1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)codeBuffer.cpp       1.100 07/05/05 17:05:03 JVM"
   3 #endif
   4 /*
   5  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 # include "incls/_precompiled.incl"
  29 # include "incls/_codeBuffer.cpp.incl"
  30 
  31 // The structure of a CodeSection:
  32 //
  33 //    _start ->           +----------------+
  34 //                        | machine code...|
  35 //    _end ->             |----------------|
  36 //                        |                |
  37 //                        |    (empty)     |
  38 //                        |                |
  39 //                        |                |
  40 //                        +----------------+
  41 //    _limit ->           |                |
  42 //
  43 //    _locs_start ->      +----------------+
  44 //                        |reloc records...|
  45 //                        |----------------|
  46 //    _locs_end ->        |                |
  47 //                        |                |
  48 //                        |    (empty)     |
  49 //                        |                |
  50 //                        |                |
  51 //                        +----------------+
  52 //    _locs_limit ->      |                |
  53 // The _end (resp. _limit) pointer refers to the first
  54 // unused (resp. unallocated) byte.
  55 
  56 // The structure of the CodeBuffer while code is being accumulated:
  57 //
  58 //    _total_start ->    \
  59 //    _insts._start ->              +----------------+
  60 //                                  |                |
  61 //                                  |     Code       |
  62 //                                  |                |
  63 //    _stubs._start ->              |----------------|
  64 //                                  |                |
  65 //                                  |    Stubs       | (also handlers for deopt/exception)
  66 //                                  |                |
  67 //    _consts._start ->             |----------------|
  68 //                                  |                |
  69 //                                  |   Constants    |
  70 //                                  |                |
  71 //                                  +----------------+
  72 //    + _total_size ->              |                |
  73 //
  74 // When the code and relocations are copied to the code cache,
  75 // the empty parts of each section are removed, and everything
  76 // is copied into contiguous locations.
  77 
  78 typedef CodeBuffer::csize_t csize_t;  // file-local definition
  79 
  80 // external buffer, in a predefined CodeBlob or other buffer area
  81 // Important: The code_start must be taken exactly, and not realigned.
  82 CodeBuffer::CodeBuffer(address code_start, csize_t code_size) {
  83   assert(code_start != NULL, "sanity");
  84   initialize_misc("static buffer");
  85   initialize(code_start, code_size);
  86   assert(verify_section_allocation(), "initial use of buffer OK");
  87 }
  88 
  89 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
  90   // Compute maximal alignment.
  91   int align = _insts.alignment();
  92   // Always allow for empty slop around each section.
  93   int slop = (int) CodeSection::end_slop();
  94 
  95   assert(blob() == NULL, "only once");
  96   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
  97   if (blob() == NULL) {
  98     // The assembler constructor will throw a fatal on an empty CodeBuffer.
  99     return;  // caller must test this
 100   }
 101 
 102   // Set up various pointers into the blob.
 103   initialize(_total_start, _total_size);
 104 
 105   assert((uintptr_t)code_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
 106 
 107   pd_initialize();
 108 
 109   if (locs_size != 0) {
 110     _insts.initialize_locs(locs_size / sizeof(relocInfo));
 111   }
 112 
 113   assert(verify_section_allocation(), "initial use of blob is OK");
 114 }
 115 
 116 
 117 CodeBuffer::~CodeBuffer() {
 118   // If we allocate our code buffer from the CodeCache
 119   // via a BufferBlob, and it's not permanent, then
 120   // free the BufferBlob.
 121   // The rest of the memory will be freed when the ResourceObj
 122   // is released.
 123   assert(verify_section_allocation(), "final storage configuration still OK");
 124   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
 125     // Previous incarnations of this buffer are held live, so that internal
 126     // addresses constructed before expansions will not be confused.
 127     cb->free_blob();
 128   }
 129 #ifdef ASSERT
 130   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
 131 #endif
 132 }
 133 
 134 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
 135   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
 136   DEBUG_ONLY(_default_oop_recorder.oop_size());  // force unused OR to be frozen
 137   _oop_recorder = r;
 138 }
 139 
 140 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
 141   assert(cs != &_insts, "insts is the memory provider, not the consumer");
 142 #ifdef ASSERT
 143   for (int n = (int)SECT_INSTS+1; n < (int)SECT_LIMIT; n++) {
 144     CodeSection* prevCS = code_section(n);
 145     if (prevCS == cs)  break;
 146     assert(!prevCS->is_allocated(), "section allocation must be in reverse order");
 147   }
 148 #endif
 149   csize_t slop = CodeSection::end_slop();  // margin between sections
 150   int align = cs->alignment();
 151   assert(is_power_of_2(align), "sanity");
 152   address start  = _insts._start;
 153   address limit  = _insts._limit;
 154   address middle = limit - size;
 155   middle -= (intptr_t)middle & (align-1);  // align the division point downward
 156   guarantee(middle - slop > start, "need enough space to divide up");
 157   _insts._limit = middle - slop;  // subtract desired space, plus slop
 158   cs->initialize(middle, limit - middle);
 159   assert(cs->start() == middle, "sanity");
 160   assert(cs->limit() == limit,  "sanity");
 161   // give it some relocations to start with, if the main section has them
 162   if (_insts.has_locs())  cs->initialize_locs(1);
 163 }
 164 
 165 void CodeBuffer::freeze_section(CodeSection* cs) {
 166   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
 167   csize_t frozen_size = cs->size();
 168   if (next_cs != NULL) {
 169     frozen_size = next_cs->align_at_start(frozen_size);
 170   }
 171   address old_limit = cs->limit();
 172   address new_limit = cs->start() + frozen_size;
 173   relocInfo* old_locs_limit = cs->locs_limit();
 174   relocInfo* new_locs_limit = cs->locs_end();
 175   // Patch the limits.
 176   cs->_limit = new_limit;
 177   cs->_locs_limit = new_locs_limit;
 178   cs->_frozen = true;
 179   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
 180     // Give remaining buffer space to the following section.
 181     next_cs->initialize(new_limit, old_limit - new_limit);
 182     next_cs->initialize_shared_locs(new_locs_limit,
 183                                     old_locs_limit - new_locs_limit);
 184   }
 185 }
 186 
 187 void CodeBuffer::set_blob(BufferBlob* blob) {
 188   _blob = blob;
 189   if (blob != NULL) {
 190     address start = blob->instructions_begin();
 191     address end   = blob->instructions_end();
 192     // Round up the starting address.
 193     int align = _insts.alignment();
 194     start += (-(intptr_t)start) & (align-1);
 195     _total_start = start;
 196     _total_size  = end - start;
 197   } else {
 198     #ifdef ASSERT
 199     // Clean out dangling pointers.
 200     _total_start    = badAddress;
 201     _insts._start   = _insts._end   = badAddress;
 202     _stubs._start   = _stubs._end   = badAddress;
 203     _consts._start  = _consts._end  = badAddress;
 204     #endif //ASSERT
 205   }
 206 }
 207 
 208 void CodeBuffer::free_blob() {
 209   if (_blob != NULL) {
 210     BufferBlob::free(_blob);
 211     set_blob(NULL);
 212   }
 213 }
 214 
 215 const char* CodeBuffer::code_section_name(int n) {
 216 #ifdef PRODUCT
 217   return NULL;
 218 #else //PRODUCT
 219   switch (n) {
 220   case SECT_INSTS:             return "insts";
 221   case SECT_STUBS:             return "stubs";
 222   case SECT_CONSTS:            return "consts";
 223   default:                     return NULL;
 224   }
 225 #endif //PRODUCT
 226 }
 227 
 228 int CodeBuffer::section_index_of(address addr) const {
 229   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 230     const CodeSection* cs = code_section(n);
 231     if (cs->allocates(addr))  return n;
 232   }
 233   return SECT_NONE;
 234 }
 235 
 236 int CodeBuffer::locator(address addr) const {
 237   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 238     const CodeSection* cs = code_section(n);
 239     if (cs->allocates(addr)) {
 240       return locator(addr - cs->start(), n);
 241     }
 242   }
 243   return -1;
 244 }
 245 
 246 address CodeBuffer::locator_address(int locator) const {
 247   if (locator < 0)  return NULL;
 248   address start = code_section(locator_sect(locator))->start();
 249   return start + locator_pos(locator);
 250 }
 251 
 252 address CodeBuffer::decode_begin() {
 253   address begin = _insts.start();
 254   if (_decode_begin != NULL && _decode_begin > begin)
 255     begin = _decode_begin;
 256   return begin;
 257 }
 258 
 259 
 260 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
 261   if (_overflow_arena == NULL) {
 262     _overflow_arena = new Arena();
 263   }
 264   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
 265 }
 266 
 267 
 268 // Helper function for managing labels and their target addresses.
 269 // Returns a sensible address, and if it is not the label's final
 270 // address, notes the dependency (at 'branch_pc') on the label.
 271 address CodeSection::target(Label& L, address branch_pc) {
 272   if (L.is_bound()) {
 273     int loc = L.loc();
 274     if (index() == CodeBuffer::locator_sect(loc)) {
 275       return start() + CodeBuffer::locator_pos(loc);
 276     } else {
 277       return outer()->locator_address(loc);
 278     }
 279   } else {
 280     assert(allocates2(branch_pc), "sanity");
 281     address base = start();
 282     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
 283     L.add_patch_at(outer(), patch_loc);
 284 
 285     // Need to return a pc, doesn't matter what it is since it will be
 286     // replaced during resolution later.
 287     // (Don't return NULL or badAddress, since branches shouldn't overflow.)
 288     return base;
 289   }
 290 }
 291 
 292 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
 293   Relocation* reloc = spec.reloc();
 294   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
 295   if (rtype == relocInfo::none)  return;
 296 
 297   // The assertion below has been adjusted, to also work for
 298   // relocation for fixup.  Sometimes we want to put relocation
 299   // information for the next instruction, since it will be patched
 300   // with a call.
 301   assert(start() <= at && at <= end()+1,
 302          "cannot relocate data outside code boundaries");
 303 
 304   if (!has_locs()) {
 305     // no space for relocation information provided => code cannot be
 306     // relocated.  Make sure that relocate is only called with rtypes
 307     // that can be ignored for this kind of code.
 308     assert(rtype == relocInfo::none              ||
 309            rtype == relocInfo::runtime_call_type ||
 310            rtype == relocInfo::internal_word_type||
 311            rtype == relocInfo::section_word_type ||
 312            rtype == relocInfo::external_word_type, 
 313            "code needs relocation information");
 314     // leave behind an indication that we attempted a relocation
 315     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
 316     return;
 317   }
 318 
 319   // Advance the point, noting the offset we'll have to record.
 320   csize_t offset = at - locs_point();
 321   set_locs_point(at);
 322 
 323   // Test for a couple of overflow conditions; maybe expand the buffer.
 324   relocInfo* end = locs_end();
 325   relocInfo* req = end + relocInfo::length_limit;
 326   // Check for (potential) overflow
 327   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
 328     req += (uint)offset / (uint)relocInfo::offset_limit();
 329     if (req >= locs_limit()) {
 330       // Allocate or reallocate.
 331       expand_locs(locs_count() + (req - end));
 332       // reload pointer
 333       end = locs_end();
 334     }
 335   }
 336 
 337   // If the offset is giant, emit filler relocs, of type 'none', but
 338   // each carrying the largest possible offset, to advance the locs_point.
 339   while (offset >= relocInfo::offset_limit()) {
 340     assert(end < locs_limit(), "adjust previous paragraph of code");
 341     *end++ = filler_relocInfo();
 342     offset -= filler_relocInfo().addr_offset();
 343   }
 344 
 345   // If it's a simple reloc with no data, we'll just write (rtype | offset).
 346   (*end) = relocInfo(rtype, offset, format);
 347 
 348   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
 349   end->initialize(this, reloc);
 350 }
 351 
 352 void CodeSection::initialize_locs(int locs_capacity) {
 353   assert(_locs_start == NULL, "only one locs init step, please");
 354   // Apply a priori lower limits to relocation size:
 355   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
 356   if (locs_capacity < min_locs)  locs_capacity = min_locs;
 357   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
 358   _locs_start    = locs_start;
 359   _locs_end      = locs_start;
 360   _locs_limit    = locs_start + locs_capacity;
 361   _locs_own      = true;
 362 }
 363 
 364 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
 365   assert(_locs_start == NULL, "do this before locs are allocated");
 366   // Internal invariant:  locs buf must be fully aligned.
 367   // See copy_relocations_to() below.
 368   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
 369     ++buf; --length;
 370   }
 371   if (length > 0) {
 372     _locs_start = buf;
 373     _locs_end   = buf;
 374     _locs_limit = buf + length;
 375     _locs_own   = false;
 376   }
 377 }
 378 
 379 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
 380   int lcount = source_cs->locs_count();
 381   if (lcount != 0) {
 382     initialize_shared_locs(source_cs->locs_start(), lcount);
 383     _locs_end = _locs_limit = _locs_start + lcount;
 384     assert(is_allocated(), "must have copied code already");
 385     set_locs_point(start() + source_cs->locs_point_off());
 386   }
 387   assert(this->locs_count() == source_cs->locs_count(), "sanity");
 388 }
 389 
 390 void CodeSection::expand_locs(int new_capacity) {
 391   if (_locs_start == NULL) {
 392     initialize_locs(new_capacity);
 393     return;
 394   } else {
 395     int old_count    = locs_count();
 396     int old_capacity = locs_capacity();
 397     if (new_capacity < old_capacity * 2)
 398       new_capacity = old_capacity * 2;
 399     relocInfo* locs_start;
 400     if (_locs_own) {
 401       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
 402     } else {
 403       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
 404       Copy::conjoint_bytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
 405       _locs_own = true;
 406     }
 407     _locs_start    = locs_start;
 408     _locs_end      = locs_start + old_count;
 409     _locs_limit    = locs_start + new_capacity;
 410   }
 411 }
 412 
 413 
 414 /// Support for emitting the code to its final location.
 415 /// The pattern is the same for all functions.
 416 /// We iterate over all the sections, padding each to alignment.
 417 
 418 csize_t CodeBuffer::total_code_size() const {
 419   csize_t code_size_so_far = 0;
 420   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 421     const CodeSection* cs = code_section(n);
 422     if (cs->is_empty())  continue;  // skip trivial section
 423     code_size_so_far = cs->align_at_start(code_size_so_far);
 424     code_size_so_far += cs->size();
 425   }
 426   return code_size_so_far;
 427 }
 428 
 429 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
 430   address buf = dest->_total_start;
 431   csize_t buf_offset = 0;
 432   assert(dest->_total_size >= total_code_size(), "must be big enough");
 433 
 434   {
 435     // not sure why this is here, but why not...
 436     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
 437     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
 438   }
 439 
 440   const CodeSection* prev_cs      = NULL;
 441   CodeSection*       prev_dest_cs = NULL;
 442   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 443     // figure compact layout of each section
 444     const CodeSection* cs = code_section(n);
 445     address cstart = cs->start();
 446     address cend   = cs->end();
 447     csize_t csize  = cend - cstart;
 448 
 449     CodeSection* dest_cs = dest->code_section(n);
 450     if (!cs->is_empty()) {
 451       // Compute initial padding; assign it to the previous non-empty guy.
 452       // Cf. figure_expanded_capacities.
 453       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
 454       if (padding != 0) {
 455         buf_offset += padding;
 456         assert(prev_dest_cs != NULL, "sanity");
 457         prev_dest_cs->_limit += padding;
 458       }
 459       #ifdef ASSERT
 460       if (prev_cs != NULL && prev_cs->is_frozen() && n < SECT_CONSTS) {
 461         // Make sure the ends still match up.
 462         // This is important because a branch in a frozen section
 463         // might target code in a following section, via a Label,
 464         // and without a relocation record.  See Label::patch_instructions.
 465         address dest_start = buf+buf_offset;
 466         csize_t start2start = cs->start() - prev_cs->start();
 467         csize_t dest_start2start = dest_start - prev_dest_cs->start();
 468         assert(start2start == dest_start2start, "cannot stretch frozen sect");
 469       }
 470       #endif //ASSERT
 471       prev_dest_cs = dest_cs;
 472       prev_cs      = cs;
 473     }
 474 
 475     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
 476     dest_cs->initialize(buf+buf_offset, csize);
 477     dest_cs->set_end(buf+buf_offset+csize);
 478     assert(dest_cs->is_allocated(), "must always be allocated");
 479     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
 480 
 481     buf_offset += csize;
 482   }
 483 
 484   // Done calculating sections; did it come out to the right end?
 485   assert(buf_offset == total_code_size(), "sanity");
 486   assert(dest->verify_section_allocation(), "final configuration works");
 487 }
 488 
 489 csize_t CodeBuffer::total_offset_of(address addr) const {
 490   csize_t code_size_so_far = 0;
 491   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 492     const CodeSection* cs = code_section(n);
 493     if (!cs->is_empty()) {
 494       code_size_so_far = cs->align_at_start(code_size_so_far);
 495     }
 496     if (cs->contains2(addr)) {
 497       return code_size_so_far + (addr - cs->start());
 498     }
 499     code_size_so_far += cs->size();
 500   }
 501 #ifndef PRODUCT
 502   tty->print_cr("Dangling address " PTR_FORMAT " in:", addr);
 503   ((CodeBuffer*)this)->print();
 504 #endif  
 505   ShouldNotReachHere();
 506   return -1;
 507 }
 508 
 509 csize_t CodeBuffer::total_relocation_size() const {
 510   csize_t lsize = copy_relocations_to(NULL);  // dry run only
 511   csize_t csize = total_code_size();
 512   csize_t total = RelocIterator::locs_and_index_size(csize, lsize);
 513   return (csize_t) align_size_up(total, HeapWordSize);
 514 }
 515 
 516 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
 517   address buf = NULL;
 518   csize_t buf_offset = 0;
 519   csize_t buf_limit = 0;
 520   if (dest != NULL) {
 521     buf = (address)dest->relocation_begin();
 522     buf_limit = (address)dest->relocation_end() - buf;
 523     assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
 524     assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
 525   }
 526   // if dest == NULL, this is just the sizing pass
 527 
 528   csize_t code_end_so_far = 0;
 529   csize_t code_point_so_far = 0;
 530   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 531     // pull relocs out of each section
 532     const CodeSection* cs = code_section(n);
 533     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
 534     if (cs->is_empty())  continue;  // skip trivial section
 535     relocInfo* lstart = cs->locs_start();
 536     relocInfo* lend   = cs->locs_end();
 537     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
 538     csize_t    csize  = cs->size();
 539     code_end_so_far = cs->align_at_start(code_end_so_far);
 540 
 541     if (lsize > 0) {
 542       // Figure out how to advance the combined relocation point
 543       // first to the beginning of this section.
 544       // We'll insert one or more filler relocs to span that gap.
 545       // (Don't bother to improve this by editing the first reloc's offset.)
 546       csize_t new_code_point = code_end_so_far;
 547       for (csize_t jump;
 548            code_point_so_far < new_code_point;
 549            code_point_so_far += jump) {
 550         jump = new_code_point - code_point_so_far;
 551         relocInfo filler = filler_relocInfo();
 552         if (jump >= filler.addr_offset()) {
 553           jump = filler.addr_offset();
 554         } else {  // else shrink the filler to fit
 555           filler = relocInfo(relocInfo::none, jump);
 556         }
 557         if (buf != NULL) {
 558           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
 559           *(relocInfo*)(buf+buf_offset) = filler;
 560         }
 561         buf_offset += sizeof(filler);
 562       }
 563 
 564       // Update code point and end to skip past this section:
 565       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
 566       assert(code_point_so_far <= last_code_point, "sanity");
 567       code_point_so_far = last_code_point; // advance past this guy's relocs
 568     }
 569     code_end_so_far += csize;  // advance past this guy's instructions too
 570 
 571     // Done with filler; emit the real relocations:
 572     if (buf != NULL && lsize != 0) {
 573       assert(buf_offset + lsize <= buf_limit, "target in bounds");
 574       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
 575       if (buf_offset % HeapWordSize == 0) {
 576         // Use wordwise copies if possible:
 577         Copy::disjoint_words((HeapWord*)lstart,
 578                              (HeapWord*)(buf+buf_offset),
 579                              (lsize + HeapWordSize-1) / HeapWordSize);
 580       } else {
 581         Copy::conjoint_bytes(lstart, buf+buf_offset, lsize);
 582       }
 583     }
 584     buf_offset += lsize;
 585   }
 586 
 587   // Align end of relocation info in target.
 588   while (buf_offset % HeapWordSize != 0) {
 589     if (buf != NULL) {
 590       relocInfo padding = relocInfo(relocInfo::none, 0);
 591       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
 592       *(relocInfo*)(buf+buf_offset) = padding;
 593     }
 594     buf_offset += sizeof(relocInfo);
 595   }
 596 
 597   assert(code_end_so_far == total_code_size(), "sanity");
 598 
 599   // Account for index:
 600   if (buf != NULL) {
 601     RelocIterator::create_index(dest->relocation_begin(),
 602                                 buf_offset / sizeof(relocInfo),
 603                                 dest->relocation_end());
 604   }
 605 
 606   return buf_offset;
 607 }
 608 
 609 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
 610 #ifndef PRODUCT
 611   if (PrintNMethods && (WizardMode || Verbose)) {
 612     tty->print("done with CodeBuffer:");
 613     ((CodeBuffer*)this)->print();
 614   }
 615 #endif //PRODUCT
 616 
 617   CodeBuffer dest(dest_blob->instructions_begin(),
 618                   dest_blob->instructions_size());
 619   assert(dest_blob->instructions_size() >= total_code_size(), "good sizing");
 620   this->compute_final_layout(&dest);
 621   relocate_code_to(&dest);
 622 
 623   // transfer comments from buffer to blob
 624   dest_blob->set_comments(_comments);
 625 
 626   // Done moving code bytes; were they the right size?
 627   assert(round_to(dest.total_code_size(), oopSize) == dest_blob->instructions_size(), "sanity");
 628 
 629   // Flush generated code
 630   ICache::invalidate_range(dest_blob->instructions_begin(),
 631                            dest_blob->instructions_size());
 632 }
 633 
 634 // Move all my code into another code buffer.
 635 // Consult applicable relocs to repair embedded addresses.
 636 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
 637   DEBUG_ONLY(address dest_end = dest->_total_start + dest->_total_size);
 638   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 639     // pull code out of each section
 640     const CodeSection* cs = code_section(n);
 641     if (cs->is_empty())  continue;  // skip trivial section
 642     CodeSection* dest_cs = dest->code_section(n);
 643     assert(cs->size() == dest_cs->size(), "sanity");
 644     csize_t usize = dest_cs->size();
 645     csize_t wsize = align_size_up(usize, HeapWordSize);
 646     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
 647     // Copy the code as aligned machine words.
 648     // This may also include an uninitialized partial word at the end.
 649     Copy::disjoint_words((HeapWord*)cs->start(),
 650                          (HeapWord*)dest_cs->start(),
 651                          wsize / HeapWordSize);
 652     
 653     if (dest->blob() == NULL) {
 654       // Destination is a final resting place, not just another buffer.
 655       // Normalize uninitialized bytes in the final padding.
 656       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
 657                           Assembler::code_fill_byte());
 658     }
 659 
 660     assert(cs->locs_start() != (relocInfo*)badAddress,
 661            "this section carries no reloc storage, but reloc was attempted");
 662 
 663     // Make the new code copy use the old copy's relocations:
 664     dest_cs->initialize_locs_from(cs);
 665 
 666     { // Repair the pc relative information in the code after the move
 667       RelocIterator iter(dest_cs);
 668       while (iter.next()) {
 669         iter.reloc()->fix_relocation_after_move(this, dest);
 670       }
 671     }
 672   }
 673 }
 674 
 675 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
 676                                                csize_t amount,
 677                                                csize_t* new_capacity) {
 678   csize_t new_total_cap = 0;
 679 
 680   int prev_n = -1;
 681   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 682     const CodeSection* sect = code_section(n);
 683 
 684     if (!sect->is_empty()) {
 685       // Compute initial padding; assign it to the previous non-empty guy.
 686       // Cf. compute_final_layout.
 687       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
 688       if (padding != 0) {
 689         new_total_cap += padding;
 690         assert(prev_n >= 0, "sanity");
 691         new_capacity[prev_n] += padding;
 692       }
 693       prev_n = n;
 694     }
 695 
 696     csize_t exp = sect->size();  // 100% increase
 697     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
 698     if (sect == which_cs) {
 699       if (exp < amount)  exp = amount;
 700       if (StressCodeBuffers)  exp = amount;  // expand only slightly
 701     } else if (n == SECT_INSTS) {
 702       // scale down inst increases to a more modest 25%
 703       exp = 4*K + ((exp - 4*K) >> 2);
 704       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
 705     } else if (sect->is_empty()) {
 706       // do not grow an empty secondary section
 707       exp = 0;
 708     }
 709     // Allow for inter-section slop:
 710     exp += CodeSection::end_slop();
 711     csize_t new_cap = sect->size() + exp;
 712     if (new_cap < sect->capacity()) {
 713       // No need to expand after all.
 714       new_cap = sect->capacity();
 715     }
 716     new_capacity[n] = new_cap;
 717     new_total_cap += new_cap;
 718   }
 719 
 720   return new_total_cap;
 721 }
 722 
 723 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
 724 #ifndef PRODUCT
 725   if (PrintNMethods && (WizardMode || Verbose)) {
 726     tty->print("expanding CodeBuffer:");
 727     this->print();
 728   }
 729 
 730   if (StressCodeBuffers && blob() != NULL) {
 731     static int expand_count = 0;
 732     if (expand_count >= 0)  expand_count += 1;
 733     if (expand_count > 100 && is_power_of_2(expand_count)) {
 734       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
 735       // simulate an occasional allocation failure:
 736       free_blob();
 737     }
 738   }
 739 #endif //PRODUCT
 740 
 741   // Resizing must be allowed
 742   {
 743     if (blob() == NULL)  return;  // caller must check for blob == NULL
 744     for (int n = 0; n < (int)SECT_LIMIT; n++) {
 745       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
 746     }
 747   }
 748 
 749   // Figure new capacity for each section.
 750   csize_t new_capacity[SECT_LIMIT];
 751   csize_t new_total_cap
 752     = figure_expanded_capacities(which_cs, amount, new_capacity);
 753 
 754   // Create a new (temporary) code buffer to hold all the new data
 755   CodeBuffer cb(name(), new_total_cap, 0);
 756   if (cb.blob() == NULL) {
 757     // Failed to allocate in code cache.
 758     free_blob();
 759     return;
 760   }
 761 
 762   // Create an old code buffer to remember which addresses used to go where.
 763   // This will be useful when we do final assembly into the code cache,
 764   // because we will need to know how to warp any internal address that
 765   // has been created at any time in this CodeBuffer's past.
 766   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
 767   bxp->take_over_code_from(this);  // remember the old undersized blob
 768   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
 769   bxp->_before_expand = this->_before_expand;
 770   this->_before_expand = bxp;
 771 
 772   // Give each section its required (expanded) capacity.
 773   for (int n = (int)SECT_LIMIT-1; n >= SECT_INSTS; n--) {
 774     CodeSection* cb_sect   = cb.code_section(n);
 775     CodeSection* this_sect = code_section(n);
 776     if (new_capacity[n] == 0)  continue;  // already nulled out
 777     if (n > SECT_INSTS) {
 778       cb.initialize_section_size(cb_sect, new_capacity[n]);
 779     }
 780     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
 781     address cb_start = cb_sect->start();
 782     cb_sect->set_end(cb_start + this_sect->size());
 783     if (this_sect->mark() == NULL) {
 784       cb_sect->clear_mark();
 785     } else {
 786       cb_sect->set_mark(cb_start + this_sect->mark_off());
 787     }
 788   }
 789 
 790   // Move all the code and relocations to the new blob:
 791   relocate_code_to(&cb);
 792     
 793   // Copy the temporary code buffer into the current code buffer.
 794   // Basically, do {*this = cb}, except for some control information.
 795   this->take_over_code_from(&cb);
 796   cb.set_blob(NULL);
 797 
 798   // Zap the old code buffer contents, to avoid mistakenly using them.
 799   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
 800                                  badCodeHeapFreeVal));
 801 
 802   _decode_begin = NULL;  // sanity
 803 
 804   // Make certain that the new sections are all snugly inside the new blob.
 805   assert(verify_section_allocation(), "expanded allocation is ship-shape");
 806 
 807 #ifndef PRODUCT
 808   if (PrintNMethods && (WizardMode || Verbose)) {
 809     tty->print("expanded CodeBuffer:");
 810     this->print();
 811   }
 812 #endif //PRODUCT
 813 }
 814 
 815 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
 816   // Must already have disposed of the old blob somehow.
 817   assert(blob() == NULL, "must be empty");
 818 #ifdef ASSERT
 819   
 820 #endif
 821   // Take the new blob away from cb.
 822   set_blob(cb->blob());
 823   // Take over all the section pointers.
 824   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 825     CodeSection* cb_sect   = cb->code_section(n);
 826     CodeSection* this_sect = code_section(n);
 827     this_sect->take_over_code_from(cb_sect);
 828   }
 829   _overflow_arena = cb->_overflow_arena;
 830   // Make sure the old cb won't try to use it or free it.
 831   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
 832 }
 833 
 834 #ifdef ASSERT
 835 bool CodeBuffer::verify_section_allocation() {
 836   address tstart = _total_start;
 837   if (tstart == badAddress)  return true;  // smashed by set_blob(NULL)
 838   address tend   = tstart + _total_size;
 839   if (_blob != NULL) {
 840     assert(tstart >= _blob->instructions_begin(), "sanity");
 841     assert(tend   <= _blob->instructions_end(),   "sanity");
 842   }
 843   address tcheck = tstart;  // advancing pointer to verify disjointness
 844   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 845     CodeSection* sect = code_section(n);
 846     if (!sect->is_allocated())  continue;
 847     assert(sect->start() >= tcheck, "sanity");
 848     tcheck = sect->start();
 849     assert((intptr_t)tcheck % sect->alignment() == 0
 850            || sect->is_empty() || _blob == NULL,
 851            "start is aligned");
 852     assert(sect->end()   >= tcheck, "sanity");
 853     assert(sect->end()   <= tend,   "sanity");
 854   }
 855   return true;
 856 }
 857 #endif //ASSERT
 858 
 859 #ifndef PRODUCT
 860 
 861 void CodeSection::dump() {
 862   address ptr = start();
 863   for (csize_t step; ptr < end(); ptr += step) {
 864     step = end() - ptr;
 865     if (step > jintSize * 4)  step = jintSize * 4;
 866     tty->print(PTR_FORMAT ": ", ptr);
 867     while (step > 0) {
 868       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
 869       ptr += jintSize;
 870     }
 871     tty->cr();
 872   }
 873 }
 874 
 875 
 876 void CodeSection::decode() {
 877   Disassembler::decode(start(), end());
 878 }
 879 
 880 
 881 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
 882   _comments.add_comment(offset, comment);
 883 }
 884 
 885 
 886 class CodeComment: public CHeapObj {
 887  private:
 888   friend class CodeComments;
 889   intptr_t     _offset;
 890   const char * _comment;
 891   CodeComment* _next;
 892 
 893   ~CodeComment() {
 894     assert(_next == NULL, "wrong interface for freeing list");
 895     os::free((void*)_comment);
 896   }
 897 
 898  public:
 899   CodeComment(intptr_t offset, const char * comment) {
 900     _offset = offset;
 901     _comment = os::strdup(comment);
 902     _next = NULL;
 903   }
 904 
 905   intptr_t     offset()  const { return _offset;  }
 906   const char * comment() const { return _comment; }
 907   CodeComment* next()          { return _next; }
 908 
 909   void set_next(CodeComment* next) { _next = next; }
 910 
 911   CodeComment* find(intptr_t offset) {
 912     CodeComment* a = this;
 913     while (a != NULL && a->_offset != offset) {
 914       a = a->_next;
 915     }
 916     return a;
 917   }
 918 };
 919 
 920 
 921 void CodeComments::add_comment(intptr_t offset, const char * comment) {
 922   CodeComment* c = new CodeComment(offset, comment);
 923   CodeComment* insert = NULL;
 924   if (_comments != NULL) {
 925     CodeComment* c = _comments->find(offset);
 926     insert = c;
 927     while (c && c->offset() == offset) {
 928       insert = c;
 929       c = c->next();
 930     }
 931   }
 932   if (insert) {
 933     // insert after comments with same offset
 934     c->set_next(insert->next());
 935     insert->set_next(c);
 936   } else {
 937     c->set_next(_comments);
 938     _comments = c;
 939   }
 940 }
 941 
 942 
 943 void CodeComments::assign(CodeComments& other) {
 944   assert(_comments == NULL, "don't overwrite old value");
 945   _comments = other._comments;
 946 }
 947 
 948 
 949 void CodeComments::print_block_comment(outputStream* stream, intptr_t offset) {
 950   if (_comments != NULL) {
 951     CodeComment* c = _comments->find(offset);
 952     while (c && c->offset() == offset) {
 953       stream->print("  ;; ");
 954       stream->print_cr(c->comment());
 955       c = c->next();
 956     }
 957   }
 958 }
 959 
 960 
 961 void CodeComments::free() {
 962   CodeComment* n = _comments;
 963   while (n) {
 964     // unlink the node from the list saving a pointer to the next
 965     CodeComment* p = n->_next;
 966     n->_next = NULL;
 967     delete n;
 968     n = p;
 969   }
 970   _comments = NULL;
 971 }
 972 
 973 
 974 
 975 void CodeBuffer::decode() {
 976   Disassembler::decode(decode_begin(), code_end());
 977   _decode_begin = code_end();
 978 }
 979 
 980 
 981 void CodeBuffer::skip_decode() {
 982   _decode_begin = code_end();
 983 }
 984 
 985 
 986 void CodeBuffer::decode_all() {
 987   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 988     // dump contents of each section
 989     CodeSection* cs = code_section(n);
 990     tty->print_cr("! %s:", code_section_name(n));
 991     if (cs != consts())
 992       cs->decode();
 993     else
 994       cs->dump();
 995   }
 996 }
 997 
 998 
 999 void CodeSection::print(const char* name) {
1000   csize_t locs_size = locs_end() - locs_start();
1001   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1002                 name, start(), end(), limit(), size(), capacity(),
1003                 is_frozen()? " [frozen]": "");
1004   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1005                 name, locs_start(), locs_end(), locs_limit(), locs_size, locs_capacity(), locs_point_off());
1006   if (PrintRelocations) {
1007     RelocIterator iter(this);
1008     iter.print();
1009   }
1010 }
1011 
1012 void CodeBuffer::print() {
1013   if (this == NULL) {
1014     tty->print_cr("NULL CodeBuffer pointer");
1015     return;
1016   }
1017 
1018   tty->print_cr("CodeBuffer:");
1019   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1020     // print each section
1021     CodeSection* cs = code_section(n);
1022     cs->print(code_section_name(n));
1023   }
1024 }
1025 
1026 #endif // PRODUCT