1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)generation.cpp       1.245 07/05/05 17:05:51 JVM"
   3 #endif
   4 /*
   5  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 # include "incls/_precompiled.incl"
  29 # include "incls/_generation.cpp.incl"
  30 
  31 Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
  32   _level(level),
  33   _ref_processor(NULL) {
  34   if (!_virtual_space.initialize(rs, initial_size)) {
  35     vm_exit_during_initialization("Could not reserve enough space for "
  36                     "object heap");
  37   }
  38   _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
  39           (HeapWord*)_virtual_space.high_boundary());
  40 }
  41 
  42 GenerationSpec* Generation::spec() {
  43   GenCollectedHeap* gch = GenCollectedHeap::heap();
  44   assert(0 <= level() && level() < gch->_n_gens, "Bad gen level");
  45   return gch->_gen_specs[level()];
  46 }
  47 
  48 size_t Generation::max_capacity() const {
  49   return reserved().byte_size();
  50 }
  51 
  52 void Generation::print_heap_change(size_t prev_used) const {
  53   if (PrintGCDetails && Verbose) {
  54     gclog_or_tty->print(" "  SIZE_FORMAT
  55                         "->" SIZE_FORMAT
  56                         "("  SIZE_FORMAT ")",
  57                         prev_used, used(), capacity());
  58   } else {
  59     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  60                         "->" SIZE_FORMAT "K"
  61                         "("  SIZE_FORMAT "K)",
  62                         prev_used / K, used() / K, capacity() / K);
  63   }
  64 }
  65 
  66 // By default we get a single threaded default reference processor;
  67 // generations needing multi-threaded refs discovery override this method.
  68 void Generation::ref_processor_init() {
  69   assert(_ref_processor == NULL, "a reference processor already exists");
  70   assert(!_reserved.is_empty(), "empty generation?");
  71   _ref_processor =
  72     new ReferenceProcessor(_reserved,                  // span
  73                            refs_discovery_is_atomic(), // atomic_discovery
  74                            refs_discovery_is_mt());    // mt_discovery
  75   if (_ref_processor == NULL) {
  76     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
  77   }
  78 }
  79 
  80 void Generation::print() const { print_on(tty); }
  81 
  82 void Generation::print_on(outputStream* st)  const {
  83   st->print(" %-20s", name());
  84   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", 
  85              capacity()/K, used()/K);
  86   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  87               _virtual_space.low_boundary(),
  88               _virtual_space.high(),
  89               _virtual_space.high_boundary());
  90 }
  91 
  92 void Generation::print_summary_info() { print_summary_info_on(tty); }
  93 
  94 void Generation::print_summary_info_on(outputStream* st) {
  95   StatRecord* sr = stat_record();
  96   double time = sr->accumulated_time.seconds();
  97   st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
  98                "%d GC's, avg GC time %3.7f]", 
  99                level(), time, sr->invocations,
 100                sr->invocations > 0 ? time / sr->invocations : 0.0);
 101 }
 102 
 103 // Utility iterator classes
 104 
 105 class GenerationIsInReservedClosure : public SpaceClosure {
 106  public:
 107   const void* _p;
 108   Space* sp;
 109   virtual void do_space(Space* s) {
 110     if (sp == NULL) {
 111       if (s->is_in_reserved(_p)) sp = s;
 112     }
 113   }
 114   GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
 115 };
 116 
 117 class GenerationIsInClosure : public SpaceClosure {
 118  public:
 119   const void* _p;
 120   Space* sp;
 121   virtual void do_space(Space* s) {
 122     if (sp == NULL) {
 123       if (s->is_in(_p)) sp = s;
 124     }
 125   }
 126   GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
 127 };
 128 
 129 bool Generation::is_in(const void* p) const {
 130   GenerationIsInClosure blk(p);
 131   ((Generation*)this)->space_iterate(&blk);
 132   return blk.sp != NULL;
 133 }
 134 
 135 DefNewGeneration* Generation::as_DefNewGeneration() {
 136   assert((kind() == Generation::DefNew) ||
 137          (kind() == Generation::ParNew) ||
 138          (kind() == Generation::ASParNew),
 139     "Wrong youngest generation type"); 
 140   return (DefNewGeneration*) this;
 141 }
 142 
 143 Generation* Generation::next_gen() const {
 144   GenCollectedHeap* gch = GenCollectedHeap::heap();
 145   int next = level() + 1;
 146   if (next < gch->_n_gens) {
 147     return gch->_gens[next];
 148   } else {
 149     return NULL;
 150   }
 151 }
 152 
 153 size_t Generation::max_contiguous_available() const {
 154   // The largest number of contiguous free words in this or any higher generation.
 155   size_t max = 0;
 156   for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
 157     size_t avail = gen->contiguous_available();
 158     if (avail > max) {
 159       max = avail;
 160     }
 161   }
 162   return max;
 163 }
 164 
 165 bool Generation::promotion_attempt_is_safe(size_t promotion_in_bytes,
 166                                            bool not_used) const {
 167   if (PrintGC && Verbose) {
 168     gclog_or_tty->print_cr("Generation::promotion_attempt_is_safe"
 169                 " contiguous_available: " SIZE_FORMAT
 170                 " promotion_in_bytes: " SIZE_FORMAT,
 171                 max_contiguous_available(), promotion_in_bytes);
 172   }
 173   return max_contiguous_available() >= promotion_in_bytes;
 174 }
 175 
 176 // Ignores "ref" and calls allocate().
 177 oop Generation::promote(oop obj, size_t obj_size, oop* ref) {
 178   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 179 
 180 #ifndef PRODUCT
 181   if (Universe::heap()->promotion_should_fail()) {
 182     return NULL;
 183   }
 184 #endif  // #ifndef PRODUCT
 185 
 186   HeapWord* result = allocate(obj_size, false);
 187   if (result != NULL) {
 188     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
 189     return oop(result);
 190   } else {
 191     GenCollectedHeap* gch = GenCollectedHeap::heap();
 192     return gch->handle_failed_promotion(this, obj, obj_size, ref);
 193   }
 194 }
 195 
 196 oop Generation::par_promote(int thread_num,
 197                             oop obj, markOop m, size_t word_sz) {
 198   // Could do a bad general impl here that gets a lock.  But no.
 199   ShouldNotCallThis();
 200   return NULL;
 201 }
 202 
 203 void Generation::par_promote_alloc_undo(int thread_num,
 204                                         HeapWord* obj, size_t word_sz) {
 205   // Could do a bad general impl here that gets a lock.  But no.
 206   guarantee(false, "No good general implementation.");
 207 }
 208 
 209 Space* Generation::space_containing(const void* p) const {
 210   GenerationIsInReservedClosure blk(p);
 211   // Cast away const
 212   ((Generation*)this)->space_iterate(&blk);
 213   return blk.sp;
 214 }
 215 
 216 // Some of these are mediocre general implementations.  Should be
 217 // overridden to get better performance.
 218 
 219 class GenerationBlockStartClosure : public SpaceClosure {
 220  public:
 221   const void* _p;
 222   HeapWord* _start;
 223   virtual void do_space(Space* s) {
 224     if (_start == NULL && s->is_in_reserved(_p)) {
 225       _start = s->block_start(_p);
 226     }
 227   }
 228   GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
 229 };
 230 
 231 HeapWord* Generation::block_start(const void* p) const {
 232   GenerationBlockStartClosure blk(p);
 233   // Cast away const
 234   ((Generation*)this)->space_iterate(&blk);
 235   return blk._start;
 236 }
 237 
 238 class GenerationBlockSizeClosure : public SpaceClosure {
 239  public:
 240   const HeapWord* _p;
 241   size_t size;
 242   virtual void do_space(Space* s) {
 243     if (size == 0 && s->is_in_reserved(_p)) {
 244       size = s->block_size(_p);
 245     }
 246   }
 247   GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
 248 };
 249 
 250 size_t Generation::block_size(const HeapWord* p) const {
 251   GenerationBlockSizeClosure blk(p);
 252   // Cast away const
 253   ((Generation*)this)->space_iterate(&blk);
 254   assert(blk.size > 0, "seems reasonable");
 255   return blk.size;
 256 }
 257 
 258 class GenerationBlockIsObjClosure : public SpaceClosure {
 259  public:
 260   const HeapWord* _p;
 261   bool is_obj;
 262   virtual void do_space(Space* s) {
 263     if (!is_obj && s->is_in_reserved(_p)) {
 264       is_obj |= s->block_is_obj(_p);
 265     }
 266   }
 267   GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
 268 };
 269 
 270 bool Generation::block_is_obj(const HeapWord* p) const {
 271   GenerationBlockIsObjClosure blk(p);
 272   // Cast away const
 273   ((Generation*)this)->space_iterate(&blk);
 274   return blk.is_obj;
 275 }
 276 
 277 class GenerationOopIterateClosure : public SpaceClosure {
 278  public:
 279   OopClosure* cl;
 280   MemRegion mr;
 281   virtual void do_space(Space* s) {
 282     s->oop_iterate(mr, cl);
 283   }
 284   GenerationOopIterateClosure(OopClosure* _cl, MemRegion _mr) :
 285     cl(_cl), mr(_mr) {}
 286 };
 287 
 288 void Generation::oop_iterate(OopClosure* cl) {
 289   GenerationOopIterateClosure blk(cl, _reserved);
 290   space_iterate(&blk);
 291 }
 292 
 293 void Generation::oop_iterate(MemRegion mr, OopClosure* cl) {
 294   GenerationOopIterateClosure blk(cl, mr);
 295   space_iterate(&blk);
 296 }
 297 
 298 void Generation::younger_refs_in_space_iterate(Space* sp,
 299                                                OopsInGenClosure* cl) {
 300   GenRemSet* rs = SharedHeap::heap()->rem_set();
 301   rs->younger_refs_in_space_iterate(sp, cl);
 302 }
 303 
 304 class GenerationObjIterateClosure : public SpaceClosure {
 305  private:
 306   ObjectClosure* _cl;
 307  public:
 308   virtual void do_space(Space* s) {
 309     s->object_iterate(_cl);
 310   }
 311   GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
 312 };
 313 
 314 void Generation::object_iterate(ObjectClosure* cl) {
 315   GenerationObjIterateClosure blk(cl);
 316   space_iterate(&blk);
 317 }
 318 
 319 void Generation::prepare_for_compaction(CompactPoint* cp) {
 320   // Generic implementation, can be specialized
 321   CompactibleSpace* space = first_compaction_space();
 322   while (space != NULL) {
 323     space->prepare_for_compaction(cp);
 324     space = space->next_compaction_space();
 325   }
 326 }
 327 
 328 class AdjustPointersClosure: public SpaceClosure {
 329  public:
 330   void do_space(Space* sp) { 
 331     sp->adjust_pointers(); 
 332   }
 333 };
 334 
 335 void Generation::adjust_pointers() {
 336   // Note that this is done over all spaces, not just the compactible
 337   // ones.
 338   AdjustPointersClosure blk;
 339   space_iterate(&blk, true);
 340 }
 341 
 342 void Generation::compact() {
 343   CompactibleSpace* sp = first_compaction_space();
 344   while (sp != NULL) {
 345     sp->compact();
 346     sp = sp->next_compaction_space();
 347   }
 348 }
 349 
 350 CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
 351                                int level,
 352                                GenRemSet* remset) :
 353   Generation(rs, initial_byte_size, level), _rs(remset)
 354 {
 355   HeapWord* start = (HeapWord*)rs.base();
 356   size_t reserved_byte_size = rs.size();
 357   assert((uintptr_t(start) & 3) == 0, "bad alignment");
 358   assert((reserved_byte_size & 3) == 0, "bad alignment");
 359   MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
 360   _bts = new BlockOffsetSharedArray(reserved_mr,
 361                                     heap_word_size(initial_byte_size));
 362   MemRegion committed_mr(start, heap_word_size(initial_byte_size));
 363   _rs->resize_covered_region(committed_mr);
 364   if (_bts == NULL)
 365     vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
 366 
 367   // Verify that the start and end of this generation is the start of a card.
 368   // If this wasn't true, a single card could span more than on generation,
 369   // which would cause problems when we commit/uncommit memory, and when we
 370   // clear and dirty cards.
 371   guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
 372   if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
 373     // Don't check at the very end of the heap as we'll assert that we're probing off
 374     // the end if we try.
 375     guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
 376   }
 377 }
 378 
 379 
 380 // No young generation references, clear this generation's cards.
 381 void CardGeneration::clear_remembered_set() {
 382   _rs->clear(reserved());
 383 }
 384 
 385 
 386 // Objects in this generation may have moved, invalidate this
 387 // generation's cards.
 388 void CardGeneration::invalidate_remembered_set() {
 389   _rs->invalidate(used_region());
 390 }
 391 
 392 
 393 // Currently nothing to do.
 394 void CardGeneration::prepare_for_verify() {}
 395 
 396 
 397 void OneContigSpaceCardGeneration::collect(bool   full,
 398                                            bool   clear_all_soft_refs,
 399                                            size_t size,
 400                                            bool   is_tlab) {
 401   SpecializationStats::clear();
 402   // Temporarily expand the span of our ref processor, so
 403   // refs discovery is over the entire heap, not just this generation 
 404   ReferenceProcessorSpanMutator
 405     x(ref_processor(), GenCollectedHeap::heap()->reserved_region());
 406   GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs);
 407   SpecializationStats::print();
 408 }
 409 
 410 HeapWord*
 411 OneContigSpaceCardGeneration::expand_and_allocate(size_t word_size,
 412                                                   bool is_tlab,
 413                                                   bool parallel) {
 414   assert(!is_tlab, "OneContigSpaceCardGeneration does not support TLAB allocation");
 415   if (parallel) {
 416     MutexLocker x(ParGCRareEvent_lock);
 417     HeapWord* result = NULL;
 418     size_t byte_size = word_size * HeapWordSize;
 419     while (true) {
 420       expand(byte_size, _min_heap_delta_bytes);
 421       if (GCExpandToAllocateDelayMillis > 0) {
 422         os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
 423       }
 424       result = _the_space->par_allocate(word_size);
 425       if ( result != NULL) {
 426         return result;
 427       } else {
 428         // If there's not enough expansion space available, give up.
 429         if (_virtual_space.uncommitted_size() < byte_size) {
 430           return NULL;
 431         }
 432         // else try again
 433       }
 434     }
 435   } else {
 436     expand(word_size*HeapWordSize, _min_heap_delta_bytes);
 437     return _the_space->allocate(word_size);
 438   }
 439 }
 440 
 441 void OneContigSpaceCardGeneration::expand(size_t bytes, size_t expand_bytes) {
 442   GCMutexLocker x(ExpandHeap_lock);
 443   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
 444   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
 445   bool success = false;
 446   if (aligned_expand_bytes > aligned_bytes) {
 447     success = grow_by(aligned_expand_bytes);
 448   }
 449   if (!success) {
 450     success = grow_by(aligned_bytes);
 451   }
 452   if (!success) {
 453     grow_to_reserved();
 454   }
 455   if (GC_locker::is_active()) {
 456     if (PrintGC && Verbose) {
 457       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
 458     }
 459   }
 460 }
 461 
 462 
 463 void OneContigSpaceCardGeneration::shrink(size_t bytes) {
 464   assert_locked_or_safepoint(ExpandHeap_lock);
 465   size_t size = ReservedSpace::page_align_size_down(bytes);
 466   if (size > 0) {
 467     shrink_by(size);
 468   }
 469 }
 470 
 471 
 472 size_t OneContigSpaceCardGeneration::capacity() const {
 473   return _the_space->capacity();
 474 }
 475 
 476 
 477 size_t OneContigSpaceCardGeneration::used() const {
 478   return _the_space->used();
 479 }
 480 
 481 
 482 size_t OneContigSpaceCardGeneration::free() const {
 483   return _the_space->free();
 484 }
 485 
 486 MemRegion OneContigSpaceCardGeneration::used_region() const {
 487   return the_space()->used_region();
 488 }
 489 
 490 size_t OneContigSpaceCardGeneration::unsafe_max_alloc_nogc() const {
 491   return _the_space->free();
 492 }
 493 
 494 size_t OneContigSpaceCardGeneration::contiguous_available() const {
 495   return _the_space->free() + _virtual_space.uncommitted_size();
 496 }
 497 
 498 bool OneContigSpaceCardGeneration::grow_by(size_t bytes) {
 499   assert_locked_or_safepoint(ExpandHeap_lock);
 500   bool result = _virtual_space.expand_by(bytes);
 501   if (result) {
 502     size_t new_word_size =
 503        heap_word_size(_virtual_space.committed_size());
 504     MemRegion mr(_the_space->bottom(), new_word_size);
 505     // Expand card table
 506     Universe::heap()->barrier_set()->resize_covered_region(mr);
 507     // Expand shared block offset array
 508     _bts->resize(new_word_size);
 509 
 510     // Fix for bug #4668531
 511     MemRegion mangle_region(_the_space->end(), (HeapWord*)_virtual_space.high());
 512     _the_space->mangle_region(mangle_region);
 513 
 514     // Expand space -- also expands space's BOT
 515     // (which uses (part of) shared array above)
 516     _the_space->set_end((HeapWord*)_virtual_space.high());
 517 
 518     // update the space and generation capacity counters
 519     update_counters();
 520 
 521     if (Verbose && PrintGC) {
 522       size_t new_mem_size = _virtual_space.committed_size();
 523       size_t old_mem_size = new_mem_size - bytes;
 524       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
 525                       SIZE_FORMAT "K to " SIZE_FORMAT "K", 
 526                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
 527     }
 528   }
 529   return result;
 530 }
 531 
 532 
 533 bool OneContigSpaceCardGeneration::grow_to_reserved() {
 534   assert_locked_or_safepoint(ExpandHeap_lock);
 535   bool success = true;
 536   const size_t remaining_bytes = _virtual_space.uncommitted_size();
 537   if (remaining_bytes > 0) {
 538     success = grow_by(remaining_bytes);
 539     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
 540   }
 541   return success;
 542 }
 543 
 544 void OneContigSpaceCardGeneration::shrink_by(size_t bytes) {
 545   assert_locked_or_safepoint(ExpandHeap_lock);
 546   // Shrink committed space
 547   _virtual_space.shrink_by(bytes);
 548   // Shrink space; this also shrinks the space's BOT
 549   _the_space->set_end((HeapWord*) _virtual_space.high());
 550   size_t new_word_size = heap_word_size(_the_space->capacity());
 551   // Shrink the shared block offset array
 552   _bts->resize(new_word_size);
 553   MemRegion mr(_the_space->bottom(), new_word_size);
 554   // Shrink the card table
 555   Universe::heap()->barrier_set()->resize_covered_region(mr);
 556 
 557   if (Verbose && PrintGC) {
 558     size_t new_mem_size = _virtual_space.committed_size();
 559     size_t old_mem_size = new_mem_size + bytes;
 560     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 561                   name(), old_mem_size/K, new_mem_size/K);
 562   }
 563 }
 564 
 565 // Currently nothing to do.
 566 void OneContigSpaceCardGeneration::prepare_for_verify() {}
 567 
 568 
 569 void OneContigSpaceCardGeneration::object_iterate(ObjectClosure* blk) {
 570   _the_space->object_iterate(blk);
 571 }
 572 
 573 void OneContigSpaceCardGeneration::space_iterate(SpaceClosure* blk,
 574                                                  bool usedOnly) {
 575   blk->do_space(_the_space);
 576 }
 577 
 578 void OneContigSpaceCardGeneration::object_iterate_since_last_GC(ObjectClosure* blk) {
 579   // Deal with delayed initialization of _the_space,
 580   // and lack of initialization of _last_gc.
 581   if (_last_gc.space() == NULL) {
 582     assert(the_space() != NULL, "shouldn't be NULL");
 583     _last_gc = the_space()->bottom_mark();
 584   }
 585   the_space()->object_iterate_from(_last_gc, blk);
 586 }
 587 
 588 void OneContigSpaceCardGeneration::younger_refs_iterate(OopsInGenClosure* blk) {
 589   blk->set_generation(this);
 590   younger_refs_in_space_iterate(_the_space, blk);
 591   blk->reset_generation();
 592 }
 593 
 594 void OneContigSpaceCardGeneration::save_marks() { 
 595   _the_space->set_saved_mark();
 596 }
 597 
 598 
 599 void OneContigSpaceCardGeneration::reset_saved_marks() { 
 600   _the_space->reset_saved_mark();
 601 }
 602 
 603 
 604 bool OneContigSpaceCardGeneration::no_allocs_since_save_marks() {
 605   return _the_space->saved_mark_at_top();
 606 }
 607 
 608 #define OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)      \
 609                                                                                 \
 610 void OneContigSpaceCardGeneration::                                             \
 611 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {                  \
 612   blk->set_generation(this);                                                 \
 613   _the_space->oop_since_save_marks_iterate##nv_suffix(blk);                  \
 614   blk->reset_generation();                                                   \
 615   save_marks();                                                                 \
 616 }
 617 
 618 ALL_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN)
 619 
 620 #undef OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN
 621 
 622 
 623 void OneContigSpaceCardGeneration::gc_epilogue(bool full) {
 624   _last_gc = WaterMark(the_space(), the_space()->top());
 625 
 626   // update the generation and space performance counters
 627   update_counters();
 628 }
 629 
 630 void OneContigSpaceCardGeneration::verify(bool allow_dirty) {
 631   the_space()->verify(allow_dirty);
 632 }
 633 
 634 void OneContigSpaceCardGeneration::print_on(outputStream* st)  const {
 635   Generation::print_on(st);
 636   st->print("   the");
 637   the_space()->print_on(st);
 638 }