_bool();
2014 }
2015 
2016 // Require user's name for an sRegX to be stackSlotX
2017 Form::DataType OperandForm::is_user_name_for_sReg() const {
2018   DataType data_type = none;
2019   if( _ident != NULL ) {
2020     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
2021     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
2022     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
2023     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
2024     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
2025   }
2026   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
2027   
2028   return data_type;
2029 }
2030 
2031 
2032 // Return ideal type, if there is a single ideal type for this operand
2033 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
2034   const char *type = NULL;
2035   if (ideal_only()) type = _ident;
2036   else if( _matrule == NULL ) {
2037     // Check for condition code register
2038     const char *rc_name = constrained_reg_class();
2039     // !!!!!
2040     if (rc_name == NULL) return NULL;
2041     // !!!!! !!!!! 
2042     // Check constraints on result's register class
2043     if( registers ) {
2044       RegClass *reg_class  = registers->getRegClass(rc_name);
2045       assert( reg_class != NULL, "Register class is not defined");
2046 
2047       // Check for ideal type of entries in register class, all are the same type
2048       reg_class->reset();
2049       RegDef *reg_def = reg_class->RegDef_iter();
2050       assert( reg_def != NULL, "No entries in register class");
2051       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
2052       // Return substring that names the register's ideal type
2053       type = reg_def->_idealtype + 3;
2054       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
2055       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
2056       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
2057     }
2058   }
2059   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
2060     // This operand matches a single type, at the top level.
2061     // Check for ideal type
2062     type = _matrule->_opType;
2063     if( strcmp(type,"Bool") == 0 )
2064       return "Bool";
2065     // transitive lookup
2066     const Form *frm = globals[type];
2067     OperandForm *op = frm->is_operand();
2068     type = op->ideal_type(globals, registers);
2069   }
2070   return type;
2071 }
2072 
2073 
2074 // If there is a single ideal type for this interface field, return it.
2075 const char *OperandForm::interface_ideal_type(FormDict &globals, 
2076                                               const char *field) const {
2077   const char  *ideal_type = NULL;
2078   const char  *value      = NULL;
2079 
2080   // Check if "field" is valid for this operand's interface
2081   if ( ! is_interface_field(field, value) )   return ideal_type;
2082 
2083   // !!!!! !!!!! !!!!!
2084   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
2085 
2086   // Else, lookup type of field's replacement variable
2087 
2088   return ideal_type;
2089 }
2090 
2091 
2092 RegClass* OperandForm::get_RegClass() const {
2093   if (_interface && !_interface->is_RegInterface()) return NULL;
2094   return globalAD->get_registers()->getRegClass(constrained_reg_class());
2095 }
2096 
2097 
2098 bool OperandForm::is_bound_register() const {
2099   RegClass *reg_class  = get_RegClass();
2100   if (reg_class == NULL) return false;
2101 
2102   const char * name = ideal_type(globalAD->globalNames());
2103   if (name == NULL) return false;
2104 
2105   int size = 0;
2106   if (strcmp(name,"RegFlags")==0) size =  1;
2107   if (strcmp(name,"RegI")==0) size =  1;
2108   if (strcmp(name,"RegF")==0) size =  1;
2109   if (strcmp(name,"RegD")==0) size =  2;
2110   if (strcmp(name,"RegL")==0) size =  2;
2111   if (strcmp(name,"RegN")==0) size =  1;
2112   if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
2113   if (size == 0) return false;
2114   return size == reg_class->size();
2115 }
2116 
2117 
2118 // Check if this is a valid field for this operand,
2119 // Return 'true' if valid, and set the value to the string the user provided.
2120 bool  OperandForm::is_interface_field(const char *field,
2121                                       const char * &value) const {
2122   return false;
2123 }
2124 
2125 
2126 // Return register class name if a constraint specifies the register class.
2127 const char *OperandForm::constrained_reg_class() const {
2128   const char *reg_class  = NULL;
2129   if ( _constraint ) {
2130     // !!!!!
2131     Constraint *constraint = _constraint;
2132     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
2133       reg_class = _constraint->_arg;
2134     }
2135   }
2136 
2137   return reg_class;
2138 }
2139 
2140 
2141 // Return the register class associated with 'leaf'.
2142 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
2143   const char *reg_class = NULL; // "RegMask::Empty";
2144 
2145   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
2146     reg_class = constrained_reg_class();
2147     return reg_class;
2148   }
2149   const char *result   = NULL;
2150   const char *name     = NULL;
2151   const char *type     = NULL;
2152   // iterate through all base operands 
2153   // until we reach the register that corresponds to "leaf"
2154   // This function is not looking for an ideal type.  It needs the first
2155   // level user type associated with the leaf.
2156   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
2157     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
2158     OperandForm *oper = form ? form->is_operand() : NULL;
2159     if( oper ) {
2160       reg_class = oper->constrained_reg_class();
2161       if( reg_class ) {
2162         reg_class = reg_class;
2163       } else { 
2164         // ShouldNotReachHere();
2165       }
2166     } else {
2167       // ShouldNotReachHere();
2168     }
2169 
2170     // Increment our target leaf position if current leaf is not a candidate.
2171     if( reg_class == NULL)    ++leaf;
2172     // Exit the loop with the value of reg_class when at the correct index
2173     if( idx == leaf )         break;
2174     // May iterate through all base operands if reg_class for 'leaf' is NULL
2175   }
2176   return reg_class;
2177 }
2178 
2179 
2180 // Recursive call to construct list of top-level operands.
2181 // Implementation does not modify state of internal structures
2182 void OperandForm::build_components() {
2183   if (_matrule)  _matrule->append_components(_localNames, _components);
2184 
2185   // Add parameters that "do not appear in match rule".
2186   const char *name;
2187   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
2188     OperandForm *opForm = (OperandForm*)_localNames[name];
2189 
2190     if ( _components.operand_position(name) == -1 ) {
2191       _components.insert(name, opForm->_ident, Component::INVALID, false);
2192     }
2193   }
2194 
2195   return;
2196 }
2197 
2198 int OperandForm::operand_position(const char *name, int usedef) {
2199   return _components.operand_position(name, usedef);
2200 }
2201 
2202 
2203 // Return zero-based position in component list, only counting constants;
2204 // Return -1 if not in list.
2205 int OperandForm::constant_position(FormDict &globals, const Component *last) {
2206   // Iterate through components and count constants preceeding 'constant'
2207   uint  position = 0;
2208   Component *comp;
2209   _components.reset();
2210   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
2211     // Special case for operands that take a single user-defined operand
2212     // Skip the initial definition in the component list.
2213     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2214 
2215     const char *type = comp->_type;
2216     // Lookup operand form for replacement variable's type
2217     const Form *form = globals[type];
2218     assert( form != NULL, "Component's type not found");
2219     OperandForm *oper = form ? form->is_operand() : NULL;
2220     if( oper ) {
2221       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
2222         ++position;
2223       }
2224     }
2225   }
2226 
2227   // Check for being passed a component that was not in the list
2228   if( comp != last )  position = -1;
2229 
2230   return position;
2231 }
2232 // Provide position of constant by "name"
2233 int OperandForm::constant_position(FormDict &globals, const char *name) {
2234   const Component *comp = _components.search(name);
2235   int idx = constant_position( globals, comp );
2236 
2237   return idx;
2238 }
2239 
2240 
2241 // Return zero-based position in component list, only counting constants;
2242 // Return -1 if not in list.
2243 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
2244   // Iterate through components and count registers preceeding 'last'
2245   uint  position = 0;
2246   Component *comp;
2247   _components.reset();
2248   while( (comp = _components.iter()) != NULL  
2249          && (strcmp(comp->_name,reg_name) != 0) ) {
2250     // Special case for operands that take a single user-defined operand
2251     // Skip the initial definition in the component list.
2252     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
2253 
2254     const char *type = comp->_type;
2255     // Lookup operand form for component's type
2256     const Form *form = globals[type];
2257     assert( form != NULL, "Component's type not found");
2258     OperandForm *oper = form ? form->is_operand() : NULL;
2259     if( oper ) {
2260       if( oper->_matrule->is_base_register(globals) ) {
2261         ++position;
2262       }
2263     }
2264   }
2265 
2266   return position;
2267 }
2268 
2269 
2270 const char *OperandForm::reduce_result()  const {
2271   return _ident;
2272 }
2273 // Return the name of the operand on the right hand side of the binary match
2274 // Return NULL if there is no right hand side
2275 const char *OperandForm::reduce_right(FormDict &globals)  const {
2276   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
2277 }
2278 
2279 // Similar for left
2280 const char *OperandForm::reduce_left(FormDict &globals)   const {
2281   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
2282 }
2283 
2284 
2285 // --------------------------- FILE *output_routines
2286 // 
2287 // Output code for disp_is_oop, if true.
2288 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
2289   //  Check it is a memory interface with a non-user-constant disp field
2290   if ( this->_interface == NULL ) return;
2291   MemInterface *mem_interface = this->_interface->is_MemInterface();
2292   if ( mem_interface == NULL )    return;
2293   const char   *disp  = mem_interface->_disp;
2294   if ( *disp != '$' )             return;
2295 
2296   // Lookup replacement variable in operand's component list
2297   const char   *rep_var = disp + 1;
2298   const Component *comp = this->_components.search(rep_var);
2299   assert( comp != NULL, "Replacement variable not found in components");
2300   // Lookup operand form for replacement variable's type
2301   const char      *type = comp->_type;
2302   Form            *form = (Form*)globals[type];
2303   assert( form != NULL, "Replacement variable's type not found");
2304   OperandForm     *op   = form->is_operand();
2305   assert( op, "Memory Interface 'disp' can only emit an operand form");
2306   // Check if this is a ConP, which may require relocation
2307   if ( op->is_base_constant(globals) == Form::idealP ) {
2308     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
2309     uint idx  = op->constant_position( globals, rep_var);
2310     fprintf(fp,"  virtual bool disp_is_oop() const {", _ident);
2311     fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
2312     fprintf(fp, " }\n");
2313   }
2314 }
2315 
2316 // Generate code for internal and external format methods
2317 // 
2318 // internal access to reg# node->_idx
2319 // access to subsumed constant _c0, _c1, 
2320 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
2321   Form::DataType dtype;
2322   if (_matrule && (_matrule->is_base_register(globals) ||
2323                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2324     // !!!!! !!!!!
2325     fprintf(fp,    "{ char reg_str[128];\n");
2326     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
2327     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2328     fprintf(fp,"    }\n");
2329   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2330     format_constant( fp, index, dtype );
2331   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2332     // Special format for Stack Slot Register
2333     fprintf(fp,    "{ char reg_str[128];\n");
2334     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
2335     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2336     fprintf(fp,"    }\n");
2337   } else {
2338     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2339     fflush(fp);
2340     fprintf(stderr,"No format defined for %s\n", _ident);
2341     dump();
2342     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
2343   }
2344 }    
2345 
2346 // Similar to "int_format" but for cases where data is external to operand
2347 // external access to reg# node->in(idx)->_idx, 
2348 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
2349   Form::DataType dtype;
2350   if (_matrule && (_matrule->is_base_register(globals) ||
2351                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
2352     fprintf(fp,    "{ char reg_str[128];\n");
2353     fprintf(fp,"      ra->dump_register(node->in(idx");
2354     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2355     fprintf(fp,                                       "),reg_str);\n");
2356     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2357     fprintf(fp,"    }\n");
2358   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
2359     format_constant( fp, index, dtype );
2360   } else if (ideal_to_sReg_type(_ident) != Form::none) {
2361     // Special format for Stack Slot Register
2362     fprintf(fp,    "{ char reg_str[128];\n");
2363     fprintf(fp,"      ra->dump_register(node->in(idx");
2364     if ( index != 0 ) fprintf(fp,                  "+%d",index);
2365     fprintf(fp,                                       "),reg_str);\n");
2366     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
2367     fprintf(fp,"    }\n");
2368   } else {
2369     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
2370     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
2371   }
2372 }
2373 
2374 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
2375   switch(const_type) {
2376   case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
2377   case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
2378   case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
2379   case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
2380   case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2381   case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
2382   default:
2383     assert( false, "ShouldNotReachHere()");
2384   }
2385 }
2386 
2387 // Return the operand form corresponding to the given index, else NULL.
2388 OperandForm *OperandForm::constant_operand(FormDict &globals,
2389                                            uint      index) {
2390   // !!!!!
2391   // Check behavior on complex operands
2392   uint n_consts = num_consts(globals);
2393   if( n_consts > 0 ) {
2394     uint i = 0;
2395     const char *type;
2396     Component  *comp;
2397     _components.reset();
2398     if ((comp = _components.iter()) == NULL) {
2399       assert(n_consts == 1, "Bad component list detected.\n");
2400       // Current operand is THE operand
2401       if ( index == 0 ) {
2402         return this;
2403       }
2404     } // end if NULL
2405     else {
2406       // Skip the first component, it can not be a DEF of a constant
2407       do {
2408         type = comp->base_type(globals);
2409         // Check that "type" is a 'ConI', 'ConP', ...
2410         if ( ideal_to_const_type(type) != Form::none ) {
2411           // When at correct component, get corresponding Operand
2412           if ( index == 0 ) {
2413             return globals[comp->_type]->is_operand();
2414           }
2415           // Decrement number of constants to go
2416           --index;
2417         }
2418       } while((comp = _components.iter()) != NULL);
2419     }
2420   }
2421 
2422   // Did not find a constant for this index.
2423   return NULL;
2424 }
2425 
2426 // If this operand has a single ideal type, return its type
2427 Form::DataType OperandForm::simple_type(FormDict &globals) const {
2428   const char *type_name = ideal_type(globals);
2429   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
2430                                     : Form::none;
2431   return type;
2432 }
2433 
2434 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
2435   if ( _matrule == NULL )    return Form::none;
2436 
2437   return _matrule->is_base_constant(globals);
2438 }
2439 
2440 // "true" if this operand is a simple type that is swallowed
2441 bool  OperandForm::swallowed(FormDict &globals) const {
2442   Form::DataType type   = simple_type(globals);
2443   if( type != Form::none ) {
2444     return true;
2445   }
2446 
2447   return false;
2448 }
2449 
2450 // Output code to access the value of the index'th constant 
2451 void OperandForm::access_constant(FILE *fp, FormDict &globals, 
2452                                   uint const_index) {
2453   OperandForm *oper = constant_operand(globals, const_index);
2454   assert( oper, "Index exceeds number of constants in operand");
2455   Form::DataType dtype = oper->is_base_constant(globals);
2456 
2457   switch(dtype) {
2458   case idealI: fprintf(fp,"_c%d",           const_index); break;
2459   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
2460   case idealL: fprintf(fp,"_c%d",           const_index); break;
2461   case idealF: fprintf(fp,"_c%d",           const_index); break;
2462   case idealD: fprintf(fp,"_c%d",           const_index); break;
2463   default:
2464     assert( false, "ShouldNotReachHere()");
2465   }
2466 }
2467 
2468 
2469 void OperandForm::dump() {
2470   output(stderr);
2471 }
2472 
2473 void OperandForm::output(FILE *fp) {
2474   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
2475   if (_matrule)    _matrule->dump();
2476   if (_interface)  _interface->dump();
2477   if (_attribs)    _attribs->dump();
2478   if (_predicate)  _predicate->dump();
2479   if (_constraint) _constraint->dump();
2480   if (_construct)  _construct->dump();
2481   if (_format)     _format->dump();
2482 }
2483 
2484 //------------------------------Constraint-------------------------------------
2485 Constraint::Constraint(const char *func, const char *arg)
2486   : _func(func), _arg(arg) {
2487 }
2488 Constraint::~Constraint() { /* not owner of char* */
2489 }
2490 
2491 bool Constraint::stack_slots_only() const {
2492   return strcmp(_func, "ALLOC_IN_RC") == 0
2493       && strcmp(_arg,  "stack_slots") == 0;
2494 }
2495 
2496 void Constraint::dump() {
2497   output(stderr);
2498 }
2499 
2500 void Constraint::output(FILE *fp) {           // Write info to output files
2501   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
2502   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg); 
2503 }
2504 
2505 //------------------------------Predicate--------------------------------------
2506 Predicate::Predicate(char *pr)
2507   : _pred(pr) { 
2508 }
2509 Predicate::~Predicate() {
2510 }
2511 
2512 void Predicate::dump() {
2513   output(stderr);
2514 }
2515 
2516 void Predicate::output(FILE *fp) {
2517   fprintf(fp,"Predicate");  // Write to output files
2518 }
2519 //------------------------------Interface--------------------------------------
2520 Interface::Interface(const char *name) : _name(name) {
2521 }
2522 Interface::~Interface() {
2523 }
2524 
2525 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
2526   Interface *thsi = (Interface*)this;
2527   if ( thsi->is_RegInterface()   ) return Form::register_interface;
2528   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
2529   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
2530   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
2531 
2532   return Form::no_interface;
2533 }
2534 
2535 RegInterface   *Interface::is_RegInterface() {
2536   if ( strcmp(_name,"REG_INTER") != 0 )
2537     return NULL;
2538   return (RegInterface*)this;
2539 }
2540 MemInterface   *Interface::is_MemInterface() {
2541   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
2542   return (MemInterface*)this;
2543 }
2544 ConstInterface *Interface::is_ConstInterface() {
2545   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
2546   return (ConstInterface*)this;
2547 }
2548 CondInterface  *Interface::is_CondInterface() {
2549   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
2550   return (CondInterface*)this;
2551 }
2552 
2553 
2554 void Interface::dump() {
2555   output(stderr);
2556 }
2557 
2558 // Write info to output files
2559 void Interface::output(FILE *fp) {
2560   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
2561 }
2562 
2563 //------------------------------RegInterface-----------------------------------
2564 RegInterface::RegInterface() : Interface("REG_INTER") { 
2565 }
2566 RegInterface::~RegInterface() {
2567 }
2568 
2569 void RegInterface::dump() {
2570   output(stderr);
2571 }
2572 
2573 // Write info to output files
2574 void RegInterface::output(FILE *fp) {
2575   Interface::output(fp);
2576 }
2577 
2578 //------------------------------ConstInterface---------------------------------
2579 ConstInterface::ConstInterface() : Interface("CONST_INTER") { 
2580 }
2581 ConstInterface::~ConstInterface() {
2582 }
2583 
2584 void ConstInterface::dump() {
2585   output(stderr);
2586 }
2587 
2588 // Write info to output files
2589 void ConstInterface::output(FILE *fp) {
2590   Interface::output(fp);
2591 }
2592 
2593 //------------------------------MemInterface-----------------------------------
2594 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp) 
2595   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
2596 }
2597 MemInterface::~MemInterface() {
2598   // not owner of any character arrays
2599 }
2600 
2601 void MemInterface::dump() {
2602   output(stderr);
2603 }
2604 
2605 // Write info to output files
2606 void MemInterface::output(FILE *fp) {
2607   Interface::output(fp);
2608   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
2609   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
2610   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
2611   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
2612   // fprintf(fp,"\n");
2613 }
2614 
2615 //------------------------------CondInterface----------------------------------
2616 CondInterface::CondInterface(const char* equal,         const char* equal_format,
2617                              const char* not_equal,     const char* not_equal_format,
2618                              const char* less,          const char* less_format,
2619                              const char* greater_equal, const char* greater_equal_format,
2620                              const char* less_equal,    const char* less_equal_format,
2621                              const char* greater,       const char* greater_format)
2622   : Interface("COND_INTER"),
2623     _equal(equal),                 _equal_format(equal_format),
2624     _not_equal(not_equal),         _not_equal_format(not_equal_format),
2625     _less(less),                   _less_format(less_format),
2626     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
2627     _less_equal(less_equal),       _less_equal_format(less_equal_format),
2628     _greater(greater),             _greater_format(greater_format) {
2629 }
2630 CondInterface::~CondInterface() {
2631   // not owner of any character arrays
2632 }
2633 
2634 void CondInterface::dump() {
2635   output(stderr);
2636 }
2637 
2638 // Write info to output files
2639 void CondInterface::output(FILE *fp) {
2640   Interface::output(fp);
2641   if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
2642   if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
2643   if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
2644   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
2645   if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
2646   if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
2647   // fprintf(fp,"\n");
2648 }
2649 
2650 //------------------------------ConstructRule----------------------------------
2651 ConstructRule::ConstructRule(char *cnstr)
2652   : _construct(cnstr) { 
2653 }
2654 ConstructRule::~ConstructRule() {
2655 }
2656 
2657 void ConstructRule::dump() {
2658   output(stderr);
2659 }
2660 
2661 void ConstructRule::output(FILE *fp) {
2662   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
2663 }
2664 
2665 
2666 //==============================Shared Forms===================================
2667 //------------------------------AttributeForm----------------------------------
2668 int         AttributeForm::_insId   = 0;           // start counter at 0
2669 int         AttributeForm::_opId    = 0;           // start counter at 0
2670 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
2671 const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
2672 const char* AttributeForm::_op_cost  = "op_cost";  // required name
2673 
2674 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
2675   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
2676     if (type==OP_ATTR) {
2677       id = ++_opId;
2678     }
2679     else if (type==INS_ATTR) {
2680       id = ++_insId;
2681     }
2682     else assert( false,"");
2683 }
2684 AttributeForm::~AttributeForm() {
2685 }
2686 
2687 // Dynamic type check
2688 AttributeForm *AttributeForm::is_attribute() const {
2689   return (AttributeForm*)this;
2690 }
2691 
2692 
2693 // inlined  // int  AttributeForm::type() { return id;}
2694 
2695 void AttributeForm::dump() {
2696   output(stderr);
2697 }
2698 
2699 void AttributeForm::output(FILE *fp) {
2700   if( _attrname && _attrdef ) {
2701     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
2702             _attrname, _attrdef);
2703   }
2704   else {
2705     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
2706             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
2707   }
2708 }
2709 
2710 //------------------------------Component--------------------------------------
2711 Component::Component(const char *name, const char *type, int usedef)
2712   : _name(name), _type(type), _usedef(usedef) {
2713     _ftype = Form::COMP; 
2714 }
2715 Component::~Component() {
2716 }
2717 
2718 // True if this component is equal to the parameter.
2719 bool Component::is(int use_def_kill_enum) const {
2720   return (_usedef == use_def_kill_enum ? true : false);
2721 }
2722 // True if this component is used/def'd/kill'd as the parameter suggests.
2723 bool Component::isa(int use_def_kill_enum) const {
2724   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
2725 }
2726 
2727 // Extend this component with additional use/def/kill behavior
2728 int Component::promote_use_def_info(int new_use_def) {
2729   _usedef |= new_use_def;
2730 
2731   return _usedef;
2732 }
2733 
2734 // Check the base type of this component, if it has one
2735 const char *Component::base_type(FormDict &globals) {
2736   const Form *frm = globals[_type];
2737   if (frm == NULL) return NULL;
2738   OperandForm *op = frm->is_operand();
2739   if (op == NULL) return NULL;
2740   if (op->ideal_only()) return op->_ident;
2741   return (char *)op->ideal_type(globals);
2742 }
2743 
2744 void Component::dump() {
2745   output(stderr);
2746 }
2747 
2748 void Component::output(FILE *fp) {
2749   fprintf(fp,"Component:");  // Write to output files
2750   fprintf(fp, "  name = %s", _name);
2751   fprintf(fp, ", type = %s", _type);
2752   const char * usedef = "Undefined Use/Def info";
2753   switch (_usedef) {
2754     case USE:      usedef = "USE";      break;
2755     case USE_DEF:  usedef = "USE_DEF";  break;
2756     case USE_KILL: usedef = "USE_KILL"; break;
2757     case KILL:     usedef = "KILL";     break;
2758     case TEMP:     usedef = "TEMP";     break;
2759     case DEF:      usedef = "DEF";      break;
2760     default: assert(false, "unknown effect");
2761   }
2762   fprintf(fp, ", use/def = %s\n", usedef);
2763 }
2764 
2765 
2766 //------------------------------ComponentList---------------------------------
2767 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
2768 }
2769 ComponentList::~ComponentList() {
2770   // // This list may not own its elements if copied via assignment
2771   // Component *component;
2772   // for (reset(); (component = iter()) != NULL;) {
2773   //   delete component;
2774   // }
2775 }
2776 
2777 void   ComponentList::insert(Component *component, bool mflag) {
2778   NameList::addName((char *)component);
2779   if(mflag) _matchcnt++;
2780 }
2781 void   ComponentList::insert(const char *name, const char *opType, int usedef, 
2782                              bool mflag) {
2783   Component * component = new Component(name, opType, usedef);
2784   insert(component, mflag);
2785 }
2786 Component *ComponentList::current() { return (Component*)NameList::current(); }
2787 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
2788 Component *ComponentList::match_iter() {
2789   if(_iter < _matchcnt) return (Component*)NameList::iter();
2790   return NULL;
2791 }
2792 Component *ComponentList::post_match_iter() {
2793   Component *comp = iter();
2794   // At end of list?
2795   if ( comp == NULL ) {
2796     return comp;
2797   }
2798   // In post-match components?
2799   if (_iter > match_count()-1) {
2800     return comp;
2801   }
2802 
2803   return post_match_iter();
2804 }
2805 
2806 void       ComponentList::reset()   { NameList::reset(); }
2807 int        ComponentList::count()   { return NameList::count(); }
2808 
2809 Component *ComponentList::operator[](int position) {
2810   // Shortcut complete iteration if there are not enough entries
2811   if (position >= count()) return NULL;
2812 
2813   int        index     = 0;
2814   Component *component = NULL;
2815   for (reset(); (component = iter()) != NULL;) {
2816     if (index == position) {
2817       return component;
2818     }
2819     ++index;
2820   }
2821 
2822   return NULL;
2823 }
2824 
2825 const Component *ComponentList::search(const char *name) {
2826   PreserveIter pi(this);
2827   reset();
2828   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
2829     if( strcmp(comp->_name,name) == 0 ) return comp;
2830   }
2831 
2832   return NULL;
2833 }
2834 
2835 // Return number of USEs + number of DEFs
2836 // When there are no components, or the first component is a USE,
2837 // then we add '1' to hold a space for the 'result' operand.
2838 int ComponentList::num_operands() {
2839   PreserveIter pi(this);
2840   uint       count = 1;           // result operand
2841   uint       position = 0;
2842 
2843   Component *component  = NULL;
2844   for( reset(); (component = iter()) != NULL; ++position ) {
2845     if( component->isa(Component::USE) ||
2846         ( position == 0 && (! component->isa(Component::DEF))) ) {
2847       ++count;
2848     }
2849   }
2850 
2851   return count;
2852 }
2853 
2854 // Return zero-based position in list;  -1 if not in list.
2855 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
2856 int ComponentList::operand_position(const char *name, int usedef) {
2857   PreserveIter pi(this);
2858   int position = 0;
2859   int num_opnds = num_operands();
2860   Component *component;
2861   Component* preceding_non_use = NULL;
2862   Component* first_def = NULL;
2863   for (reset(); (component = iter()) != NULL; ++position) {
2864     // When the first component is not a DEF, 
2865     // leave space for the result operand!
2866     if ( position==0 && (! component->isa(Component::DEF)) ) {
2867       ++position;
2868       ++num_opnds;
2869     }
2870     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
2871       // When the first entry in the component list is a DEF and a USE
2872       // Treat them as being separate, a DEF first, then a USE
2873       if( position==0 
2874           && usedef==Component::USE && component->isa(Component::DEF) ) {
2875         assert(position+1 < num_opnds, "advertised index in bounds");
2876         return position+1;
2877       } else {
2878         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
2879           fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
2880         }
2881         if( position >= num_opnds ) {
2882           fprintf(stderr, "the name '%s' is too late in its name list\n", name);
2883         }
2884         assert(position < num_opnds, "advertised index in bounds");
2885         return position;
2886       }
2887     }
2888     if( component->isa(Component::DEF)
2889         && component->isa(Component::USE) ) {
2890       ++position;
2891       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2892     }
2893     if( component->isa(Component::DEF) && !first_def ) {
2894       first_def = component;
2895     }
2896     if( !component->isa(Component::USE) && component != first_def ) {
2897       preceding_non_use = component;
2898     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
2899       preceding_non_use = NULL;
2900     }
2901   }
2902   return Not_in_list;
2903 }
2904 
2905 // Find position for this name, regardless of use/def information
2906 int ComponentList::operand_position(const char *name) {
2907   PreserveIter pi(this);
2908   int position = 0;
2909   Component *component;
2910   for (reset(); (component = iter()) != NULL; ++position) {
2911     // When the first component is not a DEF, 
2912     // leave space for the result operand!
2913     if ( position==0 && (! component->isa(Component::DEF)) ) {
2914       ++position;
2915     }
2916     if (strcmp(name, component->_name)==0) { 
2917       return position;
2918     }
2919     if( component->isa(Component::DEF)
2920         && component->isa(Component::USE) ) {
2921       ++position;
2922       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2923     }
2924   }
2925   return Not_in_list;
2926 }
2927 
2928 int ComponentList::operand_position_format(const char *name) {
2929   PreserveIter pi(this);
2930   int  first_position = operand_position(name);
2931   int  use_position   = operand_position(name, Component::USE);
2932 
2933   return ((first_position < use_position) ? use_position : first_position);
2934 }
2935 
2936 int ComponentList::label_position() {
2937   PreserveIter pi(this);
2938   int position = 0;
2939   reset();
2940   for( Component *comp; (comp = iter()) != NULL; ++position) {
2941     // When the first component is not a DEF, 
2942     // leave space for the result operand!
2943     if ( position==0 && (! comp->isa(Component::DEF)) ) {
2944       ++position;
2945     }
2946     if (strcmp(comp->_type, "label")==0) { 
2947       return position;
2948     }
2949     if( comp->isa(Component::DEF)
2950         && comp->isa(Component::USE) ) {
2951       ++position;
2952       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2953     }
2954   }
2955 
2956   return -1;
2957 }
2958 
2959 int ComponentList::method_position() {
2960   PreserveIter pi(this);
2961   int position = 0;
2962   reset();
2963   for( Component *comp; (comp = iter()) != NULL; ++position) {
2964     // When the first component is not a DEF, 
2965     // leave space for the result operand!
2966     if ( position==0 && (! comp->isa(Component::DEF)) ) {
2967       ++position;
2968     }
2969     if (strcmp(comp->_type, "method")==0) { 
2970       return position;
2971     }
2972     if( comp->isa(Component::DEF)
2973         && comp->isa(Component::USE) ) {
2974       ++position;
2975       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
2976     }
2977   }
2978 
2979   return -1;
2980 }
2981 
2982 void ComponentList::dump() { output(stderr); }
2983 
2984 void ComponentList::output(FILE *fp) {
2985   PreserveIter pi(this);
2986   fprintf(fp, "\n");
2987   Component *component;
2988   for (reset(); (component = iter()) != NULL;) {
2989     component->output(fp);
2990   }
2991   fprintf(fp, "\n");
2992 }
2993 
2994 //------------------------------MatchNode--------------------------------------
2995 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
2996                      const char *opType, MatchNode *lChild, MatchNode *rChild)
2997   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
2998     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0), 
2999     _commutative_id(0) {
3000   _numleaves = (lChild ? lChild->_numleaves : 0) 
3001                + (rChild ? rChild->_numleaves : 0);
3002 }
3003 
3004 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode) 
3005   : _AD(ad), _result(mnode._result), _name(mnode._name),
3006     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild), 
3007     _internalop(0), _numleaves(mnode._numleaves), 
3008     _commutative_id(mnode._commutative_id) {
3009 }
3010 
3011 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone) 
3012   : _AD(ad), _result(mnode._result), _name(mnode._name),
3013     _opType(mnode._opType),
3014     _internalop(0), _numleaves(mnode._numleaves), 
3015     _commutative_id(mnode._commutative_id) {
3016   if (mnode._lChild) {
3017     _lChild = new MatchNode(ad, *mnode._lChild, clone);
3018   } else {
3019     _lChild = NULL;
3020   }
3021   if (mnode._rChild) {
3022     _rChild = new MatchNode(ad, *mnode._rChild, clone);
3023   } else {
3024     _rChild = NULL;
3025   }
3026 }
3027 
3028 MatchNode::~MatchNode() {
3029   // // This node may not own its children if copied via assignment
3030   // if( _lChild ) delete _lChild;
3031   // if( _rChild ) delete _rChild;
3032 }
3033 
3034 bool  MatchNode::find_type(const char *type, int &position) const {
3035   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
3036   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
3037 
3038   if (strcmp(type,_opType)==0)  {
3039     return true;
3040   } else {
3041     ++position;
3042   }
3043   return false;
3044 }
3045 
3046 // Recursive call collecting info on top-level operands, not transitive.
3047 // Implementation does not modify state of internal structures.
3048 void MatchNode::append_components(FormDict &locals, ComponentList &components, 
3049                                   bool deflag) const {
3050   int   usedef = deflag ? Component::DEF : Component::USE;
3051   FormDict &globals = _AD.globalNames();
3052 
3053   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3054   // Base case
3055   if (_lChild==NULL && _rChild==NULL) {
3056     // If _opType is not an operation, do not build a component for it #####
3057     const Form *f = globals[_opType];
3058     if( f != NULL ) {
3059       // Add non-ideals that are operands, operand-classes, 
3060       if( ! f->ideal_only()
3061           && (f->is_opclass() || f->is_operand()) ) {
3062         components.insert(_name, _opType, usedef, true);
3063       }
3064     } 
3065     return;
3066   }
3067   // Promote results of "Set" to DEF
3068   bool def_flag = (!strcmp(_opType, "Set")) ? true : false;
3069   if (_lChild) _lChild->append_components(locals, components, def_flag);
3070   def_flag = false;   // only applies to component immediately following 'Set'
3071   if (_rChild) _rChild->append_components(locals, components, def_flag);
3072 }
3073 
3074 // Find the n'th base-operand in the match node, 
3075 // recursively investigates match rules of user-defined operands.
3076 // 
3077 // Implementation does not modify state of internal structures since they
3078 // can be shared.
3079 bool MatchNode::base_operand(uint &position, FormDict &globals, 
3080                              const char * &result, const char * &name, 
3081                              const char * &opType) const {
3082   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
3083   // Base case
3084   if (_lChild==NULL && _rChild==NULL) {
3085     // Check for special case: "Universe", "label"
3086     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
3087       if (position == 0) {
3088         result = _result;
3089         name   = _name;
3090         opType = _opType;
3091         return 1;
3092       } else {
3093         -- position;
3094         return 0;
3095       }
3096     }
3097 
3098     const Form *form = globals[_opType];
3099     MatchNode *matchNode = NULL;
3100     // Check for user-defined type
3101     if (form) {
3102       // User operand or instruction?
3103       OperandForm  *opForm = form->is_operand();
3104       InstructForm *inForm = form->is_instruction();
3105       if ( opForm ) {
3106         matchNode = (MatchNode*)opForm->_matrule;
3107       } else if ( inForm ) {
3108         matchNode = (MatchNode*)inForm->_matrule;
3109       }
3110     }
3111     // if this is user-defined, recurse on match rule 
3112     // User-defined operand and instruction forms have a match-rule.
3113     if (matchNode) {
3114       return (matchNode->base_operand(position,globals,result,name,opType));
3115     } else {
3116       // Either not a form, or a system-defined form (no match rule).
3117       if (position==0) {
3118         result = _result;
3119         name   = _name;
3120         opType = _opType;
3121         return 1;
3122       } else {
3123         --position;
3124         return 0;
3125       }
3126     }
3127 
3128   } else {
3129     // Examine the left child and right child as well
3130     if (_lChild) {
3131       if (_lChild->base_operand(position, globals, result, name, opType))
3132         return 1;
3133     }
3134     
3135     if (_rChild) {
3136       if (_rChild->base_operand(position, globals, result, name, opType))
3137         return 1;
3138     }
3139   }
3140 
3141   return 0;
3142 }
3143 
3144 // Recursive call on all operands' match rules in my match rule.
3145 uint  MatchNode::num_consts(FormDict &globals) const {
3146   uint        index      = 0;
3147   uint        num_consts = 0;
3148   const char *result;
3149   const char *name;
3150   const char *opType;
3151 
3152   for (uint position = index; 
3153        base_operand(position,globals,result,name,opType); position = index) {
3154     ++index;
3155     if( ideal_to_const_type(opType) )        num_consts++;
3156   }
3157 
3158   return num_consts;
3159 }
3160 
3161 // Recursive call on all operands' match rules in my match rule.
3162 // Constants in match rule subtree with specified type
3163 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
3164   uint        index      = 0;
3165   uint        num_consts = 0;
3166   const char *result;
3167   const char *name;
3168   const char *opType;
3169 
3170   for (uint position = index; 
3171        base_operand(position,globals,result,name,opType); position = index) {
3172     ++index;
3173     if( ideal_to_const_type(opType) == type ) num_consts++;
3174   }
3175 
3176   return num_consts;
3177 }
3178 
3179 // Recursive call on all operands' match rules in my match rule.
3180 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
3181   return  num_consts( globals, Form::idealP );
3182 }
3183 
3184 bool  MatchNode::sets_result() const {
3185   return   ( (strcmp(_name,"Set") == 0) ? true : false );
3186 }
3187 
3188 const char *MatchNode::reduce_right(FormDict &globals) const {
3189   // If there is no right reduction, return NULL.
3190   const char      *rightStr    = NULL;
3191 
3192   // If we are a "Set", start from the right child.
3193   const MatchNode *const mnode = sets_result() ? 
3194     (const MatchNode *const)this->_rChild : 
3195     (const MatchNode *const)this;
3196 
3197   // If our right child exists, it is the right reduction
3198   if ( mnode->_rChild ) {
3199     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
3200       : mnode->_rChild->_opType;
3201   } 
3202   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
3203   return rightStr;
3204 }
3205 
3206 const char *MatchNode::reduce_left(FormDict &globals) const {
3207   // If there is no left reduction, return NULL.
3208   const char  *leftStr  = NULL;
3209 
3210   // If we are a "Set", start from the right child.
3211   const MatchNode *const mnode = sets_result() ? 
3212     (const MatchNode *const)this->_rChild : 
3213     (const MatchNode *const)this;
3214 
3215   // If our left child exists, it is the left reduction
3216   if ( mnode->_lChild ) {
3217     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
3218       : mnode->_lChild->_opType;
3219   } else {
3220     // May be simple chain rule: (Set dst operand_form_source)
3221     if ( sets_result() ) {
3222       OperandForm *oper = globals[mnode->_opType]->is_operand();
3223       if( oper ) {
3224         leftStr = mnode->_opType;
3225       }
3226     }
3227   }
3228   return leftStr;
3229 }
3230 
3231 //------------------------------count_instr_names------------------------------
3232 // Count occurrences of operands names in the leaves of the instruction
3233 // match rule.
3234 void MatchNode::count_instr_names( Dict &names ) {
3235   if( !this ) return;
3236   if( _lChild ) _lChild->count_instr_names(names);
3237   if( _rChild ) _rChild->count_instr_names(names);
3238   if( !_lChild && !_rChild ) {
3239     uintptr_t cnt = (uintptr_t)names[_name];
3240     cnt++;                      // One more name found
3241     names.Insert(_name,(void*)cnt);
3242   }
3243 }
3244 
3245 //------------------------------build_instr_pred-------------------------------
3246 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
3247 // can skip some leading instances of 'name'.
3248 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
3249   if( _lChild ) {
3250     if( !cnt ) strcpy( buf, "_kids[0]->" );
3251     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
3252     if( cnt < 0 ) return cnt;   // Found it, all done
3253   }
3254   if( _rChild ) {
3255     if( !cnt ) strcpy( buf, "_kids[1]->" );
3256     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
3257     if( cnt < 0 ) return cnt;   // Found it, all done
3258   }
3259   if( !_lChild && !_rChild ) {  // Found a leaf
3260     // Wrong name?  Give up...
3261     if( strcmp(name,_name) ) return cnt;
3262     if( !cnt ) strcpy(buf,"_leaf");
3263     return cnt-1;
3264   }
3265   return cnt;
3266 }
3267 
3268 
3269 //------------------------------build_internalop-------------------------------
3270 // Build string representation of subtree
3271 void MatchNode::build_internalop( ) {
3272   char *iop, *subtree;
3273   const char *lstr, *rstr;
3274   // Build string representation of subtree
3275   // Operation lchildType rchildType
3276   int len = (int)strlen(_opType) + 4;
3277   lstr = (_lChild) ? ((_lChild->_internalop) ? 
3278                        _lChild->_internalop : _lChild->_opType) : "";
3279   rstr = (_rChild) ? ((_rChild->_internalop) ? 
3280                        _rChild->_internalop : _rChild->_opType) : "";
3281   len += (int)strlen(lstr) + (int)strlen(rstr);
3282   subtree = (char *)malloc(len);
3283   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
3284   // Hash the subtree string in _internalOps; if a name exists, use it
3285   iop = (char *)_AD._internalOps[subtree];
3286   // Else create a unique name, and add it to the hash table
3287   if (iop == NULL) {
3288     iop = subtree;
3289     _AD._internalOps.Insert(subtree, iop);
3290     _AD._internalOpNames.addName(iop);
3291     _AD._internalMatch.Insert(iop, this);
3292   }
3293   // Add the internal operand name to the MatchNode
3294   _internalop = iop;
3295   _result = iop;
3296 }
3297 
3298 
3299 void MatchNode::dump() {
3300   output(stderr);
3301 }
3302 
3303 void MatchNode::output(FILE *fp) {
3304   if (_lChild==0 && _rChild==0) {
3305     fprintf(fp," %s",_name);    // operand
3306   } 
3307   else {
3308     fprintf(fp," (%s ",_name);  // " (opcodeName "
3309     if(_lChild) _lChild->output(fp); //               left operand
3310     if(_rChild) _rChild->output(fp); //                    right operand
3311     fprintf(fp,")");                 //                                 ")"
3312   }
3313 }
3314 
3315 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
3316   static const char *needs_ideal_memory_list[] = {
3317     "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
3318     "StoreB","StoreC","Store" ,"StoreFP",
3319     "LoadI" ,"LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
3320     "LoadB" ,"LoadC" ,"LoadS" ,"Load"   ,
3321     "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
3322     "Store8B","Store4B","Store8C","Store4C","Store2C",
3323     "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
3324     "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
3325     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
3326     "LoadPLocked", "LoadLLocked",
3327     "StorePConditional", "StoreIConditional", "StoreLConditional",
3328     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
3329     "StoreCM",
3330     "ClearArray"
3331   };
3332   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
3333   if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
3334     return 1;
3335   if( _lChild ) {
3336     const char *opType = _lChild->_opType;
3337     for( int i=0; i<cnt; i++ )
3338       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3339         return 1;
3340     if( _lChild->needs_ideal_memory_edge(globals) )
3341       return 1;
3342   }
3343   if( _rChild ) {
3344     const char *opType = _rChild->_opType;
3345     for( int i=0; i<cnt; i++ )
3346       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
3347         return 1;
3348     if( _rChild->needs_ideal_memory_edge(globals) )
3349       return 1;
3350   }
3351   
3352   return 0;
3353 }
3354 
3355 // TRUE if defines a derived oop, and so needs a base oop edge present
3356 // post-matching.
3357 int MatchNode::needs_base_oop_edge() const {
3358   if( !strcmp(_opType,"AddP") ) return 1;
3359   if( strcmp(_opType,"Set") ) return 0;
3360   return !strcmp(_rChild->_opType,"AddP");
3361 }
3362 
3363 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
3364   if( is_simple_chain_rule(globals) ) {
3365     const char *src = _matrule->_rChild->_opType;
3366     OperandForm *src_op = globals[src]->is_operand();
3367     assert( src_op, "Not operand class of chain rule" );
3368     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
3369   }                             // Else check instruction 
3370     
3371   return _matrule ? _matrule->needs_base_oop_edge() : 0;
3372 }
3373 
3374 
3375 //-------------------------cisc spilling methods-------------------------------
3376 // helper routines and methods for detecting cisc-spilling instructions
3377 //-------------------------cisc_spill_merge------------------------------------
3378 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
3379   int cisc_spillable  = Maybe_cisc_spillable;
3380 
3381   // Combine results of left and right checks
3382   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
3383     // neither side is spillable, nor prevents cisc spilling
3384     cisc_spillable = Maybe_cisc_spillable;
3385   }
3386   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
3387     // right side is spillable
3388     cisc_spillable = right_spillable;
3389   }
3390   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
3391     // left side is spillable
3392     cisc_spillable = left_spillable;
3393   }
3394   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
3395     // left or right prevents cisc spilling this instruction
3396     cisc_spillable = Not_cisc_spillable;
3397   }
3398   else {
3399     // Only allow one to spill
3400     cisc_spillable = Not_cisc_spillable;
3401   }
3402 
3403   return cisc_spillable;
3404 }
3405 
3406 //-------------------------root_ops_match--------------------------------------
3407 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
3408   // Base Case: check that the current operands/operations match
3409   assert( op1, "Must have op's name");
3410   assert( op2, "Must have op's name");
3411   const Form *form1 = globals[op1];
3412   const Form *form2 = globals[op2];
3413 
3414   return (form1 == form2);
3415 }
3416 
3417 //-------------------------cisc_spill_match------------------------------------
3418 // Recursively check two MatchRules for legal conversion via cisc-spilling
3419 int  MatchNode::cisc_spill_match(FormDict &globals, RegisterForm *registers, MatchNode *mRule2, const char * &operand, const char * &reg_type) {
3420   int cisc_spillable  = Maybe_cisc_spillable;
3421   int left_spillable  = Maybe_cisc_spillable;
3422   int right_spillable = Maybe_cisc_spillable;
3423 
3424   // Check that each has same number of operands at this level
3425   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) 
3426     return Not_cisc_spillable;
3427 
3428   // Base Case: check that the current operands/operations match
3429   // or are CISC spillable
3430   assert( _opType, "Must have _opType");
3431   assert( mRule2->_opType, "Must have _opType");
3432   const Form *form  = globals[_opType];
3433   const Form *form2 = globals[mRule2->_opType];
3434   if( form == form2 ) {
3435     cisc_spillable = Maybe_cisc_spillable;
3436   } else {
3437     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
3438     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
3439     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
3440     // Detect reg vs (loadX memory)
3441     if( form->is_cisc_reg(globals) 
3442         && form2_inst 
3443         && (is_load_from_memory(mRule2->_opType) != Form::none) // reg vs. (load memory)
3444         && (name_left != NULL)       // NOT (load)
3445         && (name_right == NULL) ) {  // NOT (load memory foo)
3446       const Form *form2_left = name_left ? globals[name_left] : NULL;
3447       if( form2_left && form2_left->is_cisc_mem(globals) ) {
3448         cisc_spillable = Is_cisc_spillable;
3449         operand        = _name;
3450         reg_type       = _result;
3451         return Is_cisc_spillable;
3452       } else {
3453         cisc_spillable = Not_cisc_spillable;
3454       }
3455     }
3456     // Detect reg vs memory
3457     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
3458       cisc_spillable = Is_cisc_spillable;
3459       operand        = _name;
3460       reg_type       = _result;
3461       return Is_cisc_spillable;
3462     } else {
3463       cisc_spillable = Not_cisc_spillable;
3464     }
3465   }
3466 
3467   // If cisc is still possible, check rest of tree
3468   if( cisc_spillable == Maybe_cisc_spillable ) {
3469     // Check that each has same number of operands at this level
3470     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3471 
3472     // Check left operands
3473     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
3474       left_spillable = Maybe_cisc_spillable;
3475     } else {
3476       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
3477     }
3478 
3479     // Check right operands
3480     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3481       right_spillable =  Maybe_cisc_spillable;
3482     } else {
3483       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3484     }
3485 
3486     // Combine results of left and right checks
3487     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3488   }
3489 
3490   return cisc_spillable;
3491 }
3492 
3493 //---------------------------cisc_spill_match----------------------------------
3494 // Recursively check two MatchRules for legal conversion via cisc-spilling
3495 // This method handles the root of Match tree, 
3496 // general recursive checks done in MatchNode
3497 int  MatchRule::cisc_spill_match(FormDict &globals, RegisterForm *registers, 
3498                                  MatchRule *mRule2, const char * &operand, 
3499                                  const char * &reg_type) {
3500   int cisc_spillable  = Maybe_cisc_spillable;
3501   int left_spillable  = Maybe_cisc_spillable;
3502   int right_spillable = Maybe_cisc_spillable;
3503 
3504   // Check that each sets a result
3505   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
3506   // Check that each has same number of operands at this level
3507   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
3508 
3509   // Check left operands: at root, must be target of 'Set'
3510   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
3511     left_spillable = Not_cisc_spillable;
3512   } else {
3513     // Do not support cisc-spilling instruction's target location
3514     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
3515       left_spillable = Maybe_cisc_spillable;
3516     } else {
3517       left_spillable = Not_cisc_spillable;
3518     }
3519   }
3520 
3521   // Check right operands: recursive walk to identify reg->mem operand
3522   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
3523     right_spillable =  Maybe_cisc_spillable;
3524   } else {
3525     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
3526   }
3527 
3528   // Combine results of left and right checks
3529   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
3530 
3531   return cisc_spillable;
3532 }
3533 
3534 //----------------------------- equivalent ------------------------------------
3535 // Recursively check to see if two match rules are equivalent.
3536 // This rule handles the root.
3537 bool MatchRule::equivalent(FormDict &globals, MatchRule *mRule2) {
3538   // Check that each sets a result
3539   if (sets_result() != mRule2->sets_result()) {
3540     return false;
3541   }
3542 
3543   // Check that the current operands/operations match
3544   assert( _opType, "Must have _opType");
3545   assert( mRule2->_opType, "Must have _opType");
3546   const Form *form  = globals[_opType];
3547   const Form *form2 = globals[mRule2->_opType];
3548   if( form != form2 ) {
3549     return false;
3550   }
3551 
3552   if (_lChild ) {
3553     if( !_lChild->equivalent(globals, mRule2->_lChild) ) 
3554       return false;
3555   } else if (mRule2->_lChild) {
3556     return false; // I have NULL left child, mRule2 has non-NULL left child.
3557   }
3558 
3559   if (_rChild ) {
3560     if( !_rChild->equivalent(globals, mRule2->_rChild) ) 
3561       return false;
3562   } else if (mRule2->_rChild) {
3563     return false; // I have NULL right child, mRule2 has non-NULL right child.
3564   }
3565 
3566   // We've made it through the gauntlet.
3567   return true;
3568 }
3569 
3570 //----------------------------- equivalent ------------------------------------
3571 // Recursively check to see if two match rules are equivalent.
3572 // This rule handles the operands.
3573 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
3574   if( !mNode2 )
3575     return false;
3576 
3577   // Check that the current operands/operations match
3578   assert( _opType, "Must have _opType");
3579   assert( mNode2->_opType, "Must have _opType");
3580   const Form *form  = globals[_opType];
3581   const Form *form2 = globals[mNode2->_opType];
3582   return (form == form2);
3583 }
3584 
3585 //-------------------------- has_commutative_op -------------------------------
3586 // Recursively check for commutative operations with subtree operands
3587 // which could be swapped.
3588 void MatchNode::count_commutative_op(int& count) {
3589   static const char *commut_op_list[] = {
3590     "AddI","AddL","AddF","AddD",
3591     "AndI","AndL",
3592     "MaxI","MinI",
3593     "MulI","MulL","MulF","MulD",
3594     "OrI" ,"OrL" ,
3595     "XorI","XorL"
3596   };
3597   int cnt = sizeof(commut_op_list)/sizeof(char*);
3598 
3599   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
3600     // Don't swap if right operand is an immediate constant.
3601     bool is_const = false;
3602     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
3603       FormDict &globals = _AD.globalNames();
3604       const Form *form = globals[_rChild->_opType];
3605       if ( form ) {
3606         OperandForm  *oper = form->is_operand();
3607         if( oper && oper->interface_type(globals) == Form::constant_interface )
3608           is_const = true;
3609       }
3610     }
3611     if( !is_const ) {
3612       for( int i=0; i<cnt; i++ ) {
3613         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
3614           count++;
3615           _commutative_id = count; // id should be > 0
3616           break;
3617         }
3618       }
3619     }
3620   }
3621   if( _lChild )
3622     _lChild->count_commutative_op(count);
3623   if( _rChild )
3624     _rChild->count_commutative_op(count);
3625 }
3626 
3627 //-------------------------- swap_commutative_op ------------------------------
3628 // Recursively swap specified commutative operation with subtree operands.
3629 void MatchNode::swap_commutative_op(bool atroot, int id) {
3630   if( _commutative_id == id ) { // id should be > 0
3631     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ), 
3632             "not swappable operation");
3633     MatchNode* tmp = _lChild;
3634     _lChild = _rChild;
3635     _rChild = tmp;
3636     // Don't exit here since we need to build internalop.
3637   }
3638 
3639   bool is_set = ( strcmp(_opType, "Set") == 0 );
3640   if( _lChild )
3641     _lChild->swap_commutative_op(is_set, id);
3642   if( _rChild )
3643     _rChild->swap_commutative_op(is_set, id);
3644 
3645   // If not the root, reduce this subtree to an internal operand
3646   if( !atroot && (_lChild || _rChild) ) {
3647     build_internalop();
3648   }
3649 }
3650 
3651 //-------------------------- swap_commutative_op ------------------------------
3652 // Recursively swap specified commutative operation with subtree operands.
3653 void MatchRule::swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
3654   assert(match_rules_cnt < 100," too many match rule clones");
3655   // Clone
3656   MatchRule* clone = new MatchRule(_AD, this);
3657   // Swap operands of commutative operation
3658   ((MatchNode*)clone)->swap_commutative_op(true, count);
3659   char* buf = (char*) malloc(strlen(instr_ident) + 4);
3660   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
3661   clone->_result = buf;
3662 
3663   clone->_next = this->_next;
3664   this-> _next = clone;
3665   if( (--count) > 0 ) {
3666     this-> swap_commutative_op(instr_ident, count, match_rules_cnt);
3667     clone->swap_commutative_op(instr_ident, count, match_rules_cnt);
3668   }
3669 }
3670 
3671 //------------------------------MatchRule--------------------------------------
3672 MatchRule::MatchRule(ArchDesc &ad)
3673   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
3674     _next = NULL;
3675 }
3676 
3677 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
3678   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth), 
3679     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
3680     _next = NULL;
3681 }
3682 
3683 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
3684                      int numleaves)
3685   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
3686     _numchilds(0) {
3687       _next = NULL;
3688       mroot->_lChild = NULL;
3689       mroot->_rChild = NULL;
3690       delete mroot;
3691       _numleaves = numleaves;
3692       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
3693 }
3694 MatchRule::~MatchRule() {
3695 }
3696 
3697 // Recursive call collecting info on top-level operands, not transitive.
3698 // Implementation does not modify state of internal structures.
3699 void MatchRule::append_components(FormDict &locals, ComponentList &components) const {
3700   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
3701 
3702   MatchNode::append_components(locals, components, 
3703                                false /* not necessarily a def */);
3704 }
3705 
3706 // Recursive call on all operands' match rules in my match rule.
3707 // Implementation does not modify state of internal structures  since they
3708 // can be shared.
3709 // The MatchNode that is called first treats its
3710 bool MatchRule::base_operand(uint &position0, FormDict &globals,
3711                              const char *&result, const char * &name,
3712                              const char * &opType)const{
3713   uint position = position0;
3714 
3715   return (MatchNode::base_operand( position, globals, result, name, opType));
3716 }
3717 
3718 
3719 bool MatchRule::is_base_register(FormDict &globals) const {
3720   uint   position = 1;
3721   const char  *result   = NULL;
3722   const char  *name     = NULL;
3723   const char  *opType   = NULL;
3724   if (!base_operand(position, globals, result, name, opType)) {
3725     position = 0;
3726     if( base_operand(position, globals, result, name, opType) &&
3727         (strcmp(opType,"RegI")==0 ||
3728          strcmp(opType,"RegP")==0 ||
3729          strcmp(opType,"RegN")==0 ||
3730          strcmp(opType,"RegL")==0 ||
3731          strcmp(opType,"RegF")==0 ||
3732          strcmp(opType,"RegD")==0 ||
3733          strcmp(opType,"Reg" )==0) ) {
3734       return 1;
3735     }
3736   }
3737   return 0;
3738 }
3739 
3740 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
3741   uint         position = 1;
3742   const char  *result   = NULL;
3743   const char  *name     = NULL;
3744   const char  *opType   = NULL;
3745   if (!base_operand(position, globals, result, name, opType)) {
3746     position = 0;
3747     if (base_operand(position, globals, result, name, opType)) {
3748       return ideal_to_const_type(opType);
3749     }
3750   }
3751   return Form::none;
3752 }
3753 
3754 bool MatchRule::is_chain_rule(FormDict &globals) const {
3755 
3756   // Check for chain rule, and do not generate a match list for it
3757   if ((_lChild == NULL) && (_rChild == NULL) ) {
3758     const Form *form = globals[_opType];
3759     // If this is ideal, then it is a base match, not a chain rule.
3760     if ( form && form->is_operand() && (!form->ideal_only())) {
3761       return true;
3762     }
3763   }
3764   // Check for "Set" form of chain rule, and do not generate a match list
3765   if (_rChild) {
3766     const char *rch = _rChild->_opType;
3767     const Form *form = globals[rch];
3768     if ((!strcmp(_opType,"Set") && 
3769          ((form) && form->is_operand()))) {
3770       return true;
3771     }
3772   }
3773   return false;
3774 }  
3775 
3776 int MatchRule::is_ideal_copy() const {
3777   if( _rChild ) {
3778     const char  *opType = _rChild->_opType;
3779 #if 1
3780     if( strcmp(opType,"CastIP")==0 )
3781       return 1;
3782 #else
3783     if( strcmp(opType,"CastII")==0 )
3784       return 1;
3785     // Do not treat *CastPP this way, because it
3786     // may transfer a raw pointer to an oop.
3787     // If the register allocator were to coalesce this
3788     // into a single LRG, the GC maps would be incorrect.
3789     //if( strcmp(opType,"CastPP")==0 )
3790     //  return 1;
3791     //if( strcmp(opType,"CheckCastPP")==0 )
3792     //  return 1;
3793     // 
3794     // Do not treat CastX2P or CastP2X this way, because
3795     // raw pointers and int types are treated differently
3796     // when saving local & stack info for safepoints in 
3797     // Output().
3798     //if( strcmp(opType,"CastX2P")==0 )
3799     //  return 1;
3800     //if( strcmp(opType,"CastP2X")==0 )
3801     //  return 1;
3802 #endif
3803   }
3804   if( is_chain_rule(_AD.globalNames()) &&
3805       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
3806     return 1;
3807   return 0;
3808 }
3809 
3810 
3811 int MatchRule::is_expensive() const {
3812   if( _rChild ) {
3813     const char  *opType = _rChild->_opType;
3814     if( strcmp(opType,"AtanD")==0 ||
3815         strcmp(opType,"CosD")==0 || 
3816         strcmp(opType,"DivD")==0 || 
3817         strcmp(opType,"DivF")==0 || 
3818         strcmp(opType,"DivI")==0 || 
3819         strcmp(opType,"ExpD")==0 ||
3820         strcmp(opType,"LogD")==0 ||
3821         strcmp(opType,"Log10D")==0 ||
3822         strcmp(opType,"ModD")==0 || 
3823         strcmp(opType,"ModF")==0 || 
3824         strcmp(opType,"ModI")==0 || 
3825         strcmp(opType,"PowD")==0 ||
3826         strcmp(opType,"SinD")==0 ||
3827         strcmp(opType,"SqrtD")==0 ||
3828         strcmp(opType,"TanD")==0 ||
3829         strcmp(opType,"ConvD2F")==0 ||
3830         strcmp(opType,"ConvD2I")==0 ||
3831         strcmp(opType,"ConvD2L")==0 ||
3832         strcmp(opType,"ConvF2D")==0 ||
3833         strcmp(opType,"ConvF2I")==0 ||
3834         strcmp(opType,"ConvF2L")==0 ||
3835         strcmp(opType,"ConvI2D")==0 ||
3836         strcmp(opType,"ConvI2F")==0 ||
3837         strcmp(opType,"ConvI2L")==0 ||
3838         strcmp(opType,"ConvL2D")==0 ||
3839         strcmp(opType,"ConvL2F")==0 ||
3840         strcmp(opType,"ConvL2I")==0 ||
3841         strcmp(opType,"DecodeN")==0 ||
3842         strcmp(opType,"EncodeP")==0 ||
3843         strcmp(opType,"RoundDouble")==0 ||
3844         strcmp(opType,"RoundFloat")==0 ||
3845         strcmp(opType,"ReverseBytesI")==0 ||
3846         strcmp(opType,"ReverseBytesL")==0 ||
3847         strcmp(opType,"Replicate16B")==0 ||
3848         strcmp(opType,"Replicate8B")==0 ||
3849         strcmp(opType,"Replicate4B")==0 ||
3850         strcmp(opType,"Replicate8C")==0 ||
3851         strcmp(opType,"Replicate4C")==0 ||
3852         strcmp(opType,"Replicate8S")==0 ||
3853         strcmp(opType,"Replicate4S")==0 ||
3854         strcmp(opType,"Replicate4I")==0 ||
3855         strcmp(opType,"Replicate2I")==0 ||
3856         strcmp(opType,"Replicate2L")==0 ||
3857         strcmp(opType,"Replicate4F")==0 ||
3858         strcmp(opType,"Replicate2F")==0 ||
3859         strcmp(opType,"Replicate2D")==0 ||
3860         0 /* 0 to line up columns nicely */ ) 
3861       return 1;
3862   }
3863   return 0;
3864 }
3865 
3866 bool MatchRule::is_ideal_unlock() const {
3867   if( !_opType ) return false;
3868   return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
3869 }
3870 
3871 
3872 bool MatchRule::is_ideal_call_leaf() const {
3873   if( !_opType ) return false;
3874   return !strcmp(_opType,"CallLeaf")     ||
3875          !strcmp(_opType,"CallLeafNoFP");
3876 }
3877 
3878 
3879 bool MatchRule::is_ideal_if() const {
3880   if( !_opType ) return false;
3881   return 
3882     !strcmp(_opType,"If"            ) || 
3883     !strcmp(_opType,"CountedLoopEnd");
3884 }
3885 
3886 bool MatchRule::is_ideal_fastlock() const {
3887   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3888     return (strcmp(_rChild->_opType,"FastLock") == 0);
3889   }
3890   return false;
3891 }
3892 
3893 bool MatchRule::is_ideal_membar() const {
3894   if( !_opType ) return false;
3895   return 
3896     !strcmp(_opType,"MemBarAcquire"  ) || 
3897     !strcmp(_opType,"MemBarRelease"  ) || 
3898     !strcmp(_opType,"MemBarVolatile" ) || 
3899     !strcmp(_opType,"MemBarCPUOrder" ) ; 
3900 }
3901 
3902 bool MatchRule::is_ideal_loadPC() const {
3903   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3904     return (strcmp(_rChild->_opType,"LoadPC") == 0);
3905   }
3906   return false;
3907 }
3908 
3909 bool MatchRule::is_ideal_box() const {
3910   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3911     return (strcmp(_rChild->_opType,"Box") == 0);
3912   }
3913   return false;
3914 }
3915 
3916 bool MatchRule::is_ideal_goto() const {
3917   bool   ideal_goto = false;
3918 
3919   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
3920     ideal_goto = true;
3921   }
3922   return ideal_goto;
3923 }
3924 
3925 bool MatchRule::is_ideal_jump() const {
3926   if( _opType ) {
3927     if( !strcmp(_opType,"Jump") )
3928       return true;
3929   }
3930   return false;
3931 }
3932 
3933 bool MatchRule::is_ideal_bool() const {
3934   if( _opType ) {
3935     if( !strcmp(_opType,"Bool") )
3936       return true;
3937   }
3938   return false;
3939 }
3940 
3941 
3942 Form::DataType MatchRule::is_ideal_load() const {
3943   Form::DataType ideal_load = Form::none;
3944 
3945   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3946     const char *opType = _rChild->_opType;
3947     ideal_load = is_load_from_memory(opType);
3948   }
3949 
3950   return ideal_load;
3951 }
3952 
3953 
3954 Form::DataType MatchRule::is_ideal_store() const {
3955   Form::DataType ideal_store = Form::none;
3956 
3957   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
3958     const char *opType = _rChild->_opType;
3959     ideal_store = is_store_to_memory(opType);
3960   }
3961 
3962   return ideal_store;
3963 }
3964 
3965 
3966 void MatchRule::dump() {
3967   output(stderr);
3968 }
3969 
3970 void MatchRule::output(FILE *fp) {
3971   fprintf(fp,"MatchRule: ( %s",_name);
3972   if (_lChild) _lChild->output(fp);
3973   if (_rChild) _rChild->output(fp);
3974   fprintf(fp," )\n");
3975   fprintf(fp,"   nesting depth = %d\n", _depth);
3976   if (_result) fprintf(fp,"   Result Type = %s", _result);
3977   fprintf(fp,"\n");
3978 }
3979 
3980 //------------------------------Attribute--------------------------------------
3981 Attribute::Attribute(char *id, char* val, int type)
3982   : _ident(id), _val(val), _atype(type) { 
3983 }
3984 Attribute::~Attribute() {
3985 }
3986 
3987 int Attribute::int_val(ArchDesc &ad) {
3988   // Make sure it is an integer constant:
3989   int result = 0;
3990   if (!_val || !ADLParser::is_int_token(_val, result)) {
3991     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
3992                   _ident, _val ? _val : "");
3993   }
3994   return result;
3995 }
3996 
3997 void Attribute::dump() {
3998   output(stderr); 
3999 } // Debug printer
4000 
4001 // Write to output files
4002 void Attribute::output(FILE *fp) {
4003   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
4004 }
4005 
4006 //------------------------------FormatRule----------------------------------
4007 FormatRule::FormatRule(char *temp)
4008   : _temp(temp) { 
4009 }
4010 FormatRule::~FormatRule() {
4011 }
4012 
4013 void FormatRule::dump() {
4014   output(stderr);
4015 }
4016 
4017 // Write to output files
4018 void FormatRule::output(FILE *fp) {
4019   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
4020   fprintf(fp,"\n");
4021 }
4022