1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)buildOopMap.cpp      1.37 07/05/05 17:06:11 JVM"
   3 #endif
   4 /*
   5  * Copyright 2002-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 #include "incls/_precompiled.incl"
  29 #include "incls/_buildOopMap.cpp.incl"
  30 
  31 // The functions in this file builds OopMaps after all scheduling is done.
  32 //
  33 // OopMaps contain a list of all registers and stack-slots containing oops (so
  34 // they can be updated by GC).  OopMaps also contain a list of derived-pointer
  35 // base-pointer pairs.  When the base is moved, the derived pointer moves to
  36 // follow it.  Finally, any registers holding callee-save values are also
  37 // recorded.  These might contain oops, but only the caller knows.
  38 //
  39 // BuildOopMaps implements a simple forward reaching-defs solution.  At each
  40 // GC point we'll have the reaching-def Nodes.  If the reaching Nodes are
  41 // typed as pointers (no offset), then they are oops.  Pointers+offsets are
  42 // derived pointers, and bases can be found from them.  Finally, we'll also
  43 // track reaching callee-save values.  Note that a copy of a callee-save value
  44 // "kills" it's source, so that only 1 copy of a callee-save value is alive at
  45 // a time.
  46 //
  47 // We run a simple bitvector liveness pass to help trim out dead oops.  Due to
  48 // irreducible loops, we can have a reaching def of an oop that only reaches
  49 // along one path and no way to know if it's valid or not on the other path.
  50 // The bitvectors are quite dense and the liveness pass is fast.
  51 //
  52 // At GC points, we consult this information to build OopMaps.  All reaching
  53 // defs typed as oops are added to the OopMap.  Only 1 instance of a
  54 // callee-save register can be recorded.  For derived pointers, we'll have to
  55 // find and record the register holding the base.
  56 //
  57 // The reaching def's is a simple 1-pass worklist approach.  I tried a clever
  58 // breadth-first approach but it was worse (showed O(n^2) in the
  59 // pick-next-block code).
  60 //
  61 // The relevent data is kept in a struct of arrays (it could just as well be
  62 // an array of structs, but the struct-of-arrays is generally a little more
  63 // efficient).  The arrays are indexed by register number (including
  64 // stack-slots as registers) and so is bounded by 200 to 300 elements in
  65 // practice.  One array will map to a reaching def Node (or NULL for
  66 // conflict/dead).  The other array will map to a callee-saved register or
  67 // OptoReg::Bad for not-callee-saved.
  68 
  69 
  70 //------------------------------OopFlow----------------------------------------
  71 // Structure to pass around 
  72 struct OopFlow : public ResourceObj {
  73   short *_callees;              // Array mapping register to callee-saved 
  74   Node **_defs;                 // array mapping register to reaching def
  75                                 // or NULL if dead/conflict
  76   // OopFlow structs, when not being actively modified, describe the _end_ of
  77   // this block.
  78   Block *_b;                    // Block for this struct
  79   OopFlow *_next;               // Next free OopFlow
  80 
  81   OopFlow( short *callees, Node **defs ) : _callees(callees), _defs(defs),
  82     _b(NULL), _next(NULL) { }
  83 
  84   // Given reaching-defs for this block start, compute it for this block end
  85   void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
  86 
  87   // Merge these two OopFlows into the 'this' pointer.
  88   void merge( OopFlow *flow, int max_reg );
  89 
  90   // Copy a 'flow' over an existing flow
  91   void clone( OopFlow *flow, int max_size);
  92 
  93   // Make a new OopFlow from scratch
  94   static OopFlow *make( Arena *A, int max_size );
  95 
  96   // Build an oopmap from the current flow info
  97   OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
  98 };
  99 
 100 //------------------------------compute_reach----------------------------------
 101 // Given reaching-defs for this block start, compute it for this block end
 102 void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
 103 
 104   for( uint i=0; i<_b->_nodes.size(); i++ ) {
 105     Node *n = _b->_nodes[i];
 106 
 107     if( n->jvms() ) {           // Build an OopMap here?
 108       JVMState *jvms = n->jvms();
 109       // no map needed for leaf calls
 110       if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
 111         int *live = (int*) (*safehash)[n];
 112         assert( live, "must find live" );
 113         n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
 114       }
 115     }
 116 
 117     // Assign new reaching def's.
 118     // Note that I padded the _defs and _callees arrays so it's legal
 119     // to index at _defs[OptoReg::Bad].
 120     OptoReg::Name first = regalloc->get_reg_first(n);
 121     OptoReg::Name second = regalloc->get_reg_second(n);
 122     _defs[first] = n;
 123     _defs[second] = n;
 124 
 125     // Pass callee-save info around copies
 126     int idx = n->is_Copy();
 127     if( idx ) {                 // Copies move callee-save info
 128       OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
 129       OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
 130       int tmp_first = _callees[old_first];
 131       int tmp_second = _callees[old_second];
 132       _callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
 133       _callees[old_second] = OptoReg::Bad;
 134       _callees[first] = tmp_first;
 135       _callees[second] = tmp_second;
 136     } else if( n->is_Phi() ) {  // Phis do not mod callee-saves
 137       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
 138       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
 139       assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
 140       assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
 141     } else {
 142       _callees[first] = OptoReg::Bad; // No longer holding a callee-save value
 143       _callees[second] = OptoReg::Bad;
 144 
 145       // Find base case for callee saves
 146       if( n->is_Proj() && n->in(0)->is_Start() ) {
 147         if( OptoReg::is_reg(first) &&
 148             regalloc->_matcher.is_save_on_entry(first) )
 149           _callees[first] = first;
 150         if( OptoReg::is_reg(second) &&
 151             regalloc->_matcher.is_save_on_entry(second) )
 152           _callees[second] = second;
 153       }
 154     }
 155   }
 156 }
 157 
 158 //------------------------------merge------------------------------------------
 159 // Merge the given flow into the 'this' flow
 160 void OopFlow::merge( OopFlow *flow, int max_reg ) {
 161   assert( _b == NULL, "merging into a happy flow" );
 162   assert( flow->_b, "this flow is still alive" );
 163   assert( flow != this, "no self flow" );
 164 
 165   // Do the merge.  If there are any differences, drop to 'bottom' which
 166   // is OptoReg::Bad or NULL depending.
 167   for( int i=0; i<max_reg; i++ ) {
 168     // Merge the callee-save's
 169     if( _callees[i] != flow->_callees[i] )
 170       _callees[i] = OptoReg::Bad;
 171     // Merge the reaching defs
 172     if( _defs[i] != flow->_defs[i] )
 173       _defs[i] = NULL;
 174   }
 175 
 176 }
 177 
 178 //------------------------------clone------------------------------------------
 179 void OopFlow::clone( OopFlow *flow, int max_size ) {
 180   _b = flow->_b;
 181   memcpy( _callees, flow->_callees, sizeof(short)*max_size);
 182   memcpy( _defs   , flow->_defs   , sizeof(Node*)*max_size);
 183 }
 184 
 185 //------------------------------make-------------------------------------------
 186 OopFlow *OopFlow::make( Arena *A, int max_size ) {
 187   short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
 188   Node **defs    = NEW_ARENA_ARRAY(A,Node*,max_size+1);
 189   debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
 190   OopFlow *flow = new (A) OopFlow(callees+1, defs+1);
 191   assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
 192   assert( &flow->_defs   [OptoReg::Bad] == defs   , "Ok to index at OptoReg::Bad" );
 193   return flow;
 194 }
 195 
 196 //------------------------------bit twiddlers----------------------------------
 197 static int get_live_bit( int *live, int reg ) {
 198   return live[reg>>LogBitsPerInt] &   (1<<(reg&(BitsPerInt-1))); }
 199 static void set_live_bit( int *live, int reg ) {
 200          live[reg>>LogBitsPerInt] |=  (1<<(reg&(BitsPerInt-1))); }
 201 static void clr_live_bit( int *live, int reg ) {
 202          live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
 203 
 204 //------------------------------build_oop_map----------------------------------
 205 // Build an oopmap from the current flow info
 206 OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
 207   int framesize = regalloc->_framesize;
 208   int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
 209   debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0()); 
 210               memset(dup_check,0,OptoReg::stack0()) );
 211 
 212   OopMap *omap = new OopMap( framesize,  max_inarg_slot );
 213   MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
 214   JVMState* jvms = n->jvms();
 215 
 216   // For all registers do...
 217   for( int reg=0; reg<max_reg; reg++ ) {
 218     if( get_live_bit(live,reg) == 0 )
 219       continue;                 // Ignore if not live
 220 
 221     // %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
 222     // register in that case we'll get an non-concrete register for the second
 223     // half. We only need to tell the map the register once! 
 224     //
 225     // However for the moment we disable this change and leave things as they
 226     // were.
 227 
 228     VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
 229 
 230     if (false && r->is_reg() && !r->is_concrete()) {
 231       continue;
 232     }
 233 
 234     // See if dead (no reaching def).
 235     Node *def = _defs[reg];     // Get reaching def
 236     assert( def, "since live better have reaching def" );
 237 
 238     // Classify the reaching def as oop, derived, callee-save, dead, or other
 239     const Type *t = def->bottom_type();
 240     if( t->isa_oop_ptr() ) {    // Oop or derived?
 241       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
 242 #ifdef _LP64
 243       // 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
 244       // Make sure both are record from the same reaching def, but do not
 245       // put both into the oopmap.
 246       if( (reg&1) == 1 ) {      // High half of oop-pair?
 247         assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
 248         continue;               // Do not record high parts in oopmap
 249       }
 250 #endif
 251 
 252       // Check for a legal reg name in the oopMap and bailout if it is not.
 253       if (!omap->legal_vm_reg_name(r)) {
 254         regalloc->C->record_method_not_compilable("illegal oopMap register name");
 255         continue;
 256       }
 257       if( t->is_ptr()->_offset == 0 ) { // Not derived?
 258         if( mcall ) {
 259           // Outgoing argument GC mask responsibility belongs to the callee, 
 260           // not the caller.  Inspect the inputs to the call, to see if 
 261           // this live-range is one of them.
 262           uint cnt = mcall->tf()->domain()->cnt();
 263           uint j;
 264           for( j = TypeFunc::Parms; j < cnt; j++)
 265             if( mcall->in(j) == def )
 266               break;            // reaching def is an argument oop
 267           if( j < cnt )         // arg oops dont go in GC map
 268             continue;           // Continue on to the next register
 269         }
 270         omap->set_oop(r);
 271       } else {                  // Else it's derived.  
 272         // Find the base of the derived value.
 273         uint i;
 274         // Fast, common case, scan
 275         for( i = jvms->oopoff(); i < n->req(); i+=2 ) 
 276           if( n->in(i) == def ) break; // Common case
 277         if( i == n->req() ) {   // Missed, try a more generous scan
 278           // Scan again, but this time peek through copies
 279           for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
 280             Node *m = n->in(i); // Get initial derived value
 281             while( 1 ) {
 282               Node *d = def;    // Get initial reaching def
 283               while( 1 ) {      // Follow copies of reaching def to end
 284                 if( m == d ) goto found; // breaks 3 loops
 285                 int idx = d->is_Copy();
 286                 if( !idx ) break;
 287                 d = d->in(idx);     // Link through copy
 288               }
 289               int idx = m->is_Copy();
 290               if( !idx ) break;
 291               m = m->in(idx);
 292             }
 293           }
 294          guarantee( 0, "must find derived/base pair" );
 295         }
 296       found: ;
 297         Node *base = n->in(i+1); // Base is other half of pair
 298         int breg = regalloc->get_reg_first(base);
 299         VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
 300 
 301         // I record liveness at safepoints BEFORE I make the inputs
 302         // live.  This is because argument oops are NOT live at a
 303         // safepoint (or at least they cannot appear in the oopmap).
 304         // Thus bases of base/derived pairs might not be in the
 305         // liveness data but they need to appear in the oopmap.
 306         if( get_live_bit(live,breg) == 0 ) {// Not live?
 307           // Flag it, so next derived pointer won't re-insert into oopmap
 308           set_live_bit(live,breg);
 309           // Already missed our turn?
 310           if( breg < reg ) {
 311             if (b->is_stack() || b->is_concrete() || true ) {
 312               omap->set_oop( b);
 313             }
 314           }
 315         }
 316         if (b->is_stack() || b->is_concrete() || true ) {
 317           omap->set_derived_oop( r, b);
 318         }
 319       }
 320 
 321     } else if( t->isa_narrowoop() ) {
 322       assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
 323       // Check for a legal reg name in the oopMap and bailout if it is not.
 324       if (!omap->legal_vm_reg_name(r)) {
 325         regalloc->C->record_method_not_compilable("illegal oopMap register name");
 326         continue;
 327       }
 328       if( mcall ) {
 329           // Outgoing argument GC mask responsibility belongs to the callee,
 330           // not the caller.  Inspect the inputs to the call, to see if
 331           // this live-range is one of them.
 332         uint cnt = mcall->tf()->domain()->cnt();
 333         uint j;
 334         for( j = TypeFunc::Parms; j < cnt; j++)
 335           if( mcall->in(j) == def )
 336             break;            // reaching def is an argument oop
 337         if( j < cnt )         // arg oops dont go in GC map
 338           continue;           // Continue on to the next register
 339       }
 340       omap->set_narrowoop(r);
 341     } else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
 342       // It's a callee-save value
 343       assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
 344       debug_only( dup_check[_callees[reg]]=1; )
 345       VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
 346       if ( callee->is_concrete() || true ) {
 347         omap->set_callee_saved( r, callee);
 348       }
 349 
 350     } else {
 351       // Other - some reaching non-oop value
 352       omap->set_value( r);
 353     }
 354 
 355   }
 356 
 357 #ifdef ASSERT
 358   /* Nice, Intel-only assert
 359   int cnt_callee_saves=0;
 360   int reg2 = 0;
 361   while (OptoReg::is_reg(reg2)) {
 362     if( dup_check[reg2] != 0) cnt_callee_saves++;
 363     assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
 364     reg2++;
 365   }
 366   */
 367 #endif
 368   
 369   return omap;
 370 }
 371 
 372 //------------------------------do_liveness------------------------------------
 373 // Compute backwards liveness on registers
 374 static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *worklist, int max_reg_ints, Arena *A, Dict *safehash ) {
 375   int *live = NEW_ARENA_ARRAY(A, int, (cfg->_num_blocks+1) * max_reg_ints);
 376   int *tmp_live = &live[cfg->_num_blocks * max_reg_ints];
 377   Node *root = cfg->C->root();
 378   // On CISC platforms, get the node representing the stack pointer  that regalloc
 379   // used for spills
 380   Node *fp = NodeSentinel;
 381   if (UseCISCSpill && root->req() > 1) {
 382     fp = root->in(1)->in(TypeFunc::FramePtr);
 383   }
 384   memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) );
 385   // Push preds onto worklist
 386   for( uint i=1; i<root->req(); i++ )
 387     worklist->push(cfg->_bbs[root->in(i)->_idx]);
 388 
 389   // ZKM.jar includes tiny infinite loops which are unreached from below.
 390   // If we missed any blocks, we'll retry here after pushing all missed
 391   // blocks on the worklist.  Normally this outer loop never trips more
 392   // than once.
 393   while( 1 ) {
 394 
 395     while( worklist->size() ) { // Standard worklist algorithm
 396       Block *b = worklist->rpop();
 397       
 398       // Copy first successor into my tmp_live space
 399       int s0num = b->_succs[0]->_pre_order;
 400       int *t = &live[s0num*max_reg_ints];
 401       for( int i=0; i<max_reg_ints; i++ )
 402         tmp_live[i] = t[i];
 403       
 404       // OR in the remaining live registers
 405       for( uint j=1; j<b->_num_succs; j++ ) {
 406         uint sjnum = b->_succs[j]->_pre_order;
 407         int *t = &live[sjnum*max_reg_ints];
 408         for( int i=0; i<max_reg_ints; i++ )
 409           tmp_live[i] |= t[i];
 410       }
 411       
 412       // Now walk tmp_live up the block backwards, computing live
 413       for( int k=b->_nodes.size()-1; k>=0; k-- ) {
 414         Node *n = b->_nodes[k];
 415         // KILL def'd bits
 416         int first = regalloc->get_reg_first(n);
 417         int second = regalloc->get_reg_second(n);
 418         if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
 419         if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
 420 
 421         MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
 422 
 423         // Check if m is potentially a CISC alternate instruction (i.e, possibly
 424         // synthesized by RegAlloc from a conventional instruction and a 
 425         // spilled input)
 426         bool is_cisc_alternate = false;
 427         if (UseCISCSpill && m) {
 428           is_cisc_alternate = m->is_cisc_alternate();
 429         }             
 430 
 431         // GEN use'd bits
 432         for( uint l=1; l<n->req(); l++ ) {
 433           Node *def = n->in(l);
 434           assert(def != 0, "input edge required");
 435           int first = regalloc->get_reg_first(def);
 436           int second = regalloc->get_reg_second(def);
 437           if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
 438           if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
 439           // If we use the stack pointer in a cisc-alternative instruction,
 440           // check for use as a memory operand.  Then reconstruct the RegName 
 441           // for this stack location, and set the appropriate bit in the 
 442           // live vector 4987749.
 443           if (is_cisc_alternate && def == fp) {
 444             const TypePtr *adr_type = NULL;
 445             intptr_t offset;
 446             const Node* base = m->get_base_and_disp(offset, adr_type);
 447             if (base == NodeSentinel) {
 448               // Machnode has multiple memory inputs. We are unable to reason
 449               // with these, but are presuming (with trepidation) that not any of
 450               // them are oops. This can be fixed by making get_base_and_disp()
 451               // look at a specific input instead of all inputs.
 452               assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
 453             } else if (base != fp || offset == Type::OffsetBot) {
 454               // Do nothing: the fp operand is either not from a memory use 
 455               // (base == NULL) OR the fp is used in a non-memory context
 456               // (base is some other register) OR the offset is not constant,
 457               // so it is not a stack slot.
 458             } else {
 459               assert(offset >= 0, "unexpected negative offset");
 460               offset -= (offset % jintSize);  // count the whole word
 461               int stack_reg = regalloc->offset2reg(offset);
 462               if (OptoReg::is_stack(stack_reg)) {
 463                 set_live_bit(tmp_live, stack_reg);
 464               } else {
 465                 assert(false, "stack_reg not on stack?");
 466               }
 467             }
 468           }
 469         }
 470 
 471         if( n->jvms() ) {       // Record liveness at safepoint
 472 
 473           // This placement of this stanza means inputs to calls are
 474           // considered live at the callsite's OopMap.  Argument oops are
 475           // hence live, but NOT included in the oopmap.  See cutout in
 476           // build_oop_map.  Debug oops are live (and in OopMap).
 477           int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
 478           for( int l=0; l<max_reg_ints; l++ )
 479             n_live[l] = tmp_live[l];
 480           safehash->Insert(n,n_live);
 481         }
 482 
 483       }
 484       
 485       // Now at block top, see if we have any changes.  If so, propagate
 486       // to prior blocks.
 487       int *old_live = &live[b->_pre_order*max_reg_ints];
 488       int l;
 489       for( l=0; l<max_reg_ints; l++ )
 490         if( tmp_live[l] != old_live[l] )
 491           break;
 492       if( l<max_reg_ints ) {     // Change!
 493         // Copy in new value
 494         for( l=0; l<max_reg_ints; l++ )
 495           old_live[l] = tmp_live[l];
 496         // Push preds onto worklist
 497         for( l=1; l<(int)b->num_preds(); l++ )
 498           worklist->push(cfg->_bbs[b->pred(l)->_idx]);
 499       }
 500     }
 501     
 502     // Scan for any missing safepoints.  Happens to infinite loops
 503     // ala ZKM.jar
 504     uint i;
 505     for( i=1; i<cfg->_num_blocks; i++ ) {
 506       Block *b = cfg->_blocks[i];
 507       uint j;
 508       for( j=1; j<b->_nodes.size(); j++ )
 509         if( b->_nodes[j]->jvms() &&
 510             (*safehash)[b->_nodes[j]] == NULL )
 511            break;
 512       if( j<b->_nodes.size() ) break;
 513     }
 514     if( i == cfg->_num_blocks )
 515       break;                    // Got 'em all
 516 #ifndef PRODUCT
 517     if( PrintOpto && Verbose )
 518       tty->print_cr("retripping live calc");
 519 #endif
 520     // Force the issue (expensively): recheck everybody
 521     for( i=1; i<cfg->_num_blocks; i++ )
 522       worklist->push(cfg->_blocks[i]);
 523   }
 524 
 525 }
 526 
 527 //------------------------------BuildOopMaps-----------------------------------
 528 // Collect GC mask info - where are all the OOPs?
 529 void Compile::BuildOopMaps() {
 530   NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
 531   // Can't resource-mark because I need to leave all those OopMaps around,
 532   // or else I need to resource-mark some arena other than the default.
 533   // ResourceMark rm;              // Reclaim all OopFlows when done
 534   int max_reg = _regalloc->_max_reg; // Current array extent
 535 
 536   Arena *A = Thread::current()->resource_area();
 537   Block_List worklist;          // Worklist of pending blocks
 538   
 539   int max_reg_ints = round_to(max_reg, BitsPerInt)>>LogBitsPerInt;
 540   Dict *safehash = NULL;        // Used for assert only
 541   // Compute a backwards liveness per register.  Needs a bitarray of
 542   // #blocks x (#registers, rounded up to ints)
 543   safehash = new Dict(cmpkey,hashkey,A);
 544   do_liveness( _regalloc, _cfg, &worklist, max_reg_ints, A, safehash );
 545   OopFlow *free_list = NULL;    // Free, unused
 546 
 547   // Array mapping blocks to completed oopflows
 548   OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->_num_blocks);
 549   memset( flows, 0, _cfg->_num_blocks*sizeof(OopFlow*) );
 550 
 551 
 552   // Do the first block 'by hand' to prime the worklist
 553   Block *entry = _cfg->_blocks[1];
 554   OopFlow *rootflow = OopFlow::make(A,max_reg);
 555   // Initialize to 'bottom' (not 'top')
 556   memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
 557   memset( rootflow->_defs   ,            0, max_reg*sizeof(Node*) );
 558   flows[entry->_pre_order] = rootflow;
 559 
 560   // Do the first block 'by hand' to prime the worklist
 561   rootflow->_b = entry;
 562   rootflow->compute_reach( _regalloc, max_reg, safehash );
 563   for( uint i=0; i<entry->_num_succs; i++ )
 564     worklist.push(entry->_succs[i]);
 565 
 566   // Now worklist contains blocks which have some, but perhaps not all,
 567   // predecessors visited.
 568   while( worklist.size() ) {
 569     // Scan for a block with all predecessors visited, or any randoms slob
 570     // otherwise.  All-preds-visited order allows me to recycle OopFlow
 571     // structures rapidly and cut down on the memory footprint.
 572     // Note: not all predecessors might be visited yet (must happen for
 573     // irreducible loops).  This is OK, since every live value must have the
 574     // SAME reaching def for the block, so any reaching def is OK.  
 575     uint i;
 576 
 577     Block *b = worklist.pop(); 
 578     // Ignore root block
 579     if( b == _cfg->_broot ) continue;
 580     // Block is already done?  Happens if block has several predecessors,
 581     // he can get on the worklist more than once.
 582     if( flows[b->_pre_order] ) continue;
 583 
 584     // If this block has a visited predecessor AND that predecessor has this
 585     // last block as his only undone child, we can move the OopFlow from the
 586     // pred to this block.  Otherwise we have to grab a new OopFlow.
 587     OopFlow *flow = NULL;       // Flag for finding optimized flow
 588     Block *pred = (Block*)0xdeadbeef;
 589     uint j;
 590     // Scan this block's preds to find a done predecessor
 591     for( j=1; j<b->num_preds(); j++ ) {
 592       Block *p = _cfg->_bbs[b->pred(j)->_idx];
 593       OopFlow *p_flow = flows[p->_pre_order];
 594       if( p_flow ) {            // Predecessor is done
 595         assert( p_flow->_b == p, "cross check" );
 596         pred = p;               // Record some predecessor
 597         // If all successors of p are done except for 'b', then we can carry
 598         // p_flow forward to 'b' without copying, otherwise we have to draw
 599         // from the free_list and clone data.
 600         uint k;
 601         for( k=0; k<p->_num_succs; k++ )
 602           if( !flows[p->_succs[k]->_pre_order] &&
 603               p->_succs[k] != b )
 604             break;
 605 
 606         // Either carry-forward the now-unused OopFlow for b's use
 607         // or draw a new one from the free list
 608         if( k==p->_num_succs ) {
 609           flow = p_flow;
 610           break;                // Found an ideal pred, use him
 611         }
 612       }
 613     }
 614 
 615     if( flow ) {
 616       // We have an OopFlow that's the last-use of a predecessor.
 617       // Carry it forward.
 618     } else {                    // Draw a new OopFlow from the freelist
 619       if( !free_list )
 620         free_list = OopFlow::make(A,max_reg);
 621       flow = free_list;
 622       assert( flow->_b == NULL, "oopFlow is not free" );
 623       free_list = flow->_next;
 624       flow->_next = NULL;
 625 
 626       // Copy/clone over the data
 627       flow->clone(flows[pred->_pre_order], max_reg);
 628     }
 629 
 630     // Mark flow for block.  Blocks can only be flowed over once,
 631     // because after the first time they are guarded from entering
 632     // this code again.
 633     assert( flow->_b == pred, "have some prior flow" );
 634     flow->_b = NULL;
 635 
 636     // Now push flow forward
 637     flows[b->_pre_order] = flow;// Mark flow for this block
 638     flow->_b = b;               
 639     flow->compute_reach( _regalloc, max_reg, safehash );
 640 
 641     // Now push children onto worklist
 642     for( i=0; i<b->_num_succs; i++ )
 643       worklist.push(b->_succs[i]);
 644 
 645   }
 646 }