1 /*
   2  * Copyright 2002-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 
  26 // no precompiled headers
  27 #include "incls/_bytecodeInterpreter.cpp.incl"
  28 
  29 #ifdef CC_INTERP
  30 
  31 /*
  32  * USELABELS - If using GCC, then use labels for the opcode dispatching
  33  * rather -then a switch statement. This improves performance because it
  34  * gives us the oportunity to have the instructions that calculate the
  35  * next opcode to jump to be intermixed with the rest of the instructions
  36  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  37  */
  38 #undef USELABELS
  39 #ifdef __GNUC__
  40 /*
  41    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  42    don't use the computed goto approach.
  43 */
  44 #ifndef ASSERT
  45 #define USELABELS
  46 #endif
  47 #endif
  48 
  49 #undef CASE
  50 #ifdef USELABELS
  51 #define CASE(opcode) opc ## opcode
  52 #define DEFAULT opc_default
  53 #else
  54 #define CASE(opcode) case Bytecodes:: opcode
  55 #define DEFAULT default
  56 #endif
  57 
  58 /*
  59  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  60  * opcode before going back to the top of the while loop, rather then having
  61  * the top of the while loop handle it. This provides a better opportunity
  62  * for instruction scheduling. Some compilers just do this prefetch
  63  * automatically. Some actually end up with worse performance if you
  64  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  65  */
  66 #undef PREFETCH_OPCCODE
  67 #define PREFETCH_OPCCODE
  68 
  69 /*
  70   Interpreter safepoint: it is expected that the interpreter will have no live
  71   handles of its own creation live at an interpreter safepoint. Therefore we
  72   run a HandleMarkCleaner and trash all handles allocated in the call chain
  73   since the JavaCalls::call_helper invocation that initiated the chain.
  74   There really shouldn't be any handles remaining to trash but this is cheap
  75   in relation to a safepoint.
  76 */
  77 #define SAFEPOINT                                                                 \
  78     if ( SafepointSynchronize::is_synchronizing()) {                              \
  79         {                                                                         \
  80           /* zap freed handles rather than GC'ing them */                         \
  81           HandleMarkCleaner __hmc(THREAD);                                        \
  82         }                                                                         \
  83         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
  84     }
  85 
  86 /*
  87  * VM_JAVA_ERROR - Macro for throwing a java exception from
  88  * the interpreter loop. Should really be a CALL_VM but there
  89  * is no entry point to do the transition to vm so we just
  90  * do it by hand here.
  91  */
  92 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
  93     DECACHE_STATE();                                                              \
  94     SET_LAST_JAVA_FRAME();                                                        \
  95     {                                                                             \
  96        ThreadInVMfromJava trans(THREAD);                                          \
  97        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
  98     }                                                                             \
  99     RESET_LAST_JAVA_FRAME();                                                      \
 100     CACHE_STATE();
 101 
 102 // Normal throw of a java error
 103 #define VM_JAVA_ERROR(name, msg)                                                  \
 104     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
 105     goto handle_exception;
 106 
 107 #ifdef PRODUCT
 108 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 109 #else
 110 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 111 {                                                                                                    \
 112     BytecodeCounter::_counter_value++;                                                               \
 113     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 114     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 115     if (TraceBytecodes) {                                                                            \
 116       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 117                                    topOfStack[Interpreter::expr_index_at(1)],   \
 118                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 119                                    handle_exception);                      \
 120     }                                                                      \
 121 }
 122 #endif
 123 
 124 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 125 #ifdef VM_JVMTI
 126 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 127    incremented. JvmtiExport::at_single_stepping_point() may cause a
 128    breakpoint opcode to get inserted at the current PC to allow the
 129    debugger to coalesce single-step events.
 130 
 131    As a result if we call at_single_stepping_point() we refetch opcode
 132    to get the current opcode. This will override any other prefetching
 133    that might have occurred.
 134 */
 135 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 136 {                                                                                \
 137       if (_jvmti_interp_events) {                                                \
 138         if (JvmtiExport::should_post_single_step()) {                            \
 139           DECACHE_STATE();                                                       \
 140           SET_LAST_JAVA_FRAME();                                                 \
 141           ThreadInVMfromJava trans(THREAD);                                      \
 142           JvmtiExport::at_single_stepping_point(THREAD,                          \
 143                                           istate->method(),                      \
 144                                           pc);                                   \
 145           RESET_LAST_JAVA_FRAME();                                               \
 146           CACHE_STATE();                                                         \
 147           if (THREAD->pop_frame_pending() &&                                     \
 148               !THREAD->pop_frame_in_process()) {                                 \
 149             goto handle_Pop_Frame;                                               \
 150           }                                                                      \
 151           opcode = *pc;                                                          \
 152         }                                                                        \
 153       }                                                                          \
 154 }
 155 #else
 156 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 157 #endif
 158 
 159 /*
 160  * CONTINUE - Macro for executing the next opcode.
 161  */
 162 #undef CONTINUE
 163 #ifdef USELABELS
 164 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 165 // initialization (which is is the initialization of the table pointer...)
 166 #define DISPATCH(opcode) goto *dispatch_table[opcode]
 167 #define CONTINUE {                              \
 168         opcode = *pc;                           \
 169         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 170         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 171         DISPATCH(opcode);                       \
 172     }
 173 #else
 174 #ifdef PREFETCH_OPCCODE
 175 #define CONTINUE {                              \
 176         opcode = *pc;                           \
 177         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 178         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 179         continue;                               \
 180     }
 181 #else
 182 #define CONTINUE {                              \
 183         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 184         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 185         continue;                               \
 186     }
 187 #endif
 188 #endif
 189 
 190 // JavaStack Implementation
 191 #define MORE_STACK(count)  \
 192     (topOfStack -= ((count) * Interpreter::stackElementWords()))
 193 
 194 
 195 #define UPDATE_PC(opsize) {pc += opsize; }
 196 /*
 197  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 198  */
 199 #undef UPDATE_PC_AND_TOS
 200 #define UPDATE_PC_AND_TOS(opsize, stack) \
 201     {pc += opsize; MORE_STACK(stack); }
 202 
 203 /*
 204  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 205  * and executing the next opcode. It's somewhat similar to the combination
 206  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 207  */
 208 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 209 #ifdef USELABELS
 210 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 211         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 212         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 213         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 214         DISPATCH(opcode);                                       \
 215     }
 216 
 217 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 218         pc += opsize; opcode = *pc;                             \
 219         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 220         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 221         DISPATCH(opcode);                                       \
 222     }
 223 #else
 224 #ifdef PREFETCH_OPCCODE
 225 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 226         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 227         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 228         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 229         goto do_continue;                                       \
 230     }
 231 
 232 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 233         pc += opsize; opcode = *pc;                             \
 234         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 235         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 236         goto do_continue;                                       \
 237     }
 238 #else
 239 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 240         pc += opsize; MORE_STACK(stack);                \
 241         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 242         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 243         goto do_continue;                               \
 244     }
 245 
 246 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 247         pc += opsize;                                   \
 248         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 249         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 250         goto do_continue;                               \
 251     }
 252 #endif /* PREFETCH_OPCCODE */
 253 #endif /* USELABELS */
 254 
 255 // About to call a new method, update the save the adjusted pc and return to frame manager
 256 #define UPDATE_PC_AND_RETURN(opsize)  \
 257    DECACHE_TOS();                     \
 258    istate->set_bcp(pc+opsize);        \
 259    return;
 260 
 261 
 262 #define METHOD istate->method()
 263 #define INVOCATION_COUNT METHOD->invocation_counter()
 264 #define BACKEDGE_COUNT METHOD->backedge_counter()
 265 
 266 
 267 #define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
 268 #define OSR_REQUEST(res, branch_pc) \
 269             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 270 /*
 271  * For those opcodes that need to have a GC point on a backwards branch
 272  */
 273 
 274 // Backedge counting is kind of strange. The asm interpreter will increment
 275 // the backedge counter as a separate counter but it does it's comparisons
 276 // to the sum (scaled) of invocation counter and backedge count to make
 277 // a decision. Seems kind of odd to sum them together like that
 278 
 279 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 280 
 281 
 282 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 283     if ((skip) <= 0) {                                                                              \
 284       if (UseCompiler && UseLoopCounter) {                                                          \
 285         bool do_OSR = UseOnStackReplacement;                                                        \
 286         BACKEDGE_COUNT->increment();                                                                \
 287         if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
 288         if (do_OSR) {                                                                               \
 289           nmethod*  osr_nmethod;                                                                    \
 290           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 291           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 292             intptr_t* buf;                                                                          \
 293             CALL_VM(buf=SharedRuntime::OSR_migration_begin(THREAD), handle_exception);              \
 294             istate->set_msg(do_osr);                                                                \
 295             istate->set_osr_buf((address)buf);                                                      \
 296             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 297             return;                                                                                 \
 298           }                                                                                         \
 299         } else {                                                                                    \
 300           INCR_INVOCATION_COUNT;                                                                    \
 301           SAFEPOINT;                                                                                \
 302         }                                                                                           \
 303       }  /* UseCompiler ... */                                                                      \
 304       INCR_INVOCATION_COUNT;                                                                        \
 305       SAFEPOINT;                                                                                    \
 306     }
 307 
 308 /*
 309  * For those opcodes that need to have a GC point on a backwards branch
 310  */
 311 
 312 /*
 313  * Macros for caching and flushing the interpreter state. Some local
 314  * variables need to be flushed out to the frame before we do certain
 315  * things (like pushing frames or becomming gc safe) and some need to
 316  * be recached later (like after popping a frame). We could use one
 317  * macro to cache or decache everything, but this would be less then
 318  * optimal because we don't always need to cache or decache everything
 319  * because some things we know are already cached or decached.
 320  */
 321 #undef DECACHE_TOS
 322 #undef CACHE_TOS
 323 #undef CACHE_PREV_TOS
 324 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 325 
 326 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 327 
 328 #undef DECACHE_PC
 329 #undef CACHE_PC
 330 #define DECACHE_PC()    istate->set_bcp(pc);
 331 #define CACHE_PC()      pc = istate->bcp();
 332 #define CACHE_CP()      cp = istate->constants();
 333 #define CACHE_LOCALS()  locals = istate->locals();
 334 #undef CACHE_FRAME
 335 #define CACHE_FRAME()
 336 
 337 /*
 338  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 339  * passed is a null ref.
 340  * On some architectures/platforms it should be possible to do this implicitly
 341  */
 342 #undef CHECK_NULL
 343 #define CHECK_NULL(obj_)                                                 \
 344     if ((obj_) == 0) {                                                   \
 345         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
 346     }
 347 
 348 #define VMdoubleConstZero() 0.0
 349 #define VMdoubleConstOne() 1.0
 350 #define VMlongConstZero() (max_jlong-max_jlong)
 351 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 352 
 353 /*
 354  * Alignment
 355  */
 356 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 357 
 358 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 359 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 360 
 361 // Reload interpreter state after calling the VM or a possible GC
 362 #define CACHE_STATE()   \
 363         CACHE_TOS();    \
 364         CACHE_PC();     \
 365         CACHE_CP();     \
 366         CACHE_LOCALS();
 367 
 368 // Call the VM don't check for pending exceptions
 369 #define CALL_VM_NOCHECK(func)                                     \
 370           DECACHE_STATE();                                        \
 371           SET_LAST_JAVA_FRAME();                                  \
 372           func;                                                   \
 373           RESET_LAST_JAVA_FRAME();                                \
 374           CACHE_STATE();                                          \
 375           if (THREAD->pop_frame_pending() &&                      \
 376               !THREAD->pop_frame_in_process()) {                  \
 377             goto handle_Pop_Frame;                                \
 378           }
 379 
 380 // Call the VM and check for pending exceptions
 381 #define CALL_VM(func, label) {                                    \
 382           CALL_VM_NOCHECK(func);                                  \
 383           if (THREAD->has_pending_exception()) goto label;        \
 384         }
 385 
 386 /*
 387  * BytecodeInterpreter::run(interpreterState istate)
 388  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 389  *
 390  * The real deal. This is where byte codes actually get interpreted.
 391  * Basically it's a big while loop that iterates until we return from
 392  * the method passed in.
 393  *
 394  * The runWithChecks is used if JVMTI is enabled.
 395  *
 396  */
 397 #if defined(VM_JVMTI)
 398 void
 399 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 400 #else
 401 void
 402 BytecodeInterpreter::run(interpreterState istate) {
 403 #endif
 404 
 405   // In order to simplify some tests based on switches set at runtime
 406   // we invoke the interpreter a single time after switches are enabled
 407   // and set simpler to to test variables rather than method calls or complex
 408   // boolean expressions.
 409 
 410   static int initialized = 0;
 411   static int checkit = 0;
 412   static intptr_t* c_addr = NULL;
 413   static intptr_t  c_value;
 414 
 415   if (checkit && *c_addr != c_value) {
 416     os::breakpoint();
 417   }
 418 #ifdef VM_JVMTI
 419   static bool _jvmti_interp_events = 0;
 420 #endif
 421 
 422   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 423 
 424 #ifdef ASSERT
 425   if (istate->_msg != initialize) {
 426     assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 427   IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 428   }
 429   // Verify linkages.
 430   interpreterState l = istate;
 431   do {
 432     assert(l == l->_self_link, "bad link");
 433     l = l->_prev_link;
 434   } while (l != NULL);
 435   // Screwups with stack management usually cause us to overwrite istate
 436   // save a copy so we can verify it.
 437   interpreterState orig = istate;
 438 #endif
 439 
 440   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
 441 
 442   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 443   register address          pc = istate->bcp();
 444   register jubyte opcode;
 445   register intptr_t*        locals = istate->locals();
 446   register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
 447 #ifdef LOTS_OF_REGS
 448   register JavaThread*      THREAD = istate->thread();
 449   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
 450 #else
 451 #undef THREAD
 452 #define THREAD istate->thread()
 453 #undef BYTE_MAP_BASE
 454 #define BYTE_MAP_BASE _byte_map_base
 455 #endif
 456 
 457 #ifdef USELABELS
 458   const static void* const opclabels_data[256] = {
 459 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 460 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 461 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 462 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 463 
 464 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 465 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 466 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 467 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 468 
 469 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 470 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 471 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 472 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 473 
 474 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 475 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 476 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 477 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 478 
 479 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 480 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 481 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 482 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 483 
 484 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 485 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 486 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 487 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 488 
 489 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 490 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 491 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 492 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 493 
 494 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 495 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 496 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 497 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 498 
 499 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 500 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 501 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 502 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 503 
 504 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 505 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 506 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 507 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 508 
 509 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 510 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 511 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 512 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 513 
 514 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 515 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 516 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,NULL,               &&opc_new,
 517 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 518 
 519 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 520 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 521 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 522 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 523 
 524 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 525 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 526 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 527 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 528 
 529 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 530 /* 0xE4 */ &&opc_default,     &&opc_return_register_finalizer,        &&opc_default,      &&opc_default,
 531 /* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 532 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 533 
 534 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 535 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 536 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 537 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 538   };
 539   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 540 #endif /* USELABELS */
 541 
 542 #ifdef ASSERT
 543   // this will trigger a VERIFY_OOP on entry
 544   if (istate->msg() != initialize && ! METHOD->is_static()) {
 545     oop rcvr = LOCALS_OBJECT(0);
 546   }
 547 #endif
 548 // #define HACK
 549 #ifdef HACK
 550   bool interesting = false;
 551 #endif // HACK
 552 
 553   /* QQQ this should be a stack method so we don't know actual direction */
 554   assert(istate->msg() == initialize ||
 555          topOfStack >= istate->stack_limit() &&
 556          topOfStack < istate->stack_base(),
 557          "Stack top out of range");
 558 
 559   switch (istate->msg()) {
 560     case initialize: {
 561       if (initialized++) ShouldNotReachHere(); // Only one initialize call
 562       _compiling = (UseCompiler || CountCompiledCalls);
 563 #ifdef VM_JVMTI
 564       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 565 #endif
 566       BarrierSet* bs = Universe::heap()->barrier_set();
 567       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
 568       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
 569       return;
 570     }
 571     break;
 572     case method_entry: {
 573       THREAD->set_do_not_unlock();
 574       // count invocations
 575       assert(initialized, "Interpreter not initialized");
 576       if (_compiling) {
 577         if (ProfileInterpreter) {
 578           METHOD->increment_interpreter_invocation_count();
 579         }
 580         INCR_INVOCATION_COUNT;
 581         if (INVOCATION_COUNT->reached_InvocationLimit()) {
 582             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 583 
 584             // We no longer retry on a counter overflow
 585 
 586             // istate->set_msg(retry_method);
 587             // THREAD->clr_do_not_unlock();
 588             // return;
 589         }
 590         SAFEPOINT;
 591       }
 592 
 593       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 594         // initialize
 595         os::breakpoint();
 596       }
 597 
 598 #ifdef HACK
 599       {
 600         ResourceMark rm;
 601         char *method_name = istate->method()->name_and_sig_as_C_string();
 602         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 603           tty->print_cr("entering: depth %d bci: %d",
 604                          (istate->_stack_base - istate->_stack),
 605                          istate->_bcp - istate->_method->code_base());
 606           interesting = true;
 607         }
 608       }
 609 #endif // HACK
 610 
 611 
 612       // lock method if synchronized
 613       if (METHOD->is_synchronized()) {
 614           // oop rcvr = locals[0].j.r;
 615           oop rcvr;
 616           if (METHOD->is_static()) {
 617             rcvr = METHOD->constants()->pool_holder()->klass_part()->java_mirror();
 618           } else {
 619             rcvr = LOCALS_OBJECT(0);
 620           }
 621           // The initial monitor is ours for the taking
 622           BasicObjectLock* mon = &istate->monitor_base()[-1];
 623           oop monobj = mon->obj();
 624           assert(mon->obj() == rcvr, "method monitor mis-initialized");
 625 
 626           bool success = UseBiasedLocking;
 627           if (UseBiasedLocking) {
 628             markOop mark = rcvr->mark();
 629             if (mark->has_bias_pattern()) {
 630               // The bias pattern is present in the object's header. Need to check
 631               // whether the bias owner and the epoch are both still current.
 632               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
 633               xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
 634               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
 635               if (yy != 0 ) {
 636                 // At this point we know that the header has the bias pattern and
 637                 // that we are not the bias owner in the current epoch. We need to
 638                 // figure out more details about the state of the header in order to
 639                 // know what operations can be legally performed on the object's
 640                 // header.
 641 
 642                 // If the low three bits in the xor result aren't clear, that means
 643                 // the prototype header is no longer biased and we have to revoke
 644                 // the bias on this object.
 645 
 646                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
 647                   // Biasing is still enabled for this data type. See whether the
 648                   // epoch of the current bias is still valid, meaning that the epoch
 649                   // bits of the mark word are equal to the epoch bits of the
 650                   // prototype header. (Note that the prototype header's epoch bits
 651                   // only change at a safepoint.) If not, attempt to rebias the object
 652                   // toward the current thread. Note that we must be absolutely sure
 653                   // that the current epoch is invalid in order to do this because
 654                   // otherwise the manipulations it performs on the mark word are
 655                   // illegal.
 656                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
 657                     // The epoch of the current bias is still valid but we know nothing
 658                     // about the owner; it might be set or it might be clear. Try to
 659                     // acquire the bias of the object using an atomic operation. If this
 660                     // fails we will go in to the runtime to revoke the object's bias.
 661                     // Note that we first construct the presumed unbiased header so we
 662                     // don't accidentally blow away another thread's valid bias.
 663                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
 664                                                            markOopDesc::age_mask_in_place |
 665                                                            markOopDesc::epoch_mask_in_place);
 666                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
 667                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 668                     }
 669                   } else {
 670                     try_rebias:
 671                     // At this point we know the epoch has expired, meaning that the
 672                     // current "bias owner", if any, is actually invalid. Under these
 673                     // circumstances _only_, we are allowed to use the current header's
 674                     // value as the comparison value when doing the cas to acquire the
 675                     // bias in the current epoch. In other words, we allow transfer of
 676                     // the bias from one thread to another directly in this situation.
 677                     xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
 678                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
 679                                             (intptr_t*) rcvr->mark_addr(),
 680                                             (intptr_t) mark) != (intptr_t) mark) {
 681                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 682                     }
 683                   }
 684                 } else {
 685                   try_revoke_bias:
 686                   // The prototype mark in the klass doesn't have the bias bit set any
 687                   // more, indicating that objects of this data type are not supposed
 688                   // to be biased any more. We are going to try to reset the mark of
 689                   // this object to the prototype value and fall through to the
 690                   // CAS-based locking scheme. Note that if our CAS fails, it means
 691                   // that another thread raced us for the privilege of revoking the
 692                   // bias of this particular object, so it's okay to continue in the
 693                   // normal locking code.
 694                   //
 695                   xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
 696                   if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
 697                                           (intptr_t*) rcvr->mark_addr(),
 698                                           mark) == mark) {
 699                     // (*counters->revoked_lock_entry_count_addr())++;
 700                   success = false;
 701                   }
 702                 }
 703               }
 704             } else {
 705               cas_label:
 706               success = false;
 707             }
 708           }
 709           if (!success) {
 710             markOop displaced = rcvr->mark()->set_unlocked();
 711             mon->lock()->set_displaced_header(displaced);
 712             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 713               // Is it simple recursive case?
 714               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 715                 mon->lock()->set_displaced_header(NULL);
 716               } else {
 717                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 718               }
 719             }
 720           }
 721       }
 722       THREAD->clr_do_not_unlock();
 723 
 724       // Notify jvmti
 725 #ifdef VM_JVMTI
 726       if (_jvmti_interp_events) {
 727         // Whenever JVMTI puts a thread in interp_only_mode, method
 728         // entry/exit events are sent for that thread to track stack depth.
 729         if (THREAD->is_interp_only_mode()) {
 730           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 731                   handle_exception);
 732         }
 733       }
 734 #endif /* VM_JVMTI */
 735 
 736       goto run;
 737     }
 738 
 739     case popping_frame: {
 740       // returned from a java call to pop the frame, restart the call
 741       // clear the message so we don't confuse ourselves later
 742       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 743       istate->set_msg(no_request);
 744       THREAD->clr_pop_frame_in_process();
 745       goto run;
 746     }
 747 
 748     case method_resume: {
 749       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 750         // resume
 751         os::breakpoint();
 752       }
 753 #ifdef HACK
 754       {
 755         ResourceMark rm;
 756         char *method_name = istate->method()->name_and_sig_as_C_string();
 757         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 758           tty->print_cr("resume: depth %d bci: %d",
 759                          (istate->_stack_base - istate->_stack) ,
 760                          istate->_bcp - istate->_method->code_base());
 761           interesting = true;
 762         }
 763       }
 764 #endif // HACK
 765       // returned from a java call, continue executing.
 766       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 767         goto handle_Pop_Frame;
 768       }
 769 
 770       if (THREAD->has_pending_exception()) goto handle_exception;
 771       // Update the pc by the saved amount of the invoke bytecode size
 772       UPDATE_PC(istate->bcp_advance());
 773       goto run;
 774     }
 775 
 776     case deopt_resume2: {
 777       // Returned from an opcode that will reexecute. Deopt was
 778       // a result of a PopFrame request.
 779       //
 780       goto run;
 781     }
 782 
 783     case deopt_resume: {
 784       // Returned from an opcode that has completed. The stack has
 785       // the result all we need to do is skip across the bytecode
 786       // and continue (assuming there is no exception pending)
 787       //
 788       // compute continuation length
 789       //
 790       // Note: it is possible to deopt at a return_register_finalizer opcode
 791       // because this requires entering the vm to do the registering. While the
 792       // opcode is complete we can't advance because there are no more opcodes
 793       // much like trying to deopt at a poll return. In that has we simply
 794       // get out of here
 795       //
 796       if ( Bytecodes::code_at(pc, METHOD) == Bytecodes::_return_register_finalizer) {
 797         // this will do the right thing even if an exception is pending.
 798         goto handle_return;
 799       }
 800       UPDATE_PC(Bytecodes::length_at(pc));
 801       if (THREAD->has_pending_exception()) goto handle_exception;
 802       goto run;
 803     }
 804     case got_monitors: {
 805       // continue locking now that we have a monitor to use
 806       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 807       oop lockee = STACK_OBJECT(-1);
 808       // derefing's lockee ought to provoke implicit null check
 809       // find a free monitor
 810       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 811       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 812       entry->set_obj(lockee);
 813 
 814       markOop displaced = lockee->mark()->set_unlocked();
 815       entry->lock()->set_displaced_header(displaced);
 816       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 817         // Is it simple recursive case?
 818         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 819           entry->lock()->set_displaced_header(NULL);
 820         } else {
 821           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 822         }
 823       }
 824       UPDATE_PC_AND_TOS(1, -1);
 825       goto run;
 826     }
 827     default: {
 828       fatal("Unexpected message from frame manager");
 829     }
 830   }
 831 
 832 run:
 833 
 834   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 835   DEBUGGER_SINGLE_STEP_NOTIFY();
 836 #ifdef PREFETCH_OPCCODE
 837   opcode = *pc;  /* prefetch first opcode */
 838 #endif
 839 
 840 #ifndef USELABELS
 841   while (1)
 842 #endif
 843   {
 844 #ifndef PREFETCH_OPCCODE
 845       opcode = *pc;
 846 #endif
 847       // Seems like this happens twice per opcode. At worst this is only
 848       // need at entry to the loop.
 849       // DEBUGGER_SINGLE_STEP_NOTIFY();
 850       /* Using this labels avoids double breakpoints when quickening and
 851        * when returing from transition frames.
 852        */
 853   opcode_switch:
 854       assert(istate == orig, "Corrupted istate");
 855       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 856       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 857       assert(topOfStack < istate->stack_base(), "Stack underrun");
 858 
 859 #ifdef USELABELS
 860       DISPATCH(opcode);
 861 #else
 862       switch (opcode)
 863 #endif
 864       {
 865       CASE(_nop):
 866           UPDATE_PC_AND_CONTINUE(1);
 867 
 868           /* Push miscellaneous constants onto the stack. */
 869 
 870       CASE(_aconst_null):
 871           SET_STACK_OBJECT(NULL, 0);
 872           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 873 
 874 #undef  OPC_CONST_n
 875 #define OPC_CONST_n(opcode, const_type, value)                          \
 876       CASE(opcode):                                                     \
 877           SET_STACK_ ## const_type(value, 0);                           \
 878           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 879 
 880           OPC_CONST_n(_iconst_m1,   INT,       -1);
 881           OPC_CONST_n(_iconst_0,    INT,        0);
 882           OPC_CONST_n(_iconst_1,    INT,        1);
 883           OPC_CONST_n(_iconst_2,    INT,        2);
 884           OPC_CONST_n(_iconst_3,    INT,        3);
 885           OPC_CONST_n(_iconst_4,    INT,        4);
 886           OPC_CONST_n(_iconst_5,    INT,        5);
 887           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
 888           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
 889           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
 890 
 891 #undef  OPC_CONST2_n
 892 #define OPC_CONST2_n(opcname, value, key, kind)                         \
 893       CASE(_##opcname):                                                 \
 894       {                                                                 \
 895           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
 896           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
 897       }
 898          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
 899          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
 900          OPC_CONST2_n(lconst_0, Zero, long, LONG);
 901          OPC_CONST2_n(lconst_1, One,  long, LONG);
 902 
 903          /* Load constant from constant pool: */
 904 
 905           /* Push a 1-byte signed integer value onto the stack. */
 906       CASE(_bipush):
 907           SET_STACK_INT((jbyte)(pc[1]), 0);
 908           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 909 
 910           /* Push a 2-byte signed integer constant onto the stack. */
 911       CASE(_sipush):
 912           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
 913           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
 914 
 915           /* load from local variable */
 916 
 917       CASE(_aload):
 918           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
 919           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 920 
 921       CASE(_iload):
 922       CASE(_fload):
 923           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
 924           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 925 
 926       CASE(_lload):
 927           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
 928           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
 929 
 930       CASE(_dload):
 931           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
 932           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
 933 
 934 #undef  OPC_LOAD_n
 935 #define OPC_LOAD_n(num)                                                 \
 936       CASE(_aload_##num):                                               \
 937           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
 938           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
 939                                                                         \
 940       CASE(_iload_##num):                                               \
 941       CASE(_fload_##num):                                               \
 942           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
 943           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
 944                                                                         \
 945       CASE(_lload_##num):                                               \
 946           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
 947           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
 948       CASE(_dload_##num):                                               \
 949           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
 950           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
 951 
 952           OPC_LOAD_n(0);
 953           OPC_LOAD_n(1);
 954           OPC_LOAD_n(2);
 955           OPC_LOAD_n(3);
 956 
 957           /* store to a local variable */
 958 
 959       CASE(_astore):
 960           astore(topOfStack, -1, locals, pc[1]);
 961           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
 962 
 963       CASE(_istore):
 964       CASE(_fstore):
 965           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
 966           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
 967 
 968       CASE(_lstore):
 969           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
 970           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
 971 
 972       CASE(_dstore):
 973           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
 974           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
 975 
 976       CASE(_wide): {
 977           uint16_t reg = Bytes::get_Java_u2(pc + 2);
 978 
 979           opcode = pc[1];
 980           switch(opcode) {
 981               case Bytecodes::_aload:
 982                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
 983                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
 984 
 985               case Bytecodes::_iload:
 986               case Bytecodes::_fload:
 987                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
 988                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
 989 
 990               case Bytecodes::_lload:
 991                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
 992                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
 993 
 994               case Bytecodes::_dload:
 995                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
 996                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
 997 
 998               case Bytecodes::_astore:
 999                   astore(topOfStack, -1, locals, reg);
1000                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1001 
1002               case Bytecodes::_istore:
1003               case Bytecodes::_fstore:
1004                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1005                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1006 
1007               case Bytecodes::_lstore:
1008                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1009                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1010 
1011               case Bytecodes::_dstore:
1012                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1013                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1014 
1015               case Bytecodes::_iinc: {
1016                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1017                   // Be nice to see what this generates.... QQQ
1018                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1019                   UPDATE_PC_AND_CONTINUE(6);
1020               }
1021               case Bytecodes::_ret:
1022                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1023                   UPDATE_PC_AND_CONTINUE(0);
1024               default:
1025                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1026           }
1027       }
1028 
1029 
1030 #undef  OPC_STORE_n
1031 #define OPC_STORE_n(num)                                                \
1032       CASE(_astore_##num):                                              \
1033           astore(topOfStack, -1, locals, num);                          \
1034           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1035       CASE(_istore_##num):                                              \
1036       CASE(_fstore_##num):                                              \
1037           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1038           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1039 
1040           OPC_STORE_n(0);
1041           OPC_STORE_n(1);
1042           OPC_STORE_n(2);
1043           OPC_STORE_n(3);
1044 
1045 #undef  OPC_DSTORE_n
1046 #define OPC_DSTORE_n(num)                                               \
1047       CASE(_dstore_##num):                                              \
1048           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1049           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1050       CASE(_lstore_##num):                                              \
1051           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1052           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1053 
1054           OPC_DSTORE_n(0);
1055           OPC_DSTORE_n(1);
1056           OPC_DSTORE_n(2);
1057           OPC_DSTORE_n(3);
1058 
1059           /* stack pop, dup, and insert opcodes */
1060 
1061 
1062       CASE(_pop):                /* Discard the top item on the stack */
1063           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1064 
1065 
1066       CASE(_pop2):               /* Discard the top 2 items on the stack */
1067           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1068 
1069 
1070       CASE(_dup):               /* Duplicate the top item on the stack */
1071           dup(topOfStack);
1072           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1073 
1074       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1075           dup2(topOfStack);
1076           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1077 
1078       CASE(_dup_x1):    /* insert top word two down */
1079           dup_x1(topOfStack);
1080           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1081 
1082       CASE(_dup_x2):    /* insert top word three down  */
1083           dup_x2(topOfStack);
1084           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1085 
1086       CASE(_dup2_x1):   /* insert top 2 slots three down */
1087           dup2_x1(topOfStack);
1088           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1089 
1090       CASE(_dup2_x2):   /* insert top 2 slots four down */
1091           dup2_x2(topOfStack);
1092           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1093 
1094       CASE(_swap): {        /* swap top two elements on the stack */
1095           swap(topOfStack);
1096           UPDATE_PC_AND_CONTINUE(1);
1097       }
1098 
1099           /* Perform various binary integer operations */
1100 
1101 #undef  OPC_INT_BINARY
1102 #define OPC_INT_BINARY(opcname, opname, test)                           \
1103       CASE(_i##opcname):                                                \
1104           if (test && (STACK_INT(-1) == 0)) {                           \
1105               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1106                             "/ by int zero");                           \
1107           }                                                             \
1108           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1109                                       STACK_INT(-1)),                   \
1110                                       -2);                              \
1111           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1112       CASE(_l##opcname):                                                \
1113       {                                                                 \
1114           if (test) {                                                   \
1115             jlong l1 = STACK_LONG(-1);                                  \
1116             if (VMlongEqz(l1)) {                                        \
1117               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1118                             "/ by long zero");                          \
1119             }                                                           \
1120           }                                                             \
1121           /* First long at (-1,-2) next long at (-3,-4) */              \
1122           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1123                                         STACK_LONG(-1)),                \
1124                                         -3);                            \
1125           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1126       }
1127 
1128       OPC_INT_BINARY(add, Add, 0);
1129       OPC_INT_BINARY(sub, Sub, 0);
1130       OPC_INT_BINARY(mul, Mul, 0);
1131       OPC_INT_BINARY(and, And, 0);
1132       OPC_INT_BINARY(or,  Or,  0);
1133       OPC_INT_BINARY(xor, Xor, 0);
1134       OPC_INT_BINARY(div, Div, 1);
1135       OPC_INT_BINARY(rem, Rem, 1);
1136 
1137 
1138       /* Perform various binary floating number operations */
1139       /* On some machine/platforms/compilers div zero check can be implicit */
1140 
1141 #undef  OPC_FLOAT_BINARY
1142 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1143       CASE(_d##opcname): {                                                 \
1144           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1145                                             STACK_DOUBLE(-1)),             \
1146                                             -3);                           \
1147           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1148       }                                                                    \
1149       CASE(_f##opcname):                                                   \
1150           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1151                                           STACK_FLOAT(-1)),                \
1152                                           -2);                             \
1153           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1154 
1155 
1156      OPC_FLOAT_BINARY(add, Add);
1157      OPC_FLOAT_BINARY(sub, Sub);
1158      OPC_FLOAT_BINARY(mul, Mul);
1159      OPC_FLOAT_BINARY(div, Div);
1160      OPC_FLOAT_BINARY(rem, Rem);
1161 
1162       /* Shift operations
1163        * Shift left int and long: ishl, lshl
1164        * Logical shift right int and long w/zero extension: iushr, lushr
1165        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1166        */
1167 
1168 #undef  OPC_SHIFT_BINARY
1169 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1170       CASE(_i##opcname):                                                \
1171          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1172                                      STACK_INT(-1)),                    \
1173                                      -2);                               \
1174          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1175       CASE(_l##opcname):                                                \
1176       {                                                                 \
1177          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1178                                        STACK_INT(-1)),                  \
1179                                        -2);                             \
1180          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1181       }
1182 
1183       OPC_SHIFT_BINARY(shl, Shl);
1184       OPC_SHIFT_BINARY(shr, Shr);
1185       OPC_SHIFT_BINARY(ushr, Ushr);
1186 
1187      /* Increment local variable by constant */
1188       CASE(_iinc):
1189       {
1190           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1191           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1192           UPDATE_PC_AND_CONTINUE(3);
1193       }
1194 
1195      /* negate the value on the top of the stack */
1196 
1197       CASE(_ineg):
1198          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1199          UPDATE_PC_AND_CONTINUE(1);
1200 
1201       CASE(_fneg):
1202          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1203          UPDATE_PC_AND_CONTINUE(1);
1204 
1205       CASE(_lneg):
1206       {
1207          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1208          UPDATE_PC_AND_CONTINUE(1);
1209       }
1210 
1211       CASE(_dneg):
1212       {
1213          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1214          UPDATE_PC_AND_CONTINUE(1);
1215       }
1216 
1217       /* Conversion operations */
1218 
1219       CASE(_i2f):       /* convert top of stack int to float */
1220          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1221          UPDATE_PC_AND_CONTINUE(1);
1222 
1223       CASE(_i2l):       /* convert top of stack int to long */
1224       {
1225           // this is ugly QQQ
1226           jlong r = VMint2Long(STACK_INT(-1));
1227           MORE_STACK(-1); // Pop
1228           SET_STACK_LONG(r, 1);
1229 
1230           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1231       }
1232 
1233       CASE(_i2d):       /* convert top of stack int to double */
1234       {
1235           // this is ugly QQQ (why cast to jlong?? )
1236           jdouble r = (jlong)STACK_INT(-1);
1237           MORE_STACK(-1); // Pop
1238           SET_STACK_DOUBLE(r, 1);
1239 
1240           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1241       }
1242 
1243       CASE(_l2i):       /* convert top of stack long to int */
1244       {
1245           jint r = VMlong2Int(STACK_LONG(-1));
1246           MORE_STACK(-2); // Pop
1247           SET_STACK_INT(r, 0);
1248           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1249       }
1250 
1251       CASE(_l2f):   /* convert top of stack long to float */
1252       {
1253           jlong r = STACK_LONG(-1);
1254           MORE_STACK(-2); // Pop
1255           SET_STACK_FLOAT(VMlong2Float(r), 0);
1256           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1257       }
1258 
1259       CASE(_l2d):       /* convert top of stack long to double */
1260       {
1261           jlong r = STACK_LONG(-1);
1262           MORE_STACK(-2); // Pop
1263           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1264           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1265       }
1266 
1267       CASE(_f2i):  /* Convert top of stack float to int */
1268           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1269           UPDATE_PC_AND_CONTINUE(1);
1270 
1271       CASE(_f2l):  /* convert top of stack float to long */
1272       {
1273           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1274           MORE_STACK(-1); // POP
1275           SET_STACK_LONG(r, 1);
1276           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1277       }
1278 
1279       CASE(_f2d):  /* convert top of stack float to double */
1280       {
1281           jfloat f;
1282           jdouble r;
1283           f = STACK_FLOAT(-1);
1284 #ifdef IA64
1285           // IA64 gcc bug
1286           r = ( f == 0.0f ) ? (jdouble) f : (jdouble) f + ia64_double_zero;
1287 #else
1288           r = (jdouble) f;
1289 #endif
1290           MORE_STACK(-1); // POP
1291           SET_STACK_DOUBLE(r, 1);
1292           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1293       }
1294 
1295       CASE(_d2i): /* convert top of stack double to int */
1296       {
1297           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1298           MORE_STACK(-2);
1299           SET_STACK_INT(r1, 0);
1300           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1301       }
1302 
1303       CASE(_d2f): /* convert top of stack double to float */
1304       {
1305           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1306           MORE_STACK(-2);
1307           SET_STACK_FLOAT(r1, 0);
1308           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1309       }
1310 
1311       CASE(_d2l): /* convert top of stack double to long */
1312       {
1313           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1314           MORE_STACK(-2);
1315           SET_STACK_LONG(r1, 1);
1316           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1317       }
1318 
1319       CASE(_i2b):
1320           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1321           UPDATE_PC_AND_CONTINUE(1);
1322 
1323       CASE(_i2c):
1324           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1325           UPDATE_PC_AND_CONTINUE(1);
1326 
1327       CASE(_i2s):
1328           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1329           UPDATE_PC_AND_CONTINUE(1);
1330 
1331       /* comparison operators */
1332 
1333 
1334 #define COMPARISON_OP(name, comparison)                                      \
1335       CASE(_if_icmp##name): {                                                \
1336           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1337                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1338           address branch_pc = pc;                                            \
1339           UPDATE_PC_AND_TOS(skip, -2);                                       \
1340           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1341           CONTINUE;                                                          \
1342       }                                                                      \
1343       CASE(_if##name): {                                                     \
1344           int skip = (STACK_INT(-1) comparison 0)                            \
1345                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1346           address branch_pc = pc;                                            \
1347           UPDATE_PC_AND_TOS(skip, -1);                                       \
1348           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1349           CONTINUE;                                                          \
1350       }
1351 
1352 #define COMPARISON_OP2(name, comparison)                                     \
1353       COMPARISON_OP(name, comparison)                                        \
1354       CASE(_if_acmp##name): {                                                \
1355           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1356                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1357           address branch_pc = pc;                                            \
1358           UPDATE_PC_AND_TOS(skip, -2);                                       \
1359           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1360           CONTINUE;                                                          \
1361       }
1362 
1363 #define NULL_COMPARISON_NOT_OP(name)                                         \
1364       CASE(_if##name): {                                                     \
1365           int skip = (!(STACK_OBJECT(-1) == 0))                              \
1366                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1367           address branch_pc = pc;                                            \
1368           UPDATE_PC_AND_TOS(skip, -1);                                       \
1369           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1370           CONTINUE;                                                          \
1371       }
1372 
1373 #define NULL_COMPARISON_OP(name)                                             \
1374       CASE(_if##name): {                                                     \
1375           int skip = ((STACK_OBJECT(-1) == 0))                               \
1376                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1377           address branch_pc = pc;                                            \
1378           UPDATE_PC_AND_TOS(skip, -1);                                       \
1379           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1380           CONTINUE;                                                          \
1381       }
1382       COMPARISON_OP(lt, <);
1383       COMPARISON_OP(gt, >);
1384       COMPARISON_OP(le, <=);
1385       COMPARISON_OP(ge, >=);
1386       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1387       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1388       NULL_COMPARISON_OP(null);
1389       NULL_COMPARISON_NOT_OP(nonnull);
1390 
1391       /* Goto pc at specified offset in switch table. */
1392 
1393       CASE(_tableswitch): {
1394           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1395           int32_t  key  = STACK_INT(-1);
1396           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1397           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1398           int32_t  skip;
1399           key -= low;
1400           skip = ((uint32_t) key > (uint32_t)(high - low))
1401                       ? Bytes::get_Java_u4((address)&lpc[0])
1402                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
1403           // Does this really need a full backedge check (osr?)
1404           address branch_pc = pc;
1405           UPDATE_PC_AND_TOS(skip, -1);
1406           DO_BACKEDGE_CHECKS(skip, branch_pc);
1407           CONTINUE;
1408       }
1409 
1410       /* Goto pc whose table entry matches specified key */
1411 
1412       CASE(_lookupswitch): {
1413           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1414           int32_t  key  = STACK_INT(-1);
1415           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1416           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1417           while (--npairs >= 0) {
1418               lpc += 2;
1419               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1420                   skip = Bytes::get_Java_u4((address)&lpc[1]);
1421                   break;
1422               }
1423           }
1424           address branch_pc = pc;
1425           UPDATE_PC_AND_TOS(skip, -1);
1426           DO_BACKEDGE_CHECKS(skip, branch_pc);
1427           CONTINUE;
1428       }
1429 
1430       CASE(_fcmpl):
1431       CASE(_fcmpg):
1432       {
1433           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1434                                         STACK_FLOAT(-1),
1435                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1436                         -2);
1437           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1438       }
1439 
1440       CASE(_dcmpl):
1441       CASE(_dcmpg):
1442       {
1443           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1444                                   STACK_DOUBLE(-1),
1445                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1446           MORE_STACK(-4); // Pop
1447           SET_STACK_INT(r, 0);
1448           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1449       }
1450 
1451       CASE(_lcmp):
1452       {
1453           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1454           MORE_STACK(-4);
1455           SET_STACK_INT(r, 0);
1456           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1457       }
1458 
1459 
1460       /* Return from a method */
1461 
1462       CASE(_areturn):
1463       CASE(_ireturn):
1464       CASE(_freturn):
1465       {
1466           // Allow a safepoint before returning to frame manager.
1467           SAFEPOINT;
1468 
1469           goto handle_return;
1470       }
1471 
1472       CASE(_lreturn):
1473       CASE(_dreturn):
1474       {
1475           // Allow a safepoint before returning to frame manager.
1476           SAFEPOINT;
1477           goto handle_return;
1478       }
1479 
1480       CASE(_return_register_finalizer): {
1481 
1482           oop rcvr = LOCALS_OBJECT(0);
1483           if (rcvr->klass()->klass_part()->has_finalizer()) {
1484             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1485           }
1486           goto handle_return;
1487       }
1488       CASE(_return): {
1489 
1490           // Allow a safepoint before returning to frame manager.
1491           SAFEPOINT;
1492           goto handle_return;
1493       }
1494 
1495       /* Array access byte-codes */
1496 
1497       /* Every array access byte-code starts out like this */
1498 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1499 #define ARRAY_INTRO(arrayOff)                                                  \
1500       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1501       jint     index  = STACK_INT(arrayOff + 1);                               \
1502       char message[jintAsStringSize];                                          \
1503       CHECK_NULL(arrObj);                                                      \
1504       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1505           sprintf(message, "%d", index);                                       \
1506           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1507                         message);                                              \
1508       }
1509 
1510       /* 32-bit loads. These handle conversion from < 32-bit types */
1511 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1512       {                                                                               \
1513           ARRAY_INTRO(-2);                                                            \
1514           extra;                                                                      \
1515           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1516                            -2);                                                       \
1517           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1518       }
1519 
1520       /* 64-bit loads */
1521 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1522       {                                                                                    \
1523           ARRAY_INTRO(-2);                                                                 \
1524           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1525           extra;                                                                           \
1526           UPDATE_PC_AND_CONTINUE(1);                                            \
1527       }
1528 
1529       CASE(_iaload):
1530           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1531       CASE(_faload):
1532           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1533       CASE(_aaload):
1534           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
1535       CASE(_baload):
1536           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1537       CASE(_caload):
1538           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1539       CASE(_saload):
1540           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1541       CASE(_laload):
1542           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1543       CASE(_daload):
1544           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1545 
1546       /* 32-bit stores. These handle conversion to < 32-bit types */
1547 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1548       {                                                                              \
1549           ARRAY_INTRO(-3);                                                           \
1550           extra;                                                                     \
1551           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1552           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1553       }
1554 
1555       /* 64-bit stores */
1556 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1557       {                                                                              \
1558           ARRAY_INTRO(-4);                                                           \
1559           extra;                                                                     \
1560           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1561           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1562       }
1563 
1564       CASE(_iastore):
1565           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1566       CASE(_fastore):
1567           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1568       /*
1569        * This one looks different because of the assignability check
1570        */
1571       CASE(_aastore): {
1572           oop rhsObject = STACK_OBJECT(-1);
1573           ARRAY_INTRO( -3);
1574           // arrObj, index are set
1575           if (rhsObject != NULL) {
1576             /* Check assignability of rhsObject into arrObj */
1577             klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1578             assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
1579             klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
1580             //
1581             // Check for compatibilty. This check must not GC!!
1582             // Seems way more expensive now that we must dispatch
1583             //
1584             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
1585               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1586             }
1587           }
1588           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
1589           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
1590           *elem_loc = rhsObject;
1591           // Mark the card
1592           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
1593           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1594       }
1595       CASE(_bastore):
1596           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1597       CASE(_castore):
1598           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1599       CASE(_sastore):
1600           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1601       CASE(_lastore):
1602           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1603       CASE(_dastore):
1604           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1605 
1606       CASE(_arraylength):
1607       {
1608           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1609           CHECK_NULL(ary);
1610           SET_STACK_INT(ary->length(), -1);
1611           UPDATE_PC_AND_CONTINUE(1);
1612       }
1613 
1614       /* monitorenter and monitorexit for locking/unlocking an object */
1615 
1616       CASE(_monitorenter): {
1617         oop lockee = STACK_OBJECT(-1);
1618         // derefing's lockee ought to provoke implicit null check
1619         CHECK_NULL(lockee);
1620         // find a free monitor or one already allocated for this object
1621         // if we find a matching object then we need a new monitor
1622         // since this is recursive enter
1623         BasicObjectLock* limit = istate->monitor_base();
1624         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1625         BasicObjectLock* entry = NULL;
1626         while (most_recent != limit ) {
1627           if (most_recent->obj() == NULL) entry = most_recent;
1628           else if (most_recent->obj() == lockee) break;
1629           most_recent++;
1630         }
1631         if (entry != NULL) {
1632           entry->set_obj(lockee);
1633           markOop displaced = lockee->mark()->set_unlocked();
1634           entry->lock()->set_displaced_header(displaced);
1635           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1636             // Is it simple recursive case?
1637             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1638               entry->lock()->set_displaced_header(NULL);
1639             } else {
1640               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1641             }
1642           }
1643           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1644         } else {
1645           istate->set_msg(more_monitors);
1646           UPDATE_PC_AND_RETURN(0); // Re-execute
1647         }
1648       }
1649 
1650       CASE(_monitorexit): {
1651         oop lockee = STACK_OBJECT(-1);
1652         CHECK_NULL(lockee);
1653         // derefing's lockee ought to provoke implicit null check
1654         // find our monitor slot
1655         BasicObjectLock* limit = istate->monitor_base();
1656         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1657         while (most_recent != limit ) {
1658           if ((most_recent)->obj() == lockee) {
1659             BasicLock* lock = most_recent->lock();
1660             markOop header = lock->displaced_header();
1661             most_recent->set_obj(NULL);
1662             // If it isn't recursive we either must swap old header or call the runtime
1663             if (header != NULL) {
1664               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1665                 // restore object for the slow case
1666                 most_recent->set_obj(lockee);
1667                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1668               }
1669             }
1670             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1671           }
1672           most_recent++;
1673         }
1674         // Need to throw illegal monitor state exception
1675         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1676         // Should never reach here...
1677         assert(false, "Should have thrown illegal monitor exception");
1678       }
1679 
1680       /* All of the non-quick opcodes. */
1681 
1682       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1683        *  constant pool index in the instruction.
1684        */
1685       CASE(_getfield):
1686       CASE(_getstatic):
1687         {
1688           u2 index;
1689           ConstantPoolCacheEntry* cache;
1690           index = Bytes::get_native_u2(pc+1);
1691 
1692           // QQQ Need to make this as inlined as possible. Probably need to
1693           // split all the bytecode cases out so c++ compiler has a chance
1694           // for constant prop to fold everything possible away.
1695 
1696           cache = cp->entry_at(index);
1697           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1698             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1699                     handle_exception);
1700             cache = cp->entry_at(index);
1701           }
1702 
1703 #ifdef VM_JVMTI
1704           if (_jvmti_interp_events) {
1705             int *count_addr;
1706             oop obj;
1707             // Check to see if a field modification watch has been set
1708             // before we take the time to call into the VM.
1709             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1710             if ( *count_addr > 0 ) {
1711               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1712                 obj = (oop)NULL;
1713               } else {
1714                 obj = (oop) STACK_OBJECT(-1);
1715               }
1716               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1717                                           obj,
1718                                           cache),
1719                                           handle_exception);
1720             }
1721           }
1722 #endif /* VM_JVMTI */
1723 
1724           oop obj;
1725           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1726             obj = (oop) cache->f1();
1727             MORE_STACK(1);  // Assume single slot push
1728           } else {
1729             obj = (oop) STACK_OBJECT(-1);
1730             CHECK_NULL(obj);
1731           }
1732 
1733           //
1734           // Now store the result on the stack
1735           //
1736           TosState tos_type = cache->flag_state();
1737           int field_offset = cache->f2();
1738           if (cache->is_volatile()) {
1739             if (tos_type == atos) {
1740               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1741             } else if (tos_type == itos) {
1742               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1743             } else if (tos_type == ltos) {
1744               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1745               MORE_STACK(1);
1746             } else if (tos_type == btos) {
1747               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1748             } else if (tos_type == ctos) {
1749               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1750             } else if (tos_type == stos) {
1751               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1752             } else if (tos_type == ftos) {
1753               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1754             } else {
1755               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1756               MORE_STACK(1);
1757             }
1758           } else {
1759             if (tos_type == atos) {
1760               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1761             } else if (tos_type == itos) {
1762               SET_STACK_INT(obj->int_field(field_offset), -1);
1763             } else if (tos_type == ltos) {
1764               SET_STACK_LONG(obj->long_field(field_offset), 0);
1765               MORE_STACK(1);
1766             } else if (tos_type == btos) {
1767               SET_STACK_INT(obj->byte_field(field_offset), -1);
1768             } else if (tos_type == ctos) {
1769               SET_STACK_INT(obj->char_field(field_offset), -1);
1770             } else if (tos_type == stos) {
1771               SET_STACK_INT(obj->short_field(field_offset), -1);
1772             } else if (tos_type == ftos) {
1773               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1774             } else {
1775               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1776               MORE_STACK(1);
1777             }
1778           }
1779 
1780           UPDATE_PC_AND_CONTINUE(3);
1781          }
1782 
1783       CASE(_putfield):
1784       CASE(_putstatic):
1785         {
1786           u2 index = Bytes::get_native_u2(pc+1);
1787           ConstantPoolCacheEntry* cache = cp->entry_at(index);
1788           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1789             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1790                     handle_exception);
1791             cache = cp->entry_at(index);
1792           }
1793 
1794 #ifdef VM_JVMTI
1795           if (_jvmti_interp_events) {
1796             int *count_addr;
1797             oop obj;
1798             // Check to see if a field modification watch has been set
1799             // before we take the time to call into the VM.
1800             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
1801             if ( *count_addr > 0 ) {
1802               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1803                 obj = (oop)NULL;
1804               }
1805               else {
1806                 if (cache->is_long() || cache->is_double()) {
1807                   obj = (oop) STACK_OBJECT(-3);
1808                 } else {
1809                   obj = (oop) STACK_OBJECT(-2);
1810                 }
1811               }
1812 
1813               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
1814                                           obj,
1815                                           cache,
1816                                           (jvalue *)STACK_SLOT(-1)),
1817                                           handle_exception);
1818             }
1819           }
1820 #endif /* VM_JVMTI */
1821 
1822           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1823           // out so c++ compiler has a chance for constant prop to fold everything possible away.
1824 
1825           oop obj;
1826           int count;
1827           TosState tos_type = cache->flag_state();
1828 
1829           count = -1;
1830           if (tos_type == ltos || tos_type == dtos) {
1831             --count;
1832           }
1833           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1834             obj = (oop) cache->f1();
1835           } else {
1836             --count;
1837             obj = (oop) STACK_OBJECT(count);
1838             CHECK_NULL(obj);
1839           }
1840 
1841           //
1842           // Now store the result
1843           //
1844           int field_offset = cache->f2();
1845           if (cache->is_volatile()) {
1846             if (tos_type == itos) {
1847               obj->release_int_field_put(field_offset, STACK_INT(-1));
1848             } else if (tos_type == atos) {
1849               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
1850               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1851             } else if (tos_type == btos) {
1852               obj->release_byte_field_put(field_offset, STACK_INT(-1));
1853             } else if (tos_type == ltos) {
1854               obj->release_long_field_put(field_offset, STACK_LONG(-1));
1855             } else if (tos_type == ctos) {
1856               obj->release_char_field_put(field_offset, STACK_INT(-1));
1857             } else if (tos_type == stos) {
1858               obj->release_short_field_put(field_offset, STACK_INT(-1));
1859             } else if (tos_type == ftos) {
1860               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
1861             } else {
1862               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
1863             }
1864             OrderAccess::storeload();
1865           } else {
1866             if (tos_type == itos) {
1867               obj->int_field_put(field_offset, STACK_INT(-1));
1868             } else if (tos_type == atos) {
1869               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
1870               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1871             } else if (tos_type == btos) {
1872               obj->byte_field_put(field_offset, STACK_INT(-1));
1873             } else if (tos_type == ltos) {
1874               obj->long_field_put(field_offset, STACK_LONG(-1));
1875             } else if (tos_type == ctos) {
1876               obj->char_field_put(field_offset, STACK_INT(-1));
1877             } else if (tos_type == stos) {
1878               obj->short_field_put(field_offset, STACK_INT(-1));
1879             } else if (tos_type == ftos) {
1880               obj->float_field_put(field_offset, STACK_FLOAT(-1));
1881             } else {
1882               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
1883             }
1884           }
1885 
1886           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
1887         }
1888 
1889       CASE(_new): {
1890         u2 index = Bytes::get_Java_u2(pc+1);
1891         constantPoolOop constants = istate->method()->constants();
1892         if (!constants->tag_at(index).is_unresolved_klass()) {
1893           // Make sure klass is initialized and doesn't have a finalizer
1894           oop entry = (klassOop) *constants->obj_at_addr(index);
1895           assert(entry->is_klass(), "Should be resolved klass");
1896           klassOop k_entry = (klassOop) entry;
1897           assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
1898           instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
1899           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
1900             size_t obj_size = ik->size_helper();
1901             oop result = NULL;
1902             // If the TLAB isn't pre-zeroed then we'll have to do it
1903             bool need_zero = !ZeroTLAB;
1904             if (UseTLAB) {
1905               result = (oop) THREAD->tlab().allocate(obj_size);
1906             }
1907             if (result == NULL) {
1908               need_zero = true;
1909               // Try allocate in shared eden
1910         retry:
1911               HeapWord* compare_to = *Universe::heap()->top_addr();
1912               HeapWord* new_top = compare_to + obj_size;
1913               if (new_top <= *Universe::heap()->end_addr()) {
1914                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
1915                   goto retry;
1916                 }
1917                 result = (oop) compare_to;
1918               }
1919             }
1920             if (result != NULL) {
1921               // Initialize object (if nonzero size and need) and then the header
1922               if (need_zero ) {
1923                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
1924                 obj_size -= sizeof(oopDesc) / oopSize;
1925                 if (obj_size > 0 ) {
1926                   memset(to_zero, 0, obj_size * HeapWordSize);
1927                 }
1928               }
1929               if (UseBiasedLocking) {
1930                 result->set_mark(ik->prototype_header());
1931               } else {
1932                 result->set_mark(markOopDesc::prototype());
1933               }
1934               result->set_klass_gap(0);
1935               result->set_klass(k_entry);
1936               SET_STACK_OBJECT(result, 0);
1937               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1938             }
1939           }
1940         }
1941         // Slow case allocation
1942         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
1943                 handle_exception);
1944         SET_STACK_OBJECT(THREAD->vm_result(), 0);
1945         THREAD->set_vm_result(NULL);
1946         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1947       }
1948       CASE(_anewarray): {
1949         u2 index = Bytes::get_Java_u2(pc+1);
1950         jint size = STACK_INT(-1);
1951         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
1952                 handle_exception);
1953         SET_STACK_OBJECT(THREAD->vm_result(), -1);
1954         THREAD->set_vm_result(NULL);
1955         UPDATE_PC_AND_CONTINUE(3);
1956       }
1957       CASE(_multianewarray): {
1958         jint dims = *(pc+3);
1959         jint size = STACK_INT(-1);
1960         // stack grows down, dimensions are up!
1961         jint *dimarray =
1962                    (jint*)&topOfStack[dims * Interpreter::stackElementWords()+
1963                                       Interpreter::stackElementWords()-1];
1964         //adjust pointer to start of stack element
1965         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
1966                 handle_exception);
1967         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
1968         THREAD->set_vm_result(NULL);
1969         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
1970       }
1971       CASE(_checkcast):
1972           if (STACK_OBJECT(-1) != NULL) {
1973             u2 index = Bytes::get_Java_u2(pc+1);
1974             if (ProfileInterpreter) {
1975               // needs Profile_checkcast QQQ
1976               ShouldNotReachHere();
1977             }
1978             // Constant pool may have actual klass or unresolved klass. If it is
1979             // unresolved we must resolve it
1980             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
1981               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
1982             }
1983             klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
1984             klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
1985             //
1986             // Check for compatibilty. This check must not GC!!
1987             // Seems way more expensive now that we must dispatch
1988             //
1989             if (objKlassOop != klassOf &&
1990                 !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
1991               ResourceMark rm(THREAD);
1992               const char* objName = Klass::cast(objKlassOop)->external_name();
1993               const char* klassName = Klass::cast(klassOf)->external_name();
1994               char* message = SharedRuntime::generate_class_cast_message(
1995                 objName, klassName);
1996               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
1997             }
1998           } else {
1999             if (UncommonNullCast) {
2000 //              istate->method()->set_null_cast_seen();
2001 // [RGV] Not sure what to do here!
2002 
2003             }
2004           }
2005           UPDATE_PC_AND_CONTINUE(3);
2006 
2007       CASE(_instanceof):
2008           if (STACK_OBJECT(-1) == NULL) {
2009             SET_STACK_INT(0, -1);
2010           } else {
2011             u2 index = Bytes::get_Java_u2(pc+1);
2012             // Constant pool may have actual klass or unresolved klass. If it is
2013             // unresolved we must resolve it
2014             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2015               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2016             }
2017             klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
2018             klassOop objKlassOop = STACK_OBJECT(-1)->klass();
2019             //
2020             // Check for compatibilty. This check must not GC!!
2021             // Seems way more expensive now that we must dispatch
2022             //
2023             if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2024               SET_STACK_INT(1, -1);
2025             } else {
2026               SET_STACK_INT(0, -1);
2027             }
2028           }
2029           UPDATE_PC_AND_CONTINUE(3);
2030 
2031       CASE(_ldc_w):
2032       CASE(_ldc):
2033         {
2034           u2 index;
2035           bool wide = false;
2036           int incr = 2; // frequent case
2037           if (opcode == Bytecodes::_ldc) {
2038             index = pc[1];
2039           } else {
2040             index = Bytes::get_Java_u2(pc+1);
2041             incr = 3;
2042             wide = true;
2043           }
2044 
2045           constantPoolOop constants = METHOD->constants();
2046           switch (constants->tag_at(index).value()) {
2047           case JVM_CONSTANT_Integer:
2048             SET_STACK_INT(constants->int_at(index), 0);
2049             break;
2050 
2051           case JVM_CONSTANT_Float:
2052             SET_STACK_FLOAT(constants->float_at(index), 0);
2053             break;
2054 
2055           case JVM_CONSTANT_String:
2056             SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
2057             break;
2058 
2059           case JVM_CONSTANT_Class:
2060             SET_STACK_OBJECT(constants->resolved_klass_at(index)->klass_part()->java_mirror(), 0);
2061             break;
2062 
2063           case JVM_CONSTANT_UnresolvedString:
2064           case JVM_CONSTANT_UnresolvedClass:
2065           case JVM_CONSTANT_UnresolvedClassInError:
2066             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2067             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2068             THREAD->set_vm_result(NULL);
2069             break;
2070 
2071 #if 0
2072           CASE(_fast_igetfield):
2073           CASE(_fastagetfield):
2074           CASE(_fast_aload_0):
2075           CASE(_fast_iaccess_0):
2076           CASE(__fast_aaccess_0):
2077           CASE(_fast_linearswitch):
2078           CASE(_fast_binaryswitch):
2079             fatal("unsupported fast bytecode");
2080 #endif
2081 
2082           default:  ShouldNotReachHere();
2083           }
2084           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2085         }
2086 
2087       CASE(_ldc2_w):
2088         {
2089           u2 index = Bytes::get_Java_u2(pc+1);
2090 
2091           constantPoolOop constants = METHOD->constants();
2092           switch (constants->tag_at(index).value()) {
2093 
2094           case JVM_CONSTANT_Long:
2095              SET_STACK_LONG(constants->long_at(index), 1);
2096             break;
2097 
2098           case JVM_CONSTANT_Double:
2099              SET_STACK_DOUBLE(constants->double_at(index), 1);
2100             break;
2101           default:  ShouldNotReachHere();
2102           }
2103           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2104         }
2105 
2106       CASE(_invokeinterface): {
2107         u2 index = Bytes::get_native_u2(pc+1);
2108 
2109         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2110         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2111 
2112         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2113         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2114           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2115                   handle_exception);
2116           cache = cp->entry_at(index);
2117         }
2118 
2119         istate->set_msg(call_method);
2120 
2121         // Special case of invokeinterface called for virtual method of
2122         // java.lang.Object.  See cpCacheOop.cpp for details.
2123         // This code isn't produced by javac, but could be produced by
2124         // another compliant java compiler.
2125         if (cache->is_methodInterface()) {
2126           methodOop callee;
2127           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2128           if (cache->is_vfinal()) {
2129             callee = (methodOop) cache->f2();
2130           } else {
2131             // get receiver
2132             int parms = cache->parameter_size();
2133             // Same comments as invokevirtual apply here
2134             instanceKlass* rcvrKlass = (instanceKlass*)
2135                                  STACK_OBJECT(-parms)->klass()->klass_part();
2136             callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2137           }
2138           istate->set_callee(callee);
2139           istate->set_callee_entry_point(callee->from_interpreted_entry());
2140 #ifdef VM_JVMTI
2141           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2142             istate->set_callee_entry_point(callee->interpreter_entry());
2143           }
2144 #endif /* VM_JVMTI */
2145           istate->set_bcp_advance(5);
2146           UPDATE_PC_AND_RETURN(0); // I'll be back...
2147         }
2148 
2149         // this could definitely be cleaned up QQQ
2150         methodOop callee;
2151         klassOop iclass = (klassOop)cache->f1();
2152         // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
2153         // get receiver
2154         int parms = cache->parameter_size();
2155         oop rcvr = STACK_OBJECT(-parms);
2156         CHECK_NULL(rcvr);
2157         instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
2158         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2159         int i;
2160         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2161           if (ki->interface_klass() == iclass) break;
2162         }
2163         // If the interface isn't found, this class doesn't implement this
2164         // interface.  The link resolver checks this but only for the first
2165         // time this interface is called.
2166         if (i == int2->itable_length()) {
2167           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2168         }
2169         int mindex = cache->f2();
2170         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2171         callee = im[mindex].method();
2172         if (callee == NULL) {
2173           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2174         }
2175 
2176         istate->set_callee(callee);
2177         istate->set_callee_entry_point(callee->from_interpreted_entry());
2178 #ifdef VM_JVMTI
2179         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2180           istate->set_callee_entry_point(callee->interpreter_entry());
2181         }
2182 #endif /* VM_JVMTI */
2183         istate->set_bcp_advance(5);
2184         UPDATE_PC_AND_RETURN(0); // I'll be back...
2185       }
2186 
2187       CASE(_invokevirtual):
2188       CASE(_invokespecial):
2189       CASE(_invokestatic): {
2190         u2 index = Bytes::get_native_u2(pc+1);
2191 
2192         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2193         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2194         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2195 
2196         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2197           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2198                   handle_exception);
2199           cache = cp->entry_at(index);
2200         }
2201 
2202         istate->set_msg(call_method);
2203         {
2204           methodOop callee;
2205           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2206             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2207             if (cache->is_vfinal()) callee = (methodOop) cache->f2();
2208             else {
2209               // get receiver
2210               int parms = cache->parameter_size();
2211               // this works but needs a resourcemark and seems to create a vtable on every call:
2212               // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
2213               //
2214               // this fails with an assert
2215               // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
2216               // but this works
2217               instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
2218               /*
2219                 Executing this code in java.lang.String:
2220                     public String(char value[]) {
2221                           this.count = value.length;
2222                           this.value = (char[])value.clone();
2223                      }
2224 
2225                  a find on rcvr->klass()->klass_part() reports:
2226                  {type array char}{type array class}
2227                   - klass: {other class}
2228 
2229                   but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2230                   because rcvr->klass()->klass_part()->oop_is_instance() == 0
2231                   However it seems to have a vtable in the right location. Huh?
2232 
2233               */
2234               callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2235             }
2236           } else {
2237             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2238               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2239             }
2240             callee = (methodOop) cache->f1();
2241           }
2242 
2243           istate->set_callee(callee);
2244           istate->set_callee_entry_point(callee->from_interpreted_entry());
2245 #ifdef VM_JVMTI
2246           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2247             istate->set_callee_entry_point(callee->interpreter_entry());
2248           }
2249 #endif /* VM_JVMTI */
2250           istate->set_bcp_advance(3);
2251           UPDATE_PC_AND_RETURN(0); // I'll be back...
2252         }
2253       }
2254 
2255       /* Allocate memory for a new java object. */
2256 
2257       CASE(_newarray): {
2258         BasicType atype = (BasicType) *(pc+1);
2259         jint size = STACK_INT(-1);
2260         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2261                 handle_exception);
2262         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2263         THREAD->set_vm_result(NULL);
2264 
2265         UPDATE_PC_AND_CONTINUE(2);
2266       }
2267 
2268       /* Throw an exception. */
2269 
2270       CASE(_athrow): {
2271           oop except_oop = STACK_OBJECT(-1);
2272           CHECK_NULL(except_oop);
2273           // set pending_exception so we use common code
2274           THREAD->set_pending_exception(except_oop, NULL, 0);
2275           goto handle_exception;
2276       }
2277 
2278       /* goto and jsr. They are exactly the same except jsr pushes
2279        * the address of the next instruction first.
2280        */
2281 
2282       CASE(_jsr): {
2283           /* push bytecode index on stack */
2284           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2285           MORE_STACK(1);
2286           /* FALL THROUGH */
2287       }
2288 
2289       CASE(_goto):
2290       {
2291           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2292           address branch_pc = pc;
2293           UPDATE_PC(offset);
2294           DO_BACKEDGE_CHECKS(offset, branch_pc);
2295           CONTINUE;
2296       }
2297 
2298       CASE(_jsr_w): {
2299           /* push return address on the stack */
2300           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2301           MORE_STACK(1);
2302           /* FALL THROUGH */
2303       }
2304 
2305       CASE(_goto_w):
2306       {
2307           int32_t offset = Bytes::get_Java_u4(pc + 1);
2308           address branch_pc = pc;
2309           UPDATE_PC(offset);
2310           DO_BACKEDGE_CHECKS(offset, branch_pc);
2311           CONTINUE;
2312       }
2313 
2314       /* return from a jsr or jsr_w */
2315 
2316       CASE(_ret): {
2317           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2318           UPDATE_PC_AND_CONTINUE(0);
2319       }
2320 
2321       /* debugger breakpoint */
2322 
2323       CASE(_breakpoint): {
2324           Bytecodes::Code original_bytecode;
2325           DECACHE_STATE();
2326           SET_LAST_JAVA_FRAME();
2327           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2328                               METHOD, pc);
2329           RESET_LAST_JAVA_FRAME();
2330           CACHE_STATE();
2331           if (THREAD->has_pending_exception()) goto handle_exception;
2332             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2333                                                     handle_exception);
2334 
2335           opcode = (jubyte)original_bytecode;
2336           goto opcode_switch;
2337       }
2338 
2339       DEFAULT:
2340           fatal2("\t*** Unimplemented opcode: %d = %s\n",
2341                  opcode, Bytecodes::name((Bytecodes::Code)opcode));
2342           goto finish;
2343 
2344       } /* switch(opc) */
2345 
2346 
2347 #ifdef USELABELS
2348     check_for_exception:
2349 #endif
2350     {
2351       if (!THREAD->has_pending_exception()) {
2352         CONTINUE;
2353       }
2354       /* We will be gcsafe soon, so flush our state. */
2355       DECACHE_PC();
2356       goto handle_exception;
2357     }
2358   do_continue: ;
2359 
2360   } /* while (1) interpreter loop */
2361 
2362 
2363   // An exception exists in the thread state see whether this activation can handle it
2364   handle_exception: {
2365 
2366     HandleMarkCleaner __hmc(THREAD);
2367     Handle except_oop(THREAD, THREAD->pending_exception());
2368     // Prevent any subsequent HandleMarkCleaner in the VM
2369     // from freeing the except_oop handle.
2370     HandleMark __hm(THREAD);
2371 
2372     THREAD->clear_pending_exception();
2373     assert(except_oop(), "No exception to process");
2374     intptr_t continuation_bci;
2375     // expression stack is emptied
2376     topOfStack = istate->stack_base() - Interpreter::stackElementWords();
2377     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2378             handle_exception);
2379 
2380     except_oop = (oop) THREAD->vm_result();
2381     THREAD->set_vm_result(NULL);
2382     if (continuation_bci >= 0) {
2383       // Place exception on top of stack
2384       SET_STACK_OBJECT(except_oop(), 0);
2385       MORE_STACK(1);
2386       pc = METHOD->code_base() + continuation_bci;
2387       if (TraceExceptions) {
2388         ttyLocker ttyl;
2389         ResourceMark rm;
2390         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2391         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2392         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2393                       pc - (intptr_t)METHOD->code_base(),
2394                       continuation_bci, THREAD);
2395       }
2396       // for AbortVMOnException flag
2397       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2398       goto run;
2399     }
2400     if (TraceExceptions) {
2401       ttyLocker ttyl;
2402       ResourceMark rm;
2403       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2404       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2405       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2406                     pc  - (intptr_t) METHOD->code_base(),
2407                     THREAD);
2408     }
2409     // for AbortVMOnException flag
2410     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2411     // No handler in this activation, unwind and try again
2412     THREAD->set_pending_exception(except_oop(), NULL, 0);
2413     goto handle_return;
2414   }  /* handle_exception: */
2415 
2416 
2417 
2418   // Return from an interpreter invocation with the result of the interpretation
2419   // on the top of the Java Stack (or a pending exception)
2420 
2421 handle_Pop_Frame:
2422 
2423   // We don't really do anything special here except we must be aware
2424   // that we can get here without ever locking the method (if sync).
2425   // Also we skip the notification of the exit.
2426 
2427   istate->set_msg(popping_frame);
2428   // Clear pending so while the pop is in process
2429   // we don't start another one if a call_vm is done.
2430   THREAD->clr_pop_frame_pending();
2431   // Let interpreter (only) see the we're in the process of popping a frame
2432   THREAD->set_pop_frame_in_process();
2433 
2434 handle_return:
2435   {
2436     DECACHE_STATE();
2437 
2438     bool suppress_error = istate->msg() == popping_frame;
2439     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
2440     Handle original_exception(THREAD, THREAD->pending_exception());
2441     Handle illegal_state_oop(THREAD, NULL);
2442 
2443     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2444     // in any following VM entries from freeing our live handles, but illegal_state_oop
2445     // isn't really allocated yet and so doesn't become live until later and
2446     // in unpredicatable places. Instead we must protect the places where we enter the
2447     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2448     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2449     // unfortunately isn't possible.
2450 
2451     THREAD->clear_pending_exception();
2452 
2453     //
2454     // As far as we are concerned we have returned. If we have a pending exception
2455     // that will be returned as this invocation's result. However if we get any
2456     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2457     // will be our final result (i.e. monitor exception trumps a pending exception).
2458     //
2459 
2460     // If we never locked the method (or really passed the point where we would have),
2461     // there is no need to unlock it (or look for other monitors), since that
2462     // could not have happened.
2463 
2464     if (THREAD->do_not_unlock()) {
2465 
2466       // Never locked, reset the flag now because obviously any caller must
2467       // have passed their point of locking for us to have gotten here.
2468 
2469       THREAD->clr_do_not_unlock();
2470     } else {
2471       // At this point we consider that we have returned. We now check that the
2472       // locks were properly block structured. If we find that they were not
2473       // used properly we will return with an illegal monitor exception.
2474       // The exception is checked by the caller not the callee since this
2475       // checking is considered to be part of the invocation and therefore
2476       // in the callers scope (JVM spec 8.13).
2477       //
2478       // Another weird thing to watch for is if the method was locked
2479       // recursively and then not exited properly. This means we must
2480       // examine all the entries in reverse time(and stack) order and
2481       // unlock as we find them. If we find the method monitor before
2482       // we are at the initial entry then we should throw an exception.
2483       // It is not clear the template based interpreter does this
2484       // correctly
2485 
2486       BasicObjectLock* base = istate->monitor_base();
2487       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2488       bool method_unlock_needed = METHOD->is_synchronized();
2489       // We know the initial monitor was used for the method don't check that
2490       // slot in the loop
2491       if (method_unlock_needed) base--;
2492 
2493       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2494       while (end < base) {
2495         oop lockee = end->obj();
2496         if (lockee != NULL) {
2497           BasicLock* lock = end->lock();
2498           markOop header = lock->displaced_header();
2499           end->set_obj(NULL);
2500           // If it isn't recursive we either must swap old header or call the runtime
2501           if (header != NULL) {
2502             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2503               // restore object for the slow case
2504               end->set_obj(lockee);
2505               {
2506                 // Prevent any HandleMarkCleaner from freeing our live handles
2507                 HandleMark __hm(THREAD);
2508                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2509               }
2510             }
2511           }
2512           // One error is plenty
2513           if (illegal_state_oop() == NULL && !suppress_error) {
2514             {
2515               // Prevent any HandleMarkCleaner from freeing our live handles
2516               HandleMark __hm(THREAD);
2517               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2518             }
2519             assert(THREAD->has_pending_exception(), "Lost our exception!");
2520             illegal_state_oop = THREAD->pending_exception();
2521             THREAD->clear_pending_exception();
2522           }
2523         }
2524         end++;
2525       }
2526       // Unlock the method if needed
2527       if (method_unlock_needed) {
2528         if (base->obj() == NULL) {
2529           // The method is already unlocked this is not good.
2530           if (illegal_state_oop() == NULL && !suppress_error) {
2531             {
2532               // Prevent any HandleMarkCleaner from freeing our live handles
2533               HandleMark __hm(THREAD);
2534               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2535             }
2536             assert(THREAD->has_pending_exception(), "Lost our exception!");
2537             illegal_state_oop = THREAD->pending_exception();
2538             THREAD->clear_pending_exception();
2539           }
2540         } else {
2541           //
2542           // The initial monitor is always used for the method
2543           // However if that slot is no longer the oop for the method it was unlocked
2544           // and reused by something that wasn't unlocked!
2545           //
2546           // deopt can come in with rcvr dead because c2 knows
2547           // its value is preserved in the monitor. So we can't use locals[0] at all
2548           // and must use first monitor slot.
2549           //
2550           oop rcvr = base->obj();
2551           if (rcvr == NULL) {
2552             if (!suppress_error) {
2553               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
2554               illegal_state_oop = THREAD->pending_exception();
2555               THREAD->clear_pending_exception();
2556             }
2557           } else {
2558             BasicLock* lock = base->lock();
2559             markOop header = lock->displaced_header();
2560             base->set_obj(NULL);
2561             // If it isn't recursive we either must swap old header or call the runtime
2562             if (header != NULL) {
2563               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
2564                 // restore object for the slow case
2565                 base->set_obj(rcvr);
2566                 {
2567                   // Prevent any HandleMarkCleaner from freeing our live handles
2568                   HandleMark __hm(THREAD);
2569                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2570                 }
2571                 if (THREAD->has_pending_exception()) {
2572                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2573                   THREAD->clear_pending_exception();
2574                 }
2575               }
2576             }
2577           }
2578         }
2579       }
2580     }
2581 
2582     //
2583     // Notify jvmti/jvmdi
2584     //
2585     // NOTE: we do not notify a method_exit if we have a pending exception,
2586     // including an exception we generate for unlocking checks.  In the former
2587     // case, JVMDI has already been notified by our call for the exception handler
2588     // and in both cases as far as JVMDI is concerned we have already returned.
2589     // If we notify it again JVMDI will be all confused about how many frames
2590     // are still on the stack (4340444).
2591     //
2592     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
2593     // method_exit events whenever we leave an activation unless it was done
2594     // for popframe. This is nothing like jvmdi. However we are passing the
2595     // tests at the moment (apparently because they are jvmdi based) so rather
2596     // than change this code and possibly fail tests we will leave it alone
2597     // (with this note) in anticipation of changing the vm and the tests
2598     // simultaneously.
2599 
2600 
2601     //
2602     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
2603 
2604 
2605 
2606 #ifdef VM_JVMTI
2607       if (_jvmti_interp_events) {
2608         // Whenever JVMTI puts a thread in interp_only_mode, method
2609         // entry/exit events are sent for that thread to track stack depth.
2610         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
2611           {
2612             // Prevent any HandleMarkCleaner from freeing our live handles
2613             HandleMark __hm(THREAD);
2614             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
2615           }
2616         }
2617       }
2618 #endif /* VM_JVMTI */
2619 
2620     //
2621     // See if we are returning any exception
2622     // A pending exception that was pending prior to a possible popping frame
2623     // overrides the popping frame.
2624     //
2625     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
2626     if (illegal_state_oop() != NULL || original_exception() != NULL) {
2627       // inform the frame manager we have no result
2628       istate->set_msg(throwing_exception);
2629       if (illegal_state_oop() != NULL)
2630         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
2631       else
2632         THREAD->set_pending_exception(original_exception(), NULL, 0);
2633       istate->set_return_kind((Bytecodes::Code)opcode);
2634       UPDATE_PC_AND_RETURN(0);
2635     }
2636 
2637     if (istate->msg() == popping_frame) {
2638       // Make it simpler on the assembly code and set the message for the frame pop.
2639       // returns
2640       if (istate->prev() == NULL) {
2641         // We must be returning to a deoptimized frame (because popframe only happens between
2642         // two interpreted frames). We need to save the current arguments in C heap so that
2643         // the deoptimized frame when it restarts can copy the arguments to its expression
2644         // stack and re-execute the call. We also have to notify deoptimization that this
2645         // has occured and to pick the preerved args copy them to the deoptimized frame's
2646         // java expression stack. Yuck.
2647         //
2648         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
2649                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
2650         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
2651       }
2652       UPDATE_PC_AND_RETURN(1);
2653     } else {
2654       // Normal return
2655       // Advance the pc and return to frame manager
2656       istate->set_msg(return_from_method);
2657       istate->set_return_kind((Bytecodes::Code)opcode);
2658       UPDATE_PC_AND_RETURN(1);
2659     }
2660   } /* handle_return: */
2661 
2662 // This is really a fatal error return
2663 
2664 finish:
2665   DECACHE_TOS();
2666   DECACHE_PC();
2667 
2668   return;
2669 }
2670 
2671 /*
2672  * All the code following this point is only produced once and is not present
2673  * in the JVMTI version of the interpreter
2674 */
2675 
2676 #ifndef VM_JVMTI
2677 
2678 // This constructor should only be used to contruct the object to signal
2679 // interpreter initialization. All other instances should be created by
2680 // the frame manager.
2681 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
2682   if (msg != initialize) ShouldNotReachHere();
2683   _msg = msg;
2684   _self_link = this;
2685   _prev_link = NULL;
2686 }
2687 
2688 // Inline static functions for Java Stack and Local manipulation
2689 
2690 // The implementations are platform dependent. We have to worry about alignment
2691 // issues on some machines which can change on the same platform depending on
2692 // whether it is an LP64 machine also.
2693 #ifdef ASSERT
2694 void BytecodeInterpreter::verify_stack_tag(intptr_t *tos, frame::Tag tag, int offset) {
2695   if (TaggedStackInterpreter) {
2696     frame::Tag t = (frame::Tag)tos[Interpreter::expr_tag_index_at(-offset)];
2697     assert(t == tag, "stack tag mismatch");
2698   }
2699 }
2700 #endif // ASSERT
2701 
2702 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
2703   debug_only(verify_stack_tag(tos, frame::TagValue, offset));
2704   return (address) tos[Interpreter::expr_index_at(-offset)];
2705 }
2706 
2707 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
2708   debug_only(verify_stack_tag(tos, frame::TagValue, offset));
2709   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
2710 }
2711 
2712 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
2713   debug_only(verify_stack_tag(tos, frame::TagValue, offset));
2714   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
2715 }
2716 
2717 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
2718   debug_only(verify_stack_tag(tos, frame::TagReference, offset));
2719   return (oop)tos [Interpreter::expr_index_at(-offset)];
2720 }
2721 
2722 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
2723   debug_only(verify_stack_tag(tos, frame::TagValue, offset));
2724   debug_only(verify_stack_tag(tos, frame::TagValue, offset-1));
2725   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
2726 }
2727 
2728 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
2729   debug_only(verify_stack_tag(tos, frame::TagValue, offset));
2730   debug_only(verify_stack_tag(tos, frame::TagValue, offset-1));
2731   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
2732 }
2733 
2734 void BytecodeInterpreter::tag_stack(intptr_t *tos, frame::Tag tag, int offset) {
2735   if (TaggedStackInterpreter)
2736     tos[Interpreter::expr_tag_index_at(-offset)] = (intptr_t)tag;
2737 }
2738 
2739 // only used for value types
2740 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
2741                                                         int offset) {
2742   tag_stack(tos, frame::TagValue, offset);
2743   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2744 }
2745 
2746 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
2747                                                        int offset) {
2748   tag_stack(tos, frame::TagValue, offset);
2749   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2750 }
2751 
2752 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
2753                                                          int offset) {
2754   tag_stack(tos, frame::TagValue, offset);
2755   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2756 }
2757 
2758 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
2759                                                           int offset) {
2760   tag_stack(tos, frame::TagReference, offset);
2761   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2762 }
2763 
2764 // needs to be platform dep for the 32 bit platforms.
2765 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
2766                                                           int offset) {
2767   tag_stack(tos, frame::TagValue, offset);
2768   tag_stack(tos, frame::TagValue, offset-1);
2769   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
2770 }
2771 
2772 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
2773                                               address addr, int offset) {
2774   tag_stack(tos, frame::TagValue, offset);
2775   tag_stack(tos, frame::TagValue, offset-1);
2776   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
2777                         ((VMJavaVal64*)addr)->d);
2778 }
2779 
2780 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
2781                                                         int offset) {
2782   tag_stack(tos, frame::TagValue, offset);
2783   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2784   tag_stack(tos, frame::TagValue, offset-1);
2785   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
2786 }
2787 
2788 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
2789                                             address addr, int offset) {
2790   tag_stack(tos, frame::TagValue, offset);
2791   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2792   tag_stack(tos, frame::TagValue, offset-1);
2793   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
2794                         ((VMJavaVal64*)addr)->l;
2795 }
2796 
2797 // Locals
2798 
2799 #ifdef ASSERT
2800 void BytecodeInterpreter::verify_locals_tag(intptr_t *locals, frame::Tag tag,
2801                                      int offset) {
2802   if (TaggedStackInterpreter) {
2803     frame::Tag t = (frame::Tag)locals[Interpreter::local_tag_index_at(-offset)];
2804     assert(t == tag, "locals tag mismatch");
2805   }
2806 }
2807 #endif // ASSERT
2808 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
2809   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
2810   return (address)locals[Interpreter::local_index_at(-offset)];
2811 }
2812 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
2813   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
2814   return (jint)locals[Interpreter::local_index_at(-offset)];
2815 }
2816 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
2817   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
2818   return (jfloat)locals[Interpreter::local_index_at(-offset)];
2819 }
2820 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
2821   debug_only(verify_locals_tag(locals, frame::TagReference, offset));
2822   return (oop)locals[Interpreter::local_index_at(-offset)];
2823 }
2824 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
2825   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
2826   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
2827   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
2828 }
2829 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
2830   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
2831   debug_only(verify_locals_tag(locals, frame::TagValue, offset+1));
2832   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
2833 }
2834 
2835 // Returns the address of locals value.
2836 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
2837   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
2838   debug_only(verify_locals_tag(locals, frame::TagValue, offset+1));
2839   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2840 }
2841 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
2842   debug_only(verify_locals_tag(locals, frame::TagValue, offset));
2843   debug_only(verify_locals_tag(locals, frame::TagValue, offset+1));
2844   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2845 }
2846 
2847 void BytecodeInterpreter::tag_locals(intptr_t *locals, frame::Tag tag, int offset) {
2848   if (TaggedStackInterpreter)
2849     locals[Interpreter::local_tag_index_at(-offset)] = (intptr_t)tag;
2850 }
2851 
2852 // Used for local value or returnAddress
2853 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
2854                                    address value, int offset) {
2855   tag_locals(locals, frame::TagValue, offset);
2856   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
2857 }
2858 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
2859                                    jint value, int offset) {
2860   tag_locals(locals, frame::TagValue, offset);
2861   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
2862 }
2863 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
2864                                    jfloat value, int offset) {
2865   tag_locals(locals, frame::TagValue, offset);
2866   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
2867 }
2868 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
2869                                    oop value, int offset) {
2870   tag_locals(locals, frame::TagReference, offset);
2871   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
2872 }
2873 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
2874                                    jdouble value, int offset) {
2875   tag_locals(locals, frame::TagValue, offset);
2876   tag_locals(locals, frame::TagValue, offset+1);
2877   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
2878 }
2879 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
2880                                    jlong value, int offset) {
2881   tag_locals(locals, frame::TagValue, offset);
2882   tag_locals(locals, frame::TagValue, offset+1);
2883   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
2884 }
2885 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
2886                                    address addr, int offset) {
2887   tag_locals(locals, frame::TagValue, offset);
2888   tag_locals(locals, frame::TagValue, offset+1);
2889   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
2890 }
2891 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
2892                                    address addr, int offset) {
2893   tag_locals(locals, frame::TagValue, offset);
2894   tag_locals(locals, frame::TagValue, offset+1);
2895   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
2896 }
2897 
2898 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
2899                           intptr_t* locals, int locals_offset) {
2900   // Copy tag from stack to locals.  astore's operand can be returnAddress
2901   // and may not be TagReference
2902   if (TaggedStackInterpreter) {
2903     frame::Tag t = (frame::Tag) tos[Interpreter::expr_tag_index_at(-stack_offset)];
2904     locals[Interpreter::local_tag_index_at(-locals_offset)] = (intptr_t)t;
2905   }
2906   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
2907   locals[Interpreter::local_index_at(-locals_offset)] = value;
2908 }
2909 
2910 
2911 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
2912                                    int to_offset) {
2913   if (TaggedStackInterpreter) {
2914     tos[Interpreter::expr_tag_index_at(-to_offset)] =
2915                       (intptr_t)tos[Interpreter::expr_tag_index_at(-from_offset)];
2916   }
2917   tos[Interpreter::expr_index_at(-to_offset)] =
2918                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
2919 }
2920 
2921 void BytecodeInterpreter::dup(intptr_t *tos) {
2922   copy_stack_slot(tos, -1, 0);
2923 }
2924 void BytecodeInterpreter::dup2(intptr_t *tos) {
2925   copy_stack_slot(tos, -2, 0);
2926   copy_stack_slot(tos, -1, 1);
2927 }
2928 
2929 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
2930   /* insert top word two down */
2931   copy_stack_slot(tos, -1, 0);
2932   copy_stack_slot(tos, -2, -1);
2933   copy_stack_slot(tos, 0, -2);
2934 }
2935 
2936 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
2937   /* insert top word three down  */
2938   copy_stack_slot(tos, -1, 0);
2939   copy_stack_slot(tos, -2, -1);
2940   copy_stack_slot(tos, -3, -2);
2941   copy_stack_slot(tos, 0, -3);
2942 }
2943 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
2944   /* insert top 2 slots three down */
2945   copy_stack_slot(tos, -1, 1);
2946   copy_stack_slot(tos, -2, 0);
2947   copy_stack_slot(tos, -3, -1);
2948   copy_stack_slot(tos, 1, -2);
2949   copy_stack_slot(tos, 0, -3);
2950 }
2951 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
2952   /* insert top 2 slots four down */
2953   copy_stack_slot(tos, -1, 1);
2954   copy_stack_slot(tos, -2, 0);
2955   copy_stack_slot(tos, -3, -1);
2956   copy_stack_slot(tos, -4, -2);
2957   copy_stack_slot(tos, 1, -3);
2958   copy_stack_slot(tos, 0, -4);
2959 }
2960 
2961 
2962 void BytecodeInterpreter::swap(intptr_t *tos) {
2963   // swap top two elements
2964   intptr_t val = tos[Interpreter::expr_index_at(1)];
2965   frame::Tag t;
2966   if (TaggedStackInterpreter) {
2967     t = (frame::Tag) tos[Interpreter::expr_tag_index_at(1)];
2968   }
2969   // Copy -2 entry to -1
2970   copy_stack_slot(tos, -2, -1);
2971   // Store saved -1 entry into -2
2972   if (TaggedStackInterpreter) {
2973     tos[Interpreter::expr_tag_index_at(2)] = (intptr_t)t;
2974   }
2975   tos[Interpreter::expr_index_at(2)] = val;
2976 }
2977 // --------------------------------------------------------------------------------
2978 // Non-product code
2979 #ifndef PRODUCT
2980 
2981 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
2982   switch (msg) {
2983      case BytecodeInterpreter::no_request:  return("no_request");
2984      case BytecodeInterpreter::initialize:  return("initialize");
2985      // status message to C++ interpreter
2986      case BytecodeInterpreter::method_entry:  return("method_entry");
2987      case BytecodeInterpreter::method_resume:  return("method_resume");
2988      case BytecodeInterpreter::got_monitors:  return("got_monitors");
2989      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
2990      // requests to frame manager from C++ interpreter
2991      case BytecodeInterpreter::call_method:  return("call_method");
2992      case BytecodeInterpreter::return_from_method:  return("return_from_method");
2993      case BytecodeInterpreter::more_monitors:  return("more_monitors");
2994      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
2995      case BytecodeInterpreter::popping_frame:  return("popping_frame");
2996      case BytecodeInterpreter::do_osr:  return("do_osr");
2997      // deopt
2998      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
2999      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3000      default: return("BAD MSG");
3001   }
3002 }
3003 void
3004 BytecodeInterpreter::print() {
3005   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3006   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3007   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3008   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3009   {
3010     ResourceMark rm;
3011     char *method_name = _method->name_and_sig_as_C_string();
3012     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3013   }
3014   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3015   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3016   tty->print_cr("msg: %s", C_msg(this->_msg));
3017   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3018   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3019   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3020   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3021   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3022   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
3023   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3024   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
3025   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3026   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3027   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3028 #ifdef SPARC
3029   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3030   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3031   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3032   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3033 #endif
3034 #ifdef IA64
3035   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3036 #endif // IA64
3037   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3038 }
3039 
3040 extern "C" {
3041     void PI(uintptr_t arg) {
3042         ((BytecodeInterpreter*)arg)->print();
3043     }
3044 }
3045 #endif // PRODUCT
3046 
3047 #endif // JVMTI
3048 #endif // CC_INTERP