1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)block.cpp    1.172 07/09/28 10:23:15 JVM"
   3 #endif
   4 /*
   5  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // Optimization - Graph Style
  29 
  30 #include "incls/_precompiled.incl"
  31 #include "incls/_block.cpp.incl"
  32 
  33 
  34 //-----------------------------------------------------------------------------
  35 void Block_Array::grow( uint i ) {
  36   assert(i >= Max(), "must be an overflow");
  37   debug_only(_limit = i+1);
  38   if( i < _size )  return;
  39   if( !_size ) { 
  40     _size = 1;
  41     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
  42     _blocks[0] = NULL;
  43   }
  44   uint old = _size;
  45   while( i >= _size ) _size <<= 1;      // Double to fit
  46   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
  47   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
  48 }
  49 
  50 //=============================================================================
  51 void Block_List::remove(uint i) {
  52   assert(i < _cnt, "index out of bounds");
  53   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
  54   pop(); // shrink list by one block
  55 }
  56 
  57 void Block_List::insert(uint i, Block *b) {
  58   push(b); // grow list by one block
  59   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
  60   _blocks[i] = b;
  61 }
  62 
  63 #ifndef PRODUCT
  64 void Block_List::print() {
  65   for (uint i=0; i < size(); i++) {
  66     tty->print("B%d ", _blocks[i]->_pre_order);
  67   }
  68   tty->print("size = %d\n", size());
  69 }
  70 #endif
  71 
  72 //=============================================================================
  73 
  74 uint Block::code_alignment() {
  75   // Check for Root block
  76   if( _pre_order == 0 ) return CodeEntryAlignment;
  77   // Check for Start block
  78   if( _pre_order == 1 ) return InteriorEntryAlignment;
  79   // Check for loop alignment
  80   if (has_loop_alignment())  return loop_alignment();
  81 
  82   return 1;                     // no particular alignment
  83 }
  84 
  85 uint Block::compute_loop_alignment() {
  86   Node *h = head();
  87   if( h->is_Loop() && h->as_Loop()->is_inner_loop() )  {
  88     // Pre- and post-loops have low trip count so do not bother with
  89     // NOPs for align loop head.  The constants are hidden from tuning
  90     // but only because my "divide by 4" heuristic surely gets nearly
  91     // all possible gain (a "do not align at all" heuristic has a
  92     // chance of getting a really tiny gain).
  93     if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() || 
  94                                 h->as_CountedLoop()->is_post_loop()) )
  95       return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
  96     // Loops with low backedge frequency should not be aligned.
  97     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
  98     if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
  99       return 1;             // Loop does not loop, more often than not!
 100     }
 101     return OptoLoopAlignment; // Otherwise align loop head
 102   }
 103 
 104   return 1;                     // no particular alignment
 105 }
 106 
 107 //-----------------------------------------------------------------------------
 108 // Compute the size of first 'inst_cnt' instructions in this block.
 109 // Return the number of instructions left to compute if the block has
 110 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
 111 // exceeds OptoLoopAlignment.
 112 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
 113                                     PhaseRegAlloc* ra) {
 114   uint last_inst = _nodes.size();
 115   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
 116     uint inst_size = _nodes[j]->size(ra);
 117     if( inst_size > 0 ) {
 118       inst_cnt--;
 119       uint sz = sum_size + inst_size;
 120       if( sz <= (uint)OptoLoopAlignment ) {
 121         // Compute size of instructions which fit into fetch buffer only
 122         // since all inst_cnt instructions will not fit even if we align them.
 123         sum_size = sz;
 124       } else {
 125         return 0;
 126       }
 127     }
 128   }
 129   return inst_cnt;
 130 }
 131 
 132 //-----------------------------------------------------------------------------
 133 uint Block::find_node( const Node *n ) const {
 134   for( uint i = 0; i < _nodes.size(); i++ ) {
 135     if( _nodes[i] == n )
 136       return i;
 137   }
 138   ShouldNotReachHere();
 139   return 0;
 140 }
 141 
 142 // Find and remove n from block list
 143 void Block::find_remove( const Node *n ) {
 144   _nodes.remove(find_node(n));
 145 }
 146 
 147 //------------------------------is_Empty---------------------------------------
 148 // Return empty status of a block.  Empty blocks contain only the head, other
 149 // ideal nodes, and an optional trailing goto.
 150 int Block::is_Empty() const {
 151   
 152   // Root or start block is not considered empty
 153   if (head()->is_Root() || head()->is_Start()) {
 154     return not_empty; 
 155   }
 156 
 157   int success_result = completely_empty;
 158   int end_idx = _nodes.size()-1;
 159 
 160   // Check for ending goto
 161   if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) { 
 162     success_result = empty_with_goto;
 163     end_idx--;
 164   }
 165 
 166   // Unreachable blocks are considered empty
 167   if (num_preds() <= 1) {
 168     return success_result;
 169   } 
 170 
 171   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes 
 172   // turn directly into code, because only MachNodes have non-trivial
 173   // emit() functions.
 174   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) { 
 175     end_idx--;
 176   }
 177 
 178   // No room for any interesting instructions?
 179   if (end_idx == 0) {
 180     return success_result;
 181   }
 182 
 183   return not_empty;
 184 }
 185 
 186 //------------------------------has_uncommon_code------------------------------
 187 // Return true if the block's code implies that it is not likely to be 
 188 // executed infrequently.  Check to see if the block ends in a Halt or 
 189 // a low probability call.
 190 bool Block::has_uncommon_code() const {
 191   Node* en = end();
 192 
 193   if (en->is_Goto())
 194     en = en->in(0);
 195   if (en->is_Catch())
 196     en = en->in(0);
 197   if (en->is_Proj() && en->in(0)->is_MachCall()) {
 198     MachCallNode* call = en->in(0)->as_MachCall();
 199     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
 200       // This is true for slow-path stubs like new_{instance,array},
 201       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
 202       // The magic number corresponds to the probability of an uncommon_trap,
 203       // even though it is a count not a probability.
 204       return true;
 205     }
 206   }
 207 
 208   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
 209   return op == Op_Halt;
 210 }
 211 
 212 //------------------------------is_uncommon------------------------------------
 213 // True if block is low enough frequency or guarded by a test which 
 214 // mostly does not go here.
 215 bool Block::is_uncommon( Block_Array &bbs ) const {
 216   // Initial blocks must never be moved, so are never uncommon.
 217   if (head()->is_Root() || head()->is_Start())  return false;
 218 
 219   // Check for way-low freq
 220   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
 221 
 222   // Look for code shape indicating uncommon_trap or slow path
 223   if (has_uncommon_code()) return true;
 224 
 225   const float epsilon = 0.05f;
 226   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
 227   uint uncommon_preds = 0;
 228   uint freq_preds = 0;
 229   uint uncommon_for_freq_preds = 0;
 230 
 231   for( uint i=1; i<num_preds(); i++ ) {
 232     Block* guard = bbs[pred(i)->_idx];
 233     // Check to see if this block follows its guard 1 time out of 10000
 234     // or less. 
 235     //
 236     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
 237     // we intend to be "uncommon", such as slow-path TLE allocation, 
 238     // predicted call failure, and uncommon trap triggers.
 239     //
 240     // Use an epsilon value of 5% to allow for variability in frequency 
 241     // predictions and floating point calculations. The net effect is
 242     // that guard_factor is set to 9500.
 243     //
 244     // Ignore low-frequency blocks.
 245     // The next check is (guard->_freq < 1.e-5 * 9500.).
 246     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
 247       uncommon_preds++;
 248     } else {
 249       freq_preds++;
 250       if( _freq < guard->_freq * guard_factor ) {
 251         uncommon_for_freq_preds++;
 252       }
 253     }
 254   }
 255   if( num_preds() > 1 &&
 256       // The block is uncommon if all preds are uncommon or
 257       (uncommon_preds == (num_preds()-1) ||
 258       // it is uncommon for all frequent preds.
 259        uncommon_for_freq_preds == freq_preds) ) {
 260     return true; 
 261   }
 262   return false;
 263 }
 264 
 265 //------------------------------dump-------------------------------------------
 266 #ifndef PRODUCT
 267 void Block::dump_bidx(const Block* orig) const {
 268   if (_pre_order) tty->print("B%d",_pre_order);
 269   else tty->print("N%d", head()->_idx);
 270 
 271   if (Verbose && orig != this) {
 272     // Dump the original block's idx 
 273     tty->print(" (");
 274     orig->dump_bidx(orig);
 275     tty->print(")");
 276   }
 277 }
 278 
 279 void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
 280   if (is_connector()) {
 281     for (uint i=1; i<num_preds(); i++) {
 282       Block *p = ((*bbs)[pred(i)->_idx]);
 283       p->dump_pred(bbs, orig);
 284     }
 285   } else {
 286     dump_bidx(orig);
 287     tty->print(" ");
 288   }
 289 }
 290 
 291 void Block::dump_head( const Block_Array *bbs ) const { 
 292   // Print the basic block
 293   dump_bidx(this);
 294   tty->print(": #\t");
 295 
 296   // Print the incoming CFG edges and the outgoing CFG edges
 297   for( uint i=0; i<_num_succs; i++ ) {
 298     non_connector_successor(i)->dump_bidx(_succs[i]);
 299     tty->print(" ");
 300   }
 301   tty->print("<- ");
 302   if( head()->is_block_start() ) {
 303     for (uint i=1; i<num_preds(); i++) {
 304       Node *s = pred(i);
 305       if (bbs) {
 306         Block *p = (*bbs)[s->_idx];
 307         p->dump_pred(bbs, p);
 308       } else {
 309         while (!s->is_block_start()) 
 310           s = s->in(0);
 311         tty->print("N%d ", s->_idx );
 312       }
 313     }
 314   } else 
 315     tty->print("BLOCK HEAD IS JUNK  ");
 316 
 317   // Print loop, if any
 318   const Block *bhead = this;    // Head of self-loop
 319   Node *bh = bhead->head();
 320   if( bbs && bh->is_Loop() && !head()->is_Root() ) {
 321     LoopNode *loop = bh->as_Loop();
 322     const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
 323     while (bx->is_connector()) {
 324       bx = (*bbs)[bx->pred(1)->_idx];
 325     }
 326     tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
 327     // Dump any loop-specific bits, especially for CountedLoops.
 328     loop->dump_spec(tty);
 329   } else if (has_loop_alignment()) {
 330     tty->print(" top-of-loop");
 331   }
 332   tty->print(" Freq: %g",_freq);
 333   if( Verbose || WizardMode ) {
 334     tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
 335     tty->print(" RegPressure: %d",_reg_pressure);
 336     tty->print(" IHRP Index: %d",_ihrp_index);
 337     tty->print(" FRegPressure: %d",_freg_pressure);
 338     tty->print(" FHRP Index: %d",_fhrp_index);
 339   }
 340   tty->print_cr("");
 341 }
 342 
 343 void Block::dump() const { dump(0); }
 344 
 345 void Block::dump( const Block_Array *bbs ) const {
 346   dump_head(bbs);
 347   uint cnt = _nodes.size();
 348   for( uint i=0; i<cnt; i++ )
 349     _nodes[i]->dump();
 350   tty->print("\n");  
 351 }
 352 #endif
 353 
 354 //=============================================================================
 355 //------------------------------PhaseCFG---------------------------------------
 356 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) : 
 357   Phase(CFG), 
 358   _bbs(a), 
 359   _root(r) 
 360 #ifndef PRODUCT
 361   , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
 362 #endif
 363 {
 364   ResourceMark rm;
 365   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
 366   // then Match it into a machine-specific Node.  Then clone the machine
 367   // Node on demand.
 368   Node *x = new (C, 1) GotoNode(NULL);
 369   x->init_req(0, x);
 370   _goto = m.match_tree(x);
 371   assert(_goto != NULL, "");
 372   _goto->set_req(0,_goto);
 373 
 374   // Build the CFG in Reverse Post Order
 375   _num_blocks = build_cfg();
 376   _broot = _bbs[_root->_idx];
 377 }
 378 
 379 //------------------------------build_cfg--------------------------------------
 380 // Build a proper looking CFG.  Make every block begin with either a StartNode
 381 // or a RegionNode.  Make every block end with either a Goto, If or Return.
 382 // The RootNode both starts and ends it's own block.  Do this with a recursive
 383 // backwards walk over the control edges.
 384 uint PhaseCFG::build_cfg() {
 385   Arena *a = Thread::current()->resource_area();
 386   VectorSet visited(a);
 387 
 388   // Allocate stack with enough space to avoid frequent realloc
 389   Node_Stack nstack(a, C->unique() >> 1);
 390   nstack.push(_root, 0);
 391   uint sum = 0;                 // Counter for blocks
 392 
 393   while (nstack.is_nonempty()) {
 394     // node and in's index from stack's top
 395     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
 396     // only nodes which point to the start of basic block (see below).
 397     Node *np = nstack.node();
 398     // idx > 0, except for the first node (_root) pushed on stack 
 399     // at the beginning when idx == 0.
 400     // We will use the condition (idx == 0) later to end the build.
 401     uint idx = nstack.index();
 402     Node *proj = np->in(idx);
 403     const Node *x = proj->is_block_proj();
 404     // Does the block end with a proper block-ending Node?  One of Return,
 405     // If or Goto? (This check should be done for visited nodes also).
 406     if (x == NULL) {                    // Does not end right...
 407       Node *g = _goto->clone(); // Force it to end in a Goto
 408       g->set_req(0, proj);
 409       np->set_req(idx, g);
 410       x = proj = g;
 411     }
 412     if (!visited.test_set(x->_idx)) { // Visit this block once
 413       // Skip any control-pinned middle'in stuff
 414       Node *p = proj;
 415       do {
 416         proj = p;                   // Update pointer to last Control
 417         p = p->in(0);               // Move control forward
 418       } while( !p->is_block_proj() &&
 419                !p->is_block_start() );
 420       // Make the block begin with one of Region or StartNode.
 421       if( !p->is_block_start() ) {
 422         RegionNode *r = new (C, 2) RegionNode( 2 );
 423         r->init_req(1, p);         // Insert RegionNode in the way
 424         proj->set_req(0, r);        // Insert RegionNode in the way
 425         p = r;
 426       }
 427       // 'p' now points to the start of this basic block
 428 
 429       // Put self in array of basic blocks
 430       Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
 431       _bbs.map(p->_idx,bb);
 432       _bbs.map(x->_idx,bb);
 433       if( x != p )                  // Only for root is x == p
 434         bb->_nodes.push((Node*)x);
 435 
 436       // Now handle predecessors
 437       ++sum;                        // Count 1 for self block
 438       uint cnt = bb->num_preds();
 439       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
 440         Node *prevproj = p->in(i);  // Get prior input
 441         assert( !prevproj->is_Con(), "dead input not removed" );
 442         // Check to see if p->in(i) is a "control-dependent" CFG edge - 
 443         // i.e., it splits at the source (via an IF or SWITCH) and merges
 444         // at the destination (via a many-input Region).
 445         // This breaks critical edges.  The RegionNode to start the block
 446         // will be added when <p,i> is pulled off the node stack
 447         if ( cnt > 2 ) {             // Merging many things?
 448           assert( prevproj== bb->pred(i),"");
 449           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
 450             // Force a block on the control-dependent edge
 451             Node *g = _goto->clone();       // Force it to end in a Goto
 452             g->set_req(0,prevproj);
 453             p->set_req(i,g);
 454           }
 455         }
 456         nstack.push(p, i);  // 'p' is RegionNode or StartNode
 457       }
 458     } else { // Post-processing visited nodes
 459       nstack.pop();                 // remove node from stack
 460       // Check if it the fist node pushed on stack at the beginning.
 461       if (idx == 0) break;          // end of the build
 462       // Find predecessor basic block
 463       Block *pb = _bbs[x->_idx];
 464       // Insert into nodes array, if not already there
 465       if( !_bbs.lookup(proj->_idx) ) {
 466         assert( x != proj, "" );
 467         // Map basic block of projection
 468         _bbs.map(proj->_idx,pb);
 469         pb->_nodes.push(proj);
 470       }
 471       // Insert self as a child of my predecessor block
 472       pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
 473       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
 474               "too many control users, not a CFG?" );
 475     }
 476   }
 477   // Return number of basic blocks for all children and self
 478   return sum;
 479 }
 480 
 481 //------------------------------insert_goto_at---------------------------------
 482 // Inserts a goto & corresponding basic block between
 483 // block[block_no] and its succ_no'th successor block
 484 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
 485   // get block with block_no
 486   assert(block_no < _num_blocks, "illegal block number");
 487   Block* in  = _blocks[block_no];
 488   // get successor block succ_no
 489   assert(succ_no < in->_num_succs, "illegal successor number");
 490   Block* out = in->_succs[succ_no];
 491   // Compute frequency of the new block. Do this before inserting
 492   // new block in case succ_prob() needs to infer the probability from
 493   // surrounding blocks.
 494   float freq = in->_freq * in->succ_prob(succ_no);
 495   // get ProjNode corresponding to the succ_no'th successor of the in block
 496   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
 497   // create region for basic block
 498   RegionNode* region = new (C, 2) RegionNode(2);
 499   region->init_req(1, proj);
 500   // setup corresponding basic block
 501   Block* block = new (_bbs._arena) Block(_bbs._arena, region);
 502   _bbs.map(region->_idx, block);
 503   C->regalloc()->set_bad(region->_idx);
 504   // add a goto node
 505   Node* gto = _goto->clone(); // get a new goto node
 506   gto->set_req(0, region);
 507   // add it to the basic block
 508   block->_nodes.push(gto);
 509   _bbs.map(gto->_idx, block);
 510   C->regalloc()->set_bad(gto->_idx);
 511   // hook up successor block
 512   block->_succs.map(block->_num_succs++, out);
 513   // remap successor's predecessors if necessary
 514   for (uint i = 1; i < out->num_preds(); i++) {
 515     if (out->pred(i) == proj) out->head()->set_req(i, gto);
 516   }
 517   // remap predecessor's successor to new block
 518   in->_succs.map(succ_no, block);
 519   // Set the frequency of the new block
 520   block->_freq = freq;
 521   // add new basic block to basic block list
 522   _blocks.insert(block_no + 1, block);
 523   _num_blocks++;
 524 }
 525 
 526 //------------------------------no_flip_branch---------------------------------
 527 // Does this block end in a multiway branch that cannot have the default case
 528 // flipped for another case?
 529 static bool no_flip_branch( Block *b ) {
 530   int branch_idx = b->_nodes.size() - b->_num_succs-1;
 531   if( branch_idx < 1 ) return false;
 532   Node *bra = b->_nodes[branch_idx];
 533   if( bra->is_Catch() )
 534     return true;
 535   if( bra->is_Mach() ) {
 536     if( bra->is_MachNullCheck() )
 537       return true;
 538     int iop = bra->as_Mach()->ideal_Opcode();
 539     if( iop == Op_FastLock || iop == Op_FastUnlock )
 540       return true;
 541   }
 542   return false;
 543 }
 544 
 545 //------------------------------convert_NeverBranch_to_Goto--------------------
 546 // Check for NeverBranch at block end.  This needs to become a GOTO to the
 547 // true target.  NeverBranch are treated as a conditional branch that always
 548 // goes the same direction for most of the optimizer and are used to give a
 549 // fake exit path to infinite loops.  At this late stage they need to turn
 550 // into Goto's so that when you enter the infinite loop you indeed hang.
 551 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
 552   // Find true target
 553   int end_idx = b->end_idx();
 554   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
 555   Block *succ = b->_succs[idx];
 556   Node* gto = _goto->clone(); // get a new goto node
 557   gto->set_req(0, b->head());
 558   Node *bp = b->_nodes[end_idx];
 559   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
 560   _bbs.map(gto->_idx, b);
 561   C->regalloc()->set_bad(gto->_idx);
 562   b->_nodes.pop();              // Yank projections
 563   b->_nodes.pop();              // Yank projections
 564   b->_succs.map(0,succ);        // Map only successor
 565   b->_num_succs = 1;
 566   // remap successor's predecessors if necessary
 567   uint j;
 568   for( j = 1; j < succ->num_preds(); j++) 
 569     if( succ->pred(j)->in(0) == bp ) 
 570       succ->head()->set_req(j, gto);
 571   // Kill alternate exit path
 572   Block *dead = b->_succs[1-idx];
 573   for( j = 1; j < dead->num_preds(); j++) 
 574     if( dead->pred(j)->in(0) == bp ) 
 575       break;
 576   // Scan through block, yanking dead path from
 577   // all regions and phis.
 578   dead->head()->del_req(j);
 579   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
 580     dead->_nodes[k]->del_req(j);
 581 }
 582 
 583 //------------------------------move_to_next-----------------------------------
 584 // Helper function to move block bx to the slot following b_index. Return
 585 // true if the move is successful, otherwise false
 586 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
 587   if (bx == NULL) return false;
 588 
 589   // Return false if bx is already scheduled.
 590   uint bx_index = bx->_pre_order;
 591   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
 592     return false;
 593   }
 594  
 595   // Find the current index of block bx on the block list
 596   bx_index = b_index + 1; 
 597   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
 598   assert(_blocks[bx_index] == bx, "block not found");
 599 
 600   // If the previous block conditionally falls into bx, return false,
 601   // because moving bx will create an extra jump.
 602   for(uint k = 1; k < bx->num_preds(); k++ ) {
 603     Block* pred = _bbs[bx->pred(k)->_idx];
 604     if (pred == _blocks[bx_index-1]) {
 605       if (pred->_num_succs != 1) {
 606         return false;
 607       }
 608     }
 609   }
 610 
 611   // Reinsert bx just past block 'b'
 612   _blocks.remove(bx_index);
 613   _blocks.insert(b_index + 1, bx);
 614   return true;
 615 }
 616 
 617 //------------------------------move_to_end------------------------------------
 618 // Move empty and uncommon blocks to the end.
 619 void PhaseCFG::move_to_end(Block *b, uint i) {
 620   int e = b->is_Empty();
 621   if (e != Block::not_empty) {
 622     if (e == Block::empty_with_goto) {
 623       // Remove the goto, but leave the block.
 624       b->_nodes.pop();
 625     }
 626     // Mark this block as a connector block, which will cause it to be
 627     // ignored in certain functions such as non_connector_successor().
 628     b->set_connector();
 629   }
 630   // Move the empty block to the end, and don't recheck.
 631   _blocks.remove(i);
 632   _blocks.push(b);
 633 }
 634 
 635 //---------------------------set_loop_alignment--------------------------------
 636 // Set loop alignment for every block
 637 void PhaseCFG::set_loop_alignment() {
 638   uint last = _num_blocks;
 639   assert( _blocks[0] == _broot, "" );
 640 
 641   for (uint i = 1; i < last; i++ ) {
 642     Block *b = _blocks[i];
 643     if (b->head()->is_Loop()) {
 644       b->set_loop_alignment(b);
 645     }
 646   }
 647 }
 648 
 649 //-----------------------------remove_empty------------------------------------
 650 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
 651 // to the end.
 652 void PhaseCFG::remove_empty() {
 653   // Move uncommon blocks to the end
 654   uint last = _num_blocks;
 655   assert( _blocks[0] == _broot, "" );
 656 
 657   for (uint i = 1; i < last; i++) {
 658     Block *b = _blocks[i];
 659     if (b->is_connector()) break;
 660 
 661     // Check for NeverBranch at block end.  This needs to become a GOTO to the
 662     // true target.  NeverBranch are treated as a conditional branch that
 663     // always goes the same direction for most of the optimizer and are used
 664     // to give a fake exit path to infinite loops.  At this late stage they
 665     // need to turn into Goto's so that when you enter the infinite loop you
 666     // indeed hang.
 667     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch ) 
 668       convert_NeverBranch_to_Goto(b);
 669 
 670     // Look for uncommon blocks and move to end.
 671     if (!C->do_freq_based_layout()) {
 672       if( b->is_uncommon(_bbs) ) {
 673         move_to_end(b, i);
 674         last--;                   // No longer check for being uncommon!
 675         if( no_flip_branch(b) ) { // Fall-thru case must follow?
 676           b = _blocks[i];         // Find the fall-thru block
 677           move_to_end(b, i);
 678           last--;
 679         }
 680         i--;                      // backup block counter post-increment
 681       }
 682     }
 683   }
 684 
 685   // Move empty blocks to the end
 686   last = _num_blocks;
 687   for (uint i = 1; i < last; i++) {
 688     Block *b = _blocks[i];
 689     if (b->is_Empty() != Block::not_empty) {
 690       move_to_end(b, i);
 691       last--;
 692       i--;
 693     }
 694   } // End of for all blocks
 695 }
 696 
 697 //-----------------------------fixup_flow--------------------------------------
 698 // Fix up the final control flow for basic blocks.
 699 void PhaseCFG::fixup_flow() {
 700   // Fixup final control flow for the blocks.  Remove jump-to-next
 701   // block.  If neither arm of a IF follows the conditional branch, we
 702   // have to add a second jump after the conditional.  We place the
 703   // TRUE branch target in succs[0] for both GOTOs and IFs.
 704   for (uint i=0; i < _num_blocks; i++) {
 705     Block *b = _blocks[i];
 706     b->_pre_order = i;          // turn pre-order into block-index
 707 
 708     // Connector blocks need no further processing.
 709     if (b->is_connector()) {
 710       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(), 
 711              "All connector blocks should sink to the end");
 712       continue;
 713     }
 714     assert(b->is_Empty() != Block::completely_empty, 
 715            "Empty blocks should be connectors");
 716 
 717     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
 718     Block *bs0 = b->non_connector_successor(0);
 719 
 720     // Check for multi-way branches where I cannot negate the test to
 721     // exchange the true and false targets.
 722     if( no_flip_branch( b ) ) {
 723       // Find fall through case - if must fall into its target
 724       int branch_idx = b->_nodes.size() - b->_num_succs;
 725       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
 726         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
 727         if (p->_con == 0) {
 728           // successor j2 is fall through case
 729           if (b->non_connector_successor(j2) != bnext) {
 730             // but it is not the next block => insert a goto
 731             insert_goto_at(i, j2);
 732           }
 733           // Put taken branch in slot 0
 734           if( j2 == 0 && b->_num_succs == 2) {
 735             // Flip targets in succs map
 736             Block *tbs0 = b->_succs[0];
 737             Block *tbs1 = b->_succs[1];
 738             b->_succs.map( 0, tbs1 );
 739             b->_succs.map( 1, tbs0 );
 740           }
 741           break;
 742         }
 743       }
 744       // Remove all CatchProjs
 745       for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
 746 
 747     } else if (b->_num_succs == 1) {
 748       // Block ends in a Goto?
 749       if (bnext == bs0) {
 750         // We fall into next block; remove the Goto
 751         b->_nodes.pop();
 752       }
 753 
 754     } else if( b->_num_succs == 2 ) { // Block ends in a If?
 755       // Get opcode of 1st projection (matches _succs[0])
 756       // Note: Since this basic block has 2 exits, the last 2 nodes must
 757       //       be projections (in any order), the 3rd last node must be
 758       //       the IfNode (we have excluded other 2-way exits such as
 759       //       CatchNodes already).
 760       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
 761       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
 762       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
 763 
 764       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 765       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
 766       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
 767 
 768       Block *bs1 = b->non_connector_successor(1);
 769 
 770       // Check for neither successor block following the current 
 771       // block ending in a conditional. If so, move one of the 
 772       // successors after the current one, provided that the
 773       // successor was previously unscheduled, but moveable 
 774       // (i.e., all paths to it involve a branch).
 775       if( !C->do_freq_based_layout() && bnext != bs0 && bnext != bs1 ) {
 776         // Choose the more common successor based on the probability
 777         // of the conditional branch.
 778         Block *bx = bs0;
 779         Block *by = bs1;
 780 
 781         // _prob is the probability of taking the true path. Make
 782         // p the probability of taking successor #1.
 783         float p = iff->as_MachIf()->_prob;
 784         if( proj0->Opcode() == Op_IfTrue ) {
 785           p = 1.0 - p;
 786         }
 787         
 788         // Prefer successor #1 if p > 0.5
 789         if (p > PROB_FAIR) {
 790           bx = bs1;
 791           by = bs0;
 792         }
 793 
 794         // Attempt the more common successor first
 795         if (move_to_next(bx, i)) {
 796           bnext = bx;
 797         } else if (move_to_next(by, i)) {
 798           bnext = by;
 799         }
 800       }
 801 
 802       // Check for conditional branching the wrong way.  Negate
 803       // conditional, if needed, so it falls into the following block
 804       // and branches to the not-following block.
 805       
 806       // Check for the next block being in succs[0].  We are going to branch
 807       // to succs[0], so we want the fall-thru case as the next block in 
 808       // succs[1].
 809       if (bnext == bs0) {      
 810         // Fall-thru case in succs[0], so flip targets in succs map
 811         Block *tbs0 = b->_succs[0];
 812         Block *tbs1 = b->_succs[1];
 813         b->_succs.map( 0, tbs1 );
 814         b->_succs.map( 1, tbs0 );
 815         // Flip projection for each target
 816         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
 817 
 818       } else if( bnext != bs1 ) {
 819         // Need a double-branch
 820         // The existing conditional branch need not change.
 821         // Add a unconditional branch to the false target.
 822         // Alas, it must appear in its own block and adding a
 823         // block this late in the game is complicated.  Sigh.
 824         insert_goto_at(i, 1);
 825       }
 826 
 827       // Make sure we TRUE branch to the target
 828       if( proj0->Opcode() == Op_IfFalse ) {
 829         iff->negate();
 830       }
 831 
 832       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
 833       b->_nodes.pop();
 834       
 835     } else {
 836       // Multi-exit block, e.g. a switch statement
 837       // But we don't need to do anything here
 838     }
 839   } // End of for all blocks
 840 }
 841 
 842 
 843 //------------------------------dump-------------------------------------------
 844 #ifndef PRODUCT
 845 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
 846   const Node *x = end->is_block_proj();
 847   assert( x, "not a CFG" );
 848 
 849   // Do not visit this block again
 850   if( visited.test_set(x->_idx) ) return;
 851 
 852   // Skip through this block
 853   const Node *p = x;
 854   do {
 855     p = p->in(0);               // Move control forward
 856     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
 857   } while( !p->is_block_start() );
 858 
 859   // Recursively visit
 860   for( uint i=1; i<p->req(); i++ )
 861     _dump_cfg(p->in(i),visited);
 862 
 863   // Dump the block
 864   _bbs[p->_idx]->dump(&_bbs);
 865 }
 866 
 867 void PhaseCFG::dump( ) const {
 868   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
 869   if( _blocks.size() ) {        // Did we do basic-block layout?
 870     for( uint i=0; i<_num_blocks; i++ )
 871       _blocks[i]->dump(&_bbs);
 872   } else {                      // Else do it with a DFS
 873     VectorSet visited(_bbs._arena);
 874     _dump_cfg(_root,visited);
 875   }
 876 }
 877 
 878 void PhaseCFG::dump_headers() {
 879   for( uint i = 0; i < _num_blocks; i++ ) {
 880     if( _blocks[i] == NULL ) continue;
 881     _blocks[i]->dump_head(&_bbs);
 882   }
 883 }
 884 
 885 void PhaseCFG::verify( ) const {
 886   // Verify sane CFG
 887   for( uint i = 0; i < _num_blocks; i++ ) {
 888     Block *b = _blocks[i];
 889     uint cnt = b->_nodes.size();
 890     uint j;
 891     for( j = 0; j < cnt; j++ ) {
 892       Node *n = b->_nodes[j];
 893       assert( _bbs[n->_idx] == b, "" );
 894       if( j >= 1 && n->is_Mach() &&
 895           n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
 896         assert( j == 1 || b->_nodes[j-1]->is_Phi(),
 897                 "CreateEx must be first instruction in block" );
 898       }
 899       for( uint k = 0; k < n->req(); k++ ) {
 900         Node *use = n->in(k);
 901         if( use && use != n ) {
 902           assert( _bbs[use->_idx] || use->is_Con(), 
 903                   "must have block; constants for debug info ok" );
 904         }
 905       }
 906     }
 907 
 908     j = b->end_idx();
 909     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
 910     assert( bp, "last instruction must be a block proj" );
 911     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
 912     if( bp->is_Catch() ) {
 913       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
 914       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
 915     }
 916     else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
 917       assert( b->_num_succs == 2, "Conditional branch must have two targets");
 918     }
 919   }
 920 }
 921 #endif
 922 
 923 //=============================================================================
 924 //------------------------------UnionFind--------------------------------------
 925 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
 926   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
 927 }
 928 
 929 void UnionFind::extend( uint from_idx, uint to_idx ) {
 930   _nesting.check();
 931   if( from_idx >= _max ) {
 932     uint size = 16; 
 933     while( size <= from_idx ) size <<=1;
 934     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
 935     _max = size;
 936   }
 937   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
 938   _indices[from_idx] = to_idx;
 939 }
 940 
 941 void UnionFind::reset( uint max ) {
 942   assert( max <= max_uint, "Must fit within uint" );
 943   // Force the Union-Find mapping to be at least this large
 944   extend(max,0);
 945   // Initialize to be the ID mapping.
 946   for( uint i=0; i<max; i++ ) map(i,i);
 947 }
 948 
 949 //------------------------------Find_compress----------------------------------
 950 // Straight out of Tarjan's union-find algorithm
 951 uint UnionFind::Find_compress( uint idx ) {
 952   uint cur  = idx;
 953   uint next = lookup(cur); 
 954   while( next != cur ) {        // Scan chain of equivalences
 955     assert( next < cur, "always union smaller" );
 956     cur = next;                 // until find a fixed-point
 957     next = lookup(cur);
 958   }
 959   // Core of union-find algorithm: update chain of
 960   // equivalences to be equal to the root.
 961   while( idx != next ) {
 962     uint tmp = lookup(idx);
 963     map(idx, next);
 964     idx = tmp;
 965   }
 966   return idx;
 967 }
 968 
 969 //------------------------------Find_const-------------------------------------
 970 // Like Find above, but no path compress, so bad asymptotic behavior
 971 uint UnionFind::Find_const( uint idx ) const {
 972   if( idx == 0 ) return idx;    // Ignore the zero idx
 973   // Off the end?  This can happen during debugging dumps 
 974   // when data structures have not finished being updated.
 975   if( idx >= _max ) return idx;
 976   uint next = lookup(idx); 
 977   while( next != idx ) {        // Scan chain of equivalences
 978     idx = next;                 // until find a fixed-point
 979     next = lookup(idx);
 980   }
 981   return next;
 982 }
 983 
 984 //------------------------------Union------------------------------------------
 985 // union 2 sets together.
 986 void UnionFind::Union( uint idx1, uint idx2 ) {
 987   uint src = Find(idx1);
 988   uint dst = Find(idx2);
 989   assert( src, "" );
 990   assert( dst, "" );
 991   assert( src < _max, "oob" );
 992   assert( dst < _max, "oob" );
 993   assert( src < dst, "always union smaller" );
 994   map(dst,src);
 995 }
 996 
 997 #ifndef PRODUCT
 998 static void edge_dump(GrowableArray<CFGEdge *> *edges) {
 999   tty->print_cr("---- Edges ----");
1000   for (int i = 0; i < edges->length(); i++) {
1001     CFGEdge *e = edges->at(i);
1002     if (e != NULL) {
1003       edges->at(i)->dump();
1004     }
1005   }
1006 }
1007 
1008 static void trace_dump(Trace *traces[], int count) {
1009   tty->print_cr("---- Traces ----");
1010   for (int i = 0; i < count; i++) {
1011     Trace *tr = traces[i];
1012     if (tr != NULL) {
1013       tr->dump();
1014     }
1015   }
1016 }
1017 
1018 void Trace::dump( ) const {
1019   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1020   for (Block *b = first_block(); b != NULL; b = next(b)) {
1021     tty->print("  B%d", b->_pre_order);
1022     if (b->head()->is_Loop()) {
1023       tty->print(" (L%d)", b->compute_loop_alignment());
1024     }
1025     if (b->has_loop_alignment()) {
1026       tty->print(" (T%d)", b->code_alignment());
1027     }
1028   }
1029   tty->cr();
1030 }
1031 
1032 void CFGEdge::dump( ) const {
1033   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1034              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1035   switch(state()) {
1036   case connected:
1037     tty->print("connected");
1038     break;
1039   case open:
1040     tty->print("open");
1041     break;
1042   case interior:
1043     tty->print("interior");
1044     break;
1045   }
1046   if (infrequent()) {
1047     tty->print("  infrequent");
1048   }
1049   tty->cr();
1050 }
1051 #endif
1052 
1053 //=============================================================================
1054 
1055 //------------------------------edge_order-------------------------------------
1056 // Comparison function for edges
1057 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1058   float freq0 = (*e0)->freq();
1059   float freq1 = (*e1)->freq();
1060   if (freq0 != freq1) {
1061     return freq0 > freq1 ? -1 : 1;
1062   }
1063 
1064   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1065   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1066 
1067   return dist1 - dist0;
1068 }
1069 
1070 //------------------------------trace_frequency_order--------------------------
1071 // Comparison function for edges
1072 static int trace_frequency_order(const void *p0, const void *p1) {
1073   Trace *tr0 = *(Trace **) p0;
1074   Trace *tr1 = *(Trace **) p1;
1075   Block *b0 = tr0->first_block();
1076   Block *b1 = tr1->first_block();
1077 
1078   // The trace of connector blocks goes at the end;
1079   // we only expect one such trace
1080   if (b0->is_connector() != b1->is_connector()) {
1081     return b1->is_connector() ? -1 : 1;
1082   }
1083 
1084   // Pull more frequently executed blocks to the beginning
1085   float freq0 = b0->_freq;
1086   float freq1 = b1->_freq;
1087   if (freq0 != freq1) {
1088     return freq0 > freq1 ? -1 : 1;
1089   }
1090 
1091   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1092 
1093   return diff;
1094 }
1095 
1096 //------------------------------find_edges-------------------------------------
1097 // Find edges of interest, i.e, those which can fall through. Presumes that
1098 // edges which don't fall through are of low frequency and can be generally
1099 // ignored.  Initialize the list of traces.
1100 void PhaseBlockLayout::find_edges()
1101 {
1102   // Walk the blocks, creating edges and Traces
1103   uint i;
1104   Trace *tr = NULL;
1105   for (i = 0; i < _cfg._num_blocks; i++) {
1106     Block *b = _cfg._blocks[i];
1107     tr = new Trace(b, next, prev);
1108     traces[tr->id()] = tr;
1109 
1110     // All connector blocks should be at the end of the list
1111     if (b->is_connector()) break;
1112 
1113     // If this block and the next one have a one-to-one successor
1114     // predecessor relationship, simply append the next block
1115     int nfallthru = b->num_fall_throughs();
1116     while (nfallthru == 1 &&
1117            b->succ_fall_through(0)) {
1118       Block *n = b->_succs[0];
1119 
1120       // Skip over single-entry connector blocks, we don't want to
1121       // add them to the trace.
1122       while (n->is_connector() && n->num_preds() == 1) {
1123         n = n->_succs[0];
1124       }
1125 
1126       // We see a merge point, so stop search for the next block
1127       if (n->num_preds() != 1) break;
1128 
1129       i++;
1130       assert(n = _cfg._blocks[i], "expecting next block");
1131       tr->append(n);
1132       uf->map(n->_pre_order, tr->id());
1133       traces[n->_pre_order] = NULL;
1134       nfallthru = b->num_fall_throughs();
1135       b = n;
1136     }
1137 
1138     if (nfallthru > 0) {
1139       // Create a CFGEdge for each outgoing
1140       // edge that could be a fall-through.
1141       for (uint j = 0; j < b->_num_succs; j++ ) {
1142         if (b->succ_fall_through(j)) {
1143           Block *target = b->non_connector_successor(j);
1144           float freq = b->_freq * b->succ_prob(j);
1145           int from_pct = (int) ((100 * freq) / b->_freq);
1146           int to_pct = (int) ((100 * freq) / target->_freq);
1147           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1148         }
1149       }
1150     }
1151   }
1152 
1153   // Group connector blocks into one trace
1154   for (i++; i < _cfg._num_blocks; i++) {
1155     Block *b = _cfg._blocks[i];
1156     assert(b->is_connector(), "connector blocks at the end");
1157     tr->append(b);
1158     uf->map(b->_pre_order, tr->id());
1159     traces[b->_pre_order] = NULL;
1160   }
1161 }
1162 
1163 //------------------------------union_traces----------------------------------
1164 // Union two traces together in uf, and null out the trace in the list
1165 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
1166 {
1167   uint old_id = old_trace->id();
1168   uint updated_id = updated_trace->id();
1169 
1170   uint lo_id = updated_id;
1171   uint hi_id = old_id;
1172 
1173   // If from is greater than to, swap values to meet
1174   // UnionFind guarantee.
1175   if (updated_id > old_id) {
1176     lo_id = old_id;
1177     hi_id = updated_id;
1178 
1179     // Fix up the trace ids
1180     traces[lo_id] = traces[updated_id];
1181     updated_trace->set_id(lo_id);
1182   }
1183 
1184   // Union the lower with the higher and remove the pointer
1185   // to the higher.
1186   uf->Union(lo_id, hi_id);
1187   traces[hi_id] = NULL;
1188 }
1189 
1190 //------------------------------grow_traces-------------------------------------
1191 // Append traces together via the most frequently executed edges
1192 void PhaseBlockLayout::grow_traces()
1193 {
1194   // Order the edges, and drive the growth of Traces via the most
1195   // frequently executed edges.
1196   edges->sort(edge_order);
1197   for (int i = 0; i < edges->length(); i++) {
1198     CFGEdge *e = edges->at(i);
1199 
1200     if (e->state() != CFGEdge::open) continue;
1201 
1202     Block *src_block = e->from();
1203     Block *targ_block = e->to();
1204 
1205     // Don't grow traces along backedges?
1206     if (!BlockLayoutRotateLoops) {
1207       if (targ_block->_rpo <= src_block->_rpo) {
1208         targ_block->set_loop_alignment(targ_block);
1209         continue;
1210       }
1211     }
1212 
1213     Trace *src_trace = trace(src_block);
1214     Trace *targ_trace = trace(targ_block);
1215 
1216     // If the edge in question can join two traces at their ends,
1217     // append one trace to the other.
1218    if (src_trace->last_block() == src_block) {
1219       if (src_trace == targ_trace) {
1220         e->set_state(CFGEdge::interior);
1221         if (targ_trace->backedge(e)) {
1222           // Reset i to catch any newly eligible edge
1223           // (Or we could remember the first "open" edge, and reset there)
1224           i = 0;
1225         }
1226       } else if (targ_trace->first_block() == targ_block) {
1227         e->set_state(CFGEdge::connected);
1228         src_trace->append(targ_trace);
1229         union_traces(src_trace, targ_trace);
1230       }
1231     }
1232   }
1233 }
1234 
1235 //------------------------------merge_traces-----------------------------------
1236 // Embed one trace into another, if the fork or join points are sufficiently
1237 // balanced.
1238 void PhaseBlockLayout::merge_traces(bool fall_thru_only)
1239 {
1240   // Walk the edge list a another time, looking at unprocessed edges.
1241   // Fold in diamonds
1242   for (int i = 0; i < edges->length(); i++) {
1243     CFGEdge *e = edges->at(i);
1244 
1245     if (e->state() != CFGEdge::open) continue;
1246     if (fall_thru_only) {
1247       if (e->infrequent()) continue;
1248     }
1249 
1250     Block *src_block = e->from();
1251     Trace *src_trace = trace(src_block);
1252     bool src_at_tail = src_trace->last_block() == src_block;
1253 
1254     Block *targ_block  = e->to();
1255     Trace *targ_trace  = trace(targ_block);
1256     bool targ_at_start = targ_trace->first_block() == targ_block;
1257 
1258     if (src_trace == targ_trace) {
1259       // This may be a loop, but we can't do much about it.
1260       e->set_state(CFGEdge::interior);
1261       continue;
1262     }
1263 
1264     if (fall_thru_only) {
1265       // If the edge links the middle of two traces, we can't do anything.
1266       // Mark the edge and continue.
1267       if (!src_at_tail & !targ_at_start) {
1268         continue;
1269       }
1270 
1271       // Don't grow traces along backedges?
1272       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1273           continue;
1274       }
1275 
1276       // If both ends of the edge are available, why didn't we handle it earlier?
1277       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1278 
1279       if (targ_at_start) {
1280         // Insert the "targ" trace in the "src" trace if the insertion point
1281         // is a two way branch.
1282         // Better profitability check possible, but may not be worth it.
1283         // Someday, see if the this "fork" has an associated "join";
1284         // then make a policy on merging this trace at the fork or join.
1285         // For example, other things being equal, it may be better to place this
1286         // trace at the join point if the "src" trace ends in a two-way, but
1287         // the insertion point is one-way.
1288         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1289         e->set_state(CFGEdge::connected);
1290         src_trace->insert_after(src_block, targ_trace);
1291         union_traces(src_trace, targ_trace);
1292       } else if (src_at_tail) {
1293         if (src_trace != trace(_cfg._broot)) {
1294           e->set_state(CFGEdge::connected);
1295           targ_trace->insert_before(targ_block, src_trace);
1296           union_traces(targ_trace, src_trace);
1297         }
1298       }
1299     } else if (e->state() == CFGEdge::open) {
1300       // Append traces, even without a fall-thru connection.
1301       // But leave root entry at the begining of the block list.
1302       if (targ_trace != trace(_cfg._broot)) {
1303         e->set_state(CFGEdge::connected);
1304         src_trace->append(targ_trace);
1305         union_traces(src_trace, targ_trace);
1306       }
1307     }
1308   }
1309 }
1310 
1311 //----------------------------reorder_traces-----------------------------------
1312 // Order the sequence of the traces in some desirable way, and fixup the
1313 // jumps at the end of each block.
1314 void PhaseBlockLayout::reorder_traces(int count)
1315 {
1316   ResourceArea *area = Thread::current()->resource_area();
1317   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1318   Block_List worklist;
1319   int new_count = 0;
1320 
1321   // Compact the traces.
1322   for (int i = 0; i < count; i++) {
1323     Trace *tr = traces[i];
1324     if (tr != NULL) {
1325       new_traces[new_count++] = tr;
1326     }
1327   }
1328 
1329   // The entry block should be first on the new trace list.
1330   Trace *tr = trace(_cfg._broot);
1331   assert(tr == new_traces[0], "entry trace misplaced");
1332 
1333   // Sort the new trace list by frequency
1334   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1335 
1336   // Patch up the successor blocks
1337   _cfg._blocks.reset();
1338   _cfg._num_blocks = 0;
1339   for (int i = 0; i < new_count; i++) {
1340     Trace *tr = new_traces[i];
1341     if (tr != NULL) {
1342       tr->fixup_blocks(_cfg);
1343     }
1344   }
1345 }
1346 
1347 //------------------------------PhaseBlockLayout-------------------------------
1348 // Order basic blocks based on frequency
1349 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
1350   Phase(BlockLayout),
1351   _cfg(cfg)
1352 {
1353   ResourceMark rm;
1354   ResourceArea *area = Thread::current()->resource_area();
1355 
1356   // List of traces
1357   int size = _cfg._num_blocks + 1;
1358   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1359   memset(traces, 0, size*sizeof(Trace*));
1360   next = NEW_ARENA_ARRAY(area, Block *, size);
1361   memset(next,   0, size*sizeof(Block *));
1362   prev = NEW_ARENA_ARRAY(area, Block *, size);
1363   memset(prev  , 0, size*sizeof(Block *));
1364 
1365   // List of edges
1366   edges = new GrowableArray<CFGEdge*>;
1367 
1368   // Mapping block index --> block_trace
1369   uf = new UnionFind(size);
1370   uf->reset(size);
1371 
1372   // Find edges and create traces.
1373   find_edges();
1374 
1375   // Grow traces at their ends via most frequent edges.
1376   grow_traces();
1377 
1378   // Merge one trace into another, but only at fall-through points.
1379   // This may make diamonds and other related shapes in a trace.
1380   merge_traces(true);
1381 
1382   // Run merge again, allowing two traces to be catenated, even if
1383   // one does not fall through into the other. This appends loosely
1384   // related traces to be near each other.
1385   merge_traces(false);
1386 
1387   // Re-order all the remaining traces by frequency
1388   reorder_traces(size);
1389 
1390   assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink");
1391 }
1392 
1393 
1394 //------------------------------backedge---------------------------------------
1395 // Edge e completes a loop in a trace. If the target block is head of the
1396 // loop, rotate the loop block so that the loop ends in a conditional branch.
1397 bool Trace::backedge(CFGEdge *e) {
1398   bool loop_rotated = false;
1399   Block *src_block  = e->from();
1400   Block *targ_block    = e->to();
1401 
1402   assert(last_block() == src_block, "loop discovery at back branch");
1403   if (first_block() == targ_block) {
1404     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1405       // Find the last block in the trace that has a conditional
1406       // branch.
1407       Block *b;
1408       for (b = last_block(); b != NULL; b = prev(b)) {
1409         if (b->num_fall_throughs() == 2) {
1410           break;
1411         }
1412       }
1413 
1414       if (b != last_block() && b != NULL) {
1415         loop_rotated = true;
1416 
1417         // Rotate the loop by doing two-part linked-list surgery.
1418         append(first_block());
1419         break_loop_after(b);
1420       }
1421     }
1422 
1423     // Backbranch to the top of a trace
1424     // Scroll foward through the trace from the targ_block. If we find
1425     // a loop head before another loop top, use the the loop head alignment.
1426     for (Block *b = targ_block; b != NULL; b = next(b)) {
1427       if (b->has_loop_alignment()) {
1428         break;
1429       }
1430       if (b->head()->is_Loop()) {
1431         targ_block = b;
1432         break;
1433       }
1434     }
1435 
1436     first_block()->set_loop_alignment(targ_block);
1437 
1438   } else {
1439     // Backbranch into the middle of a trace
1440     targ_block->set_loop_alignment(targ_block);
1441   }
1442 
1443   return loop_rotated;
1444 }
1445 
1446 //------------------------------fixup_blocks-----------------------------------
1447 // push blocks onto the CFG list
1448 // ensure that blocks have the correct two-way branch sense
1449 void Trace::fixup_blocks(PhaseCFG &cfg) {
1450   Block *last = last_block();
1451   for (Block *b = first_block(); b != NULL; b = next(b)) {
1452     cfg._blocks.push(b);
1453     cfg._num_blocks++;
1454     if (!b->is_connector()) {
1455       int nfallthru = b->num_fall_throughs();
1456       if (b != last) {
1457         if (nfallthru == 2) {
1458           // Ensure that the sense of the branch is correct
1459           Block *bnext = next(b);
1460           Block *bs0 = b->non_connector_successor(0);
1461 
1462           MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
1463           ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
1464           ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
1465 
1466           if (bnext == bs0) {
1467             // Fall-thru case in succs[0], should be in succs[1]
1468 
1469             // Flip targets in _succs map
1470             Block *tbs0 = b->_succs[0];
1471             Block *tbs1 = b->_succs[1];
1472             b->_succs.map( 0, tbs1 );
1473             b->_succs.map( 1, tbs0 );
1474 
1475             // Flip projections to match targets
1476             b->_nodes.map(b->_nodes.size()-2, proj1);
1477             b->_nodes.map(b->_nodes.size()-1, proj0);
1478           }
1479         }
1480       }
1481     }
1482   }
1483 }