1 #ifdef USE_PRAGMA_IDENT_HDR
   2 #pragma ident "@(#)psParallelCompact.hpp        1.48 07/10/04 10:49:38 JVM"
   3 #endif
   4 /*
   5  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 class ParallelScavengeHeap;
  29 class PSAdaptiveSizePolicy;
  30 class PSYoungGen;
  31 class PSOldGen;
  32 class PSPermGen;
  33 class ParCompactionManager;
  34 class ParallelTaskTerminator;
  35 class PSParallelCompact;
  36 class GCTaskManager;
  37 class GCTaskQueue;
  38 class PreGCValues;
  39 class MoveAndUpdateClosure;
  40 class RefProcTaskExecutor;
  41 
  42 // The SplitInfo class holds the information needed to 'split' a source region
  43 // so that the live data can be copied to two destination *spaces*.  Normally,
  44 // all the live data in a region is copied to a single destination space (e.g.,
  45 // everything live in a region in eden is copied entirely into the old gen).
  46 // However, when the heap is nearly full, all the live data in eden may not fit
  47 // into the old gen.  Copying only some of the regions from eden to old gen
  48 // requires finding a region that does not contain a partial object (i.e., no
  49 // live object crosses the region boundary) somewhere near the last object that
  50 // does fit into the old gen.  Since it's not always possible to find such a
  51 // region, splitting is necessary for predictable behavior.
  52 //
  53 // A region is always split at the end of the partial object.  This avoids
  54 // additional tests when calculating the new location of a pointer, which is a
  55 // very hot code path.  The partial object and everything to its left will be
  56 // copied to another space (call it dest_space_1).  The live data to the right
  57 // of the partial object will be copied either within the space itself, or to a
  58 // different destination space (distinct from dest_space_1).
  59 //
  60 // Split points are identified during the summary phase, when region
  61 // destinations are computed:  data about the split, including the
  62 // partial_object_size, is recorded in a SplitInfo record and the
  63 // partial_object_size field in the summary data is set to zero.  The zeroing is
  64 // possible (and necessary) since the partial object will move to a different
  65 // destination space than anything to its right, thus the partial object should
  66 // not affect the locations of any objects to its right.
  67 //
  68 // The recorded data is used during the compaction phase, but only rarely:  when
  69 // the partial object on the split region will be copied across a destination
  70 // region boundary.  This test is made once each time a region is filled, and is
  71 // a simple address comparison, so the overhead is negligible (see
  72 // PSParallelCompact::first_src_addr()).
  73 //
  74 // Notes:
  75 //
  76 // Only regions with partial objects are split; a region without a partial
  77 // object does not need any extra bookkeeping.
  78 //
  79 // At most one region is split per space, so the amount of data required is
  80 // constant.
  81 //
  82 // A region is split only when the destination space would overflow.  Once that
  83 // happens, the destination space is abandoned and no other data (even from
  84 // other source spaces) is targeted to that destination space.  Abandoning the
  85 // destination space may leave a somewhat large unused area at the end, if a
  86 // large object caused the overflow.
  87 //
  88 // Future work:
  89 //
  90 // More bookkeeping would be required to continue to use the destination space.
  91 // The most general solution would allow data from regions in two different
  92 // source spaces to be "joined" in a single destination region.  At the very
  93 // least, additional code would be required in next_src_region() to detect the
  94 // join and skip to an out-of-order source region.  If the join region was also
  95 // the last destination region to which a split region was copied (the most
  96 // likely case), then additional work would be needed to get fill_region() to
  97 // stop iteration and switch to a new source region at the right point.  Basic
  98 // idea would be to use a fake value for the top of the source space.  It is
  99 // doable, if a bit tricky.
 100 //
 101 // A simpler (but less general) solution would fill the remainder of the
 102 // destination region with a dummy object and continue filling the next
 103 // destination region.
 104 
 105 class SplitInfo
 106 {
 107 public:
 108   // Return true if this split info is valid (i.e., if a split has been
 109   // recorded).  The very first region cannot have a partial object and thus is
 110   // never split, so 0 is the 'invalid' value.
 111   bool is_valid() const { return _src_region_idx > 0; }
 112 
 113   // Return true if this split holds data for the specified source region.
 114   inline bool is_split(size_t source_region) const;
 115 
 116   // The index of the split region, the size of the partial object on that
 117   // region and the destination of the partial object.
 118   size_t    src_region_idx() const   { return _src_region_idx; }
 119   size_t    partial_obj_size() const { return _partial_obj_size; }
 120   HeapWord* destination() const      { return _destination; }
 121 
 122   // The destination count of the partial object referenced by this split
 123   // (either 1 or 2).  This must be added to the destination count of the
 124   // remainder of the source region.
 125   unsigned int destination_count() const { return _destination_count; }
 126 
 127   // If a word within the partial object will be written to the first word of a
 128   // destination region, this is the address of the destination region;
 129   // otherwise this is NULL.
 130   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
 131 
 132   // If a word within the partial object will be written to the first word of a
 133   // destination region, this is the address of that word within the partial
 134   // object; otherwise this is NULL.
 135   HeapWord* first_src_addr() const       { return _first_src_addr; }
 136 
 137   // Record the data necessary to split the region src_region_idx.
 138   void record(size_t src_region_idx, size_t partial_obj_size,
 139               HeapWord* destination);
 140 
 141   void clear();
 142 
 143   DEBUG_ONLY(void verify_clear();)
 144 
 145 private:
 146   size_t       _src_region_idx;
 147   size_t       _partial_obj_size;
 148   HeapWord*    _destination;
 149   unsigned int _destination_count;
 150   HeapWord*    _dest_region_addr;
 151   HeapWord*    _first_src_addr;
 152 };
 153 
 154 inline bool SplitInfo::is_split(size_t region_idx) const
 155 {
 156   return _src_region_idx == region_idx && is_valid();
 157 }
 158 
 159 class SpaceInfo
 160 {
 161  public:
 162   MutableSpace* space() const { return _space; }
 163 
 164   // Where the free space will start after the collection.  Valid only after the
 165   // summary phase completes.
 166   HeapWord* new_top() const { return _new_top; }
 167 
 168   // Allows new_top to be set.
 169   HeapWord** new_top_addr() { return &_new_top; }
 170 
 171   // Where the smallest allowable dense prefix ends (used only for perm gen).
 172   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
 173 
 174   // Where the dense prefix ends, or the compacted region begins.
 175   HeapWord* dense_prefix() const { return _dense_prefix; }
 176 
 177   // The start array for the (generation containing the) space, or NULL if there
 178   // is no start array.
 179   ObjectStartArray* start_array() const { return _start_array; }
 180 
 181   SplitInfo& split_info() { return _split_info; }
 182 
 183   void set_space(MutableSpace* s)           { _space = s; }
 184   void set_new_top(HeapWord* addr)          { _new_top = addr; }
 185   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
 186   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
 187   void set_start_array(ObjectStartArray* s) { _start_array = s; }
 188 
 189   void publish_new_top() const              { _space->set_top(_new_top); }
 190 
 191  private:
 192   MutableSpace*     _space;
 193   HeapWord*         _new_top;
 194   HeapWord*         _min_dense_prefix;
 195   HeapWord*         _dense_prefix;
 196   ObjectStartArray* _start_array;
 197   SplitInfo         _split_info;
 198 };
 199 
 200 class ParallelCompactData
 201 {
 202 public:
 203   // Sizes are in HeapWords, unless indicated otherwise.
 204   static const size_t Log2RegionSize;
 205   static const size_t RegionSize;
 206   static const size_t RegionSizeBytes;
 207 
 208   // Mask for the bits in a size_t to get an offset within a region.
 209   static const size_t RegionSizeOffsetMask;
 210   // Mask for the bits in a pointer to get an offset within a region.
 211   static const size_t RegionAddrOffsetMask;
 212   // Mask for the bits in a pointer to get the address of the start of a region.
 213   static const size_t RegionAddrMask;
 214 
 215   class RegionData
 216   {
 217   public:
 218     // Destination address of the region.
 219     HeapWord* destination() const { return _destination; }
 220 
 221     // The first region containing data destined for this region.
 222     size_t source_region() const { return _source_region; }
 223 
 224     // The object (if any) starting in this region and ending in a different
 225     // region that could not be updated during the main (parallel) compaction
 226     // phase.  This is different from _partial_obj_addr, which is an object that
 227     // extends onto a source region.  However, the two uses do not overlap in
 228     // time, so the same field is used to save space.
 229     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
 230 
 231     // The starting address of the partial object extending onto the region.
 232     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
 233 
 234     // Size of the partial object extending onto the region (words).
 235     size_t partial_obj_size() const { return _partial_obj_size; }
 236 
 237     // Size of live data that lies within this region due to objects that start
 238     // in this region (words).  This does not include the partial object
 239     // extending onto the region (if any), or the part of an object that extends
 240     // onto the next region (if any).
 241     size_t live_obj_size() const { return _dc_and_los & los_mask; }
 242 
 243     // Total live data that lies within the region (words).
 244     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
 245 
 246     // The destination_count is the number of other regions to which data from
 247     // this region will be copied.  At the end of the summary phase, the valid
 248     // values of destination_count are
 249     //
 250     // 0 - data from the region will be compacted completely into itself, or the
 251     //     region is empty.  The region can be claimed and then filled.
 252     // 1 - data from the region will be compacted into 1 other region; some
 253     //     data from the region may also be compacted into the region itself.
 254     // 2 - data from the region will be copied to 2 other regions.
 255     //
 256     // During compaction as regions are emptied, the destination_count is
 257     // decremented (atomically) and when it reaches 0, it can be claimed and
 258     // then filled.
 259     //
 260     // A region is claimed for processing by atomically changing the
 261     // destination_count to the claimed value (dc_claimed).  After a region has
 262     // been filled, the destination_count should be set to the completed value
 263     // (dc_completed).
 264     inline uint destination_count() const;
 265     inline uint destination_count_raw() const;
 266 
 267     // The location of the java heap data that corresponds to this region.
 268     inline HeapWord* data_location() const;
 269 
 270     // The highest address referenced by objects in this region.
 271     inline HeapWord* highest_ref() const;
 272 
 273     // Whether this region is available to be claimed, has been claimed, or has
 274     // been completed.
 275     //
 276     // Minor subtlety:  claimed() returns true if the region is marked
 277     // completed(), which is desirable since a region must be claimed before it
 278     // can be completed.
 279     bool available() const { return _dc_and_los < dc_one; }
 280     bool claimed() const   { return _dc_and_los >= dc_claimed; }
 281     bool completed() const { return _dc_and_los >= dc_completed; }
 282 
 283     // These are not atomic.
 284     void set_destination(HeapWord* addr)       { _destination = addr; }
 285     void set_source_region(size_t region)      { _source_region = region; }
 286     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
 287     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
 288     void set_partial_obj_size(size_t words)    {
 289       _partial_obj_size = (region_sz_t) words;
 290     }
 291 
 292     inline void set_destination_count(uint count);
 293     inline void set_live_obj_size(size_t words);
 294     inline void set_data_location(HeapWord* addr);
 295     inline void set_completed();
 296     inline bool claim_unsafe();
 297 
 298     // These are atomic.
 299     inline void add_live_obj(size_t words);
 300     inline void set_highest_ref(HeapWord* addr);
 301     inline void decrement_destination_count();
 302     inline bool claim();
 303 
 304   private:
 305     // The type used to represent object sizes within a region.
 306     typedef uint region_sz_t;
 307 
 308     // Constants for manipulating the _dc_and_los field, which holds both the
 309     // destination count and live obj size.  The live obj size lives at the
 310     // least significant end so no masking is necessary when adding.
 311     static const region_sz_t dc_shift;           // Shift amount.
 312     static const region_sz_t dc_mask;            // Mask for destination count.
 313     static const region_sz_t dc_one;             // 1, shifted appropriately.
 314     static const region_sz_t dc_claimed;         // Region has been claimed.
 315     static const region_sz_t dc_completed;       // Region has been completed.
 316     static const region_sz_t los_mask;           // Mask for live obj size.
 317 
 318     HeapWord*            _destination;
 319     size_t               _source_region;
 320     HeapWord*            _partial_obj_addr;
 321     region_sz_t          _partial_obj_size;
 322     region_sz_t volatile _dc_and_los;
 323 #ifdef ASSERT
 324     // These enable optimizations that are only partially implemented.  Use
 325     // debug builds to prevent the code fragments from breaking.
 326     HeapWord*            _data_location;
 327     HeapWord*            _highest_ref;
 328 #endif  // #ifdef ASSERT
 329 
 330 #ifdef ASSERT
 331    public:
 332     uint            _pushed;   // 0 until region is pushed onto a worker's stack
 333    private:
 334 #endif
 335   };
 336 
 337 public:
 338   ParallelCompactData();
 339   bool initialize(MemRegion covered_region);
 340 
 341   size_t region_count() const { return _region_count; }
 342 
 343   // Convert region indices to/from RegionData pointers.
 344   inline RegionData* region(size_t region_idx) const;
 345   inline size_t     region(const RegionData* const region_ptr) const;
 346 
 347   // Returns true if the given address is contained within the region
 348   bool region_contains(size_t region_index, HeapWord* addr);
 349 
 350   void add_obj(HeapWord* addr, size_t len);
 351   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
 352 
 353   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
 354   // destination of region n is simply the start of region n.  The argument beg
 355   // must be region-aligned; end need not be.
 356   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
 357 
 358   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
 359                                   HeapWord* destination, HeapWord* target_end,
 360                                   HeapWord** target_next);
 361   bool summarize(SplitInfo& split_info,
 362                  HeapWord* source_beg, HeapWord* source_end,
 363                  HeapWord** source_next,
 364                  HeapWord* target_beg, HeapWord* target_end,
 365                  HeapWord** target_next);
 366 
 367   void clear();
 368   void clear_range(size_t beg_region, size_t end_region);
 369   void clear_range(HeapWord* beg, HeapWord* end) {
 370     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
 371   }
 372 
 373   // Return the number of words between addr and the start of the region
 374   // containing addr.
 375   inline size_t     region_offset(const HeapWord* addr) const;
 376 
 377   // Convert addresses to/from a region index or region pointer.
 378   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
 379   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
 380   inline HeapWord*  region_to_addr(size_t region) const;
 381   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
 382   inline HeapWord*  region_to_addr(const RegionData* region) const;
 383 
 384   inline HeapWord*  region_align_down(HeapWord* addr) const;
 385   inline HeapWord*  region_align_up(HeapWord* addr) const;
 386   inline bool       is_region_aligned(HeapWord* addr) const;
 387 
 388   // Return the address one past the end of the partial object.
 389   HeapWord* partial_obj_end(size_t region_idx) const;
 390 
 391   // Return the new location of the object p after the
 392   // the compaction.
 393   HeapWord* calc_new_pointer(HeapWord* addr);
 394 
 395   HeapWord* calc_new_pointer(oop p) {
 396     return calc_new_pointer((HeapWord*) p);
 397   }
 398 
 399   // Return the updated address for the given klass
 400   klassOop calc_new_klass(klassOop);
 401 
 402 #ifdef  ASSERT
 403   void verify_clear(const PSVirtualSpace* vspace);
 404   void verify_clear();
 405 #endif  // #ifdef ASSERT
 406 
 407 private:
 408   bool initialize_region_data(size_t region_size);
 409   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
 410 
 411 private:
 412   HeapWord*       _region_start;
 413 #ifdef  ASSERT
 414   HeapWord*       _region_end;
 415 #endif  // #ifdef ASSERT
 416 
 417   PSVirtualSpace* _region_vspace;
 418   RegionData*     _region_data;
 419   size_t          _region_count;
 420 };
 421 
 422 inline uint
 423 ParallelCompactData::RegionData::destination_count_raw() const
 424 {
 425   return _dc_and_los & dc_mask;
 426 }
 427 
 428 inline uint
 429 ParallelCompactData::RegionData::destination_count() const
 430 {
 431   return destination_count_raw() >> dc_shift;
 432 }
 433 
 434 inline void
 435 ParallelCompactData::RegionData::set_destination_count(uint count)
 436 {
 437   assert(count <= (dc_completed >> dc_shift), "count too large");
 438   const region_sz_t live_sz = (region_sz_t) live_obj_size();
 439   _dc_and_los = (count << dc_shift) | live_sz;
 440 }
 441 
 442 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
 443 {
 444   assert(words <= los_mask, "would overflow");
 445   _dc_and_los = destination_count_raw() | (region_sz_t)words;
 446 }
 447 
 448 inline void ParallelCompactData::RegionData::decrement_destination_count()
 449 {
 450   assert(_dc_and_los < dc_claimed, "already claimed");
 451   assert(_dc_and_los >= dc_one, "count would go negative");
 452   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
 453 }
 454 
 455 inline HeapWord* ParallelCompactData::RegionData::data_location() const
 456 {
 457   DEBUG_ONLY(return _data_location;)
 458   NOT_DEBUG(return NULL;)
 459 }
 460 
 461 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
 462 {
 463   DEBUG_ONLY(return _highest_ref;)
 464   NOT_DEBUG(return NULL;)
 465 }
 466 
 467 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
 468 {
 469   DEBUG_ONLY(_data_location = addr;)
 470 }
 471 
 472 inline void ParallelCompactData::RegionData::set_completed()
 473 {
 474   assert(claimed(), "must be claimed first");
 475   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
 476 }
 477 
 478 // MT-unsafe claiming of a region.  Should only be used during single threaded
 479 // execution.
 480 inline bool ParallelCompactData::RegionData::claim_unsafe()
 481 {
 482   if (available()) {
 483     _dc_and_los |= dc_claimed;
 484     return true;
 485   }
 486   return false;
 487 }
 488 
 489 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
 490 {
 491   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
 492   Atomic::add((int) words, (volatile int*) &_dc_and_los);
 493 }
 494 
 495 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
 496 {
 497 #ifdef ASSERT
 498   HeapWord* tmp = _highest_ref;
 499   while (addr > tmp) {
 500     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
 501   }
 502 #endif  // #ifdef ASSERT
 503 }
 504 
 505 inline bool ParallelCompactData::RegionData::claim()
 506 {
 507   const int los = (int) live_obj_size();
 508   const int old = Atomic::cmpxchg(dc_claimed | los,
 509                                   (volatile int*) &_dc_and_los, los);
 510   return old == los;
 511 }
 512 
 513 inline ParallelCompactData::RegionData*
 514 ParallelCompactData::region(size_t region_idx) const
 515 {
 516   assert(region_idx <= region_count(), "bad arg");
 517   return _region_data + region_idx;
 518 }
 519 
 520 inline size_t
 521 ParallelCompactData::region(const RegionData* const region_ptr) const
 522 {
 523   assert(region_ptr >= _region_data, "bad arg");
 524   assert(region_ptr <= _region_data + region_count(), "bad arg");
 525   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
 526 }
 527 
 528 inline size_t
 529 ParallelCompactData::region_offset(const HeapWord* addr) const
 530 {
 531   assert(addr >= _region_start, "bad addr");
 532   assert(addr <= _region_end, "bad addr");
 533   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
 534 }
 535 
 536 inline size_t
 537 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
 538 {
 539   assert(addr >= _region_start, "bad addr");
 540   assert(addr <= _region_end, "bad addr");
 541   return pointer_delta(addr, _region_start) >> Log2RegionSize;
 542 }
 543 
 544 inline ParallelCompactData::RegionData*
 545 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
 546 {
 547   return region(addr_to_region_idx(addr));
 548 }
 549 
 550 inline HeapWord*
 551 ParallelCompactData::region_to_addr(size_t region) const
 552 {
 553   assert(region <= _region_count, "region out of range");
 554   return _region_start + (region << Log2RegionSize);
 555 }
 556 
 557 inline HeapWord*
 558 ParallelCompactData::region_to_addr(const RegionData* region) const
 559 {
 560   return region_to_addr(pointer_delta(region, _region_data,
 561                                       sizeof(RegionData)));
 562 }
 563 
 564 inline HeapWord*
 565 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
 566 {
 567   assert(region <= _region_count, "region out of range");
 568   assert(offset < RegionSize, "offset too big");  // This may be too strict.
 569   return region_to_addr(region) + offset;
 570 }
 571 
 572 inline HeapWord*
 573 ParallelCompactData::region_align_down(HeapWord* addr) const
 574 {
 575   assert(addr >= _region_start, "bad addr");
 576   assert(addr < _region_end + RegionSize, "bad addr");
 577   return (HeapWord*)(size_t(addr) & RegionAddrMask);
 578 }
 579 
 580 inline HeapWord*
 581 ParallelCompactData::region_align_up(HeapWord* addr) const
 582 {
 583   assert(addr >= _region_start, "bad addr");
 584   assert(addr <= _region_end, "bad addr");
 585   return region_align_down(addr + RegionSizeOffsetMask);
 586 }
 587 
 588 inline bool
 589 ParallelCompactData::is_region_aligned(HeapWord* addr) const
 590 {
 591   return region_offset(addr) == 0;
 592 }
 593 
 594 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
 595 // do_addr() method.
 596 // 
 597 // The closure is initialized with the number of heap words to process
 598 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
 599 // methods in subclasses should update the total as words are processed.  Since
 600 // only one subclass actually uses this mechanism to terminate iteration, the
 601 // default initial value is > 0.  The implementation is here and not in the
 602 // single subclass that uses it to avoid making is_full() virtual, and thus
 603 // adding a virtual call per live object.
 604 
 605 class ParMarkBitMapClosure: public StackObj {
 606  public:
 607   typedef ParMarkBitMap::idx_t idx_t;
 608   typedef ParMarkBitMap::IterationStatus IterationStatus;
 609 
 610  public:
 611   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
 612                               size_t words = max_uintx);
 613 
 614   inline ParCompactionManager* compaction_manager() const;
 615   inline ParMarkBitMap*        bitmap() const;
 616   inline size_t                words_remaining() const;
 617   inline bool                  is_full() const;
 618   inline HeapWord*             source() const;
 619 
 620   inline void                  set_source(HeapWord* addr);
 621 
 622   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
 623 
 624  protected:
 625   inline void decrement_words_remaining(size_t words);
 626 
 627  private:
 628   ParMarkBitMap* const        _bitmap;
 629   ParCompactionManager* const _compaction_manager;
 630   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
 631   size_t                      _words_remaining; // Words left to copy.
 632 
 633  protected:
 634   HeapWord*                   _source;          // Next addr that would be read.
 635 };
 636 
 637 inline
 638 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
 639                                            ParCompactionManager* cm,
 640                                            size_t words):
 641   _bitmap(bitmap), _compaction_manager(cm)
 642 #ifdef  ASSERT
 643   , _initial_words_remaining(words)
 644 #endif
 645 {
 646   _words_remaining = words;
 647   _source = NULL;
 648 }
 649 
 650 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
 651   return _compaction_manager;
 652 }
 653 
 654 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
 655   return _bitmap;
 656 }
 657 
 658 inline size_t ParMarkBitMapClosure::words_remaining() const {
 659   return _words_remaining;
 660 }
 661 
 662 inline bool ParMarkBitMapClosure::is_full() const {
 663   return words_remaining() == 0;
 664 }
 665 
 666 inline HeapWord* ParMarkBitMapClosure::source() const {
 667   return _source;
 668 }
 669 
 670 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
 671   _source = addr;
 672 }
 673 
 674 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
 675   assert(_words_remaining >= words, "processed too many words");
 676   _words_remaining -= words;
 677 }
 678 
 679 // The UseParallelOldGC collector is a stop-the-world garbage collector that
 680 // does parts of the collection using parallel threads.  The collection includes
 681 // the tenured generation and the young generation.  The permanent generation is
 682 // collected at the same time as the other two generations but the permanent
 683 // generation is collect by a single GC thread.  The permanent generation is
 684 // collected serially because of the requirement that during the processing of a
 685 // klass AAA, any objects reference by AAA must already have been processed.
 686 // This requirement is enforced by a left (lower address) to right (higher
 687 // address) sliding compaction.
 688 //
 689 // There are four phases of the collection.
 690 //
 691 //      - marking phase
 692 //      - summary phase
 693 //      - compacting phase
 694 //      - clean up phase
 695 //
 696 // Roughly speaking these phases correspond, respectively, to
 697 //      - mark all the live objects
 698 //      - calculate the destination of each object at the end of the collection
 699 //      - move the objects to their destination
 700 //      - update some references and reinitialize some variables
 701 //
 702 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
 703 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
 704 // complete marking of the heap.  The summary phase is implemented in
 705 // PSParallelCompact::summary_phase().  The move and update phase is implemented
 706 // in PSParallelCompact::compact().
 707 //
 708 // A space that is being collected is divided into regions and with each region
 709 // is associated an object of type ParallelCompactData.  Each region is of a
 710 // fixed size and typically will contain more than 1 object and may have parts
 711 // of objects at the front and back of the region.
 712 //
 713 // region            -----+---------------------+----------
 714 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
 715 //
 716 // The marking phase does a complete marking of all live objects in the heap.
 717 // The marking also compiles the size of the data for all live objects covered
 718 // by the region.  This size includes the part of any live object spanning onto
 719 // the region (part of AAA if it is live) from the front, all live objects
 720 // contained in the region (BBB and/or CCC if they are live), and the part of
 721 // any live objects covered by the region that extends off the region (part of
 722 // DDD if it is live).  The marking phase uses multiple GC threads and marking
 723 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
 724 // done atomically as is the accumulation of the size of the live objects
 725 // covered by a region.
 726 //
 727 // The summary phase calculates the total live data to the left of each region
 728 // XXX.  Based on that total and the bottom of the space, it can calculate the
 729 // starting location of the live data in XXX.  The summary phase calculates for
 730 // each region XXX quantites such as
 731 //
 732 //      - the amount of live data at the beginning of a region from an object
 733 //        entering the region.
 734 //      - the location of the first live data on the region
 735 //      - a count of the number of regions receiving live data from XXX.
 736 //
 737 // See ParallelCompactData for precise details.  The summary phase also
 738 // calculates the dense prefix for the compaction.  The dense prefix is a
 739 // portion at the beginning of the space that is not moved.  The objects in the
 740 // dense prefix do need to have their object references updated.  See method
 741 // summarize_dense_prefix().
 742 //
 743 // The summary phase is done using 1 GC thread.
 744 //
 745 // The compaction phase moves objects to their new location and updates all
 746 // references in the object.
 747 //
 748 // A current exception is that objects that cross a region boundary are moved
 749 // but do not have their references updated.  References are not updated because
 750 // it cannot easily be determined if the klass pointer KKK for the object AAA
 751 // has been updated.  KKK likely resides in a region to the left of the region
 752 // containing AAA.  These AAA's have there references updated at the end in a
 753 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
 754 // An alternate strategy is being investigated for this deferral of updating.
 755 //
 756 // Compaction is done on a region basis.  A region that is ready to be filled is
 757 // put on a ready list and GC threads take region off the list and fill them.  A
 758 // region is ready to be filled if it empty of live objects.  Such a region may
 759 // have been initially empty (only contained dead objects) or may have had all
 760 // its live objects copied out already.  A region that compacts into itself is
 761 // also ready for filling.  The ready list is initially filled with empty
 762 // regions and regions compacting into themselves.  There is always at least 1
 763 // region that can be put on the ready list.  The regions are atomically added
 764 // and removed from the ready list.
 765 
 766 class PSParallelCompact : AllStatic {
 767  public:
 768   // Convenient access to type names.
 769   typedef ParMarkBitMap::idx_t idx_t;
 770   typedef ParallelCompactData::RegionData RegionData;
 771 
 772   typedef enum {
 773     perm_space_id, old_space_id, eden_space_id,
 774     from_space_id, to_space_id, last_space_id
 775   } SpaceId;
 776 
 777  public:
 778   // Inline closure decls
 779   //
 780   class IsAliveClosure: public BoolObjectClosure {
 781    public:
 782     virtual void do_object(oop p);
 783     virtual bool do_object_b(oop p);
 784   };
 785 
 786   class KeepAliveClosure: public OopClosure {
 787    private:
 788     ParCompactionManager* _compaction_manager;
 789    protected:
 790     template <class T> inline void do_oop_work(T* p);
 791    public:
 792     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 793     virtual void do_oop(oop* p);
 794     virtual void do_oop(narrowOop* p);
 795   };
 796 
 797   // Current unused
 798   class FollowRootClosure: public OopsInGenClosure {
 799    private:
 800     ParCompactionManager* _compaction_manager;
 801    public:
 802     FollowRootClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 803     virtual void do_oop(oop* p);
 804     virtual void do_oop(narrowOop* p);
 805     virtual const bool do_nmethods() const { return true; }
 806   };
 807 
 808   class FollowStackClosure: public VoidClosure {
 809    private:
 810     ParCompactionManager* _compaction_manager;
 811    public:
 812     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 813     virtual void do_void();
 814   };
 815 
 816   class AdjustPointerClosure: public OopsInGenClosure {
 817    private:
 818     bool _is_root;
 819    public:
 820     AdjustPointerClosure(bool is_root) : _is_root(is_root) { }
 821     virtual void do_oop(oop* p);
 822     virtual void do_oop(narrowOop* p);
 823   };
 824 
 825   // Closure for verifying update of pointers.  Does not 
 826   // have any side effects.
 827   class VerifyUpdateClosure: public ParMarkBitMapClosure {
 828     const MutableSpace* _space; // Is this ever used?
 829 
 830    public:
 831     VerifyUpdateClosure(ParCompactionManager* cm, const MutableSpace* sp) :
 832       ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), _space(sp)
 833     { }
 834 
 835     virtual IterationStatus do_addr(HeapWord* addr, size_t words);
 836 
 837     const MutableSpace* space() { return _space; }
 838   };
 839 
 840   // Closure for updating objects altered for debug checking
 841   class ResetObjectsClosure: public ParMarkBitMapClosure {
 842    public:
 843     ResetObjectsClosure(ParCompactionManager* cm):
 844       ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm)
 845     { }
 846 
 847     virtual IterationStatus do_addr(HeapWord* addr, size_t words);
 848   };
 849 
 850   friend class KeepAliveClosure;
 851   friend class FollowStackClosure;
 852   friend class AdjustPointerClosure;
 853   friend class FollowRootClosure;
 854   friend class instanceKlassKlass;
 855   friend class RefProcTaskProxy;
 856 
 857  private:
 858   static elapsedTimer         _accumulated_time;
 859   static unsigned int         _total_invocations;
 860   static unsigned int         _maximum_compaction_gc_num;
 861   static jlong                _time_of_last_gc;   // ms
 862   static CollectorCounters*   _counters;
 863   static ParMarkBitMap        _mark_bitmap;
 864   static ParallelCompactData  _summary_data;
 865   static IsAliveClosure       _is_alive_closure;
 866   static SpaceInfo            _space_info[last_space_id];
 867   static bool                 _print_phases;
 868   static AdjustPointerClosure _adjust_root_pointer_closure;
 869   static AdjustPointerClosure _adjust_pointer_closure;
 870 
 871   // Reference processing (used in ...follow_contents)
 872   static ReferenceProcessor*  _ref_processor;
 873 
 874   // Updated location of intArrayKlassObj.
 875   static klassOop _updated_int_array_klass_obj;
 876 
 877   // Values computed at initialization and used by dead_wood_limiter().
 878   static double _dwl_mean;
 879   static double _dwl_std_dev;
 880   static double _dwl_first_term;
 881   static double _dwl_adjustment;
 882 #ifdef  ASSERT
 883   static bool   _dwl_initialized;
 884 #endif  // #ifdef ASSERT
 885 
 886  private:
 887   // Closure accessors
 888   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
 889   static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
 890   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
 891 
 892   static void initialize_space_info();
 893 
 894   // Return true if details about individual phases should be printed.
 895   static inline bool print_phases();
 896 
 897   // Clear the marking bitmap and summary data that cover the specified space.
 898   static void clear_data_covering_space(SpaceId id);
 899 
 900   static void pre_compact(PreGCValues* pre_gc_values);
 901   static void post_compact();
 902 
 903   // Mark live objects
 904   static void marking_phase(ParCompactionManager* cm,
 905                             bool maximum_heap_compaction);
 906   static void follow_stack(ParCompactionManager* cm);
 907   static void follow_weak_klass_links(ParCompactionManager* cm);
 908 
 909   template <class T> static inline void adjust_pointer(T* p, bool is_root);
 910   static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
 911 
 912   template <class T>
 913   static inline void follow_root(ParCompactionManager* cm, T* p);
 914 
 915   // Compute the dense prefix for the designated space.  This is an experimental
 916   // implementation currently not used in production.
 917   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
 918                                                     bool maximum_compaction);
 919 
 920   // Methods used to compute the dense prefix.
 921 
 922   // Compute the value of the normal distribution at x = density.  The mean and
 923   // standard deviation are values saved by initialize_dead_wood_limiter().
 924   static inline double normal_distribution(double density);
 925 
 926   // Initialize the static vars used by dead_wood_limiter().
 927   static void initialize_dead_wood_limiter();
 928 
 929   // Return the percentage of space that can be treated as "dead wood" (i.e.,
 930   // not reclaimed).
 931   static double dead_wood_limiter(double density, size_t min_percent);
 932 
 933   // Find the first (left-most) region in the range [beg, end) that has at least
 934   // dead_words of dead space to the left.  The argument beg must be the first
 935   // region in the space that is not completely live.
 936   static RegionData* dead_wood_limit_region(const RegionData* beg,
 937                                             const RegionData* end,
 938                                             size_t dead_words);
 939 
 940   // Return a pointer to the first region in the range [beg, end) that is not
 941   // completely full.
 942   static RegionData* first_dead_space_region(const RegionData* beg,
 943                                              const RegionData* end);
 944 
 945   // Return a value indicating the benefit or 'yield' if the compacted region
 946   // were to start (or equivalently if the dense prefix were to end) at the
 947   // candidate region.  Higher values are better.
 948   //
 949   // The value is based on the amount of space reclaimed vs. the costs of (a)
 950   // updating references in the dense prefix plus (b) copying objects and
 951   // updating references in the compacted region.
 952   static inline double reclaimed_ratio(const RegionData* const candidate,
 953                                        HeapWord* const bottom,
 954                                        HeapWord* const top,
 955                                        HeapWord* const new_top);
 956 
 957   // Compute the dense prefix for the designated space.
 958   static HeapWord* compute_dense_prefix(const SpaceId id,
 959                                         bool maximum_compaction);
 960 
 961   // Return true if dead space crosses onto the specified Region; bit must be
 962   // the bit index corresponding to the first word of the Region.
 963   static inline bool dead_space_crosses_boundary(const RegionData* region,
 964                                                  idx_t bit);
 965 
 966   // Summary phase utility routine to fill dead space (if any) at the dense
 967   // prefix boundary.  Should only be called if the the dense prefix is
 968   // non-empty.
 969   static void fill_dense_prefix_end(SpaceId id);
 970 
 971   // Clear the summary data source_region field for the specified addresses.
 972   static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
 973 
 974 #ifndef PRODUCT
 975   // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
 976 
 977   // Fill the region [start, start + words) with live object(s).  Only usable
 978   // for the old and permanent generations.
 979   static void fill_with_live_objects(SpaceId id, HeapWord* const start,
 980                                      size_t words);
 981   // Include the new objects in the summary data.
 982   static void summarize_new_objects(SpaceId id, HeapWord* start);
 983 
 984   // Add live objects to a survivor space since it's rare that both survivors
 985   // are non-empty.
 986   static void provoke_split_fill_survivor(SpaceId id);
 987 
 988   // Add live objects and/or choose the dense prefix to provoke splitting.
 989   static void provoke_split(bool & maximum_compaction);
 990 #endif
 991 
 992   static void summarize_spaces_quick();
 993   static void summarize_space(SpaceId id, bool maximum_compaction);
 994   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
 995 
 996   // Adjust addresses in roots.  Does not adjust addresses in heap.
 997   static void adjust_roots();
 998 
 999   // Serial code executed in preparation for the compaction phase.
1000   static void compact_prologue();
1001 
1002   // Move objects to new locations.
1003   static void compact_perm(ParCompactionManager* cm);
1004   static void compact();
1005 
1006   // Add available regions to the stack and draining tasks to the task queue.
1007   static void enqueue_region_draining_tasks(GCTaskQueue* q,
1008                                             uint parallel_gc_threads);
1009 
1010   // Add dense prefix update tasks to the task queue.
1011   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
1012                                          uint parallel_gc_threads);
1013 
1014   // Add region stealing tasks to the task queue.
1015   static void enqueue_region_stealing_tasks(
1016                                        GCTaskQueue* q,
1017                                        ParallelTaskTerminator* terminator_ptr,
1018                                        uint parallel_gc_threads);
1019 
1020   // For debugging only - compacts the old gen serially
1021   static void compact_serial(ParCompactionManager* cm);
1022 
1023   // If objects are left in eden after a collection, try to move the boundary
1024   // and absorb them into the old gen.  Returns true if eden was emptied.
1025   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1026                                          PSYoungGen* young_gen,
1027                                          PSOldGen* old_gen);
1028 
1029   // Reset time since last full gc
1030   static void reset_millis_since_last_gc();
1031 
1032  protected:
1033 #ifdef VALIDATE_MARK_SWEEP
1034   static GrowableArray<void*>*           _root_refs_stack;
1035   static GrowableArray<oop> *            _live_oops;
1036   static GrowableArray<oop> *            _live_oops_moved_to;
1037   static GrowableArray<size_t>*          _live_oops_size;
1038   static size_t                          _live_oops_index;
1039   static size_t                          _live_oops_index_at_perm;
1040   static GrowableArray<void*>*           _other_refs_stack;
1041   static GrowableArray<void*>*           _adjusted_pointers;
1042   static bool                            _pointer_tracking;
1043   static bool                            _root_tracking;
1044 
1045   // The following arrays are saved since the time of the last GC and
1046   // assist in tracking down problems where someone has done an errant
1047   // store into the heap, usually to an oop that wasn't properly
1048   // handleized across a GC. If we crash or otherwise fail before the
1049   // next GC, we can query these arrays to find out the object we had
1050   // intended to do the store to (assuming it is still alive) and the
1051   // offset within that object. Covered under RecordMarkSweepCompaction.
1052   static GrowableArray<HeapWord*> *      _cur_gc_live_oops;
1053   static GrowableArray<HeapWord*> *      _cur_gc_live_oops_moved_to;
1054   static GrowableArray<size_t>*          _cur_gc_live_oops_size;
1055   static GrowableArray<HeapWord*> *      _last_gc_live_oops;
1056   static GrowableArray<HeapWord*> *      _last_gc_live_oops_moved_to;
1057   static GrowableArray<size_t>*          _last_gc_live_oops_size;
1058 #endif
1059 
1060  public:
1061   class MarkAndPushClosure: public OopClosure {
1062    private:
1063     ParCompactionManager* _compaction_manager;
1064    public:
1065     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
1066     virtual void do_oop(oop* p);
1067     virtual void do_oop(narrowOop* p);
1068     virtual const bool do_nmethods() const { return true; }
1069   };
1070 
1071   PSParallelCompact();
1072 
1073   // Convenient accessor for Universe::heap().
1074   static ParallelScavengeHeap* gc_heap() {
1075     return (ParallelScavengeHeap*)Universe::heap();
1076   }
1077 
1078   static void invoke(bool maximum_heap_compaction);
1079   static void invoke_no_policy(bool maximum_heap_compaction);
1080 
1081   static void post_initialize();
1082   // Perform initialization for PSParallelCompact that requires
1083   // allocations.  This should be called during the VM initialization
1084   // at a pointer where it would be appropriate to return a JNI_ENOMEM
1085   // in the event of a failure.
1086   static bool initialize();
1087 
1088   // Public accessors
1089   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
1090   static unsigned int total_invocations() { return _total_invocations; }
1091   static CollectorCounters* counters()    { return _counters; }
1092 
1093   // Used to add tasks
1094   static GCTaskManager* const gc_task_manager();
1095   static klassOop updated_int_array_klass_obj() { 
1096     return _updated_int_array_klass_obj; 
1097   }
1098   
1099   // Marking support
1100   static inline bool mark_obj(oop obj);
1101   // Check mark and maybe push on marking stack
1102   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
1103                                                       T* p);
1104 
1105   // Compaction support.
1106   // Return true if p is in the range [beg_addr, end_addr).
1107   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
1108   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
1109 
1110   // Convenience wrappers for per-space data kept in _space_info.
1111   static inline MutableSpace*     space(SpaceId space_id);
1112   static inline HeapWord*         new_top(SpaceId space_id);
1113   static inline HeapWord*         dense_prefix(SpaceId space_id);
1114   static inline ObjectStartArray* start_array(SpaceId space_id);
1115 
1116   // Return true if the klass should be updated.
1117   static inline bool should_update_klass(klassOop k); 
1118 
1119   // Move and update the live objects in the specified space.
1120   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
1121 
1122   // Process the end of the given region range in the dense prefix.
1123   // This includes saving any object not updated.
1124   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
1125                                             size_t region_start_index,
1126                                             size_t region_end_index,
1127                                             idx_t exiting_object_offset,
1128                                             idx_t region_offset_start,
1129                                             idx_t region_offset_end);
1130 
1131   // Update a region in the dense prefix.  For each live object
1132   // in the region, update it's interior references.  For each
1133   // dead object, fill it with deadwood. Dead space at the end
1134   // of a region range will be filled to the start of the next
1135   // live object regardless of the region_index_end.  None of the
1136   // objects in the dense prefix move and dead space is dead
1137   // (holds only dead objects that don't need any processing), so
1138   // dead space can be filled in any order.
1139   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
1140                                                   SpaceId space_id,
1141                                                   size_t region_index_start,
1142                                                   size_t region_index_end);
1143 
1144   // Return the address of the count + 1st live word in the range [beg, end).
1145   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
1146 
1147   // Return the address of the word to be copied to dest_addr, which must be
1148   // aligned to a region boundary.
1149   static HeapWord* first_src_addr(HeapWord* const dest_addr,
1150                                   SpaceId src_space_id,
1151                                   size_t src_region_idx);
1152 
1153   // Determine the next source region, set closure.source() to the start of the
1154   // new region return the region index.  Parameter end_addr is the address one
1155   // beyond the end of source range just processed.  If necessary, switch to a
1156   // new source space and set src_space_id (in-out parameter) and src_space_top
1157   // (out parameter) accordingly.
1158   static size_t next_src_region(MoveAndUpdateClosure& closure,
1159                                 SpaceId& src_space_id,
1160                                 HeapWord*& src_space_top,
1161                                 HeapWord* end_addr);
1162 
1163   // Decrement the destination count for each non-empty source region in the
1164   // range [beg_region, region(region_align_up(end_addr))).  If the destination
1165   // count for a region goes to 0 and it needs to be filled, enqueue it.
1166   static void decrement_destination_counts(ParCompactionManager* cm,
1167                                            SpaceId src_space_id,
1168                                            size_t beg_region,
1169                                            HeapWord* end_addr);
1170 
1171   // Fill a region, copying objects from one or more source regions.
1172   static void fill_region(ParCompactionManager* cm, size_t region_idx);
1173   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
1174     fill_region(cm, region);
1175   }
1176 
1177   // Update the deferred objects in the space.
1178   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
1179 
1180   // Mark pointer and follow contents.
1181   template <class T>
1182   static inline void mark_and_follow(ParCompactionManager* cm, T* p);
1183 
1184   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
1185   static ParallelCompactData& summary_data() { return _summary_data; }
1186 
1187   static inline void adjust_pointer(oop* p)       { adjust_pointer(p, false); }
1188   static inline void adjust_pointer(narrowOop* p) { adjust_pointer(p, false); }
1189 
1190   template <class T>
1191   static inline void adjust_pointer(T* p,
1192                                     HeapWord* beg_addr,
1193                                     HeapWord* end_addr);
1194 
1195   // Reference Processing
1196   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
1197 
1198   // Return the SpaceId for the given address.
1199   static SpaceId space_id(HeapWord* addr);
1200 
1201   // Time since last full gc (in milliseconds).
1202   static jlong millis_since_last_gc();
1203 
1204 #ifdef VALIDATE_MARK_SWEEP
1205   static void track_adjusted_pointer(void* p, bool isroot);
1206   static void check_adjust_pointer(void* p);
1207   static void track_interior_pointers(oop obj);
1208   static void check_interior_pointers();
1209 
1210   static void reset_live_oop_tracking(bool at_perm);
1211   static void register_live_oop(oop p, size_t size);
1212   static void validate_live_oop(oop p, size_t size);
1213   static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
1214   static void compaction_complete();
1215 
1216   // Querying operation of RecordMarkSweepCompaction results.
1217   // Finds and prints the current base oop and offset for a word
1218   // within an oop that was live during the last GC. Helpful for
1219   // tracking down heap stomps.
1220   static void print_new_location_of_heap_address(HeapWord* q);
1221 #endif  // #ifdef VALIDATE_MARK_SWEEP
1222 
1223   // Call backs for class unloading
1224   // Update subklass/sibling/implementor links at end of marking.
1225   static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k); 
1226 
1227 #ifndef PRODUCT
1228   // Debugging support.
1229   static const char* space_names[last_space_id];
1230   static void print_region_ranges();
1231   static void print_dense_prefix_stats(const char* const algorithm,
1232                                        const SpaceId id,
1233                                        const bool maximum_compaction,
1234                                        HeapWord* const addr);
1235   static void summary_phase_msg(SpaceId dst_space_id,
1236                                 HeapWord* dst_beg, HeapWord* dst_end,
1237                                 SpaceId src_space_id,
1238                                 HeapWord* src_beg, HeapWord* src_end);
1239 #endif  // #ifndef PRODUCT
1240 
1241 #ifdef  ASSERT
1242   // Sanity check the new location of a word in the heap.
1243   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
1244   // Verify that all the regions have been emptied.
1245   static void verify_complete(SpaceId space_id);
1246 #endif  // #ifdef ASSERT
1247 };
1248 
1249 inline bool PSParallelCompact::mark_obj(oop obj) {
1250   const int obj_size = obj->size();
1251   if (mark_bitmap()->mark_obj(obj, obj_size)) {
1252     _summary_data.add_obj(obj, obj_size);
1253     return true;
1254   } else {
1255     return false;
1256   }
1257 }
1258 
1259 template <class T>
1260 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
1261   assert(!Universe::heap()->is_in_reserved(p),
1262          "roots shouldn't be things within the heap");
1263 #ifdef VALIDATE_MARK_SWEEP
1264   if (ValidateMarkSweep) {
1265     guarantee(!_root_refs_stack->contains(p), "should only be in here once");
1266     _root_refs_stack->push(p);
1267   }
1268 #endif
1269   T heap_oop = oopDesc::load_heap_oop(p);
1270   if (!oopDesc::is_null(heap_oop)) {
1271     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1272     if (mark_bitmap()->is_unmarked(obj)) {
1273       if (mark_obj(obj)) {
1274         obj->follow_contents(cm);
1275       }
1276     }
1277   }
1278   follow_stack(cm);
1279 }
1280 
1281 template <class T>
1282 inline void PSParallelCompact::mark_and_follow(ParCompactionManager* cm,
1283                                                T* p) {
1284   T heap_oop = oopDesc::load_heap_oop(p);
1285   if (!oopDesc::is_null(heap_oop)) {
1286     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1287     if (mark_bitmap()->is_unmarked(obj)) {
1288       if (mark_obj(obj)) {
1289         obj->follow_contents(cm);
1290       }
1291     }
1292   }
1293 }
1294 
1295 template <class T>
1296 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
1297   T heap_oop = oopDesc::load_heap_oop(p);
1298   if (!oopDesc::is_null(heap_oop)) {
1299     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1300     if (mark_bitmap()->is_unmarked(obj)) {
1301       if (mark_obj(obj)) {
1302         // This thread marked the object and owns the subsequent processing of it.
1303         cm->save_for_scanning(obj);
1304       }
1305     }
1306   }
1307 }
1308 
1309 template <class T>
1310 inline void PSParallelCompact::adjust_pointer(T* p, bool isroot) {
1311   T heap_oop = oopDesc::load_heap_oop(p);
1312   if (!oopDesc::is_null(heap_oop)) {
1313     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
1314     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
1315     assert(new_obj != NULL ||                     // is forwarding ptr?
1316            obj->is_shared(),                      // never forwarded?
1317            "should be forwarded");
1318     // Just always do the update unconditionally?
1319     if (new_obj != NULL) {
1320       assert(Universe::heap()->is_in_reserved(new_obj),
1321              "should be in object space");
1322       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
1323     }
1324   }
1325   VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, isroot));
1326 }
1327 
1328 template <class T>
1329 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
1330 #ifdef VALIDATE_MARK_SWEEP
1331   if (ValidateMarkSweep) {
1332     if (!Universe::heap()->is_in_reserved(p)) {
1333       _root_refs_stack->push(p);
1334     } else {
1335       _other_refs_stack->push(p);
1336     }
1337   }
1338 #endif
1339   mark_and_push(_compaction_manager, p);
1340 }
1341 
1342 inline bool PSParallelCompact::print_phases() {
1343   return _print_phases;
1344 }
1345 
1346 inline double PSParallelCompact::normal_distribution(double density) {
1347   assert(_dwl_initialized, "uninitialized");
1348   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
1349   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
1350 }
1351 
1352 inline bool
1353 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
1354                                                idx_t bit)
1355 {
1356   assert(bit > 0, "cannot call this for the first bit/region");
1357   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
1358          "sanity check");
1359 
1360   // Dead space crosses the boundary if (1) a partial object does not extend
1361   // onto the region, (2) an object does not start at the beginning of the
1362   // region, and (3) an object does not end at the end of the prior region.
1363   return region->partial_obj_size() == 0 &&
1364     !_mark_bitmap.is_obj_beg(bit) &&
1365     !_mark_bitmap.is_obj_end(bit - 1);
1366 }
1367 
1368 inline bool
1369 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
1370   return p >= beg_addr && p < end_addr;
1371 }
1372 
1373 inline bool
1374 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
1375   return is_in((HeapWord*)p, beg_addr, end_addr);
1376 }
1377 
1378 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
1379   assert(id < last_space_id, "id out of range");
1380   return _space_info[id].space();
1381 }
1382 
1383 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
1384   assert(id < last_space_id, "id out of range");
1385   return _space_info[id].new_top();
1386 }
1387 
1388 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
1389   assert(id < last_space_id, "id out of range");
1390   return _space_info[id].dense_prefix();
1391 }
1392 
1393 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
1394   assert(id < last_space_id, "id out of range");
1395   return _space_info[id].start_array();
1396 }
1397 
1398 inline bool PSParallelCompact::should_update_klass(klassOop k) {
1399   return ((HeapWord*) k) >= dense_prefix(perm_space_id);
1400 }
1401 
1402 template <class T>
1403 inline void PSParallelCompact::adjust_pointer(T* p,
1404                                               HeapWord* beg_addr,
1405                                               HeapWord* end_addr) {
1406   if (is_in((HeapWord*)p, beg_addr, end_addr)) {
1407     adjust_pointer(p);
1408   }
1409 }
1410 
1411 #ifdef ASSERT
1412 inline void
1413 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
1414 {
1415   assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
1416          "must move left or to a different space");
1417 }
1418 #endif // ASSERT
1419 
1420 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
1421  public:
1422   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1423                               ObjectStartArray* start_array,
1424                               HeapWord* destination, size_t words);
1425 
1426   // Accessors.
1427   HeapWord* destination() const         { return _destination; }
1428 
1429   // If the object will fit (size <= words_remaining()), copy it to the current
1430   // destination, update the interior oops and the start array and return either
1431   // full (if the closure is full) or incomplete.  If the object will not fit,
1432   // return would_overflow.
1433   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1434 
1435   // Copy enough words to fill this closure, starting at source().  Interior
1436   // oops and the start array are not updated.  Return full.
1437   IterationStatus copy_until_full();
1438 
1439   // Copy enough words to fill this closure or to the end of an object,
1440   // whichever is smaller, starting at source().  Interior oops and the start
1441   // array are not updated.
1442   void copy_partial_obj();
1443 
1444  protected:
1445   // Update variables to indicate that word_count words were processed.
1446   inline void update_state(size_t word_count);
1447 
1448  protected:
1449   ObjectStartArray* const _start_array;
1450   HeapWord*               _destination;         // Next addr to be written.
1451 };
1452 
1453 inline
1454 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
1455                                            ParCompactionManager* cm,
1456                                            ObjectStartArray* start_array,
1457                                            HeapWord* destination,
1458                                            size_t words) :
1459   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
1460 {
1461   _destination = destination;
1462 }
1463 
1464 inline void MoveAndUpdateClosure::update_state(size_t words)
1465 {
1466   decrement_words_remaining(words);
1467   _source += words;
1468   _destination += words;
1469 }
1470 
1471 class UpdateOnlyClosure: public ParMarkBitMapClosure {
1472  private:
1473   const PSParallelCompact::SpaceId _space_id;
1474   ObjectStartArray* const          _start_array;
1475 
1476  public:
1477   UpdateOnlyClosure(ParMarkBitMap* mbm, 
1478                     ParCompactionManager* cm,
1479                     PSParallelCompact::SpaceId space_id);
1480 
1481   // Update the object.
1482   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
1483 
1484   inline void do_addr(HeapWord* addr);
1485 };
1486 
1487 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
1488 {
1489   _start_array->allocate_block(addr);
1490   oop(addr)->update_contents(compaction_manager());
1491 }
1492 
1493 class FillClosure: public ParMarkBitMapClosure
1494 {
1495 public:
1496   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
1497     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
1498     _start_array(PSParallelCompact::start_array(space_id))
1499   {
1500     assert(space_id == PSParallelCompact::perm_space_id ||
1501            space_id == PSParallelCompact::old_space_id,
1502            "cannot use FillClosure in the young gen");
1503   }
1504 
1505   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
1506     CollectedHeap::fill_with_objects(addr, size);
1507     HeapWord* const end = addr + size;
1508     do {
1509       _start_array->allocate_block(addr);
1510       addr += oop(addr)->size();
1511     } while (addr < end);
1512     return ParMarkBitMap::incomplete;
1513   }
1514 
1515 private:
1516   ObjectStartArray* const _start_array;
1517 };