1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)cfgnode.cpp  1.262 08/11/24 12:22:57 JVM"
   3 #endif
   4 /*
   5  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // Portions of code courtesy of Clifford Click
  29 
  30 // Optimization - Graph Style
  31 
  32 #include "incls/_precompiled.incl"
  33 #include "incls/_cfgnode.cpp.incl"
  34 
  35 //=============================================================================
  36 //------------------------------Value------------------------------------------
  37 // Compute the type of the RegionNode.
  38 const Type *RegionNode::Value( PhaseTransform *phase ) const {
  39   for( uint i=1; i<req(); ++i ) {       // For all paths in
  40     Node *n = in(i);            // Get Control source
  41     if( !n ) continue;          // Missing inputs are TOP
  42     if( phase->type(n) == Type::CONTROL )
  43       return Type::CONTROL;
  44   }
  45   return Type::TOP;             // All paths dead?  Then so are we
  46 }
  47 
  48 //------------------------------Identity---------------------------------------
  49 // Check for Region being Identity.
  50 Node *RegionNode::Identity( PhaseTransform *phase ) {
  51   // Cannot have Region be an identity, even if it has only 1 input.
  52   // Phi users cannot have their Region input folded away for them,
  53   // since they need to select the proper data input
  54   return this;
  55 }
  56 
  57 //------------------------------merge_region-----------------------------------
  58 // If a Region flows into a Region, merge into one big happy merge.  This is
  59 // hard to do if there is stuff that has to happen
  60 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  61   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  62     return NULL;
  63   Node *progress = NULL;        // Progress flag
  64   PhaseIterGVN *igvn = phase->is_IterGVN();
  65 
  66   uint rreq = region->req();
  67   for( uint i = 1; i < rreq; i++ ) {
  68     Node *r = region->in(i);
  69     if( r && r->Opcode() == Op_Region && // Found a region?
  70         r->in(0) == r &&        // Not already collapsed?
  71         r != region &&          // Avoid stupid situations
  72         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  73       assert(!r->as_Region()->has_phi(), "no phi users");
  74       if( !progress ) {         // No progress
  75         if (region->has_phi()) {
  76           return NULL;        // Only flatten if no Phi users
  77           // igvn->hash_delete( phi );
  78         }
  79         igvn->hash_delete( region );
  80         progress = region;      // Making progress
  81       }
  82       igvn->hash_delete( r );
  83 
  84       // Append inputs to 'r' onto 'region'
  85       for( uint j = 1; j < r->req(); j++ ) {
  86         // Move an input from 'r' to 'region'
  87         region->add_req(r->in(j));
  88         r->set_req(j, phase->C->top());
  89         // Update phis of 'region'
  90         //for( uint k = 0; k < max; k++ ) {
  91         //  Node *phi = region->out(k);
  92         //  if( phi->is_Phi() ) {
  93         //    phi->add_req(phi->in(i));
  94         //  }
  95         //}
  96 
  97         rreq++;                 // One more input to Region
  98       } // Found a region to merge into Region
  99       // Clobber pointer to the now dead 'r'
 100       region->set_req(i, phase->C->top());
 101     }
 102   }
 103 
 104   return progress;
 105 }
 106 
 107 
 108 
 109 //--------------------------------has_phi--------------------------------------
 110 // Helper function: Return any PhiNode that uses this region or NULL
 111 PhiNode* RegionNode::has_phi() const {
 112   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 113     Node* phi = fast_out(i);
 114     if (phi->is_Phi()) {   // Check for Phi users
 115       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 116       return phi->as_Phi();  // this one is good enough
 117     }
 118   }
 119 
 120   return NULL;
 121 }
 122 
 123 
 124 //-----------------------------has_unique_phi----------------------------------
 125 // Helper function: Return the only PhiNode that uses this region or NULL
 126 PhiNode* RegionNode::has_unique_phi() const {
 127   // Check that only one use is a Phi
 128   PhiNode* only_phi = NULL;
 129   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 130     Node* phi = fast_out(i);
 131     if (phi->is_Phi()) {   // Check for Phi users
 132       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 133       if (only_phi == NULL) {
 134         only_phi = phi->as_Phi();
 135       } else {
 136         return NULL;  // multiple phis
 137       }
 138     }
 139   }
 140 
 141   return only_phi;
 142 }
 143 
 144 
 145 //------------------------------check_phi_clipping-----------------------------
 146 // Helper function for RegionNode's identification of FP clipping
 147 // Check inputs to the Phi
 148 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 149   min     = NULL;
 150   max     = NULL;
 151   val     = NULL;
 152   min_idx = 0;
 153   max_idx = 0;
 154   val_idx = 0;
 155   uint  phi_max = phi->req();
 156   if( phi_max == 4 ) {
 157     for( uint j = 1; j < phi_max; ++j ) {
 158       Node *n = phi->in(j);
 159       int opcode = n->Opcode();
 160       switch( opcode ) {
 161       case Op_ConI: 
 162         {
 163           if( min == NULL ) {
 164             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 165             min_idx = j;
 166           } else {
 167             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 168             max_idx = j;
 169             if( min->get_int() > max->get_int() ) {
 170               // Swap min and max
 171               ConNode *temp;
 172               uint     temp_idx;
 173               temp     = min;     min     = max;     max     = temp;
 174               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 175             }
 176           }
 177         }
 178         break;
 179       default:
 180         {
 181           val = n;
 182           val_idx = j;
 183         }
 184         break;
 185       }
 186     }
 187   }
 188   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 189 }
 190   
 191 
 192 //------------------------------check_if_clipping------------------------------
 193 // Helper function for RegionNode's identification of FP clipping
 194 // Check that inputs to Region come from two IfNodes, 
 195 // 
 196 //            If
 197 //      False    True
 198 //       If        |
 199 //  False  True    |
 200 //    |      |     |
 201 //  RegionNode_inputs
 202 // 
 203 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 204   top_if = NULL;
 205   bot_if = NULL;
 206 
 207   // Check control structure above RegionNode for (if  ( if  ) )
 208   Node *in1 = region->in(1);
 209   Node *in2 = region->in(2);
 210   Node *in3 = region->in(3);
 211   // Check that all inputs are projections
 212   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 213     Node *in10 = in1->in(0);
 214     Node *in20 = in2->in(0);
 215     Node *in30 = in3->in(0);
 216     // Check that #1 and #2 are ifTrue and ifFalse from same If
 217     if( in10 != NULL && in10->is_If() && 
 218         in20 != NULL && in20->is_If() && 
 219         in30 != NULL && in30->is_If() && in10 == in20 && 
 220         (in1->Opcode() != in2->Opcode()) ) {
 221       Node  *in100 = in10->in(0);
 222       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 223       // Check that control for in10 comes from other branch of IF from in3
 224       if( in1000 != NULL && in1000->is_If() && 
 225           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 226         // Control pattern checks
 227         top_if = (IfNode*)in1000;
 228         bot_if = (IfNode*)in10;
 229       }
 230     }
 231   }
 232 
 233   return (top_if != NULL);
 234 }
 235 
 236 
 237 //------------------------------check_convf2i_clipping-------------------------
 238 // Helper function for RegionNode's identification of FP clipping
 239 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 240 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 241   convf2i = NULL;
 242 
 243   // Check for the RShiftNode
 244   Node *rshift = phi->in(idx);
 245   assert( rshift, "Previous checks ensure phi input is present");
 246   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 247 
 248   // Check for the LShiftNode
 249   Node *lshift = rshift->in(1);
 250   assert( lshift, "Previous checks ensure phi input is present");
 251   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 252 
 253   // Check for the ConvF2INode
 254   Node *conv = lshift->in(1);
 255   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 256 
 257   // Check that shift amounts are only to get sign bits set after F2I
 258   jint max_cutoff     = max->get_int();
 259   jint min_cutoff     = min->get_int();
 260   jint left_shift     = lshift->in(2)->get_int();
 261   jint right_shift    = rshift->in(2)->get_int();
 262   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 263   if( left_shift != right_shift || 
 264       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 265       max_post_shift < max_cutoff ||
 266       max_post_shift < -min_cutoff ) {
 267     // Shifts are necessary but current transformation eliminates them
 268     return false;
 269   }
 270 
 271   // OK to return the result of ConvF2I without shifting
 272   convf2i = (ConvF2INode*)conv;
 273   return true;
 274 }
 275 
 276 
 277 //------------------------------check_compare_clipping-------------------------
 278 // Helper function for RegionNode's identification of FP clipping
 279 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 280   Node *i1 = iff->in(1);
 281   if ( !i1->is_Bool() ) { return false; }
 282   BoolNode *bool1 = i1->as_Bool();
 283   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 284   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 285   const Node *cmpF = bool1->in(1);
 286   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 287   // Test that the float value being compared against
 288   // is equivalent to the int value used as a limit
 289   Node *nodef = cmpF->in(2);
 290   if( nodef->Opcode() != Op_ConF ) { return false; }
 291   jfloat conf = nodef->getf();
 292   jint   coni = limit->get_int();
 293   if( ((int)conf) != coni )        { return false; }
 294   input = cmpF->in(1);
 295   return true;
 296 }
 297 
 298 //------------------------------is_unreachable_region--------------------------
 299 // Find if the Region node is reachable from the root.
 300 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 301   assert(req() == 2, "");
 302 
 303   // First, cut the simple case of fallthrough region when NONE of
 304   // region's phis references itself directly or through a data node.
 305   uint max = outcnt();
 306   uint i;
 307   for (i = 0; i < max; i++) {
 308     Node* phi = raw_out(i);
 309     if (phi != NULL && phi->is_Phi()) {
 310       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 311       if (phi->outcnt() == 0)
 312         continue; // Safe case - no loops
 313       if (phi->outcnt() == 1) {
 314         Node* u = phi->raw_out(0);
 315         // Skip if only one use is an other Phi or Call or Uncommon trap.
 316         // It is safe to consider this case as fallthrough.
 317         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 318           continue;
 319       }
 320       // Check when phi references itself directly or through an other node.
 321       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 322         break; // Found possible unsafe data loop.
 323     }
 324   }
 325   if (i >= max)
 326     return false; // An unsafe case was NOT found - don't need graph walk.
 327 
 328   // Unsafe case - check if the Region node is reachable from root.
 329   ResourceMark rm;
 330 
 331   Arena *a = Thread::current()->resource_area();
 332   Node_List nstack(a);
 333   VectorSet visited(a);
 334   
 335   // Mark all control nodes reachable from root outputs
 336   Node *n = (Node*)phase->C->root();
 337   nstack.push(n);
 338   visited.set(n->_idx);  
 339   while (nstack.size() != 0) {
 340     n = nstack.pop();
 341     uint max = n->outcnt();
 342     for (uint i = 0; i < max; i++) {
 343       Node* m = n->raw_out(i);
 344       if (m != NULL && m->is_CFG()) {
 345         if (phase->eqv(m, this)) {
 346           return false; // We reached the Region node - it is not dead.
 347         }
 348         if (!visited.test_set(m->_idx))
 349           nstack.push(m);
 350       }
 351     }
 352   }
 353 
 354   return true; // The Region node is unreachable - it is dead.
 355 }
 356 
 357 //------------------------------Ideal------------------------------------------
 358 // Return a node which is more "ideal" than the current node.  Must preserve
 359 // the CFG, but we can still strip out dead paths.
 360 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 361   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 362   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 363 
 364   // Check for RegionNode with no Phi users and both inputs come from either
 365   // arm of the same IF.  If found, then the control-flow split is useless.
 366   bool has_phis = false;
 367   if (can_reshape) {            // Need DU info to check for Phi users
 368     has_phis = (has_phi() != NULL);       // Cache result
 369     if (!has_phis) {            // No Phi users?  Nothing merging?
 370       for (uint i = 1; i < req()-1; i++) {
 371         Node *if1 = in(i);
 372         if( !if1 ) continue;
 373         Node *iff = if1->in(0);
 374         if( !iff || !iff->is_If() ) continue;
 375         for( uint j=i+1; j<req(); j++ ) {
 376           if( in(j) && in(j)->in(0) == iff &&
 377               if1->Opcode() != in(j)->Opcode() ) {
 378             // Add the IF Projections to the worklist. They (and the IF itself)
 379             // will be eliminated if dead.
 380             phase->is_IterGVN()->add_users_to_worklist(iff);
 381             set_req(i, iff->in(0));// Skip around the useless IF diamond
 382             set_req(j, NULL);
 383             return this;      // Record progress
 384           }
 385         }
 386       }
 387     }
 388   }
 389 
 390   // Remove TOP or NULL input paths. If only 1 input path remains, this Region 
 391   // degrades to a copy.
 392   bool add_to_worklist = false;
 393   int cnt = 0;                  // Count of values merging
 394   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 395   int del_it = 0;               // The last input path we delete
 396   // For all inputs...
 397   for( uint i=1; i<req(); ++i ){// For all paths in
 398     Node *n = in(i);            // Get the input
 399     if( n != NULL ) {
 400       // Remove useless control copy inputs
 401       if( n->is_Region() && n->as_Region()->is_copy() ) {
 402         set_req(i, n->nonnull_req());
 403         i--;
 404         continue;
 405       }
 406       if( n->is_Proj() ) {      // Remove useless rethrows
 407         Node *call = n->in(0);
 408         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 409           set_req(i, call->in(0));
 410           i--;
 411           continue;
 412         }
 413       }
 414       if( phase->type(n) == Type::TOP ) {
 415         set_req(i, NULL);       // Ignore TOP inputs
 416         i--;
 417         continue;
 418       }
 419       cnt++;                    // One more value merging
 420 
 421     } else if (can_reshape) {   // Else found dead path with DU info
 422       PhaseIterGVN *igvn = phase->is_IterGVN();
 423       del_req(i);               // Yank path from self
 424       del_it = i;
 425       uint max = outcnt();
 426       DUIterator j;
 427       bool progress = true;
 428       while(progress) {         // Need to establish property over all users
 429         progress = false;
 430         for (j = outs(); has_out(j); j++) {
 431           Node *n = out(j);
 432           if( n->req() != req() && n->is_Phi() ) {
 433             assert( n->in(0) == this, "" );
 434             igvn->hash_delete(n); // Yank from hash before hacking edges
 435             n->set_req_X(i,NULL,igvn);// Correct DU info
 436             n->del_req(i);        // Yank path from Phis
 437             if( max != outcnt() ) {
 438               progress = true;
 439               j = refresh_out_pos(j);
 440               max = outcnt();
 441             }
 442           }
 443         }
 444       }
 445       add_to_worklist = true;
 446       i--;
 447     }
 448   }
 449   
 450   if (can_reshape && cnt == 1) {
 451     // Is it dead loop?
 452     // If it is LoopNopde it had 2 (+1 itself) inputs and
 453     // one of them was cut. The loop is dead if it was EntryContol.
 454     assert(!this->is_Loop() || cnt_orig == 3, "Loop node should have 3 inputs");
 455     if (this->is_Loop() && del_it == LoopNode::EntryControl ||
 456        !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
 457       // Yes,  the region will be removed during the next step below.
 458       // Cut the backedge input and remove phis since no data paths left.
 459       // We don't cut outputs to other nodes here since we need to put them
 460       // on the worklist.
 461       del_req(1);
 462       cnt = 0;
 463       assert( req() == 1, "no more inputs expected" );
 464       uint max = outcnt();
 465       bool progress = true;
 466       Node *top = phase->C->top();
 467       PhaseIterGVN *igvn = phase->is_IterGVN();
 468       DUIterator j;
 469       while(progress) { 
 470         progress = false;
 471         for (j = outs(); has_out(j); j++) {
 472           Node *n = out(j);
 473           if( n->is_Phi() ) {
 474             assert( igvn->eqv(n->in(0), this), "" );
 475             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 476             // Break dead loop data path. 
 477             // Eagerly replace phis with top to avoid phis copies generation.
 478             igvn->add_users_to_worklist(n);
 479             igvn->hash_delete(n); // Yank from hash before hacking edges
 480             igvn->subsume_node(n, top);
 481             if( max != outcnt() ) {
 482               progress = true;
 483               j = refresh_out_pos(j);
 484               max = outcnt();
 485             }
 486           }
 487         }
 488       }
 489       add_to_worklist = true;
 490     }
 491   }
 492   if (add_to_worklist) {
 493     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 494   }
 495 
 496   if( cnt <= 1 ) {              // Only 1 path in?
 497     set_req(0, NULL);           // Null control input for region copy
 498     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 499       // No inputs or all inputs are NULL.
 500       return NULL;
 501     } else if (can_reshape) {   // Optimization phase - remove the node
 502       PhaseIterGVN *igvn = phase->is_IterGVN();
 503       Node *parent_ctrl;
 504       if( cnt == 0 ) {
 505         assert( req() == 1, "no inputs expected" );
 506         // During IGVN phase such region will be subsumed by TOP node
 507         // so region's phis will have TOP as control node. 
 508         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 509         // Also set other user's input to top.
 510         parent_ctrl = phase->C->top();
 511       } else {
 512         // The fallthrough case since we already checked dead loops above.
 513         parent_ctrl = in(1);
 514         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 515         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 516       }
 517       if (!add_to_worklist)
 518         igvn->add_users_to_worklist(this); // Check for further allowed opts
 519       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 520         Node* n = last_out(i);
 521         igvn->hash_delete(n); // Remove from worklist before modifying edges
 522         if( n->is_Phi() ) {   // Collapse all Phis
 523           // Eagerly replace phis to avoid copies generation.
 524           igvn->add_users_to_worklist(n);
 525           igvn->hash_delete(n); // Yank from hash before hacking edges
 526           if( cnt == 0 ) {
 527             assert( n->req() == 1, "No data inputs expected" );
 528             igvn->subsume_node(n, parent_ctrl); // replaced by top
 529           } else {
 530             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 531             Node* in1 = n->in(1);               // replaced by unique input
 532             if( n->as_Phi()->is_unsafe_data_reference(in1) )
 533               in1 = phase->C->top();            // replaced by top
 534             igvn->subsume_node(n, in1);
 535           }
 536         } 
 537         else if( n->is_Region() ) { // Update all incoming edges
 538           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 539           uint uses_found = 0;
 540           for( uint k=1; k < n->req(); k++ ) {
 541             if( n->in(k) == this ) {
 542               n->set_req(k, parent_ctrl);
 543               uses_found++;
 544             }
 545           }
 546           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 547             i -= (uses_found - 1);
 548           }
 549         }
 550         else {
 551           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 552           n->set_req(0, parent_ctrl);
 553         }
 554 #ifdef ASSERT
 555         for( uint k=0; k < n->req(); k++ ) {
 556           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 557         }
 558 #endif
 559       }
 560       // Remove the RegionNode itself from DefUse info
 561       igvn->remove_dead_node(this);
 562       return NULL;
 563     }
 564     return this;                // Record progress
 565   }
 566 
 567 
 568   // If a Region flows into a Region, merge into one big happy merge.
 569   if (can_reshape) {
 570     Node *m = merge_region(this, phase);
 571     if (m != NULL)  return m;
 572   }
 573 
 574   // Check if this region is the root of a clipping idiom on floats
 575   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 576     // Check that only one use is a Phi and that it simplifies to two constants +
 577     PhiNode* phi = has_unique_phi();
 578     if (phi != NULL) {          // One Phi user
 579       // Check inputs to the Phi
 580       ConNode *min;
 581       ConNode *max;
 582       Node    *val;
 583       uint     min_idx;
 584       uint     max_idx;
 585       uint     val_idx;
 586       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 587         IfNode *top_if;
 588         IfNode *bot_if;
 589         if( check_if_clipping( this, bot_if, top_if ) ) {
 590           // Control pattern checks, now verify compares
 591           Node   *top_in = NULL;   // value being compared against
 592           Node   *bot_in = NULL;
 593           if( check_compare_clipping( true,  bot_if, min, bot_in ) && 
 594               check_compare_clipping( false, top_if, max, top_in ) ) {
 595             if( bot_in == top_in ) {
 596               PhaseIterGVN *gvn = phase->is_IterGVN();
 597               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 598               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 599 
 600               // Check for the ConvF2INode
 601               ConvF2INode *convf2i;
 602               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) && 
 603                 convf2i->in(1) == bot_in ) {
 604                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 605                 // max test
 606                 Node *cmp   = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, min ));
 607                 Node *boo   = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::lt ));
 608                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 609                 Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
 610                 Node *ifF   = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
 611                 // min test
 612                 cmp         = gvn->register_new_node_with_optimizer(new (phase->C, 3) CmpINode( convf2i, max ));
 613                 boo         = gvn->register_new_node_with_optimizer(new (phase->C, 2) BoolNode( cmp, BoolTest::gt ));
 614                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C, 2) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 615                 Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C, 1) IfTrueNode (iff));
 616                 ifF         = gvn->register_new_node_with_optimizer(new (phase->C, 1) IfFalseNode(iff));
 617                 // update input edges to region node
 618                 set_req_X( min_idx, if_min, gvn );
 619                 set_req_X( max_idx, if_max, gvn );
 620                 set_req_X( val_idx, ifF,    gvn );
 621                 // remove unnecessary 'LShiftI; RShiftI' idiom
 622                 gvn->hash_delete(phi);
 623                 phi->set_req_X( val_idx, convf2i, gvn );
 624                 gvn->hash_find_insert(phi);
 625                 // Return transformed region node
 626                 return this;
 627               }
 628             }
 629           }
 630         }
 631       }
 632     }
 633   }
 634 
 635   return NULL;
 636 }
 637 
 638 
 639 
 640 const RegMask &RegionNode::out_RegMask() const { 
 641   return RegMask::Empty;
 642 }
 643 
 644 // Find the one non-null required input.  RegionNode only
 645 Node *Node::nonnull_req() const {
 646   assert( is_Region(), "" );
 647   for( uint i = 1; i < _cnt; i++ )
 648     if( in(i) )
 649       return in(i);
 650   ShouldNotReachHere();
 651   return NULL;
 652 }
 653 
 654 
 655 //=============================================================================
 656 // note that these functions assume that the _adr_type field is flattened
 657 uint PhiNode::hash() const {
 658   const Type* at = _adr_type;
 659   return TypeNode::hash() + (at ? at->hash() : 0);
 660 }
 661 uint PhiNode::cmp( const Node &n ) const {
 662   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 663 }
 664 static inline
 665 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 666   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 667   return Compile::current()->alias_type(at)->adr_type();
 668 }
 669 
 670 //----------------------------make---------------------------------------------
 671 // create a new phi with edges matching r and set (initially) to x
 672 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 673   uint preds = r->req();   // Number of predecessor paths
 674   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 675   PhiNode* p = new (Compile::current(), preds) PhiNode(r, t, at);
 676   for (uint j = 1; j < preds; j++) {
 677     // Fill in all inputs, except those which the region does not yet have
 678     if (r->in(j) != NULL)
 679       p->init_req(j, x);
 680   }
 681   return p;
 682 }
 683 PhiNode* PhiNode::make(Node* r, Node* x) {
 684   const Type*    t  = x->bottom_type();
 685   const TypePtr* at = NULL;
 686   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 687   return make(r, x, t, at);
 688 }
 689 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 690   const Type*    t  = x->bottom_type();
 691   const TypePtr* at = NULL;
 692   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 693   return new (Compile::current(), r->req()) PhiNode(r, t, at);
 694 }
 695 
 696 
 697 //------------------------slice_memory-----------------------------------------
 698 // create a new phi with narrowed memory type
 699 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 700   PhiNode* mem = (PhiNode*) clone();
 701   *(const TypePtr**)&mem->_adr_type = adr_type;
 702   // convert self-loops, or else we get a bad graph
 703   for (uint i = 1; i < req(); i++) {
 704     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 705   }
 706   mem->verify_adr_type();
 707   return mem;
 708 }
 709 
 710 //------------------------split_out_instance-----------------------------------
 711 // Split out an instance type from a bottom phi.
 712 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 713   const TypeOopPtr *t_oop = at->isa_oopptr();
 714   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 715   const TypePtr *t = adr_type();
 716   assert(type() == Type::MEMORY &&
 717          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 718           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 719           t->is_oopptr()->cast_to_exactness(true)
 720            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 721            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 722          "bottom or raw memory required");
 723 
 724   // Check if an appropriate node already exists.
 725   Node *region = in(0);
 726   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 727     Node* use = region->fast_out(k);
 728     if( use->is_Phi()) {
 729       PhiNode *phi2 = use->as_Phi();
 730       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 731         return phi2;
 732       }
 733     }
 734   }
 735   Compile *C = igvn->C;
 736   Arena *a = Thread::current()->resource_area();
 737   Node_Array node_map = new Node_Array(a);
 738   Node_Stack stack(a, C->unique() >> 4);
 739   PhiNode *nphi = slice_memory(at);
 740   igvn->register_new_node_with_optimizer( nphi );
 741   node_map.map(_idx, nphi);
 742   stack.push((Node *)this, 1);
 743   while(!stack.is_empty()) {
 744     PhiNode *ophi = stack.node()->as_Phi();
 745     uint i = stack.index();
 746     assert(i >= 1, "not control edge");
 747     stack.pop();
 748     nphi = node_map[ophi->_idx]->as_Phi();
 749     for (; i < ophi->req(); i++) {
 750       Node *in = ophi->in(i);
 751       if (in == NULL || igvn->type(in) == Type::TOP)
 752         continue;
 753       Node *opt = MemNode::optimize_simple_memory_chain(in, at, igvn);
 754       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 755       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 756         opt = node_map[optphi->_idx];
 757         if (opt == NULL) {
 758           stack.push(ophi, i);
 759           nphi = optphi->slice_memory(at);
 760           igvn->register_new_node_with_optimizer( nphi );
 761           node_map.map(optphi->_idx, nphi);
 762           ophi = optphi;
 763           i = 0; // will get incremented at top of loop
 764           continue;
 765         }
 766       }
 767       nphi->set_req(i, opt);
 768     }
 769   }
 770   return nphi;
 771 }
 772 
 773 //------------------------verify_adr_type--------------------------------------
 774 #ifdef ASSERT
 775 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
 776   if (visited.test_set(_idx))  return;  //already visited
 777 
 778   // recheck constructor invariants:
 779   verify_adr_type(false);
 780 
 781   // recheck local phi/phi consistency:
 782   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
 783          "adr_type must be consistent across phi nest");
 784 
 785   // walk around
 786   for (uint i = 1; i < req(); i++) {
 787     Node* n = in(i);
 788     if (n == NULL)  continue;
 789     const Node* np = in(i);
 790     if (np->is_Phi()) {
 791       np->as_Phi()->verify_adr_type(visited, at);
 792     } else if (n->bottom_type() == Type::TOP
 793                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
 794       // ignore top inputs
 795     } else {
 796       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
 797       // recheck phi/non-phi consistency at leaves:
 798       assert((nat != NULL) == (at != NULL), "");
 799       assert(nat == at || nat == TypePtr::BOTTOM,
 800              "adr_type must be consistent at leaves of phi nest");
 801     }
 802   }
 803 }
 804 
 805 // Verify a whole nest of phis rooted at this one.
 806 void PhiNode::verify_adr_type(bool recursive) const {
 807   if (is_error_reported())  return;  // muzzle asserts when debugging an error
 808   if (Node::in_dump())      return;  // muzzle asserts when printing
 809 
 810   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
 811 
 812   if (!VerifyAliases)       return;  // verify thoroughly only if requested
 813 
 814   assert(_adr_type == flatten_phi_adr_type(_adr_type),
 815          "Phi::adr_type must be pre-normalized");
 816 
 817   if (recursive) {
 818     VectorSet visited(Thread::current()->resource_area());
 819     verify_adr_type(visited, _adr_type);
 820   }
 821 }
 822 #endif
 823 
 824 
 825 //------------------------------Value------------------------------------------
 826 // Compute the type of the PhiNode
 827 const Type *PhiNode::Value( PhaseTransform *phase ) const {
 828   Node *r = in(0);              // RegionNode
 829   if( !r )                      // Copy or dead
 830     return in(1) ? phase->type(in(1)) : Type::TOP;
 831 
 832   // Note: During parsing, phis are often transformed before their regions.
 833   // This means we have to use type_or_null to defend against untyped regions.
 834   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
 835     return Type::TOP;
 836 
 837   // Check for trip-counted loop.  If so, be smarter.
 838   CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
 839   if( l && l->can_be_counted_loop(phase) &&
 840       ((const Node*)l->phi() == this) ) { // Trip counted loop!
 841     // protect against init_trip() or limit() returning NULL
 842     const Node *init   = l->init_trip();
 843     const Node *limit  = l->limit();
 844     if( init != NULL && limit != NULL && l->stride_is_con() ) {
 845       const TypeInt *lo = init ->bottom_type()->isa_int();
 846       const TypeInt *hi = limit->bottom_type()->isa_int();
 847       if( lo && hi ) {            // Dying loops might have TOP here
 848         int stride = l->stride_con();
 849         if( stride < 0 ) {          // Down-counter loop
 850           const TypeInt *tmp = lo; lo = hi; hi = tmp;
 851           stride = -stride;
 852         }
 853         if( lo->_hi < hi->_lo )     // Reversed endpoints are well defined :-(
 854           return TypeInt::make(lo->_lo,hi->_hi,3);
 855       }
 856     }
 857   }
 858 
 859   // Until we have harmony between classes and interfaces in the type
 860   // lattice, we must tread carefully around phis which implicitly
 861   // convert the one to the other.
 862   const TypePtr* ttp = _type->make_ptr();
 863   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
 864   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
 865   bool is_intf = false;
 866   if (ttip != NULL) {
 867     ciKlass* k = ttip->klass();
 868     if (k->is_loaded() && k->is_interface())
 869       is_intf = true;
 870   }
 871   if (ttkp != NULL) {
 872     ciKlass* k = ttkp->klass();
 873     if (k->is_loaded() && k->is_interface())
 874       is_intf = true;
 875   }
 876 
 877   // Default case: merge all inputs
 878   const Type *t = Type::TOP;        // Merged type starting value
 879   for (uint i = 1; i < req(); ++i) {// For all paths in
 880     // Reachable control path?
 881     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
 882       const Type* ti = phase->type(in(i));
 883       // We assume that each input of an interface-valued Phi is a true
 884       // subtype of that interface.  This might not be true of the meet
 885       // of all the input types.  The lattice is not distributive in
 886       // such cases.  Ward off asserts in type.cpp by refusing to do
 887       // meets between interfaces and proper classes.
 888       const TypePtr* tip = ti->make_ptr();
 889       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
 890       if (tiip) {
 891         bool ti_is_intf = false;
 892         ciKlass* k = tiip->klass();
 893         if (k->is_loaded() && k->is_interface())
 894           ti_is_intf = true;
 895         if (is_intf != ti_is_intf)
 896           { t = _type; break; }
 897       }
 898       t = t->meet(ti);
 899     }
 900   }
 901 
 902   // The worst-case type (from ciTypeFlow) should be consistent with "t".
 903   // That is, we expect that "t->higher_equal(_type)" holds true.
 904   // There are various exceptions:
 905   // - Inputs which are phis might in fact be widened unnecessarily.
 906   //   For example, an input might be a widened int while the phi is a short.
 907   // - Inputs might be BotPtrs but this phi is dependent on a null check,
 908   //   and postCCP has removed the cast which encodes the result of the check.
 909   // - The type of this phi is an interface, and the inputs are classes.
 910   // - Value calls on inputs might produce fuzzy results.
 911   //   (Occurrences of this case suggest improvements to Value methods.)
 912   //
 913   // It is not possible to see Type::BOTTOM values as phi inputs,
 914   // because the ciTypeFlow pre-pass produces verifier-quality types.
 915   const Type* ft = t->filter(_type);  // Worst case type
 916 
 917 #ifdef ASSERT
 918   // The following logic has been moved into TypeOopPtr::filter.
 919   const Type* jt = t->join(_type);
 920   if( jt->empty() ) {           // Emptied out???
 921 
 922     // Check for evil case of 't' being a class and '_type' expecting an
 923     // interface.  This can happen because the bytecodes do not contain
 924     // enough type info to distinguish a Java-level interface variable
 925     // from a Java-level object variable.  If we meet 2 classes which
 926     // both implement interface I, but their meet is at 'j/l/O' which
 927     // doesn't implement I, we have no way to tell if the result should
 928     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
 929     // into a Phi which "knows" it's an Interface type we'll have to
 930     // uplift the type.
 931     if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
 932       { assert(ft == _type, ""); } // Uplift to interface
 933     else if( !t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface() )
 934       { assert(ft == _type, ""); } // Uplift to interface
 935     // Otherwise it's something stupid like non-overlapping int ranges
 936     // found on dying counted loops.
 937     else
 938       { assert(ft == Type::TOP, ""); } // Canonical empty value
 939   }
 940 
 941   else {
 942 
 943     // If we have an interface-typed Phi and we narrow to a class type, the join
 944     // should report back the class.  However, if we have a J/L/Object
 945     // class-typed Phi and an interface flows in, it's possible that the meet &
 946     // join report an interface back out.  This isn't possible but happens
 947     // because the type system doesn't interact well with interfaces.
 948     const TypePtr *jtp = jt->make_ptr();
 949     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
 950     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
 951     if( jtip && ttip ) {
 952       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
 953           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
 954         // Happens in a CTW of rt.jar, 320-341, no extra flags
 955         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
 956                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
 957         jt = ft;
 958       }
 959     }
 960     if( jtkp && ttkp ) {
 961       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
 962           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
 963         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
 964                ft->isa_narrowoop() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
 965         jt = ft;
 966       }
 967     }
 968     if (jt != ft && jt->base() == ft->base()) {
 969       if (jt->isa_int() &&
 970           jt->is_int()->_lo == ft->is_int()->_lo &&
 971           jt->is_int()->_hi == ft->is_int()->_hi)
 972         jt = ft;
 973       if (jt->isa_long() &&
 974           jt->is_long()->_lo == ft->is_long()->_lo &&
 975           jt->is_long()->_hi == ft->is_long()->_hi)
 976         jt = ft;
 977     }
 978     if (jt != ft) {
 979       tty->print("merge type:  "); t->dump(); tty->cr();
 980       tty->print("kill type:   "); _type->dump(); tty->cr();
 981       tty->print("join type:   "); jt->dump(); tty->cr();
 982       tty->print("filter type: "); ft->dump(); tty->cr();
 983     }
 984     assert(jt == ft, "");
 985   }
 986 #endif //ASSERT
 987 
 988   // Deal with conversion problems found in data loops.
 989   ft = phase->saturate(ft, phase->type_or_null(this), _type);
 990 
 991   return ft;
 992 }
 993 
 994 
 995 //------------------------------is_diamond_phi---------------------------------
 996 // Does this Phi represent a simple well-shaped diamond merge?  Return the
 997 // index of the true path or 0 otherwise.
 998 int PhiNode::is_diamond_phi() const {
 999   // Check for a 2-path merge
1000   Node *region = in(0);
1001   if( !region ) return 0;
1002   if( region->req() != 3 ) return 0;
1003   if(         req() != 3 ) return 0;
1004   // Check that both paths come from the same If
1005   Node *ifp1 = region->in(1);
1006   Node *ifp2 = region->in(2);
1007   if( !ifp1 || !ifp2 ) return 0;
1008   Node *iff = ifp1->in(0);
1009   if( !iff || !iff->is_If() ) return 0;
1010   if( iff != ifp2->in(0) ) return 0;
1011   // Check for a proper bool/cmp
1012   const Node *b = iff->in(1);
1013   if( !b->is_Bool() ) return 0;
1014   const Node *cmp = b->in(1);
1015   if( !cmp->is_Cmp() ) return 0;
1016 
1017   // Check for branching opposite expected
1018   if( ifp2->Opcode() == Op_IfTrue ) {
1019     assert( ifp1->Opcode() == Op_IfFalse, "" );
1020     return 2;
1021   } else {
1022     assert( ifp1->Opcode() == Op_IfTrue, "" );
1023     return 1;
1024   }
1025 }
1026 
1027 //----------------------------check_cmove_id-----------------------------------
1028 // Check for CMove'ing a constant after comparing against the constant.
1029 // Happens all the time now, since if we compare equality vs a constant in
1030 // the parser, we "know" the variable is constant on one path and we force
1031 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1032 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1033 // general in that we don't need constants.  Since CMove's are only inserted
1034 // in very special circumstances, we do it here on generic Phi's.
1035 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1036   assert(true_path !=0, "only diamond shape graph expected");
1037   
1038   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1039   // phi->region->if_proj->ifnode->bool->cmp
1040   Node*     region = in(0);
1041   Node*     iff    = region->in(1)->in(0);
1042   BoolNode* b      = iff->in(1)->as_Bool();
1043   Node*     cmp    = b->in(1);
1044   Node*     tval   = in(true_path);
1045   Node*     fval   = in(3-true_path);
1046   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1047   if (id == NULL)
1048     return NULL;
1049  
1050   // Either value might be a cast that depends on a branch of 'iff'.
1051   // Since the 'id' value will float free of the diamond, either
1052   // decast or return failure.
1053   Node* ctl = id->in(0);
1054   if (ctl != NULL && ctl->in(0) == iff) {
1055     if (id->is_ConstraintCast()) {
1056       return id->in(1);
1057     } else {
1058       // Don't know how to disentangle this value.
1059       return NULL;
1060     } 
1061   } 
1062   
1063   return id;
1064 }
1065 
1066 //------------------------------Identity---------------------------------------
1067 // Check for Region being Identity.
1068 Node *PhiNode::Identity( PhaseTransform *phase ) {
1069   // Check for no merging going on
1070   // (There used to be special-case code here when this->region->is_Loop.
1071   // It would check for a tributary phi on the backedge that the main phi
1072   // trivially, perhaps with a single cast.  The unique_input method
1073   // does all this and more, by reducing such tributaries to 'this'.)
1074   Node* uin = unique_input(phase);
1075   if (uin != NULL) {
1076     return uin;
1077   }
1078 
1079   int true_path = is_diamond_phi();
1080   if (true_path != 0) {
1081     Node* id = is_cmove_id(phase, true_path);
1082     if (id != NULL)  return id;
1083   }
1084 
1085   return this;                     // No identity
1086 }
1087 
1088 //-----------------------------unique_input------------------------------------
1089 // Find the unique value, discounting top, self-loops, and casts.
1090 // Return top if there are no inputs, and self if there are multiple.
1091 Node* PhiNode::unique_input(PhaseTransform* phase) {
1092   //  1) One unique direct input, or
1093   //  2) some of the inputs have an intervening ConstraintCast and
1094   //     the type of input is the same or sharper (more specific)
1095   //     than the phi's type.
1096   //  3) an input is a self loop
1097   //  
1098   //  1) input   or   2) input     or   3) input __ 
1099   //     /   \           /   \               \  /  \ 
1100   //     \   /          |    cast             phi  cast 
1101   //      phi            \   /               /  \  /   
1102   //                      phi               /    --   
1103 
1104   Node* r = in(0);                      // RegionNode
1105   if (r == NULL)  return in(1);         // Already degraded to a Copy 
1106   Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
1107   Node* direct_input   = NULL; // The unique direct input
1108 
1109   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1110     Node* rc = r->in(i);
1111     if (rc == NULL || phase->type(rc) == Type::TOP)
1112       continue;                 // ignore unreachable control path
1113     Node* n = in(i);
1114     if (n == NULL)
1115       continue;
1116     Node* un = n->uncast();
1117     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1118       continue; // ignore if top, or in(i) and "this" are in a data cycle
1119     }
1120     // Check for a unique uncasted input
1121     if (uncasted_input == NULL) {
1122       uncasted_input = un;
1123     } else if (uncasted_input != un) {
1124       uncasted_input = NodeSentinel; // no unique uncasted input
1125     }
1126     // Check for a unique direct input
1127     if (direct_input == NULL) {
1128       direct_input = n;
1129     } else if (direct_input != n) {
1130       direct_input = NodeSentinel; // no unique direct input
1131     }
1132   }
1133   if (direct_input == NULL) {
1134     return phase->C->top();        // no inputs
1135   }
1136   assert(uncasted_input != NULL,"");
1137 
1138   if (direct_input != NodeSentinel) {
1139     return direct_input;           // one unique direct input
1140   }
1141   if (uncasted_input != NodeSentinel && 
1142       phase->type(uncasted_input)->higher_equal(type())) {
1143     return uncasted_input;         // one unique uncasted input
1144   }
1145 
1146   // Nothing.
1147   return NULL;
1148 }
1149 
1150 //------------------------------is_x2logic-------------------------------------
1151 // Check for simple convert-to-boolean pattern
1152 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1153 // Convert Phi to an ConvIB.
1154 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1155   assert(true_path !=0, "only diamond shape graph expected");
1156   // Convert the true/false index into an expected 0/1 return.
1157   // Map 2->0 and 1->1.
1158   int flipped = 2-true_path;
1159 
1160   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1161   // phi->region->if_proj->ifnode->bool->cmp
1162   Node *region = phi->in(0);
1163   Node *iff = region->in(1)->in(0);
1164   BoolNode *b = (BoolNode*)iff->in(1);
1165   const CmpNode *cmp = (CmpNode*)b->in(1);
1166 
1167   Node *zero = phi->in(1);
1168   Node *one  = phi->in(2);
1169   const Type *tzero = phase->type( zero );
1170   const Type *tone  = phase->type( one  );
1171 
1172   // Check for compare vs 0
1173   const Type *tcmp = phase->type(cmp->in(2));
1174   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1175     // Allow cmp-vs-1 if the other input is bounded by 0-1
1176     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1177       return NULL;
1178     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1179   }
1180 
1181   // Check for setting zero/one opposite expected
1182   if( tzero == TypeInt::ZERO ) {
1183     if( tone == TypeInt::ONE ) {
1184     } else return NULL;
1185   } else if( tzero == TypeInt::ONE ) {
1186     if( tone == TypeInt::ZERO ) {
1187       flipped = 1-flipped;
1188     } else return NULL;
1189   } else return NULL;
1190 
1191   // Check for boolean test backwards
1192   if( b->_test._test == BoolTest::ne ) {
1193   } else if( b->_test._test == BoolTest::eq ) {
1194     flipped = 1-flipped;
1195   } else return NULL;
1196 
1197   // Build int->bool conversion
1198   Node *n = new (phase->C, 2) Conv2BNode( cmp->in(1) );
1199   if( flipped ) 
1200     n = new (phase->C, 3) XorINode( phase->transform(n), phase->intcon(1) );
1201 
1202   return n;
1203 }
1204 
1205 //------------------------------is_cond_add------------------------------------
1206 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1207 // To be profitable the control flow has to disappear; there can be no other
1208 // values merging here.  We replace the test-and-branch with: 
1209 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1210 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.  
1211 // Then convert Y to 0-or-Y and finally add.
1212 // This is a key transform for SpecJava _201_compress.
1213 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1214   assert(true_path !=0, "only diamond shape graph expected");
1215 
1216   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1217   // phi->region->if_proj->ifnode->bool->cmp
1218   RegionNode *region = (RegionNode*)phi->in(0);
1219   Node *iff = region->in(1)->in(0);
1220   BoolNode* b = iff->in(1)->as_Bool();
1221   const CmpNode *cmp = (CmpNode*)b->in(1);
1222 
1223   // Make sure only merging this one phi here
1224   if (region->has_unique_phi() != phi)  return NULL;
1225 
1226   // Make sure each arm of the diamond has exactly one output, which we assume
1227   // is the region.  Otherwise, the control flow won't disappear.
1228   if (region->in(1)->outcnt() != 1) return NULL;
1229   if (region->in(2)->outcnt() != 1) return NULL;
1230 
1231   // Check for "(P < Q)" of type signed int
1232   if (b->_test._test != BoolTest::lt)  return NULL;
1233   if (cmp->Opcode() != Op_CmpI)        return NULL;
1234 
1235   Node *p = cmp->in(1);
1236   Node *q = cmp->in(2);
1237   Node *n1 = phi->in(  true_path);
1238   Node *n2 = phi->in(3-true_path);
1239 
1240   int op = n1->Opcode();
1241   if( op != Op_AddI           // Need zero as additive identity
1242       /*&&op != Op_SubI &&
1243       op != Op_AddP &&
1244       op != Op_XorI &&
1245       op != Op_OrI*/ )
1246     return NULL;
1247 
1248   Node *x = n2;
1249   Node *y = n1->in(1);
1250   if( n2 == n1->in(1) ) {
1251     y = n1->in(2);
1252   } else if( n2 == n1->in(1) ) {
1253   } else return NULL;
1254 
1255   // Not so profitable if compare and add are constants
1256   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() ) 
1257     return NULL;
1258 
1259   Node *cmplt = phase->transform( new (phase->C, 3) CmpLTMaskNode(p,q) );
1260   Node *j_and   = phase->transform( new (phase->C, 3) AndINode(cmplt,y) );
1261   return new (phase->C, 3) AddINode(j_and,x);
1262 }
1263 
1264 //------------------------------is_absolute------------------------------------
1265 // Check for absolute value.
1266 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1267   assert(true_path !=0, "only diamond shape graph expected");
1268 
1269   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1270   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1271 
1272   // ABS ends with the merge of 2 control flow paths.
1273   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1274   int false_path = 3 - true_path;
1275 
1276   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1277   // phi->region->if_proj->ifnode->bool->cmp
1278   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1279 
1280   // Check bool sense
1281   switch( bol->_test._test ) {
1282   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1283   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1284   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1285   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1286   default:           return NULL;                              break;
1287   }
1288 
1289   // Test is next
1290   Node *cmp = bol->in(1);
1291   const Type *tzero = NULL;
1292   switch( cmp->Opcode() ) {
1293   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1294   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1295   default: return NULL;
1296   }
1297 
1298   // Find zero input of compare; the other input is being abs'd
1299   Node *x = NULL;
1300   bool flip = false;
1301   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1302     x = cmp->in(3 - cmp_zero_idx);
1303   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1304     // The test is inverted, we should invert the result...
1305     x = cmp->in(cmp_zero_idx);
1306     flip = true;
1307   } else {
1308     return NULL;
1309   }
1310 
1311   // Next get the 2 pieces being selected, one is the original value
1312   // and the other is the negated value.
1313   if( phi_root->in(phi_x_idx) != x ) return NULL;
1314 
1315   // Check other phi input for subtract node
1316   Node *sub = phi_root->in(3 - phi_x_idx);
1317 
1318   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1319   if( tzero == TypeF::ZERO ) { 
1320     if( sub->Opcode() != Op_SubF || 
1321         sub->in(2) != x || 
1322         phase->type(sub->in(1)) != tzero ) return NULL;
1323     x = new (phase->C, 2) AbsFNode(x);
1324     if (flip) {
1325       x = new (phase->C, 3) SubFNode(sub->in(1), phase->transform(x));
1326     }
1327   } else {
1328     if( sub->Opcode() != Op_SubD || 
1329         sub->in(2) != x || 
1330         phase->type(sub->in(1)) != tzero ) return NULL;
1331     x = new (phase->C, 2) AbsDNode(x);
1332     if (flip) {
1333       x = new (phase->C, 3) SubDNode(sub->in(1), phase->transform(x));
1334     }
1335   }
1336 
1337   return x;
1338 }
1339 
1340 //------------------------------split_once-------------------------------------
1341 // Helper for split_flow_path
1342 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1343   igvn->hash_delete(n);         // Remove from hash before hacking edges
1344 
1345   uint j = 1;
1346   for( uint i = phi->req()-1; i > 0; i-- ) {
1347     if( phi->in(i) == val ) {   // Found a path with val?
1348       // Add to NEW Region/Phi, no DU info
1349       newn->set_req( j++, n->in(i) );
1350       // Remove from OLD Region/Phi
1351       n->del_req(i);
1352     }
1353   }
1354 
1355   // Register the new node but do not transform it.  Cannot transform until the
1356   // entire Region/Phi conglerate has been hacked as a single huge transform.
1357   igvn->register_new_node_with_optimizer( newn );
1358   // Now I can point to the new node.
1359   n->add_req(newn);
1360   igvn->_worklist.push(n);
1361 }
1362 
1363 //------------------------------split_flow_path--------------------------------
1364 // Check for merging identical values and split flow paths
1365 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1366   BasicType bt = phi->type()->basic_type();
1367   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1368     return NULL;                // Bail out on funny non-value stuff
1369   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1370     return NULL;                // third unequal input to be worth doing
1371 
1372   // Scan for a constant
1373   uint i;
1374   for( i = 1; i < phi->req()-1; i++ ) {
1375     Node *n = phi->in(i);
1376     if( !n ) return NULL;
1377     if( phase->type(n) == Type::TOP ) return NULL;
1378     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN )
1379       break;
1380   }
1381   if( i >= phi->req() )         // Only split for constants
1382     return NULL;
1383   
1384   Node *val = phi->in(i);       // Constant to split for
1385   uint hit = 0;                 // Number of times it occurs
1386 
1387   for( ; i < phi->req(); i++ ){ // Count occurances of constant
1388     Node *n = phi->in(i);
1389     if( !n ) return NULL;
1390     if( phase->type(n) == Type::TOP ) return NULL;
1391     if( phi->in(i) == val ) 
1392       hit++;
1393   }
1394 
1395   if( hit <= 1 ||               // Make sure we find 2 or more
1396       hit == phi->req()-1 )     // and not ALL the same value
1397     return NULL;
1398 
1399   // Now start splitting out the flow paths that merge the same value.
1400   // Split first the RegionNode.
1401   PhaseIterGVN *igvn = phase->is_IterGVN();
1402   Node *r = phi->region();
1403   RegionNode *newr = new (phase->C, hit+1) RegionNode(hit+1);
1404   split_once(igvn, phi, val, r, newr);
1405 
1406   // Now split all other Phis than this one
1407   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1408     Node* phi2 = r->fast_out(k);
1409     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1410       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1411       split_once(igvn, phi, val, phi2, newphi);
1412     }
1413   }      
1414 
1415   // Clean up this guy
1416   igvn->hash_delete(phi);
1417   for( i = phi->req()-1; i > 0; i-- ) {
1418     if( phi->in(i) == val ) {
1419       phi->del_req(i);
1420     }
1421   }
1422   phi->add_req(val);
1423 
1424   return phi;
1425 }
1426 
1427 //=============================================================================
1428 //------------------------------simple_data_loop_check-------------------------
1429 //  Try to determing if the phi node in a simple safe/unsafe data loop.
1430 //  Returns:    
1431 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1432 // Safe       - safe case when the phi and it's inputs reference only safe data 
1433 //              nodes;
1434 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there 
1435 //              is no reference back to the phi - need a graph walk
1436 //              to determine if it is in a loop;
1437 // UnsafeLoop - unsafe case when the phi references itself directly or through 
1438 //              unsafe data node.
1439 //  Note: a safe data node is a node which could/never reference itself during
1440 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1441 //  I mark Phi nodes as safe node not only because they can reference itself
1442 //  but also to prevent mistaking the fallthrough case inside an outer loop
1443 //  as dead loop when the phi references itselfs through an other phi.
1444 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1445   // It is unsafe loop if the phi node references itself directly. 
1446   if (in == (Node*)this)
1447     return UnsafeLoop; // Unsafe loop
1448   // Unsafe loop if the phi node references itself through an unsafe data node. 
1449   // Exclude cases with null inputs or data nodes which could reference
1450   // itself (safe for dead loops).
1451   if (in != NULL && !in->is_dead_loop_safe()) {
1452     // Check inputs of phi's inputs also. 
1453     // It is much less expensive then full graph walk.
1454     uint cnt = in->req();
1455     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1456     for (; i < cnt; ++i) {
1457       Node* m = in->in(i);
1458       if (m == (Node*)this)
1459         return UnsafeLoop; // Unsafe loop
1460       if (m != NULL && !m->is_dead_loop_safe()) {
1461         // Check the most common case (about 30% of all cases):
1462         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1463         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1464         if (m1 == (Node*)this)
1465           return UnsafeLoop; // Unsafe loop
1466         if (m1 != NULL && m1 == m->in(2) && 
1467             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1468           continue; // Safe case
1469         }
1470         // The phi references an unsafe node - need full analysis.
1471         return Unsafe;
1472       }
1473     }
1474   }
1475   return Safe; // Safe case - we can optimize the phi node.
1476 }
1477 
1478 //------------------------------is_unsafe_data_reference-----------------------
1479 // If phi can be reached through the data input - it is data loop.
1480 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1481   assert(req() > 1, "");
1482   // First, check simple cases when phi references itself directly or 
1483   // through an other node.
1484   LoopSafety safety = simple_data_loop_check(in);
1485   if (safety == UnsafeLoop)
1486     return true;  // phi references itself - unsafe loop
1487   else if (safety == Safe)
1488     return false; // Safe case - phi could be replaced with the unique input.
1489 
1490   // Unsafe case when we should go through data graph to determine
1491   // if the phi references itself.
1492 
1493   ResourceMark rm;
1494 
1495   Arena *a = Thread::current()->resource_area();
1496   Node_List nstack(a);
1497   VectorSet visited(a);
1498   
1499   nstack.push(in); // Start with unique input.
1500   visited.set(in->_idx); 
1501   while (nstack.size() != 0) {
1502     Node* n = nstack.pop();
1503     uint cnt = n->req();
1504     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1505     for (; i < cnt; i++) {
1506       Node* m = n->in(i);
1507       if (m == (Node*)this) {
1508         return true;    // Data loop
1509       }
1510       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1511         if (!visited.test_set(m->_idx))
1512           nstack.push(m);
1513       }
1514     }
1515   }
1516   return false; // The phi is not reachable from its inputs
1517 }
1518 
1519 
1520 //------------------------------Ideal------------------------------------------
1521 // Return a node which is more "ideal" than the current node.  Must preserve
1522 // the CFG, but we can still strip out dead paths.
1523 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1524   // The next should never happen after 6297035 fix.
1525   if( is_copy() )               // Already degraded to a Copy ?
1526     return NULL;                // No change
1527 
1528   Node *r = in(0);              // RegionNode
1529   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1530 
1531   // Note: During parsing, phis are often transformed before their regions.
1532   // This means we have to use type_or_null to defend against untyped regions.
1533   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1534     return NULL;                // No change
1535 
1536   Node *top = phase->C->top();
1537 
1538   // The are 2 situations when only one valid phi's input is left 
1539   // (in addition to Region input).
1540   // One: region is not loop - replace phi with this input.
1541   // Two: region is loop - replace phi with top since this data path is dead
1542   //                       and we need to break the dead data loop.
1543   Node* progress = NULL;        // Record if any progress made
1544   for( uint j = 1; j < req(); ++j ){ // For all paths in
1545     // Check unreachable control paths
1546     Node* rc = r->in(j);
1547     Node* n = in(j);            // Get the input
1548     if (rc == NULL || phase->type(rc) == Type::TOP) {
1549       if (n != top) {           // Not already top?  
1550         set_req(j, top);        // Nuke it down
1551         progress = this;        // Record progress
1552       }
1553     }
1554   }
1555 
1556   Node* uin = unique_input(phase);
1557   if (uin == top) {             // Simplest case: no alive inputs.
1558     if (can_reshape)            // IGVN transformation
1559       return top;
1560     else
1561       return NULL;              // Identity will return TOP
1562   } else if (uin != NULL) {
1563     // Only one not-NULL unique input path is left.
1564     // Determine if this input is backedge of a loop.
1565     // (Skip new phis which have no uses and dead regions).
1566     if( outcnt() > 0 && r->in(0) != NULL ) {
1567       // First, take the short cut when we know it is a loop and
1568       // the EntryControl data path is dead.
1569       assert(!r->is_Loop() || r->req() == 3, "Loop node should have 3 inputs");
1570       // Then, check if there is a data loop when phi references itself directly
1571       // or through other data nodes.
1572       if( r->is_Loop() && !phase->eqv_uncast(uin, in(LoopNode::EntryControl)) ||
1573          !r->is_Loop() && is_unsafe_data_reference(uin) ) {
1574         // Break this data loop to avoid creation of a dead loop.
1575         if (can_reshape) {
1576           return top;
1577         } else {
1578           // We can't return top if we are in Parse phase - cut inputs only
1579           // let Identity to handle the case.
1580           replace_edge(uin, top);
1581           return NULL;
1582         }
1583       }
1584     }
1585 
1586     // One unique input.
1587     debug_only(Node* ident = Identity(phase));
1588     // The unique input must eventually be detected by the Identity call.
1589 #ifdef ASSERT
1590     if (ident != uin && !ident->is_top()) {
1591       // print this output before failing assert
1592       r->dump(3);
1593       this->dump(3);
1594       ident->dump();
1595       uin->dump();
1596     }
1597 #endif
1598     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1599     return NULL;
1600   }
1601 
1602   
1603   Node* opt = NULL;
1604   int true_path = is_diamond_phi();
1605   if( true_path != 0 ) {
1606     // Check for CMove'ing identity. If it would be unsafe, 
1607     // handle it here. In the safe case, let Identity handle it.
1608     Node* unsafe_id = is_cmove_id(phase, true_path);
1609     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1610       opt = unsafe_id;
1611 
1612     // Check for simple convert-to-boolean pattern
1613     if( opt == NULL )
1614       opt = is_x2logic(phase, this, true_path);
1615 
1616     // Check for absolute value
1617     if( opt == NULL )
1618       opt = is_absolute(phase, this, true_path);
1619 
1620     // Check for conditional add
1621     if( opt == NULL && can_reshape )
1622       opt = is_cond_add(phase, this, true_path);
1623 
1624     // These 4 optimizations could subsume the phi:
1625     // have to check for a dead data loop creation.
1626     if( opt != NULL ) {
1627       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1628         // Found dead loop.
1629         if( can_reshape )
1630           return top;
1631         // We can't return top if we are in Parse phase - cut inputs only
1632         // to stop further optimizations for this phi. Identity will return TOP.
1633         assert(req() == 3, "only diamond merge phi here");
1634         set_req(1, top);
1635         set_req(2, top);
1636         return NULL;
1637       } else {
1638         return opt;
1639       }
1640     }
1641   }
1642 
1643   // Check for merging identical values and split flow paths
1644   if (can_reshape) {
1645     opt = split_flow_path(phase, this);
1646     // This optimization only modifies phi - don't need to check for dead loop.
1647     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1648     if (opt != NULL)  return opt;
1649   }
1650 
1651   // Split phis through memory merges, so that the memory merges will go away.
1652   // Piggy-back this transformation on the search for a unique input....
1653   // It will be as if the merged memory is the unique value of the phi.
1654   // (Do not attempt this optimization unless parsing is complete.
1655   // It would make the parser's memory-merge logic sick.)
1656   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1657   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1658     // see if this phi should be sliced
1659     uint merge_width = 0;
1660     bool saw_self = false;
1661     for( uint i=1; i<req(); ++i ) {// For all paths in
1662       Node *ii = in(i);
1663       if (ii->is_MergeMem()) {
1664         MergeMemNode* n = ii->as_MergeMem();
1665         merge_width = MAX2(merge_width, n->req());
1666         saw_self = saw_self || phase->eqv(n->base_memory(), this); 
1667       }
1668     }
1669 
1670     // This restriction is temporarily necessary to ensure termination:
1671     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1672 
1673     if (merge_width > Compile::AliasIdxRaw) {
1674       // found at least one non-empty MergeMem
1675       const TypePtr* at = adr_type();
1676       if (at != TypePtr::BOTTOM) {
1677         // Patch the existing phi to select an input from the merge:
1678         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1679         //     Phi:AT1(...m1...)
1680         int alias_idx = phase->C->get_alias_index(at);
1681         for (uint i=1; i<req(); ++i) {
1682           Node *ii = in(i);
1683           if (ii->is_MergeMem()) {
1684             MergeMemNode* n = ii->as_MergeMem();
1685             // compress paths and change unreachable cycles to TOP
1686             // If not, we can update the input infinitely along a MergeMem cycle
1687             // Equivalent code is in MemNode::Ideal_common
1688             Node *m  = phase->transform(n);
1689             if (outcnt() == 0) {  // Above transform() may kill us!
1690               progress = phase->C->top();
1691               break;
1692             }
1693             // If tranformed to a MergeMem, get the desired slice
1694             // Otherwise the returned node represents memory for every slice
1695             Node *new_mem = (m->is_MergeMem()) ? 
1696                              m->as_MergeMem()->memory_at(alias_idx) : m;
1697             // Update input if it is progress over what we have now
1698             if (new_mem != ii) {
1699               set_req(i, new_mem);
1700               progress = this;
1701             }
1702           }
1703         }
1704       } else {
1705         // We know that at least one MergeMem->base_memory() == this
1706         // (saw_self == true). If all other inputs also references this phi 
1707         // (directly or through data nodes) - it is dead loop.
1708         bool saw_safe_input = false;
1709         for (uint j = 1; j < req(); ++j) {
1710           Node *n = in(j);
1711           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
1712             continue;              // skip known cases
1713           if (!is_unsafe_data_reference(n)) {
1714             saw_safe_input = true; // found safe input
1715             break;
1716           }
1717         }
1718         if (!saw_safe_input)
1719           return top; // all inputs reference back to this phi - dead loop
1720           
1721         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
1722         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
1723         PhaseIterGVN *igvn = phase->is_IterGVN();
1724         Node* hook = new (phase->C, 1) Node(1);
1725         PhiNode* new_base = (PhiNode*) clone();
1726         // Must eagerly register phis, since they participate in loops.
1727         if (igvn) {
1728           igvn->register_new_node_with_optimizer(new_base);
1729           hook->add_req(new_base);
1730         }
1731         MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
1732         for (uint i = 1; i < req(); ++i) {
1733           Node *ii = in(i);
1734           if (ii->is_MergeMem()) {
1735             MergeMemNode* n = ii->as_MergeMem();
1736             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
1737               // If we have not seen this slice yet, make a phi for it.
1738               bool made_new_phi = false;
1739               if (mms.is_empty()) {
1740                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
1741                 made_new_phi = true;
1742                 if (igvn) {
1743                   igvn->register_new_node_with_optimizer(new_phi);
1744                   hook->add_req(new_phi);
1745                 }
1746                 mms.set_memory(new_phi);
1747               }
1748               Node* phi = mms.memory();
1749               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
1750               phi->set_req(i, mms.memory2());
1751             }
1752           }
1753         }
1754         // Distribute all self-loops.
1755         { // (Extra braces to hide mms.)
1756           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1757             Node* phi = mms.memory();
1758             for (uint i = 1; i < req(); ++i) {
1759               if (phi->in(i) == this)  phi->set_req(i, phi);
1760             }
1761           }
1762         }
1763         // now transform the new nodes, and return the mergemem
1764         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1765           Node* phi = mms.memory();
1766           mms.set_memory(phase->transform(phi));
1767         }
1768         if (igvn) { // Unhook.
1769           igvn->hash_delete(hook);
1770           for (uint i = 1; i < hook->req(); i++) {
1771             hook->set_req(i, NULL);
1772           }
1773         }
1774         // Replace self with the result.
1775         return result;
1776       }
1777     }
1778     //
1779     // Other optimizations on the memory chain
1780     //
1781     const TypePtr* at = adr_type();
1782     for( uint i=1; i<req(); ++i ) {// For all paths in
1783       Node *ii = in(i);
1784       Node *new_in = MemNode::optimize_memory_chain(ii, at, phase);
1785       if (ii != new_in ) {
1786         set_req(i, new_in);
1787         progress = this;
1788       }
1789     }
1790   }
1791 
1792 #ifdef _LP64
1793   // Push DecodeN down through phi.
1794   // The rest of phi graph will transform by split EncodeP node though phis up.
1795   if (UseCompressedOops && can_reshape && progress == NULL) {
1796     bool may_push = true;
1797     bool has_decodeN = false;
1798     Node* in_decodeN = NULL;
1799     for (uint i=1; i<req(); ++i) {// For all paths in
1800       Node *ii = in(i);
1801       if (ii->is_DecodeN() && ii->bottom_type() == bottom_type()) {
1802         has_decodeN = true;
1803         in_decodeN = ii->in(1);
1804       } else if (!ii->is_Phi()) {
1805         may_push = false;
1806       }
1807     }
1808 
1809     if (has_decodeN && may_push) {
1810       PhaseIterGVN *igvn = phase->is_IterGVN();
1811       // Note: in_decodeN is used only to define the type of new phi here.
1812       PhiNode *new_phi = PhiNode::make_blank(in(0), in_decodeN);
1813       uint orig_cnt = req();
1814       for (uint i=1; i<req(); ++i) {// For all paths in
1815         Node *ii = in(i);
1816         Node* new_ii = NULL;
1817         if (ii->is_DecodeN()) {
1818           assert(ii->bottom_type() == bottom_type(), "sanity");
1819           new_ii = ii->in(1);
1820         } else {
1821           assert(ii->is_Phi(), "sanity");
1822           if (ii->as_Phi() == this) {
1823             new_ii = new_phi;
1824           } else {
1825             new_ii = new (phase->C, 2) EncodePNode(ii, in_decodeN->bottom_type());
1826             igvn->register_new_node_with_optimizer(new_ii);
1827           }
1828         }
1829         new_phi->set_req(i, new_ii);
1830       }
1831       igvn->register_new_node_with_optimizer(new_phi, this);
1832       progress = new (phase->C, 2) DecodeNNode(new_phi, bottom_type());
1833     }
1834   }
1835 #endif
1836 
1837   return progress;              // Return any progress
1838 }
1839 
1840 //------------------------------is_tripcount-----------------------------------
1841 bool PhiNode::is_tripcount() const {
1842   return (in(0) != NULL && in(0)->is_CountedLoop() &&
1843           in(0)->as_CountedLoop()->phi() == this);
1844 }
1845 
1846 //------------------------------out_RegMask------------------------------------
1847 const RegMask &PhiNode::in_RegMask(uint i) const { 
1848   return i ? out_RegMask() : RegMask::Empty;
1849 }
1850 
1851 const RegMask &PhiNode::out_RegMask() const { 
1852   uint ideal_reg = Matcher::base2reg[_type->base()];
1853   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
1854   if( ideal_reg == 0 ) return RegMask::Empty;
1855   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
1856 }
1857 
1858 #ifndef PRODUCT
1859 void PhiNode::dump_spec(outputStream *st) const { 
1860   TypeNode::dump_spec(st);
1861   if (is_tripcount()) {
1862     st->print(" #tripcount");
1863   }
1864 }
1865 #endif
1866 
1867 
1868 //=============================================================================
1869 const Type *GotoNode::Value( PhaseTransform *phase ) const {
1870   // If the input is reachable, then we are executed.
1871   // If the input is not reachable, then we are not executed.
1872   return phase->type(in(0)); 
1873 }
1874 
1875 Node *GotoNode::Identity( PhaseTransform *phase ) {
1876   return in(0);                // Simple copy of incoming control
1877 }
1878 
1879 const RegMask &GotoNode::out_RegMask() const { 
1880   return RegMask::Empty;
1881 }
1882 
1883 //=============================================================================
1884 const RegMask &JumpNode::out_RegMask() const { 
1885   return RegMask::Empty;
1886 }
1887  
1888 //=============================================================================
1889 const RegMask &JProjNode::out_RegMask() const { 
1890   return RegMask::Empty;
1891 }
1892 
1893 //=============================================================================
1894 const RegMask &CProjNode::out_RegMask() const { 
1895   return RegMask::Empty;
1896 }
1897 
1898 
1899 
1900 //=============================================================================
1901 
1902 uint PCTableNode::hash() const { return Node::hash() + _size; }
1903 uint PCTableNode::cmp( const Node &n ) const
1904 { return _size == ((PCTableNode&)n)._size; }
1905 
1906 const Type *PCTableNode::bottom_type() const {
1907   const Type** f = TypeTuple::fields(_size);
1908   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
1909   return TypeTuple::make(_size, f);
1910 }
1911 
1912 //------------------------------Value------------------------------------------
1913 // Compute the type of the PCTableNode.  If reachable it is a tuple of 
1914 // Control, otherwise the table targets are not reachable
1915 const Type *PCTableNode::Value( PhaseTransform *phase ) const {
1916   if( phase->type(in(0)) == Type::CONTROL )
1917     return bottom_type();
1918   return Type::TOP;             // All paths dead?  Then so are we
1919 }
1920 
1921 //------------------------------Ideal------------------------------------------
1922 // Return a node which is more "ideal" than the current node.  Strip out 
1923 // control copies
1924 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1925   return remove_dead_region(phase, can_reshape) ? this : NULL;
1926 }
1927 
1928 //=============================================================================
1929 uint JumpProjNode::hash() const {
1930   return Node::hash() + _dest_bci;
1931 }
1932 
1933 uint JumpProjNode::cmp( const Node &n ) const {
1934   return ProjNode::cmp(n) &&
1935     _dest_bci == ((JumpProjNode&)n)._dest_bci;
1936 }
1937 
1938 #ifndef PRODUCT
1939 void JumpProjNode::dump_spec(outputStream *st) const { 
1940   ProjNode::dump_spec(st);
1941    st->print("@bci %d ",_dest_bci);
1942 }
1943 #endif
1944 
1945 //=============================================================================
1946 //------------------------------Value------------------------------------------
1947 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
1948 // have the default "fall_through_index" path.
1949 const Type *CatchNode::Value( PhaseTransform *phase ) const {
1950   // Unreachable?  Then so are all paths from here.
1951   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
1952   // First assume all paths are reachable
1953   const Type** f = TypeTuple::fields(_size);
1954   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
1955   // Identify cases that will always throw an exception
1956   // () rethrow call
1957   // () virtual or interface call with NULL receiver
1958   // () call is a check cast with incompatible arguments
1959   if( in(1)->is_Proj() ) {
1960     Node *i10 = in(1)->in(0);
1961     if( i10->is_Call() ) {
1962       CallNode *call = i10->as_Call();
1963       // Rethrows always throw exceptions, never return
1964       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
1965         f[CatchProjNode::fall_through_index] = Type::TOP;
1966       } else if( call->req() > TypeFunc::Parms ) {
1967         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
1968         // Check for null reciever to virtual or interface calls
1969         if( call->is_CallDynamicJava() && 
1970             arg0->higher_equal(TypePtr::NULL_PTR) ) { 
1971           f[CatchProjNode::fall_through_index] = Type::TOP;
1972         }
1973       } // End of if not a runtime stub
1974     } // End of if have call above me
1975   } // End of slot 1 is not a projection
1976   return TypeTuple::make(_size, f);
1977 }
1978 
1979 //=============================================================================
1980 uint CatchProjNode::hash() const {
1981   return Node::hash() + _handler_bci;
1982 }
1983 
1984 
1985 uint CatchProjNode::cmp( const Node &n ) const {
1986   return ProjNode::cmp(n) &&
1987     _handler_bci == ((CatchProjNode&)n)._handler_bci;
1988 }
1989 
1990 
1991 //------------------------------Identity---------------------------------------
1992 // If only 1 target is possible, choose it if it is the main control
1993 Node *CatchProjNode::Identity( PhaseTransform *phase ) {
1994   // If my value is control and no other value is, then treat as ID
1995   const TypeTuple *t = phase->type(in(0))->is_tuple();
1996   if (t->field_at(_con) != Type::CONTROL)  return this;
1997   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
1998   // also remove any exception table entry.  Thus we must know the call
1999   // feeding the Catch will not really throw an exception.  This is ok for
2000   // the main fall-thru control (happens when we know a call can never throw
2001   // an exception) or for "rethrow", because a further optimnization will
2002   // yank the rethrow (happens when we inline a function that can throw an
2003   // exception and the caller has no handler).  Not legal, e.g., for passing
2004   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2005   // These cases MUST throw an exception via the runtime system, so the VM
2006   // will be looking for a table entry.
2007   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2008   CallNode *call;
2009   if (_con != TypeFunc::Control && // Bail out if not the main control.
2010       !(proj->is_Proj() &&      // AND NOT a rethrow
2011         proj->in(0)->is_Call() &&
2012         (call = proj->in(0)->as_Call()) &&
2013         call->entry_point() == OptoRuntime::rethrow_stub()))
2014     return this;
2015 
2016   // Search for any other path being control
2017   for (uint i = 0; i < t->cnt(); i++) {
2018     if (i != _con && t->field_at(i) == Type::CONTROL)
2019       return this;
2020   }
2021   // Only my path is possible; I am identity on control to the jump
2022   return in(0)->in(0);
2023 }
2024 
2025 
2026 #ifndef PRODUCT
2027 void CatchProjNode::dump_spec(outputStream *st) const { 
2028   ProjNode::dump_spec(st);
2029   st->print("@bci %d ",_handler_bci);
2030 }
2031 #endif
2032 
2033 //=============================================================================
2034 //------------------------------Identity---------------------------------------
2035 // Check for CreateEx being Identity.
2036 Node *CreateExNode::Identity( PhaseTransform *phase ) {
2037   if( phase->type(in(1)) == Type::TOP ) return in(1);
2038   if( phase->type(in(0)) == Type::TOP ) return in(0);
2039   // We only come from CatchProj, unless the CatchProj goes away.
2040   // If the CatchProj is optimized away, then we just carry the 
2041   // exception oop through.
2042   CallNode *call = in(1)->in(0)->as_Call();
2043 
2044   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) ) 
2045     ? this
2046     : call->in(TypeFunc::Parms);
2047 }
2048 
2049 //=============================================================================
2050 //------------------------------Value------------------------------------------
2051 // Check for being unreachable.
2052 const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
2053   if (!in(0) || in(0)->is_top()) return Type::TOP;
2054   return bottom_type();
2055 }
2056 
2057 //------------------------------Ideal------------------------------------------
2058 // Check for no longer being part of a loop
2059 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2060   if (can_reshape && !in(0)->is_Loop()) {
2061     // Dead code elimination can sometimes delete this projection so
2062     // if it's not there, there's nothing to do.
2063     Node* fallthru = proj_out(0);
2064     if (fallthru != NULL) {
2065       phase->is_IterGVN()->subsume_node(fallthru, in(0));
2066     }
2067     return phase->C->top();
2068   }
2069   return NULL;
2070 }
2071 
2072 #ifndef PRODUCT
2073 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2074   st->print("%s", Name());
2075 }
2076 #endif
2077