1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)chaitin.cpp  1.116 07/09/28 10:23:12 JVM"
   3 #endif
   4 /*
   5  * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 #include "incls/_precompiled.incl"
  29 #include "incls/_chaitin.cpp.incl"
  30 
  31 //=============================================================================
  32 
  33 #ifndef PRODUCT
  34 void LRG::dump( ) const {
  35   ttyLocker ttyl;
  36   tty->print("%d ",num_regs());
  37   _mask.dump();
  38   if( _msize_valid ) {
  39     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
  40     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
  41   } else {
  42     tty->print(", #?(%d) ",_mask.Size());
  43   }
  44 
  45   tty->print("EffDeg: ");
  46   if( _degree_valid ) tty->print( "%d ", _eff_degree );
  47   else tty->print("? ");
  48 
  49   if( is_multidef() ) {
  50     tty->print("MultiDef ");
  51     if (_defs != NULL) {
  52       tty->print("(");
  53       for (int i = 0; i < _defs->length(); i++) {
  54         tty->print("N%d ", _defs->at(i)->_idx);
  55       }
  56       tty->print(") ");
  57     }
  58   }
  59   else if( _def == 0 ) tty->print("Dead ");
  60   else tty->print("Def: N%d ",_def->_idx);
  61 
  62   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
  63   // Flags
  64   if( _is_oop ) tty->print("Oop ");
  65   if( _is_float ) tty->print("Float ");
  66   if( _was_spilled1 ) tty->print("Spilled ");
  67   if( _was_spilled2 ) tty->print("Spilled2 ");
  68   if( _direct_conflict ) tty->print("Direct_conflict ");
  69   if( _fat_proj ) tty->print("Fat ");
  70   if( _was_lo ) tty->print("Lo ");
  71   if( _has_copy ) tty->print("Copy ");
  72   if( _at_risk ) tty->print("Risk ");
  73 
  74   if( _must_spill ) tty->print("Must_spill ");
  75   if( _is_bound ) tty->print("Bound ");
  76   if( _msize_valid ) {
  77     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
  78   }
  79 
  80   tty->cr();
  81 }
  82 #endif
  83 
  84 //------------------------------score------------------------------------------
  85 // Compute score from cost and area.  Low score is best to spill.
  86 static double raw_score( double cost, double area ) {
  87   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
  88 }
  89 
  90 double LRG::score() const {
  91   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
  92   // Bigger area lowers score, encourages spilling this live range.
  93   // Bigger cost raise score, prevents spilling this live range.
  94   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
  95   // to turn a divide by a constant into a multiply by the reciprical).
  96   double score = raw_score( _cost, _area);
  97 
  98   // Account for area.  Basically, LRGs covering large areas are better 
  99   // to spill because more other LRGs get freed up.
 100   if( _area == 0.0 )            // No area?  Then no progress to spill
 101     return 1e35;
 102 
 103   if( _was_spilled2 )           // If spilled once before, we are unlikely
 104     return score + 1e30;        // to make progress again.
 105 
 106   if( _cost >= _area*3.0 )      // Tiny area relative to cost
 107     return score + 1e17;        // Probably no progress to spill
 108 
 109   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
 110     return score + 1e10;        // Likely no progress to spill
 111 
 112   return score;
 113 }
 114 
 115 //------------------------------LRG_List---------------------------------------
 116 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
 117   memset( _lidxs, 0, sizeof(uint)*max );
 118 }
 119 
 120 void LRG_List::extend( uint nidx, uint lidx ) {
 121   _nesting.check();
 122   if( nidx >= _max ) {
 123     uint size = 16; 
 124     while( size <= nidx ) size <<=1;
 125     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
 126     _max = size;
 127   }
 128   while( _cnt <= nidx ) 
 129     _lidxs[_cnt++] = 0;
 130   _lidxs[nidx] = lidx;
 131 }
 132 
 133 #define NUMBUCKS 3
 134 
 135 //------------------------------Chaitin----------------------------------------
 136 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
 137   : PhaseRegAlloc(unique, cfg, matcher,
 138 #ifndef PRODUCT
 139        print_chaitin_statistics
 140 #else
 141        NULL
 142 #endif
 143        ),
 144     _names(unique), _uf_map(unique),
 145     _maxlrg(0), _live(0),
 146     _spilled_once(Thread::current()->resource_area()),
 147     _spilled_twice(Thread::current()->resource_area()),
 148     _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
 149     _oldphi(unique)
 150 #ifndef PRODUCT
 151   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
 152 #endif
 153 {
 154   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
 155   uint i,j;
 156   // Build a list of basic blocks, sorted by frequency
 157   _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
 158   // Experiment with sorting strategies to speed compilation
 159   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
 160   Block **buckets[NUMBUCKS];             // Array of buckets
 161   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
 162   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
 163   for( i = 0; i < NUMBUCKS; i++ ) {
 164     buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
 165     buckcnt[i] = 0;
 166     // Bump by three orders of magnitude each time
 167     cutoff *= 0.001;
 168     buckval[i] = cutoff;
 169     for( j = 0; j < _cfg._num_blocks; j++ ) {
 170       buckets[i][j] = NULL;
 171     }
 172   }
 173   // Sort blocks into buckets
 174   for( i = 0; i < _cfg._num_blocks; i++ ) {
 175     for( j = 0; j < NUMBUCKS; j++ ) {
 176       if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
 177         // Assign block to end of list for appropriate bucket
 178         buckets[j][buckcnt[j]++] = _cfg._blocks[i];
 179         break;                      // kick out of inner loop
 180       }
 181     }
 182   }
 183   // Dump buckets into final block array
 184   uint blkcnt = 0;
 185   for( i = 0; i < NUMBUCKS; i++ ) {
 186     for( j = 0; j < buckcnt[i]; j++ ) {
 187       _blks[blkcnt++] = buckets[i][j];
 188     }
 189   }
 190 
 191   assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
 192 }
 193 
 194 void PhaseChaitin::Register_Allocate() {
 195 
 196   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
 197   // slots in this area are called "arg_slots".  Above the NEW FP (and in
 198   // registers) is the outgoing argument area; above that is the spill/temp
 199   // area.  These are all "frame_slots".  Arg_slots start at the zero
 200   // stack_slots and count up to the known arg_size.  Frame_slots start at
 201   // the stack_slot #arg_size and go up.  After allocation I map stack
 202   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
 203   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
 204 
 205   _trip_cnt = 0;
 206   _alternate = 0;
 207   _matcher._allocation_started = true;
 208 
 209   ResourceArea live_arena;      // Arena for liveness & IFG info
 210   ResourceMark rm(&live_arena);
 211 
 212   // Need live-ness for the IFG; need the IFG for coalescing.  If the
 213   // liveness is JUST for coalescing, then I can get some mileage by renaming
 214   // all copy-related live ranges low and then using the max copy-related
 215   // live range as a cut-off for LIVE and the IFG.  In other words, I can
 216   // build a subset of LIVE and IFG just for copies.
 217   PhaseLive live(_cfg,_names,&live_arena);
 218 
 219   // Need IFG for coalescing and coloring
 220   PhaseIFG ifg( &live_arena );
 221   _ifg = &ifg;
 222 
 223   if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
 224 
 225   // Come out of SSA world to the Named world.  Assign (virtual) registers to
 226   // Nodes.  Use the same register for all inputs and the output of PhiNodes
 227   // - effectively ending SSA form.  This requires either coalescing live
 228   // ranges or inserting copies.  For the moment, we insert "virtual copies"
 229   // - we pretend there is a copy prior to each Phi in predecessor blocks.
 230   // We will attempt to coalesce such "virtual copies" before we manifest
 231   // them for real.
 232   de_ssa();
 233 
 234   {
 235     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 236     _live = NULL;                 // Mark live as being not available
 237     rm.reset_to_mark();           // Reclaim working storage
 238     IndexSet::reset_memory(C, &live_arena);
 239     ifg.init(_maxlrg);            // Empty IFG
 240     gather_lrg_masks( false );    // Collect LRG masks
 241     live.compute( _maxlrg );      // Compute liveness
 242     _live = &live;                // Mark LIVE as being available
 243   }
 244 
 245   // Base pointers are currently "used" by instructions which define new
 246   // derived pointers.  This makes base pointers live up to the where the
 247   // derived pointer is made, but not beyond.  Really, they need to be live
 248   // across any GC point where the derived value is live.  So this code looks
 249   // at all the GC points, and "stretches" the live range of any base pointer
 250   // to the GC point.
 251   if( stretch_base_pointer_live_ranges(&live_arena) ) {
 252     NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
 253     // Since some live range stretched, I need to recompute live
 254     _live = NULL;
 255     rm.reset_to_mark();         // Reclaim working storage
 256     IndexSet::reset_memory(C, &live_arena);
 257     ifg.init(_maxlrg);
 258     gather_lrg_masks( false );
 259     live.compute( _maxlrg );
 260     _live = &live;
 261   }
 262   // Create the interference graph using virtual copies
 263   build_ifg_virtual( );  // Include stack slots this time
 264 
 265   // Aggressive (but pessimistic) copy coalescing.
 266   // This pass works on virtual copies.  Any virtual copies which are not
 267   // coalesced get manifested as actual copies
 268   { 
 269     // The IFG is/was triangular.  I am 'squaring it up' so Union can run 
 270     // faster.  Union requires a 'for all' operation which is slow on the
 271     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
 272     // meaning I can visit all the Nodes neighbors less than a Node in time
 273     // O(# of neighbors), but I have to visit all the Nodes greater than a
 274     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
 275     _ifg->SquareUp();
 276 
 277     PhaseAggressiveCoalesce coalesce( *this ); 
 278     coalesce.coalesce_driver( );
 279     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
 280     // not match the Phi itself, insert a copy.
 281     coalesce.insert_copies(_matcher);
 282   }
 283 
 284   // After aggressive coalesce, attempt a first cut at coloring.
 285   // To color, we need the IFG and for that we need LIVE.
 286   {
 287     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 288     _live = NULL;
 289     rm.reset_to_mark();           // Reclaim working storage
 290     IndexSet::reset_memory(C, &live_arena);
 291     ifg.init(_maxlrg);
 292     gather_lrg_masks( true );
 293     live.compute( _maxlrg );
 294     _live = &live;
 295   }
 296 
 297   // Build physical interference graph
 298   uint must_spill = 0;
 299   must_spill = build_ifg_physical( &live_arena );
 300   // If we have a guaranteed spill, might as well spill now
 301   if( must_spill ) {  
 302     if( !_maxlrg ) return;
 303     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
 304     C->check_node_count(10*must_spill, "out of nodes before split");
 305     if (C->failing())  return;
 306     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
 307     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 308     // or we failed to split
 309     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
 310     if (C->failing())  return;
 311 
 312 #ifdef ASSERT
 313     if( VerifyOpto ) {
 314       _cfg.verify();
 315       verify_base_ptrs(&live_arena);
 316     }
 317 #endif
 318     NOT_PRODUCT( C->verify_graph_edges(); )
 319 
 320     compact();                  // Compact LRGs; return new lower max lrg
 321 
 322     {
 323       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 324       _live = NULL;
 325       rm.reset_to_mark();         // Reclaim working storage
 326       IndexSet::reset_memory(C, &live_arena);
 327       ifg.init(_maxlrg);          // Build a new interference graph
 328       gather_lrg_masks( true );   // Collect intersect mask
 329       live.compute( _maxlrg );    // Compute LIVE
 330       _live = &live;
 331     }
 332     build_ifg_physical( &live_arena );
 333     _ifg->SquareUp();
 334     _ifg->Compute_Effective_Degree();
 335     // Only do conservative coalescing if requested
 336     if( OptoCoalesce ) {
 337       // Conservative (and pessimistic) copy coalescing of those spills
 338       PhaseConservativeCoalesce coalesce( *this );
 339       // If max live ranges greater than cutoff, don't color the stack.
 340       // This cutoff can be larger than below since it is only done once.
 341       coalesce.coalesce_driver( );
 342     }
 343     compress_uf_map_for_nodes();
 344 
 345 #ifdef ASSERT
 346     if( VerifyOpto ) _ifg->verify(this);
 347 #endif
 348   } else {
 349     ifg.SquareUp();
 350     ifg.Compute_Effective_Degree();
 351 #ifdef ASSERT
 352     set_was_low();
 353 #endif
 354   }
 355 
 356   // Prepare for Simplify & Select
 357   cache_lrg_info();           // Count degree of LRGs
 358 
 359   // Simplify the InterFerence Graph by removing LRGs of low degree.
 360   // LRGs of low degree are trivially colorable.
 361   Simplify(); 
 362 
 363   // Select colors by re-inserting LRGs back into the IFG in reverse order.
 364   // Return whether or not something spills.
 365   uint spills = Select( ); 
 366 
 367   // If we spill, split and recycle the entire thing
 368   while( spills ) {
 369     if( _trip_cnt++ > 24 ) {
 370       DEBUG_ONLY( dump_for_spill_split_recycle(); )
 371       if( _trip_cnt > 27 ) {
 372         C->record_method_not_compilable("failed spill-split-recycle sanity check");
 373         return;
 374       }
 375     }
 376   
 377     if( !_maxlrg ) return;
 378     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
 379     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
 380     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
 381     if (C->failing())  return;
 382 #ifdef ASSERT
 383     if( VerifyOpto ) {
 384       _cfg.verify();
 385       verify_base_ptrs(&live_arena);
 386     }
 387 #endif
 388 
 389     compact();                  // Compact LRGs; return new lower max lrg
 390 
 391     // Nuke the live-ness and interference graph and LiveRanGe info
 392     {
 393       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
 394       _live = NULL;
 395       rm.reset_to_mark();         // Reclaim working storage
 396       IndexSet::reset_memory(C, &live_arena);
 397       ifg.init(_maxlrg);
 398 
 399       // Create LiveRanGe array. 
 400       // Intersect register masks for all USEs and DEFs
 401       gather_lrg_masks( true );
 402       live.compute( _maxlrg );
 403       _live = &live;
 404     }
 405     must_spill = build_ifg_physical( &live_arena );
 406     _ifg->SquareUp();
 407     _ifg->Compute_Effective_Degree();
 408 
 409     // Only do conservative coalescing if requested
 410     if( OptoCoalesce ) {
 411       // Conservative (and pessimistic) copy coalescing
 412       PhaseConservativeCoalesce coalesce( *this );
 413       // Check for few live ranges determines how aggressive coalesce is.
 414       coalesce.coalesce_driver( );
 415     }
 416     compress_uf_map_for_nodes();
 417 #ifdef ASSERT
 418     if( VerifyOpto ) _ifg->verify(this);
 419 #endif
 420     cache_lrg_info();           // Count degree of LRGs
 421 
 422     // Simplify the InterFerence Graph by removing LRGs of low degree.
 423     // LRGs of low degree are trivially colorable.
 424     Simplify(); 
 425 
 426     // Select colors by re-inserting LRGs back into the IFG in reverse order.
 427     // Return whether or not something spills.
 428     spills = Select( );
 429   }
 430 
 431   // Count number of Simplify-Select trips per coloring success.
 432   _allocator_attempts += _trip_cnt + 1;
 433   _allocator_successes += 1;
 434 
 435   // Peephole remove copies
 436   post_allocate_copy_removal();
 437 
 438   // max_reg is past the largest *register* used.
 439   // Convert that to a frame_slot number.
 440   if( _max_reg <= _matcher._new_SP ) 
 441     _framesize = C->out_preserve_stack_slots();
 442   else _framesize = _max_reg -_matcher._new_SP;
 443   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
 444 
 445   // This frame must preserve the required fp alignment
 446   _framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
 447   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
 448 #ifndef PRODUCT
 449   _total_framesize += _framesize;
 450   if( (int)_framesize > _max_framesize )
 451     _max_framesize = _framesize;
 452 #endif
 453 
 454   // Convert CISC spills
 455   fixup_spills();
 456 
 457   // Log regalloc results
 458   CompileLog* log = Compile::current()->log();
 459   if (log != NULL) {
 460     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
 461   }
 462 
 463   if (C->failing())  return;
 464 
 465   NOT_PRODUCT( C->verify_graph_edges(); )
 466 
 467   // Move important info out of the live_arena to longer lasting storage.
 468   alloc_node_regs(_names.Size());
 469   for( uint i=0; i < _names.Size(); i++ ) {
 470     if( _names[i] ) {           // Live range associated with Node?
 471       LRG &lrg = lrgs( _names[i] );
 472       if( lrg.num_regs() == 1 ) {
 473         _node_regs[i].set1( lrg.reg() );
 474       } else {                  // Must be a register-pair
 475         if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
 476           // Live ranges record the highest register in their mask.
 477           // We want the low register for the AD file writer's convenience.
 478           _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
 479         } else {                // Misaligned; extract 2 bits
 480           OptoReg::Name hi = lrg.reg(); // Get hi register
 481           lrg.Remove(hi);       // Yank from mask
 482           int lo = lrg.mask().find_first_elem(); // Find lo
 483           _node_regs[i].set_pair( hi, lo );
 484         }
 485       }
 486       if( lrg._is_oop ) _node_oops.set(i);
 487     } else {
 488       _node_regs[i].set_bad();
 489     }
 490   }
 491 
 492   // Done!  
 493   _live = NULL;
 494   _ifg = NULL;
 495   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
 496 }
 497 
 498 //------------------------------de_ssa-----------------------------------------
 499 void PhaseChaitin::de_ssa() {
 500   // Set initial Names for all Nodes.  Most Nodes get the virtual register
 501   // number.  A few get the ZERO live range number.  These do not
 502   // get allocated, but instead rely on correct scheduling to ensure that
 503   // only one instance is simultaneously live at a time.
 504   uint lr_counter = 1;
 505   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 506     Block *b = _cfg._blocks[i];
 507     uint cnt = b->_nodes.size();
 508 
 509     // Handle all the normal Nodes in the block
 510     for( uint j = 0; j < cnt; j++ ) {
 511       Node *n = b->_nodes[j];
 512       // Pre-color to the zero live range, or pick virtual register
 513       const RegMask &rm = n->out_RegMask();
 514       _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
 515     }
 516   }
 517   // Reset the Union-Find mapping to be identity
 518   reset_uf_map(lr_counter);
 519 }
 520 
 521 
 522 //------------------------------gather_lrg_masks-------------------------------
 523 // Gather LiveRanGe information, including register masks.  Modification of
 524 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
 525 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
 526 
 527   // Nail down the frame pointer live range
 528   uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
 529   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
 530 
 531   // For all blocks
 532   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 533     Block *b = _cfg._blocks[i];
 534 
 535     // For all instructions
 536     for( uint j = 1; j < b->_nodes.size(); j++ ) {
 537       Node *n = b->_nodes[j];
 538       uint input_edge_start =1; // Skip control most nodes
 539       if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
 540       uint idx = n->is_Copy();
 541 
 542       // Get virtual register number, same as LiveRanGe index
 543       uint vreg = n2lidx(n);
 544       LRG &lrg = lrgs(vreg);
 545       if( vreg ) {              // No vreg means un-allocable (e.g. memory)
 546 
 547         // Collect has-copy bit
 548         if( idx ) {
 549           lrg._has_copy = 1;
 550           uint clidx = n2lidx(n->in(idx));
 551           LRG &copy_src = lrgs(clidx);
 552           copy_src._has_copy = 1;
 553         }
 554 
 555         // Check for float-vs-int live range (used in register-pressure
 556         // calculations)
 557         const Type *n_type = n->bottom_type();
 558         if( n_type->is_floatingpoint() )
 559           lrg._is_float = 1;
 560 
 561         // Check for twice prior spilling.  Once prior spilling might have
 562         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
 563         // further spilling is unlikely to make progress.
 564         if( _spilled_once.test(n->_idx) ) {
 565           lrg._was_spilled1 = 1;
 566           if( _spilled_twice.test(n->_idx) ) 
 567             lrg._was_spilled2 = 1;
 568         }
 569         
 570 #ifndef PRODUCT
 571         if (trace_spilling() && lrg._def != NULL) {
 572           // collect defs for MultiDef printing
 573           if (lrg._defs == NULL) {
 574             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
 575             lrg._defs->append(lrg._def);
 576           }
 577           lrg._defs->append(n);
 578         }
 579 #endif
 580 
 581         // Check for a single def LRG; these can spill nicely
 582         // via rematerialization.  Flag as NULL for no def found
 583         // yet, or 'n' for single def or -1 for many defs.
 584         lrg._def = lrg._def ? NodeSentinel : n;
 585 
 586         // Limit result register mask to acceptable registers
 587         const RegMask &rm = n->out_RegMask();
 588         lrg.AND( rm );
 589         // Check for bound register masks
 590         const RegMask &lrgmask = lrg.mask();
 591         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
 592           lrg._is_bound = 1;
 593 
 594         // Check for maximum frequency value
 595         if( lrg._maxfreq < b->_freq )
 596           lrg._maxfreq = b->_freq;
 597 
 598         int ireg = n->ideal_reg();
 599         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
 600                 "oops must be in Op_RegP's" );
 601         // Check for oop-iness, or long/double
 602         // Check for multi-kill projection
 603         switch( ireg ) {
 604         case MachProjNode::fat_proj:
 605           // Fat projections have size equal to number of registers killed
 606           lrg.set_num_regs(rm.Size());
 607           lrg.set_reg_pressure(lrg.num_regs());
 608           lrg._fat_proj = 1;
 609           lrg._is_bound = 1;
 610           break;
 611         case Op_RegP:
 612 #ifdef _LP64          
 613           lrg.set_num_regs(2);  // Size is 2 stack words
 614 #else
 615           lrg.set_num_regs(1);  // Size is 1 stack word 
 616 #endif
 617           // Register pressure is tracked relative to the maximum values 
 618           // suggested for that platform, INTPRESSURE and FLOATPRESSURE, 
 619           // and relative to other types which compete for the same regs.
 620           // 
 621           // The following table contains suggested values based on the 
 622           // architectures as defined in each .ad file.
 623           // INTPRESSURE and FLOATPRESSURE may be tuned differently for 
 624           // compile-speed or performance.
 625           // Note1: 
 626           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1 
 627           // since .ad registers are defined as high and low halves. 
 628           // These reg_pressure values remain compatible with the code 
 629           // in is_high_pressure() which relates get_invalid_mask_size(), 
 630           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.  
 631           // Note2: 
 632           // SPARC -d32 has 24 registers available for integral values, 
 633           // but only 10 of these are safe for 64-bit longs.  
 634           // Using set_reg_pressure(2) for both int and long means 
 635           // the allocator will believe it can fit 26 longs into 
 636           // registers.  Using 2 for longs and 1 for ints means the 
 637           // allocator will attempt to put 52 integers into registers.
 638           // The settings below limit this problem to methods with 
 639           // many long values which are being run on 32-bit SPARC.
 640           //        
 641           // ------------------- reg_pressure --------------------
 642           // Each entry is reg_pressure_per_value,number_of_regs
 643           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
 644           // IA32     2     1     1          1    1          6           6
 645           // IA64     1     1     1          1    1         50          41
 646           // SPARC    2     2     2          2    2         48 (24)     52 (26)
 647           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
 648           // AMD64    1     1     1          1    1         14          15
 649           // -----------------------------------------------------
 650 #if defined(SPARC)
 651           lrg.set_reg_pressure(2);  // use for v9 as well
 652 #else
 653           lrg.set_reg_pressure(1);  // normally one value per register
 654 #endif
 655           if( n_type->isa_oop_ptr() ) {
 656             lrg._is_oop = 1;
 657           }
 658           break;
 659         case Op_RegL:           // Check for long or double
 660         case Op_RegD:
 661           lrg.set_num_regs(2);
 662           // Define platform specific register pressure
 663 #ifdef SPARC
 664           lrg.set_reg_pressure(2);
 665 #elif defined(IA32)
 666           if( ireg == Op_RegL ) {
 667             lrg.set_reg_pressure(2);
 668           } else {
 669             lrg.set_reg_pressure(1);
 670           }
 671 #else 
 672           lrg.set_reg_pressure(1);  // normally one value per register
 673 #endif
 674           // If this def of a double forces a mis-aligned double, 
 675           // flag as '_fat_proj' - really flag as allowing misalignment
 676           // AND changes how we count interferences.  A mis-aligned
 677           // double can interfere with TWO aligned pairs, or effectively
 678           // FOUR registers!
 679           if( rm.is_misaligned_Pair() ) {
 680             lrg._fat_proj = 1;
 681             lrg._is_bound = 1;
 682           }
 683           break;
 684         case Op_RegF:
 685         case Op_RegI:
 686         case Op_RegN:
 687         case Op_RegFlags:
 688         case 0:                 // not an ideal register
 689           lrg.set_num_regs(1);
 690 #ifdef SPARC
 691           lrg.set_reg_pressure(2);
 692 #else
 693           lrg.set_reg_pressure(1);
 694 #endif
 695           break;
 696         default:
 697           ShouldNotReachHere();
 698         }
 699       }
 700 
 701       // Now do the same for inputs
 702       uint cnt = n->req();
 703       // Setup for CISC SPILLING
 704       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
 705       if( UseCISCSpill && after_aggressive ) {
 706         inp = n->cisc_operand();
 707         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
 708           // Convert operand number to edge index number
 709           inp = n->as_Mach()->operand_index(inp);
 710       }
 711       // Prepare register mask for each input
 712       for( uint k = input_edge_start; k < cnt; k++ ) {
 713         uint vreg = n2lidx(n->in(k));
 714         if( !vreg ) continue;
 715 
 716         // If this instruction is CISC Spillable, add the flags
 717         // bit to its appropriate input
 718         if( UseCISCSpill && after_aggressive && inp == k ) {
 719 #ifndef PRODUCT
 720           if( TraceCISCSpill ) {
 721             tty->print("  use_cisc_RegMask: ");
 722             n->dump();
 723           }
 724 #endif
 725           n->as_Mach()->use_cisc_RegMask();
 726         }
 727 
 728         LRG &lrg = lrgs(vreg);
 729         // // Testing for floating point code shape
 730         // Node *test = n->in(k);
 731         // if( test->is_Mach() ) {
 732         //   MachNode *m = test->as_Mach();
 733         //   int  op = m->ideal_Opcode();
 734         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
 735         //     int zzz = 1;
 736         //   }
 737         // }
 738 
 739         // Limit result register mask to acceptable registers.
 740         // Do not limit registers from uncommon uses before 
 741         // AggressiveCoalesce.  This effectively pre-virtual-splits 
 742         // around uncommon uses of common defs.
 743         const RegMask &rm = n->in_RegMask(k);
 744         if( !after_aggressive && 
 745           _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
 746           // Since we are BEFORE aggressive coalesce, leave the register
 747           // mask untrimmed by the call.  This encourages more coalescing.
 748           // Later, AFTER aggressive, this live range will have to spill
 749           // but the spiller handles slow-path calls very nicely.
 750         } else {
 751           lrg.AND( rm );
 752         }
 753         // Check for bound register masks
 754         const RegMask &lrgmask = lrg.mask();
 755         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
 756           lrg._is_bound = 1;
 757         // If this use of a double forces a mis-aligned double, 
 758         // flag as '_fat_proj' - really flag as allowing misalignment
 759         // AND changes how we count interferences.  A mis-aligned
 760         // double can interfere with TWO aligned pairs, or effectively
 761         // FOUR registers!
 762         if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
 763           lrg._fat_proj = 1;
 764           lrg._is_bound = 1;
 765         }
 766         // if the LRG is an unaligned pair, we will have to spill
 767         // so clear the LRG's register mask if it is not already spilled
 768         if ( !n->is_SpillCopy() &&
 769                (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
 770                lrgmask.is_misaligned_Pair()) {
 771           lrg.Clear();
 772         }
 773 
 774         // Check for maximum frequency value
 775         if( lrg._maxfreq < b->_freq )
 776           lrg._maxfreq = b->_freq;
 777             
 778       } // End for all allocated inputs
 779     } // end for all instructions
 780   } // end for all blocks
 781 
 782   // Final per-liverange setup
 783   for( uint i2=0; i2<_maxlrg; i2++ ) {
 784     LRG &lrg = lrgs(i2);
 785     if( lrg.num_regs() == 2 && !lrg._fat_proj )
 786       lrg.ClearToPairs();
 787     lrg.compute_set_mask_size();
 788     if( lrg.not_free() ) {      // Handle case where we lose from the start
 789       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
 790       lrg._direct_conflict = 1;
 791     }
 792     lrg.set_degree(0);          // no neighbors in IFG yet
 793   }  
 794 }
 795 
 796 //------------------------------set_was_low------------------------------------
 797 // Set the was-lo-degree bit.  Conservative coalescing should not change the
 798 // colorability of the graph.  If any live range was of low-degree before
 799 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
 800 // The bit is checked in Simplify.
 801 void PhaseChaitin::set_was_low() {
 802 #ifdef ASSERT
 803   for( uint i = 1; i < _maxlrg; i++ ) {
 804     int size = lrgs(i).num_regs();
 805     uint old_was_lo = lrgs(i)._was_lo;
 806     lrgs(i)._was_lo = 0;
 807     if( lrgs(i).lo_degree() ) {
 808       lrgs(i)._was_lo = 1;      // Trivially of low degree
 809     } else {                    // Else check the Brigg's assertion
 810       // Brigg's observation is that the lo-degree neighbors of a 
 811       // hi-degree live range will not interfere with the color choices
 812       // of said hi-degree live range.  The Simplify reverse-stack-coloring
 813       // order takes care of the details.  Hence you do not have to count
 814       // low-degree neighbors when determining if this guy colors.
 815       int briggs_degree = 0;
 816       IndexSet *s = _ifg->neighbors(i);
 817       IndexSetIterator elements(s);
 818       uint lidx;
 819       while((lidx = elements.next()) != 0) {
 820         if( !lrgs(lidx).lo_degree() ) 
 821           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
 822       }
 823       if( briggs_degree < lrgs(i).degrees_of_freedom() ) 
 824         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
 825     }
 826     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
 827   }
 828 #endif
 829 }
 830 
 831 #define REGISTER_CONSTRAINED 16
 832 
 833 //------------------------------cache_lrg_info---------------------------------
 834 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
 835 void PhaseChaitin::cache_lrg_info( ) {
 836 
 837   for( uint i = 1; i < _maxlrg; i++ ) {
 838     LRG &lrg = lrgs(i);
 839 
 840     // Check for being of low degree: means we can be trivially colored.
 841     // Low degree, dead or must-spill guys just get to simplify right away
 842     if( lrg.lo_degree() ||
 843        !lrg.alive() ||
 844         lrg._must_spill ) {
 845       // Split low degree list into those guys that must get a
 846       // register and those that can go to register or stack.
 847       // The idea is LRGs that can go register or stack color first when
 848       // they have a good chance of getting a register.  The register-only
 849       // lo-degree live ranges always get a register.
 850       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
 851       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
 852         lrg._next = _lo_stk_degree;
 853         _lo_stk_degree = i;
 854       } else {
 855         lrg._next = _lo_degree;
 856         _lo_degree = i;
 857       }
 858     } else {                    // Else high degree
 859       lrgs(_hi_degree)._prev = i;
 860       lrg._next = _hi_degree;
 861       lrg._prev = 0;
 862       _hi_degree = i;
 863     }
 864   }
 865 }
 866 
 867 //------------------------------Pre-Simplify-----------------------------------
 868 // Simplify the IFG by removing LRGs of low degree that have NO copies
 869 void PhaseChaitin::Pre_Simplify( ) {
 870 
 871   // Warm up the lo-degree no-copy list
 872   int lo_no_copy = 0;
 873   for( uint i = 1; i < _maxlrg; i++ ) {
 874     if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
 875         !lrgs(i).alive() ||
 876         lrgs(i)._must_spill ) {
 877       lrgs(i)._next = lo_no_copy;
 878       lo_no_copy = i;
 879     }
 880   }
 881 
 882   while( lo_no_copy ) {
 883     uint lo = lo_no_copy;
 884     lo_no_copy = lrgs(lo)._next; 
 885     int size = lrgs(lo).num_regs();
 886 
 887     // Put the simplified guy on the simplified list.
 888     lrgs(lo)._next = _simplified;
 889     _simplified = lo;
 890     
 891     // Yank this guy from the IFG.  
 892     IndexSet *adj = _ifg->remove_node( lo );
 893       
 894     // If any neighbors' degrees fall below their number of
 895     // allowed registers, then put that neighbor on the low degree
 896     // list.  Note that 'degree' can only fall and 'numregs' is
 897     // unchanged by this action.  Thus the two are equal at most once,
 898     // so LRGs hit the lo-degree worklists at most once.
 899     IndexSetIterator elements(adj);
 900     uint neighbor;
 901     while ((neighbor = elements.next()) != 0) {
 902       LRG *n = &lrgs(neighbor);
 903       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
 904 
 905       // Check for just becoming of-low-degree
 906       if( n->just_lo_degree() && !n->_has_copy ) {
 907         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
 908         // Put on lo-degree list
 909         n->_next = lo_no_copy; 
 910         lo_no_copy = neighbor;
 911       } 
 912     }
 913   } // End of while lo-degree no_copy worklist not empty
 914 
 915   // No more lo-degree no-copy live ranges to simplify
 916 }
 917 
 918 //------------------------------Simplify---------------------------------------
 919 // Simplify the IFG by removing LRGs of low degree.
 920 void PhaseChaitin::Simplify( ) {
 921 
 922   while( 1 ) {                  // Repeat till simplified it all
 923     // May want to explore simplifying lo_degree before _lo_stk_degree.
 924     // This might result in more spills coloring into registers during
 925     // Select().
 926     while( _lo_degree || _lo_stk_degree ) {
 927       // If possible, pull from lo_stk first
 928       uint lo;
 929       if( _lo_degree ) {
 930         lo = _lo_degree;
 931         _lo_degree = lrgs(lo)._next;
 932       } else {
 933         lo = _lo_stk_degree;
 934         _lo_stk_degree = lrgs(lo)._next;
 935       }
 936 
 937       // Put the simplified guy on the simplified list.
 938       lrgs(lo)._next = _simplified;
 939       _simplified = lo;
 940       // If this guy is "at risk" then mark his current neighbors
 941       if( lrgs(lo)._at_risk ) {
 942         IndexSetIterator elements(_ifg->neighbors(lo));
 943         uint datum;
 944         while ((datum = elements.next()) != 0) {
 945           lrgs(datum)._risk_bias = lo;
 946         }
 947       }
 948       
 949       // Yank this guy from the IFG.  
 950       IndexSet *adj = _ifg->remove_node( lo );
 951       
 952       // If any neighbors' degrees fall below their number of
 953       // allowed registers, then put that neighbor on the low degree
 954       // list.  Note that 'degree' can only fall and 'numregs' is
 955       // unchanged by this action.  Thus the two are equal at most once,
 956       // so LRGs hit the lo-degree worklist at most once.
 957       IndexSetIterator elements(adj);
 958       uint neighbor;
 959       while ((neighbor = elements.next()) != 0) {
 960         LRG *n = &lrgs(neighbor);
 961 #ifdef ASSERT
 962         if( VerifyOpto ) {
 963           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
 964         }
 965 #endif
 966 
 967         // Check for just becoming of-low-degree just counting registers.
 968         // _must_spill live ranges are already on the low degree list.
 969         if( n->just_lo_degree() && !n->_must_spill ) {
 970           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
 971           // Pull from hi-degree list
 972           uint prev = n->_prev;
 973           uint next = n->_next;
 974           if( prev ) lrgs(prev)._next = next;
 975           else _hi_degree = next;
 976           lrgs(next)._prev = prev;
 977           n->_next = _lo_degree; 
 978           _lo_degree = neighbor;
 979         }
 980       }
 981     } // End of while lo-degree/lo_stk_degree worklist not empty
 982 
 983     // Check for got everything: is hi-degree list empty?
 984     if( !_hi_degree ) break;
 985 
 986     // Time to pick a potential spill guy
 987     uint lo_score = _hi_degree;
 988     double score = lrgs(lo_score).score();
 989     double area = lrgs(lo_score)._area;
 990     
 991     // Find cheapest guy
 992     debug_only( int lo_no_simplify=0; );
 993     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
 994       assert( !(*_ifg->_yanked)[i], "" );
 995       // It's just vaguely possible to move hi-degree to lo-degree without
 996       // going through a just-lo-degree stage: If you remove a double from
 997       // a float live range it's degree will drop by 2 and you can skip the
 998       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
 999       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
1000       if( lrgs(i).lo_degree() ) {
1001         lo_score = i;
1002         break;
1003       }
1004       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
1005       double iscore = lrgs(i).score();
1006       double iarea = lrgs(i)._area;
1007 
1008       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
1009       // wins.  Ties happen because all live ranges in question have spilled
1010       // a few times before and the spill-score adds a huge number which
1011       // washes out the low order bits.  We are choosing the lesser of 2
1012       // evils; in this case pick largest area to spill.
1013       if( iscore < score ||
1014           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) {
1015         lo_score = i;
1016         score = iscore;
1017         area = iarea;
1018       }
1019     }
1020     LRG *lo_lrg = &lrgs(lo_score);
1021     // The live range we choose for spilling is either hi-degree, or very
1022     // rarely it can be low-degree.  If we choose a hi-degree live range
1023     // there better not be any lo-degree choices.
1024     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
1025 
1026     // Pull from hi-degree list
1027     uint prev = lo_lrg->_prev;
1028     uint next = lo_lrg->_next;
1029     if( prev ) lrgs(prev)._next = next;
1030     else _hi_degree = next;
1031     lrgs(next)._prev = prev;
1032     // Jam him on the lo-degree list, despite his high degree.
1033     // Maybe he'll get a color, and maybe he'll spill.
1034     // Only Select() will know.
1035     lrgs(lo_score)._at_risk = true;
1036     _lo_degree = lo_score;
1037     lo_lrg->_next = 0;
1038     
1039   } // End of while not simplified everything
1040 
1041 }
1042 
1043 //------------------------------bias_color-------------------------------------
1044 // Choose a color using the biasing heuristic
1045 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
1046 
1047   // Check for "at_risk" LRG's
1048   uint risk_lrg = Find(lrg._risk_bias);
1049   if( risk_lrg != 0 ) {
1050     // Walk the colored neighbors of the "at_risk" candidate
1051     // Choose a color which is both legal and already taken by a neighbor
1052     // of the "at_risk" candidate in order to improve the chances of the
1053     // "at_risk" candidate of coloring
1054     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
1055     uint datum;
1056     while ((datum = elements.next()) != 0) {
1057       OptoReg::Name reg = lrgs(datum).reg();
1058       // If this LRG's register is legal for us, choose it
1059       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1060           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1061           (lrg.num_regs()==1 || // either size 1
1062            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1063         return reg;
1064     }
1065   }
1066 
1067   uint copy_lrg = Find(lrg._copy_bias);
1068   if( copy_lrg != 0 ) {
1069     // If he has a color,
1070     if( !(*(_ifg->_yanked))[copy_lrg] ) {
1071       OptoReg::Name reg = lrgs(copy_lrg).reg();
1072       //  And it is legal for you,
1073       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
1074           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
1075           (lrg.num_regs()==1 || // either size 1
1076            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
1077         return reg;
1078     } else if( chunk == 0 ) {
1079       // Choose a color which is legal for him
1080       RegMask tempmask = lrg.mask();
1081       tempmask.AND(lrgs(copy_lrg).mask());
1082       OptoReg::Name reg;
1083       if( lrg.num_regs() == 1 ) {
1084         reg = tempmask.find_first_elem();
1085       } else {
1086         tempmask.ClearToPairs();
1087         reg = tempmask.find_first_pair();
1088       }
1089       if( OptoReg::is_valid(reg) )
1090         return reg;
1091     }
1092   }
1093 
1094   // If no bias info exists, just go with the register selection ordering
1095   if( lrg.num_regs() == 2 ) {
1096     // Find an aligned pair
1097     return OptoReg::add(lrg.mask().find_first_pair(),chunk);
1098   } 
1099  
1100   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
1101   // copy removal to remove many more copies, by preventing a just-assigned
1102   // register from being repeatedly assigned.
1103   OptoReg::Name reg = lrg.mask().find_first_elem();
1104   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
1105     // This 'Remove; find; Insert' idiom is an expensive way to find the
1106     // SECOND element in the mask.  
1107     lrg.Remove(reg);
1108     OptoReg::Name reg2 = lrg.mask().find_first_elem();
1109     lrg.Insert(reg);
1110     if( OptoReg::is_reg(reg2))
1111       reg = reg2;
1112   }
1113   return OptoReg::add( reg, chunk );
1114 }
1115 
1116 //------------------------------choose_color-----------------------------------
1117 // Choose a color in the current chunk
1118 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {  
1119   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
1120   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
1121 
1122   if( lrg.num_regs() == 1 ||    // Common Case
1123       !lrg._fat_proj )          // Aligned+adjacent pairs ok
1124     // Use a heuristic to "bias" the color choice
1125     return bias_color(lrg, chunk);
1126 
1127   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
1128 
1129   // Fat-proj case or misaligned double argument. 
1130   assert(lrg.compute_mask_size() == lrg.num_regs() ||
1131          lrg.num_regs() == 2,"fat projs exactly color" );
1132   assert( !chunk, "always color in 1st chunk" );
1133   // Return the highest element in the set.
1134   return lrg.mask().find_last_elem();
1135 }
1136 
1137 //------------------------------Select-----------------------------------------
1138 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
1139 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
1140 // everything going back is guaranteed a color.  Select that color.  If some
1141 // hi-degree LRG cannot get a color then we record that we must spill.
1142 uint PhaseChaitin::Select( ) {
1143   uint spill_reg = LRG::SPILL_REG;
1144   _max_reg = OptoReg::Name(0);  // Past max register used
1145   while( _simplified ) {
1146     // Pull next LRG from the simplified list - in reverse order of removal
1147     uint lidx = _simplified;
1148     LRG *lrg = &lrgs(lidx);
1149     _simplified = lrg->_next;
1150 
1151 
1152 #ifndef PRODUCT
1153     if (trace_spilling()) {
1154       ttyLocker ttyl;
1155       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
1156                     lrg->degrees_of_freedom());
1157       lrg->dump();
1158     }
1159 #endif
1160 
1161     // Re-insert into the IFG
1162     _ifg->re_insert(lidx);
1163     if( !lrg->alive() ) continue;
1164     // capture allstackedness flag before mask is hacked
1165     const int is_allstack = lrg->mask().is_AllStack();
1166 
1167     // Yeah, yeah, yeah, I know, I know.  I can refactor this
1168     // to avoid the GOTO, although the refactored code will not
1169     // be much clearer.  We arrive here IFF we have a stack-based
1170     // live range that cannot color in the current chunk, and it
1171     // has to move into the next free stack chunk.
1172     int chunk = 0;              // Current chunk is first chunk
1173     retry_next_chunk:
1174 
1175     // Remove neighbor colors
1176     IndexSet *s = _ifg->neighbors(lidx);
1177 
1178     debug_only(RegMask orig_mask = lrg->mask();)
1179     IndexSetIterator elements(s);
1180     uint neighbor;
1181     while ((neighbor = elements.next()) != 0) {
1182       // Note that neighbor might be a spill_reg.  In this case, exclusion
1183       // of its color will be a no-op, since the spill_reg chunk is in outer
1184       // space.  Also, if neighbor is in a different chunk, this exclusion
1185       // will be a no-op.  (Later on, if lrg runs out of possible colors in
1186       // its chunk, a new chunk of color may be tried, in which case
1187       // examination of neighbors is started again, at retry_next_chunk.)
1188       LRG &nlrg = lrgs(neighbor);
1189       OptoReg::Name nreg = nlrg.reg();
1190       // Only subtract masks in the same chunk
1191       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
1192 #ifndef PRODUCT
1193         uint size = lrg->mask().Size();
1194         RegMask rm = lrg->mask();
1195 #endif
1196         lrg->SUBTRACT(nlrg.mask());
1197 #ifndef PRODUCT
1198         if (trace_spilling() && lrg->mask().Size() != size) {
1199           ttyLocker ttyl;
1200           tty->print("L%d ", lidx);
1201           rm.dump();
1202           tty->print(" intersected L%d ", neighbor);
1203           nlrg.mask().dump();
1204           tty->print(" removed ");
1205           rm.SUBTRACT(lrg->mask());
1206           rm.dump();
1207           tty->print(" leaving ");
1208           lrg->mask().dump();
1209           tty->cr();
1210         }
1211 #endif
1212       }
1213     }
1214     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
1215     // Aligned pairs need aligned masks
1216     if( lrg->num_regs() == 2 && !lrg->_fat_proj )
1217       lrg->ClearToPairs();
1218 
1219     // Check if a color is available and if so pick the color
1220     OptoReg::Name reg = choose_color( *lrg, chunk );
1221 #ifdef SPARC
1222     debug_only(lrg->compute_set_mask_size());
1223     assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
1224 #endif
1225 
1226     //---------------
1227     // If we fail to color and the AllStack flag is set, trigger
1228     // a chunk-rollover event
1229     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
1230       // Bump register mask up to next stack chunk
1231       chunk += RegMask::CHUNK_SIZE;
1232       lrg->Set_All();
1233       
1234       goto retry_next_chunk;
1235     }
1236 
1237     //---------------
1238     // Did we get a color?
1239     else if( OptoReg::is_valid(reg)) {
1240 #ifndef PRODUCT
1241       RegMask avail_rm = lrg->mask();
1242 #endif
1243 
1244       // Record selected register
1245       lrg->set_reg(reg);
1246 
1247       if( reg >= _max_reg )     // Compute max register limit
1248         _max_reg = OptoReg::add(reg,1);
1249       // Fold reg back into normal space
1250       reg = OptoReg::add(reg,-chunk);
1251 
1252       // If the live range is not bound, then we actually had some choices
1253       // to make.  In this case, the mask has more bits in it than the colors
1254       // choosen.  Restrict the mask to just what was picked.
1255       if( lrg->num_regs() == 1 ) { // Size 1 live range
1256         lrg->Clear();           // Clear the mask
1257         lrg->Insert(reg);       // Set regmask to match selected reg
1258         lrg->set_mask_size(1);
1259       } else if( !lrg->_fat_proj ) {
1260         // For pairs, also insert the low bit of the pair
1261         assert( lrg->num_regs() == 2, "unbound fatproj???" );
1262         lrg->Clear();           // Clear the mask
1263         lrg->Insert(reg);       // Set regmask to match selected reg
1264         lrg->Insert(OptoReg::add(reg,-1));
1265         lrg->set_mask_size(2);
1266       } else {                  // Else fatproj
1267         // mask must be equal to fatproj bits, by definition
1268       }
1269 #ifndef PRODUCT
1270       if (trace_spilling()) {
1271         ttyLocker ttyl;
1272         tty->print("L%d selected ", lidx);
1273         lrg->mask().dump();
1274         tty->print(" from ");
1275         avail_rm.dump();
1276         tty->cr();
1277       }
1278 #endif
1279       // Note that reg is the highest-numbered register in the newly-bound mask.
1280     } // end color available case
1281 
1282     //---------------
1283     // Live range is live and no colors available
1284     else {   
1285       assert( lrg->alive(), "" );
1286       assert( !lrg->_fat_proj || lrg->is_multidef() ||
1287               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
1288       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
1289 
1290       // Assign the special spillreg register
1291       lrg->set_reg(OptoReg::Name(spill_reg++));
1292       // Do not empty the regmask; leave mask_size lying around
1293       // for use during Spilling
1294 #ifndef PRODUCT
1295       if( trace_spilling() ) {
1296         ttyLocker ttyl;
1297         tty->print("L%d spilling with neighbors: ", lidx);
1298         s->dump();
1299         debug_only(tty->print(" original mask: "));
1300         debug_only(orig_mask.dump());
1301         dump_lrg(lidx);
1302       }
1303 #endif
1304     } // end spill case
1305 
1306   }
1307 
1308   return spill_reg-LRG::SPILL_REG;      // Return number of spills
1309 }
1310 
1311 
1312 //------------------------------copy_was_spilled-------------------------------
1313 // Copy 'was_spilled'-edness from the source Node to the dst Node.
1314 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
1315   if( _spilled_once.test(src->_idx) ) {
1316     _spilled_once.set(dst->_idx);
1317     lrgs(Find(dst))._was_spilled1 = 1;
1318     if( _spilled_twice.test(src->_idx) ) {
1319       _spilled_twice.set(dst->_idx);
1320       lrgs(Find(dst))._was_spilled2 = 1;
1321     }
1322   }
1323 }
1324 
1325 //------------------------------set_was_spilled--------------------------------
1326 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
1327 void PhaseChaitin::set_was_spilled( Node *n ) {
1328   if( _spilled_once.test_set(n->_idx) )
1329     _spilled_twice.set(n->_idx);
1330 }
1331 
1332 //------------------------------fixup_spills-----------------------------------
1333 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
1334 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
1335 void PhaseChaitin::fixup_spills() {
1336   // This function does only cisc spill work.
1337   if( !UseCISCSpill ) return;
1338 
1339   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
1340 
1341   // Grab the Frame Pointer
1342   Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
1343 
1344   // For all blocks
1345   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1346     Block *b = _cfg._blocks[i];
1347 
1348     // For all instructions in block
1349     uint last_inst = b->end_idx();
1350     for( uint j = 1; j <= last_inst; j++ ) {
1351       Node *n = b->_nodes[j];
1352 
1353       // Dead instruction???
1354       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
1355               C->top() == n ||  // Or the random TOP node
1356               n->is_Proj(),     // Or a fat-proj kill node
1357               "No dead instructions after post-alloc" );
1358 
1359       int inp = n->cisc_operand();
1360       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
1361         // Convert operand number to edge index number
1362         MachNode *mach = n->as_Mach();
1363         inp = mach->operand_index(inp);
1364         Node *src = n->in(inp);   // Value to load or store
1365         LRG &lrg_cisc = lrgs( Find_const(src) );
1366         OptoReg::Name src_reg = lrg_cisc.reg();
1367         // Doubles record the HIGH register of an adjacent pair.
1368         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
1369         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
1370           // This is a CISC Spill, get stack offset and construct new node
1371 #ifndef PRODUCT
1372           if( TraceCISCSpill ) {
1373             tty->print("    reg-instr:  ");
1374             n->dump();
1375           }
1376 #endif
1377           int stk_offset = reg2offset(src_reg);
1378           // Bailout if we might exceed node limit when spilling this instruction
1379           C->check_node_count(0, "out of nodes fixing spills");
1380           if (C->failing())  return;
1381           // Transform node
1382           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
1383           cisc->set_req(inp,fp);          // Base register is frame pointer
1384           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
1385             assert( cisc->oper_input_base() == 2, "Only adding one edge");
1386             cisc->ins_req(1,src);         // Requires a memory edge
1387           }
1388           b->_nodes.map(j,cisc);          // Insert into basic block
1389           n->subsume_by(cisc); // Correct graph
1390           //
1391           ++_used_cisc_instructions;
1392 #ifndef PRODUCT
1393           if( TraceCISCSpill ) {
1394             tty->print("    cisc-instr: ");
1395             cisc->dump();
1396           }
1397 #endif
1398         } else {
1399 #ifndef PRODUCT
1400           if( TraceCISCSpill ) {
1401             tty->print("    using reg-instr: ");
1402             n->dump();
1403           }
1404 #endif
1405           ++_unused_cisc_instructions;    // input can be on stack
1406         }
1407       }
1408       
1409     } // End of for all instructions
1410 
1411   } // End of for all blocks
1412 }
1413 
1414 //------------------------------find_base_for_derived--------------------------
1415 // Helper to stretch above; recursively discover the base Node for a
1416 // given derived Node.  Easy for AddP-related machine nodes, but needs
1417 // to be recursive for derived Phis.
1418 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
1419   // See if already computed; if so return it
1420   if( derived_base_map[derived->_idx] )
1421     return derived_base_map[derived->_idx];
1422 
1423   // See if this happens to be a base.  
1424   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
1425   // pointers derived from NULL!  These are always along paths that
1426   // can't happen at run-time but the optimizer cannot deduce it so
1427   // we have to handle it gracefully.
1428   const TypePtr *tj = derived->bottom_type()->isa_ptr();
1429   // If its an OOP with a non-zero offset, then it is derived.
1430   if( tj->_offset == 0 ) {
1431     derived_base_map[derived->_idx] = derived;
1432     return derived;
1433   }
1434   // Derived is NULL+offset?  Base is NULL!
1435   if( derived->is_Con() ) {
1436     Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR );
1437     uint no_lidx = 0;  // an unmatched constant in debug info has no LRG
1438     _names.extend(base->_idx, no_lidx);
1439     derived_base_map[derived->_idx] = base;
1440     return base;
1441   }
1442 
1443   // Check for AddP-related opcodes
1444   if( !derived->is_Phi() ) {
1445     assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
1446     Node *base = derived->in(AddPNode::Base);
1447     derived_base_map[derived->_idx] = base;
1448     return base;
1449   }
1450 
1451   // Recursively find bases for Phis.
1452   // First check to see if we can avoid a base Phi here.
1453   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
1454   uint i;
1455   for( i = 2; i < derived->req(); i++ )
1456     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
1457       break;
1458   // Went to the end without finding any different bases?
1459   if( i == derived->req() ) {   // No need for a base Phi here
1460     derived_base_map[derived->_idx] = base;
1461     return base;
1462   }
1463 
1464   // Now we see we need a base-Phi here to merge the bases
1465   base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() );
1466   for( i = 1; i < derived->req(); i++ )
1467     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
1468 
1469   // Search the current block for an existing base-Phi
1470   Block *b = _cfg._bbs[derived->_idx];
1471   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
1472     Node *phi = b->_nodes[i];
1473     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
1474       b->_nodes.insert( i, base ); // Must insert created Phi here as base
1475       _cfg._bbs.map( base->_idx, b );
1476       new_lrg(base,maxlrg++);
1477       break;
1478     }
1479     // See if Phi matches.
1480     uint j;
1481     for( j = 1; j < base->req(); j++ )
1482       if( phi->in(j) != base->in(j) &&
1483           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
1484         break;
1485     if( j == base->req() ) {    // All inputs match?
1486       base = phi;               // Then use existing 'phi' and drop 'base'
1487       break;
1488     }
1489   }
1490 
1491 
1492   // Cache info for later passes
1493   derived_base_map[derived->_idx] = base;
1494   return base;
1495 }
1496 
1497 
1498 //------------------------------stretch_base_pointer_live_ranges---------------
1499 // At each Safepoint, insert extra debug edges for each pair of derived value/
1500 // base pointer that is live across the Safepoint for oopmap building.  The
1501 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
1502 // required edge set.
1503 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
1504   int must_recompute_live = false;
1505   uint maxlrg = _maxlrg;
1506   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
1507   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
1508 
1509   // For all blocks in RPO do...
1510   for( uint i=0; i<_cfg._num_blocks; i++ ) {
1511     Block *b = _cfg._blocks[i];
1512     // Note use of deep-copy constructor.  I cannot hammer the original 
1513     // liveout bits, because they are needed by the following coalesce pass.
1514     IndexSet liveout(_live->live(b));
1515 
1516     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
1517       Node *n = b->_nodes[j-1];
1518 
1519       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
1520       // like to see in the same register.  Compare uses the loop-phi and so
1521       // extends its live range BUT cannot be part of the cycle.  If this
1522       // extended live range overlaps with the update of the loop-phi value
1523       // we need both alive at the same time -- which requires at least 1
1524       // copy.  But because Intel has only 2-address registers we end up with
1525       // at least 2 copies, one before the loop-phi update instruction and
1526       // one after.  Instead we split the input to the compare just after the
1527       // phi.
1528       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
1529         Node *phi = n->in(1);
1530         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
1531           Block *phi_block = _cfg._bbs[phi->_idx];
1532           if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
1533             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
1534             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
1535             insert_proj( phi_block, 1, spill, maxlrg++ );
1536             n->set_req(1,spill);
1537             must_recompute_live = true;
1538           }
1539         }
1540       }
1541 
1542       // Get value being defined
1543       uint lidx = n2lidx(n);
1544       if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
1545         // Remove from live-out set
1546         liveout.remove(lidx);
1547 
1548         // Copies do not define a new value and so do not interfere.
1549         // Remove the copies source from the liveout set before interfering.
1550         uint idx = n->is_Copy();
1551         if( idx ) liveout.remove( n2lidx(n->in(idx)) );
1552       }
1553 
1554       // Found a safepoint?
1555       JVMState *jvms = n->jvms();
1556       if( jvms ) {
1557         // Now scan for a live derived pointer
1558         IndexSetIterator elements(&liveout);
1559         uint neighbor;
1560         while ((neighbor = elements.next()) != 0) {
1561           // Find reaching DEF for base and derived values
1562           // This works because we are still in SSA during this call.
1563           Node *derived = lrgs(neighbor)._def;
1564           const TypePtr *tj = derived->bottom_type()->isa_ptr();
1565           // If its an OOP with a non-zero offset, then it is derived.
1566           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
1567             Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
1568             assert( base->_idx < _names.Size(), "" );
1569             // Add reaching DEFs of derived pointer and base pointer as a
1570             // pair of inputs
1571             n->add_req( derived );
1572             n->add_req( base );
1573           
1574             // See if the base pointer is already live to this point.
1575             // Since I'm working on the SSA form, live-ness amounts to
1576             // reaching def's.  So if I find the base's live range then
1577             // I know the base's def reaches here.
1578             if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
1579                  !liveout.member( n2lidx(base) ) ) && // not live) AND
1580                  (n2lidx(base) > 0)                && // not a constant
1581                  _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
1582               // Base pointer is not currently live.  Since I stretched
1583               // the base pointer to here and it crosses basic-block
1584               // boundaries, the global live info is now incorrect.
1585               // Recompute live.
1586               must_recompute_live = true;
1587             } // End of if base pointer is not live to debug info
1588           }
1589         } // End of scan all live data for derived ptrs crossing GC point
1590       } // End of if found a GC point
1591 
1592       // Make all inputs live
1593       if( !n->is_Phi() ) {      // Phi function uses come from prior block
1594         for( uint k = 1; k < n->req(); k++ ) {
1595           uint lidx = n2lidx(n->in(k));
1596           if( lidx < _maxlrg )
1597             liveout.insert( lidx );
1598         }
1599       }
1600 
1601     } // End of forall instructions in block
1602     liveout.clear();  // Free the memory used by liveout.
1603 
1604   } // End of forall blocks
1605   _maxlrg = maxlrg;  
1606 
1607   // If I created a new live range I need to recompute live
1608   if( maxlrg != _ifg->_maxlrg )
1609     must_recompute_live = true;
1610 
1611   return must_recompute_live != 0;
1612 }
1613 
1614 
1615 //------------------------------add_reference----------------------------------
1616 // Extend the node to LRG mapping
1617 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
1618   _names.extend( node->_idx, n2lidx(old_node) );
1619 }
1620 
1621 //------------------------------dump-------------------------------------------
1622 #ifndef PRODUCT
1623 void PhaseChaitin::dump( const Node *n ) const {
1624   uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
1625   tty->print("L%d",r);
1626   if( r && n->Opcode() != Op_Phi ) {
1627     if( _node_regs ) {          // Got a post-allocation copy of allocation?
1628       tty->print("[");
1629       OptoReg::Name second = get_reg_second(n);
1630       if( OptoReg::is_valid(second) ) {
1631         if( OptoReg::is_reg(second) )
1632           tty->print("%s:",Matcher::regName[second]);
1633         else
1634           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
1635       }
1636       OptoReg::Name first = get_reg_first(n);
1637       if( OptoReg::is_reg(first) )
1638         tty->print("%s]",Matcher::regName[first]);
1639       else
1640          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
1641     } else
1642     n->out_RegMask().dump();
1643   }
1644   tty->print("/N%d\t",n->_idx);
1645   tty->print("%s === ", n->Name());
1646   uint k;
1647   for( k = 0; k < n->req(); k++) {
1648     Node *m = n->in(k);
1649     if( !m ) tty->print("_ ");
1650     else {
1651       uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1652       tty->print("L%d",r);
1653       // Data MultiNode's can have projections with no real registers.
1654       // Don't die while dumping them.
1655       int op = n->Opcode();
1656       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
1657         if( _node_regs ) {
1658           tty->print("[");
1659           OptoReg::Name second = get_reg_second(n->in(k));
1660           if( OptoReg::is_valid(second) ) {
1661             if( OptoReg::is_reg(second) )
1662               tty->print("%s:",Matcher::regName[second]);
1663             else
1664               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
1665                          reg2offset_unchecked(second));
1666           }
1667           OptoReg::Name first = get_reg_first(n->in(k));
1668           if( OptoReg::is_reg(first) )
1669             tty->print("%s]",Matcher::regName[first]);
1670           else
1671             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
1672                        reg2offset_unchecked(first));
1673         } else
1674           n->in_RegMask(k).dump();
1675       }
1676       tty->print("/N%d ",m->_idx);
1677     }
1678   }
1679   if( k < n->len() && n->in(k) ) tty->print("| ");
1680   for( ; k < n->len(); k++ ) {
1681     Node *m = n->in(k);
1682     if( !m ) break;
1683     uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
1684     tty->print("L%d",r);
1685     tty->print("/N%d ",m->_idx);
1686   }
1687   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
1688   else n->dump_spec(tty);
1689   if( _spilled_once.test(n->_idx ) ) {
1690     tty->print(" Spill_1");
1691     if( _spilled_twice.test(n->_idx ) ) 
1692       tty->print(" Spill_2");
1693   }
1694   tty->print("\n");
1695 }
1696 
1697 void PhaseChaitin::dump( const Block * b ) const {
1698   b->dump_head( &_cfg._bbs );
1699   
1700   // For all instructions
1701   for( uint j = 0; j < b->_nodes.size(); j++ ) 
1702     dump(b->_nodes[j]);
1703   // Print live-out info at end of block
1704   if( _live ) {
1705     tty->print("Liveout: ");
1706     IndexSet *live = _live->live(b);
1707     IndexSetIterator elements(live);
1708     tty->print("{");
1709     uint i;
1710     while ((i = elements.next()) != 0) {
1711       tty->print("L%d ", Find_const(i));
1712     }
1713     tty->print_cr("}");
1714   }
1715   tty->print("\n");
1716 }
1717 
1718 void PhaseChaitin::dump() const {
1719   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
1720               _matcher._new_SP, _framesize );
1721 
1722   // For all blocks
1723   for( uint i = 0; i < _cfg._num_blocks; i++ ) 
1724     dump(_cfg._blocks[i]);
1725   // End of per-block dump
1726   tty->print("\n");
1727 
1728   if (!_ifg) {
1729     tty->print("(No IFG.)\n");
1730     return;
1731   }
1732 
1733   // Dump LRG array
1734   tty->print("--- Live RanGe Array ---\n");
1735   for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
1736     tty->print("L%d: ",i2);
1737     if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
1738     else tty->print("new LRG");
1739   }  
1740   tty->print_cr("");
1741 
1742   // Dump lo-degree list
1743   tty->print("Lo degree: ");
1744   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
1745     tty->print("L%d ",i3);
1746   tty->print_cr("");
1747 
1748   // Dump lo-stk-degree list
1749   tty->print("Lo stk degree: ");
1750   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
1751     tty->print("L%d ",i4);
1752   tty->print_cr("");
1753 
1754   // Dump lo-degree list
1755   tty->print("Hi degree: ");
1756   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
1757     tty->print("L%d ",i5);
1758   tty->print_cr("");
1759 }
1760 
1761 //------------------------------dump_degree_lists------------------------------
1762 void PhaseChaitin::dump_degree_lists() const {
1763   // Dump lo-degree list
1764   tty->print("Lo degree: ");
1765   for( uint i = _lo_degree; i; i = lrgs(i)._next )
1766     tty->print("L%d ",i);
1767   tty->print_cr("");
1768 
1769   // Dump lo-stk-degree list
1770   tty->print("Lo stk degree: ");
1771   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
1772     tty->print("L%d ",i2);
1773   tty->print_cr("");
1774 
1775   // Dump lo-degree list
1776   tty->print("Hi degree: ");
1777   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
1778     tty->print("L%d ",i3);
1779   tty->print_cr("");  
1780 }
1781 
1782 //------------------------------dump_simplified--------------------------------
1783 void PhaseChaitin::dump_simplified() const {
1784   tty->print("Simplified: ");
1785   for( uint i = _simplified; i; i = lrgs(i)._next )
1786     tty->print("L%d ",i);
1787   tty->print_cr("");
1788 }
1789 
1790 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
1791   if ((int)reg < 0)
1792     sprintf(buf, "<OptoReg::%d>", (int)reg);
1793   else if (OptoReg::is_reg(reg))
1794     strcpy(buf, Matcher::regName[reg]);
1795   else
1796     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
1797             pc->reg2offset(reg));
1798   return buf+strlen(buf);
1799 }
1800 
1801 //------------------------------dump_register----------------------------------
1802 // Dump a register name into a buffer.  Be intelligent if we get called
1803 // before allocation is complete.
1804 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
1805   if( !this ) {                 // Not got anything?
1806     sprintf(buf,"N%d",n->_idx); // Then use Node index
1807   } else if( _node_regs ) {
1808     // Post allocation, use direct mappings, no LRG info available
1809     print_reg( get_reg_first(n), this, buf );
1810   } else {
1811     uint lidx = Find_const(n); // Grab LRG number
1812     if( !_ifg ) {
1813       sprintf(buf,"L%d",lidx);  // No register binding yet
1814     } else if( !lidx ) {        // Special, not allocated value
1815       strcpy(buf,"Special");
1816     } else if( (lrgs(lidx).num_regs() == 1) 
1817                 ? !lrgs(lidx).mask().is_bound1()
1818                 : !lrgs(lidx).mask().is_bound2() ) {
1819       sprintf(buf,"L%d",lidx); // No register binding yet
1820     } else {                    // Hah!  We have a bound machine register
1821       print_reg( lrgs(lidx).reg(), this, buf );
1822     }
1823   }
1824   return buf+strlen(buf);
1825 }
1826 
1827 //----------------------dump_for_spill_split_recycle--------------------------
1828 void PhaseChaitin::dump_for_spill_split_recycle() const {
1829   if( WizardMode && (PrintCompilation || PrintOpto) ) {
1830     // Display which live ranges need to be split and the allocator's state
1831     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
1832     for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
1833       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
1834         tty->print("L%d: ", bidx);
1835         lrgs(bidx).dump();
1836       }
1837     }
1838     tty->cr();
1839     dump();
1840   }
1841 }
1842 
1843 //------------------------------dump_frame------------------------------------
1844 void PhaseChaitin::dump_frame() const {
1845   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
1846   const TypeTuple *domain = C->tf()->domain();
1847   const int        argcnt = domain->cnt() - TypeFunc::Parms;
1848 
1849   // Incoming arguments in registers dump
1850   for( int k = 0; k < argcnt; k++ ) {
1851     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
1852     if( OptoReg::is_reg(parmreg))  {
1853       const char *reg_name = OptoReg::regname(parmreg);
1854       tty->print("#r%3.3d %s", parmreg, reg_name);
1855       parmreg = _matcher._parm_regs[k].second();
1856       if( OptoReg::is_reg(parmreg))  {
1857         tty->print(":%s", OptoReg::regname(parmreg));
1858       }
1859       tty->print("   : parm %d: ", k);
1860       domain->field_at(k + TypeFunc::Parms)->dump();
1861       tty->print_cr("");
1862     }
1863   }
1864 
1865   // Check for un-owned padding above incoming args
1866   OptoReg::Name reg = _matcher._new_SP;
1867   if( reg > _matcher._in_arg_limit ) {
1868     reg = OptoReg::add(reg, -1);
1869     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
1870   }
1871 
1872   // Incoming argument area dump
1873   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
1874   while( reg > begin_in_arg ) {
1875     reg = OptoReg::add(reg, -1);
1876     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1877     int j;
1878     for( j = 0; j < argcnt; j++) {
1879       if( _matcher._parm_regs[j].first() == reg ||
1880           _matcher._parm_regs[j].second() == reg ) {
1881         tty->print("parm %d: ",j);
1882         domain->field_at(j + TypeFunc::Parms)->dump();
1883         tty->print_cr("");
1884         break;
1885       }
1886     }
1887     if( j >= argcnt ) 
1888       tty->print_cr("HOLE, owned by SELF");
1889   }
1890 
1891   // Old outgoing preserve area
1892   while( reg > _matcher._old_SP ) {
1893     reg = OptoReg::add(reg, -1);
1894     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
1895   }
1896 
1897   // Old SP
1898   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
1899     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
1900 
1901   // Preserve area dump
1902   reg = OptoReg::add(reg, -1);
1903   while( OptoReg::is_stack(reg)) {
1904     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
1905     if( _matcher.return_addr() == reg )
1906       tty->print_cr("return address");
1907     else if( _matcher.return_addr() == OptoReg::add(reg,1) && 
1908              VerifyStackAtCalls )
1909       tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
1910     else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
1911       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
1912     else
1913       tty->print_cr("pad2, in_preserve");
1914     reg = OptoReg::add(reg, -1);
1915   }
1916 
1917   // Spill area dump
1918   reg = OptoReg::add(_matcher._new_SP, _framesize );
1919   while( reg > _matcher._out_arg_limit ) {
1920     reg = OptoReg::add(reg, -1);
1921     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
1922   }
1923 
1924   // Outgoing argument area dump
1925   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
1926     reg = OptoReg::add(reg, -1);
1927     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
1928   }
1929 
1930   // Outgoing new preserve area
1931   while( reg > _matcher._new_SP ) {
1932     reg = OptoReg::add(reg, -1);
1933     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
1934   }
1935   tty->print_cr("#");
1936 }
1937 
1938 //------------------------------dump_bb----------------------------------------
1939 void PhaseChaitin::dump_bb( uint pre_order ) const {
1940   tty->print_cr("---dump of B%d---",pre_order);
1941   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1942     Block *b = _cfg._blocks[i];
1943     if( b->_pre_order == pre_order )
1944       dump(b);
1945   }
1946 }
1947 
1948 //------------------------------dump_lrg---------------------------------------
1949 void PhaseChaitin::dump_lrg( uint lidx ) const {
1950   tty->print_cr("---dump of L%d---",lidx);
1951 
1952   if( _ifg ) {
1953     if( lidx >= _maxlrg ) {
1954       tty->print("Attempt to print live range index beyond max live range.\n");
1955       return;
1956     }
1957     tty->print("L%d: ",lidx);
1958     lrgs(lidx).dump( );
1959   }
1960   if( _ifg ) {    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
1961     _ifg->neighbors(lidx)->dump();
1962     tty->cr();
1963   }
1964   // For all blocks
1965   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
1966     Block *b = _cfg._blocks[i];
1967     int dump_once = 0;
1968 
1969     // For all instructions
1970     for( uint j = 0; j < b->_nodes.size(); j++ ) {
1971       Node *n = b->_nodes[j];
1972       if( Find_const(n) == lidx ) {
1973         if( !dump_once++ ) {
1974           tty->cr();
1975           b->dump_head( &_cfg._bbs );
1976         }
1977         dump(n);
1978         continue;
1979       }
1980       uint cnt = n->req();
1981       for( uint k = 1; k < cnt; k++ ) {
1982         Node *m = n->in(k);
1983         if (!m)  continue;  // be robust in the dumper
1984         if( Find_const(m) == lidx ) {
1985           if( !dump_once++ ) {
1986             tty->cr();
1987             b->dump_head( &_cfg._bbs );
1988           }
1989           dump(n);
1990         }
1991       }
1992     }
1993   } // End of per-block dump
1994   tty->cr();
1995 }
1996 #endif // not PRODUCT
1997 
1998 //------------------------------print_chaitin_statistics-------------------------------
1999 int PhaseChaitin::_final_loads  = 0; 
2000 int PhaseChaitin::_final_stores = 0; 
2001 int PhaseChaitin::_final_memoves= 0; 
2002 int PhaseChaitin::_final_copies = 0; 
2003 double PhaseChaitin::_final_load_cost  = 0; 
2004 double PhaseChaitin::_final_store_cost = 0; 
2005 double PhaseChaitin::_final_memove_cost= 0; 
2006 double PhaseChaitin::_final_copy_cost  = 0; 
2007 int PhaseChaitin::_conserv_coalesce = 0;
2008 int PhaseChaitin::_conserv_coalesce_pair = 0;
2009 int PhaseChaitin::_conserv_coalesce_trie = 0;
2010 int PhaseChaitin::_conserv_coalesce_quad = 0;
2011 int PhaseChaitin::_post_alloc = 0;
2012 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
2013 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
2014 int PhaseChaitin::_used_cisc_instructions   = 0;
2015 int PhaseChaitin::_unused_cisc_instructions = 0;
2016 int PhaseChaitin::_allocator_attempts       = 0;
2017 int PhaseChaitin::_allocator_successes      = 0;
2018 
2019 #ifndef PRODUCT
2020 uint PhaseChaitin::_high_pressure           = 0;
2021 uint PhaseChaitin::_low_pressure            = 0;
2022 
2023 void PhaseChaitin::print_chaitin_statistics() {
2024   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
2025   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
2026   tty->print_cr("Adjusted spill cost = %7.0f.", 
2027                 _final_load_cost*4.0 + _final_store_cost  * 2.0 + 
2028                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
2029   tty->print("Conservatively coalesced %d copies, %d pairs", 
2030                 _conserv_coalesce, _conserv_coalesce_pair);
2031   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
2032     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
2033   tty->print_cr(", %d post alloc.", _post_alloc);
2034   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
2035     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
2036                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
2037   if( _used_cisc_instructions || _unused_cisc_instructions )
2038     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
2039                    _used_cisc_instructions, _unused_cisc_instructions);
2040   if( _allocator_successes != 0 )
2041     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
2042   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
2043 }
2044 #endif // not PRODUCT