1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)gcm.cpp      1.259 08/07/10 14:40:09 JVM"
   3 #endif
   4 /*
   5  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 // Portions of code courtesy of Clifford Click
  29 
  30 // Optimization - Graph Style
  31 
  32 #include "incls/_precompiled.incl"
  33 #include "incls/_gcm.cpp.incl"
  34 
  35 //----------------------------schedule_node_into_block-------------------------
  36 // Insert node n into block b. Look for projections of n and make sure they
  37 // are in b also.
  38 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  39   // Set basic block of n, Add n to b, 
  40   _bbs.map(n->_idx, b);
  41   b->add_inst(n);
  42 
  43   // After Matching, nearly any old Node may have projections trailing it.
  44   // These are usually machine-dependent flags.  In any case, they might
  45   // float to another block below this one.  Move them up.
  46   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  47     Node*  use  = n->fast_out(i);
  48     if (use->is_Proj()) {         
  49       Block* buse = _bbs[use->_idx];
  50       if (buse != b) {              // In wrong block?
  51         if (buse != NULL)
  52           buse->find_remove(use);   // Remove from wrong block
  53         _bbs.map(use->_idx, b);     // Re-insert in this block
  54         b->add_inst(use);
  55       }
  56     }
  57   }
  58 }
  59     
  60 
  61 //------------------------------schedule_pinned_nodes--------------------------
  62 // Set the basic block for Nodes pinned into blocks
  63 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
  64   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
  65   GrowableArray <Node *> spstack(C->unique()+8);
  66   spstack.push(_root);
  67   while ( spstack.is_nonempty() ) {
  68     Node *n = spstack.pop();
  69     if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
  70       if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
  71         Node *input = n->in(0);
  72         assert( input, "pinned Node must have Control" );
  73         while( !input->is_block_start() )
  74           input = input->in(0);
  75         Block *b = _bbs[input->_idx];  // Basic block of controlling input
  76         schedule_node_into_block(n, b);
  77       }
  78       for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
  79         if( n->in(i) != NULL )
  80           spstack.push(n->in(i));
  81       }
  82     }
  83   }
  84 }
  85 
  86 #ifdef ASSERT
  87 // Assert that new input b2 is dominated by all previous inputs.
  88 // Check this by by seeing that it is dominated by b1, the deepest
  89 // input observed until b2.
  90 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
  91   if (b1 == NULL)  return;
  92   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
  93   Block* tmp = b2;
  94   while (tmp != b1 && tmp != NULL) {
  95     tmp = tmp->_idom;      
  96   }
  97   if (tmp != b1) {
  98     // Detected an unschedulable graph.  Print some nice stuff and die.
  99     tty->print_cr("!!! Unschedulable graph !!!");
 100     for (uint j=0; j<n->len(); j++) { // For all inputs
 101       Node* inn = n->in(j); // Get input
 102       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 103       Block* inb = bbs[inn->_idx];
 104       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order, 
 105                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 106       inn->dump();
 107     }
 108     tty->print("Failing node: ");
 109     n->dump();
 110     assert(false, "unscheduable graph");
 111   }
 112 }
 113 #endif
 114 
 115 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
 116   // Find the last input dominated by all other inputs.
 117   Block* deepb           = NULL;        // Deepest block so far
 118   int    deepb_dom_depth = 0;
 119   for (uint k = 0; k < n->len(); k++) { // For all inputs
 120     Node* inn = n->in(k);               // Get input
 121     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 122     Block* inb = bbs[inn->_idx];
 123     assert(inb != NULL, "must already have scheduled this input");
 124     if (deepb_dom_depth < (int) inb->_dom_depth) {
 125       // The new inb must be dominated by the previous deepb.
 126       // The various inputs must be linearly ordered in the dom
 127       // tree, or else there will not be a unique deepest block.
 128       DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
 129       deepb = inb;                      // Save deepest block
 130       deepb_dom_depth = deepb->_dom_depth;
 131     }
 132   }
 133   assert(deepb != NULL, "must be at least one input to n");
 134   return deepb;
 135 }
 136 
 137 
 138 //------------------------------schedule_early---------------------------------
 139 // Find the earliest Block any instruction can be placed in.  Some instructions
 140 // are pinned into Blocks.  Unpinned instructions can appear in last block in 
 141 // which all their inputs occur.
 142 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
 143   // Allocate stack with enough space to avoid frequent realloc
 144   Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
 145   // roots.push(_root); _root will be processed among C->top() inputs
 146   roots.push(C->top());
 147   visited.set(C->top()->_idx);
 148 
 149   while (roots.size() != 0) {
 150     // Use local variables nstack_top_n & nstack_top_i to cache values
 151     // on stack's top.
 152     Node *nstack_top_n = roots.pop();
 153     uint  nstack_top_i = 0;
 154 //while_nstack_nonempty:
 155     while (true) {
 156       // Get parent node and next input's index from stack's top.
 157       Node *n = nstack_top_n;
 158       uint  i = nstack_top_i;
 159 
 160       if (i == 0) {
 161         // Special control input processing.
 162         // While I am here, go ahead and look for Nodes which are taking control
 163         // from a is_block_proj Node.  After I inserted RegionNodes to make proper
 164         // blocks, the control at a is_block_proj more properly comes from the
 165         // Region being controlled by the block_proj Node.  
 166         const Node *in0 = n->in(0);
 167         if (in0 != NULL) {              // Control-dependent?
 168           const Node *p = in0->is_block_proj();
 169           if (p != NULL && p != n) {    // Control from a block projection?
 170             // Find trailing Region
 171             Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
 172             uint j = 0;
 173             if (pb->_num_succs != 1) {  // More then 1 successor?
 174               // Search for successor
 175               uint max = pb->_nodes.size();
 176               assert( max > 1, "" );
 177               uint start = max - pb->_num_succs;
 178               // Find which output path belongs to projection
 179               for (j = start; j < max; j++) {
 180                 if( pb->_nodes[j] == in0 )
 181                   break;
 182               }
 183               assert( j < max, "must find" );
 184               // Change control to match head of successor basic block
 185               j -= start;
 186             }
 187             n->set_req(0, pb->_succs[j]->head());
 188           }
 189         } else {               // n->in(0) == NULL
 190           if (n->req() == 1) { // This guy is a constant with NO inputs?
 191             n->set_req(0, _root);
 192           }
 193         }
 194       }
 195 
 196       // First, visit all inputs and force them to get a block.  If an
 197       // input is already in a block we quit following inputs (to avoid
 198       // cycles). Instead we put that Node on a worklist to be handled
 199       // later (since IT'S inputs may not have a block yet).
 200       bool done = true;              // Assume all n's inputs will be processed
 201       while (i < n->len()) {         // For all inputs
 202         Node *in = n->in(i);         // Get input
 203         ++i; 
 204         if (in == NULL) continue;    // Ignore NULL, missing inputs
 205         int is_visited = visited.test_set(in->_idx);
 206         if (!_bbs.lookup(in->_idx)) { // Missing block selection?
 207           if (is_visited) {
 208             // assert( !visited.test(in->_idx), "did not schedule early" );
 209             return false;
 210           }
 211           nstack.push(n, i);         // Save parent node and next input's index.
 212           nstack_top_n = in;         // Process current input now.
 213           nstack_top_i = 0;
 214           done = false;              // Not all n's inputs processed. 
 215           break; // continue while_nstack_nonempty;
 216         } else if (!is_visited) {    // Input not yet visited?
 217           roots.push(in);            // Visit this guy later, using worklist
 218         }
 219       }
 220       if (done) {
 221         // All of n's inputs have been processed, complete post-processing.
 222 
 223         // Some instructions are pinned into a block.  These include Region,
 224         // Phi, Start, Return, and other control-dependent instructions and
 225         // any projections which depend on them.
 226         if (!n->pinned()) {
 227           // Set earliest legal block.
 228           _bbs.map(n->_idx, find_deepest_input(n, _bbs));
 229         }
 230 
 231         if (nstack.is_empty()) {
 232           // Finished all nodes on stack. 
 233           // Process next node on the worklist 'roots'.
 234           break;
 235         }
 236         // Get saved parent node and next input's index. 
 237         nstack_top_n = nstack.node();
 238         nstack_top_i = nstack.index();
 239         nstack.pop();
 240       } //    if (done)
 241     }   // while (true)
 242   }     // while (roots.size() != 0)
 243   return true;
 244 }
 245 
 246 //------------------------------dom_lca----------------------------------------
 247 // Find least common ancestor in dominator tree
 248 // LCA is a current notion of LCA, to be raised above 'this'.
 249 // As a convenient boundary condition, return 'this' if LCA is NULL.
 250 // Find the LCA of those two nodes.
 251 Block* Block::dom_lca(Block* LCA) {
 252   if (LCA == NULL || LCA == this)  return this;
 253 
 254   Block* anc = this;
 255   while (anc->_dom_depth > LCA->_dom_depth)
 256     anc = anc->_idom;           // Walk up till anc is as high as LCA
 257 
 258   while (LCA->_dom_depth > anc->_dom_depth)
 259     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 260 
 261   while (LCA != anc) {          // Walk both up till they are the same
 262     LCA = LCA->_idom;
 263     anc = anc->_idom;
 264   }
 265 
 266   return LCA;
 267 }
 268 
 269 //--------------------------raise_LCA_above_use--------------------------------
 270 // We are placing a definition, and have been given a def->use edge.
 271 // The definition must dominate the use, so move the LCA upward in the
 272 // dominator tree to dominate the use.  If the use is a phi, adjust
 273 // the LCA only with the phi input paths which actually use this def.
 274 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
 275   Block* buse = bbs[use->_idx];
 276   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 277   if (!use->is_Phi())  return buse->dom_lca(LCA);
 278   uint pmax = use->req();       // Number of Phi inputs
 279   // Why does not this loop just break after finding the matching input to
 280   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 281   // chains.  Means I cannot distinguish, from the def-use direction, which
 282   // of many use-defs lead from the same use to the same def.  That is, this
 283   // Phi might have several uses of the same def.  Each use appears in a 
 284   // different predecessor block.  But when I enter here, I cannot distinguish
 285   // which use-def edge I should find the predecessor block for.  So I find
 286   // them all.  Means I do a little extra work if a Phi uses the same value
 287   // more than once.
 288   for (uint j=1; j<pmax; j++) { // For all inputs
 289     if (use->in(j) == def) {    // Found matching input?
 290       Block* pred = bbs[buse->pred(j)->_idx];
 291       LCA = pred->dom_lca(LCA);
 292     }
 293   }
 294   return LCA;
 295 }
 296 
 297 //----------------------------raise_LCA_above_marks----------------------------
 298 // Return a new LCA that dominates LCA and any of its marked predecessors.
 299 // Search all my parents up to 'early' (exclusive), looking for predecessors
 300 // which are marked with the given index.  Return the LCA (in the dom tree)
 301 // of all marked blocks.  If there are none marked, return the original
 302 // LCA.
 303 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
 304                                     Block* early, Block_Array &bbs) {
 305   Block_List worklist;
 306   worklist.push(LCA);
 307   while (worklist.size() > 0) {
 308     Block* mid = worklist.pop();
 309     if (mid == early)  continue;  // stop searching here
 310 
 311     // Test and set the visited bit.
 312     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 313 
 314     // Don't process the current LCA, otherwise the search may terminate early
 315     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 316       // Raise the LCA.
 317       LCA = mid->dom_lca(LCA);
 318       if (LCA == early)  break;   // stop searching everywhere
 319       assert(early->dominates(LCA), "early is high enough");
 320       // Resume searching at that point, skipping intermediate levels.
 321       worklist.push(LCA);
 322       if (LCA == mid)
 323         continue; // Don't mark as visited to avoid early termination.
 324     } else {
 325       // Keep searching through this block's predecessors.
 326       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 327         Block* mid_parent = bbs[ mid->pred(j)->_idx ];
 328         worklist.push(mid_parent);
 329       }
 330     }
 331     mid->set_raise_LCA_visited(mark);
 332   }
 333   return LCA;
 334 }
 335 
 336 //--------------------------memory_early_block--------------------------------
 337 // This is a variation of find_deepest_input, the heart of schedule_early.
 338 // Find the "early" block for a load, if we considered only memory and
 339 // address inputs, that is, if other data inputs were ignored.
 340 //
 341 // Because a subset of edges are considered, the resulting block will 
 342 // be earlier (at a shallower dom_depth) than the true schedule_early 
 343 // point of the node. We compute this earlier block as a more permissive
 344 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 345 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
 346   Node* base;
 347   Node* index;
 348   Node* store = load->in(MemNode::Memory);
 349   load->as_Mach()->memory_inputs(base, index);
 350   
 351   assert(base != NodeSentinel && index != NodeSentinel,
 352          "unexpected base/index inputs");
 353   
 354   Node* mem_inputs[4];
 355   int mem_inputs_length = 0;
 356   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 357   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 358   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 359 
 360   // In the comparision below, add one to account for the control input,
 361   // which may be null, but always takes up a spot in the in array.
 362   if (mem_inputs_length + 1 < (int) load->req()) {
 363     // This "load" has more inputs than just the memory, base and index inputs.
 364     // For purposes of checking anti-dependences, we need to start 
 365     // from the early block of only the address portion of the instruction, 
 366     // and ignore other blocks that may have factored into the wider 
 367     // schedule_early calculation.
 368     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 369 
 370     Block* deepb           = NULL;        // Deepest block so far
 371     int    deepb_dom_depth = 0;
 372     for (int i = 0; i < mem_inputs_length; i++) {
 373       Block* inb = bbs[mem_inputs[i]->_idx];
 374       if (deepb_dom_depth < (int) inb->_dom_depth) {
 375         // The new inb must be dominated by the previous deepb.
 376         // The various inputs must be linearly ordered in the dom
 377         // tree, or else there will not be a unique deepest block.
 378         DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
 379         deepb = inb;                      // Save deepest block
 380         deepb_dom_depth = deepb->_dom_depth;
 381       }
 382     }
 383     early = deepb;
 384   }
 385 
 386   return early;
 387 }
 388 
 389 //--------------------------insert_anti_dependences---------------------------
 390 // A load may need to witness memory that nearby stores can overwrite.
 391 // For each nearby store, either insert an "anti-dependence" edge
 392 // from the load to the store, or else move LCA upward to force the
 393 // load to (eventually) be scheduled in a block above the store.
 394 //
 395 // Do not add edges to stores on distinct control-flow paths;
 396 // only add edges to stores which might interfere.
 397 //
 398 // Return the (updated) LCA.  There will not be any possibly interfering
 399 // store between the load's "early block" and the updated LCA.
 400 // Any stores in the updated LCA will have new precedence edges
 401 // back to the load.  The caller is expected to schedule the load
 402 // in the LCA, in which case the precedence edges will make LCM
 403 // preserve anti-dependences.  The caller may also hoist the load
 404 // above the LCA, if it is not the early block.
 405 Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
 406   assert(load->needs_anti_dependence_check(), "must be a load of some sort");
 407   assert(LCA != NULL, "");
 408   DEBUG_ONLY(Block* LCA_orig = LCA);
 409 
 410   // Compute the alias index.  Loads and stores with different alias indices
 411   // do not need anti-dependence edges.
 412   uint load_alias_idx = C->get_alias_index(load->adr_type());
 413 #ifdef ASSERT
 414   if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
 415       (PrintOpto || VerifyAliases ||
 416        PrintMiscellaneous && (WizardMode || Verbose))) {
 417     // Load nodes should not consume all of memory.
 418     // Reporting a bottom type indicates a bug in adlc.
 419     // If some particular type of node validly consumes all of memory,
 420     // sharpen the preceding "if" to exclude it, so we can catch bugs here.
 421     tty->print_cr("*** Possible Anti-Dependence Bug:  Load consumes all of memory.");
 422     load->dump(2);
 423     if (VerifyAliases)  assert(load_alias_idx != Compile::AliasIdxBot, "");
 424   }
 425 #endif
 426   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp), 
 427          "String compare is only known 'load' that does not conflict with any stores");
 428 
 429   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 430     // It is impossible to spoil this load by putting stores before it,
 431     // because we know that the stores will never update the value
 432     // which 'load' must witness.
 433     return LCA;
 434   }
 435 
 436   node_idx_t load_index = load->_idx;
 437 
 438   // Note the earliest legal placement of 'load', as determined by
 439   // by the unique point in the dom tree where all memory effects
 440   // and other inputs are first available.  (Computed by schedule_early.)
 441   // For normal loads, 'early' is the shallowest place (dom graph wise)
 442   // to look for anti-deps between this load and any store.
 443   Block* early = _bbs[load_index];
 444 
 445   // If we are subsuming loads, compute an "early" block that only considers
 446   // memory or address inputs. This block may be different than the 
 447   // schedule_early block in that it could be at an even shallower depth in the 
 448   // dominator tree, and allow for a broader discovery of anti-dependences.
 449   if (C->subsume_loads()) {
 450     early = memory_early_block(load, early, _bbs);
 451   }
 452 
 453   ResourceArea *area = Thread::current()->resource_area();
 454   Node_List worklist_mem(area);     // prior memory state to store
 455   Node_List worklist_store(area);   // possible-def to explore
 456   Node_List non_early_stores(area); // all relevant stores outside of early
 457   bool must_raise_LCA = false;
 458   DEBUG_ONLY(VectorSet should_not_repeat(area));
 459 
 460 #ifdef TRACK_PHI_INPUTS
 461   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 462   // Provide "phi_inputs" to check if every input to a PhiNode is from the 
 463   // original memory state.  This indicates a PhiNode for which should not
 464   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 465   // may be overly conservative.
 466   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 467   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 468 #endif
 469 
 470   // 'load' uses some memory state; look for users of the same state.
 471   // Recurse through MergeMem nodes to the stores that use them.
 472 
 473   // Each of these stores is a possible definition of memory
 474   // that 'load' needs to use.  We need to force 'load'
 475   // to occur before each such store.  When the store is in
 476   // the same block as 'load', we insert an anti-dependence
 477   // edge load->store.
 478 
 479   // The relevant stores "nearby" the load consist of a tree rooted
 480   // at initial_mem, with internal nodes of type MergeMem.
 481   // Therefore, the branches visited by the worklist are of this form:
 482   //    initial_mem -> (MergeMem ->)* store
 483   // The anti-dependence constraints apply only to the fringe of this tree.
 484 
 485   Node* initial_mem = load->in(MemNode::Memory);
 486   worklist_store.push(initial_mem);
 487   worklist_mem.push(NULL);
 488   DEBUG_ONLY(should_not_repeat.test_set(initial_mem->_idx));
 489   while (worklist_store.size() > 0) {
 490     // Examine a nearby store to see if it might interfere with our load.
 491     Node* mem   = worklist_mem.pop();
 492     Node* store = worklist_store.pop();
 493     uint op = store->Opcode();
 494 
 495     // MergeMems do not directly have anti-deps.
 496     // Treat them as internal nodes in a forward tree of memory states,
 497     // the leaves of which are each a 'possible-def'.
 498     if (store == initial_mem    // root (exclusive) of tree we are searching
 499         || op == Op_MergeMem    // internal node of tree we are searching
 500         ) {
 501       mem = store;   // It's not a possibly interfering store.
 502       for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
 503         store = mem->fast_out(i);
 504         if (store->is_MergeMem()) {
 505           // Be sure we don't get into combinatorial problems.
 506           // (Allow phis to be repeated; they can merge two relevant states.)
 507           uint i = worklist_store.size();
 508           for (; i > 0; i--) {
 509             if (worklist_store.at(i-1) == store)  break;
 510           }
 511           if (i > 0)  continue; // already on work list; do not repeat
 512           DEBUG_ONLY(int repeated = should_not_repeat.test_set(store->_idx));
 513           assert(!repeated, "do not walk merges twice");
 514         }
 515         worklist_mem.push(mem);
 516         worklist_store.push(store);
 517       }
 518       continue;
 519     }
 520 
 521     if (op == Op_MachProj || op == Op_Catch)   continue;
 522     if (store->needs_anti_dependence_check())  continue;  // not really a store
 523 
 524     // Compute the alias index.  Loads and stores with different alias
 525     // indices do not need anti-dependence edges.  Wide MemBar's are
 526     // anti-dependent on everything (except immutable memories).
 527     const TypePtr* adr_type = store->adr_type();
 528     if (!C->can_alias(adr_type, load_alias_idx))  continue;
 529 
 530     // Most slow-path runtime calls do NOT modify Java memory, but
 531     // they can block and so write Raw memory.
 532     if (store->is_Mach()) {
 533       MachNode* mstore = store->as_Mach();
 534       if (load_alias_idx != Compile::AliasIdxRaw) {
 535         // Check for call into the runtime using the Java calling
 536         // convention (and from there into a wrapper); it has no
 537         // _method.  Can't do this optimization for Native calls because
 538         // they CAN write to Java memory.
 539         if (mstore->ideal_Opcode() == Op_CallStaticJava) {
 540           assert(mstore->is_MachSafePoint(), "");
 541           MachSafePointNode* ms = (MachSafePointNode*) mstore;
 542           assert(ms->is_MachCallJava(), "");
 543           MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
 544           if (mcj->_method == NULL) {
 545             // These runtime calls do not write to Java visible memory
 546             // (other than Raw) and so do not require anti-dependence edges.
 547             continue;
 548           }
 549         }
 550         // Same for SafePoints: they read/write Raw but only read otherwise.
 551         // This is basically a workaround for SafePoints only defining control
 552         // instead of control + memory.
 553         if (mstore->ideal_Opcode() == Op_SafePoint) 
 554           continue;
 555       } else {
 556         // Some raw memory, such as the load of "top" at an allocation, 
 557         // can be control dependent on the previous safepoint. See 
 558         // comments in GraphKit::allocate_heap() about control input.  
 559         // Inserting an anti-dep between such a safepoint and a use 
 560         // creates a cycle, and will cause a subsequent failure in 
 561         // local scheduling.  (BugId 4919904)
 562         // (%%% How can a control input be a safepoint and not a projection??)
 563         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 564           continue;
 565       }
 566     }
 567 
 568     // Identify a block that the current load must be above,
 569     // or else observe that 'store' is all the way up in the
 570     // earliest legal block for 'load'.  In the latter case,
 571     // immediately insert an anti-dependence edge.
 572     Block* store_block = _bbs[store->_idx];
 573     assert(store_block != NULL, "unused killing projections skipped above");
 574 
 575     if (store->is_Phi()) {
 576       // 'load' uses memory which is one (or more) of the Phi's inputs.
 577       // It must be scheduled not before the Phi, but rather before
 578       // each of the relevant Phi inputs.
 579       //
 580       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 581       // we mark each corresponding predecessor block and do a combined
 582       // hoisting operation later (raise_LCA_above_marks).
 583       //
 584       // Do not assert(store_block != early, "Phi merging memory after access")
 585       // PhiNode may be at start of block 'early' with backedge to 'early'
 586       DEBUG_ONLY(bool found_match = false);
 587       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 588         if (store->in(j) == mem) {   // Found matching input?
 589           DEBUG_ONLY(found_match = true);
 590           Block* pred_block = _bbs[store_block->pred(j)->_idx];
 591           if (pred_block != early) {
 592             // If any predecessor of the Phi matches the load's "early block",
 593             // we do not need a precedence edge between the Phi and 'load'
 594             // since the load will be forced into a block preceeding the Phi.
 595             pred_block->set_raise_LCA_mark(load_index);
 596             assert(!LCA_orig->dominates(pred_block) ||
 597                    early->dominates(pred_block), "early is high enough");
 598             must_raise_LCA = true;
 599           }
 600         }
 601       }
 602       assert(found_match, "no worklist bug");
 603 #ifdef TRACK_PHI_INPUTS
 604 #ifdef ASSERT
 605       // This assert asks about correct handling of PhiNodes, which may not 
 606       // have all input edges directly from 'mem'. See BugId 4621264
 607       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
 608       // Increment by exactly one even if there are multiple copies of 'mem'
 609       // coming into the phi, because we will run this block several times
 610       // if there are several copies of 'mem'.  (That's how DU iterators work.)
 611       phi_inputs.at_put(store->_idx, num_mem_inputs);
 612       assert(PhiNode::Input + num_mem_inputs < store->req(),
 613              "Expect at least one phi input will not be from original memory state");
 614 #endif //ASSERT
 615 #endif //TRACK_PHI_INPUTS
 616     } else if (store_block != early) {
 617       // 'store' is between the current LCA and earliest possible block.
 618       // Label its block, and decide later on how to raise the LCA
 619       // to include the effect on LCA of this store.
 620       // If this store's block gets chosen as the raised LCA, we
 621       // will find him on the non_early_stores list and stick him
 622       // with a precedence edge.
 623       // (But, don't bother if LCA is already raised all the way.)
 624       if (LCA != early) {
 625         store_block->set_raise_LCA_mark(load_index);
 626         must_raise_LCA = true;
 627         non_early_stores.push(store);
 628       }
 629     } else {
 630       // Found a possibly-interfering store in the load's 'early' block.
 631       // This means 'load' cannot sink at all in the dominator tree.
 632       // Add an anti-dep edge, and squeeze 'load' into the highest block.
 633       assert(store != load->in(0), "dependence cycle found");
 634       if (verify) {
 635         assert(store->find_edge(load) != -1, "missing precedence edge");
 636       } else {
 637         store->add_prec(load);
 638       }
 639       LCA = early;
 640       // This turns off the process of gathering non_early_stores.
 641     }
 642   }
 643   // (Worklist is now empty; all nearby stores have been visited.)
 644 
 645   // Finished if 'load' must be scheduled in its 'early' block.
 646   // If we found any stores there, they have already been given
 647   // precedence edges.
 648   if (LCA == early)  return LCA;
 649 
 650   // We get here only if there are no possibly-interfering stores
 651   // in the load's 'early' block.  Move LCA up above all predecessors
 652   // which contain stores we have noted.
 653   //
 654   // The raised LCA block can be a home to such interfering stores,
 655   // but its predecessors must not contain any such stores.
 656   //
 657   // The raised LCA will be a lower bound for placing the load,
 658   // preventing the load from sinking past any block containing
 659   // a store that may invalidate the memory state required by 'load'.
 660   if (must_raise_LCA)
 661     LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
 662   if (LCA == early)  return LCA;
 663 
 664   // Insert anti-dependence edges from 'load' to each store
 665   // in the non-early LCA block.
 666   // Mine the non_early_stores list for such stores.
 667   if (LCA->raise_LCA_mark() == load_index) {
 668     while (non_early_stores.size() > 0) {
 669       Node* store = non_early_stores.pop();
 670       Block* store_block = _bbs[store->_idx];
 671       if (store_block == LCA) {
 672         // add anti_dependence from store to load in its own block
 673         assert(store != load->in(0), "dependence cycle found");
 674         if (verify) {
 675           assert(store->find_edge(load) != -1, "missing precedence edge");
 676         } else {
 677           store->add_prec(load);
 678         }
 679       } else {
 680         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 681         // Any other stores we found must be either inside the new LCA
 682         // or else outside the original LCA.  In the latter case, they
 683         // did not interfere with any use of 'load'.
 684         assert(LCA->dominates(store_block)
 685                || !LCA_orig->dominates(store_block), "no stray stores");
 686       }
 687     }
 688   }
 689 
 690   // Return the highest block containing stores; any stores
 691   // within that block have been given anti-dependence edges.
 692   return LCA;
 693 }
 694 
 695 // This class is used to iterate backwards over the nodes in the graph.
 696 
 697 class Node_Backward_Iterator {
 698 
 699 private:
 700   Node_Backward_Iterator();
 701 
 702 public:
 703   // Constructor for the iterator
 704   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
 705 
 706   // Postincrement operator to iterate over the nodes
 707   Node *next();
 708 
 709 private:
 710   VectorSet   &_visited;
 711   Node_List   &_stack;
 712   Block_Array &_bbs;
 713 };
 714 
 715 // Constructor for the Node_Backward_Iterator
 716 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
 717   : _visited(visited), _stack(stack), _bbs(bbs) {
 718   // The stack should contain exactly the root
 719   stack.clear();
 720   stack.push(root);
 721 
 722   // Clear the visited bits
 723   visited.Clear();
 724 }
 725 
 726 // Iterator for the Node_Backward_Iterator
 727 Node *Node_Backward_Iterator::next() {
 728 
 729   // If the _stack is empty, then just return NULL: finished.
 730   if ( !_stack.size() )
 731     return NULL;
 732 
 733   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
 734   // made stateless, so I do not need to record the index 'i' on my _stack.
 735   // Instead I visit all users each time, scanning for unvisited users.
 736   // I visit unvisited not-anti-dependence users first, then anti-dependent
 737   // children next.
 738   Node *self = _stack.pop();
 739 
 740   // I cycle here when I am entering a deeper level of recursion.
 741   // The key variable 'self' was set prior to jumping here.
 742   while( 1 ) {
 743 
 744     _visited.set(self->_idx);
 745       
 746     // Now schedule all uses as late as possible.
 747     uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
 748     uint src_rpo = _bbs[src]->_rpo;
 749       
 750     // Schedule all nodes in a post-order visit
 751     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 752 
 753     // Scan for unvisited nodes
 754     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
 755       // For all uses, schedule late
 756       Node* n = self->fast_out(i); // Use
 757 
 758       // Skip already visited children
 759       if ( _visited.test(n->_idx) )
 760         continue;
 761 
 762       // do not traverse backward control edges
 763       Node *use = n->is_Proj() ? n->in(0) : n;
 764       uint use_rpo = _bbs[use->_idx]->_rpo;
 765 
 766       if ( use_rpo < src_rpo )
 767         continue;
 768 
 769       // Phi nodes always precede uses in a basic block
 770       if ( use_rpo == src_rpo && use->is_Phi() )
 771         continue;
 772 
 773       unvisited = n;      // Found unvisited
 774 
 775       // Check for possible-anti-dependent 
 776       if( !n->needs_anti_dependence_check() ) 
 777         break;            // Not visited, not anti-dep; schedule it NOW
 778     }
 779       
 780     // Did I find an unvisited not-anti-dependent Node?
 781     if ( !unvisited ) 
 782       break;                  // All done with children; post-visit 'self'
 783 
 784     // Visit the unvisited Node.  Contains the obvious push to 
 785     // indicate I'm entering a deeper level of recursion.  I push the
 786     // old state onto the _stack and set a new state and loop (recurse).
 787     _stack.push(self);
 788     self = unvisited;
 789   } // End recursion loop
 790 
 791   return self;
 792 }
 793 
 794 //------------------------------ComputeLatenciesBackwards----------------------
 795 // Compute the latency of all the instructions.
 796 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
 797 #ifndef PRODUCT
 798   if (trace_opto_pipelining())
 799     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 800 #endif
 801 
 802   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
 803   Node *n;
 804 
 805   // Walk over all the nodes from last to first
 806   while (n = iter.next()) {
 807     // Set the latency for the definitions of this instruction
 808     partial_latency_of_defs(n);
 809   }
 810 } // end ComputeLatenciesBackwards
 811 
 812 //------------------------------partial_latency_of_defs------------------------
 813 // Compute the latency impact of this node on all defs.  This computes
 814 // a number that increases as we approach the beginning of the routine.
 815 void PhaseCFG::partial_latency_of_defs(Node *n) {
 816   // Set the latency for this instruction
 817 #ifndef PRODUCT
 818   if (trace_opto_pipelining()) {
 819     tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
 820                n->_idx, _node_latency.at_grow(n->_idx));
 821     dump();
 822   }
 823 #endif
 824 
 825   if (n->is_Proj())
 826     n = n->in(0);
 827 
 828   if (n->is_Root())
 829     return;
 830 
 831   uint nlen = n->len();
 832   uint use_latency = _node_latency.at_grow(n->_idx);
 833   uint use_pre_order = _bbs[n->_idx]->_pre_order;
 834 
 835   for ( uint j=0; j<nlen; j++ ) {
 836     Node *def = n->in(j);
 837 
 838     if (!def || def == n)
 839       continue;
 840       
 841     // Walk backwards thru projections
 842     if (def->is_Proj())
 843       def = def->in(0);
 844 
 845 #ifndef PRODUCT
 846     if (trace_opto_pipelining()) {
 847       tty->print("#    in(%2d): ", j);
 848       def->dump(); 
 849     }
 850 #endif
 851 
 852     // If the defining block is not known, assume it is ok
 853     Block *def_block = _bbs[def->_idx];
 854     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 855 
 856     if ( (use_pre_order <  def_pre_order) ||
 857          (use_pre_order == def_pre_order && n->is_Phi()) )
 858       continue;
 859 
 860     uint delta_latency = n->latency(j);
 861     uint current_latency = delta_latency + use_latency;
 862 
 863     if (_node_latency.at_grow(def->_idx) < current_latency) {
 864       _node_latency.at_put_grow(def->_idx, current_latency);
 865     }
 866 
 867 #ifndef PRODUCT
 868     if (trace_opto_pipelining()) {
 869       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
 870                     use_latency, j, delta_latency, current_latency, def->_idx, 
 871                     _node_latency.at_grow(def->_idx));
 872     }
 873 #endif
 874   }
 875 }
 876 
 877 //------------------------------latency_from_use-------------------------------
 878 // Compute the latency of a specific use
 879 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
 880   // If self-reference, return no latency
 881   if (use == n || use->is_Root())
 882     return 0;
 883     
 884   uint def_pre_order = _bbs[def->_idx]->_pre_order;
 885   uint latency = 0;
 886 
 887   // If the use is not a projection, then it is simple...
 888   if (!use->is_Proj()) {
 889 #ifndef PRODUCT
 890     if (trace_opto_pipelining()) {
 891       tty->print("#    out(): ");
 892       use->dump();
 893     }
 894 #endif
 895 
 896     uint use_pre_order = _bbs[use->_idx]->_pre_order;
 897 
 898     if (use_pre_order < def_pre_order)
 899       return 0;
 900 
 901     if (use_pre_order == def_pre_order && use->is_Phi())
 902       return 0;
 903 
 904     uint nlen = use->len();
 905     uint nl = _node_latency.at_grow(use->_idx);
 906 
 907     for ( uint j=0; j<nlen; j++ ) {
 908       if (use->in(j) == n) {
 909         // Change this if we want local latencies
 910         uint ul = use->latency(j);
 911         uint  l = ul + nl;
 912         if (latency < l) latency = l;
 913 #ifndef PRODUCT
 914         if (trace_opto_pipelining()) {
 915           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
 916                         nl, j, ul, l, latency);
 917         }
 918 #endif
 919       }
 920     }
 921   } else {
 922     // This is a projection, just grab the latency of the use(s)
 923     for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
 924       uint l = latency_from_use(use, def, use->fast_out(j));
 925       if (latency < l) latency = l;
 926     }
 927   }
 928 
 929   return latency;
 930 }
 931 
 932 //------------------------------latency_from_uses------------------------------
 933 // Compute the latency of this instruction relative to all of it's uses.
 934 // This computes a number that increases as we approach the beginning of the
 935 // routine.
 936 void PhaseCFG::latency_from_uses(Node *n) {
 937   // Set the latency for this instruction
 938 #ifndef PRODUCT
 939   if (trace_opto_pipelining()) {
 940     tty->print("# latency_from_outputs: node_latency[%d] = %d for node", 
 941                n->_idx, _node_latency.at_grow(n->_idx));
 942     dump();
 943   }
 944 #endif
 945   uint latency=0;
 946   const Node *def = n->is_Proj() ? n->in(0): n;
 947 
 948   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 949     uint l = latency_from_use(n, def, n->fast_out(i));
 950 
 951     if (latency < l) latency = l;
 952   }
 953 
 954   _node_latency.at_put_grow(n->_idx, latency);
 955 }
 956 
 957 //------------------------------hoist_to_cheaper_block-------------------------
 958 // Pick a block for node self, between early and LCA, that is a cheaper 
 959 // alternative to LCA.
 960 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
 961   const double delta = 1+PROB_UNLIKELY_MAG(4);
 962   Block* least       = LCA;
 963   double least_freq  = least->_freq;
 964   uint target        = _node_latency.at_grow(self->_idx);
 965   uint start_latency = _node_latency.at_grow(LCA->_nodes[0]->_idx);
 966   uint end_latency   = _node_latency.at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
 967   bool in_latency    = (target <= start_latency);
 968   const Block* root_block = _bbs[_root->_idx];
 969 
 970   // Turn off latency scheduling if scheduling is just plain off
 971   if (!C->do_scheduling())
 972     in_latency = true;
 973 
 974   // Do not hoist (to cover latency) instructions which target a
 975   // single register.  Hoisting stretches the live range of the
 976   // single register and may force spilling.
 977   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
 978   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
 979     in_latency = true;
 980 
 981 #ifndef PRODUCT
 982   if (trace_opto_pipelining()) {
 983     tty->print("# Find cheaper block for latency %d: ",
 984       _node_latency.at_grow(self->_idx));
 985     self->dump();
 986     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
 987       LCA->_pre_order,
 988       LCA->_nodes[0]->_idx,
 989       start_latency,
 990       LCA->_nodes[LCA->end_idx()]->_idx,
 991       end_latency,
 992       least_freq);
 993   }
 994 #endif
 995 
 996   // Walk up the dominator tree from LCA (Lowest common ancestor) to
 997   // the earliest legal location.  Capture the least execution frequency.
 998   while (LCA != early) {
 999     LCA = LCA->_idom;         // Follow up the dominator tree
1000 
1001     if (LCA == NULL) {
1002       // Bailout without retry
1003       C->record_method_not_compilable("late schedule failed: LCA == NULL");
1004       return least;
1005     }
1006 
1007     // Don't hoist machine instructions to the root basic block
1008     if (mach && LCA == root_block)
1009       break;
1010 
1011     uint start_lat = _node_latency.at_grow(LCA->_nodes[0]->_idx);
1012     uint end_idx   = LCA->end_idx();
1013     uint end_lat   = _node_latency.at_grow(LCA->_nodes[end_idx]->_idx);
1014     double LCA_freq = LCA->_freq;
1015 #ifndef PRODUCT
1016     if (trace_opto_pipelining()) {
1017       tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1018         LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
1019     }
1020 #endif
1021     if (LCA_freq < least_freq              || // Better Frequency
1022         ( !in_latency                   &&    // No block containing latency
1023           LCA_freq < least_freq * delta &&    // No worse frequency
1024           target >= end_lat             &&    // within latency range
1025           !self->is_iteratively_computed() )  // But don't hoist IV increments
1026              // because they may end up above other uses of their phi forcing
1027              // their result register to be different from their input.
1028        ) {
1029       least = LCA;            // Found cheaper block
1030       least_freq = LCA_freq;
1031       start_latency = start_lat;
1032       end_latency = end_lat;
1033       if (target <= start_lat)
1034         in_latency = true;
1035     }
1036   }
1037 
1038 #ifndef PRODUCT
1039   if (trace_opto_pipelining()) {
1040     tty->print_cr("#  Choose block B%d with start latency=%d and freq=%g",
1041       least->_pre_order, start_latency, least_freq);
1042   }
1043 #endif
1044 
1045   // See if the latency needs to be updated
1046   if (target < end_latency) {
1047 #ifndef PRODUCT
1048     if (trace_opto_pipelining()) {
1049       tty->print_cr("#  Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
1050     }
1051 #endif
1052     _node_latency.at_put_grow(self->_idx, end_latency);
1053     partial_latency_of_defs(self);
1054   }
1055 
1056   return least;
1057 }
1058 
1059 
1060 //------------------------------schedule_late-----------------------------------
1061 // Now schedule all codes as LATE as possible.  This is the LCA in the 
1062 // dominator tree of all USES of a value.  Pick the block with the least
1063 // loop nesting depth that is lowest in the dominator tree.
1064 extern const char must_clone[];
1065 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1066 #ifndef PRODUCT
1067   if (trace_opto_pipelining())
1068     tty->print("\n#---- schedule_late ----\n");
1069 #endif
1070 
1071   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
1072   Node *self;
1073 
1074   // Walk over all the nodes from last to first
1075   while (self = iter.next()) {
1076     Block* early = _bbs[self->_idx];   // Earliest legal placement
1077 
1078     if (self->is_top()) {
1079       // Top node goes in bb #2 with other constants.
1080       // It must be special-cased, because it has no out edges.
1081       early->add_inst(self);
1082       continue;
1083     }
1084 
1085     // No uses, just terminate
1086     if (self->outcnt() == 0) {
1087       assert(self->Opcode() == Op_MachProj, "sanity");
1088       continue;                   // Must be a dead machine projection
1089     }
1090 
1091     // If node is pinned in the block, then no scheduling can be done.
1092     if( self->pinned() )          // Pinned in block?
1093       continue;
1094 
1095     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1096     if (mach) {
1097       switch (mach->ideal_Opcode()) {
1098       case Op_CreateEx:
1099         // Don't move exception creation
1100         early->add_inst(self);
1101         continue;
1102         break;
1103       case Op_CheckCastPP:
1104         // Don't move CheckCastPP nodes away from their input, if the input
1105         // is a rawptr (5071820).
1106         Node *def = self->in(1);
1107         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1108           early->add_inst(self);
1109           continue;
1110         }
1111         break;
1112       }
1113     }
1114     
1115     // Gather LCA of all uses
1116     Block *LCA = NULL;
1117     {
1118       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1119         // For all uses, find LCA
1120         Node* use = self->fast_out(i);
1121         LCA = raise_LCA_above_use(LCA, use, self, _bbs);
1122       }
1123     }  // (Hide defs of imax, i from rest of block.)
1124 
1125     // Place temps in the block of their use.  This isn't a
1126     // requirement for correctness but it reduces useless
1127     // interference between temps and other nodes.
1128     if (mach != NULL && mach->is_MachTemp()) {
1129       _bbs.map(self->_idx, LCA);
1130       LCA->add_inst(self);
1131       continue;
1132     }
1133 
1134     // Check if 'self' could be anti-dependent on memory
1135     if (self->needs_anti_dependence_check()) {
1136       // Hoist LCA above possible-defs and insert anti-dependences to
1137       // defs in new LCA block.
1138       LCA = insert_anti_dependences(LCA, self);
1139     }
1140 
1141     if (early->_dom_depth > LCA->_dom_depth) {
1142       // Somehow the LCA has moved above the earliest legal point.
1143       // (One way this can happen is via memory_early_block.)
1144       if (C->subsume_loads() == true && !C->failing()) {
1145         // Retry with subsume_loads == false
1146         // If this is the first failure, the sentinel string will "stick"
1147         // to the Compile object, and the C2Compiler will see it and retry.
1148         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1149       } else {
1150         // Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
1151         C->record_method_not_compilable("late schedule failed: incorrect graph");
1152       }
1153       return;
1154     }
1155 
1156     // If there is no opportunity to hoist, then we're done.
1157     bool try_to_hoist = (LCA != early);
1158 
1159     // Must clone guys stay next to use; no hoisting allowed.
1160     // Also cannot hoist guys that alter memory or are otherwise not
1161     // allocatable (hoisting can make a value live longer, leading to
1162     // anti and output dependency problems which are normally resolved
1163     // by the register allocator giving everyone a different register).
1164     if (mach != NULL && must_clone[mach->ideal_Opcode()])
1165       try_to_hoist = false;
1166 
1167     Block* late = NULL;
1168     if (try_to_hoist) {
1169       // Now find the block with the least execution frequency.
1170       // Start at the latest schedule and work up to the earliest schedule
1171       // in the dominator tree.  Thus the Node will dominate all its uses.
1172       late = hoist_to_cheaper_block(LCA, early, self);
1173     } else {
1174       // Just use the LCA of the uses.
1175       late = LCA;
1176     }
1177 
1178     // Put the node into target block
1179     schedule_node_into_block(self, late);
1180     
1181 #ifdef ASSERT
1182     if (self->needs_anti_dependence_check()) {
1183       // since precedence edges are only inserted when we're sure they
1184       // are needed make sure that after placement in a block we don't
1185       // need any new precedence edges.
1186       verify_anti_dependences(late, self);
1187     }
1188 #endif
1189   } // Loop until all nodes have been visited
1190 
1191 } // end ScheduleLate
1192 
1193 //------------------------------GlobalCodeMotion-------------------------------
1194 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
1195   ResourceMark rm;
1196 
1197 #ifndef PRODUCT
1198   if (trace_opto_pipelining()) {
1199     tty->print("\n---- Start GlobalCodeMotion ----\n");
1200   }
1201 #endif
1202 
1203   // Initialize the bbs.map for things on the proj_list
1204   uint i;
1205   for( i=0; i < proj_list.size(); i++ )
1206     _bbs.map(proj_list[i]->_idx, NULL);
1207 
1208   // Set the basic block for Nodes pinned into blocks
1209   Arena *a = Thread::current()->resource_area();
1210   VectorSet visited(a);
1211   schedule_pinned_nodes( visited );
1212 
1213   // Find the earliest Block any instruction can be placed in.  Some
1214   // instructions are pinned into Blocks.  Unpinned instructions can
1215   // appear in last block in which all their inputs occur.
1216   visited.Clear();
1217   Node_List stack(a);
1218   stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
1219   if (!schedule_early(visited, stack)) {
1220     // Bailout without retry
1221     C->record_method_not_compilable("early schedule failed");
1222     return;
1223   }
1224 
1225   // Build Def-Use edges.
1226   proj_list.push(_root);        // Add real root as another root
1227   proj_list.pop();
1228 
1229   // Compute the latency information (via backwards walk) for all the
1230   // instructions in the graph
1231   GrowableArray<uint> node_latency;
1232   _node_latency = node_latency;
1233 
1234   if( C->do_scheduling() )
1235     ComputeLatenciesBackwards(visited, stack); 
1236 
1237   // Now schedule all codes as LATE as possible.  This is the LCA in the 
1238   // dominator tree of all USES of a value.  Pick the block with the least
1239   // loop nesting depth that is lowest in the dominator tree.  
1240   // ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
1241   schedule_late(visited, stack);
1242   if( C->failing() ) {
1243     // schedule_late fails only when graph is incorrect.
1244     assert(!VerifyGraphEdges, "verification should have failed");
1245     return;
1246   }
1247 
1248   unique = C->unique();
1249 
1250 #ifndef PRODUCT
1251   if (trace_opto_pipelining()) {
1252     tty->print("\n---- Detect implicit null checks ----\n");
1253   }
1254 #endif
1255 
1256   // Detect implicit-null-check opportunities.  Basically, find NULL checks 
1257   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1258   // I can generate a memory op if there is not one nearby.
1259   if (C->is_method_compilation()) {
1260     // Don't do it for natives, adapters, or runtime stubs
1261     int allowed_reasons = 0;
1262     // ...and don't do it when there have been too many traps, globally.
1263     for (int reason = (int)Deoptimization::Reason_none+1;
1264          reason < Compile::trapHistLength; reason++) {
1265       assert(reason < BitsPerInt, "recode bit map");
1266       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
1267         allowed_reasons |= nth_bit(reason);
1268     }
1269     // By reversing the loop direction we get a very minor gain on mpegaudio.
1270     // Feel free to revert to a forward loop for clarity.
1271     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1272     for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
1273       Node *proj = matcher._null_check_tests[i  ];
1274       Node *val  = matcher._null_check_tests[i+1];
1275       _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
1276       // The implicit_null_check will only perform the transformation
1277       // if the null branch is truly uncommon, *and* it leads to an
1278       // uncommon trap.  Combined with the too_many_traps guards
1279       // above, this prevents SEGV storms reported in 6366351,
1280       // by recompiling offending methods without this optimization.
1281     }
1282   }
1283 
1284 #ifndef PRODUCT
1285   if (trace_opto_pipelining()) {
1286     tty->print("\n---- Start Local Scheduling ----\n");
1287   }
1288 #endif
1289 
1290   // Schedule locally.  Right now a simple topological sort.
1291   // Later, do a real latency aware scheduler.
1292   int *ready_cnt = NEW_RESOURCE_ARRAY(int,C->unique());
1293   memset( ready_cnt, -1, C->unique() * sizeof(int) );
1294   visited.Clear();
1295   for (i = 0; i < _num_blocks; i++) {
1296     if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
1297       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1298         C->record_method_not_compilable("local schedule failed");
1299       }
1300       return;
1301     }
1302   }
1303 
1304   // If we inserted any instructions between a Call and his CatchNode,
1305   // clone the instructions on all paths below the Catch.
1306   for( i=0; i < _num_blocks; i++ )
1307     _blocks[i]->call_catch_cleanup(_bbs);
1308 
1309 #ifndef PRODUCT
1310   if (trace_opto_pipelining()) {
1311     tty->print("\n---- After GlobalCodeMotion ----\n");
1312     for (uint i = 0; i < _num_blocks; i++) {
1313       _blocks[i]->dump();
1314     }
1315   }
1316 #endif
1317 }
1318 
1319 
1320 //------------------------------Estimate_Block_Frequency-----------------------
1321 // Estimate block frequencies based on IfNode probabilities.
1322 void PhaseCFG::Estimate_Block_Frequency() {
1323   int cnts = C->method() ? C->method()->interpreter_invocation_count() : 1;
1324   // Most of our algorithms will die horribly if frequency can become
1325   // negative so make sure cnts is a sane value.
1326   if( cnts <= 0 ) cnts = 1;
1327   float f = (float)cnts/(float)FreqCountInvocations;
1328 
1329   // Create the loop tree and calculate loop depth.
1330   _root_loop = create_loop_tree();
1331   _root_loop->compute_loop_depth(0);
1332   
1333   // Compute block frequency of each block, relative to a single loop entry.
1334   _root_loop->compute_freq();
1335   
1336   // Adjust all frequencies to be relative to a single method entry 
1337   _root_loop->_freq = f * 1.0;
1338   _root_loop->scale_freq();
1339   
1340   // force paths ending at uncommon traps to be infrequent
1341   Block_List worklist;
1342   Block* root_blk = _blocks[0];
1343   for (uint i = 0; i < root_blk->num_preds(); i++) {
1344     Block *pb = _bbs[root_blk->pred(i)->_idx];
1345     if (pb->has_uncommon_code()) {
1346       worklist.push(pb);
1347     }
1348   }
1349   while (worklist.size() > 0) {
1350     Block* uct = worklist.pop();
1351     uct->_freq = PROB_MIN;
1352     for (uint i = 0; i < uct->num_preds(); i++) {
1353       Block *pb = _bbs[uct->pred(i)->_idx];
1354       if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1355         worklist.push(pb);
1356       }
1357     }
1358   }
1359 
1360 #ifndef PRODUCT
1361   if (PrintCFGBlockFreq) {
1362     tty->print_cr("CFG Block Frequencies");
1363     _root_loop->dump_tree();
1364     if (Verbose) {
1365       tty->print_cr("PhaseCFG dump");
1366       dump();
1367       tty->print_cr("Node dump");
1368       _root->dump(99999);
1369     }
1370   }
1371 #endif
1372 }
1373 
1374 //----------------------------create_loop_tree--------------------------------
1375 // Create a loop tree from the CFG
1376 CFGLoop* PhaseCFG::create_loop_tree() {
1377 
1378 #ifdef ASSERT
1379   assert( _blocks[0] == _broot, "" );
1380   for (uint i = 0; i < _num_blocks; i++ ) {
1381     Block *b = _blocks[i];
1382     // Check that _loop field are clear...we could clear them if not.
1383     assert(b->_loop == NULL, "clear _loop expected");
1384     // Sanity check that the RPO numbering is reflected in the _blocks array.
1385     // It doesn't have to be for the loop tree to be built, but if it is not,
1386     // then the blocks have been reordered since dom graph building...which
1387     // may question the RPO numbering
1388     assert(b->_rpo == i, "unexpected reverse post order number");
1389   }
1390 #endif
1391 
1392   int idct = 0;
1393   CFGLoop* root_loop = new CFGLoop(idct++);
1394 
1395   Block_List worklist;
1396 
1397   // Assign blocks to loops
1398   for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
1399     Block *b = _blocks[i];
1400 
1401     if (b->head()->is_Loop()) {
1402       Block* loop_head = b;
1403       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1404       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1405       Block* tail = _bbs[tail_n->_idx];
1406 
1407       // Defensively filter out Loop nodes for non-single-entry loops.
1408       // For all reasonable loops, the head occurs before the tail in RPO.
1409       if (i <= tail->_rpo) {
1410 
1411         // The tail and (recursive) predecessors of the tail
1412         // are made members of a new loop.
1413 
1414         assert(worklist.size() == 0, "nonempty worklist");
1415         CFGLoop* nloop = new CFGLoop(idct++);
1416         assert(loop_head->_loop == NULL, "just checking");
1417         loop_head->_loop = nloop;
1418         // Add to nloop so push_pred() will skip over inner loops
1419         nloop->add_member(loop_head); 
1420         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
1421 
1422         while (worklist.size() > 0) {
1423           Block* member = worklist.pop();
1424           if (member != loop_head) {
1425             for (uint j = 1; j < member->num_preds(); j++) {
1426               nloop->push_pred(member, j, worklist, _bbs);
1427             }
1428           }
1429         }
1430       }
1431     }
1432   }
1433 
1434   // Create a member list for each loop consisting
1435   // of both blocks and (immediate child) loops.
1436   for (uint i = 0; i < _num_blocks; i++) {
1437     Block *b = _blocks[i];
1438     CFGLoop* lp = b->_loop;
1439     if (lp == NULL) {
1440       // Not assigned to a loop. Add it to the method's pseudo loop.
1441       b->_loop = root_loop;
1442       lp = root_loop;
1443     }
1444     if (lp == root_loop || b != lp->head()) { // loop heads are already members
1445       lp->add_member(b);
1446     }
1447     if (lp != root_loop) {
1448       if (lp->parent() == NULL) {
1449         // Not a nested loop. Make it a child of the method's pseudo loop.
1450         root_loop->add_nested_loop(lp);
1451       }
1452       if (b == lp->head()) {
1453         // Add nested loop to member list of parent loop.
1454         lp->parent()->add_member(lp);
1455       }
1456     }
1457   }
1458 
1459   return root_loop;
1460 }
1461 
1462 //------------------------------push_pred--------------------------------------
1463 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
1464   Node* pred_n = blk->pred(i);
1465   Block* pred = node_to_blk[pred_n->_idx];
1466   CFGLoop *pred_loop = pred->_loop;
1467   if (pred_loop == NULL) {
1468     // Filter out blocks for non-single-entry loops.
1469     // For all reasonable loops, the head occurs before the tail in RPO.
1470     if (pred->_rpo > head()->_rpo) {
1471       pred->_loop = this;
1472       worklist.push(pred);
1473     }
1474   } else if (pred_loop != this) {
1475     // Nested loop.
1476     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1477       pred_loop = pred_loop->_parent;
1478     }
1479     // Make pred's loop be a child
1480     if (pred_loop->_parent == NULL) {
1481       add_nested_loop(pred_loop);
1482       // Continue with loop entry predecessor.
1483       Block* pred_head = pred_loop->head();
1484       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1485       assert(pred_head != head(), "loop head in only one loop");
1486       push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
1487     } else {
1488       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1489     }
1490   }
1491 }
1492 
1493 //------------------------------add_nested_loop--------------------------------
1494 // Make cl a child of the current loop in the loop tree.
1495 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1496   assert(_parent == NULL, "no parent yet");
1497   assert(cl != this, "not my own parent");
1498   cl->_parent = this;
1499   CFGLoop* ch = _child;
1500   if (ch == NULL) {
1501     _child = cl;
1502   } else {
1503     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1504     ch->_sibling = cl;
1505   }
1506 }
1507 
1508 //------------------------------compute_loop_depth-----------------------------
1509 // Store the loop depth in each CFGLoop object.
1510 // Recursively walk the children to do the same for them.
1511 void CFGLoop::compute_loop_depth(int depth) {
1512   _depth = depth;
1513   CFGLoop* ch = _child;
1514   while (ch != NULL) {
1515     ch->compute_loop_depth(depth + 1);
1516     ch = ch->_sibling;
1517   }
1518 }
1519 
1520 //------------------------------compute_freq-----------------------------------
1521 // Compute the frequency of each block and loop, relative to a single entry
1522 // into the dominating loop head.
1523 void CFGLoop::compute_freq() {
1524   // Bottom up traversal of loop tree (visit inner loops first.)
1525   // Set loop head frequency to 1.0, then transitively
1526   // compute frequency for all successors in the loop,
1527   // as well as for each exit edge.  Inner loops are
1528   // treated as single blocks with loop exit targets
1529   // as the successor blocks.
1530 
1531   // Nested loops first
1532   CFGLoop* ch = _child;
1533   while (ch != NULL) {
1534     ch->compute_freq();
1535     ch = ch->_sibling;
1536   }
1537   assert (_members.length() > 0, "no empty loops");
1538   Block* hd = head();
1539   hd->_freq = 1.0f;
1540   for (int i = 0; i < _members.length(); i++) {
1541     CFGElement* s = _members.at(i);
1542     float freq = s->_freq;
1543     if (s->is_block()) {
1544       Block* b = s->as_Block();
1545       for (uint j = 0; j < b->_num_succs; j++) {
1546         Block* sb = b->_succs[j];
1547         update_succ_freq(sb, freq * b->succ_prob(j));
1548       }
1549     } else {
1550       CFGLoop* lp = s->as_CFGLoop();
1551       assert(lp->_parent == this, "immediate child");
1552       for (int k = 0; k < lp->_exits.length(); k++) {
1553         Block* eb = lp->_exits.at(k).get_target();
1554         float prob = lp->_exits.at(k).get_prob();
1555         update_succ_freq(eb, freq * prob);
1556       }
1557     }
1558   }
1559 
1560 #if 0
1561   // Raise frequency of the loop backedge block, in an effort
1562   // to keep it empty.  Skip the method level "loop".
1563   if (_parent != NULL) {
1564     CFGElement* s = _members.at(_members.length() - 1);
1565     if (s->is_block()) {
1566       Block* bk = s->as_Block();
1567       if (bk->_num_succs == 1 && bk->_succs[0] == hd) {
1568         // almost any value >= 1.0f works
1569         // FIXME: raw constant
1570         bk->_freq = 1.05f;  
1571       }
1572     }
1573   }
1574 #endif
1575 
1576   // For all loops other than the outer, "method" loop, 
1577   // sum and normalize the exit probability. The "method" loop
1578   // should keep the initial exit probability of 1, so that
1579   // inner blocks do not get erroneously scaled.
1580   if (_depth != 0) {
1581     // Total the exit probabilities for this loop.
1582     float exits_sum = 0.0f;
1583     for (int i = 0; i < _exits.length(); i++) {
1584       exits_sum += _exits.at(i).get_prob();
1585     }
1586     
1587     // Normalize the exit probabilities. Until now, the
1588     // probabilities estimate the possibility of exit per
1589     // a single loop iteration; afterward, they estimate
1590     // the probability of exit per loop entry.
1591     for (int i = 0; i < _exits.length(); i++) {
1592       Block* et = _exits.at(i).get_target();
1593       float new_prob = _exits.at(i).get_prob() / exits_sum;
1594       BlockProbPair bpp(et, new_prob);
1595       _exits.at_put(i, bpp);
1596     }
1597     
1598     // Save the total, but guard against unreasoable probability,
1599     // as the value is used to estimate the loop trip count.
1600     // An infinite trip count would blur relative block 
1601     // frequencies.
1602     if (exits_sum > 1.0f) exits_sum = 1.0;
1603     if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
1604     _exit_prob = exits_sum;
1605   }
1606 }
1607 
1608 //------------------------------succ_prob-------------------------------------
1609 // Determine the probability of reaching successor 'i' from the receiver block.
1610 float Block::succ_prob(uint i) {
1611   int eidx = end_idx();    
1612   Node *n = _nodes[eidx];  // Get ending Node
1613   int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
1614 
1615   // Switch on branch type
1616   switch( op ) {
1617   case Op_CountedLoopEnd:
1618   case Op_If: {
1619     assert (i < 2, "just checking");
1620     // Conditionals pass on only part of their frequency
1621     float prob  = n->as_MachIf()->_prob;
1622     assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
1623     // If succ[i] is the FALSE branch, invert path info
1624     if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
1625       return 1.0f - prob; // not taken
1626     } else {
1627       return prob; // taken
1628     }
1629   }
1630 
1631   case Op_Jump:
1632     // Divide the frequency between all successors evenly
1633     return 1.0f/_num_succs;
1634 
1635   case Op_Catch: {
1636     const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
1637     if (ci->_con == CatchProjNode::fall_through_index) {
1638       // Fall-thru path gets the lion's share.
1639       return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
1640     } else {
1641       // Presume exceptional paths are equally unlikely
1642       return PROB_UNLIKELY_MAG(5);
1643     }
1644   }
1645 
1646   case Op_Root:
1647   case Op_Goto:
1648     // Pass frequency straight thru to target
1649     return 1.0f;
1650 
1651   case Op_NeverBranch:
1652     return 0.0f;
1653 
1654   case Op_TailCall:
1655   case Op_TailJump:
1656   case Op_Return:
1657   case Op_Halt:
1658   case Op_Rethrow:
1659     // Do not push out freq to root block
1660     return 0.0f;
1661 
1662   default: 
1663     ShouldNotReachHere();
1664   }
1665 
1666   return 0.0f;
1667 }
1668 
1669 //------------------------------update_succ_freq-------------------------------
1670 // Update the appropriate frequency associated with block 'b', a succesor of
1671 // a block in this loop. 
1672 void CFGLoop::update_succ_freq(Block* b, float freq) {
1673   if (b->_loop == this) {
1674     if (b == head()) {
1675       // back branch within the loop
1676       // Do nothing now, the loop carried frequency will be
1677       // adjust later in scale_freq().
1678     } else {
1679       // simple branch within the loop
1680       b->_freq += freq;
1681     }
1682   } else if (!in_loop_nest(b)) {
1683     // branch is exit from this loop
1684     BlockProbPair bpp(b, freq);
1685     _exits.append(bpp);
1686   } else {
1687     // branch into nested loop
1688     CFGLoop* ch = b->_loop;
1689     ch->_freq += freq;
1690   }
1691 }
1692 
1693 //------------------------------in_loop_nest-----------------------------------
1694 // Determine if block b is in the receiver's loop nest.
1695 bool CFGLoop::in_loop_nest(Block* b) {
1696   int depth = _depth;
1697   CFGLoop* b_loop = b->_loop;
1698   int b_depth = b_loop->_depth;
1699   if (depth == b_depth) {
1700     return true;
1701   }
1702   while (b_depth > depth) {
1703     b_loop = b_loop->_parent;
1704     b_depth = b_loop->_depth;
1705   }
1706   return b_loop == this;
1707 }
1708 
1709 //------------------------------scale_freq-------------------------------------
1710 // Scale frequency of loops and blocks by trip counts from outer loops
1711 // Do a top down traversal of loop tree (visit outer loops first.)
1712 void CFGLoop::scale_freq() {
1713   float loop_freq = _freq * trip_count();
1714   for (int i = 0; i < _members.length(); i++) {
1715     CFGElement* s = _members.at(i);
1716     s->_freq *= loop_freq;
1717   }
1718   CFGLoop* ch = _child;
1719   while (ch != NULL) {
1720     ch->scale_freq();
1721     ch = ch->_sibling;
1722   }
1723 }
1724 
1725 #ifndef PRODUCT
1726 //------------------------------dump_tree--------------------------------------
1727 void CFGLoop::dump_tree() const {
1728   dump();
1729   if (_child != NULL)   _child->dump_tree();
1730   if (_sibling != NULL) _sibling->dump_tree();
1731 }
1732 
1733 //------------------------------dump-------------------------------------------
1734 void CFGLoop::dump() const {
1735   for (int i = 0; i < _depth; i++) tty->print("   ");
1736   tty->print("%s: %d  trip_count: %6.0f freq: %6.0f\n",
1737              _depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
1738   for (int i = 0; i < _depth; i++) tty->print("   ");
1739   tty->print("         members:", _id);
1740   int k = 0;
1741   for (int i = 0; i < _members.length(); i++) {
1742     if (k++ >= 6) {
1743       tty->print("\n              ");
1744       for (int j = 0; j < _depth+1; j++) tty->print("   ");
1745       k = 0;
1746     }
1747     CFGElement *s = _members.at(i);
1748     if (s->is_block()) {
1749       Block *b = s->as_Block();
1750       tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
1751     } else {
1752       CFGLoop* lp = s->as_CFGLoop();
1753       tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
1754     }
1755   }
1756   tty->print("\n");
1757   for (int i = 0; i < _depth; i++) tty->print("   ");
1758   tty->print("         exits:  ");
1759   k = 0;
1760   for (int i = 0; i < _exits.length(); i++) {
1761     if (k++ >= 7) {
1762       tty->print("\n              ");
1763       for (int j = 0; j < _depth+1; j++) tty->print("   ");
1764       k = 0;
1765     }
1766     Block *blk = _exits.at(i).get_target();
1767     float prob = _exits.at(i).get_prob();
1768     tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
1769   }
1770   tty->print("\n");
1771 }
1772 #endif