1 #ifdef USE_PRAGMA_IDENT_HDR
   2 #pragma ident "@(#)generation.hpp       1.195 07/05/17 15:55:02 JVM"
   3 #endif
   4 /*
   5  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // A Generation models a heap area for similarly-aged objects.
  29 // It will contain one ore more spaces holding the actual objects.
  30 //
  31 // The Generation class hierarchy:
  32 //
  33 // Generation                      - abstract base class
  34 // - DefNewGeneration              - allocation area (copy collected)
  35 //   - ParNewGeneration            - a DefNewGeneration that is collected by
  36 //                                   several threads
  37 // - CardGeneration                 - abstract class adding offset array behavior
  38 //   - OneContigSpaceCardGeneration - abstract class holding a single
  39 //                                    contiguous space with card marking
  40 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
  41 //     - CompactingPermGenGen      - reflective object area (klasses, methods, symbols, ...)
  42 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
  43 //                                       (Detlefs-Printezis refinement of
  44 //                                       Boehm-Demers-Schenker)
  45 //
  46 // The system configurations currently allowed are:
  47 //
  48 //   DefNewGeneration + TenuredGeneration + PermGeneration
  49 //   DefNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
  50 //
  51 //   ParNewGeneration + TenuredGeneration + PermGeneration
  52 //   ParNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
  53 //
  54 
  55 class DefNewGeneration;
  56 class GenerationSpec;
  57 class CompactibleSpace;
  58 class ContiguousSpace;
  59 class CompactPoint;
  60 class OopsInGenClosure;
  61 class OopClosure;
  62 class ScanClosure;
  63 class FastScanClosure;
  64 class GenCollectedHeap;
  65 class GenRemSet;
  66 class GCStats;
  67 
  68 // A "ScratchBlock" represents a block of memory in one generation usable by
  69 // another.  It represents "num_words" free words, starting at and including
  70 // the address of "this".
  71 struct ScratchBlock {
  72   ScratchBlock* next;
  73   size_t num_words;
  74   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
  75                               // first two fields are word-sized.)
  76 };
  77 
  78 
  79 class Generation: public CHeapObj {
  80   friend class VMStructs;
  81  private:
  82   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
  83   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
  84                                // used region at some specific point during collection.
  85 
  86  protected:
  87   // Minimum and maximum addresses for memory reserved (not necessarily
  88   // committed) for generation.
  89   // Used by card marking code. Must not overlap with address ranges of
  90   // other generations.
  91   MemRegion _reserved;
  92 
  93   // Memory area reserved for generation 
  94   VirtualSpace _virtual_space;
  95 
  96   // Level in the generation hierarchy.
  97   int _level;
  98 
  99   // ("Weak") Reference processing support
 100   ReferenceProcessor* _ref_processor;
 101 
 102   // Performance Counters
 103   CollectorCounters* _gc_counters;
 104 
 105   // Statistics for garbage collection
 106   GCStats* _gc_stats;
 107 
 108   // Returns the next generation in the configuration, or else NULL if this
 109   // is the highest generation.
 110   Generation* next_gen() const;
 111 
 112   // Initialize the generation.
 113   Generation(ReservedSpace rs, size_t initial_byte_size, int level);
 114 
 115   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
 116   // "sp" that point into younger generations.
 117   // The iteration is only over objects allocated at the start of the
 118   // iterations; objects allocated as a result of applying the closure are
 119   // not included.
 120   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
 121 
 122  public:
 123   // The set of possible generation kinds.
 124   enum Name {
 125     ASParNew,
 126     ASConcurrentMarkSweep,
 127     DefNew,
 128     ParNew,
 129     MarkSweepCompact,
 130     ConcurrentMarkSweep,
 131     Other
 132   };
 133 
 134   enum SomePublicConstants {
 135     // Generations are GenGrain-aligned and have size that are multiples of
 136     // GenGrain.
 137     LogOfGenGrain = 16,
 138     GenGrain = 1 << LogOfGenGrain
 139   };
 140   
 141   // allocate and initialize ("weak") refs processing support
 142   virtual void ref_processor_init();
 143   void set_ref_processor(ReferenceProcessor* rp) {
 144     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
 145     _ref_processor = rp;
 146   }
 147 
 148   virtual Generation::Name kind() { return Generation::Other; }
 149   GenerationSpec* spec();
 150 
 151   // This properly belongs in the collector, but for now this
 152   // will do.
 153   virtual bool refs_discovery_is_atomic() const { return true;  }
 154   virtual bool refs_discovery_is_mt()     const { return false; }
 155 
 156   // Space enquiries (results in bytes)
 157   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
 158                                         // generation can currently hold.
 159   virtual size_t used() const = 0;      // The number of used bytes in the gen.
 160   virtual size_t free() const = 0;      // The number of free bytes in the gen.
 161 
 162   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
 163   // Returns the total number of bytes  available in a generation
 164   // for the allocation of objects.
 165   virtual size_t max_capacity() const;
 166 
 167   // If this is a young generation, the maximum number of bytes that can be
 168   // allocated in this generation before a GC is triggered.
 169   virtual size_t capacity_before_gc() const { return 0; }
 170 
 171   // The largest number of contiguous free bytes in the generation,
 172   // including expansion  (Assumes called at a safepoint.)
 173   virtual size_t contiguous_available() const = 0;
 174   // The largest number of contiguous free bytes in this or any higher generation.
 175   virtual size_t max_contiguous_available() const;
 176 
 177   // Returns true if promotions of the specified amount can
 178   // be attempted safely (without a vm failure). 
 179   // Promotion of the full amount is not guaranteed but
 180   // can be attempted.  
 181   //   younger_handles_promotion_failure 
 182   // is true if the younger generation handles a promotion
 183   // failure.
 184   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes,
 185     bool younger_handles_promotion_failure) const;
 186 
 187   // Return an estimate of the maximum allocation that could be performed
 188   // in the generation without triggering any collection or expansion
 189   // activity.  It is "unsafe" because no locks are taken; the result
 190   // should be treated as an approximation, not a guarantee, for use in
 191   // heuristic resizing decisions.
 192   virtual size_t unsafe_max_alloc_nogc() const = 0;
 193 
 194   // Returns true if this generation cannot be expanded further
 195   // without a GC. Override as appropriate.
 196   virtual bool is_maximal_no_gc() const {
 197     return _virtual_space.uncommitted_size() == 0;
 198   }
 199 
 200   MemRegion reserved() const { return _reserved; }
 201 
 202   // Returns a region guaranteed to contain all the objects in the
 203   // generation.
 204   virtual MemRegion used_region() const { return _reserved; }
 205 
 206   MemRegion prev_used_region() const { return _prev_used_region; }
 207   virtual void  save_used_region()   { _prev_used_region = used_region(); }
 208 
 209   // Returns "TRUE" iff "p" points into an allocated object in the generation.
 210   // For some kinds of generations, this may be an expensive operation.
 211   // To avoid performance problems stemming from its inadvertent use in
 212   // product jvm's, we restrict its use to assertion checking or
 213   // verification only.
 214   virtual bool is_in(const void* p) const;
 215 
 216   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
 217   bool is_in_reserved(const void* p) const {
 218     return _reserved.contains(p);
 219   }
 220 
 221   // Check that the generation kind is DefNewGeneration or a sub
 222   // class of DefNewGeneration and return a DefNewGeneration*
 223   DefNewGeneration*  as_DefNewGeneration();
 224 
 225   // If some space in the generation contains the given "addr", return a
 226   // pointer to that space, else return "NULL".
 227   virtual Space* space_containing(const void* addr) const;
 228 
 229   // Iteration - do not use for time critical operations
 230   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
 231 
 232   // Returns the first space, if any, in the generation that can participate
 233   // in compaction, or else "NULL".
 234   virtual CompactibleSpace* first_compaction_space() const = 0;
 235 
 236   // Returns "true" iff this generation should be used to allocate an
 237   // object of the given size.  Young generations might
 238   // wish to exclude very large objects, for example, since, if allocated
 239   // often, they would greatly increase the frequency of young-gen
 240   // collection.
 241   virtual bool should_allocate(size_t word_size, bool is_tlab) {
 242     bool result = false;
 243     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
 244     if (!is_tlab || supports_tlab_allocation()) {
 245       result = (word_size > 0) && (word_size < overflow_limit);
 246     }
 247     return result;
 248   }
 249 
 250   // Allocate and returns a block of the requested size, or returns "NULL".
 251   // Assumes the caller has done any necessary locking.
 252   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
 253 
 254   // Like "allocate", but performs any necessary locking internally.
 255   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
 256 
 257   // A 'younger' gen has reached an allocation limit, and uses this to notify
 258   // the next older gen.  The return value is a new limit, or NULL if none.  The
 259   // caller must do the necessary locking.
 260   virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
 261                                              size_t word_size) {
 262     return NULL;
 263   }
 264 
 265   // Some generation may offer a region for shared, contiguous allocation,
 266   // via inlined code (by exporting the address of the top and end fields
 267   // defining the extent of the contiguous allocation region.)
 268 
 269   // This function returns "true" iff the heap supports this kind of
 270   // allocation.  (More precisely, this means the style of allocation that
 271   // increments *top_addr()" with a CAS.) (Default is "no".)
 272   // A generation that supports this allocation style must use lock-free
 273   // allocation for *all* allocation, since there are times when lock free
 274   // allocation will be concurrent with plain "allocate" calls.
 275   virtual bool supports_inline_contig_alloc() const { return false; }
 276 
 277   // These functions return the addresses of the fields that define the
 278   // boundaries of the contiguous allocation area.  (These fields should be
 279   // physicall near to one another.)
 280   virtual HeapWord** top_addr() const { return NULL; }
 281   virtual HeapWord** end_addr() const { return NULL; }
 282 
 283   // Thread-local allocation buffers
 284   virtual bool supports_tlab_allocation() const { return false; }
 285   virtual size_t tlab_capacity() const {
 286     guarantee(false, "Generation doesn't support thread local allocation buffers");
 287     return 0;
 288   }
 289   virtual size_t unsafe_max_tlab_alloc() const {
 290     guarantee(false, "Generation doesn't support thread local allocation buffers");
 291     return 0;
 292   }
 293   
 294   // "obj" is the address of an object in a younger generation.  Allocate space
 295   // for "obj" in the current (or some higher) generation, and copy "obj" into
 296   // the newly allocated space, if possible, returning the result (or NULL if
 297   // the allocation failed).
 298   // 
 299   // The "obj_size" argument is just obj->size(), passed along so the caller can
 300   // avoid repeating the virtual call to retrieve it.
 301   virtual oop promote(oop obj, size_t obj_size);
 302 
 303   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
 304   // object "obj", whose original mark word was "m", and whose size is
 305   // "word_sz".  If possible, allocate space for "obj", copy obj into it
 306   // (taking care to copy "m" into the mark word when done, since the mark
 307   // word of "obj" may have been overwritten with a forwarding pointer, and
 308   // also taking care to copy the klass pointer *last*.  Returns the new
 309   // object if successful, or else NULL.
 310   virtual oop par_promote(int thread_num,
 311                           oop obj, markOop m, size_t word_sz);
 312 
 313   // Undo, if possible, the most recent par_promote_alloc allocation by
 314   // "thread_num" ("obj", of "word_sz").
 315   virtual void par_promote_alloc_undo(int thread_num,
 316                                       HeapWord* obj, size_t word_sz);
 317 
 318   // Informs the current generation that all par_promote_alloc's in the
 319   // collection have been completed; any supporting data structures can be
 320   // reset.  Default is to do nothing.
 321   virtual void par_promote_alloc_done(int thread_num) {}
 322 
 323   // Informs the current generation that all oop_since_save_marks_iterates
 324   // performed by "thread_num" in the current collection, if any, have been
 325   // completed; any supporting data structures can be reset.  Default is to 
 326   // do nothing.
 327   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
 328 
 329   // This generation will collect all younger generations
 330   // during a full collection.
 331   virtual bool full_collects_younger_generations() const { return false; }
 332 
 333   // This generation does in-place marking, meaning that mark words
 334   // are mutated during the marking phase and presumably reinitialized
 335   // to a canonical value after the GC. This is currently used by the
 336   // biased locking implementation to determine whether additional
 337   // work is required during the GC prologue and epilogue.
 338   virtual bool performs_in_place_marking() const { return true; }
 339 
 340   // Returns "true" iff collect() should subsequently be called on this
 341   // this generation. See comment below. 
 342   // This is a generic implementation which can be overridden.
 343   //
 344   // Note: in the current (1.4) implementation, when genCollectedHeap's
 345   // incremental_collection_will_fail flag is set, all allocations are
 346   // slow path (the only fast-path place to allocate is DefNew, which
 347   // will be full if the flag is set).
 348   // Thus, older generations which collect younger generations should
 349   // test this flag and collect if it is set.
 350   virtual bool should_collect(bool   full,
 351                               size_t word_size,
 352                               bool   is_tlab) {
 353     return (full || should_allocate(word_size, is_tlab));
 354   }
 355 
 356   // Perform a garbage collection.
 357   // If full is true attempt a full garbage collection of this generation.
 358   // Otherwise, attempting to (at least) free enough space to support an 
 359   // allocation of the given "word_size".
 360   virtual void collect(bool   full,
 361                        bool   clear_all_soft_refs,
 362                        size_t word_size,
 363                        bool   is_tlab) = 0;
 364 
 365   // Perform a heap collection, attempting to create (at least) enough
 366   // space to support an allocation of the given "word_size".  If
 367   // successful, perform the allocation and return the resulting
 368   // "oop" (initializing the allocated block). If the allocation is
 369   // still unsuccessful, return "NULL".
 370   virtual HeapWord* expand_and_allocate(size_t word_size,
 371                                         bool is_tlab,
 372                                         bool parallel = false) = 0;
 373 
 374   // Some generations may require some cleanup or preparation actions before
 375   // allowing a collection.  The default is to do nothing.
 376   virtual void gc_prologue(bool full) {};
 377 
 378   // Some generations may require some cleanup actions after a collection.
 379   // The default is to do nothing.
 380   virtual void gc_epilogue(bool full) {};
 381 
 382   // Save the high water marks for the used space in a generation.
 383   virtual void record_spaces_top() {};
 384 
 385   // Some generations may need to be "fixed-up" after some allocation
 386   // activity to make them parsable again. The default is to do nothing.
 387   virtual void ensure_parsability() {};
 388 
 389   // Time (in ms) when we were last collected or now if a collection is
 390   // in progress.
 391   virtual jlong time_of_last_gc(jlong now) {
 392     // XXX See note in genCollectedHeap::millis_since_last_gc()
 393     NOT_PRODUCT(
 394       if (now < _time_of_last_gc) {
 395         warning("time warp: %d to %d", _time_of_last_gc, now);
 396       }
 397     )
 398     return _time_of_last_gc;
 399   }
 400 
 401   virtual void update_time_of_last_gc(jlong now)  {
 402     _time_of_last_gc = now;
 403   }
 404 
 405   // Generations may keep statistics about collection.  This
 406   // method updates those statistics.  current_level is
 407   // the level of the collection that has most recently
 408   // occurred.  This allows the generation to decide what
 409   // statistics are valid to collect.  For example, the
 410   // generation can decide to gather the amount of promoted data 
 411   // if the collection of the younger generations has completed.
 412   GCStats* gc_stats() const { return _gc_stats; }
 413   virtual void update_gc_stats(int current_level, bool full) {}
 414 
 415   // Mark sweep support phase2
 416   virtual void prepare_for_compaction(CompactPoint* cp);
 417   // Mark sweep support phase3
 418   virtual void pre_adjust_pointers() {ShouldNotReachHere();}
 419   virtual void adjust_pointers();
 420   // Mark sweep support phase4
 421   virtual void compact();
 422   virtual void post_compact() {ShouldNotReachHere();}
 423 
 424   // Support for CMS's rescan. In this general form we return a pointer
 425   // to an abstract object that can be used, based on specific previously
 426   // decided protocols, to exchange information between generations,
 427   // information that may be useful for speeding up certain types of
 428   // garbage collectors. A NULL value indicates to the client that
 429   // no data recording is expected by the provider. The data-recorder is
 430   // expected to be GC worker thread-local, with the worker index
 431   // indicated by "thr_num".
 432   virtual void* get_data_recorder(int thr_num) { return NULL; }
 433 
 434   // Some generations may require some cleanup actions before allowing
 435   // a verification.
 436   virtual void prepare_for_verify() {};
 437 
 438   // Accessing "marks".
 439 
 440   // This function gives a generation a chance to note a point between
 441   // collections.  For example, a contiguous generation might note the
 442   // beginning allocation point post-collection, which might allow some later
 443   // operations to be optimized.
 444   virtual void save_marks() {}
 445 
 446   // This function allows generations to initialize any "saved marks".  That
 447   // is, should only be called when the generation is empty.
 448   virtual void reset_saved_marks() {}
 449 
 450   // This function is "true" iff any no allocations have occurred in the
 451   // generation since the last call to "save_marks".
 452   virtual bool no_allocs_since_save_marks() = 0;
 453 
 454   // Apply "cl->apply" to (the addresses of) all reference fields in objects
 455   // allocated in the current generation since the last call to "save_marks".
 456   // If more objects are allocated in this generation as a result of applying
 457   // the closure, iterates over reference fields in those objects as well.
 458   // Calls "save_marks" at the end of the iteration.
 459   // General signature...
 460   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
 461   // ...and specializations for de-virtualization.  (The general
 462   // implemention of the _nv versions call the virtual version.
 463   // Note that the _nv suffix is not really semantically necessary,
 464   // but it avoids some not-so-useful warnings on Solaris.)
 465 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
 466   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
 467     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
 468   }
 469   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
 470 
 471 #undef Generation_SINCE_SAVE_MARKS_DECL
 472 
 473   // The "requestor" generation is performing some garbage collection 
 474   // action for which it would be useful to have scratch space.  If
 475   // the target is not the requestor, no gc actions will be required
 476   // of the target.  The requestor promises to allocate no more than
 477   // "max_alloc_words" in the target generation (via promotion say,
 478   // if the requestor is a young generation and the target is older).
 479   // If the target generation can provide any scratch space, it adds
 480   // it to "list", leaving "list" pointing to the head of the
 481   // augmented list.  The default is to offer no space.
 482   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
 483                                   size_t max_alloc_words) {}
 484 
 485   // Give each generation an opportunity to do clean up for any
 486   // contributed scratch.
 487   virtual void reset_scratch() {};
 488 
 489   // When an older generation has been collected, and perhaps resized,
 490   // this method will be invoked on all younger generations (from older to
 491   // younger), allowing them to resize themselves as appropriate.
 492   virtual void compute_new_size() = 0;
 493 
 494   // Printing
 495   virtual const char* name() const = 0;
 496   virtual const char* short_name() const = 0;
 497 
 498   int level() const { return _level; }
 499 
 500   // Attributes
 501 
 502   // True iff the given generation may only be the youngest generation.
 503   virtual bool must_be_youngest() const = 0;
 504   // True iff the given generation may only be the oldest generation.
 505   virtual bool must_be_oldest() const = 0;
 506 
 507   // Reference Processing accessor
 508   ReferenceProcessor* const ref_processor() { return _ref_processor; }
 509 
 510   // Iteration.
 511 
 512   // Iterate over all the ref-containing fields of all objects in the
 513   // generation, calling "cl.do_oop" on each.
 514   virtual void oop_iterate(OopClosure* cl);
 515 
 516   // Same as above, restricted to the intersection of a memory region and
 517   // the generation.
 518   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
 519 
 520   // Iterate over all objects in the generation, calling "cl.do_object" on
 521   // each.
 522   virtual void object_iterate(ObjectClosure* cl);
 523 
 524   // Iterate over all objects allocated in the generation since the last
 525   // collection, calling "cl.do_object" on each.  The generation must have
 526   // been initialized properly to support this function, or else this call
 527   // will fail.
 528   virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;
 529 
 530   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
 531   // in the current generation that contain pointers to objects in younger
 532   // generations. Objects allocated since the last "save_marks" call are
 533   // excluded.
 534   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
 535 
 536   // Inform a generation that it longer contains references to objects
 537   // in any younger generation.    [e.g. Because younger gens are empty,
 538   // clear the card table.]
 539   virtual void clear_remembered_set() { }
 540 
 541   // Inform a generation that some of its objects have moved.  [e.g. The
 542   // generation's spaces were compacted, invalidating the card table.]
 543   virtual void invalidate_remembered_set() { }
 544 
 545   // Block abstraction.
 546 
 547   // Returns the address of the start of the "block" that contains the
 548   // address "addr".  We say "blocks" instead of "object" since some heaps
 549   // may not pack objects densely; a chunk may either be an object or a
 550   // non-object. 
 551   virtual HeapWord* block_start(const void* addr) const;
 552 
 553   // Requires "addr" to be the start of a chunk, and returns its size.
 554   // "addr + size" is required to be the start of a new chunk, or the end
 555   // of the active area of the heap.
 556   virtual size_t block_size(const HeapWord* addr) const ;
 557 
 558   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 559   // the block is an object.
 560   virtual bool block_is_obj(const HeapWord* addr) const;
 561 
 562 
 563   // PrintGC, PrintGCDetails support
 564   void print_heap_change(size_t prev_used) const;
 565 
 566   // PrintHeapAtGC support
 567   virtual void print() const;
 568   virtual void print_on(outputStream* st) const;
 569 
 570   virtual void verify(bool allow_dirty) = 0;
 571 
 572   struct StatRecord {
 573     int invocations;
 574     elapsedTimer accumulated_time;
 575     StatRecord() :
 576       invocations(0),
 577       accumulated_time(elapsedTimer()) {}
 578   };
 579 private:
 580   StatRecord _stat_record;
 581 public:
 582   StatRecord* stat_record() { return &_stat_record; }
 583 
 584   virtual void print_summary_info();
 585   virtual void print_summary_info_on(outputStream* st);
 586 
 587   // Performance Counter support
 588   virtual void update_counters() = 0;
 589   virtual CollectorCounters* counters() { return _gc_counters; }
 590 };
 591 
 592 // Class CardGeneration is a generation that is covered by a card table,
 593 // and uses a card-size block-offset array to implement block_start.
 594 
 595 // class BlockOffsetArray;
 596 // class BlockOffsetArrayContigSpace;
 597 class BlockOffsetSharedArray;
 598 
 599 class CardGeneration: public Generation {
 600   friend class VMStructs;
 601  protected:
 602   // This is shared with other generations.
 603   GenRemSet* _rs;
 604   // This is local to this generation.
 605   BlockOffsetSharedArray* _bts;
 606 
 607   CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
 608                  GenRemSet* remset);
 609   
 610  public:
 611 
 612   // Attempt to expand the generation by "bytes".  Expand by at a
 613   // minimum "expand_bytes".  Return true if some amount (not
 614   // necessarily the full "bytes") was done.
 615   virtual bool expand(size_t bytes, size_t expand_bytes);
 616 
 617   virtual void clear_remembered_set();
 618 
 619   virtual void invalidate_remembered_set();
 620 
 621   virtual void prepare_for_verify();
 622 
 623   // Grow generation with specified size (returns false if unable to grow)
 624   virtual bool grow_by(size_t bytes) = 0;
 625   // Grow generation to reserved size.
 626   virtual bool grow_to_reserved() = 0;
 627 };
 628 
 629 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
 630 // contiguous space.
 631 //
 632 // Garbage collection is performed using mark-compact.
 633 
 634 class OneContigSpaceCardGeneration: public CardGeneration {
 635   friend class VMStructs;
 636   // Abstractly, this is a subtype that gets access to protected fields.
 637   friend class CompactingPermGen;  
 638   friend class VM_PopulateDumpSharedSpace;
 639 
 640  protected:
 641   size_t     _min_heap_delta_bytes;   // Minimum amount to expand.
 642   ContiguousSpace*  _the_space;       // actual space holding objects
 643   WaterMark  _last_gc;                // watermark between objects allocated before
 644                                       // and after last GC.
 645 
 646   // Grow generation with specified size (returns false if unable to grow)
 647   virtual bool grow_by(size_t bytes);
 648   // Grow generation to reserved size.
 649   virtual bool grow_to_reserved();
 650   // Shrink generation with specified size (returns false if unable to shrink)
 651   void shrink_by(size_t bytes);
 652 
 653   // Allocation failure
 654   virtual bool expand(size_t bytes, size_t expand_bytes);
 655   void shrink(size_t bytes);
 656 
 657   // Accessing spaces
 658   ContiguousSpace* the_space() const { return _the_space; }
 659 
 660  public:
 661   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
 662                                size_t min_heap_delta_bytes,
 663                                int level, GenRemSet* remset,
 664                                ContiguousSpace* space) :
 665     CardGeneration(rs, initial_byte_size, level, remset),
 666     _the_space(space), _min_heap_delta_bytes(min_heap_delta_bytes)
 667   {}
 668 
 669   inline bool is_in(const void* p) const;
 670 
 671   // Space enquiries
 672   size_t capacity() const;
 673   size_t used() const;
 674   size_t free() const;
 675 
 676   MemRegion used_region() const;
 677 
 678   size_t unsafe_max_alloc_nogc() const;
 679   size_t contiguous_available() const;
 680 
 681   // Iteration
 682   void object_iterate(ObjectClosure* blk);
 683   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
 684   void object_iterate_since_last_GC(ObjectClosure* cl);
 685 
 686   void younger_refs_iterate(OopsInGenClosure* blk);
 687 
 688   inline CompactibleSpace* first_compaction_space() const;
 689 
 690   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
 691   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
 692 
 693   // Accessing marks
 694   inline WaterMark top_mark();
 695   inline WaterMark bottom_mark();
 696 
 697 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
 698   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 699   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
 700   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
 701 
 702   void save_marks();
 703   void reset_saved_marks();
 704   bool no_allocs_since_save_marks();
 705 
 706   inline size_t block_size(const HeapWord* addr) const;
 707 
 708   inline bool block_is_obj(const HeapWord* addr) const;
 709   
 710   virtual void collect(bool full,
 711                        bool clear_all_soft_refs,
 712                        size_t size, 
 713                        bool is_tlab);
 714   HeapWord* expand_and_allocate(size_t size,
 715                                 bool is_tlab,
 716                                 bool parallel = false);
 717 
 718   virtual void prepare_for_verify();
 719 
 720   virtual void gc_epilogue(bool full);
 721 
 722   virtual void record_spaces_top();
 723 
 724   virtual void verify(bool allow_dirty);
 725   virtual void print_on(outputStream* st) const;
 726 };