1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)divnode.cpp  1.88 07/05/05 17:06:13 JVM"
   3 #endif
   4 /*
   5  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // Portions of code courtesy of Clifford Click
  29 
  30 // Optimization - Graph Style
  31 
  32 #include "incls/_precompiled.incl"
  33 #include "incls/_divnode.cpp.incl"
  34 #include <math.h>
  35 
  36 // Implement the integer constant divide -> long multiply transform found in
  37 //   "Division by Invariant Integers using Multiplication"
  38 //     by Granlund and Montgomery
  39 static Node *transform_int_divide_to_long_multiply( PhaseGVN *phase, Node *dividend, int divisor ) {
  40 
  41   // Check for invalid divisors
  42   assert( divisor != 0 && divisor != min_jint && divisor != 1,
  43     "bad divisor for transforming to long multiply" );
  44 
  45   // Compute l = ceiling(log2(d))
  46   //   presumes d is more likely small
  47   bool d_pos = divisor >= 0;
  48   int d = d_pos ? divisor : -divisor;
  49   unsigned ud = (unsigned)d;
  50   const int N = 32;
  51   int l = log2_intptr(d-1)+1;
  52   int sh_post = l;
  53 
  54   const uint64_t U1 = (uint64_t)1;
  55 
  56   // Cliff pointed out how to prevent overflow (from the paper)
  57   uint64_t m_low  =  (((U1 << l) - ud) << N)                  / ud + (U1 << N);
  58   uint64_t m_high = ((((U1 << l) - ud) << N) + (U1 << (l+1))) / ud + (U1 << N);
  59 
  60   // Reduce to lowest terms
  61   for ( ; sh_post > 0; sh_post-- ) {
  62     uint64_t m_low_1  = m_low  >> 1;
  63     uint64_t m_high_1 = m_high >> 1;
  64     if ( m_low_1 >= m_high_1 )
  65       break;
  66     m_low  = m_low_1;
  67     m_high = m_high_1;
  68   }
  69 
  70   // Result
  71   Node *q;
  72 
  73   // division by +/- 1
  74   if (d == 1) {
  75     // Filtered out as identity above
  76     if (d_pos)
  77       return NULL;
  78 
  79     // Just negate the value
  80     else {
  81       q = new (phase->C, 3) SubINode(phase->intcon(0), dividend);
  82     }
  83   }
  84 
  85   // division by +/- a power of 2
  86   else if ( is_power_of_2(d) ) {
  87 
  88     // See if we can simply do a shift without rounding
  89     bool needs_rounding = true;
  90     const Type *dt = phase->type(dividend);
  91     const TypeInt *dti = dt->isa_int();
  92   
  93     // we don't need to round a positive dividend
  94     if (dti && dti->_lo >= 0)
  95       needs_rounding = false;
  96 
  97     // An AND mask of sufficient size clears the low bits and
  98     // I can avoid rounding.
  99     else if( dividend->Opcode() == Op_AndI ) {
 100       const TypeInt *andconi = phase->type( dividend->in(2) )->isa_int();
 101       if( andconi && andconi->is_con(-d) ) {
 102         dividend = dividend->in(1);
 103         needs_rounding = false;
 104       }
 105     }
 106 
 107     // Add rounding to the shift to handle the sign bit
 108     if( needs_rounding ) {
 109       Node *t1 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(l - 1)));
 110       Node *t2 = phase->transform(new (phase->C, 3) URShiftINode(t1, phase->intcon(N - l)));
 111       dividend = phase->transform(new (phase->C, 3) AddINode(dividend, t2));
 112     }
 113 
 114     q = new (phase->C, 3) RShiftINode(dividend, phase->intcon(l));
 115 
 116     if (!d_pos)
 117       q = new (phase->C, 3) SubINode(phase->intcon(0), phase->transform(q));
 118   }
 119 
 120   // division by something else
 121   else if (m_high < (U1 << (N-1))) {
 122     Node *t1 = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
 123     Node *t2 = phase->transform(new (phase->C, 3) MulLNode(t1, phase->longcon(m_high)));
 124     Node *t3 = phase->transform(new (phase->C, 3) RShiftLNode(t2, phase->intcon(sh_post+N)));
 125     Node *t4 = phase->transform(new (phase->C, 2) ConvL2INode(t3));
 126     Node *t5 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));
 127 
 128     q = new (phase->C, 3) SubINode(d_pos ? t4 : t5, d_pos ? t5 : t4);
 129   }
 130 
 131   // This handles that case where m_high is >= 2**(N-1). In that case,
 132   // we subtract out 2**N from the multiply and add it in later as
 133   // "dividend" in the equation (t5). This case computes the same result
 134   // as the immediately preceeding case, save that rounding and overflow
 135   // are accounted for.
 136   else {
 137     Node *t1 = phase->transform(new (phase->C, 2) ConvI2LNode(dividend));
 138     Node *t2 = phase->transform(new (phase->C, 3) MulLNode(t1, phase->longcon(m_high - (U1 << N))));
 139     Node *t3 = phase->transform(new (phase->C, 3) RShiftLNode(t2, phase->intcon(N)));
 140     Node *t4 = phase->transform(new (phase->C, 2) ConvL2INode(t3));
 141     Node *t5 = phase->transform(new (phase->C, 3) AddINode(dividend, t4));
 142     Node *t6 = phase->transform(new (phase->C, 3) RShiftINode(t5, phase->intcon(sh_post)));
 143     Node *t7 = phase->transform(new (phase->C, 3) RShiftINode(dividend, phase->intcon(N-1)));
 144 
 145     q = new (phase->C, 3) SubINode(d_pos ? t6 : t7, d_pos ? t7 : t6);
 146   }
 147 
 148   return (q);
 149 }
 150 
 151 //=============================================================================
 152 //------------------------------Identity---------------------------------------
 153 // If the divisor is 1, we are an identity on the dividend.
 154 Node *DivINode::Identity( PhaseTransform *phase ) {
 155   return (phase->type( in(2) )->higher_equal(TypeInt::ONE)) ? in(1) : this;
 156 }
 157 
 158 //------------------------------Idealize---------------------------------------
 159 // Divides can be changed to multiplies and/or shifts
 160 Node *DivINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 161   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 162 
 163   const Type *t = phase->type( in(2) );
 164   if( t == TypeInt::ONE )       // Identity?
 165     return NULL;                // Skip it
 166 
 167   const TypeInt *ti = t->isa_int();
 168   if( !ti ) return NULL;
 169   if( !ti->is_con() ) return NULL;
 170   int i = ti->get_con();        // Get divisor
 171 
 172   if (i == 0) return NULL;      // Dividing by zero constant does not idealize
 173 
 174   set_req(0,NULL);              // Dividing by a not-zero constant; no faulting
 175 
 176   // Dividing by MININT does not optimize as a power-of-2 shift.
 177   if( i == min_jint ) return NULL;
 178 
 179   return transform_int_divide_to_long_multiply( phase, in(1), i );
 180 }
 181 
 182 //------------------------------Value------------------------------------------
 183 // A DivINode divides its inputs.  The third input is a Control input, used to
 184 // prevent hoisting the divide above an unsafe test.
 185 const Type *DivINode::Value( PhaseTransform *phase ) const {
 186   // Either input is TOP ==> the result is TOP
 187   const Type *t1 = phase->type( in(1) );
 188   const Type *t2 = phase->type( in(2) );
 189   if( t1 == Type::TOP ) return Type::TOP;
 190   if( t2 == Type::TOP ) return Type::TOP;
 191 
 192   // x/x == 1 since we always generate the dynamic divisor check for 0.
 193   if( phase->eqv( in(1), in(2) ) )
 194     return TypeInt::ONE;
 195 
 196   // Either input is BOTTOM ==> the result is the local BOTTOM
 197   const Type *bot = bottom_type();
 198   if( (t1 == bot) || (t2 == bot) ||
 199       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 
 200     return bot;
 201 
 202   // Divide the two numbers.  We approximate.
 203   // If divisor is a constant and not zero
 204   const TypeInt *i1 = t1->is_int();
 205   const TypeInt *i2 = t2->is_int();
 206   int widen = MAX2(i1->_widen, i2->_widen);
 207 
 208   if( i2->is_con() && i2->get_con() != 0 ) {
 209     int32 d = i2->get_con(); // Divisor
 210     jint lo, hi;
 211     if( d >= 0 ) {
 212       lo = i1->_lo/d;
 213       hi = i1->_hi/d;
 214     } else {
 215       if( d == -1 && i1->_lo == min_jint ) {
 216         // 'min_jint/-1' throws arithmetic exception during compilation 
 217         lo = min_jint;
 218         // do not support holes, 'hi' must go to either min_jint or max_jint:
 219         // [min_jint, -10]/[-1,-1] ==> [min_jint] UNION [10,max_jint]
 220         hi = i1->_hi == min_jint ? min_jint : max_jint;
 221       } else {
 222         lo = i1->_hi/d;
 223         hi = i1->_lo/d;
 224       }
 225     }
 226     return TypeInt::make(lo, hi, widen);
 227   }  
 228 
 229   // If the dividend is a constant
 230   if( i1->is_con() ) {
 231     int32 d = i1->get_con();
 232     if( d < 0 ) {
 233       if( d == min_jint ) {
 234         //  (-min_jint) == min_jint == (min_jint / -1)
 235         return TypeInt::make(min_jint, max_jint/2 + 1, widen);
 236       } else {
 237         return TypeInt::make(d, -d, widen);
 238       }
 239     }
 240     return TypeInt::make(-d, d, widen);
 241   }
 242 
 243   // Otherwise we give up all hope
 244   return TypeInt::INT;
 245 }
 246 
 247 
 248 //=============================================================================
 249 //------------------------------Identity---------------------------------------
 250 // If the divisor is 1, we are an identity on the dividend.
 251 Node *DivLNode::Identity( PhaseTransform *phase ) {
 252   return (phase->type( in(2) )->higher_equal(TypeLong::ONE)) ? in(1) : this;
 253 }
 254 
 255 //------------------------------Idealize---------------------------------------
 256 // Dividing by a power of 2 is a shift.
 257 Node *DivLNode::Ideal( PhaseGVN *phase, bool can_reshape) {
 258   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 259 
 260   const Type *t = phase->type( in(2) );
 261   if( t == TypeLong::ONE )       // Identity?
 262     return NULL;                // Skip it
 263 
 264   const TypeLong *ti = t->isa_long();
 265   if( !ti ) return NULL;
 266   if( !ti->is_con() ) return NULL;
 267   jlong i = ti->get_con();      // Get divisor
 268   if( i ) set_req(0, NULL);     // Dividing by a not-zero constant; no faulting
 269 
 270   // Dividing by MININT does not optimize as a power-of-2 shift.
 271   if( i == min_jlong ) return NULL;
 272 
 273   // Check for negative power of 2 divisor, if so, negate it and set a flag
 274   // to indicate result needs to be negated.  Note that negating the dividend
 275   // here does not work when it has the value MININT
 276   Node *dividend = in(1);
 277   bool negate_res = false;
 278   if (is_power_of_2_long(-i)) {
 279     i = -i;                     // Flip divisor
 280     negate_res = true;
 281   }
 282 
 283   // Check for power of 2
 284   if (!is_power_of_2_long(i))   // Is divisor a power of 2?
 285     return NULL;                // Not a power of 2
 286 
 287   // Compute number of bits to shift
 288   int log_i = log2_long(i);
 289 
 290   // See if we can simply do a shift without rounding
 291   bool needs_rounding = true;
 292   const Type *dt = phase->type(dividend);
 293   const TypeLong *dtl = dt->isa_long();
 294 
 295   if (dtl && dtl->_lo > 0) {
 296     // we don't need to round a positive dividend
 297     needs_rounding = false;
 298   } else if( dividend->Opcode() == Op_AndL ) {
 299     // An AND mask of sufficient size clears the low bits and
 300     // I can avoid rounding.
 301     const TypeLong *andconi = phase->type( dividend->in(2) )->isa_long();
 302     if( andconi &&
 303         andconi->is_con() &&
 304         andconi->get_con() == -i ) {
 305       dividend = dividend->in(1);
 306       needs_rounding = false;
 307     }
 308   }
 309 
 310   if (!needs_rounding) {
 311     Node *result = new (phase->C, 3) RShiftLNode(dividend, phase->intcon(log_i));
 312     if (negate_res) {
 313       result = phase->transform(result);
 314       result = new (phase->C, 3) SubLNode(phase->longcon(0), result);
 315     }
 316     return result;
 317   }
 318 
 319   // Divide-by-power-of-2 can be made into a shift, but you have to do
 320   // more math for the rounding.  You need to add 0 for positive
 321   // numbers, and "i-1" for negative numbers.  Example: i=4, so the
 322   // shift is by 2.  You need to add 3 to negative dividends and 0 to
 323   // positive ones.  So (-7+3)>>2 becomes -1, (-4+3)>>2 becomes -1,
 324   // (-2+3)>>2 becomes 0, etc.
 325 
 326   // Compute 0 or -1, based on sign bit
 327   Node *sign = phase->transform(new (phase->C, 3) RShiftLNode(dividend,phase->intcon(63)));
 328   // Mask sign bit to the low sign bits
 329   Node *round = phase->transform(new (phase->C, 3) AndLNode(sign,phase->longcon(i-1)));
 330   // Round up before shifting
 331   Node *sum = phase->transform(new (phase->C, 3) AddLNode(dividend,round));
 332   // Shift for division
 333   Node *result = new (phase->C, 3) RShiftLNode(sum, phase->intcon(log_i));
 334   if (negate_res) {
 335     result = phase->transform(result);
 336     result = new (phase->C, 3) SubLNode(phase->longcon(0), result);
 337   }
 338 
 339   return result;
 340 }
 341 
 342 //------------------------------Value------------------------------------------
 343 // A DivLNode divides its inputs.  The third input is a Control input, used to
 344 // prevent hoisting the divide above an unsafe test.
 345 const Type *DivLNode::Value( PhaseTransform *phase ) const {
 346   // Either input is TOP ==> the result is TOP
 347   const Type *t1 = phase->type( in(1) );
 348   const Type *t2 = phase->type( in(2) );
 349   if( t1 == Type::TOP ) return Type::TOP;
 350   if( t2 == Type::TOP ) return Type::TOP;
 351 
 352   // x/x == 1 since we always generate the dynamic divisor check for 0.
 353   if( phase->eqv( in(1), in(2) ) )
 354     return TypeLong::ONE;
 355 
 356   // Either input is BOTTOM ==> the result is the local BOTTOM
 357   const Type *bot = bottom_type();
 358   if( (t1 == bot) || (t2 == bot) ||
 359       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 
 360     return bot;
 361 
 362   // Divide the two numbers.  We approximate.
 363   // If divisor is a constant and not zero
 364   const TypeLong *i1 = t1->is_long();
 365   const TypeLong *i2 = t2->is_long();
 366   int widen = MAX2(i1->_widen, i2->_widen);
 367 
 368   if( i2->is_con() && i2->get_con() != 0 ) {
 369     jlong d = i2->get_con();    // Divisor
 370     jlong lo, hi;
 371     if( d >= 0 ) {
 372       lo = i1->_lo/d;
 373       hi = i1->_hi/d;
 374     } else {
 375       if( d == CONST64(-1) && i1->_lo == min_jlong ) {
 376         // 'min_jlong/-1' throws arithmetic exception during compilation 
 377         lo = min_jlong;
 378         // do not support holes, 'hi' must go to either min_jlong or max_jlong:
 379         // [min_jlong, -10]/[-1,-1] ==> [min_jlong] UNION [10,max_jlong]
 380         hi = i1->_hi == min_jlong ? min_jlong : max_jlong;
 381       } else {
 382         lo = i1->_hi/d;
 383         hi = i1->_lo/d;
 384       }
 385     }
 386     return TypeLong::make(lo, hi, widen);
 387   }  
 388 
 389   // If the dividend is a constant
 390   if( i1->is_con() ) {
 391     jlong d = i1->get_con();
 392     if( d < 0 ) {
 393       if( d == min_jlong ) {
 394         //  (-min_jlong) == min_jlong == (min_jlong / -1)
 395         return TypeLong::make(min_jlong, max_jlong/2 + 1, widen);
 396       } else {
 397         return TypeLong::make(d, -d, widen);
 398       }
 399     }
 400     return TypeLong::make(-d, d, widen);
 401   }
 402 
 403   // Otherwise we give up all hope
 404   return TypeLong::LONG;
 405 }
 406 
 407 
 408 //=============================================================================
 409 //------------------------------Value------------------------------------------
 410 // An DivFNode divides its inputs.  The third input is a Control input, used to
 411 // prevent hoisting the divide above an unsafe test.
 412 const Type *DivFNode::Value( PhaseTransform *phase ) const {
 413   // Either input is TOP ==> the result is TOP
 414   const Type *t1 = phase->type( in(1) );
 415   const Type *t2 = phase->type( in(2) );
 416   if( t1 == Type::TOP ) return Type::TOP;
 417   if( t2 == Type::TOP ) return Type::TOP;
 418 
 419   // Either input is BOTTOM ==> the result is the local BOTTOM
 420   const Type *bot = bottom_type();
 421   if( (t1 == bot) || (t2 == bot) ||
 422       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 
 423     return bot;
 424 
 425   // x/x == 1, we ignore 0/0.
 426   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 427   // does not work for variables because of NaN's
 428   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon)
 429     if (!g_isnan(t1->getf()) && g_isfinite(t1->getf()) && t1->getf() != 0.0) // could be negative ZERO or NaN
 430       return TypeF::ONE;
 431 
 432   if( t2 == TypeF::ONE )
 433     return t1;
 434 
 435   // If divisor is a constant and not zero, divide them numbers
 436   if( t1->base() == Type::FloatCon && 
 437       t2->base() == Type::FloatCon &&
 438       t2->getf() != 0.0 ) // could be negative zero
 439     return TypeF::make( t1->getf()/t2->getf() );
 440 
 441   // If the dividend is a constant zero
 442   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 443   // Test TypeF::ZERO is not sufficient as it could be negative zero
 444 
 445   if( t1 == TypeF::ZERO && !g_isnan(t2->getf()) && t2->getf() != 0.0 )
 446     return TypeF::ZERO;
 447 
 448   // Otherwise we give up all hope
 449   return Type::FLOAT;
 450 }
 451 
 452 //------------------------------isA_Copy---------------------------------------
 453 // Dividing by self is 1.
 454 // If the divisor is 1, we are an identity on the dividend.
 455 Node *DivFNode::Identity( PhaseTransform *phase ) {
 456   return (phase->type( in(2) ) == TypeF::ONE) ? in(1) : this;
 457 }
 458 
 459 
 460 //------------------------------Idealize---------------------------------------
 461 Node *DivFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 462   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 463 
 464   const Type *t2 = phase->type( in(2) );
 465   if( t2 == TypeF::ONE )         // Identity?
 466     return NULL;                // Skip it
 467 
 468   const TypeF *tf = t2->isa_float_constant();
 469   if( !tf ) return NULL;
 470   if( tf->base() != Type::FloatCon ) return NULL;
 471 
 472   // Check for out of range values
 473   if( tf->is_nan() || !tf->is_finite() ) return NULL;
 474 
 475   // Get the value
 476   float f = tf->getf();
 477   int exp;
 478 
 479   // Only for special case of dividing by a power of 2
 480   if( frexp((double)f, &exp) != 0.5 ) return NULL;
 481 
 482   // Limit the range of acceptable exponents
 483   if( exp < -126 || exp > 126 ) return NULL;
 484 
 485   // Compute the reciprocal
 486   float reciprocal = ((float)1.0) / f;
 487 
 488   assert( frexp((double)reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
 489 
 490   // return multiplication by the reciprocal
 491   return (new (phase->C, 3) MulFNode(in(1), phase->makecon(TypeF::make(reciprocal))));
 492 }
 493 
 494 //=============================================================================
 495 //------------------------------Value------------------------------------------
 496 // An DivDNode divides its inputs.  The third input is a Control input, used to
 497 // prvent hoisting the divide above an unsafe test.
 498 const Type *DivDNode::Value( PhaseTransform *phase ) const {
 499   // Either input is TOP ==> the result is TOP
 500   const Type *t1 = phase->type( in(1) );
 501   const Type *t2 = phase->type( in(2) );
 502   if( t1 == Type::TOP ) return Type::TOP;
 503   if( t2 == Type::TOP ) return Type::TOP;
 504 
 505   // Either input is BOTTOM ==> the result is the local BOTTOM
 506   const Type *bot = bottom_type();
 507   if( (t1 == bot) || (t2 == bot) ||
 508       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 
 509     return bot;
 510 
 511   // x/x == 1, we ignore 0/0.
 512   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 513   // Does not work for variables because of NaN's
 514   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon)
 515     if (!g_isnan(t1->getd()) && g_isfinite(t1->getd()) && t1->getd() != 0.0) // could be negative ZERO or NaN
 516       return TypeD::ONE;
 517 
 518   if( t2 == TypeD::ONE )
 519     return t1;
 520 
 521   // If divisor is a constant and not zero, divide them numbers
 522   if( t1->base() == Type::DoubleCon && 
 523       t2->base() == Type::DoubleCon &&
 524       t2->getd() != 0.0 ) // could be negative zero
 525     return TypeD::make( t1->getd()/t2->getd() );
 526 
 527   // If the dividend is a constant zero
 528   // Note: if t1 and t2 are zero then result is NaN (JVMS page 213)
 529   // Test TypeF::ZERO is not sufficient as it could be negative zero
 530   if( t1 == TypeD::ZERO && !g_isnan(t2->getd()) && t2->getd() != 0.0 )
 531     return TypeD::ZERO;
 532 
 533   // Otherwise we give up all hope
 534   return Type::DOUBLE;
 535 }
 536 
 537 
 538 //------------------------------isA_Copy---------------------------------------
 539 // Dividing by self is 1.
 540 // If the divisor is 1, we are an identity on the dividend.
 541 Node *DivDNode::Identity( PhaseTransform *phase ) {
 542   return (phase->type( in(2) ) == TypeD::ONE) ? in(1) : this;
 543 }
 544 
 545 //------------------------------Idealize---------------------------------------
 546 Node *DivDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 547   if (in(0) && remove_dead_region(phase, can_reshape))  return this;
 548 
 549   const Type *t2 = phase->type( in(2) );
 550   if( t2 == TypeD::ONE )         // Identity?
 551     return NULL;                // Skip it
 552 
 553   const TypeD *td = t2->isa_double_constant();
 554   if( !td ) return NULL;
 555   if( td->base() != Type::DoubleCon ) return NULL;
 556 
 557   // Check for out of range values
 558   if( td->is_nan() || !td->is_finite() ) return NULL;
 559 
 560   // Get the value
 561   double d = td->getd();
 562   int exp;
 563 
 564   // Only for special case of dividing by a power of 2
 565   if( frexp(d, &exp) != 0.5 ) return NULL;
 566 
 567   // Limit the range of acceptable exponents
 568   if( exp < -1021 || exp > 1022 ) return NULL;
 569 
 570   // Compute the reciprocal
 571   double reciprocal = 1.0 / d;
 572 
 573   assert( frexp(reciprocal, &exp) == 0.5, "reciprocal should be power of 2" );
 574 
 575   // return multiplication by the reciprocal
 576   return (new (phase->C, 3) MulDNode(in(1), phase->makecon(TypeD::make(reciprocal))));
 577 }
 578 
 579 //=============================================================================
 580 //------------------------------Idealize---------------------------------------
 581 Node *ModINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 582   // Check for dead control input
 583   if( remove_dead_region(phase, can_reshape) )  return this;
 584 
 585   // Get the modulus
 586   const Type *t = phase->type( in(2) );
 587   if( t == Type::TOP ) return NULL;
 588   const TypeInt *ti = t->is_int();
 589 
 590   // Check for useless control input
 591   // Check for excluding mod-zero case
 592   if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
 593     set_req(0, NULL);        // Yank control input
 594     return this;
 595   }
 596 
 597   // See if we are MOD'ing by 2^k or 2^k-1.
 598   if( !ti->is_con() ) return NULL;
 599   jint con = ti->get_con();
 600 
 601   Node *hook = new (phase->C, 1) Node(1);
 602 
 603   // First, special check for modulo 2^k-1
 604   if( con >= 0 && con < max_jint && is_power_of_2(con+1) ) {
 605     uint k = exact_log2(con+1);  // Extract k
 606 
 607     // Basic algorithm by David Detlefs.  See fastmod_int.java for gory details.
 608     static int unroll_factor[] = { 999, 999, 29, 14, 9, 7, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
 609     int trip_count = 1;
 610     if( k < ARRAY_SIZE(unroll_factor))  trip_count = unroll_factor[k];
 611 
 612     // If the unroll factor is not too large, and if conditional moves are
 613     // ok, then use this case
 614     if( trip_count <= 5 && ConditionalMoveLimit != 0 ) {
 615       Node *x = in(1);            // Value being mod'd
 616       Node *divisor = in(2);      // Also is mask
 617       
 618       hook->init_req(0, x);       // Add a use to x to prevent him from dying
 619       // Generate code to reduce X rapidly to nearly 2^k-1.
 620       for( int i = 0; i < trip_count; i++ ) {
 621           Node *xl = phase->transform( new (phase->C, 3) AndINode(x,divisor) );
 622           Node *xh = phase->transform( new (phase->C, 3) RShiftINode(x,phase->intcon(k)) ); // Must be signed
 623           x = phase->transform( new (phase->C, 3) AddINode(xh,xl) );
 624           hook->set_req(0, x);
 625       }
 626 
 627       // Generate sign-fixup code.  Was original value positive?
 628       // int hack_res = (i >= 0) ? divisor : 1;
 629       Node *cmp1 = phase->transform( new (phase->C, 3) CmpINode( in(1), phase->intcon(0) ) );
 630       Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
 631       Node *cmov1= phase->transform( new (phase->C, 4) CMoveINode(bol1, phase->intcon(1), divisor, TypeInt::POS) );
 632       // if( x >= hack_res ) x -= divisor;
 633       Node *sub  = phase->transform( new (phase->C, 3) SubINode( x, divisor ) );
 634       Node *cmp2 = phase->transform( new (phase->C, 3) CmpINode( x, cmov1 ) );
 635       Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
 636       // Convention is to not transform the return value of an Ideal
 637       // since Ideal is expected to return a modified 'this' or a new node.
 638       Node *cmov2= new (phase->C, 4) CMoveINode(bol2, x, sub, TypeInt::INT);
 639       // cmov2 is now the mod
 640       
 641       // Now remove the bogus extra edges used to keep things alive
 642       if (can_reshape) {
 643         phase->is_IterGVN()->remove_dead_node(hook);
 644       } else {
 645         hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
 646       }
 647       return cmov2;
 648     }
 649   }
 650 
 651   // Fell thru, the unroll case is not appropriate. Transform the modulo
 652   // into a long multiply/int multiply/subtract case
 653 
 654   // Cannot handle mod 0, and min_jint isn't handled by the transform
 655   if( con == 0 || con == min_jint ) return NULL;
 656 
 657   // Get the absolute value of the constant; at this point, we can use this
 658   jint pos_con = (con >= 0) ? con : -con;
 659 
 660   // integer Mod 1 is always 0
 661   if( pos_con == 1 ) return new (phase->C, 1) ConINode(TypeInt::ZERO);
 662 
 663   int log2_con = -1;
 664 
 665   // If this is a power of two, they maybe we can mask it
 666   if( is_power_of_2(pos_con) ) {
 667     log2_con = log2_intptr((intptr_t)pos_con);
 668 
 669     const Type *dt = phase->type(in(1));
 670     const TypeInt *dti = dt->isa_int();
 671 
 672     // See if this can be masked, if the dividend is non-negative
 673     if( dti && dti->_lo >= 0 )
 674       return ( new (phase->C, 3) AndINode( in(1), phase->intcon( pos_con-1 ) ) );
 675   }
 676 
 677   // Save in(1) so that it cannot be changed or deleted
 678   hook->init_req(0, in(1));
 679 
 680   // Divide using the transform from DivI to MulL
 681   Node *divide = phase->transform( transform_int_divide_to_long_multiply( phase, in(1), pos_con ) );
 682 
 683   // Re-multiply, using a shift if this is a power of two
 684   Node *mult = NULL;
 685 
 686   if( log2_con >= 0 )
 687     mult = phase->transform( new (phase->C, 3) LShiftINode( divide, phase->intcon( log2_con ) ) );
 688   else
 689     mult = phase->transform( new (phase->C, 3) MulINode( divide, phase->intcon( pos_con ) ) );
 690 
 691   // Finally, subtract the multiplied divided value from the original
 692   Node *result = new (phase->C, 3) SubINode( in(1), mult );
 693 
 694   // Now remove the bogus extra edges used to keep things alive
 695   if (can_reshape) {
 696     phase->is_IterGVN()->remove_dead_node(hook);
 697   } else {
 698     hook->set_req(0, NULL);       // Just yank bogus edge during Parse phase
 699   }
 700 
 701   // return the value
 702   return result;
 703 }
 704 
 705 //------------------------------Value------------------------------------------
 706 const Type *ModINode::Value( PhaseTransform *phase ) const {
 707   // Either input is TOP ==> the result is TOP
 708   const Type *t1 = phase->type( in(1) );
 709   const Type *t2 = phase->type( in(2) );
 710   if( t1 == Type::TOP ) return Type::TOP;
 711   if( t2 == Type::TOP ) return Type::TOP;
 712 
 713   // We always generate the dynamic check for 0.
 714   // 0 MOD X is 0
 715   if( t1 == TypeInt::ZERO ) return TypeInt::ZERO; 
 716   // X MOD X is 0
 717   if( phase->eqv( in(1), in(2) ) ) return TypeInt::ZERO;
 718 
 719   // Either input is BOTTOM ==> the result is the local BOTTOM
 720   const Type *bot = bottom_type();
 721   if( (t1 == bot) || (t2 == bot) ||
 722       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 
 723     return bot;
 724 
 725   const TypeInt *i1 = t1->is_int();
 726   const TypeInt *i2 = t2->is_int();
 727   if( !i1->is_con() || !i2->is_con() ) {
 728     if( i1->_lo >= 0 && i2->_lo >= 0 )
 729       return TypeInt::POS;
 730     // If both numbers are not constants, we know little.
 731     return TypeInt::INT;
 732   }
 733   // Mod by zero?  Throw exception at runtime!
 734   if( !i2->get_con() ) return TypeInt::POS;
 735   
 736   // We must be modulo'ing 2 float constants.
 737   // Check for min_jint % '-1', result is defined to be '0'.
 738   if( i1->get_con() == min_jint && i2->get_con() == -1 ) 
 739     return TypeInt::ZERO;
 740 
 741   return TypeInt::make( i1->get_con() % i2->get_con() );
 742 }
 743 
 744 
 745 //=============================================================================
 746 //------------------------------Idealize---------------------------------------
 747 Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 748   // Check for dead control input
 749   if( remove_dead_region(phase, can_reshape) )  return this;
 750 
 751   // Get the modulus
 752   const Type *t = phase->type( in(2) );
 753   if( t == Type::TOP ) return NULL;
 754   const TypeLong *ti = t->is_long();
 755 
 756   // Check for useless control input
 757   // Check for excluding mod-zero case
 758   if( in(0) && (ti->_hi < 0 || ti->_lo > 0) ) {
 759     set_req(0, NULL);        // Yank control input
 760     return this;
 761   }
 762 
 763   // See if we are MOD'ing by 2^k or 2^k-1.
 764   if( !ti->is_con() ) return NULL;
 765   jlong con = ti->get_con();
 766   bool m1 = false;
 767   if( !is_power_of_2_long(con) ) {      // Not 2^k
 768     if( !is_power_of_2_long(con+1) ) // Not 2^k-1?
 769       return NULL;              // No interesting mod hacks
 770     m1 = true;                  // Found 2^k-1
 771     con++;                      // Convert to 2^k form
 772   }
 773   uint k = log2_long(con);       // Extract k
 774 
 775   // Expand mod
 776   if( !m1 ) {                   // Case 2^k
 777   } else {                      // Case 2^k-1
 778     // Basic algorithm by David Detlefs.  See fastmod_long.java for gory details.
 779     // Used to help a popular random number generator which does a long-mod
 780     // of 2^31-1 and shows up in SpecJBB and SciMark.
 781     static int unroll_factor[] = { 999, 999, 61, 30, 20, 15, 12, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 /*past here we assume 1 forever*/};
 782     int trip_count = 1;
 783     if( k < ARRAY_SIZE(unroll_factor)) trip_count = unroll_factor[k];
 784     if( trip_count > 4 ) return NULL; // Too much unrolling
 785     if (ConditionalMoveLimit == 0) return NULL;  // cmov is required
 786     
 787     Node *x = in(1);            // Value being mod'd
 788     Node *divisor = in(2);      // Also is mask
 789     
 790     Node *hook = new (phase->C, 1) Node(x);
 791     // Generate code to reduce X rapidly to nearly 2^k-1.
 792     for( int i = 0; i < trip_count; i++ ) {
 793         Node *xl = phase->transform( new (phase->C, 3) AndLNode(x,divisor) );
 794         Node *xh = phase->transform( new (phase->C, 3) RShiftLNode(x,phase->intcon(k)) ); // Must be signed
 795         x = phase->transform( new (phase->C, 3) AddLNode(xh,xl) );
 796         hook->set_req(0, x);    // Add a use to x to prevent him from dying
 797     }
 798     // Generate sign-fixup code.  Was original value positive?
 799     // long hack_res = (i >= 0) ? divisor : CONST64(1);
 800     Node *cmp1 = phase->transform( new (phase->C, 3) CmpLNode( in(1), phase->longcon(0) ) );
 801     Node *bol1 = phase->transform( new (phase->C, 2) BoolNode( cmp1, BoolTest::ge ) );
 802     Node *cmov1= phase->transform( new (phase->C, 4) CMoveLNode(bol1, phase->longcon(1), divisor, TypeLong::LONG) );
 803     // if( x >= hack_res ) x -= divisor;
 804     Node *sub  = phase->transform( new (phase->C, 3) SubLNode( x, divisor ) );
 805     Node *cmp2 = phase->transform( new (phase->C, 3) CmpLNode( x, cmov1 ) );
 806     Node *bol2 = phase->transform( new (phase->C, 2) BoolNode( cmp2, BoolTest::ge ) );
 807     // Convention is to not transform the return value of an Ideal
 808     // since Ideal is expected to return a modified 'this' or a new node.
 809     Node *cmov2= new (phase->C, 4) CMoveLNode(bol2, x, sub, TypeLong::LONG);
 810     // cmov2 is now the mod
 811     
 812     // Now remove the bogus extra edges used to keep things alive
 813     if (can_reshape) {
 814       phase->is_IterGVN()->remove_dead_node(hook);
 815     } else {
 816       hook->set_req(0, NULL);   // Just yank bogus edge during Parse phase
 817     }
 818     return cmov2;
 819   }
 820   return NULL;
 821 }
 822 
 823 //------------------------------Value------------------------------------------
 824 const Type *ModLNode::Value( PhaseTransform *phase ) const {
 825   // Either input is TOP ==> the result is TOP
 826   const Type *t1 = phase->type( in(1) );
 827   const Type *t2 = phase->type( in(2) );
 828   if( t1 == Type::TOP ) return Type::TOP;
 829   if( t2 == Type::TOP ) return Type::TOP;
 830 
 831   // We always generate the dynamic check for 0.
 832   // 0 MOD X is 0
 833   if( t1 == TypeLong::ZERO ) return TypeLong::ZERO; 
 834   // X MOD X is 0
 835   if( phase->eqv( in(1), in(2) ) ) return TypeLong::ZERO;
 836 
 837   // Either input is BOTTOM ==> the result is the local BOTTOM
 838   const Type *bot = bottom_type();
 839   if( (t1 == bot) || (t2 == bot) ||
 840       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 
 841     return bot;
 842 
 843   const TypeLong *i1 = t1->is_long();
 844   const TypeLong *i2 = t2->is_long();
 845   if( !i1->is_con() || !i2->is_con() ) {
 846     if( i1->_lo >= CONST64(0) && i2->_lo >= CONST64(0) )
 847       return TypeLong::POS;
 848     // If both numbers are not constants, we know little.
 849     return TypeLong::LONG;
 850   }
 851   // Mod by zero?  Throw exception at runtime!
 852   if( !i2->get_con() ) return TypeLong::POS;
 853   
 854   // We must be modulo'ing 2 float constants.
 855   // Check for min_jint % '-1', result is defined to be '0'.
 856   if( i1->get_con() == min_jlong && i2->get_con() == -1 ) 
 857     return TypeLong::ZERO;
 858 
 859   return TypeLong::make( i1->get_con() % i2->get_con() );
 860 }
 861 
 862 
 863 //=============================================================================
 864 //------------------------------Value------------------------------------------
 865 const Type *ModFNode::Value( PhaseTransform *phase ) const {
 866   // Either input is TOP ==> the result is TOP
 867   const Type *t1 = phase->type( in(1) );
 868   const Type *t2 = phase->type( in(2) );
 869   if( t1 == Type::TOP ) return Type::TOP;
 870   if( t2 == Type::TOP ) return Type::TOP;
 871 
 872   // Either input is BOTTOM ==> the result is the local BOTTOM
 873   const Type *bot = bottom_type();
 874   if( (t1 == bot) || (t2 == bot) ||
 875       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 
 876     return bot;
 877 
 878   // If either is a NaN, return an input NaN
 879   if( g_isnan(t1->getf()) )    return t1;
 880   if( g_isnan(t2->getf()) )    return t2;
 881 
 882   // It is not worth trying to constant fold this stuff!
 883   return Type::FLOAT;
 884 
 885   /*
 886   // If dividend is infinity or divisor is zero, or both, the result is NaN
 887   if( !g_isfinite(t1->getf()) || ((t2->getf() == 0.0) || (jint_cast(t2->getf()) == 0x80000000)) )
 888 
 889   // X MOD infinity = X
 890   if( !g_isfinite(t2->getf()) && !g_isnan(t2->getf()) ) return t1;
 891   // 0 MOD finite = dividend (positive or negative zero)
 892   // Not valid for: NaN MOD any; any MOD nan; 0 MOD 0; or for 0 MOD NaN
 893   // NaNs are handled previously.
 894   if( !(t2->getf() == 0.0) && !((int)t2->getf() == 0x80000000)) {
 895     if (((t1->getf() == 0.0) || ((int)t1->getf() == 0x80000000)) && g_isfinite(t2->getf()) ) {
 896       return t1;
 897     }
 898   }
 899   // X MOD X is 0
 900   // Does not work for variables because of NaN's
 901   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::FloatCon) 
 902     if (!g_isnan(t1->getf()) && (t1->getf() != 0.0) && ((int)t1->getf() != 0x80000000)) {
 903       if(t1->getf() < 0.0) {
 904         float result = jfloat_cast(0x80000000);
 905         return TypeF::make( result );
 906       }
 907       else
 908         return TypeF::ZERO;
 909     }
 910 
 911   // If both numbers are not constants, we know nothing.
 912   if( (t1->base() != Type::FloatCon) || (t2->base() != Type::FloatCon) )
 913     return Type::FLOAT;
 914   
 915   // We must be modulo'ing 2 float constants.
 916   // Make sure that the sign of the fmod is equal to the sign of the dividend
 917   float result = (float)fmod( t1->getf(), t2->getf() );
 918   float dividend = t1->getf();
 919   if( (dividend < 0.0) || ((int)dividend == 0x80000000) ) {
 920     if( result > 0.0 )
 921       result = 0.0 - result;
 922     else if( result == 0.0 ) {
 923       result = jfloat_cast(0x80000000);
 924     }
 925   }
 926   return TypeF::make( result );
 927   */
 928 }
 929 
 930 
 931 //=============================================================================
 932 //------------------------------Value------------------------------------------
 933 const Type *ModDNode::Value( PhaseTransform *phase ) const {
 934   // Either input is TOP ==> the result is TOP
 935   const Type *t1 = phase->type( in(1) );
 936   const Type *t2 = phase->type( in(2) );
 937   if( t1 == Type::TOP ) return Type::TOP;
 938   if( t2 == Type::TOP ) return Type::TOP;
 939 
 940   // Either input is BOTTOM ==> the result is the local BOTTOM
 941   const Type *bot = bottom_type();
 942   if( (t1 == bot) || (t2 == bot) ||
 943       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) ) 
 944     return bot;
 945 
 946   // If either is a NaN, return an input NaN
 947   if( g_isnan(t1->getd()) )    return t1;
 948   if( g_isnan(t2->getd()) )    return t2;
 949   // X MOD infinity = X
 950   if( !g_isfinite(t2->getd())) return t1;
 951   // 0 MOD finite = dividend (positive or negative zero)
 952   // Not valid for: NaN MOD any; any MOD nan; 0 MOD 0; or for 0 MOD NaN
 953   // NaNs are handled previously.
 954   if( !(t2->getd() == 0.0) ) {
 955     if( t1->getd() == 0.0 && g_isfinite(t2->getd()) ) {
 956       return t1;
 957     }
 958   }
 959 
 960   // X MOD X is 0
 961   // does not work for variables because of NaN's
 962   if( phase->eqv( in(1), in(2) ) && t1->base() == Type::DoubleCon ) 
 963     if (!g_isnan(t1->getd()) && t1->getd() != 0.0)
 964       return TypeD::ZERO;
 965  
 966 
 967   // If both numbers are not constants, we know nothing.
 968   if( (t1->base() != Type::DoubleCon) || (t2->base() != Type::DoubleCon) )
 969     return Type::DOUBLE;
 970   
 971   // We must be modulo'ing 2 double constants.
 972   return TypeD::make( fmod( t1->getd(), t2->getd() ) );
 973 }
 974 
 975 //=============================================================================
 976 
 977 DivModNode::DivModNode( Node *c, Node *dividend, Node *divisor ) : MultiNode(3) {
 978   init_req(0, c);
 979   init_req(1, dividend);
 980   init_req(2, divisor);
 981 }
 982 
 983 //------------------------------make------------------------------------------
 984 DivModINode* DivModINode::make(Compile* C, Node* div_or_mod) {
 985   Node* n = div_or_mod;
 986   assert(n->Opcode() == Op_DivI || n->Opcode() == Op_ModI,
 987          "only div or mod input pattern accepted");
 988   
 989   DivModINode* divmod = new (C, 3) DivModINode(n->in(0), n->in(1), n->in(2));
 990   Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
 991   Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
 992   return divmod;
 993 }
 994 
 995 //------------------------------make------------------------------------------
 996 DivModLNode* DivModLNode::make(Compile* C, Node* div_or_mod) {
 997   Node* n = div_or_mod;
 998   assert(n->Opcode() == Op_DivL || n->Opcode() == Op_ModL,
 999          "only div or mod input pattern accepted");
1000   
1001   DivModLNode* divmod = new (C, 3) DivModLNode(n->in(0), n->in(1), n->in(2));
1002   Node*        dproj  = new (C, 1) ProjNode(divmod, DivModNode::div_proj_num);
1003   Node*        mproj  = new (C, 1) ProjNode(divmod, DivModNode::mod_proj_num);
1004   return divmod;
1005 }
1006 
1007 //------------------------------match------------------------------------------
1008 // return result(s) along with their RegMask info
1009 Node *DivModINode::match( const ProjNode *proj, const Matcher *match ) {
1010   uint ideal_reg = proj->ideal_reg();
1011   RegMask rm;
1012   if (proj->_con == div_proj_num) {
1013     rm = match->divI_proj_mask();
1014   } else {
1015     assert(proj->_con == mod_proj_num, "must be div or mod projection");
1016     rm = match->modI_proj_mask();
1017   }
1018   return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
1019 }
1020 
1021 
1022 //------------------------------match------------------------------------------
1023 // return result(s) along with their RegMask info
1024 Node *DivModLNode::match( const ProjNode *proj, const Matcher *match ) {
1025   uint ideal_reg = proj->ideal_reg();
1026   RegMask rm;
1027   if (proj->_con == div_proj_num) {
1028     rm = match->divL_proj_mask();
1029   } else {
1030     assert(proj->_con == mod_proj_num, "must be div or mod projection");
1031     rm = match->modL_proj_mask();
1032   }
1033   return new (match->C, 1)MachProjNode(this, proj->_con, rm, ideal_reg);
1034 }