1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)output_h.cpp 1.180 07/09/28 10:23:25 JVM"
   3 #endif
   4 /*
   5  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // output_h.cpp - Class HPP file output routines for architecture definition
  29 #include "adlc.hpp"
  30 
  31 
  32 // Generate the #define that describes the number of registers.
  33 static void defineRegCount(FILE *fp, RegisterForm *registers) {
  34   if (registers) {
  35     int regCount =  AdlcVMDeps::Physical + registers->_rdefs.count();
  36     fprintf(fp,"\n");
  37     fprintf(fp,"// the number of reserved registers + machine registers.\n");
  38     fprintf(fp,"#define REG_COUNT    %d\n", regCount);
  39   }
  40 }
  41 
  42 // Output enumeration of machine register numbers
  43 // (1)
  44 // // Enumerate machine registers starting after reserved regs.
  45 // // in the order of occurrence in the register block.
  46 // enum MachRegisterNumbers {
  47 //   EAX_num = 0, 
  48 //   ...    
  49 //   _last_Mach_Reg
  50 // }
  51 void ArchDesc::buildMachRegisterNumbers(FILE *fp_hpp) {
  52   if (_register) {
  53     RegDef *reg_def = NULL;
  54 
  55     // Output a #define for the number of machine registers
  56     defineRegCount(fp_hpp, _register);
  57 
  58     // Count all the Save_On_Entry and Always_Save registers
  59     int    saved_on_entry = 0;
  60     int  c_saved_on_entry = 0;
  61     _register->reset_RegDefs();
  62     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
  63       if( strcmp(reg_def->_callconv,"SOE") == 0 ||
  64           strcmp(reg_def->_callconv,"AS")  == 0 )  ++saved_on_entry;
  65       if( strcmp(reg_def->_c_conv,"SOE") == 0 ||
  66           strcmp(reg_def->_c_conv,"AS")  == 0 )  ++c_saved_on_entry;
  67     }
  68     fprintf(fp_hpp, "\n");
  69     fprintf(fp_hpp, "// the number of save_on_entry + always_saved registers.\n");
  70     fprintf(fp_hpp, "#define MAX_SAVED_ON_ENTRY_REG_COUNT    %d\n",   max(saved_on_entry,c_saved_on_entry));
  71     fprintf(fp_hpp, "#define     SAVED_ON_ENTRY_REG_COUNT    %d\n",   saved_on_entry);
  72     fprintf(fp_hpp, "#define   C_SAVED_ON_ENTRY_REG_COUNT    %d\n", c_saved_on_entry);
  73 
  74     // (1)
  75     // Build definition for enumeration of register numbers
  76     fprintf(fp_hpp, "\n");
  77     fprintf(fp_hpp, "// Enumerate machine register numbers starting after reserved regs.\n");
  78     fprintf(fp_hpp, "// in the order of occurrence in the register block.\n");
  79     fprintf(fp_hpp, "enum MachRegisterNumbers {\n");
  80 
  81     // Output the register number for each register in the allocation classes
  82     _register->reset_RegDefs();
  83     int i = 0;
  84     while( (reg_def = _register->iter_RegDefs()) != NULL ) {
  85       fprintf(fp_hpp,"  %s_num,\t\t// %d\n", reg_def->_regname, i++);
  86     }
  87     // Finish defining enumeration
  88     fprintf(fp_hpp, "  _last_Mach_Reg\t// %d\n", i);
  89     fprintf(fp_hpp, "};\n");
  90   }
  91 
  92   fprintf(fp_hpp, "\n// Size of register-mask in ints\n");
  93   fprintf(fp_hpp, "#define RM_SIZE %d\n",RegisterForm::RegMask_Size());
  94   fprintf(fp_hpp, "// Unroll factor for loops over the data in a RegMask\n");
  95   fprintf(fp_hpp, "#define FORALL_BODY ");
  96   int len = RegisterForm::RegMask_Size();
  97   for( int i = 0; i < len; i++ )
  98     fprintf(fp_hpp, "BODY(%d) ",i);
  99   fprintf(fp_hpp, "\n\n");
 100 
 101   fprintf(fp_hpp,"class RegMask;\n");
 102   // All RegMasks are declared "extern const ..." in ad_<arch>.hpp
 103   // fprintf(fp_hpp,"extern RegMask STACK_OR_STACK_SLOTS_mask;\n\n");
 104 }
 105 
 106 
 107 // Output enumeration of machine register encodings
 108 // (2)
 109 // // Enumerate machine registers starting after reserved regs.
 110 // // in the order of occurrence in the alloc_class(es).
 111 // enum MachRegisterEncodes {
 112 //   EAX_enc = 0x00, 
 113 //   ...    
 114 // }
 115 void ArchDesc::buildMachRegisterEncodes(FILE *fp_hpp) {
 116   if (_register) {
 117     RegDef *reg_def = NULL;
 118     RegDef *reg_def_next = NULL;
 119 
 120     // (2)
 121     // Build definition for enumeration of encode values
 122     fprintf(fp_hpp, "\n");
 123     fprintf(fp_hpp, "// Enumerate machine registers starting after reserved regs.\n");
 124     fprintf(fp_hpp, "// in the order of occurrence in the alloc_class(es).\n");
 125     fprintf(fp_hpp, "enum MachRegisterEncodes {\n");
 126 
 127     // Output the register encoding for each register in the allocation classes
 128     _register->reset_RegDefs();
 129     reg_def_next = _register->iter_RegDefs();
 130     while( (reg_def = reg_def_next) != NULL ) {
 131       reg_def_next = _register->iter_RegDefs();
 132       fprintf(fp_hpp,"  %s_enc = %s%s\n",
 133               reg_def->_regname, reg_def->register_encode(), reg_def_next == NULL? "" : "," );
 134     }
 135     // Finish defining enumeration
 136     fprintf(fp_hpp, "};\n");
 137 
 138   } // Done with register form
 139 }
 140 
 141 
 142 // Declare an array containing the machine register names, strings.
 143 static void declareRegNames(FILE *fp, RegisterForm *registers) {
 144   if (registers) {
 145 //    fprintf(fp,"\n");
 146 //    fprintf(fp,"// An array of character pointers to machine register names.\n");
 147 //    fprintf(fp,"extern const char *regName[];\n");
 148   }
 149 }
 150 
 151 // Declare an array containing the machine register sizes in 32-bit words.
 152 void ArchDesc::declareRegSizes(FILE *fp) {
 153 // regSize[] is not used
 154 }
 155 
 156 // Declare an array containing the machine register encoding values
 157 static void declareRegEncodes(FILE *fp, RegisterForm *registers) {
 158   if (registers) {
 159     // // // 
 160     // fprintf(fp,"\n");
 161     // fprintf(fp,"// An array containing the machine register encode values\n");
 162     // fprintf(fp,"extern const char  regEncode[];\n");
 163   }
 164 }
 165 
 166 
 167 // ---------------------------------------------------------------------------
 168 //------------------------------Utilities to build Instruction Classes--------
 169 // ---------------------------------------------------------------------------
 170 static void out_RegMask(FILE *fp) {
 171   fprintf(fp,"  virtual const RegMask &out_RegMask() const;\n");
 172 }
 173 
 174 // ---------------------------------------------------------------------------
 175 //--------Utilities to build MachOper and MachNode derived Classes------------
 176 // ---------------------------------------------------------------------------
 177 
 178 //------------------------------Utilities to build Operand Classes------------
 179 static void in_RegMask(FILE *fp) {
 180   fprintf(fp,"  virtual const RegMask *in_RegMask(int index) const;\n");
 181 }
 182 
 183 static void declare_hash(FILE *fp) {
 184   fprintf(fp,"  virtual uint           hash() const;\n");
 185 }
 186 
 187 static void declare_cmp(FILE *fp) {
 188   fprintf(fp,"  virtual uint           cmp( const MachOper &oper ) const;\n");
 189 }
 190 
 191 static void declareConstStorage(FILE *fp, FormDict &globals, OperandForm *oper) {
 192   int i = 0;
 193   Component *comp;
 194   
 195   if (oper->num_consts(globals) == 0) return;
 196   // Iterate over the component list looking for constants
 197   oper->_components.reset();
 198   if ((comp = oper->_components.iter()) == NULL) {
 199     assert(oper->num_consts(globals) == 1, "Bad component list detected.\n");
 200     const char *type = oper->ideal_type(globals);
 201     if (!strcmp(type, "ConI")) {
 202       if (i > 0) fprintf(fp,", ");
 203       fprintf(fp,"  int32          _c%d;\n", i);
 204     }
 205     else if (!strcmp(type, "ConP")) {
 206       if (i > 0) fprintf(fp,", ");
 207       fprintf(fp,"  const TypePtr *_c%d;\n", i);
 208     }
 209     else if (!strcmp(type, "ConL")) {
 210       if (i > 0) fprintf(fp,", ");
 211       fprintf(fp,"  jlong          _c%d;\n", i);
 212     }
 213     else if (!strcmp(type, "ConF")) {
 214       if (i > 0) fprintf(fp,", ");
 215       fprintf(fp,"  jfloat         _c%d;\n", i);
 216     }
 217     else if (!strcmp(type, "ConD")) {
 218       if (i > 0) fprintf(fp,", ");
 219       fprintf(fp,"  jdouble        _c%d;\n", i);
 220     }
 221     else if (!strcmp(type, "Bool")) {
 222       fprintf(fp,"private:\n");
 223       fprintf(fp,"  BoolTest::mask _c%d;\n", i);
 224       fprintf(fp,"public:\n");
 225     }
 226     else {
 227       assert(0, "Non-constant operand lacks component list.");
 228     }
 229   } // end if NULL
 230   else {
 231     oper->_components.reset();
 232     while ((comp = oper->_components.iter()) != NULL) {
 233       if (!strcmp(comp->base_type(globals), "ConI")) {
 234         fprintf(fp,"  jint             _c%d;\n", i);
 235         i++;
 236       }
 237       else if (!strcmp(comp->base_type(globals), "ConP")) {
 238         fprintf(fp,"  const TypePtr *_c%d;\n", i);
 239         i++;
 240       }
 241       else if (!strcmp(comp->base_type(globals), "ConL")) {
 242         fprintf(fp,"  jlong            _c%d;\n", i);
 243         i++;
 244       }
 245       else if (!strcmp(comp->base_type(globals), "ConF")) {
 246         fprintf(fp,"  jfloat           _c%d;\n", i);
 247         i++;
 248       }
 249       else if (!strcmp(comp->base_type(globals), "ConD")) {
 250         fprintf(fp,"  jdouble          _c%d;\n", i);
 251         i++;
 252       }
 253     }
 254   }
 255 }
 256 
 257 // Declare constructor.
 258 // Parameters start with condition code, then all other constants
 259 // 
 260 // (0) public:
 261 // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
 262 // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
 263 // 
 264 static void defineConstructor(FILE *fp, const char *name, uint num_consts,
 265                               ComponentList &lst, bool is_ideal_bool,
 266                               Form::DataType constant_type, FormDict &globals) {
 267   fprintf(fp,"public:\n");
 268   // generate line (1)
 269   fprintf(fp,"  %sOper(", name);
 270   if( num_consts == 0 ) {
 271     fprintf(fp,") {}\n");
 272     return;
 273   }
 274 
 275   // generate parameters for constants
 276   uint i = 0;
 277   Component *comp;
 278   lst.reset();
 279   if ((comp = lst.iter()) == NULL) {
 280     assert(num_consts == 1, "Bad component list detected.\n");
 281     switch( constant_type ) {
 282     case Form::idealI : { 
 283       fprintf(fp,is_ideal_bool ? "BoolTest::mask c%d" : "int32 c%d", i);
 284       break;        
 285     }
 286     case Form::idealP : { fprintf(fp,"const TypePtr *c%d", i); break; }
 287     case Form::idealL : { fprintf(fp,"jlong c%d", i);   break;        }
 288     case Form::idealF : { fprintf(fp,"jfloat c%d", i);  break;        }
 289     case Form::idealD : { fprintf(fp,"jdouble c%d", i); break;        }
 290     default:
 291       assert(!is_ideal_bool, "Non-constant operand lacks component list."); 
 292       break;
 293     }
 294   } // end if NULL
 295   else {
 296     lst.reset();
 297     while((comp = lst.iter()) != NULL) {
 298       if (!strcmp(comp->base_type(globals), "ConI")) {
 299         if (i > 0) fprintf(fp,", ");
 300         fprintf(fp,"int32 c%d", i);
 301         i++;
 302       }
 303       else if (!strcmp(comp->base_type(globals), "ConP")) {
 304         if (i > 0) fprintf(fp,", ");
 305         fprintf(fp,"const TypePtr *c%d", i);
 306         i++;
 307       }
 308       else if (!strcmp(comp->base_type(globals), "ConL")) {
 309         if (i > 0) fprintf(fp,", ");
 310         fprintf(fp,"jlong c%d", i);
 311         i++;
 312       }
 313       else if (!strcmp(comp->base_type(globals), "ConF")) {
 314         if (i > 0) fprintf(fp,", ");
 315         fprintf(fp,"jfloat c%d", i);
 316         i++;
 317       }
 318       else if (!strcmp(comp->base_type(globals), "ConD")) {
 319         if (i > 0) fprintf(fp,", ");
 320         fprintf(fp,"jdouble c%d", i);
 321         i++;
 322       }
 323       else if (!strcmp(comp->base_type(globals), "Bool")) {
 324         if (i > 0) fprintf(fp,", ");
 325         fprintf(fp,"BoolTest::mask c%d", i);
 326         i++;
 327       }
 328     }
 329   }
 330   // finish line (1) and start line (2)
 331   fprintf(fp,")  : ");
 332   // generate initializers for constants
 333   i = 0;
 334   fprintf(fp,"_c%d(c%d)", i, i);
 335   for( i = 1; i < num_consts; ++i) {
 336     fprintf(fp,", _c%d(c%d)", i, i);
 337   }
 338   // The body for the constructor is empty
 339   fprintf(fp," {}\n");
 340 }
 341 
 342 // ---------------------------------------------------------------------------
 343 // Utilities to generate format rules for machine operands and instructions
 344 // ---------------------------------------------------------------------------
 345 
 346 // Generate the format rule for condition codes
 347 static void defineCCodeDump(FILE *fp, int i) {
 348   fprintf(fp, "         if( _c%d == BoolTest::eq ) st->print(\"eq\");\n",i);
 349   fprintf(fp, "    else if( _c%d == BoolTest::ne ) st->print(\"ne\");\n",i);
 350   fprintf(fp, "    else if( _c%d == BoolTest::le ) st->print(\"le\");\n",i);
 351   fprintf(fp, "    else if( _c%d == BoolTest::ge ) st->print(\"ge\");\n",i);
 352   fprintf(fp, "    else if( _c%d == BoolTest::lt ) st->print(\"lt\");\n",i);
 353   fprintf(fp, "    else if( _c%d == BoolTest::gt ) st->print(\"gt\");\n",i);
 354 }
 355 
 356 // Output code that dumps constant values, increment "i" if type is constant
 357 static uint dump_spec_constant(FILE *fp, const char *ideal_type, uint i) {
 358   if (!strcmp(ideal_type, "ConI")) {
 359     fprintf(fp,"   st->print(\"#%%d\", _c%d);\n", i);
 360     ++i;
 361   }
 362   else if (!strcmp(ideal_type, "ConP")) {
 363     fprintf(fp,"    _c%d->dump_on(st);\n", i);
 364     ++i;
 365   }
 366   else if (!strcmp(ideal_type, "ConL")) {
 367     fprintf(fp,"    st->print(\"#\" INT64_FORMAT, _c%d);\n", i);
 368     ++i;
 369   }
 370   else if (!strcmp(ideal_type, "ConF")) {
 371     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
 372     ++i;
 373   }
 374   else if (!strcmp(ideal_type, "ConD")) {
 375     fprintf(fp,"    st->print(\"#%%f\", _c%d);\n", i);
 376     ++i;
 377   }
 378   else if (!strcmp(ideal_type, "Bool")) {
 379     defineCCodeDump(fp,i);
 380     ++i;
 381   }
 382 
 383   return i;
 384 }
 385 
 386 // Generate the format rule for an operand
 387 void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file = false) {
 388   if (!for_c_file) {
 389     // invoked after output #ifndef PRODUCT to ad_<arch>.hpp 
 390     // compile the bodies separately, to cut down on recompilations
 391     fprintf(fp,"  virtual void           int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const;\n");
 392     fprintf(fp,"  virtual void           ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const;\n");
 393     return;
 394   }
 395 
 396   // Local pointer indicates remaining part of format rule
 397   uint  idx = 0;                   // position of operand in match rule
 398 
 399   // Generate internal format function, used when stored locally
 400   fprintf(fp, "\n#ifndef PRODUCT\n");
 401   fprintf(fp,"void %sOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {\n", oper._ident);
 402   // Generate the user-defined portion of the format
 403   if (oper._format) {
 404     if ( oper._format->_strings.count() != 0 ) {
 405       // No initialization code for int_format
 406 
 407       // Build the format from the entries in strings and rep_vars
 408       const char  *string  = NULL;
 409       oper._format->_rep_vars.reset();
 410       oper._format->_strings.reset();
 411       while ( (string = oper._format->_strings.iter()) != NULL ) {
 412         fprintf(fp,"  ");
 413 
 414         // Check if this is a standard string or a replacement variable
 415         if ( string != NameList::_signal ) {
 416           // Normal string
 417           // Pass through to st->print
 418           fprintf(fp,"st->print(\"%s\");\n", string);
 419         } else {
 420           // Replacement variable
 421           const char *rep_var = oper._format->_rep_vars.iter();
 422           // Check that it is a local name, and an operand
 423           OperandForm *op      = oper._localNames[rep_var]->is_operand();
 424           assert( op, "replacement variable was not found in local names");
 425           // Get index if register or constant
 426           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
 427             idx  = oper.register_position( globals, rep_var);
 428           } 
 429           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
 430             idx  = oper.constant_position( globals, rep_var);
 431           } else {
 432             idx = 0;
 433           }
 434 
 435           // output invocation of "$..."s format function
 436           if ( op != NULL )   op->int_format(fp, globals, idx);
 437 
 438           if ( idx == -1 ) {
 439             fprintf(stderr, 
 440                     "Using a name, %s, that isn't in match rule\n", rep_var);
 441             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
 442           }
 443         } // Done with a replacement variable
 444       } // Done with all format strings
 445     } else {
 446       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
 447       oper.int_format(fp, globals, 0);
 448     }
 449 
 450   } else { // oper._format == NULL
 451     // Provide a few special case formats where the AD writer cannot.
 452     if ( strcmp(oper._ident,"Universe")==0 ) {
 453       fprintf(fp, "  st->print(\"$$univ\");\n");
 454     }
 455     // labelOper::int_format is defined in ad_<...>.cpp
 456   }
 457   // ALWAYS! Provide a special case output for condition codes.
 458   if( oper.is_ideal_bool() ) {
 459     defineCCodeDump(fp,0);
 460   }
 461   fprintf(fp,"}\n");
 462 
 463   // Generate external format function, when data is stored externally
 464   fprintf(fp,"void %sOper::ext_format(PhaseRegAlloc *ra, const MachNode *node, int idx, outputStream *st) const {\n", oper._ident);
 465   // Generate the user-defined portion of the format
 466   if (oper._format) {
 467     if ( oper._format->_strings.count() != 0 ) {
 468 
 469       // Check for a replacement string "$..."
 470       if ( oper._format->_rep_vars.count() != 0 ) {
 471         // Initialization code for ext_format
 472       }
 473 
 474       // Build the format from the entries in strings and rep_vars
 475       const char  *string  = NULL;
 476       oper._format->_rep_vars.reset();
 477       oper._format->_strings.reset();
 478       while ( (string = oper._format->_strings.iter()) != NULL ) {
 479         fprintf(fp,"  ");
 480 
 481         // Check if this is a standard string or a replacement variable
 482         if ( string != NameList::_signal ) {
 483           // Normal string
 484           // Pass through to st->print
 485           fprintf(fp,"st->print(\"%s\");\n", string);
 486         } else {
 487           // Replacement variable
 488           const char *rep_var = oper._format->_rep_vars.iter();
 489           // Check that it is a local name, and an operand
 490           OperandForm *op      = oper._localNames[rep_var]->is_operand();
 491           assert( op, "replacement variable was not found in local names");
 492           // Get index if register or constant
 493           if ( op->_matrule && op->_matrule->is_base_register(globals) ) {
 494             idx  = oper.register_position( globals, rep_var);
 495           } 
 496           else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
 497             idx  = oper.constant_position( globals, rep_var);
 498           } else {
 499             idx = 0;
 500           }
 501           // output invocation of "$..."s format function
 502           if ( op != NULL )   op->ext_format(fp, globals, idx);
 503 
 504           // Lookup the index position of the replacement variable
 505           idx      = oper._components.operand_position_format(rep_var);
 506           if ( idx == -1 ) {
 507             fprintf(stderr, 
 508                     "Using a name, %s, that isn't in match rule\n", rep_var);
 509             assert( strcmp(op->_ident,"label")==0, "Unimplemented");
 510           }
 511         } // Done with a replacement variable
 512       } // Done with all format strings
 513       
 514     } else {
 515       // Default formats for base operands (RegI, RegP, ConI, ConP, ...)
 516       oper.ext_format(fp, globals, 0);
 517     }
 518   } else { // oper._format == NULL
 519     // Provide a few special case formats where the AD writer cannot.
 520     if ( strcmp(oper._ident,"Universe")==0 ) {
 521       fprintf(fp, "  st->print(\"$$univ\");\n");
 522     }
 523     // labelOper::ext_format is defined in ad_<...>.cpp
 524   }
 525   // ALWAYS! Provide a special case output for condition codes.
 526   if( oper.is_ideal_bool() ) {
 527     defineCCodeDump(fp,0);
 528   }
 529   fprintf(fp, "}\n");
 530   fprintf(fp, "#endif\n");
 531 }
 532 
 533 
 534 // Generate the format rule for an instruction
 535 void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c_file = false) {
 536   if (!for_c_file) {
 537     // compile the bodies separately, to cut down on recompilations
 538     // #ifndef PRODUCT region generated by caller 
 539     fprintf(fp,"  virtual void           format(PhaseRegAlloc *ra, outputStream *st) const;\n");
 540     return;
 541   }
 542 
 543   // Define the format function
 544   fprintf(fp, "#ifndef PRODUCT\n");
 545   fprintf(fp, "void %sNode::format(PhaseRegAlloc *ra, outputStream *st) const {\n", inst._ident);
 546 
 547   // Generate the user-defined portion of the format
 548   if( inst._format ) {
 549     // If there are replacement variables,
 550     // Generate index values needed for determing the operand position
 551     if( inst._format->_rep_vars.count() )
 552       inst.index_temps(fp, globals);
 553 
 554     // Build the format from the entries in strings and rep_vars
 555     const char  *string  = NULL;
 556     inst._format->_rep_vars.reset();
 557     inst._format->_strings.reset();
 558     while( (string = inst._format->_strings.iter()) != NULL ) {
 559       fprintf(fp,"    ");
 560       // Check if this is a standard string or a replacement variable
 561       if( string != NameList::_signal )  // Normal string.  Pass through.
 562         fprintf(fp,"st->print(\"%s\");\n", string);
 563       else                      // Replacement variable
 564         inst.rep_var_format( fp, inst._format->_rep_vars.iter() );
 565     } // Done with all format strings
 566   } // Done generating the user-defined portion of the format
 567 
 568   // Add call debug info automatically
 569   Form::CallType call_type = inst.is_ideal_call();
 570   if( call_type != Form::invalid_type ) {
 571     switch( call_type ) {
 572     case Form::JAVA_DYNAMIC:
 573       fprintf(fp,"    _method->print_short_name();\n");
 574       break;
 575     case Form::JAVA_STATIC:
 576       fprintf(fp,"    if( _method ) _method->print_short_name(st); else st->print(\" wrapper for: %%s\", _name);\n");
 577       fprintf(fp,"    if( !_method ) dump_trap_args(st);\n");
 578       break;
 579     case Form::JAVA_COMPILED:
 580     case Form::JAVA_INTERP:
 581       break;
 582     case Form::JAVA_RUNTIME:
 583     case Form::JAVA_LEAF:
 584     case Form::JAVA_NATIVE:
 585       fprintf(fp,"    st->print(\" %%s\", _name);");
 586       break;
 587     default: 
 588       assert(0,"ShouldNotReacHere");
 589     }
 590     fprintf(fp,  "    st->print_cr(\"\");\n" );
 591     fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
 592     fprintf(fp,  "    st->print(\"        # \");\n" );
 593     fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
 594   }
 595   else if(inst.is_ideal_safepoint()) {
 596     fprintf(fp,  "    st->print(\"\");\n" );
 597     fprintf(fp,  "    if (_jvms) _jvms->format(ra, this, st); else st->print_cr(\"        No JVM State Info\");\n" );
 598     fprintf(fp,  "    st->print(\"        # \");\n" );
 599     fprintf(fp,  "    if( _jvms ) _oop_map->print_on(st);\n");
 600   }
 601   else if( inst.is_ideal_if() ) {
 602     fprintf(fp,  "    st->print(\"  P=%%f C=%%f\",_prob,_fcnt);\n" );
 603   }
 604   else if( inst.is_ideal_mem() ) {
 605     // Print out the field name if available to improve readability
 606     fprintf(fp,  "    if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
 607     fprintf(fp,  "      st->print(\" ! Field \");\n");
 608     fprintf(fp,  "      if( ra->C->alias_type(adr_type())->is_volatile() )\n");
 609     fprintf(fp,  "        st->print(\" Volatile\");\n");
 610     fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->holder()->name()->print_symbol_on(st);\n");
 611     fprintf(fp,  "      st->print(\".\");\n");
 612     fprintf(fp,  "      ra->C->alias_type(adr_type())->field()->name()->print_symbol_on(st);\n");
 613     fprintf(fp,  "    } else\n");
 614     // Make sure 'Volatile' gets printed out
 615     fprintf(fp,  "    if( ra->C->alias_type(adr_type())->is_volatile() )\n");
 616     fprintf(fp,  "      st->print(\" Volatile!\");\n");
 617   }
 618 
 619   // Complete the definition of the format function
 620   fprintf(fp, "  }\n#endif\n");
 621 }
 622 
 623 static bool is_non_constant(char* x) {
 624   // Tells whether the string (part of an operator interface) is non-constant.
 625   // Simply detect whether there is an occurrence of a formal parameter,
 626   // which will always begin with '$'.
 627   return strchr(x, '$') == 0;
 628 }
 629 
 630 void ArchDesc::declare_pipe_classes(FILE *fp_hpp) {
 631   if (!_pipeline)
 632     return;
 633 
 634   fprintf(fp_hpp, "\n");
 635   fprintf(fp_hpp, "// Pipeline_Use_Cycle_Mask Class\n");
 636   fprintf(fp_hpp, "class Pipeline_Use_Cycle_Mask {\n");
 637 
 638   if (_pipeline->_maxcycleused <= 
 639 #ifdef SPARC
 640     64
 641 #else
 642     32
 643 #endif
 644       ) {
 645     fprintf(fp_hpp, "protected:\n");
 646     fprintf(fp_hpp, "  %s _mask;\n\n", _pipeline->_maxcycleused <= 32 ? "uint" : "uint64_t" );
 647     fprintf(fp_hpp, "public:\n");
 648     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : _mask(0) {}\n\n");
 649     if (_pipeline->_maxcycleused <= 32)
 650       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask) : _mask(mask) {}\n\n");
 651     else {
 652       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint mask1, uint mask2) : _mask((((uint64_t)mask1) << 32) | mask2) {}\n\n");
 653       fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(uint64_t mask) : _mask(mask) {}\n\n");
 654     }
 655     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
 656     fprintf(fp_hpp, "    _mask = in._mask;\n");
 657     fprintf(fp_hpp, "    return *this;\n");
 658     fprintf(fp_hpp, "  }\n\n");
 659     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
 660     fprintf(fp_hpp, "    return ((_mask & in2._mask) != 0);\n");
 661     fprintf(fp_hpp, "  }\n\n");
 662     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
 663     fprintf(fp_hpp, "    _mask <<= n;\n");
 664     fprintf(fp_hpp, "    return *this;\n");
 665     fprintf(fp_hpp, "  }\n\n");
 666     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &in2) {\n");
 667     fprintf(fp_hpp, "    _mask |= in2._mask;\n");
 668     fprintf(fp_hpp, "  }\n\n");
 669     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
 670     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
 671   }
 672   else {
 673     fprintf(fp_hpp, "protected:\n");
 674     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 675     uint l;
 676     fprintf(fp_hpp, "  uint ");
 677     for (l = 1; l <= masklen; l++)
 678       fprintf(fp_hpp, "_mask%d%s", l, l < masklen ? ", " : ";\n\n");
 679     fprintf(fp_hpp, "public:\n");
 680     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask() : ");
 681     for (l = 1; l <= masklen; l++)
 682       fprintf(fp_hpp, "_mask%d(0)%s", l, l < masklen ? ", " : " {}\n\n");
 683     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask(");
 684     for (l = 1; l <= masklen; l++)
 685       fprintf(fp_hpp, "uint mask%d%s", l, l < masklen ? ", " : ") : ");
 686     for (l = 1; l <= masklen; l++)
 687       fprintf(fp_hpp, "_mask%d(mask%d)%s", l, l, l < masklen ? ", " : " {}\n\n");
 688 
 689     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator=(const Pipeline_Use_Cycle_Mask &in) {\n");
 690     for (l = 1; l <= masklen; l++)
 691       fprintf(fp_hpp, "    _mask%d = in._mask%d;\n", l, l);
 692     fprintf(fp_hpp, "    return *this;\n");
 693     fprintf(fp_hpp, "  }\n\n");
 694     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask intersect(const Pipeline_Use_Cycle_Mask &in2) {\n");
 695     fprintf(fp_hpp, "    Pipeline_Use_Cycle_Mask out;\n");
 696     for (l = 1; l <= masklen; l++)
 697       fprintf(fp_hpp, "    out._mask%d = _mask%d & in2._mask%d;\n", l, l, l);
 698     fprintf(fp_hpp, "    return out;\n");
 699     fprintf(fp_hpp, "  }\n\n");
 700     fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Cycle_Mask &in2) const {\n");
 701     fprintf(fp_hpp, "    return (");
 702     for (l = 1; l <= masklen; l++)
 703       fprintf(fp_hpp, "((_mask%d & in2._mask%d) != 0)%s", l, l, l < masklen ? " || " : "");
 704     fprintf(fp_hpp, ") ? true : false;\n");
 705     fprintf(fp_hpp, "  }\n\n");
 706     fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask& operator<<=(int n) {\n");
 707     fprintf(fp_hpp, "    if (n >= 32)\n");
 708     fprintf(fp_hpp, "      do {\n       ");
 709     for (l = masklen; l > 1; l--)
 710       fprintf(fp_hpp, " _mask%d = _mask%d;", l, l-1);
 711     fprintf(fp_hpp, " _mask%d = 0;\n", 1);
 712     fprintf(fp_hpp, "      } while ((n -= 32) >= 32);\n\n");
 713     fprintf(fp_hpp, "    if (n > 0) {\n");
 714     fprintf(fp_hpp, "      uint m = 32 - n;\n");
 715     fprintf(fp_hpp, "      uint mask = (1 << n) - 1;\n");
 716     fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n;\n", 2, 1, 1);
 717     for (l = 2; l < masklen; l++) {
 718       fprintf(fp_hpp, "      uint temp%d = mask & (_mask%d >> m); _mask%d <<= n; _mask%d |= temp%d;\n", l+1, l, l, l, l);
 719     }
 720     fprintf(fp_hpp, "      _mask%d <<= n; _mask%d |= temp%d;\n", masklen, masklen, masklen);
 721     fprintf(fp_hpp, "    }\n");
 722 
 723     fprintf(fp_hpp, "    return *this;\n");
 724     fprintf(fp_hpp, "  }\n\n");
 725     fprintf(fp_hpp, "  void Or(const Pipeline_Use_Cycle_Mask &);\n\n");
 726     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n");
 727     fprintf(fp_hpp, "  friend Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &, const Pipeline_Use_Cycle_Mask &);\n\n");
 728   }
 729 
 730   fprintf(fp_hpp, "  friend class Pipeline_Use;\n\n");
 731   fprintf(fp_hpp, "  friend class Pipeline_Use_Element;\n\n");
 732   fprintf(fp_hpp, "};\n\n");
 733 
 734   uint rescount = 0;
 735   const char *resource;
 736 
 737   for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
 738       int mask = _pipeline->_resdict[resource]->is_resource()->mask();
 739       if ((mask & (mask-1)) == 0)
 740         rescount++;
 741     }
 742 
 743   fprintf(fp_hpp, "// Pipeline_Use_Element Class\n");
 744   fprintf(fp_hpp, "class Pipeline_Use_Element {\n");
 745   fprintf(fp_hpp, "protected:\n");
 746   fprintf(fp_hpp, "  // Mask of used functional units\n");
 747   fprintf(fp_hpp, "  uint _used;\n\n");
 748   fprintf(fp_hpp, "  // Lower and upper bound of functional unit number range\n");
 749   fprintf(fp_hpp, "  uint _lb, _ub;\n\n");
 750   fprintf(fp_hpp, "  // Indicates multiple functionals units available\n");
 751   fprintf(fp_hpp, "  bool _multiple;\n\n");
 752   fprintf(fp_hpp, "  // Mask of specific used cycles\n");
 753   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask _mask;\n\n");
 754   fprintf(fp_hpp, "public:\n");
 755   fprintf(fp_hpp, "  Pipeline_Use_Element() {}\n\n");
 756   fprintf(fp_hpp, "  Pipeline_Use_Element(uint used, uint lb, uint ub, bool multiple, Pipeline_Use_Cycle_Mask mask)\n");
 757   fprintf(fp_hpp, "  : _used(used), _lb(lb), _ub(ub), _multiple(multiple), _mask(mask) {}\n\n");
 758   fprintf(fp_hpp, "  uint used() const { return _used; }\n\n");
 759   fprintf(fp_hpp, "  uint lowerBound() const { return _lb; }\n\n");
 760   fprintf(fp_hpp, "  uint upperBound() const { return _ub; }\n\n");
 761   fprintf(fp_hpp, "  bool multiple() const { return _multiple; }\n\n");
 762   fprintf(fp_hpp, "  Pipeline_Use_Cycle_Mask mask() const { return _mask; }\n\n");
 763   fprintf(fp_hpp, "  bool overlaps(const Pipeline_Use_Element &in2) const {\n");
 764   fprintf(fp_hpp, "    return ((_used & in2._used) != 0 && _mask.overlaps(in2._mask));\n");
 765   fprintf(fp_hpp, "  }\n\n");
 766   fprintf(fp_hpp, "  void step(uint cycles) {\n");
 767   fprintf(fp_hpp, "    _used = 0;\n");
 768   fprintf(fp_hpp, "    _mask <<= cycles;\n");
 769   fprintf(fp_hpp, "  }\n\n");
 770   fprintf(fp_hpp, "  friend class Pipeline_Use;\n");
 771   fprintf(fp_hpp, "};\n\n");
 772 
 773   fprintf(fp_hpp, "// Pipeline_Use Class\n");
 774   fprintf(fp_hpp, "class Pipeline_Use {\n");
 775   fprintf(fp_hpp, "protected:\n");
 776   fprintf(fp_hpp, "  // These resources can be used\n");
 777   fprintf(fp_hpp, "  uint _resources_used;\n\n");
 778   fprintf(fp_hpp, "  // These resources are used; excludes multiple choice functional units\n");
 779   fprintf(fp_hpp, "  uint _resources_used_exclusively;\n\n");
 780   fprintf(fp_hpp, "  // Number of elements\n");
 781   fprintf(fp_hpp, "  uint _count;\n\n");
 782   fprintf(fp_hpp, "  // This is the array of Pipeline_Use_Elements\n");
 783   fprintf(fp_hpp, "  Pipeline_Use_Element * _elements;\n\n");
 784   fprintf(fp_hpp, "public:\n");
 785   fprintf(fp_hpp, "  Pipeline_Use(uint resources_used, uint resources_used_exclusively, uint count, Pipeline_Use_Element *elements)\n");
 786   fprintf(fp_hpp, "  : _resources_used(resources_used)\n");
 787   fprintf(fp_hpp, "  , _resources_used_exclusively(resources_used_exclusively)\n");
 788   fprintf(fp_hpp, "  , _count(count)\n");
 789   fprintf(fp_hpp, "  , _elements(elements)\n");
 790   fprintf(fp_hpp, "  {}\n\n");
 791   fprintf(fp_hpp, "  uint resourcesUsed() const { return _resources_used; }\n\n");
 792   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const { return _resources_used_exclusively; }\n\n");
 793   fprintf(fp_hpp, "  uint count() const { return _count; }\n\n");
 794   fprintf(fp_hpp, "  Pipeline_Use_Element * element(uint i) const { return &_elements[i]; }\n\n");
 795   fprintf(fp_hpp, "  uint full_latency(uint delay, const Pipeline_Use &pred) const;\n\n");
 796   fprintf(fp_hpp, "  void add_usage(const Pipeline_Use &pred);\n\n");
 797   fprintf(fp_hpp, "  void reset() {\n");
 798   fprintf(fp_hpp, "    _resources_used = _resources_used_exclusively = 0;\n");
 799   fprintf(fp_hpp, "  };\n\n");
 800   fprintf(fp_hpp, "  void step(uint cycles) {\n");
 801   fprintf(fp_hpp, "    reset();\n");
 802   fprintf(fp_hpp, "    for (uint i = 0; i < %d; i++)\n",
 803     rescount);
 804   fprintf(fp_hpp, "      (&_elements[i])->step(cycles);\n");
 805   fprintf(fp_hpp, "  };\n\n");
 806   fprintf(fp_hpp, "  static const Pipeline_Use         elaborated_use;\n");
 807   fprintf(fp_hpp, "  static const Pipeline_Use_Element elaborated_elements[%d];\n\n",
 808     rescount);
 809   fprintf(fp_hpp, "  friend class Pipeline;\n");
 810   fprintf(fp_hpp, "};\n\n");
 811 
 812   fprintf(fp_hpp, "// Pipeline Class\n");
 813   fprintf(fp_hpp, "class Pipeline {\n");
 814   fprintf(fp_hpp, "public:\n");
 815 
 816   fprintf(fp_hpp, "  static bool enabled() { return %s; }\n\n",
 817     _pipeline ? "true" : "false" );
 818 
 819   assert( _pipeline->_maxInstrsPerBundle &&
 820         ( _pipeline->_instrUnitSize || _pipeline->_bundleUnitSize) &&
 821           _pipeline->_instrFetchUnitSize &&
 822           _pipeline->_instrFetchUnits,
 823     "unspecified pipeline architecture units");
 824 
 825   uint unitSize = _pipeline->_instrUnitSize ? _pipeline->_instrUnitSize : _pipeline->_bundleUnitSize;
 826 
 827   fprintf(fp_hpp, "  enum {\n");
 828   fprintf(fp_hpp, "    _variable_size_instructions = %d,\n",
 829     _pipeline->_variableSizeInstrs ? 1 : 0);
 830   fprintf(fp_hpp, "    _fixed_size_instructions = %d,\n",
 831     _pipeline->_variableSizeInstrs ? 0 : 1);
 832   fprintf(fp_hpp, "    _branch_has_delay_slot = %d,\n",
 833     _pipeline->_branchHasDelaySlot ? 1 : 0);
 834   fprintf(fp_hpp, "    _max_instrs_per_bundle = %d,\n",
 835     _pipeline->_maxInstrsPerBundle);
 836   fprintf(fp_hpp, "    _max_bundles_per_cycle = %d,\n",
 837     _pipeline->_maxBundlesPerCycle);
 838   fprintf(fp_hpp, "    _max_instrs_per_cycle = %d\n",
 839     _pipeline->_maxBundlesPerCycle * _pipeline->_maxInstrsPerBundle);
 840   fprintf(fp_hpp, "  };\n\n");
 841 
 842   fprintf(fp_hpp, "  static bool instr_has_unit_size() { return %s; }\n\n",
 843     _pipeline->_instrUnitSize != 0 ? "true" : "false" );
 844   if( _pipeline->_bundleUnitSize != 0 )
 845     if( _pipeline->_instrUnitSize != 0 )
 846       fprintf(fp_hpp, "// Individual Instructions may be bundled together by the hardware\n\n");
 847     else
 848       fprintf(fp_hpp, "// Instructions exist only in bundles\n\n");
 849   else
 850     fprintf(fp_hpp, "// Bundling is not supported\n\n");
 851   if( _pipeline->_instrUnitSize != 0 )
 852     fprintf(fp_hpp, "  // Size of an instruction\n");
 853   else
 854     fprintf(fp_hpp, "  // Size of an individual instruction does not exist - unsupported\n");
 855   fprintf(fp_hpp, "  static uint instr_unit_size() {");
 856   if( _pipeline->_instrUnitSize == 0 )
 857     fprintf(fp_hpp, " assert( false, \"Instructions are only in bundles\" );");
 858   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_instrUnitSize);
 859 
 860   if( _pipeline->_bundleUnitSize != 0 )
 861     fprintf(fp_hpp, "  // Size of a bundle\n");
 862   else
 863     fprintf(fp_hpp, "  // Bundles do not exist - unsupported\n");
 864   fprintf(fp_hpp, "  static uint bundle_unit_size() {");
 865   if( _pipeline->_bundleUnitSize == 0 )
 866     fprintf(fp_hpp, " assert( false, \"Bundles are not supported\" );");
 867   fprintf(fp_hpp, " return %d; };\n\n", _pipeline->_bundleUnitSize);
 868 
 869   fprintf(fp_hpp, "  static bool requires_bundling() { return %s; }\n\n",
 870     _pipeline->_bundleUnitSize != 0 && _pipeline->_instrUnitSize == 0 ? "true" : "false" );
 871 
 872   fprintf(fp_hpp, "private:\n");
 873   fprintf(fp_hpp, "  Pipeline();  // Not a legal constructor\n");
 874   fprintf(fp_hpp, "\n");
 875   fprintf(fp_hpp, "  const unsigned char                   _read_stage_count;\n");
 876   fprintf(fp_hpp, "  const unsigned char                   _write_stage;\n");
 877   fprintf(fp_hpp, "  const unsigned char                   _fixed_latency;\n");
 878   fprintf(fp_hpp, "  const unsigned char                   _instruction_count;\n");
 879   fprintf(fp_hpp, "  const bool                            _has_fixed_latency;\n");
 880   fprintf(fp_hpp, "  const bool                            _has_branch_delay;\n");
 881   fprintf(fp_hpp, "  const bool                            _has_multiple_bundles;\n");
 882   fprintf(fp_hpp, "  const bool                            _force_serialization;\n");
 883   fprintf(fp_hpp, "  const bool                            _may_have_no_code;\n");
 884   fprintf(fp_hpp, "  const enum machPipelineStages * const _read_stages;\n");
 885   fprintf(fp_hpp, "  const enum machPipelineStages * const _resource_stage;\n");
 886   fprintf(fp_hpp, "  const uint                    * const _resource_cycles;\n");
 887   fprintf(fp_hpp, "  const Pipeline_Use                    _resource_use;\n");
 888   fprintf(fp_hpp, "\n");
 889   fprintf(fp_hpp, "public:\n");
 890   fprintf(fp_hpp, "  Pipeline(uint                            write_stage,\n");
 891   fprintf(fp_hpp, "           uint                            count,\n");
 892   fprintf(fp_hpp, "           bool                            has_fixed_latency,\n");
 893   fprintf(fp_hpp, "           uint                            fixed_latency,\n");
 894   fprintf(fp_hpp, "           uint                            instruction_count,\n");
 895   fprintf(fp_hpp, "           bool                            has_branch_delay,\n");
 896   fprintf(fp_hpp, "           bool                            has_multiple_bundles,\n");
 897   fprintf(fp_hpp, "           bool                            force_serialization,\n");
 898   fprintf(fp_hpp, "           bool                            may_have_no_code,\n");
 899   fprintf(fp_hpp, "           enum machPipelineStages * const dst,\n");
 900   fprintf(fp_hpp, "           enum machPipelineStages * const stage,\n");
 901   fprintf(fp_hpp, "           uint                    * const cycles,\n");
 902   fprintf(fp_hpp, "           Pipeline_Use                    resource_use)\n");
 903   fprintf(fp_hpp, "  : _write_stage(write_stage)\n");
 904   fprintf(fp_hpp, "  , _read_stage_count(count)\n");
 905   fprintf(fp_hpp, "  , _has_fixed_latency(has_fixed_latency)\n");
 906   fprintf(fp_hpp, "  , _fixed_latency(fixed_latency)\n");
 907   fprintf(fp_hpp, "  , _read_stages(dst)\n");
 908   fprintf(fp_hpp, "  , _resource_stage(stage)\n");
 909   fprintf(fp_hpp, "  , _resource_cycles(cycles)\n");
 910   fprintf(fp_hpp, "  , _resource_use(resource_use)\n");
 911   fprintf(fp_hpp, "  , _instruction_count(instruction_count)\n");
 912   fprintf(fp_hpp, "  , _has_branch_delay(has_branch_delay)\n");
 913   fprintf(fp_hpp, "  , _has_multiple_bundles(has_multiple_bundles)\n");
 914   fprintf(fp_hpp, "  , _force_serialization(force_serialization)\n");
 915   fprintf(fp_hpp, "  , _may_have_no_code(may_have_no_code)\n");
 916   fprintf(fp_hpp, "  {};\n");
 917   fprintf(fp_hpp, "\n");
 918   fprintf(fp_hpp, "  uint writeStage() const {\n");
 919   fprintf(fp_hpp, "    return (_write_stage);\n");
 920   fprintf(fp_hpp, "  }\n");
 921   fprintf(fp_hpp, "\n");
 922   fprintf(fp_hpp, "  enum machPipelineStages readStage(int ndx) const {\n");
 923   fprintf(fp_hpp, "    return (ndx < _read_stage_count ? _read_stages[ndx] : stage_undefined);");
 924   fprintf(fp_hpp, "  }\n\n");
 925   fprintf(fp_hpp, "  uint resourcesUsed() const {\n");
 926   fprintf(fp_hpp, "    return _resource_use.resourcesUsed();\n  }\n\n");
 927   fprintf(fp_hpp, "  uint resourcesUsedExclusively() const {\n");
 928   fprintf(fp_hpp, "    return _resource_use.resourcesUsedExclusively();\n  }\n\n");
 929   fprintf(fp_hpp, "  bool hasFixedLatency() const {\n");
 930   fprintf(fp_hpp, "    return (_has_fixed_latency);\n  }\n\n");
 931   fprintf(fp_hpp, "  uint fixedLatency() const {\n");
 932   fprintf(fp_hpp, "    return (_fixed_latency);\n  }\n\n");
 933   fprintf(fp_hpp, "  uint functional_unit_latency(uint start, const Pipeline *pred) const;\n\n");
 934   fprintf(fp_hpp, "  uint operand_latency(uint opnd, const Pipeline *pred) const;\n\n");
 935   fprintf(fp_hpp, "  const Pipeline_Use& resourceUse() const {\n");
 936   fprintf(fp_hpp, "    return (_resource_use); }\n\n");
 937   fprintf(fp_hpp, "  const Pipeline_Use_Element * resourceUseElement(uint i) const {\n");
 938   fprintf(fp_hpp, "    return (&_resource_use._elements[i]); }\n\n");
 939   fprintf(fp_hpp, "  uint resourceUseCount() const {\n");
 940   fprintf(fp_hpp, "    return (_resource_use._count); }\n\n");
 941   fprintf(fp_hpp, "  uint instructionCount() const {\n");
 942   fprintf(fp_hpp, "    return (_instruction_count); }\n\n");
 943   fprintf(fp_hpp, "  bool hasBranchDelay() const {\n");
 944   fprintf(fp_hpp, "    return (_has_branch_delay); }\n\n");
 945   fprintf(fp_hpp, "  bool hasMultipleBundles() const {\n");
 946   fprintf(fp_hpp, "    return (_has_multiple_bundles); }\n\n");
 947   fprintf(fp_hpp, "  bool forceSerialization() const {\n");
 948   fprintf(fp_hpp, "    return (_force_serialization); }\n\n");
 949   fprintf(fp_hpp, "  bool mayHaveNoCode() const {\n");
 950   fprintf(fp_hpp, "    return (_may_have_no_code); }\n\n");
 951   fprintf(fp_hpp, "//const Pipeline_Use_Cycle_Mask& resourceUseMask(int resource) const {\n");
 952   fprintf(fp_hpp, "//  return (_resource_use_masks[resource]); }\n\n");
 953   fprintf(fp_hpp, "\n#ifndef PRODUCT\n");
 954   fprintf(fp_hpp, "  static const char * stageName(uint i);\n");
 955   fprintf(fp_hpp, "#endif\n");
 956   fprintf(fp_hpp, "};\n\n");
 957 
 958   fprintf(fp_hpp, "// Bundle class\n");
 959   fprintf(fp_hpp, "class Bundle {\n");
 960 
 961   uint mshift = 0;
 962   for (uint msize = _pipeline->_maxInstrsPerBundle * _pipeline->_maxBundlesPerCycle; msize != 0; msize >>= 1)
 963     mshift++;
 964 
 965   uint rshift = rescount;
 966 
 967   fprintf(fp_hpp, "protected:\n");
 968   fprintf(fp_hpp, "  enum {\n");
 969   fprintf(fp_hpp, "    _unused_delay                   = 0x%x,\n", 0);
 970   fprintf(fp_hpp, "    _use_nop_delay                  = 0x%x,\n", 1);
 971   fprintf(fp_hpp, "    _use_unconditional_delay        = 0x%x,\n", 2);
 972   fprintf(fp_hpp, "    _use_conditional_delay          = 0x%x,\n", 3);
 973   fprintf(fp_hpp, "    _used_in_conditional_delay      = 0x%x,\n", 4);
 974   fprintf(fp_hpp, "    _used_in_unconditional_delay    = 0x%x,\n", 5);
 975   fprintf(fp_hpp, "    _used_in_all_conditional_delays = 0x%x,\n", 6);
 976   fprintf(fp_hpp, "\n");
 977   fprintf(fp_hpp, "    _use_delay                      = 0x%x,\n", 3);
 978   fprintf(fp_hpp, "    _used_in_delay                  = 0x%x\n",  4);
 979   fprintf(fp_hpp, "  };\n\n");
 980   fprintf(fp_hpp, "  uint _flags          : 3,\n");
 981   fprintf(fp_hpp, "       _starts_bundle  : 1,\n");
 982   fprintf(fp_hpp, "       _instr_count    : %d,\n",   mshift);
 983   fprintf(fp_hpp, "       _resources_used : %d;\n",   rshift);
 984   fprintf(fp_hpp, "public:\n");
 985   fprintf(fp_hpp, "  Bundle() : _flags(_unused_delay), _starts_bundle(0), _instr_count(0), _resources_used(0) {}\n\n");
 986   fprintf(fp_hpp, "  void set_instr_count(uint i) { _instr_count  = i; }\n");
 987   fprintf(fp_hpp, "  void set_resources_used(uint i) { _resources_used   = i; }\n");
 988   fprintf(fp_hpp, "  void clear_usage() { _flags = _unused_delay; }\n");
 989   fprintf(fp_hpp, "  void set_starts_bundle() { _starts_bundle = true; }\n");
 990 
 991   fprintf(fp_hpp, "  uint flags() const { return (_flags); }\n");
 992   fprintf(fp_hpp, "  uint instr_count() const { return (_instr_count); }\n");
 993   fprintf(fp_hpp, "  uint resources_used() const { return (_resources_used); }\n");
 994   fprintf(fp_hpp, "  bool starts_bundle() const { return (_starts_bundle != 0); }\n");
 995 
 996   fprintf(fp_hpp, "  void set_use_nop_delay() { _flags = _use_nop_delay; }\n");
 997   fprintf(fp_hpp, "  void set_use_unconditional_delay() { _flags = _use_unconditional_delay; }\n");
 998   fprintf(fp_hpp, "  void set_use_conditional_delay() { _flags = _use_conditional_delay; }\n");
 999   fprintf(fp_hpp, "  void set_used_in_unconditional_delay() { _flags = _used_in_unconditional_delay; }\n");
1000   fprintf(fp_hpp, "  void set_used_in_conditional_delay() { _flags = _used_in_conditional_delay; }\n");
1001   fprintf(fp_hpp, "  void set_used_in_all_conditional_delays() { _flags = _used_in_all_conditional_delays; }\n");
1002 
1003   fprintf(fp_hpp, "  bool use_nop_delay() { return (_flags == _use_nop_delay); }\n");
1004   fprintf(fp_hpp, "  bool use_unconditional_delay() { return (_flags == _use_unconditional_delay); }\n");
1005   fprintf(fp_hpp, "  bool use_conditional_delay() { return (_flags == _use_conditional_delay); }\n");
1006   fprintf(fp_hpp, "  bool used_in_unconditional_delay() { return (_flags == _used_in_unconditional_delay); }\n");
1007   fprintf(fp_hpp, "  bool used_in_conditional_delay() { return (_flags == _used_in_conditional_delay); }\n");
1008   fprintf(fp_hpp, "  bool used_in_all_conditional_delays() { return (_flags == _used_in_all_conditional_delays); }\n");
1009   fprintf(fp_hpp, "  bool use_delay() { return ((_flags & _use_delay) != 0); }\n");
1010   fprintf(fp_hpp, "  bool used_in_delay() { return ((_flags & _used_in_delay) != 0); }\n\n");
1011 
1012   fprintf(fp_hpp, "  enum {\n");
1013   fprintf(fp_hpp, "    _nop_count = %d\n",
1014     _pipeline->_nopcnt);
1015   fprintf(fp_hpp, "  };\n\n");
1016   fprintf(fp_hpp, "  static void initialize_nops(MachNode *nop_list[%d], Compile* C);\n\n",
1017     _pipeline->_nopcnt);
1018   fprintf(fp_hpp, "#ifndef PRODUCT\n");
1019   fprintf(fp_hpp, "  void dump() const;\n");
1020   fprintf(fp_hpp, "#endif\n");
1021   fprintf(fp_hpp, "};\n\n");
1022 
1023 //  const char *classname;
1024 //  for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
1025 //    PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
1026 //    fprintf(fp_hpp, "// Pipeline Class Instance for \"%s\"\n", classname);
1027 //  }
1028 }
1029 
1030 //------------------------------declareClasses---------------------------------
1031 // Construct the class hierarchy of MachNode classes from the instruction &
1032 // operand lists
1033 void ArchDesc::declareClasses(FILE *fp) {
1034 
1035   // Declare an array containing the machine register names, strings.
1036   declareRegNames(fp, _register);
1037 
1038   // Declare an array containing the machine register encoding values
1039   declareRegEncodes(fp, _register);
1040 
1041   // Generate declarations for the total number of operands
1042   fprintf(fp,"\n");
1043   fprintf(fp,"// Total number of operands defined in architecture definition\n");
1044   int num_operands = 0;
1045   OperandForm *op;
1046   for (_operands.reset(); (op = (OperandForm*)_operands.iter()) != NULL; ) {
1047     // Ensure this is a machine-world instruction
1048     if (op->ideal_only()) continue;
1049 
1050     ++num_operands;
1051   }
1052   int first_operand_class = num_operands;
1053   OpClassForm *opc;
1054   for (_opclass.reset(); (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
1055     // Ensure this is a machine-world instruction
1056     if (opc->ideal_only()) continue;
1057 
1058     ++num_operands;
1059   }
1060   fprintf(fp,"#define FIRST_OPERAND_CLASS   %d\n", first_operand_class);
1061   fprintf(fp,"#define NUM_OPERANDS          %d\n", num_operands);
1062   fprintf(fp,"\n");
1063   // Generate declarations for the total number of instructions
1064   fprintf(fp,"// Total number of instructions defined in architecture definition\n");
1065   fprintf(fp,"#define NUM_INSTRUCTIONS   %d\n",instructFormCount());
1066 
1067 
1068   // Generate Machine Classes for each operand defined in AD file
1069   fprintf(fp,"\n");
1070   fprintf(fp,"//----------------------------Declare classes derived from MachOper----------\n");
1071   // Iterate through all operands
1072   _operands.reset(); 
1073   OperandForm *oper;
1074   for( ; (oper = (OperandForm*)_operands.iter()) != NULL;) {
1075     // Ensure this is a machine-world instruction
1076     if (oper->ideal_only() ) continue;
1077     // The declaration of labelOper is in machine-independent file: machnode
1078     if ( strcmp(oper->_ident,"label")  == 0 ) continue;
1079     // The declaration of methodOper is in machine-independent file: machnode
1080     if ( strcmp(oper->_ident,"method") == 0 ) continue;
1081 
1082     // Build class definition for this operand
1083     fprintf(fp,"\n");
1084     fprintf(fp,"class %sOper : public MachOper { \n",oper->_ident);
1085     fprintf(fp,"private:\n");
1086     // Operand definitions that depend upon number of input edges
1087     {
1088       uint num_edges = oper->num_edges(_globalNames);
1089       if( num_edges != 1 ) { // Use MachOper::num_edges() {return 1;}
1090         fprintf(fp,"  virtual uint           num_edges() const { return %d; }\n",
1091               num_edges );
1092       }
1093       if( num_edges > 0 ) {
1094         in_RegMask(fp);
1095       }
1096     }
1097     
1098     // Support storing constants inside the MachOper
1099     declareConstStorage(fp,_globalNames,oper);
1100 
1101     // Support storage of the condition codes
1102     if( oper->is_ideal_bool() ) {
1103       fprintf(fp,"  virtual int ccode() const { \n");
1104       fprintf(fp,"    switch (_c0) {\n");
1105       fprintf(fp,"    case  BoolTest::eq : return equal();\n");
1106       fprintf(fp,"    case  BoolTest::gt : return greater();\n");
1107       fprintf(fp,"    case  BoolTest::lt : return less();\n");
1108       fprintf(fp,"    case  BoolTest::ne : return not_equal();\n");
1109       fprintf(fp,"    case  BoolTest::le : return less_equal();\n");
1110       fprintf(fp,"    case  BoolTest::ge : return greater_equal();\n");
1111       fprintf(fp,"    default : ShouldNotReachHere(); return 0;\n");
1112       fprintf(fp,"    }\n");
1113       fprintf(fp,"  };\n");
1114     }
1115 
1116     // Support storage of the condition codes
1117     if( oper->is_ideal_bool() ) {
1118       fprintf(fp,"  virtual void negate() { \n");
1119       fprintf(fp,"    _c0 = (BoolTest::mask)((int)_c0^0x4); \n");
1120       fprintf(fp,"  };\n");
1121     }
1122 
1123     // Declare constructor.
1124     // Parameters start with condition code, then all other constants
1125     // 
1126     // (1)  MachXOper(int32 ccode, int32 c0, int32 c1, ..., int32 cn)
1127     // (2)     : _ccode(ccode), _c0(c0), _c1(c1), ..., _cn(cn) { }
1128     // 
1129     Form::DataType constant_type = oper->simple_type(_globalNames);
1130     defineConstructor(fp, oper->_ident, oper->num_consts(_globalNames),
1131                       oper->_components, oper->is_ideal_bool(),
1132                       constant_type, _globalNames);
1133 
1134     // Clone function
1135     fprintf(fp,"  virtual MachOper      *clone(Compile* C) const;\n");
1136 
1137     // Support setting a spill offset into a constant operand.
1138     // We only support setting an 'int' offset, while in the
1139     // LP64 build spill offsets are added with an AddP which
1140     // requires a long constant.  Thus we don't support spilling
1141     // in frames larger than 4Gig.
1142     if( oper->has_conI(_globalNames) ||
1143         oper->has_conL(_globalNames) )
1144       fprintf(fp, "  virtual void set_con( jint c0 ) { _c0 = c0; }\n");
1145 
1146     // virtual functions for encoding and format
1147     //    fprintf(fp,"  virtual void           encode()   const {\n    %s }\n",
1148     //            (oper->_encrule)?(oper->_encrule->_encrule):"");
1149     // Check the interface type, and generate the correct query functions
1150     // encoding queries based upon MEMORY_INTER, REG_INTER, CONST_INTER.
1151 
1152     fprintf(fp,"  virtual uint           opcode() const { return %s; }\n",
1153             machOperEnum(oper->_ident));
1154 
1155     // virtual function to look up ideal return type of machine instruction
1156     // 
1157     // (1)  virtual const Type    *type() const { return .....; }
1158     // 
1159     if ((oper->_matrule) && (oper->_matrule->_lChild == NULL) &&
1160         (oper->_matrule->_rChild == NULL)) {
1161       unsigned int position = 0;
1162       const char  *opret, *opname, *optype;
1163       oper->_matrule->base_operand(position,_globalNames,opret,opname,optype);
1164       fprintf(fp,"  virtual const Type *type() const {");
1165       const char *type = getIdealType(optype);
1166       if( type != NULL ) {
1167         Form::DataType data_type = oper->is_base_constant(_globalNames);
1168         // Check if we are an ideal pointer type
1169         if( data_type == Form::idealP ) {
1170           // Return the ideal type we already have: <TypePtr *>
1171           fprintf(fp," return _c0;");
1172         } else {
1173           // Return the appropriate bottom type
1174           fprintf(fp," return %s;", getIdealType(optype));
1175         }
1176       } else {
1177         fprintf(fp," ShouldNotCallThis(); return Type::BOTTOM;");
1178       }
1179       fprintf(fp," }\n");
1180     } else {
1181       // Check for user-defined stack slots, based upon sRegX
1182       Form::DataType data_type = oper->is_user_name_for_sReg();
1183       if( data_type != Form::none ){
1184         const char *type = NULL;
1185         switch( data_type ) {
1186         case Form::idealI: type = "TypeInt::INT";   break;
1187         case Form::idealP: type = "TypePtr::BOTTOM";break;
1188         case Form::idealF: type = "Type::FLOAT";    break;
1189         case Form::idealD: type = "Type::DOUBLE";   break;
1190         case Form::idealL: type = "TypeLong::LONG"; break;
1191         case Form::none: // fall through
1192         default:
1193           assert( false, "No support for this type of stackSlot");
1194         }
1195         fprintf(fp,"  virtual const Type    *type() const { return %s; } // stackSlotX\n", type);
1196       }
1197     }
1198 
1199 
1200     // 
1201     // virtual functions for defining the encoding interface.
1202     // 
1203     // Access the linearized ideal register mask,
1204     // map to physical register encoding
1205     if ( oper->_matrule && oper->_matrule->is_base_register(_globalNames) ) {
1206       // Just use the default virtual 'reg' call
1207     } else if ( oper->ideal_to_sReg_type(oper->_ident) != Form::none ) {
1208       // Special handling for operand 'sReg', a Stack Slot Register.
1209       // Map linearized ideal register mask to stack slot number
1210       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node) const {\n");
1211       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node));/* sReg */\n");
1212       fprintf(fp,"  }\n");
1213       fprintf(fp,"  virtual int            reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {\n");
1214       fprintf(fp,"    return (int)OptoReg::reg2stack(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
1215       fprintf(fp,"  }\n");
1216     }
1217 
1218     // Output the operand specific access functions used by an enc_class
1219     // These are only defined when we want to override the default virtual func
1220     if (oper->_interface != NULL) {
1221       fprintf(fp,"\n");
1222       // Check if it is a Memory Interface
1223       if ( oper->_interface->is_MemInterface() != NULL ) {
1224         MemInterface *mem_interface = oper->_interface->is_MemInterface();
1225         const char *base = mem_interface->_base;
1226         if( base != NULL ) {
1227           define_oper_interface(fp, *oper, _globalNames, "base", base);
1228         }
1229         char *index = mem_interface->_index;
1230         if( index != NULL ) {
1231           define_oper_interface(fp, *oper, _globalNames, "index", index);
1232         }
1233         const char *scale = mem_interface->_scale;
1234         if( scale != NULL ) {
1235           define_oper_interface(fp, *oper, _globalNames, "scale", scale);
1236         }
1237         const char *disp = mem_interface->_disp;
1238         if( disp != NULL ) {
1239           define_oper_interface(fp, *oper, _globalNames, "disp", disp);
1240           oper->disp_is_oop(fp, _globalNames);
1241         }
1242         if( oper->stack_slots_only(_globalNames) ) {
1243           // should not call this:
1244           fprintf(fp,"  virtual int       constant_disp() const { return Type::OffsetBot; }");
1245         } else if ( disp != NULL ) {
1246           define_oper_interface(fp, *oper, _globalNames, "constant_disp", disp);
1247         }
1248       } // end Memory Interface
1249       // Check if it is a Conditional Interface
1250       else if (oper->_interface->is_CondInterface() != NULL) {
1251         CondInterface *cInterface = oper->_interface->is_CondInterface();
1252         const char *equal = cInterface->_equal;
1253         if( equal != NULL ) {
1254           define_oper_interface(fp, *oper, _globalNames, "equal", equal);
1255         }
1256         const char *not_equal = cInterface->_not_equal;
1257         if( not_equal != NULL ) {
1258           define_oper_interface(fp, *oper, _globalNames, "not_equal", not_equal);
1259         }
1260         const char *less = cInterface->_less;
1261         if( less != NULL ) {
1262           define_oper_interface(fp, *oper, _globalNames, "less", less);
1263         }
1264         const char *greater_equal = cInterface->_greater_equal;
1265         if( greater_equal != NULL ) {
1266           define_oper_interface(fp, *oper, _globalNames, "greater_equal", greater_equal);
1267         }
1268         const char *less_equal = cInterface->_less_equal;
1269         if( less_equal != NULL ) {
1270           define_oper_interface(fp, *oper, _globalNames, "less_equal", less_equal);
1271         }
1272         const char *greater = cInterface->_greater;
1273         if( greater != NULL ) {
1274           define_oper_interface(fp, *oper, _globalNames, "greater", greater);
1275         }
1276       } // end Conditional Interface
1277       // Check if it is a Constant Interface
1278       else if (oper->_interface->is_ConstInterface() != NULL ) {
1279         assert( oper->num_consts(_globalNames) == 1,
1280                 "Must have one constant when using CONST_INTER encoding");
1281         if (!strcmp(oper->ideal_type(_globalNames), "ConI")) {
1282           // Access the locally stored constant
1283           fprintf(fp,"  virtual intptr_t       constant() const {");
1284           fprintf(fp,   " return (intptr_t)_c0;");
1285           fprintf(fp,"  }\n");
1286         }
1287         else if (!strcmp(oper->ideal_type(_globalNames), "ConP")) {
1288           // Access the locally stored constant
1289           fprintf(fp,"  virtual intptr_t       constant() const {");
1290           fprintf(fp,   " return _c0->get_con();");
1291           fprintf(fp, " }\n");
1292           // Generate query to determine if this pointer is an oop
1293           fprintf(fp,"  virtual bool           constant_is_oop() const {");
1294           fprintf(fp,   " return _c0->isa_oop_ptr();");
1295           fprintf(fp, " }\n");
1296         }
1297         else if (!strcmp(oper->ideal_type(_globalNames), "ConL")) {
1298           fprintf(fp,"  virtual intptr_t       constant() const {");
1299           // We don't support addressing modes with > 4Gig offsets.
1300           // Truncate to int.
1301           fprintf(fp,   "  return (intptr_t)_c0;");
1302           fprintf(fp, " }\n");
1303           fprintf(fp,"  virtual jlong          constantL() const {");
1304           fprintf(fp,   " return _c0;");
1305           fprintf(fp, " }\n");
1306         }
1307         else if (!strcmp(oper->ideal_type(_globalNames), "ConF")) {
1308           fprintf(fp,"  virtual intptr_t       constant() const {");
1309           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1310           fprintf(fp, " }\n");
1311           fprintf(fp,"  virtual jfloat         constantF() const {");
1312           fprintf(fp,   " return (jfloat)_c0;");
1313           fprintf(fp, " }\n");
1314         }
1315         else if (!strcmp(oper->ideal_type(_globalNames), "ConD")) {
1316           fprintf(fp,"  virtual intptr_t       constant() const {");
1317           fprintf(fp,   " ShouldNotReachHere(); return 0; ");
1318           fprintf(fp, " }\n");
1319           fprintf(fp,"  virtual jdouble        constantD() const {");
1320           fprintf(fp,   " return _c0;");
1321           fprintf(fp, " }\n");
1322         }
1323       }
1324       else if (oper->_interface->is_RegInterface() != NULL) {
1325         // make sure that a fixed format string isn't used for an
1326         // operand which might be assiged to multiple registers.
1327         // Otherwise the opto assembly output could be misleading.
1328         if (oper->_format->_strings.count() != 0 && !oper->is_bound_register()) {
1329           syntax_err(oper->_linenum,
1330                      "Only bound registers can have fixed formats: %s\n",
1331                      oper->_ident);
1332         }
1333       }
1334       else {
1335         assert( false, "ShouldNotReachHere();");
1336       }
1337     }
1338     
1339     fprintf(fp,"\n");
1340     // // Currently all XXXOper::hash() methods are identical (990820)
1341     // declare_hash(fp);
1342     // // Currently all XXXOper::Cmp() methods are identical (990820)
1343     // declare_cmp(fp);
1344 
1345     // Do not place dump_spec() and Name() into PRODUCT code
1346     // int_format and ext_format are not needed in PRODUCT code either
1347     fprintf(fp, "#ifndef PRODUCT\n");
1348 
1349     // Declare int_format() and ext_format()
1350     gen_oper_format(fp, _globalNames, *oper);
1351 
1352     // Machine independent print functionality for debugging
1353     // IF we have constants, create a dump_spec function for the derived class
1354     //
1355     // (1)  virtual void           dump_spec() const { 
1356     // (2)    st->print("#%d", _c#);        // Constant != ConP
1357     //  OR    _c#->dump_on(st);             // Type ConP
1358     //  ...
1359     // (3)  }
1360     uint num_consts = oper->num_consts(_globalNames);
1361     if( num_consts > 0 ) {
1362       // line (1)
1363       fprintf(fp, "  virtual void           dump_spec(outputStream *st) const {\n");
1364       // generate format string for st->print
1365       // Iterate over the component list & spit out the right thing
1366       uint i = 0;
1367       const char *type = oper->ideal_type(_globalNames);
1368       Component  *comp;
1369       oper->_components.reset();
1370       if ((comp = oper->_components.iter()) == NULL) {
1371         assert(num_consts == 1, "Bad component list detected.\n");
1372         i = dump_spec_constant( fp, type, i );
1373         // Check that type actually matched
1374         assert( i != 0, "Non-constant operand lacks component list.");
1375       } // end if NULL
1376       else {
1377         // line (2)
1378         // dump all components
1379         oper->_components.reset();
1380         while((comp = oper->_components.iter()) != NULL) {
1381           type = comp->base_type(_globalNames);
1382           i = dump_spec_constant( fp, type, i );
1383         }
1384       }
1385       // finish line (3)
1386       fprintf(fp,"  }\n");
1387     }
1388 
1389     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1390             oper->_ident);
1391 
1392     fprintf(fp,"#endif\n");
1393 
1394     // Close definition of this XxxMachOper
1395     fprintf(fp,"};\n");
1396   }
1397 
1398 
1399   // Generate Machine Classes for each instruction defined in AD file
1400   fprintf(fp,"\n");
1401   fprintf(fp,"//----------------------------Declare classes for Pipelines-----------------\n");
1402   declare_pipe_classes(fp);
1403 
1404   // Generate Machine Classes for each instruction defined in AD file
1405   fprintf(fp,"\n");
1406   fprintf(fp,"//----------------------------Declare classes derived from MachNode----------\n");
1407   _instructions.reset(); 
1408   InstructForm *instr;
1409   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
1410     // Ensure this is a machine-world instruction
1411     if ( instr->ideal_only() ) continue;
1412 
1413     // Build class definition for this instruction
1414     fprintf(fp,"\n");
1415     fprintf(fp,"class %sNode : public %s { \n", 
1416             instr->_ident, instr->mach_base_class() );
1417     fprintf(fp,"private:\n");
1418     fprintf(fp,"  MachOper *_opnd_array[%d];\n", instr->num_opnds() );
1419     if ( instr->is_ideal_jump() ) {
1420       fprintf(fp, "  GrowableArray<Label*> _index2label;\n");
1421     }
1422     fprintf(fp,"public:\n");
1423     fprintf(fp,"  MachOper *opnd_array(uint operand_index) const { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); return _opnd_array[operand_index]; }\n");
1424     fprintf(fp,"  void      set_opnd_array(uint operand_index, MachOper *operand) { assert(operand_index < _num_opnds, \"invalid _opnd_array index\"); _opnd_array[operand_index] = operand; }\n");
1425     fprintf(fp,"private:\n");
1426     if ( instr->is_ideal_jump() ) {
1427       fprintf(fp,"  virtual void           add_case_label(int index_num, Label* blockLabel) {\n");
1428       fprintf(fp,"                                          _index2label.at_put_grow(index_num, blockLabel);}\n");
1429     }
1430     if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1431       fprintf(fp,"  const RegMask  *_cisc_RegMask;\n");
1432     }
1433 
1434     out_RegMask(fp);                      // output register mask
1435     fprintf(fp,"  virtual uint           rule() const { return %s_rule; }\n",
1436             instr->_ident);
1437 
1438     // If this instruction contains a labelOper
1439     // Declare Node::methods that set operand Label's contents
1440     int label_position = instr->label_position();
1441     if( label_position != -1 ) {
1442       // Set the label, stored in labelOper::_branch_label
1443       fprintf(fp,"  virtual void           label_set( Label& label, uint block_num );\n");
1444     } 
1445 
1446     // If this instruction contains a methodOper
1447     // Declare Node::methods that set operand method's contents
1448     int method_position = instr->method_position();
1449     if( method_position != -1 ) {
1450       // Set the address method, stored in methodOper::_method
1451       fprintf(fp,"  virtual void           method_set( intptr_t method );\n");
1452     } 
1453 
1454     // virtual functions for attributes
1455     //
1456     // Each instruction attribute results in a virtual call of same name.
1457     // The ins_cost is not handled here.
1458     Attribute *attr = instr->_attribs;
1459     bool is_pc_relative = false;
1460     while (attr != NULL) {
1461       if (strcmp(attr->_ident,"ins_cost") &&
1462           strcmp(attr->_ident,"ins_pc_relative")) {
1463         fprintf(fp,"  int             %s() const { return %s; }\n",
1464                 attr->_ident, attr->_val);
1465       }
1466       // Check value for ins_pc_relative, and if it is true (1), set the flag
1467       if (!strcmp(attr->_ident,"ins_pc_relative") && attr->int_val(*this) != 0)
1468         is_pc_relative = true;
1469       attr = (Attribute *)attr->_next;
1470     }
1471 
1472     // virtual functions for encode and format 
1473     // 
1474     // Output the opcode function and the encode function here using the
1475     // encoding class information in the _insencode slot.
1476     if ( instr->_insencode ) {
1477       fprintf(fp,"  virtual void           emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const;\n");
1478     }
1479 
1480     // virtual function for getting the size of an instruction
1481     if ( instr->_size ) {
1482        fprintf(fp,"  virtual uint           size(PhaseRegAlloc *ra_) const;\n");
1483     }
1484 
1485     // Return the top-level ideal opcode.
1486     // Use MachNode::ideal_Opcode() for nodes based on MachNode class
1487     // if the ideal_Opcode == Op_Node.
1488     if ( strcmp("Node", instr->ideal_Opcode(_globalNames)) != 0 || 
1489          strcmp("MachNode", instr->mach_base_class()) != 0 ) {
1490       fprintf(fp,"  virtual int            ideal_Opcode() const { return Op_%s; }\n",
1491             instr->ideal_Opcode(_globalNames) );
1492     }
1493 
1494     // Allow machine-independent optimization, invert the sense of the IF test
1495     if( instr->is_ideal_if() ) {
1496       fprintf(fp,"  virtual void           negate() { \n");
1497       // Identify which operand contains the negate(able) ideal condition code
1498       int   idx = 0;
1499       instr->_components.reset();
1500       for( Component *comp; (comp = instr->_components.iter()) != NULL; ) {
1501         // Check that component is an operand
1502         Form *form = (Form*)_globalNames[comp->_type];
1503         OperandForm *opForm = form ? form->is_operand() : NULL;
1504         if( opForm == NULL ) continue;
1505 
1506         // Lookup the position of the operand in the instruction.
1507         if( opForm->is_ideal_bool() ) {
1508           idx = instr->operand_position(comp->_name, comp->_usedef);
1509           assert( idx != NameList::Not_in_list, "Did not find component in list that contained it.");
1510           break;
1511         }
1512       }
1513       fprintf(fp,"    opnd_array(%d)->negate();\n", idx);
1514       fprintf(fp,"    _prob = 1.0f - _prob;\n");
1515       fprintf(fp,"  };\n");
1516     }
1517 
1518 
1519     // Identify which input register matches the input register.
1520     uint  matching_input = instr->two_address(_globalNames);
1521 
1522     // Generate the method if it returns != 0 otherwise use MachNode::two_adr()
1523     if( matching_input != 0 ) {
1524       fprintf(fp,"  virtual uint           two_adr() const  ");
1525       fprintf(fp,"{ return oper_input_base()");
1526       for( uint i = 2; i <= matching_input; i++ )
1527         fprintf(fp," + opnd_array(%d)->num_edges()",i-1);
1528       fprintf(fp,"; }\n");
1529     }
1530 
1531     // Declare cisc_version, if applicable
1532     //   MachNode *cisc_version( int offset /* ,... */ );
1533     instr->declare_cisc_version(*this, fp);
1534 
1535     // If there is an explicit peephole rule, build it
1536     if ( instr->peepholes() != NULL ) {
1537       fprintf(fp,"  virtual MachNode      *peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted, Compile *C);\n");
1538     }
1539 
1540     // Output the declaration for number of relocation entries
1541     if ( instr->reloc(_globalNames) != 0 ) {
1542       fprintf(fp,"  virtual int            reloc()   const;\n");
1543     }
1544 
1545     if (instr->alignment() != 1) {
1546       fprintf(fp,"  virtual int            alignment_required()   const { return %d; }\n", instr->alignment());
1547       fprintf(fp,"  virtual int            compute_padding(int current_offset)   const;\n");
1548     }
1549 
1550     // Starting point for inputs matcher wants.
1551     // Use MachNode::oper_input_base() for nodes based on MachNode class
1552     // if the base == 1.
1553     if ( instr->oper_input_base(_globalNames) != 1 || 
1554          strcmp("MachNode", instr->mach_base_class()) != 0 ) {
1555       fprintf(fp,"  virtual uint           oper_input_base() const { return %d; }\n",
1556             instr->oper_input_base(_globalNames));
1557     }
1558 
1559     // Make the constructor and following methods 'public:'
1560     fprintf(fp,"public:\n");
1561 
1562     // Constructor
1563     if ( instr->is_ideal_jump() ) {
1564       fprintf(fp,"  %sNode() : _index2label(MinJumpTableSize*2) { ", instr->_ident);
1565     } else {
1566       fprintf(fp,"  %sNode() { ", instr->_ident);
1567       if( can_cisc_spill() && (instr->cisc_spill_alternate() != NULL) ) {
1568         fprintf(fp,"_cisc_RegMask = NULL; ");
1569       }
1570     }
1571 
1572     fprintf(fp," _num_opnds = %d; _opnds = _opnd_array; ", instr->num_opnds());
1573 
1574     bool node_flags_set = false;
1575     // flag: if this instruction matches an ideal 'Goto' node
1576     if ( instr->is_ideal_goto() ) {
1577       fprintf(fp,"init_flags(Flag_is_Goto");
1578       node_flags_set = true;
1579     }
1580 
1581     // flag: if this instruction matches an ideal 'Copy*' node
1582     if ( instr->is_ideal_copy() != 0 ) {
1583       if ( node_flags_set ) {
1584         fprintf(fp," | Flag_is_Copy");
1585       } else {
1586         fprintf(fp,"init_flags(Flag_is_Copy");
1587         node_flags_set = true;
1588       }
1589     }
1590 
1591     // Is an instruction is a constant?  If so, get its type
1592     Form::DataType  data_type;
1593     const char     *opType = NULL;
1594     const char     *result = NULL;
1595     data_type    = instr->is_chain_of_constant(_globalNames, opType, result);
1596     // Check if this instruction is a constant
1597     if ( data_type != Form::none ) {
1598       if ( node_flags_set ) {
1599         fprintf(fp," | Flag_is_Con");
1600       } else {
1601         fprintf(fp,"init_flags(Flag_is_Con");
1602         node_flags_set = true;
1603       }
1604     }
1605 
1606     // flag: if instruction matches 'If' | 'Goto' | 'CountedLoopEnd | 'Jump'
1607     if ( instr->is_ideal_branch() ) {
1608       if ( node_flags_set ) {
1609         fprintf(fp," | Flag_is_Branch");
1610       } else {
1611         fprintf(fp,"init_flags(Flag_is_Branch");
1612         node_flags_set = true;
1613       }
1614     }
1615 
1616     // flag: if this instruction is cisc alternate
1617     if ( can_cisc_spill() && instr->is_cisc_alternate() ) {
1618       if ( node_flags_set ) {
1619         fprintf(fp," | Flag_is_cisc_alternate");
1620       } else {
1621         fprintf(fp,"init_flags(Flag_is_cisc_alternate");
1622         node_flags_set = true;
1623       }
1624     }
1625 
1626     // flag: if this instruction is pc relative
1627     if ( is_pc_relative ) {
1628       if ( node_flags_set ) {
1629         fprintf(fp," | Flag_is_pc_relative");
1630       } else {
1631         fprintf(fp,"init_flags(Flag_is_pc_relative");
1632         node_flags_set = true;
1633       }
1634     }
1635 
1636     // flag: if this instruction has short branch form
1637     if ( instr->has_short_branch_form() ) {
1638       if ( node_flags_set ) {
1639         fprintf(fp," | Flag_may_be_short_branch");
1640       } else {
1641         fprintf(fp,"init_flags(Flag_may_be_short_branch");
1642         node_flags_set = true;
1643       }
1644     }
1645 
1646     // Check if machine instructions that USE memory, but do not DEF memory, 
1647     // depend upon a node that defines memory in machine-independent graph.
1648     if ( instr->needs_anti_dependence_check(_globalNames) ) {
1649       if ( node_flags_set ) {
1650         fprintf(fp," | Flag_needs_anti_dependence_check");
1651       } else {
1652         fprintf(fp,"init_flags(Flag_needs_anti_dependence_check");
1653         node_flags_set = true;
1654       }
1655     }
1656 
1657     if ( node_flags_set ) {
1658       fprintf(fp,"); ");
1659     }
1660 
1661     if (instr->is_ideal_unlock() || instr->is_ideal_call_leaf()) {
1662       fprintf(fp,"clear_flag(Flag_is_safepoint_node); ");
1663     }
1664 
1665     fprintf(fp,"}\n");
1666 
1667     // size_of, used by base class's clone to obtain the correct size.
1668     fprintf(fp,"  virtual uint           size_of() const {");
1669     fprintf(fp,   " return sizeof(%sNode);", instr->_ident);
1670     fprintf(fp, " }\n");
1671 
1672     // Virtual methods which are only generated to override base class
1673     if( instr->expands() || instr->needs_projections() ||
1674         instr->has_temps() ||
1675         instr->_matrule != NULL && 
1676         instr->num_opnds() != instr->num_unique_opnds() ) {
1677       fprintf(fp,"  virtual MachNode      *Expand(State *state, Node_List &proj_list);\n");
1678     }
1679   
1680     if (instr->is_pinned(_globalNames)) {
1681       fprintf(fp,"  virtual bool           pinned() const { return ");
1682       if (instr->is_parm(_globalNames)) {
1683         fprintf(fp,"_in[0]->pinned();");
1684       } else {
1685         fprintf(fp,"true;");
1686       }
1687       fprintf(fp," }\n");
1688     }
1689     if (instr->is_projection(_globalNames)) {
1690       fprintf(fp,"  virtual const Node *is_block_proj() const { return this; }\n");
1691     }
1692     if ( instr->num_post_match_opnds() != 0
1693          || instr->is_chain_of_constant(_globalNames) ) {
1694       fprintf(fp,"  friend MachNode *State::MachNodeGenerator(int opcode, Compile* C);\n");
1695     }
1696     if ( instr->rematerialize(_globalNames, get_registers()) ) {
1697       fprintf(fp,"  // Rematerialize %s\n", instr->_ident);
1698     }
1699 
1700     // Declare short branch methods, if applicable
1701     instr->declare_short_branch_methods(fp);
1702 
1703     // Instructions containing a constant that will be entered into the 
1704     // float/double table redefine the base virtual function
1705 #ifdef SPARC
1706     // Sparc doubles entries in the constant table require more space for
1707     // alignment. (expires 9/98)
1708     int table_entries = (3 * instr->num_consts( _globalNames, Form::idealD ))
1709       + instr->num_consts( _globalNames, Form::idealF );
1710 #else
1711     int table_entries = instr->num_consts( _globalNames, Form::idealD )
1712       + instr->num_consts( _globalNames, Form::idealF );
1713 #endif
1714     if( table_entries != 0 ) {
1715       fprintf(fp,"  virtual int            const_size() const {");
1716       fprintf(fp,   " return %d;", table_entries);
1717       fprintf(fp, " }\n");
1718     }
1719     
1720 
1721     // See if there is an "ins_pipe" declaration for this instruction
1722     if (instr->_ins_pipe) {
1723       fprintf(fp,"  static  const Pipeline *pipeline_class();\n");
1724       fprintf(fp,"  virtual const Pipeline *pipeline() const;\n");
1725     }
1726 
1727     // Generate virtual function for MachNodeX::bottom_type when necessary
1728     //
1729     // Note on accuracy:  Pointer-types of machine nodes need to be accurate,
1730     // or else alias analysis on the matched graph may produce bad code.
1731     // Moreover, the aliasing decisions made on machine-node graph must be
1732     // no less accurate than those made on the ideal graph, or else the graph
1733     // may fail to schedule.  (Reason:  Memory ops which are reordered in
1734     // the ideal graph might look interdependent in the machine graph,
1735     // thereby removing degrees of scheduling freedom that the optimizer
1736     // assumed would be available.)
1737     //
1738     // %%% We should handle many of these cases with an explicit ADL clause:
1739     // instruct foo() %{ ... bottom_type(TypeRawPtr::BOTTOM); ... %}
1740     if( data_type != Form::none ) {
1741       // A constant's bottom_type returns a Type containing its constant value
1742       
1743       // !!!!!
1744       // Convert all ints, floats, ... to machine-independent TypeXs
1745       // as is done for pointers
1746       // 
1747       // Construct appropriate constant type containing the constant value.
1748       fprintf(fp,"  virtual const class Type *bottom_type() const{\n");
1749       switch( data_type ) {
1750       case Form::idealI:
1751         fprintf(fp,"    return  TypeInt::make(opnd_array(1)->constant());\n");
1752         break;
1753       case Form::idealP:
1754         fprintf(fp,"    return  opnd_array(1)->type();\n",result);
1755         break;
1756       case Form::idealD:
1757         fprintf(fp,"    return  TypeD::make(opnd_array(1)->constantD());\n");
1758         break;
1759       case Form::idealF:
1760         fprintf(fp,"    return  TypeF::make(opnd_array(1)->constantF());\n");
1761         break;
1762       case Form::idealL:
1763         fprintf(fp,"    return  TypeLong::make(opnd_array(1)->constantL());\n");
1764         break;
1765       default:
1766         assert( false, "Unimplemented()" );
1767         break;
1768       }
1769       fprintf(fp,"  };\n");
1770     } 
1771 /*    else if ( instr->_matrule && instr->_matrule->_rChild && 
1772         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1773         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1774       // !!!!! !!!!!
1775       // Provide explicit bottom type for conversions to int
1776       // On Intel the result operand is a stackSlot, untyped.
1777       fprintf(fp,"  virtual const class Type *bottom_type() const{");
1778       fprintf(fp,   " return  TypeInt::INT;");
1779       fprintf(fp, " };\n");
1780     }*/
1781     else if( instr->is_ideal_copy() && 
1782               !strcmp(instr->_matrule->_lChild->_opType,"stackSlotP") ) {
1783       // !!!!!
1784       // Special hack for ideal Copy of pointer.  Bottom type is oop or not depending on input.
1785       fprintf(fp,"  const Type            *bottom_type() const { return in(1)->bottom_type(); } // Copy?\n");
1786     }
1787     else if( instr->is_ideal_loadPC() ) {
1788       // LoadPCNode provides the return address of a call to native code. 
1789       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1790       // since it is a pointer to an internal VM location and must have a zero offset.
1791       // Allocation detects derived pointers, in part, by their non-zero offsets.
1792       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // LoadPC?\n");
1793     }
1794     else if( instr->is_ideal_box() ) {
1795       // BoxNode provides the address of a stack slot.
1796       // Define its bottom type to be TypeRawPtr::BOTTOM instead of TypePtr::BOTTOM
1797       // This prevent s insert_anti_dependencies from complaining. It will
1798       // complain if it see that the pointer base is TypePtr::BOTTOM since
1799       // it doesn't understand what that might alias.
1800       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // Box?\n");
1801     }
1802     else if( instr->_matrule && instr->_matrule->_rChild && !strcmp(instr->_matrule->_rChild->_opType,"CMoveP") ) {
1803       int offset = 1;
1804       // Special special hack to see if the Cmp? has been incorporated in the conditional move
1805       MatchNode *rl = instr->_matrule->_rChild->_lChild;
1806       if( rl && !strcmp(rl->_opType, "Binary") ) {
1807           MatchNode *rlr = rl->_rChild; 
1808           if (rlr && strncmp(rlr->_opType, "Cmp", 3) == 0)
1809             offset = 2;
1810       }
1811       // Special hack for ideal CMoveP; ideal type depends on inputs
1812       fprintf(fp,"  const Type            *bottom_type() const { const Type *t = in(oper_input_base()+%d)->bottom_type(); return (req() <= oper_input_base()+%d) ? t : t->meet(in(oper_input_base()+%d)->bottom_type()); } // CMoveP\n",
1813         offset, offset+1, offset+1);
1814     }
1815     else if( instr->needs_base_oop_edge(_globalNames) ) {
1816       // Special hack for ideal AddP.  Bottom type is an oop IFF it has a 
1817       // legal base-pointer input.  Otherwise it is NOT an oop.
1818       fprintf(fp,"  const Type *bottom_type() const { return AddPNode::mach_bottom_type(this); } // AddP\n");
1819     }
1820     else if (instr->is_tls_instruction()) {
1821       // Special hack for tlsLoadP 
1822       fprintf(fp,"  const Type            *bottom_type() const { return TypeRawPtr::BOTTOM; } // tlsLoadP\n");
1823     }
1824     else if ( instr->is_ideal_if() ) {
1825       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::IFBOTH; } // matched IfNode\n");
1826     }
1827     else if ( instr->is_ideal_membar() ) {
1828       fprintf(fp,"  const Type            *bottom_type() const { return TypeTuple::MEMBAR; } // matched MemBar\n");
1829     }
1830 
1831     // Check where 'ideal_type' must be customized
1832     /*
1833     if ( instr->_matrule && instr->_matrule->_rChild && 
1834         (  strcmp("ConvF2I",instr->_matrule->_rChild->_opType)==0
1835         || strcmp("ConvD2I",instr->_matrule->_rChild->_opType)==0 ) ) {
1836       fprintf(fp,"  virtual uint           ideal_reg() const { return Compile::current()->matcher()->base2reg[Type::Int]; }\n");
1837     }*/
1838 
1839     // Analyze machine instructions that either USE or DEF memory.
1840     int memory_operand = instr->memory_operand(_globalNames);
1841     // Some guys kill all of memory
1842     if ( instr->is_wide_memory_kill(_globalNames) ) {
1843       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
1844     }
1845     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1846       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
1847         fprintf(fp,"  virtual const TypePtr *adr_type() const;\n");
1848       }
1849       fprintf(fp,"  virtual const MachOper *memory_operand() const;\n");
1850     }
1851 
1852     fprintf(fp, "#ifndef PRODUCT\n");
1853 
1854     // virtual function for generating the user's assembler output
1855     gen_inst_format(fp, _globalNames,*instr);
1856 
1857     // Machine independent print functionality for debugging
1858     fprintf(fp,"  virtual const char    *Name() const { return \"%s\";}\n",
1859             instr->_ident);
1860 
1861     fprintf(fp, "#endif\n");
1862 
1863     // Close definition of this XxxMachNode
1864     fprintf(fp,"};\n");
1865   };
1866 
1867 }
1868 
1869 void ArchDesc::defineStateClass(FILE *fp) {
1870   static const char *state__valid    = "_valid[((uint)index) >> 5] &  (0x1 << (((uint)index) & 0x0001F))";
1871   static const char *state__set_valid= "_valid[((uint)index) >> 5] |= (0x1 << (((uint)index) & 0x0001F))";
1872 
1873   fprintf(fp,"\n");
1874   fprintf(fp,"// MACROS to inline and constant fold State::valid(index)...\n");
1875   fprintf(fp,"// when given a constant 'index' in dfa_<arch>.cpp\n");
1876   fprintf(fp,"//   uint word   = index >> 5;       // Shift out bit position\n");
1877   fprintf(fp,"//   uint bitpos = index & 0x0001F;  // Mask off word bits\n");
1878   fprintf(fp,"#define STATE__VALID(index) ");
1879   fprintf(fp,"    (%s)\n", state__valid);
1880   fprintf(fp,"\n");
1881   fprintf(fp,"#define STATE__NOT_YET_VALID(index) ");
1882   fprintf(fp,"  ( (%s) == 0 )\n", state__valid);
1883   fprintf(fp,"\n");
1884   fprintf(fp,"#define STATE__VALID_CHILD(state,index) ");
1885   fprintf(fp,"  ( state && (state->%s) )\n", state__valid);
1886   fprintf(fp,"\n");
1887   fprintf(fp,"#define STATE__SET_VALID(index) ");
1888   fprintf(fp,"  (%s)\n", state__set_valid);
1889   fprintf(fp,"\n");
1890   fprintf(fp,
1891           "//---------------------------State-------------------------------------------\n");
1892   fprintf(fp,"// State contains an integral cost vector, indexed by machine operand opcodes,\n");
1893   fprintf(fp,"// a rule vector consisting of machine operand/instruction opcodes, and also\n");
1894   fprintf(fp,"// indexed by machine operand opcodes, pointers to the children in the label\n");
1895   fprintf(fp,"// tree generated by the Label routines in ideal nodes (currently limited to\n");
1896   fprintf(fp,"// two for convenience, but this could change).\n");
1897   fprintf(fp,"class State : public ResourceObj {\n");
1898   fprintf(fp,"public:\n");
1899   fprintf(fp,"  int    _id;         // State identifier\n");
1900   fprintf(fp,"  Node  *_leaf;       // Ideal (non-machine-node) leaf of match tree\n");
1901   fprintf(fp,"  State *_kids[2];       // Children of state node in label tree\n");
1902   fprintf(fp,"  unsigned int _cost[_LAST_MACH_OPER];  // Cost vector, indexed by operand opcodes\n");
1903   fprintf(fp,"  unsigned int _rule[_LAST_MACH_OPER];  // Rule vector, indexed by operand opcodes\n");
1904   fprintf(fp,"  unsigned int _valid[(_LAST_MACH_OPER/32)+1]; // Bit Map of valid Cost/Rule entries\n");
1905   fprintf(fp,"\n");
1906   fprintf(fp,"  State(void);                      // Constructor\n");
1907   fprintf(fp,"  DEBUG_ONLY( ~State(void); )       // Destructor\n");
1908   fprintf(fp,"\n");
1909   fprintf(fp,"  // Methods created by ADLC and invoked by Reduce\n");
1910   fprintf(fp,"  MachOper *MachOperGenerator( int opcode, Compile* C );\n");
1911   fprintf(fp,"  MachNode *MachNodeGenerator( int opcode, Compile* C );\n");
1912   fprintf(fp,"\n");
1913   fprintf(fp,"  // Assign a state to a node, definition of method produced by ADLC\n");
1914   fprintf(fp,"  bool DFA( int opcode, const Node *ideal );\n");
1915   fprintf(fp,"\n");
1916   fprintf(fp,"  // Access function for _valid bit vector\n");
1917   fprintf(fp,"  bool valid(uint index) {\n");
1918   fprintf(fp,"    return( STATE__VALID(index) != 0 );\n");
1919   fprintf(fp,"  }\n");
1920   fprintf(fp,"\n");
1921   fprintf(fp,"  // Set function for _valid bit vector\n");
1922   fprintf(fp,"  void set_valid(uint index) {\n");
1923   fprintf(fp,"    STATE__SET_VALID(index);\n");
1924   fprintf(fp,"  }\n");
1925   fprintf(fp,"\n");
1926   fprintf(fp,"#ifndef PRODUCT\n");
1927   fprintf(fp,"  void dump();                // Debugging prints\n");
1928   fprintf(fp,"  void dump(int depth);\n");
1929   fprintf(fp,"#endif\n");
1930   if (_dfa_small) {
1931     // Generate the routine name we'll need
1932     for (int i = 1; i < _last_opcode; i++) {
1933       if (_mlistab[i] == NULL) continue;
1934       fprintf(fp, "  void  _sub_Op_%s(const Node *n);\n", NodeClassNames[i]);
1935     }
1936   }
1937   fprintf(fp,"};\n");
1938   fprintf(fp,"\n");
1939   fprintf(fp,"\n");
1940 
1941 }
1942 
1943 
1944 //---------------------------buildMachOperEnum---------------------------------
1945 // Build enumeration for densely packed operands.
1946 // This enumeration is used to index into the arrays in the State objects
1947 // that indicate cost and a successfull rule match.
1948 
1949 // Information needed to generate the ReduceOp mapping for the DFA
1950 class OutputMachOperands : public OutputMap {
1951 public:
1952   OutputMachOperands(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) 
1953     : OutputMap(hpp, cpp, globals, AD) {};
1954 
1955   void declaration() { }
1956   void definition()  { fprintf(_cpp, "enum MachOperands {\n"); }
1957   void closing()     { fprintf(_cpp, "  _LAST_MACH_OPER\n");
1958                        OutputMap::closing();
1959   }
1960   void map(OpClassForm &opc)  { fprintf(_cpp, "  %s", _AD.machOperEnum(opc._ident) ); }
1961   void map(OperandForm &oper) { fprintf(_cpp, "  %s", _AD.machOperEnum(oper._ident) ); }
1962   void map(char        *name) { fprintf(_cpp, "  %s", _AD.machOperEnum(name)); }
1963 
1964   bool do_instructions()      { return false; }
1965   void map(InstructForm &inst){ assert( false, "ShouldNotCallThis()"); }
1966 };
1967 
1968 
1969 void ArchDesc::buildMachOperEnum(FILE *fp_hpp) {
1970   // Construct the table for MachOpcodes
1971   OutputMachOperands output_mach_operands(fp_hpp, fp_hpp, _globalNames, *this);
1972   build_map(output_mach_operands);
1973 }
1974 
1975 
1976 //---------------------------buildMachEnum----------------------------------
1977 // Build enumeration for all MachOpers and all MachNodes
1978 
1979 // Information needed to generate the ReduceOp mapping for the DFA
1980 class OutputMachOpcodes : public OutputMap {
1981   int begin_inst_chain_rule;
1982   int end_inst_chain_rule;
1983   int begin_rematerialize;
1984   int end_rematerialize;
1985   int end_instructions;
1986 public:
1987   OutputMachOpcodes(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD) 
1988     : OutputMap(hpp, cpp, globals, AD), 
1989       begin_inst_chain_rule(-1), end_inst_chain_rule(-1), end_instructions(-1)
1990   {};
1991 
1992   void declaration() { }
1993   void definition()  { fprintf(_cpp, "enum MachOpcodes {\n"); }
1994   void closing()     { 
1995     if( begin_inst_chain_rule != -1 ) 
1996       fprintf(_cpp, "  _BEGIN_INST_CHAIN_RULE = %d,\n", begin_inst_chain_rule);
1997     if( end_inst_chain_rule   != -1 ) 
1998       fprintf(_cpp, "  _END_INST_CHAIN_RULE  = %d,\n", end_inst_chain_rule);
1999     if( begin_rematerialize   != -1 ) 
2000       fprintf(_cpp, "  _BEGIN_REMATERIALIZE   = %d,\n", begin_rematerialize);
2001     if( end_rematerialize     != -1 ) 
2002       fprintf(_cpp, "  _END_REMATERIALIZE    = %d,\n", end_rematerialize);
2003     // always execute since do_instructions() is true, and avoids trailing comma
2004     fprintf(_cpp, "  _last_Mach_Node  = %d \n",  end_instructions);
2005     OutputMap::closing();
2006   }
2007   void map(OpClassForm &opc)  { fprintf(_cpp, "  %s_rule", opc._ident ); }
2008   void map(OperandForm &oper) { fprintf(_cpp, "  %s_rule", oper._ident ); }
2009   void map(char        *name) { if (name) fprintf(_cpp, "  %s_rule", name);
2010                                 else      fprintf(_cpp, "  0"); }
2011   void map(InstructForm &inst) {fprintf(_cpp, "  %s_rule", inst._ident ); }
2012 
2013   void record_position(OutputMap::position place, int idx ) {
2014     switch(place) {
2015     case OutputMap::BEGIN_INST_CHAIN_RULES : 
2016       begin_inst_chain_rule = idx;
2017       break;
2018     case OutputMap::END_INST_CHAIN_RULES : 
2019       end_inst_chain_rule   = idx;
2020       break;
2021     case OutputMap::BEGIN_REMATERIALIZE : 
2022       begin_rematerialize   = idx;
2023       break;
2024     case OutputMap::END_REMATERIALIZE : 
2025       end_rematerialize     = idx;
2026       break;
2027     case OutputMap::END_INSTRUCTIONS : 
2028       end_instructions      = idx;
2029       break;
2030     default:
2031       break;
2032     }
2033   }
2034 };
2035 
2036 
2037 void ArchDesc::buildMachOpcodesEnum(FILE *fp_hpp) {
2038   // Construct the table for MachOpcodes
2039   OutputMachOpcodes output_mach_opcodes(fp_hpp, fp_hpp, _globalNames, *this);
2040   build_map(output_mach_opcodes);
2041 }
2042 
2043 
2044 // Generate an enumeration of the pipeline states, and both
2045 // the functional units (resources) and the masks for
2046 // specifying resources
2047 void ArchDesc::build_pipeline_enums(FILE *fp_hpp) {
2048   int stagelen = (int)strlen("undefined");
2049   int stagenum = 0;
2050 
2051   if (_pipeline) {              // Find max enum string length
2052     const char *stage;
2053     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; ) {
2054       int len = (int)strlen(stage);
2055       if (stagelen < len) stagelen = len;
2056     }
2057   }
2058 
2059   // Generate a list of stages
2060   fprintf(fp_hpp, "\n");
2061   fprintf(fp_hpp, "// Pipeline Stages\n");
2062   fprintf(fp_hpp, "enum machPipelineStages {\n");
2063   fprintf(fp_hpp, "   stage_%-*s = 0,\n", stagelen, "undefined");
2064 
2065   if( _pipeline ) {
2066     const char *stage;
2067     for ( _pipeline->_stages.reset(); (stage = _pipeline->_stages.iter()) != NULL; )
2068       fprintf(fp_hpp, "   stage_%-*s = %d,\n", stagelen, stage, ++stagenum);
2069   }
2070 
2071   fprintf(fp_hpp, "   stage_%-*s = %d\n", stagelen, "count", stagenum);
2072   fprintf(fp_hpp, "};\n");
2073 
2074   fprintf(fp_hpp, "\n");
2075   fprintf(fp_hpp, "// Pipeline Resources\n");
2076   fprintf(fp_hpp, "enum machPipelineResources {\n");
2077   int rescount = 0;
2078 
2079   if( _pipeline ) {
2080     const char *resource;
2081     int reslen = 0;
2082 
2083     // Generate a list of resources, and masks
2084     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2085       int len = (int)strlen(resource);
2086       if (reslen < len)
2087         reslen = len;
2088     }
2089 
2090     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2091       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2092       int mask = resform->mask();
2093       if ((mask & (mask-1)) == 0)
2094         fprintf(fp_hpp, "   resource_%-*s = %d,\n", reslen, resource, rescount++);
2095     }
2096     fprintf(fp_hpp, "\n");
2097     for ( _pipeline->_reslist.reset(); (resource = _pipeline->_reslist.iter()) != NULL; ) {
2098       const ResourceForm *resform = _pipeline->_resdict[resource]->is_resource();
2099       fprintf(fp_hpp, "   res_mask_%-*s = 0x%08x,\n", reslen, resource, resform->mask());
2100     }
2101     fprintf(fp_hpp, "\n");
2102   }
2103   fprintf(fp_hpp, "   resource_count = %d\n", rescount);
2104   fprintf(fp_hpp, "};\n");
2105 }