1 #ifdef USE_PRAGMA_IDENT_HDR
   2 #pragma ident "@(#)collectedHeap.hpp    1.58 07/09/07 10:56:50 JVM"
   3 #endif
   4 /*
   5  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  29 // is an abstract class: there may be many different kinds of heaps.  This
  30 // class defines the functions that a heap must implement, and contains
  31 // infrastructure common to all heaps.
  32 
  33 class BarrierSet;
  34 class ThreadClosure;
  35 class AdaptiveSizePolicy;
  36 class Thread;
  37 
  38 //
  39 // CollectedHeap
  40 //   SharedHeap
  41 //     GenCollectedHeap
  42 //     G1CollectedHeap
  43 //   ParallelScavengeHeap
  44 //
  45 class CollectedHeap : public CHeapObj {
  46   friend class VMStructs;
  47   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  48 
  49 #ifdef ASSERT
  50   static int       _fire_out_of_memory_count;
  51 #endif
  52 
  53   // Used for filler objects (static, but initialized in ctor).
  54   static size_t _filler_array_max_size;
  55 
  56  protected:
  57   MemRegion _reserved;
  58   BarrierSet* _barrier_set;
  59   bool _is_gc_active;
  60   unsigned int _total_collections;          // ... started
  61   unsigned int _total_full_collections;     // ... started
  62   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
  63   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
  64 
  65   // Reason for current garbage collection.  Should be set to
  66   // a value reflecting no collection between collections.
  67   GCCause::Cause _gc_cause;
  68   GCCause::Cause _gc_lastcause;
  69   PerfStringVariable* _perf_gc_cause;
  70   PerfStringVariable* _perf_gc_lastcause;
  71 
  72   // Constructor
  73   CollectedHeap();
  74 
  75   // Create a new tlab
  76   virtual HeapWord* allocate_new_tlab(size_t size);
  77 
  78   // Fix up tlabs to make the heap well-formed again,
  79   // optionally retiring the tlabs.
  80   virtual void fill_all_tlabs(bool retire);
  81 
  82   // Accumulate statistics on all tlabs.
  83   virtual void accumulate_statistics_all_tlabs();
  84 
  85   // Reinitialize tlabs before resuming mutators.
  86   virtual void resize_all_tlabs();
  87 
  88   debug_only(static void check_for_valid_allocation_state();)
  89 
  90  protected:
  91   // Allocate from the current thread's TLAB, with broken-out slow path.
  92   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
  93   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
  94 
  95   // Allocate an uninitialized block of the given size, or returns NULL if
  96   // this is impossible.
  97   inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS);
  98 
  99   // Like allocate_init, but the block returned by a successful allocation
 100   // is guaranteed initialized to zeros.
 101   inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS);
 102 
 103   // Same as common_mem version, except memory is allocated in the permanent area
 104   // If there is no permanent area, revert to common_mem_allocate_noinit
 105   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
 106 
 107   // Same as common_mem version, except memory is allocated in the permanent area
 108   // If there is no permanent area, revert to common_mem_allocate_init
 109   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
 110 
 111   // Helper functions for (VM) allocation.
 112   inline static void post_allocation_setup_common(KlassHandle klass,
 113                                                   HeapWord* obj, size_t size); 
 114   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
 115                                                             HeapWord* objPtr,
 116                                                             size_t size);
 117 
 118   inline static void post_allocation_setup_obj(KlassHandle klass,
 119                                                HeapWord* obj, size_t size);
 120 
 121   inline static void post_allocation_setup_array(KlassHandle klass,
 122                                                  HeapWord* obj, size_t size,
 123                                                  int length);
 124 
 125   // Clears an allocated object.
 126   inline static void init_obj(HeapWord* obj, size_t size);
 127 
 128   // Filler object utilities.
 129   static inline size_t filler_array_hdr_size();
 130   static inline size_t filler_array_min_size();
 131   static inline size_t filler_array_max_size();
 132 
 133   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 134   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words);)
 135 
 136   // Fill with a single array; caller must ensure filler_array_min_size() <=
 137   // words <= filler_array_max_size().
 138   static inline void fill_with_array(HeapWord* start, size_t words);
 139 
 140   // Fill with a single object (either an int array or a java.lang.Object).
 141   static inline void fill_with_object_impl(HeapWord* start, size_t words);
 142 
 143   // Verification functions
 144   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 145     PRODUCT_RETURN;
 146   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 147     PRODUCT_RETURN;
 148 
 149  public:
 150   enum Name {
 151     Abstract,
 152     SharedHeap,
 153     GenCollectedHeap,
 154     ParallelScavengeHeap,
 155     G1CollectedHeap
 156   };
 157 
 158   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
 159 
 160   /**
 161    * Returns JNI error code JNI_ENOMEM if memory could not be allocated, 
 162    * and JNI_OK on success.
 163    */
 164   virtual jint initialize() = 0;
 165 
 166   // In many heaps, there will be a need to perform some initialization activities
 167   // after the Universe is fully formed, but before general heap allocation is allowed.
 168   // This is the correct place to place such initialization methods.
 169   virtual void post_initialize() = 0;
 170 
 171   MemRegion reserved_region() const { return _reserved; }
 172   address base() const { return (address)reserved_region().start(); }
 173 
 174   // Future cleanup here. The following functions should specify bytes or
 175   // heapwords as part of their signature.
 176   virtual size_t capacity() const = 0;
 177   virtual size_t used() const = 0;
 178 
 179   // Return "true" if the part of the heap that allocates Java
 180   // objects has reached the maximal committed limit that it can
 181   // reach, without a garbage collection.
 182   virtual bool is_maximal_no_gc() const = 0;
 183   
 184   virtual size_t permanent_capacity() const = 0;
 185   virtual size_t permanent_used() const = 0;
 186 
 187   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 188   // memory that the vm could make available for storing 'normal' java objects.
 189   // This is based on the reserved address space, but should not include space
 190   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
 191   // perm gen space or, in the case of the young gen, one of the survivor
 192   // spaces).
 193   virtual size_t max_capacity() const = 0;
 194 
 195   // Returns "TRUE" if "p" points into the reserved area of the heap.
 196   bool is_in_reserved(const void* p) const {
 197     return _reserved.contains(p);
 198   }
 199 
 200   bool is_in_reserved_or_null(const void* p) const {
 201     return p == NULL || is_in_reserved(p);
 202   }
 203 
 204   // Returns "TRUE" if "p" points to the head of an allocated object in the
 205   // heap. Since this method can be expensive in general, we restrict its
 206   // use to assertion checking only.
 207   virtual bool is_in(const void* p) const = 0;
 208 
 209   bool is_in_or_null(const void* p) const {
 210     return p == NULL || is_in(p);
 211   }
 212 
 213   // Let's define some terms: a "closed" subset of a heap is one that
 214   // 
 215   // 1) contains all currently-allocated objects, and
 216   // 
 217   // 2) is closed under reference: no object in the closed subset
 218   //    references one outside the closed subset.
 219   //
 220   // Membership in a heap's closed subset is useful for assertions.
 221   // Clearly, the entire heap is a closed subset, so the default
 222   // implementation is to use "is_in_reserved".  But this may not be too
 223   // liberal to perform useful checking.  Also, the "is_in" predicate
 224   // defines a closed subset, but may be too expensive, since "is_in"
 225   // verifies that its argument points to an object head.  The
 226   // "closed_subset" method allows a heap to define an intermediate
 227   // predicate, allowing more precise checking than "is_in_reserved" at
 228   // lower cost than "is_in."
 229 
 230   // One important case is a heap composed of disjoint contiguous spaces,
 231   // such as the Garbage-First collector.  Such heaps have a convenient
 232   // closed subset consisting of the allocated portions of those
 233   // contiguous spaces.
 234 
 235   // Return "TRUE" iff the given pointer points into the heap's defined
 236   // closed subset (which defaults to the entire heap).
 237   virtual bool is_in_closed_subset(const void* p) const {
 238     return is_in_reserved(p);
 239   }
 240 
 241   bool is_in_closed_subset_or_null(const void* p) const {
 242     return p == NULL || is_in_closed_subset(p);
 243   }
 244 
 245   // Returns "TRUE" if "p" is allocated as "permanent" data.
 246   // If the heap does not use "permanent" data, returns the same
 247   // value is_in_reserved() would return.
 248   // NOTE: this actually returns true if "p" is in reserved space
 249   // for the space not that it is actually allocated (i.e. in committed
 250   // space). If you need the more conservative answer use is_permanent().
 251   virtual bool is_in_permanent(const void *p) const = 0;
 252 
 253   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
 254   // If the heap does not use "permanent" data, returns the same
 255   // value is_in() would return.
 256   virtual bool is_permanent(const void *p) const = 0;
 257 
 258   bool is_in_permanent_or_null(const void *p) const {
 259     return p == NULL || is_in_permanent(p);
 260   }
 261 
 262   // Returns "TRUE" if "p" is a method oop in the
 263   // current heap, with high probability. This predicate
 264   // is not stable, in general.
 265   bool is_valid_method(oop p) const;
 266 
 267   void set_gc_cause(GCCause::Cause v) {
 268      if (UsePerfData) {
 269        _gc_lastcause = _gc_cause;
 270        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 271        _perf_gc_cause->set_value(GCCause::to_string(v));
 272      }
 273     _gc_cause = v;
 274   }
 275   GCCause::Cause gc_cause() { return _gc_cause; }
 276 
 277   // Preload classes into the shared portion of the heap, and then dump
 278   // that data to a file so that it can be loaded directly by another
 279   // VM (then terminate).
 280   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
 281 
 282   // General obj/array allocation facilities.
 283   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
 284   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
 285   inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS);
 286 
 287   // Special obj/array allocation facilities.
 288   // Some heaps may want to manage "permanent" data uniquely. These default
 289   // to the general routines if the heap does not support such handling.
 290   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
 291   // permanent_obj_allocate_no_klass_install() does not do the installation of 
 292   // the klass pointer in the newly created object (as permanent_obj_allocate() 
 293   // above does).  This allows for a delay in the installation of the klass
 294   // pointer that is needed during the create of klassKlass's.  The
 295   // method post_allocation_install_obj_klass() is used to install the
 296   // klass pointer.
 297   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
 298                                                             int size, 
 299                                                             TRAPS);
 300   inline static void post_allocation_install_obj_klass(KlassHandle klass, 
 301                                                        oop obj,
 302                                                        int size);
 303   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
 304 
 305   // Raw memory allocation facilities
 306   // The obj and array allocate methods are covers for these methods.
 307   // The permanent allocation method should default to mem_allocate if
 308   // permanent memory isn't supported.
 309   virtual HeapWord* mem_allocate(size_t size, 
 310                                  bool is_noref, 
 311                                  bool is_tlab, 
 312                                  bool* gc_overhead_limit_was_exceeded) = 0;
 313   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
 314 
 315   // The boundary between a "large" and "small" array of primitives, in words.
 316   virtual size_t large_typearray_limit() = 0;
 317 
 318   // Utilities for turning raw memory into filler objects.
 319   //
 320   // min_fill_size() is the smallest region that can be filled.
 321   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 322   // multiple objects.  fill_with_object() is for regions known to be smaller
 323   // than the largest array of integers; it uses a single object to fill the
 324   // region and has slightly less overhead.
 325   static size_t min_fill_size() {
 326     return size_t(align_object_size(oopDesc::header_size()));
 327   }
 328 
 329   static void fill_with_objects(HeapWord* start, size_t words);
 330 
 331   static void fill_with_object(HeapWord* start, size_t words);
 332   static void fill_with_object(MemRegion region) {
 333     fill_with_object(region.start(), region.word_size());
 334   }
 335   static void fill_with_object(HeapWord* start, HeapWord* end) {
 336     fill_with_object(start, pointer_delta(end, start));
 337   }
 338 
 339   // Some heaps may offer a contiguous region for shared non-blocking
 340   // allocation, via inlined code (by exporting the address of the top and
 341   // end fields defining the extent of the contiguous allocation region.)
 342 
 343   // This function returns "true" iff the heap supports this kind of
 344   // allocation.  (Default is "no".)
 345   virtual bool supports_inline_contig_alloc() const {
 346     return false;
 347   }
 348   // These functions return the addresses of the fields that define the
 349   // boundaries of the contiguous allocation area.  (These fields should be
 350   // physically near to one another.)
 351   virtual HeapWord** top_addr() const {
 352     guarantee(false, "inline contiguous allocation not supported");
 353     return NULL;
 354   }
 355   virtual HeapWord** end_addr() const {
 356     guarantee(false, "inline contiguous allocation not supported");
 357     return NULL;
 358   }
 359 
 360   // Some heaps may be in an unparseable state at certain times between
 361   // collections. This may be necessary for efficient implementation of
 362   // certain allocation-related activities. Calling this function before
 363   // attempting to parse a heap ensures that the heap is in a parsable
 364   // state (provided other concurrent activity does not introduce
 365   // unparsability). It is normally expected, therefore, that this
 366   // method is invoked with the world stopped.
 367   // NOTE: if you override this method, make sure you call
 368   // super::ensure_parsability so that the non-generational
 369   // part of the work gets done. See implementation of
 370   // CollectedHeap::ensure_parsability and, for instance,
 371   // that of GenCollectedHeap::ensure_parsability().
 372   // The argument "retire_tlabs" controls whether existing TLABs
 373   // are merely filled or also retired, thus preventing further
 374   // allocation from them and necessitating allocation of new TLABs.
 375   virtual void ensure_parsability(bool retire_tlabs);
 376 
 377   // Return an estimate of the maximum allocation that could be performed
 378   // without triggering any collection or expansion activity.  In a
 379   // generational collector, for example, this is probably the largest
 380   // allocation that could be supported (without expansion) in the youngest
 381   // generation.  It is "unsafe" because no locks are taken; the result
 382   // should be treated as an approximation, not a guarantee, for use in
 383   // heuristic resizing decisions.
 384   virtual size_t unsafe_max_alloc() = 0;
 385 
 386   // Section on thread-local allocation buffers (TLABs)
 387   // If the heap supports thread-local allocation buffers, it should override
 388   // the following methods:
 389   // Returns "true" iff the heap supports thread-local allocation buffers.
 390   // The default is "no".  
 391   virtual bool supports_tlab_allocation() const {
 392     return false;
 393   }
 394   // The amount of space available for thread-local allocation buffers.
 395   virtual size_t tlab_capacity(Thread *thr) const {
 396     guarantee(false, "thread-local allocation buffers not supported");
 397     return 0;
 398   }
 399   // An estimate of the maximum allocation that could be performed
 400   // for thread-local allocation buffers without triggering any
 401   // collection or expansion activity.
 402   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 403     guarantee(false, "thread-local allocation buffers not supported");
 404     return 0;
 405   }
 406   // Can a compiler initialize a new object without store barriers?
 407   // This permission only extends from the creation of a new object
 408   // via a TLAB up to the first subsequent safepoint.
 409   virtual bool can_elide_tlab_store_barriers() const = 0;
 410 
 411   // If a compiler is eliding store barriers for TLAB-allocated objects,
 412   // there is probably a corresponding slow path which can produce
 413   // an object allocated anywhere.  The compiler's runtime support
 414   // promises to call this function on such a slow-path-allocated
 415   // object before performing initializations that have elided
 416   // store barriers.  Returns new_obj, or maybe a safer copy thereof.
 417   virtual oop new_store_barrier(oop new_obj);
 418 
 419   // Can a compiler elide a store barrier when it writes
 420   // a permanent oop into the heap?  Applies when the compiler
 421   // is storing x to the heap, where x->is_perm() is true.
 422   virtual bool can_elide_permanent_oop_store_barriers() const = 0;
 423 
 424   // Does this heap support heap inspection (+PrintClassHistogram?)
 425   virtual bool supports_heap_inspection() const = 0;
 426 
 427   // Perform a collection of the heap; intended for use in implementing
 428   // "System.gc".  This probably implies as full a collection as the
 429   // "CollectedHeap" supports.
 430   virtual void collect(GCCause::Cause cause) = 0;
 431 
 432   // This interface assumes that it's being called by the
 433   // vm thread. It collects the heap assuming that the
 434   // heap lock is already held and that we are executing in
 435   // the context of the vm thread.
 436   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
 437 
 438   // Returns the barrier set for this heap
 439   BarrierSet* barrier_set() { return _barrier_set; }
 440 
 441   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 442   // that it should answer "false" for the concurrent part of a concurrent
 443   // collector -- dld).
 444   bool is_gc_active() const { return _is_gc_active; }
 445 
 446   // Total number of GC collections (started)
 447   unsigned int total_collections() const { return _total_collections; }
 448   unsigned int total_full_collections() const { return _total_full_collections;}
 449 
 450   // Increment total number of GC collections (started)
 451   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 452   void increment_total_collections(bool full = false) {
 453     _total_collections++;
 454     if (full) {
 455       increment_total_full_collections();
 456     }
 457   }
 458 
 459   void increment_total_full_collections() { _total_full_collections++; }
 460 
 461   // Return the AdaptiveSizePolicy for the heap.
 462   virtual AdaptiveSizePolicy* size_policy() = 0;
 463 
 464   // Iterate over all the ref-containing fields of all objects, calling
 465   // "cl.do_oop" on each. This includes objects in permanent memory.
 466   virtual void oop_iterate(OopClosure* cl) = 0;
 467 
 468   // Iterate over all objects, calling "cl.do_object" on each.
 469   // This includes objects in permanent memory.
 470   virtual void object_iterate(ObjectClosure* cl) = 0;
 471 
 472   // Behaves the same as oop_iterate, except only traverses
 473   // interior pointers contained in permanent memory. If there
 474   // is no permanent memory, does nothing.
 475   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
 476 
 477   // Behaves the same as object_iterate, except only traverses
 478   // object contained in permanent memory. If there is no
 479   // permanent memory, does nothing.
 480   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
 481 
 482   // NOTE! There is no requirement that a collector implement these
 483   // functions.
 484   //
 485   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 486   // each address in the (reserved) heap is a member of exactly
 487   // one block.  The defining characteristic of a block is that it is
 488   // possible to find its size, and thus to progress forward to the next
 489   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 490   // represent Java objects, or they might be free blocks in a
 491   // free-list-based heap (or subheap), as long as the two kinds are 
 492   // distinguishable and the size of each is determinable.
 493 
 494   // Returns the address of the start of the "block" that contains the
 495   // address "addr".  We say "blocks" instead of "object" since some heaps
 496   // may not pack objects densely; a chunk may either be an object or a
 497   // non-object. 
 498   virtual HeapWord* block_start(const void* addr) const = 0;
 499 
 500   // Requires "addr" to be the start of a chunk, and returns its size.
 501   // "addr + size" is required to be the start of a new chunk, or the end
 502   // of the active area of the heap.
 503   virtual size_t block_size(const HeapWord* addr) const = 0;
 504 
 505   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 506   // the block is an object.
 507   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 508 
 509   // Returns the longest time (in ms) that has elapsed since the last
 510   // time that any part of the heap was examined by a garbage collection.
 511   virtual jlong millis_since_last_gc() = 0;
 512 
 513   // Perform any cleanup actions necessary before allowing a verification.
 514   virtual void prepare_for_verify() = 0;
 515 
 516   virtual void print() const = 0;
 517   virtual void print_on(outputStream* st) const = 0;
 518   
 519   // Print all GC threads (other than the VM thread)
 520   // used by this heap.
 521   virtual void print_gc_threads_on(outputStream* st) const = 0;
 522   void print_gc_threads() { print_gc_threads_on(tty); }
 523   // Iterator for all GC threads (other than VM thread)
 524   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 525 
 526   // Print any relevant tracing info that flags imply.
 527   // Default implementation does nothing.
 528   virtual void print_tracing_info() const = 0;
 529 
 530   // Heap verification
 531   virtual void verify(bool allow_dirty, bool silent) = 0;
 532 
 533   // Non product verification and debugging.
 534 #ifndef PRODUCT
 535   // Support for PromotionFailureALot.  Return true if it's time to cause a
 536   // promotion failure.  The no-argument version uses
 537   // this->_promotion_failure_alot_count as the counter.
 538   inline bool promotion_should_fail(volatile size_t* count);
 539   inline bool promotion_should_fail();
 540 
 541   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 542   // GC in which promotion failure ocurred.
 543   inline void reset_promotion_should_fail(volatile size_t* count);
 544   inline void reset_promotion_should_fail();
 545 #endif  // #ifndef PRODUCT
 546 
 547 #ifdef ASSERT
 548   static int fired_fake_oom() {
 549     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 550   }
 551 #endif
 552 };
 553 
 554 // Class to set and reset the GC cause for a CollectedHeap.
 555 
 556 class GCCauseSetter : StackObj {
 557   CollectedHeap* _heap;
 558   GCCause::Cause _previous_cause;
 559  public:
 560   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 561     assert(SafepointSynchronize::is_at_safepoint(),
 562            "This method manipulates heap state without locking");
 563     _heap = heap;
 564     _previous_cause = _heap->gc_cause();
 565     _heap->set_gc_cause(cause);
 566   }
 567 
 568   ~GCCauseSetter() {
 569     assert(SafepointSynchronize::is_at_safepoint(),
 570           "This method manipulates heap state without locking");
 571     _heap->set_gc_cause(_previous_cause);
 572   }
 573 };